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Abstract. The feasibility of extrapolation of completely monotone functions can be quantified
by examining the worst-case scenario, whereby a pair of completely monotone functions agree on
a given interval to a given relative precision, but differ as much as it is theoretically possible at a
given point. We show that extrapolation is impossible to the left of the interval, while the maximal
discrepancy to the right exhibits a power law typical for extrapolation of similar classes of complex
analytic functions. The power law exponent is derived explicitly and shows a precipitous drop
immediately beyond the right end-point, with a subsequent decay to zero inversely proportional to
the distance from the interval. The local extrapolation problem, where the worst discrepancy from
a given completely monotone function is sought, is also analyzed. In this case explicit and easily
verifiable optimality conditions are derived, enabling us to solve the problem exactly for a single
decaying exponential. In the general case, our approach leads to a natural algorithm for computing
solutions to the local extrapolation problem numerically. The methods developed in this paper can
easily be adapted to other classes of analytic functions represented as integral transforms of positive
measures with analytic kernels.
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1. Introduction. The theory of completely monotone functions (CMFs) was
developed in the 1920s and 1930s in the works of Bernstein [2], Hausdorff [24], Widder
[48, 46], and Feller [14] in connection with the Markov moment problem [29]. This
class of functions arises in several areas of mathematics [27, 1, 31, 49] and remains
of current research interest (see reviews [34, 32]). Its importance in applications is
rapidly becoming more and more appreciated. Multiexponential models, whereby
a quantity of interest is a linear combination of decaying exponentials with positive
coefficients, are abundant in physics [25, 17], engineering [22, 40], medicine [41, 11, 10],
and industry [42, 38].

While the problem of central practical importance in applications is the estimation
of parameters of a multiexponential model [35, 12, 38, 36], our goal is a theoretical
analysis of reliability of such procedures. To quantify the feasibility of recovery of
such functions from noisy measurements, we look for a pair of CMFs with relative
discrepancy € on [a,b] C [0,00), as measured by the L? norm, that differ as much as
possible at a given point g & (a,b). We show that the discrepancy can be made as
large as one wishes for 0 < xg < a, while for xy > b the relative discrepancy scales as
¢7(@0) where

2 b—
(1.1) ~v(xo) = — arcsin ( a > , xo>Db.
7r o —a
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An analogous problem has been considered for the class of Stieltjes functions (see,
e.g., [43, 29, 30]) in [20].

Our general methodology, developed in [19, 21, 20] for the Stieltjes class, can be
applicable to many different classes of functions that can be represented by integral
transforms of positive measures with analytic kernels. For example, CMFs are the
Laplace transforms of positive measures, while the Stieltjes functions, for which this
approach was first developed, are the Stieltjes transforms of positive measures [47].
The main technical difficulty is to link the problem of the worst discrepancy between
a pair of functions in our function class to the much better understood problem of
largest deviation from 0 among functions in reproducing kernel Hilbert spaces of
analytic functions (e.g., Hardy spaces) that are small on a curve in their domain of
analyticity [6, 33, 16, 45, 9, 44]. The latter problem can be reduced to the analysis
of the asymptotics of eigenvalues and eigenfunctions of specific integral operators
[37, 23, 39, 19, 21]. The former is treated using the same methodology as in [20],
where a family of Hilbert space norms was constructed that bridge the gap between
the Hardy space norm and the L? norm on the given curve.

We also investigate the local problem of finding a CMF g(x), such that ||fo —
gllz2(ap) < €, that maximizes and minimizes fo(z) — g(x), = & [a,b], where fo(z) is a
given CMF, normalized by || fol| £2(a,») = 1. For this problem, we derive necessary and
sufficient conditions for the extremals g(x), using the direct analysis of the variation
due to Caprini [3, 4, 5]. Caprini’s method has the advantage of suggesting an algo-
rithm for computing the extremals numerically. The implementation of this algorithm
suggested the exact solutions for fo(x) = e™*, which are then explicitly exhibited and
analyzed. The Caprini analysis-based approach has already been exploited in the
context of extrapolation of Stieltjes functions [18]. The details and implementation
of an analogous algorithm for CMF's will be addressed elsewhere.

There are three main innovations in this paper. The reduction to an integral
equation is now done using a new version of the Kuhn—Tucker theorem, which is valid
in all locally convex topological vector spaces, making it applicable to a broader class
of problems. In the case under study, the resulting integral operator has already been
fully analyzed in [26]. The theory in [19, 21] shows how the asymptotic behavior of
eigenfunctions for large eigenvalues leads to explicit formulas for exact exponents in
the power laws, like (1.1).

The second innovation is a nontrivial construction of a continuous family of
Hilbert space norms that bridge the gap between the Hardy space norm and the
L?(a,b) norm. While the constructed family of norms does not bridge the gap com-
pletely, it does so asymptotically. The explicit form of the power law (1.1) and the
explicit asymptotics of the solution to the integral equation are essential to establish-
ing the link.

The third is the worst-case analysis of the local problem. There, the necessary
and sufficient conditions for extremality are found and used to compute the two CMF's
deviating the most from a single decaying exponential, with which they agree up to
a relative precision € on a finite interval.

2. Preliminaries and problem formulation. We say that f : (0,00) — [0, 00)
belongs to the class CM! if it can be represented as

IThe original definition of CMF is a nonnegative C* function on (0, 00), whose kth derivative
is either always positive or always negative, depending on whether k is even or odd. It was shown
by Bernstein [2] that the two definitions are equivalent.
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(2.1) )=o) = | " ewtdo (),

where o is a positive, Borel-regular measure on [0,00), such that f(z) < oo for all
x> 0. In what follows, we will adopt the notation f,(z) to denote the function given
by (2.1). Formula (2.1) implies that f € H(R), where R = {z € C: Rz > 0} is the
complex right half-plane, and H(€2) denotes the space of all complex analytic functions
on the open set 2 C C. The uniqueness property of analytic functions suggests that the
knowledge of a CMF on an interval [a,b] should determine such a function uniquely.
In practice, where f(x) is known only approximately, the feasibility of extrapolation
becomes a nontrivial question that we address in this paper. Specifically, we assume
that we know the values of a CMF f(x) on the interval [a,b] up to a given relative
precision € in L%(a,b). We want to know how accurately we can extrapolate this
function outside of [a,b]. One immediately observes that for any given CMF f(z) the
function fx(z) = f(z) + ev/2Ke K@= is completely monotone for any K > 0, and
that || fx (z) — f(z)l|L2(ap) < €. However, for any c € [0,a], we can make fx(c) — f(c)
as large as we wish by choosing K sufficiently large. This shows that if we know that
a pair of CMFs has a relative discrepancy e in L?(a,b), their discrepancy at = < a
can be made as large as one wishes. We therefore conclude that we may assume,
without loss of generality, that a =0 and rescale b to 1. For this reason, we restrict
our attention to a subclass €5 of CMF's defined by

(2.2) € ={f € CM: || fll2 < 400},

where || - ||z denotes the L?(0,1) norm. We note that €5 is not a vector space, but a
convex cone. The natural vector space the cone €5 lies in is X = €5 — €5, which is a
real vector space, even though its elements are complex-analytic functions on R.

To formulate the problem of the worst-case extrapolation, we denote

23) Alf.g)(x) = M

describing the relative discrepancy at the point x between the two functions {f,g} C
¢5. The worst-case extrapolation problem is

(2.4) AT (e) = aax |A[f, g](z0)l,

where zy > 1 is a given point. In other words, we seek the largest relative discrepancy
between two €, functions, which are at most € apart on [0,1] in the L? sense. Our
primary goal is to prove formula (1.1), which is equivalent to the following theorem.

THEOREM 2.1. Let xg > 1; then

e In A%0 2 1
(2.5) ’y(xo)d:f lim In A% (e) = —arcsin () ,
™

e—0t Ine xo

where A () is given by (2.4), and the limit in (2.5) exists.

The idea of the proof is to relate (2.4), which we call the (f,g)-problem, to a
simpler problem that we know how to solve explicitly:

(2.6) AL (e) = Max d(xo), Ac={o€H:|¢[| <1, [¢l=2<e},
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where H = {¢) € H2(R) : ¢(2) = ¢(2)} is a real subspace of the standard Hardy Hilbert

space H?(R), and where || - || is a multiple of the standard Hardy space norm

1 1 1 [
2. > =sup — ' 2d:—/ ' Qd:f/ iy)|*dy.
@7 lel”=sup 27T/Rlcb(acﬂy)l y=5- IR|<i>(ly)| v=2 |o(iy)|"dy

We call (2.6) the ¢-problem. We note that the Hardy space H?(R) is a reproducing
kernel Hilbert space (see, e.g., [7]), and problems like (2.6) have been well understood
[19, 20]. Our goal is to show both that

(2.8) e (0) S tim 22 _

and that 7.(zo) is equal to the right-hand side of (2.5). We follow here the same
strategy that was used in [20] in an analogous problem about Stieltjes functions. The
main difference (and therefore difficulty) is that the Hardy norm || - || is not equivalent
to || - ||2 on the convex cone €,. This makes the direct comparison between v(xg) and
v« (o) impossible.

Our way of resolving this difficulty is to bridge the gap between the two norms by
introducing a continuous family of intermediate Hardy space-like norms of increasing

strength on X = €, — &,, all of which are equivalent to || - ||z on €;. Each norm
in the family gives rise to the corresponding ¢-problem (2.6), where it replaces the
Hardy norm || - ||. What permits us to close the circle of inequalities between the

corresponding power law exponents -y is our ability to solve the the original ¢-problem
(2.6) explicitly and thus estimate all of its intermediate norms directly. We remark
that it is the absence of the explicit solution of the ¢-problem in [20] that prevented us
from completing the rigorous proof of the analogue of (2.8) in the context of Stieltjes
functions.

3. Existence of maximizers. The goal of this section is to prove the attain-
ment of the maxima both in (2.4) and in (2.6). We start by proving the representation
property of functions in H.

LEMMA 3.1. For any ¢ € H, there exists o € L?(0,00), o(t) € R, such that
(3.1) ¢(2) :/ o(t)e *'dt, Rz>0.
0

Proof. If ¢ € H, then ¢(iy) € L?(R), and therefore, there exists o € L?(R), such
that

o(iy) =) = [ ot)e"ar
R

The symmetry of functions in H, i.e., ¢(iy) = ¢(—iy), implies that o(t) € R. Since
H is a subspace of the Hardy space H*(R), for any ¢ € H there is the Kramers—
Kronig relation [8, 28], which says that the real part of ¢(iy) is the Hilbert transform
of its imaginary part. Since the Hilbert transform is a Fourier multiplier operator
by isign(t), the Kramers—Kronig relation can be written as Rg(y) = 0, where g(t) =
o(t) — o(t)sign(t). But then, g(¢) has to be an odd function on R. We conclude that
g(t) must be identically zero since it is zero on (0,00). It follows that o(¢) =0 for all
t <0, and

oliy) = 6 (y) = / T o(heat, yeR,
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so that the representation (3.1) holds, since Hardy functions possess a unique analytic
extension into the complex right half-plane. 0

We remark that in view of representation (3.1) the Hardy inner product in H can
also be computed as

(32) (¢aa¢u) - (07 /L)LZ(O,OO)'

To establish attainment in (2.6), we need the following lemma.

LEMMA 3.2. For any o € H

(3-3) 6]l < V/7llo]-

Proof. Using representation (3.1), we have

018 < 6100 = [ [~ P dsat = w((10) (000 ),

where Ho is the Hilbert transform and o € L?(0,0) is extended by zero on (—o0,0)
to yield a function in L?(R). Hence

6113 < 7l (Ho) (=)l 2y ol L2y = mllo ]2 @) = wllo]1*. 0

The attainment in (2.6) is now obvious since A, is closed, convex, and bounded
in H, and the evaluation functional H 3 ¢ — ¢(x¢) is continuous. (It is obvious, for
example, from representation (3.1) and the fact that e~ € L%(0, 00).)

To prove the attainment in (2.4), we need the following lemma.

LEMMA 3.3. For any f, € €5

(3.4) 1oll2 > loll-.
where

* do(t)
(3.5) o, = / sy

Proof. Using representation (2.1), we compute

o0 o0 1_67(t+s)
213 = —— do(t)d .
I503= [ | ettt

Now observe that since ming>o2~1(z +1)(1 —e~%) =1, for any s >0 and ¢t > 0 we
have

1—e(t+9) 1
> > .
t+s T t+s+1 7 (t+1)(s+1)

Inequality (3.4) follows. ad
We are now ready to prove the attainment in (2.4).

THEOREM 3.4. The mazimum in (2.4) is attained.
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Proof. Let (fn,gn) be a minimizing sequence for (2.4). Then sequences

In
||fn||2 + Hgn”Q’

In

fa= T
' [ fnll2 + [lgnl2

gn:

are bounded in L?(0,1). By Lemma 3.3 the corresponding measures o,, [, are
bounded in X*, where

(3.6) Xz{CDGO([O,oo)):tlggo(1+t)<1>(t)=0}

is a Banach space with ||®||x = sup,o(t + 1)|®(t)|. Since X is separable, there are
weak-* converging subsequences, not relabeled, Fn— 09 € X*, Jin— po € X*. Since
e~ %t € X we conclude that f,,(zo) — gn(z0) = fo(zo) — go(xo), where

folx)= /000 e “tdoo(t), go(z)= /000 e tdug(t).

In fact, the pointwise convergence of fn and g, together with their weak precom-
pactness in L?(0,1) implies that f,, — fo, and g, — go in L?(0,1). The weak lower
semicontinuity of the norm in L?(0,1) implies that |A[fo,go]||2 <€ and therefore the
pair (fo,go) attains the maximum in (2.4). O

4. The ¢-problem. The goal of this section is to solve the ¢-problem (2.6).

4.1. Reduction to an integral equation. The ¢-problem (2.6) asks to maxi-
mize a linear continuous functional on the Hilbert space H over a convex and closed
subset A, C H. A new general version of the Kuhn-Tucker theorem, valid in all
locally convex topological vector spaces, is formulated and proved in Appendix A.
In order to apply it, we need to describe the admissible set of functions A, in the
standard form (A.1). To do so, we first observe that

[e's) 1
Iéoll= ol z2(0to0) = SUD / V(t)o(t)dt,  [glla= sup / $(x)(x)d.

19 L2040y <1 lll<1

Let us show that L2(0,1) acts on H by weakly continuous functionals, where the
action of ¥ € L?(0,1) on H is defined by

1
b (6,12 = / o(2)1(x)da.
0
Indeed, |(¢,v)2| < ||¢]l2]|@ll2 < v/7||¢]l2]|@]l, by Lemma 3.2. We also have

(brha= [ da@vioro= [“ oot ()0 = [ v

while the bound

(6o, ¥)2l VTV ll2lld0 ]l = VP l2llol L2 (0,00)
implies

1A% ]| £2(0,00) < V7 [[8)]]2-
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Thus, we obtain the desired description of A.:
Ac={0s € H:(0,%)12(0,00) <1 V||| 12(0,00) <1, (0, A%) 12(0,00) < € V[Y0]|]2 < 1}

In order to apply the Kuhn-Tucker theorem, we need to compute the smallest closed
convex cone F C H x R containing the set

F={(V,1): [¥£2(0,00) S 1} U{(AY, ) 12(0,00) : 1¢[l2 < 1}
We can characterize ﬁ as
F={(T+Ap, A+ eB): ||T]12(0,00) < A, |[¥]2< B, A>0, B>0}.

Indeed, it is obvious both that F is a convex cone and that each element of Fisa
nonnegative linear combination of two elements from F. To prove that F is closed
suppose that

U, +Ap, = Pin L?(0,00), An+eBy,—a, |[Vnlr2(0,.00 < An, [¥nll2 < Ba.

Then A, < A, + €B,, and B, < (A4, + €B,)/e. Hence, we can extract convergent
subsequences (not relabeled) of A, — A and B, — B. We can also extract the
weakly convergent subsequences (not relabeled) ¥,, — WU, 4,, — 1. The weak lower
semicontinuity of the norms implies that [|[¥||12(0,0c) < A, [|[¢]l2 < B, while A4-¢B =«
and ¥ + Ay = P. Thus, (P,a) € ﬁ, and we conclude that F is weakly closed. Now,
according to the Kuhn—Tucker Theorem A.1,

(1) Ar()=maxd@)= min (EIlelz +][Ay —e thm(o,oo)) :
The minimizer ¢, in (4.1) exists for any fixed € > 0, because this is a convex and
coercive variational problem. However, this problem is difficult to analyze. Hence, we
are going to modify the maximization problem (4.1) to make it more tractable, while
using our understanding of the relation between solutions of (2.6) and (4.1) to obtain
the maximizer in (2.6). Using that for 1/p+1/¢=1,

1 2

(4.2) - <pa2 + b2> =L b <(a+b)?<pa+gh®=¢q (pa2 + b2) ,
P \q q p q

we conclude that for the sake of understanding the asymptotic behavior of AZ(e), we

can replace the variational problem (4.1) by a quadratic one:

_ . 2 2 —zot]|?
(43) Qfo(g)*d)erglgl(%’l)g ||¢H2+ ||Aw76 0 HL2(O,oo)’

where e = €y/p(€)/q(e), and where the parameters p(e), g(e), satisfying 1/p(e) +
1/q(e) =1, will be chosen later to optimize the upper bound that, according to (4.2),
reads

(4.4) AP()* < q(€)Quo(e),  e=e 28'

The advantage of the quadratic minimization problem (4.3) over (4.1) is that the
minimizer 1. of (4.3) solves a linear integral equation

(4.5 () + (KO)(@) = € f0.1]
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where K : L?(0,1) — L?(0,1), and

Y (y)dy

(0)(@) = (A" M) ) = [ T

is a bounded, nonnegative, and self-adjoint operator. Hence, (4.5) has a unique solu-
tion 1. € L?(0,1).
Representing the kernel (x + ) ~! of the integral operator in the form

1 :/ e TteT Y,
z+y Jo

we conclude that the solution . of (4.5) satisfies

(4.6) Ye(x) = giz /Ooo(e“t — Ay )e .

This shows that 1. € L?(0,1) has the unique extension, also denoted 1. € H, which
has a representation (3.1), with 0 =e72(e~®0! — A1).) € L?(0,00). Therefore, in view
of (3.2), we have

1 —x
(4.7) el = 1 Ave = el 20,00)-

Setting = =z in (4.6), we obtain

1
€2

Ye(xo) = /0 (€70t — Aap.)e "ol dt.

Multiplying (4.6) by . and integrating over [0, 1], we get

1 oo
[welB =5 [ (™~ Avo)hvadt
0

Subtracting the two equations and taking (4.7) into account yields

(4.8) H%Hg+52||1/15H2=¢e($0)-
This relation implies that Q. (¢) =&t (x¢), while the upper bound (4.4) becomes
(4.9) AT (€)* < qle)e*de(w0) = €*p(e) e (wo).-
The lower bound for A%0(e) is obtained by using a test function
€te
(4.10) $e=—€cH,
||¢6H2

which obviously satisfies ||¢c||2 = €, and where p(e) is chosen so that ||¢¢|| = 1. Specif-
ically, using (4.8), we have

E($0)
o= Sl _ a0 (welow) ) oty ~ 1
BT e ple) \ T3 p(e) -1
Setting ||¢c|> = 1, we obtain
Ve (o) e[l
4.11 = =1 1
1) PO= g =1 g €1
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due to (4.8). The choice (4.11) of p(e) implies that ¢. € A, yielding the lower bound
for AZo(e)

o 62% (fo)z

(AZ(€))* > (¢e(x0))* = TR pe)pe(zo),

provided p(e) is given by (4.11). Hence, the lower bound for A%°(¢) agrees with the
upper bound (4.4), and therefore,

_ ews (1'0)

(4-12) Af“(e) = W,

where 1. solves (4.5) and € and e are related by

el
el

which is easy to obtain combining (4.11) and the formula for € from (4.4). Substituting
this into (4.12), we also obtain

(4.13)

(4.14) A (e) = qﬁlﬁl)

We can use formulas (4.13) and (4.14) to establish the explicit leading order asymp-
totics of A%0(¢) if we can compute the explicit leading order asymptotics of the right-
hand sides in (4.13) and (4.14). Specifically, if Ey(¢) and Ej(e) are continuous and
monotone increasing functions on [0, 1), such that Ey(0) = E1(0) =0, and

ws(xo)

. _ e 2
0% Bo(e) e

1 lim — =2 1,
e—0t E1(e)||¢||

then we want to conclude that

Ak(e)

lim —— =1,
0t Eg(E7 (€))

(4.15)

Since €(g) ~ E1(¢), then the assumed properties of E;(g) imply that e — 07 if and
only if € — 0%. Then,

x M
T 4l C R, Eo(€) my@lveT .
RO, (5 (Riemt)

Thus, (4.15) follows if functions Fy and F; have the additional property

Eo(e)

lim - =1
e—=07+ EO(El (El (5)T(5)))

)

(4.16)

whenever r(¢) = 1, as e = 07 It is not difficult to give an example of continuous and
monotone increasing functions Ey and E7, with Ey(0) = F1(0) = 0, that fail to satisfy
(4.16).
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4.2. Solution of the integral equation. To solve the integral equation (4.5),
we diagonalize the bounded self-adjoint operator K. The problem of computing the
eigenfunctions of K can be related to a problem about the truncated Hilbert transform

1
(e =Py, [ 20
o §-Y

regarded as a map Hy : L?(0,1) — L?(—1,0), that has been solved in [26]. The relation
between the operators K and H; is expressed by the formula K? = Hj H;, which
shows that if u is an eigenfunction of K with eigenvalue v > 0, then u is also a singular
function of H; with singular value v. Conversely, if u is a singular function of H; with
singular value v, then K?u = v?u, which implies that (K + v)(K —v)u=0. Since K
is a bounded nonnegative operator, the operator K + v is invertible, and we conclude
that Ku=wvu. In [26] it was shown that the spectrum of H{ H; is continuous, and its
eigenfunctions can be found explicitly by observing that the differential operator

(Lu) () = —(2*(1 - 2®)u! () + 22%u(x)

commutes with H; H;. We can easily verify that L also commutes with K. That
means that if u is an eigenfunction of L corresponding to the eigenvalue A, then
AKu= KLu= LKu. Hence, Ku is also an eigenfunction of L with the eigenvalue .
As computed in [26], the eigenspaces of L are all one-dimensional, spanned by

1
——+ip 1 dp 3 ip 1

where F([a, b], [c]; z) is the Gauss hypergeometric function. We conclude that functions
u(x; ) are eigenfunctions of K. The corresponding eigenvalues are the singular values
of Hy, which, according to [26], are given by
™

4.18 =—.
(4.18) v(p) cosh(m )
We note that the function z — F([a,b],[c];z) is analytic in C\ [1,+00). Therefore,
u(x; p), given by (4.17), is analytic in the complex right half-plane. The orthogonality

of the eigenfunctions is conveniently expressed in terms of the “u-transform” and its
inverse (see [26]):

@19)  f)= [ s@uds @)= [ fuusutab(mde

Multiplying the second equation by f(z) and integrating gives the generalized Plancherel
formula

(4.20) 1718 = [ 100 Putanh ()

The knowledge of the eigenfunctions of K permits us to solve the integral equa-
tion (4.5):

£
2¢2 cosh(mp) + 1 Vor
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Moreover,
* u(wo; p)*putanh(mp)
4.22 2= d
( ) 1¥ell2 / (2¢2 cosh(wp) +1)2 s
while
> u(wo; ) tanh(mp)
4.23 = d
(4.23) Ve (o) /0 2é2 cosh(mp) +1 a

Substituting (4.22) and (4.23) into (4.8) gives

/°° u(zo; p)* psinh(mp)
(22 cosh(mp) + 1)2 p-

(4.24) e 2 = =

™

When x = 2 > 1 the coefficient —2?(1 — 2?) in the differential operator L becomes
positive, and we expect the eigenfunctions u(xg;u) to grow exponentially as pu — oco.
Thus, if we set € =0 in (4.22) and (4.23), we obtain exponentially divergent integrals,
while they remain convergent for each € > 0. Thus, ||1)||2 — co and ¥ (z9) — o0, as
€ — 0, and the precise asymptotics of these quantities, as € — 0, would depend on the
rate of exponential growth of u(zg;u), as p — oo.

4.3. Asymptotics of A%°(e). In this section the notation A(e) ~ B(e) means
A(e)/B(e) — 1, as € — 01. Similarly, A(u) ~ B(u) means A(u)/B(pn) — 1, as
i — +o00. The goal of this section is to prove the following explicit asymptotics® of

A%o(e).

THEOREM 4.1.

2 i 1
Ci(xo)e™ amm(’“)), zo>1,

§e|lne|7 xo=1,

(4.25) A (¢) ~ {

where

1

arccos( -
zQ
™

2m arcsin ( L )

1 o 0
(4.26) Cl(irg) = =
24/ 2(22 — 1) arcsin (%) arccos (%)

Formula (4.15) expresses the asymptotics of A¥?(e) in terms of the asymptotics
of ||tcll2, ¥e(x0), and ||¢bc]|, given by (4.22), (4.23), and (4.24), respectively. In turn,
these depend on the asymptotics of u(xg; p), as 4 — co. The following lemma gives the
asymptotics of u(z;u), as u — oo for all z in the complex right half-plane, excluding
the interval [0,1]. While in this section we will only need the asymptotics of u(z; )
for real z > 1, the asymptotics for other values of z will also be required later on.

LEMMA 4.2. Let u(x;p) be the eigenfunctions of the integral operator K. Then
formula (4.17) gives the analytic extension of u(x;p) from [0,1] to the complex right
half-plane. Moreover,
eha(z)
V2’

2For our purposes, we only need the exponent. We derive the explicit formula for Cx (z0) because
we can, and because the technique we use may be of broader interest.

(4.27) u(z; ) ~ R(2) as pt— oo,
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for every z€Q={2€C:Rz>0, 2¢£[0,1]}, where

(4.28) R(z)=2"12(z2 —1)"V/4, a(z) = arccos <i> —iln (@) :

and where the principal branches of the natural logarithm and all fractional powers
are used.

The proof is a straightforward application of the asymptotic formulas for the
Gauss hypergeometric function from [13]. The required calculations needed to apply
these formulas to our specific case are detailed in Appendix B. We also remark that
u(1l; ) = 1 and that the asymptotics of u(z;p) for z € [0,1) is given in [26, formula
(4.34)].

The exponential growth of u(z;u) as u — oo, described by Lemma 4.2, permits
us to compute the explicit asymptotics of 1. (2), ||¢c|l2, and |[¢¢]|, given by (4.21),
(4.22), and (4.24), respectively. This is made possible by the following lemma.

LEMMA 4.3. Suppose that v € C([0,00)) is such that v(u) — 1, as u — 400,
ke{l,2}, and RB € (0,k). Then

(4.29) /0 - : e (p)dp T

~ £ 507,
922 cosh(mp) + 1)F sin(rp)  °F

Proof. Changing the variable of integration p/ = 7u + 21né, we obtain

oo e”B”U(u)du g—28 oo Py (% — flne)
/0 ( /21n6

= du’
2é2 cosh(mp) + 1)k T (el + e—n+AlE L)k M

Since P € (0, k) and v(+) is a bounded function, the Lebesgue dominated convergence

theorem applies, and we obtain?3

o By (/L/ — flng) . /_/ eﬁ“ldul B (1 _B)k—l .
FE T @ DF T sin(mh)

lim
30 e (O F e T 1)

As a corollary, we obtain the explicit asymptotics of ¥ (z), ||1)c||2, and ||¢e]-

THEOREM 4.4. Let g > 1 and 1. be the solution of the integral equation (4.5).
Formula (4.21) defines an analytic extension of . (x) from [0,1] to the complex right
half-plane. Suppose z€ Q={2€C:Rz>0, 2¢[0,1]}. Then,

(i) Ye(z) ~ %“w(z), where B(z)z%, and é = —£

(i) [[gella ~ 2/ 25Er o mele P

xg arccos(l/xo) ~—B(z
(i) ellobe| ~ &/ 2tpcgeamel e=flao),

Proof. We begin by “substituting” our large p asymptotics (4.27) from Lemma 4.2
into formulas (4.21), (4.22), and (4.24). We obtain

RE)R(G) [ POz p)
Velz) = 27 /0 2é2 cosh(mp) + 1

R(z0)? [ e Pty (zg; p)
Ws”%z 9 / o) 2du,
7 Jo (2€%cosh(mp)+1)

)

3The formula is correct only for k=1 or 2. For general k € N, the correct right-hand side is more
complicated: =B B A= k)gm(ﬂ(ﬂ E where B(z,y) is the Euler beta function.
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and
2 = Rl / I (o 1)
T 42 (2¢2 cosh(wp) + 1)2 K
where
v(z;p) = ulooip) | ulzip) tanh(mp), v(2;p) =2v(z;p)e” ™ cosh(mp),
uo(zo; ) uo(z; )
and
eto(z)
(4.30) uo(z; ) = R(2)

NI

In order to apply Lemma 4.3, we must verify that the function p — wv(z;u) and
the exponent §(z) satisfy the assumptions in Lemma 4.3. The continuity of p
v(z; p) follows from the Euler integral representation of the hypergeometric function
combined with formula (4.17), which gives

(4.31)

: 3 - T 1
u(z;p) = z*%”“—sm (T;_ ZTN) / t7i+%(1 — t)f%*%(l —(1— 22)t)7%*%dt.
0

The integrand is continuous in x and bounded by ¢ ~1/4(1—t)=3/4|(1—(1—22)t| = /%™ ¢
L'(0,1). An application of the Lebesgue dominated convergence theorem implies that

p— u(z; p) is continuous on [0, 00) for any z € 2. Formula (4.30) shows that ug(z; u)

is nonvanishing and continuous in g > 0, proving the continuity of p— v(z;u), while

Lemma 4.2 implies that v(z; 1) = 1, as pu— oo, for every z € . Finally, the required

constraint RAB(z) € (0,1) for any z € Q is guaranteed by the following lemma.

LEMMA 4.5. Ra(z) € (0,3) for any z € Q, where a(z) is defined as in (4.28).

Proof. We observe that o :  — C is injective since cosa(z) = 1/z. Thus,
O (2) = a(05092), where 0,€) refers to the boundary of Q in the Riemann sphere
CU {oo}. It is easy to see that a(z) maps the ray i(0,+o0) to the line /2 4 iR and
the ray i(—00,0) to the same line 7/2 4+ iR. It maps the interval [0,1] + 0i to the ray
i[0, +00] and the interval [0,1] — 0i to the ray i[—00,0], while v22 —1 = 21— 272,
when z — 0o, z € Q. Therefore, a(z) — iln(—i) = 7/2, as z — oco. We conclude that
Osot(Q) = iR U (1/2 +iR) U {00}, and a(2) = {w € C: 0 < Rw < 7/2} since a(N)
must be a connected subset of C. |

Lemma 4.3 can now be applied, and we obtain

R(x0)R(z)¢~2A=)

Ve (2) ~ 2rsinwB(z)
s R(x0)*(1 — B(mg))e—2Al0)
1|5 ~ 27 sin3(z0) ’

and

WJ ”2 ~ R(xo)zﬁ(xo)éfzﬁ(a:o),g
) A2 sinw (o) .

Substituting the values of R(z), a(zg), and 5(zp), we obtain the claimed asymptotic
formulas (i)—(iii). |
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Now, we can compute the explicit asymptotics of A%0(e), given in (4.15). We
compute

Mwﬁlfﬁ(ro) _ro
Tl "¢ 2@ V)Blag) o)

and

el farcsin(l/ao)
[l arccos(1/zg)

=: El(E).

It is now evident that functions Ey(¢) and Fj(e) are continuous and monotone in-
creasing on [0,1), such that Ey(0) = E1(0) = 0. Since Fj(e) is linear and Ey(e) is a
constant multiple of a power, property (4.16) reads

Eo(e) Eq(e)

- =(r B(zo)—1 as +
Eo (B (Ei(e)r(e)))  Eoler(e)) () —1,ase =07,

for any function r(g) such that r(¢) — 1 as ¢ — 0". Thus, formula (4.15) applies, and

Blzo)—1
o o 7 2m arcsin(1/zo) 1-B(x0)
A (e) ~ Eo(Ey (€)= 2(x2 — 1)B(z0) ( arccos(1/x¢) ) ‘ .

Substituting the values of a(zg) = arccos(1/x¢) and B(zg) = 2a(xo) /7 into the above
formula, we obtain Theorem 4.1 for all zg > 1. In particular, we see that for any
xo>1

InA%o(e) 2 1
4.32 . =lim ———~=— in{— |.
(4.32) v« (o) lim — = —arcsin (%)
The singular behavior at o =1 of coefficients in all of our asymptotic formulas
indicates that the asymptotic analysis for o =1 needs to be done separately.

THEOREM 4.6. Let . be the solution of the integral equation (4.5) with zo = 1.
Then )

(i) [|e]13 ~ e (1) ~ 2022

(i) [lell® ~ =555

Proof. Whenever z¢ =1, our formulas (4.22), (4.23), and (4.24) simplify because
u(l;p) =1

ptanh(mp) 9 /°° ptanh(mp)
4. 1)= —————d = d
( 33) ws( ) /0 252 cosh(mu) + 1 Mﬂ ||w€||2 0 (252 COSh(?T,u) + 1)2 N’a

o 1 [ psinh(mwp)
(4.34) ([l —W/O (262 cosh(mp) + 1)

The situation here is similar to the one for x¢ > 1 in that setting £ = 0 still results in
divergent integrals. This indicates that it is the behavior of the integrands at p = oo
that determines the asymptotics of the integrals when ¢ — 07. When pu is large
tanh(7p) will be replaced by 1, and both 2cosh(mu) and 2sinh(mu) by €™ . To make
this heuristic argument rigorous, we make a simple observation that we formulate as
a lemma for easy reference.
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LEMMA 4.7. Let (G,0) be an arbitrary measure space. Suppose that for any
g€ (0,e0) {W.,W.} € L'(G;do) and

(i) li:Ina—m+ |fG Ws(y)dg(“’)} =00y

(ii) limo_o+ [[We — WEHALl(G;d(r) < 0.
Then [, We(p)do(p) ~ [oWe(u)do(u), as e —0F.

W, w)do (p lim__ o+ HWE_WEHL,l Gido

W a 1’ = limaio+|fc Ws(l‘)d;(#)‘) =0 .

As we have already pointed out, the integrals in (4.33) and (4.34) satisfy condition
(i) of the lemma. Then estimates

Proof. lim,_,q+

|tanh(mp) — 1| < 2e 2™, [2sinh(mp) — e™| =™

ensure that condition (ii) of the lemma is satisfied, and we conclude that

°° pdp 2 [T pdp
1) ~ _Bmer ~
Ye(l) /0 2é2 cosh(mp) +1° Ielz /0 (2€2 cosh(mp) +1)2’

and

P~ o [ e
: 21 Jo (282 cosh(mp) +1)2°

Similarly, the estimate

M M ~2 —T
_ <9 i
262 cosh(mp) +1  &2e™r+1 ‘ = e he
implies that
* pdp
1)~ —_—
ve() /0 £2emh +1
To handle the remaining two integrals, we define
We(p) = We(p) =

(262 cosh(mp) +1)2’ (E2emr +1)2°
We first compute

22 22 T 22 —T
R pE(28%e™ + 2 + %7 TH)
|/|/ _— I/‘/ =
|We (u) (1) (262 cosh(mp) + 1)2(é2e™# + 1)2

and estimate
262e™H £ 2 4 E2eTH < 3(6%e™ + 1),

so that

3ué?

(2é2 cosh(mp) +1)2(€2e™ +1)°

|Ws(:u) - WE(N” <

Next, we estimate

g2e™H 41 > &%, (28% cosh(mp) + 1) > 1,
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and obtain
(We(p) — WE(N” <3pe” ™ € L'(0,00).

Thus, Lemma 4.7 is applicable and
* pdp . < pdp .
v~ [ nE©, el [ it = )

é2emrh 417 E2emh 4 1)2
9 . 1 [ pe™du In(1+ ) Iné
[[the|” ~ Io(€) ::27 22 2 322 0 320
T Jo (E%2e™+1) 2m3¢ w3
establishing part (ii) of the theorem. Part (i) is proved by means of the 'Hopital rule:
hE . ERE) PR 2
e50+ (Iné)2  eso+ 2Iné 0+ Iné w2

To apply the ’'Hopital rule to I5(€), we compute

e T 22+ 1)In(1+é72)—1 4Iné
I;(é):—zlé/ L T G L U e ek Y
o (E%2emr41)3 m2E(e2+1) w2E
Thus,
LE) e 2
é—0t+ (Iné)? T eoo0t 2lné w2
The theorem is now proved. 0

According to Theorem 4.6,

e V2 el B
||¢5H N7E‘ln€‘ _'E0(5)7 ||’1,ZJEH NE\/M—-EI(E).

This shows that both Ey(¢) and E;(e) are continuous, monotone increasing functions
on [0,e73/2), satisfying Ey(0) = F;(0) = 0. In order to use formula (4.15) for the exact
asymptotics of Al(e), we need to verify property (4.16). This is somewhat tedious.

Let r(e) — 1, as € — 07, be arbitrary. To make the calculations more compact, we
define 6 =d(¢) =r(e)E1(e). Then,

Ey(e) g|Inel3/? e|lnel3/? |Inel

T Bo(BL (Bi(e)r(e) By OB ()2 olnEN(0)] (o) By (6)]

p(€)

where we have used the relation E;*(8)|In By (6)[*/2 = E1 (E;*(6)) = 6 together with
the formula for d(g). Next, we write

|Ine| = |lnr(e)E1(e) — In(r(e)y/|Ine])| = | Ind(e)|7(e),

where
1 v/ |1
o) =|1— In(re)Vime) |y o ot
In(r(e)ey/|Ingl)
Thus,

_ #(e)mg]
P = O E ()]
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It remains to observe that d(¢) — 0%, as € — 0% and therefore, n(e) = E; ' ((c)) — 0.
Hence,

r Iné InE
lim p(e) = lim @ li #: li M:
e—0+ e=0t 7(g) 60+ [InE;N(S)|  no0t  |Ing|

‘1/2

Formula (4.15) is now applicable, and we compute, using E; ' (¢)|In E; ! (e)|Y/? =,

2 2 InE;t 2
AL(e) ~ %Efl(eﬂ B (o) = %q lne||nh11€|(6)| ~ %q Inel
since
InE;! 1

g BN el

=0t |Ine n—0+ |In Ey1(n)|
In particular, we can conclude that

InAl(e)
L(1)=1 =Y 1= lim .
=0 TR T )

This completes the proof of Theorem 4.1 for xy = 1.

5. A continuous family of Hilbert space norms. Our task now is to connect
the explicit exponent ~.(zg), given by (4.32) to the desired exponent y(zg) coming
from the (f, g)-problem (2.4). This is done by introducing a family of norms that help
us to bridge the gap between the L%(0,1) norm and the H?(R) norm on the convex
cone €. In reference to f € €5, we will use the notation

f(=/7)

5.1 FolfN)(z) = -~
(5.1) (FolfD(2) 1)

=1,

where the principal branch of z% is always chosen. For all p > 1 and f € &, the
functions F,[f] are analytic on the complex right half-plane R. We then define the
family of spaces

(5.2) Sp={f€HR): FlfleH}, p=1,

equipped with norms || f||5, = || Fp[f]]-

THEOREM 5.1. €3 C 9, for every p>1, and there exists a constant Cp, >0, such
that

(5:3) [f1l5, < Cpllfll2

for every f € &,.

Proof. The fact that the functions f5, = e** belong to §, follows from the
observations that for each fixed y >0 and ¢ € [0,1] the functions

vi(e)=Rel(z +iy)7, va(x)=|(x+w), vs(@)=|@+iy)?+1]°, ¢€[0,1],

are monotone increasing in € (0,+00). This is evident from the polar representation
of x4 iy = r(2)e’?®) and the observation that 7(z) is an increasing function of z,
while 6(z) € (0,7/2) is a decreasing one. Then

vi(z) =r(x)?cos(¢f(x)), vo(x)=r(x)?, wvs(z)=r(x)??+1+2r(x)?cos(qh(x))
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are obviously increasing functions since ¢f(x) € [0,7/2] for all x > 0 and ¢ € [0, 1].
Thus,

e—2tn1 (z) e—2tn (0)

(Fplfs)) (@ +iy)* = = [(Fplfs. D) (i)

~ wa(z)v3(2) = v2(0)v3(0)

It is also easy to see that

00 00 e—2tu,py1/p o] e~ 2tapu
[ 1@ P [ [ <o,
0 0 0

y",%l(yz/p +1+y'/7a,) u? 41+ 2a,u

where a, = cos(m/(2p)). We conclude that

N
(5.4) fla)=) cje ™ ey,
j=1

for all p>1.
Now, let o be a positive measure, such that f, € 9, N €,. Let us show that (5.3)
holds for all such functions f,. Indeed, for any f, € £, N €,, we have (see (2.7))

1folls, = (o)) (@)l L2 (0,00) -

VT
Then, in order to establish (5.3), we need to prove the inequality
(5.5) [(Fp[fe]) (@)l 22(0.00) < VTCy| fo l2-

To prove (5.5), we estimate

(5.6) £ ()7 | < / " e Moty = f, (/7).

We conclude that

[fo (apy'7)|°
yprﬁl/pyl/p +12

LD 0 < [ N

Making a change of variables u = apyl/ P we obtain

Lol
+ u2 tan? (%)

N (09 30,00y < p/ (u+1)?

Writing

oS} 2 0 n+1 2
0 (u+1)2 +u2tan® (%) no0’/n  (u+1)2 +u?tan? (%)
and estimating

1 1

< )
(u+1)2 4 u? tan? (%) (n+1)2 +n2tan? (%)
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when u € [n,n + 1], we obtain the bound

- . 2q
I(Fpl o)) (@)1 720,00y < 52 Jo I $—|2—n)| v
P 7o (n+1)2 +n2tan? (2p>

Finally, using the fact that 0 < f,(x +n) < fs(x) for any CMF f,, we conclude that

pllfs 113 < 1

]:p o i 22 e} < .
Dl <5 S et (5

If we replace n 4+ 1 by n in the bound above for n > 0, we obtain a simpler formula
for the constant Cp:

b pa m
02 o P _
Ch— + 6 ap = CO8 ( 2p)

To finish the proof of the theorem, we need the following density lemma.

LEMMA 5.2. Suppose f € €. Then there exists a sequence of functions f, € €
of the form (5.4), such that f, — f in L*(0,1).

Proof. Let K be the closure in L?(0,1) of the set of positive finite linear com-
binations of functions fs,(z) = e~**. Then, K is a closed, convex subset of L%(0,1).
Suppose there exists fo € €3\ K. Then, by the Hahn-Banach separation theorem
there exists go € L?(0,1), such that for all ¢ >0

/0 e_“”tgo(x)dx20>/0 fo(z)go(x)dz

If o is the spectral measure of fy € €5, then integrating the left inequality above with
respect to og, we obtain

/0 fol@)go(x)dz >0,

which contradicts the right inequality. We conclude that K = €. ]

Now, if f € €5 and f,, = f,, is as in the lemma, then by Lemma 3.3 |0y, ||« < || frl|2-
Thus, we can extract a weak-* convergent subsequence in X*, not relabeled, so that
on—0, where X is defined as in (3.6). It follows that along this subsequence f, (z) —
fo(2) for all z € R since e~*' € X. Thus, since f,, — f in L?(0,1), then f, = f, and
consequently (Fp[fn])(2) = (Fp[f])(2) pointwise on R. In addition, by the already
proved inequality (5.3) for functions (5.4), we have | Fp[fn]l = an||5p < Cpllfull2-
Hence, there exists a further subsequence, not relabeled, along which F,[f,] = F in
H?(R). But, since H*(R) is a reproducing kernel Hilbert space, weak convergence
implies pointwise convergence, showing that F,[f] = F € H. We conclude that f € $,,,
and the theorem is now proved. ]

We emphasize that inequality (5.3) is valid only for all f € €. It does not hold
for f € X = €3 — €5, for which the reverse inequality holds, as shown in our next
theorem.

THEOREM b5.3. For everyp>1

(5.7) 1]l2 <2 %“nfnm

for every f € X (every feXNH ifp=1).
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Proof. To prove this theorem, we use the analyticity of (F,[f])(z) in the right
half-plane. Let 'y, be the boundary of the rectangle [0,1] x [0, L] traversed in the
positive direction. We first observe that similarly to (5.6), we can estimate

o+ L)) < fio (2M7ay) < fioi(a):

We conclude that

1
Jim / (Folfo]) (@ +iL)Pdz =0,

L—oo /g

and using the Cauchy theorem [, (F, »f])(2)?dz =0, we obtain the formula

751 [ E = [

0

D iy - [ T ELD A+ iy)idy.

By the symmetry of CMFs, we have (F,[fs])(2) = (Fp[fs])(Z). Therefore, we obtain
the inequality

A< 5 [ 1D P+ 5 [ IFLD0+ )Py
< [ 1) Py =25 1213,
R

where we used the property of Hardy functions that [, |F(z + iy)|>dy is a non-
increasing function of z. Finally, changing variable u ==z 5” we estimate

1 1 2
2 _ 2. _ Jfo(u) p 2
I = [ Flrd@ie=p [ L8B3 0
Now, in reference to the [ - ||, norm, we can define the ¢,-problem by analogy

with the ¢-problem (2.6):

(5.8) AP (€)= ¢Su£ P(zo), A?={0€Np:[ols, <1 [¢ll2<e}.
€AY

6. The relations between (f,g)-, ¢-, and ¢p-problems. In this section, we
are going to examine the relations between the (f,g)-, ¢-, and ¢,-problems, given by
(2.4), (2.6), and (5.8), respectively, with the goal of establishing (2.8), thereby proving
Theorem 2.1.

Let p > 1, and let ¢e € 9, be a max1m1z1ng sequence in the ¢,-problem (5.8).
Define (™ = F,[v™] € H. Then [[¢{™ | = ||t ||5, <1, while

1 (n)(..1/p\|2 (n)
e [t @) gl .
6= [ o= [ < el <o

Thus, gbe" /\/P is a valid test function for the ¢-problem, for every n > 1, where xg
was replaced by xf. Therefore,

oy 0 (h) v (o) Aje(e)
6.1) AX°(e) > =
B N L TEy R LTy

, as n — o0.
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Now, let (fe,gc) be the solution of the (f,g)-problem. Define ¢.(x) = A[fc, gc|(z) (see
(2.3) for notation). Then, ||¢.||2 <€, and by Theorem 5.1

16, < Mellop 9l
ellon < e ol =7

Thus, ¢./(Cp+1) is a valid test function in the ¢,-problem for any p > 1. Therefore,

zo Pe(0) Alfe, gel(wo) _ A™(e)
(6.2) A (6)20p+1_ Co+1  Cp+1

An essential benefit of using the Hardy norm || - || is that it permits a controlled
split of functions ¢ € H into the difference of two CMFs. Here is the construction.
By Lemma 3.1, if ¢ € H, then there is a unique o € L?(0,00), such that

o(z) = /000 e Fo(t)dt, Rz>0.
Let o4 (t) =max{0,0(t)}, o_(t) = max{0, —o(t)}. Then, we define
d1(z)= /000 e oy(t)dt, Rz>0.

In this construction

/000 o (t)o_(t)dt =0.
Therefore, by Plancherel’s identity

[ o+ tio-Gidy=o.
But then

(g1l =+ lle-11)?,

>~

1 . .
617 = 5= [ 104(i) — o- )Py =617 + - | =
T JRr
which shows that

ol <o+l + oIl < 2ll¢ll-

In order to complete the circle of inequalities, we take ¢ to be the solution of the
¢-problem and define f=¢F, g=¢_. We then have, using Lemma 3.2,

i leda) 6u(z0) Bzl _ [oelzo)l _ A (9
AL g0 = o o = Valer I+ 16D = 2vllod = 2vm — avr

We also estimate

[ Pell2 < Cpe Cpe
o N2+ o ll2 = 6 lla, + 6€ 1o, ~ 9ells,

To complete the circle of inequalities, we need the following theorem.

1AL gl(@)ll2 =
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THEOREM 6.1. For any xo > 1 and p > 1, there exists cp(zo) >0, such that

(6.3) ells, = cplwo)e' ™7

for all sufficiently small e.

The proof is in Appendix C. It is based on the fact that the solution ¢, of the
¢-problem, given by (4.10) and (4.21), is expressed in terms of the explicitly known
eigenfunctions u(z; u), given by (4.17), of the integral operator K.

We can now complete the circle of inequalities and prove (2.8). According to
Theorem 6.1, (¢, ¢-) is an admissible pair for the (f, g)-problem, where e is replaced

1

with (Cp/cp(x0))er, permitting us to conclude that ¥(zo)/p < v« (x0), where

y(zo) = lim nA%(e) g A7) 0<6).

- cs0 Ine e=0 Ine

Combining this inequality with inequalities (6.1) and (6.2), we get

(6.4) V() < vp(20) < (o) < F(w0) < pya(o),
where
In A%o(¢) —InAZo(e)
T p — T p
L/p(x[)) N ?ﬂ% Ine ’ (7o) = 21—% Ine

The explicit form of . (xg), given by (4.32) implies that . (x) is a continuous function
of xp. Then, passing to the limit as p — 17 in (6.4), we obtain the existence of the
limits

lim ~, =1l =V .
plr{l+ »(20) plr?fyl’(xo) Y« (x0)
Inequality (6.2) then implies that

Yp(0) <(w0) <F(20) < pye(0)-

Passing to the limit in this inequality as p — 11 proves the existence of the limit

. InA%o(e)
V(@) = lim ——=,

as well as the desired equality (2.8).

7. The local problem. Suppose fy € €5 is given, as well as xg > 1. Let

Kelfol ={f €Ca:||f — foll2 <€}

We note that K.[fo] is a convex set. The goal is to compute

(7.1) Me(zo; fo) lax f(@o), me(xo; fo) oam f (o).
While the Kuhn—Tucker theorem is applicable to the local problem (7.1) and leads to
optimality conditions that are easy to check numerically, they are not very useful as
a guide for finding the extremals in (7.1).

For this reason, we forgo the details of the Kuhn—Tucker-based analysis and opt
instead for the direct variational approach due to Caprini [3, 4, 5], which is narrower in
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scope than Kuhn—Tucker but leads directly to a natural algorithm for computing the
extremals in (7.1) approximately. The method is applicable for the minimization of
general positive definite quadratic functionals and necessitates the dual reformulation
of the variational problems (7.1). Given fy € €3 and 0 € (—0_,d,), for some small
6+ >0, we seek to solve
(7.2) min [\f ~ foll3

f(z0)—folz0)=38
Suppose that f,  satisfies the constraint f,, (xo) — fo(z¢) = and minimizes the func-
tional J[o] = || f5 — fol|3- The Caprini method is based on the following representation
of the variation AJ = J[o| — J[o.] > 0:

(73 AT =1l = folZ—lfs. — follE =2 / C(B)dAa(t) + || fanl2,

where Ao =0 — o0y, and

(7.4) C(t) = (Mfy ) (1) — (Afo)(t) = / e (fo. (2) — folx))da

is the Caprini function.

THEOREM 7.1. The minimizer o, in (7.2) exists and is unique and has either a
finite support or a countable support {t, :n > 1} with

=1
(7.5) > — <o
n=1 "

In either case

—xgt

(7.6) () > /fa* (fo. (@) — fola))dz, t>0,

10 +6
with equality at all t =1, in the support of o.. Conversely, if 0. is a positive measure,
whose support {t, : n > 1} satisfies (7.5), and is such that (7.6) holds, then it is a
minimizer in (7.2), provided o, # oo, where fy, = fo.

Proof. To prove existence, we let o,, be a minimizing sequence. Then the bound-
edness of || f,, ||2 implies the boundedness of |0, ||, according to Lemma 3.3. Hence,
we can extract a subsequence, not relabeled, such that f, — f. in L?(0,1) and
on— 0, in X*, where X is given by (3.6). Then f, (x) — f,, (x) for all > 0 since
e~% € X for all z >0. We conclude that f, = f,,, and that f, (zq)— fo(xo) =6. The
weak lower semicontinuity of the L2(0,1) norm implies that

I = foll2 < Tim || fo, = follo=" min [If = fol3.
n— oo 2
F(z0) = fo(z0)=5

The uniqueness of the minimizer follows from the convexity of the constraint and the
strict uniform convexity of the L?(0,1) norm.

Now, let o, be the minimizer in (7.2). Assume first that o, has a point mass at t..
Then, we remove €d;, (t) from o, while placing the mass ee®0(to—t) at ¢, preserving
the constraint. In that case

AJ = 2¢(e® M) O (tg) — O(t,)) + O(e?) > 0,
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and therefore, e*0'0(C(ty) > e®'~C(t,). Hence, any point mass t. in the support of o,
must be a point of global minimum of e*°*C(t) on [0,+00). If ¢, is in the support of
04, but is not a point mass, then m(e) = o4 ((t« — €) T, tx +¢)) = 0, as € — 0, while
m(e) > 0 for any € > 0. In that case, we remove o, |((tx — €)™, t, +¢) from o, and place
the appropriate mass m(e)ewO(tO_t*) at tg, so as to maintain the constraint. This time,
we obtain

AJ =m(e)(e® ) (ty) — C(ty)) + o(m(e)).

Once again, we conclude that t, must be a point of global minimum of e*°*C(t). Since
e !C(t) is an entire function of ¢, as is evident from (7.4), the support of o, must be
discrete. If the support of o, is infinite,

(7.7) Te=andy, (), an>0,
n=1

and does not satisfy (7.5), then, by the Miintz—Szdsz theorem [15], the set of functions
u'™ is dense in C([0,1]). But then the functions e~**» are dense in Cy(0,00). In that
case the equation

Totn _ dﬁf : xol
(7.8) e C(t,) =m= mine C(t)

would imply that

1
| s@)(ft) = fola)da =glaym ¥ e Co(0,50),
0
where f, is shorthand for f,, . This easily leads to a contradiction if, for example, we

take a delta-like sequence g, (z) converging to d,(x) for an arbitrary a € (0,1).
Now, (7.8) written as C(t,) = e~*°*»m implies

/0 Fo@)(f.(2) — folx))dz = f.(zo)m.

giving a formula for m,

1 1
7.9 mzi/f*x fe(x) — fo(x))dz.
(7.9) 7o) Jo (@) (fe(x) = fo(z))
The constraint f.(z¢) — fo(zo) = & can then be incorporated into the optimality
conditions by replacing f.(zo) by fo(zo) + ¢ in (7.9), obtaining (7.6).

To see that (7.6) with the equality provision is sufficient for optimality, we in-

tegrate (7.6) with respect to o, and obtain fo(xg) + 6 = fu(xo), taking (7.4) into
account, unless

(7.10) / Fo(@) (fu() — folz))dz =0.

However, if (7.10) holds, then (7.6) reads C(t) > 0. Integrating this inequality with
respect to oo, such that fo = f,,, we obtain

(7.11) / Jol@) (f.(x) — fo(z))dz > 0.
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Subtracting (7.11) from (7.10), we obtain || fo— f«|| < 0, which implies that f. = fy and
hence o, = gg. This shows that (7.6) implies f.(xo) — fo(zo) =0, provided o, # 0g.
Now, if ¢ is any competitor measure, satisfying the constraint, then (7.3) becomes

AJ =2 </OO° C(t)do(t) — f. (xo)m> + I facll3,

where

"= f()(‘ri)—i_é/o fo. (I)(fa* (‘T) - fo(x))dl’

Discarding || fas||2 and using inequality (7.6), we obtain

AT>2 (m | easto) - f*(:ro)m> —2m(f (o) — f(20)) = 0

since, due to the constraint, we must have f,(xg) = fi(zo) for any competitor
measure.

To illustrate the optimality conditions, let us consider an example with fo(x) =
e~®. In this case, the solutions of (7.2) can be computed explicitly. The forms of these
solutions were, in fact, suggested by first solving these problems numerically with an
algorithm based on formula (7.3). If § > 0, then f.(z) = ff(z) = a + be™*7 for
appropriately chosen a >0, b>0, and 7> 1. If § € (—e~%°,0), then f.(z)=f(z)=
ae”*T for appropriately chosen a >0 and 7 > 1. If 6 > 0, the optimality condition
(7.6) gives equations C'(0) = C(7) = 0 and C’(7) = 0, where C(t) = C(t) — me™ 0!,
Together with the constraint, f.(zo) = fo(xzo) + J, this results in 4 equations for the
4 unknowns a,b,7, and m. Similarly, if 6 < 0, the optimality condition (7.6) gives
equations C(7) = 0 and C’(r) = 0, which together with the constraint results in
3 equations for the 3 unknowns a,7, and m. The resulting system of equations is
linear in (a,b,m) for § > 0 and in (a,m) for § < 0, so that these parameters can be
easily eliminated, leading to a single algebraic equation for 7. This equation is too
complicated to display here, but it can be easily investigated, either numerically or by
means of a computer algebra system, and shown to have a unique solution 7(xg,J),
for all zp > 1 and ¢ € (—e~*°,0) if 6 <0, and ¢ € (0,4+00) if 6 > 0. When ¢ is small,
we find

M (zo;e™") = By (x0)e + O(€*), mc(xo;e™") =E_(xg)e + O(€?),

where E, (x0) is an increasing function of zg from

4 8¢3 4 1462 + 8¢ — 19
E+(1):\/— ¢ —Scitlie + 0 ~ 2.67788263

(e2 —2e —1)(3e2 — 10e + 5)
to

e2+2e—1
E = E T 07.488747597.
+(o0) 3¢2 —10e+ 5

The function E_(zg) behaves in a more complicated manner. It increases from

[ e2—1
EF_(1)=24/ ——-——=1.5
(1) et —6e2 41
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Certificate of optimality: f* (x)>f5(%,) X.=2 ¢=0.01
%107 ik 0~ e 1.1
_ 6r = —fy(x)=e* '
° , H1
4t ] —f* 0
£ . H0.9
S ] Q)
o 10.8
0 L L L

0 5 10 15 20
t

Certificate of optimality: f;*(xo)<f0(x0)

x

F1G. 1. Solutions of the local worst case extrapolation problems (7.2) with fo(z) =€~
e =0.01, and their respective certificates of optimality.

, To =2,

to its maximal value £_((e+2)/(e+1)) ~ 1.566 and then decreases to 0 as x increases
from (e+2)/(e+1) to +oo, In fact, E_(xg) = 25 ' e“ E_(z0) is a monotone increasing
function from eE_(1) ~4.1 to

22-1) .o

E_(OO):2€ mw

The plots of fE(x) and fo(x) together with their respective certificates of optimality

C(t) = C(t) — me ! are shown in Figure 1.

Appendix A. Kuhn—Tucker in topological vector spaces. Let X be a
locally convex topological vector space. Let F C X* @R be any subset. Define

(A1) K={zeX: f(z)<aV(f,a)eF}.

Then K C X is both closed and convex. Let h € X* be a given functional. The
maximization problem

(A.2) m = sup h(z)
zeK

is called the linear programming problem. If the set K is empty the value of m is set
to —oo by convention.

Let F denote the smallest closed (in weak-* topology of X* @ R) convex cone
containing F. We remark that

K={zeX: f(z)<aV(fa)cF}
We also define

K*={(f,a) e X*®R: f(zr)<aVxeK}.
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Obviously, FCK* Itis easy to give an example where K* # F. Let X =R and
F={(1,0)}, so that K ={z € R: 2 <0} and F = {(f,0) € R?: f >0}. But

K*={(f,0) eR*: fr<aVz <0} ={(f,a) eR*: f >0, a>0}.

Our goal is to obtain a dual formulation of (A.2). We observe that if m < 400,
then (h,m) € K*, while (h,m —¢) € K* for any € > 0. Thus, m is the smallest of
the numbers «, such that (h,a) € K*. For this reason, we introduce the following
notation. For any subset S C X* x R and any f € X*, we define

Sy={aeR:(f,a)e S}

Our remark can then be stated as follows: m < +o0 if and only if K} # (), in which
case m = min K. The dual set K* is a maximal set of inequalities defining K, while
the set F C K* describes the weak-* closure of the set of inequalities obtained by
positive linear combinations of finite subsets of inequalities in (A.1). The remarkable
fact of the Kuhn—Tucker theorem is that even though F can be a lot smaller than
K™, as our example showed, it still contains all the bottom extremal points of K*.

THEOREM A.l. Suppose that the set K, given by (A.1), is nonempty. Let F be
the smallest weak-* closed convex cone containing F. Let m be given by (A.2). Then

(A.3) m =min Fp,

where we have indicated that the minimum is achieved if ]?h #0.

We remark that requiring K # () is essential. For example, we can take X = R?
and F = {(e1,0),(—ey,—1)}, corresponding to constraints z; < 0 and —z; < —1,
which are inconsistent, so that K = . We compute

F={((m = Xa)er,—Xa) : A 20, g > 0}.
For h = e, the set of pairs (ez,a) € F is empty resulting in the minimum in (A.3) to
be +o00, while the supremum over the empty set is —oo.

Proof. We have already observed that

sup h(z) <400 <= Kj #0.

rzeK
Therefore, if K; = (), then Fn =0 since F C K*. Thus, if m = +oo, then formula
(A.3) is valid. It only remains to consider the case m < +oo, whereby (h,m) € K*.
The theorem below asserts that (h,m) € F, and therefore, that m has to be equal to
the right-hand side of (A.3) since (h,m —¢) € K* for every ¢ > 0. |

THEOREM A.2. Under the assumptions of Theorem A.1 assume additionally that
m < 4oo. Then (h,m) € F.

Proof. If (h,m) & F , then, by the Hahn—Banach convex separation theorem, there
exist &g € X, puo € R, v € R, such that

(A4) h(€0) + pom < < f(€0) + poa V(f, ) € F.

Here, we used the fact that the set of all linear continuous functionals on X*, equipped
with its weak-* topology, is parametrized by X; i.e., for any F € (X*, weak-*)* there
exists a unique = € X, such that F(f)= f(x) for all f € X*.
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We first observe that if there exists (fo, ) € ]?, such that fy (A'g’o) + poag < 0,
then the second inequality in (A.4) cannot hold since (Afop, Aag) € F for any A > 0.
However, if fo(&o) + poco > 0, then A fo(&o) + moAap can be made as close to 0 as one
wishes. It follows that v=0. We thus restate (A.4) in a more convenient form:

(A.5) hEo) 4+ pom <0,  f(&) +poa>0 Y(f,a)€eF.

We need to consider 3 possibilities for uyg.
1. po > 0. In this case

(-2)<a wraes
Ho
which implies that —&y/po € K. But then, according to the first inequality

in (A.5),
h (_fo) >m,
Ho

which contradicts the definition (A.2) of m.
2. o =0. Since K # 0, there exists u € K. But then for any A >0, we have

flu— X&) <a Y(f,a)eF.

This implies that u — A € K. But h(u — A&) = h(u) — Ah(&p), which can be
made arbitrarily large and positive by a choice of A > 0 since h(&p) < 0. This
contradicts the assumption that m < +oc.

3. po < 0. For convenience of working with positive numbers, we set po = —1y,
and v > 0. In that case, we have f(&)) > vy for every (f,a) € F. Then for
every x € K, we have for any ¢t >0

[z —1t&) < (1 —tro)o.
Thus, for all x € K and t € (0,1/1y), we conclude that
x

—t&o
t)= K
y(m, ) 1 —tV() <

We will get a contradiction by showing that

sup h(y(x,t)) >m.
e K
o<t<vyt

We compute

(e, 0) = m -+ N = U0 Zvom),

By definition of the supremum there exist x¢ € K, such that

h(&) —vom

h
(xo) >m + v

since h(&o) — vom < 0. But then h(y(zo, (2v0)~")) > m.
The obtained contradictions imply that (h,m) € F, establishing (A.3). d
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Appendix B. Asymptotics of u(z; u) for large p. To compute the asymp-
totics of u(z;u), as p— 4oo for z€Q={z€C:Rz>0, z¢£[0,1]}, we first apply the
Pfapf transformation [13, formula (1.8)] and obtain

1 1 g 1 i 1
. :—F — —_——— — ll_i .
ulzip) = - ([zﬁ 24 2}’[ k 22)

We note that g(z) =1—2"2 maps € into Q= C\ {w € R : w(w —1) > 0}, to which the
asymptotic expansion from [13, Theorem 3.2] applies. Substituting our parameters
into the expansion [13, (3.8)—(3.11)] and retaining only the leading term (n =1 in the
expansion), we obtain

. 1 dp 1 ip 1
Fll2+2 22 np-= )~
™ ([zﬁ 274 2}’”’ 22)

@ (cCr=mae_y (5 ey () v o000,
£:1n<1—222—2¢\/m>, CO:_(Z2\/§)1/4‘
e ‘f‘K (-%5) +62f’K (%))

|

e () s (5]

Here the transformation ¢ =1 — 2272 maps

where

I\]‘H

1
2

Q={2€C:Rz>0, 2¢[0,1]}
onto

G=C\{CeR:[¢|>1}.
Then,

£=In(¢—iV1-¢?).

We observe that ¢ = cosh¢&, and therefore, £(¢) is injective on G. Thus, 0,.&(G) =
£(05G). Computing the images of (—oo,—1] £ 0i and [1,400) £ 0i and noting that
£(00) = 00, we conclude that £(¢) maps G onto the strip —7 < € < 0 bijectively. We
also note that

1
cosh§=(=1-—,
z

% — sinh? (£> .
z 2

Since z € Q lies in the right half-plane, while S¢ € (—,0), we conclude that

1 —=sinh (§> =sin (25) .
z 2 2

which implies that
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We can write this as

T g\ 1 ~
COS(2—2>—z, 7T<\S‘£<0

Since n = 7/2 — i£/2 maps the strip —7 < ¢ < 0 onto the strip Rn € (0,7/2), we
conclude that n = «a(z), where a(z) was defined in (4.28) and, thus,

(B.1) £=1i(2a(z) — ).

Using (B.1) and the formulas

we obtain the error estimate

O(®1(1,€)=0 (e?(lwg/ﬂ)) -0 <em(z)|>
1\, N\/ﬁ ,Uf\/ﬁ .

Since || < 7, we conclude that the term e(F-D)mip | (—Z%“) is negligible compared
2

to e(%—%>”K_%(i%“). Therefore, we obtain the asymptotics

| e/t H(-F) E ol
U(Z,,Uf)'\’\/m(ZQ_l)l/Al\/Eﬁ+ <Wﬁ)

Since —m < 3¢ < 0, we conclude that

Thus, for all z € Q,

- 1 eﬂya(z) o |€7'rua(z)|
(B.2) i) = e+ ( e )

Appendix C. Estimate of ||¢.||s,. The goal of this section is to prove the
lower bound (6.3) on [|¢¢||s,. When 2o > 1, part (i) of Theorem 4.4 can be used to
estimate |[¢c||s, from below. If 2o =1,

> u(z; tanh(w
(C.1) Velz) = /0 2(«52 50)51(7711)(—#/? dp

Its asymptotics as € — 07 is given by the following theorem.

THEOREM C.1. Let z€ Q2 ={z€C:Rz>0, 2¢£[0,1]} and ¢ be the solution of
the integral equation (4.5) with xo=1. Then

R(z)\/|1né|é—2a<z> €
msin(a(z)) T Ve

(C.2) Pe(z) ~

where R(z) and a(z) are defined as in (4.28).
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Proof. As we have argued before, the asymptotics of 1.(z) is determined by the
asymptotics of the integrand in (C.1), as u — co. Thus, we would want to replace
u(z; 1) by its asymptotics (4.27), tanh(wp) by 1, and 2 cosh(mp) by e™. We therefore,
rewrite (C.1) as

R(z) [* /Re*®Hy(z;p)

(C.3) velz) = V2r Jo  2é2cosh(mu) + 1 Ko
where
G0
v(z;p) = oz 1) tanh(mp),

and where ug(z; ) is given by (4.30). Then, v(z;-) € C([0,00)), due to the represen-
tation (4.31), as argued in the proof of Theorem 4.4, and v(z;u) — 1, as p — oo, by
Lemma 4.2. Thus, there exists M (z) > 0, such that |v(z; )| < M(z) for any z € Q.

Let I(¢) denote the integral in (C.3). Changing variables u' = wu + 21n(é), we
obtain

rx(z)/ ’ N
A 1 [—2Iné, —2an [~ W —2Iné ef/v(z;ilena) ,
I(¢)=— g = A ; e du'.
& & 2lme ¥ —2Iné et fe—wT4lné ]

The estimate

O ’_ 2Ineé
W —2Iné [e = v(z; e — 2ng) / /
\/Tné et + e*lt/jrrﬁllné i— 1 X (21né,00) (M ) < q)(,u, ),

where ®(u') is given by

(%a(z) _1)H/ ,
(I)( /) _ M(Z)e T ) 1% <Oa
! M)V T1e52 00 >0,

shows that the Lebesgue dominated convergence theorem is applicable since fa(z) €
(0,7/2), by Lemma 4.5. Therefore,

ret +1 w= msin(a(z))

a(z)p’
—2a(z ™ R Iné| —2ac
Ve (2) ~ R(QZ) Vée=+= [ £ du (Z)mé%w.
T

The theorem is proved. 0

In order to estimate |15, (for any xo > 1), we need a tighter bound on
Ra((iy)'/?), when y > 0 and p > 1, which becomes optimal as p — 1. Formula
(4.28) shows that Ra(iy +0) = 7/2 for any y > 0. In fact, we have the following
estimate.

LEMMA C.2. Let y >0 and p>1. Then Ra((iy)*/?) € (357 5)
Proof. We first observe that for any z € 2

a(z)=—ilnz+1iln(1l —iv/22 - 1).

Indeed, it is easy to see that the right-hand side of the above formula is analytic in
Q and agrees with arccos(1/z) for z > 1. The same is true for the left-hand side.
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Therefore, they must agree everywhere in Q. If z = (iy)'/?, then 2% = re'f», where
0,=m/p€ (0,7), and r > 0. It is now easy to see that arg(z* — 1), as a function of r,
decreases from 7 at r =0 to 6, at r = +oo. Hence, arg(—iv/2? — 1) decreases from 0
at =0 to 0,/2 — /2 at r = 4+o00. Therefore, arg(1 —iv/2? — 1) will also be between
0 and 6,/2 — /2. Thus,

Ra(z) = 2 —arg(1—iv/22—1) € <9P,”>. O

2 2°2
THEOREM C.3. For zo >1 and p > 1, there is a constant sp(xo) >0 such that

_ 2a(zg) 1
m P oxo> 1,

€
[¥ells, = sp(zo) { _a ’
: P e ry/|lne|, x9=1,

for all sufficiently small € > 0.

Proof. Let
R(zo)R(2) . 95z
o(2) = o sin(wﬁ(z))g » Zo>1 B(z) = a(zo) + a(z)
€ R(Z)\/|1Hé|é—2z(z) .’E():]_ m ~.

msin(a(z))

Then, Theorems 4.4(i) and C.1 say that ¢ (z) ~¢Z°(z) for any z € Q and any z > 1.
We then write

el =+ [ O e i ) P

where N, (y) = y"% |1+ (iy)*/?2. By Lemma C.2, we estimate

(C4) 02 (i) /)] > Ap (0, 9) IG5 (),
where
R(zo)| () 7)|20) "=
A (z0,1) = sl L ’
[R((iy)'/7)|(2m) > o1
| sin(ma((iy) /7))

_ 2a(zg) 1 1
€ W P xo >
Kmo(g):{ B ) 0 )
£

P %\/m, To=1.

Thus, we obtain the lower bound

KIO e ( (Zy) P)? 2
||{¢)E||fjp = / N |w (( )1/p)|2Ap(any) dy

Now, by Fatou’s lemma, we have, taking into account . (z) ~ ¥ (z), as € — 0%,

||1/Js||% 1 [ Ay(wo,y)?
lim — ”>f/ B2 dy =:25,(20)% > 0.
BT T n Ny )

It follows that for all sufficiently small € > 0, we have [|¢c||g, > sp(20) K50 (¢). O

We now have everything we need to prove Theorem 6.1.
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Proof of Theorem 6.1. We have, using (4.13),

_ ellells, _ M1Yells,

Hwa”Q B H'(/)EH .

It only remains to observe that Theorems 4.4(iii) and 4.6(ii) can be written as

e || ~ Co(o) Ko (e)e 7,

where

927)B(@0)/2 1

(2m) xo a2rcc20s(1/:co), 0> 1,
Co(zo) = Y T (5 —1)

—, o= 1.

™

Combining this with Theorem C.3 and applying it to (C.5), we obtain that

sp(z0) 11
> P P
||¢6||-6p e 20(5(}())6

for all sufficiently small € > 0. Theorem 6.1 is now proved. |
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