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Abstract—This paper considers the stabilization of a discrete-
time linear system in the presence of multiplicative observation
noise, i.e., when the controller observes the state multiplied by
a random variable with a continuous density. In the case where
this multiplicative observation noise has zero mean, the controller
does not even have access to the sign of the state. Given this
lack of sign information, a linear memoryless control strategy
that optimizes the second moment would do nothing, i.e., would
choose the control to be equal to zero. It is known that non-linear
strategies can unboundedly outperform linear strategies for this
system, yet the optimal strategy for this simple problem remains
unknown.

This paper provides a new achievable scheme based on
the maximum a-posteriori (MAP) estimation of the state that
provably stabilizes the system in any moment sense. Additionally,
we can compute an explicit convergence rate for the system state.
This MAP-controller emerges from a study of the evolution of
the conditional density of the state. These densities illustrate the
dual nature of the MAP-controller: it extracts information about
the system while also driving the state towards zero. Simulations
show that the MAP-controller outperforms neural-network-based
control strategies as well as the previously best-known non-linear
strategies.

I. INTRODUCTION

Multiplicative noise in systems can arise in a variety of
settings, in particular, in systems with timing jitter or phase-
locked loops [1], voltage-controlled resistors, pulse-width
modulation [2], linearization [3], or in physical systems where
model parameters are dependent on changing quantities [4].
Multiplicative noise is also thought to be a helpful lens through
which to view the performance of stochastic gradient descent
and related algorithms [5]–[7]. Multiplicative noise has the
interesting property that if the mean of the multiplicative noise
is close to zero, it can destroy all sign information in the
signal, which can make it challenging to understand using a
standard linear perspective. This paper considers the η-moment
stabilization and rate of convergence of a simple linear system
with multiplicative observation noise as below:

{
Xn+1 = aXn + Un

Yn = CnXn.
(1)

The initial state X0 has density fX(·), and is independent of all
other problem parameters. Similarly, the Cn’s are continuous
i.i.d. random variables with density fC(·). We are interested
in identifying the largest growth factor a ∈ R such that we
can maintain E[|Xn|η] < ∞ for all n. We are particularly
interested in the case where the Cn have zero mean. In this
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3
) (red) distributions on each of

Cn and X0. The neural-network comparison strategies follow those in [9]
and are for the uniform noise case. The second moments were computed with
104 trajectories for the neural-network and Gaussian MAP strategies, and 106

for the uniform MAP strategy.

case, a linear memoryless strategy (Un = d · Yn for some
d ∈ R) that optimizes the second moment (or takes a certainty
equivalence perspective) would choose Un = 0, and thus could
not stabilize the system for any growth a > 1 as seen in [8].

[8] showed that a non-linear strategy can unboundedly
outperform linear strategies for this problem. However, this
was only a proof-of-concept, and an explicit calculation of
the largest a that could be stabilized was not provided for this
strategy. The non-linear strategy in [8] had a periodic structure
— at even times the controller takes a probing action to gain
information about the system state, and at odd times it uses
that information to control, and explicitly used the dual nature
of control [10]. The work in [9] built on this observation and
showed that neural networks could be trained to obtain non-
linear, periodic strategies that empirically performed better
than the strategy from [8]. The periodic strategies in [9]
seemed to use certain time-steps for information gain and oth-
ers for control. However, there were no provable guarantees.

In order to further explore the dual nature of control [10] in
this problem, we calculate the conditional probability distribu-
tions of the state conditioned on the observations. This allows
us to understand the information gain possible from certain
control actions. This leads to a MAP-control strategy where
we can calculate the maximum stabilizable growth rate a for
any moment of stability. We show in Fig. 1 the empirical decay
rate of the MAP-based strategy in a second-moment sense for
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a system with a = 1, compared to that of the neural-network
strategies from [9].

A. Related work
Control problems involving multiplicative noise have been

long studied by the community. However, they have been
challenging to deal with and hence are not yet fully resolved.
For instance, early work focused on studying linear strategies
for systems with multiplicative observation noise [11]–[13].
More recent work also focuses on LTI strategies for the
problem [14], [15]. The past few years have seen a resurgence
of interest in control systems with multiplicative noise [16]–
[23], where more modern techniques (e.g. policy gradient)
have been explored to identify control strategies. However,
the optimal strategy for the multiplicative observation noise
problem remains open.

The simple system in (1) is particularly interesting from an
information-theoretic perspective, as it considers the control
of a system over a non-coherent channel [24], with a ca-
pacity that grows as log log SNR. The traditional approach
to control over rate-limited channels leads to the work on
data-rate theorems [25]–[37]. However, the data-rate theorems
or their style of analysis cannot apply here, since the rate
of the channel is potentially unbounded. This is because the
magnitude of Xn is not bounded. Finally, it is important to
note the contrast of our continuous, multiplicative noise system
with the system considered in [38], which considers discrete
Bernoulli multiplicative observation noise, and provides a
provably optimal strategy in the second-moment sense.

A related system is one with multiplicative actuation
noise [39] (Xn+1 = Xn + BnUn and Yn = Xn, where the
Bn are i.i.d. random variables). For mean-zero Bn, the largest
a that can be stabilized in a second-moment sense is a = 1.
However, we can stabilize a > 1 in the case of multiplicative
observation noise in (1).

The control problem considered here is closely related to
the problem of state estimation over multiplicative noise [40]–
[42]. The early work [41], [43] focused only on linear esti-
mation strategies, and it was shown in [42] that the second-
moment of the estimation error must diverge for the system
in (1) for a > 1 with linear and non-linear estimation strategies
in the absence of control. The current MAP-based strategy
reframes the problem as the estimation of X0. However, it is
important to note that the control plays a fundamental role in
allowing a successful estimation strategy for X0.

B. Main contributions
This paper provides a novel MAP-based strategy that is

interpretable through the evolution of the conditional densities
of the state given the observation as discussed in Sec. III. We
prove that this strategy provably converges in Sec. IV and V.
Simulations show that this strategy empirically outperforms
learned neural-network strategies in Sec. VI.

II. PROBLEM STATEMENT

We specifically focus on the system in (1) where a = 1,
and we focus on the maximum decay rate of the system. In

particular, we consider the scalar system with state Xn ∈ R at
time n ∈ Z≥0, control Un, observation Yn, and multiplicative
noise Cn. The system is defined as follows in (2).

{
Xn+1 = Xn + Un, X0 ∼ Unif[−1, 1]

Yn = CnXn, Cn ∼ Unif[−1, 1].
(2)

The control at a time n, i.e. Un, is chosen causally as a
function of the observations Y n

0 := (Y0, Y1, . . . , Yn). The
distributions of X0 and the Cn are known to the controller,
and focus on the case where they are both drawn from a
uniform distribution on [−1, 1]. The realizations of X0 and
the Cn’s are unknown to the controller. Our goal is to identify
control strategies that can stabilize the system in an η-moment
sense (i.e. strategies that achieve limn→∞ E[|Xn|η] = 0),
and identify the rate of convergence of the η-moment, i.e.
r = lim infn→∞ − 1

nη logE[|Xn|η/|X0|η]. The largest growth
rate log a that can be stabilized by a given strategy in an η-
moment sense in system (1) is then given by r, as in [39].

Let Hn be the σ-algebra generated by all observations Y n
0 .

Note that this represents information that is always available
to the controller, including the controls Un

0 .

III. MAP-CONTROL STRATEGY

Our proposed strategy is simple (in hindsight): at every
time step, choose the control Un to be the negative of the
maximum a-posteriori (MAP) estimator of the state given all
the observations. The analysis of the strategy is easier if we
consider the repeated estimation of the initial state X0 instead
of estimating the current state Xn. Hence, we define

X̂MAP
0|n := argmax

x
fX(X0 = x|Hn). (3)

With this, we define the MAP-control strategy as the difference
between the previous and current estimate of X0.

Definition 3.1 (MAP-control): For the system in (2) define
the sequence of MAP-controls as

U0 = −X̂MAP
0|0 (4)

Un = X̂MAP
0|n−1 − X̂MAP

0|n , n ≥ 1. (5)

Note that under this strategy
∑n

i=0 Ui = −X̂MAP
0|n . We can also

show in a straightforward manner that Un = −X̂MAP
n|n , where

X̂MAP
n|n := argmaxx fX(Xn = x|Hn).
Under this strategy, the system state Xn is always equal to

the difference between X0 and the current MAP estimate.
Lemma 3.2: For the system in (2) with MAP-control, the

state for all n ≥ 1 is:

Xn = X0 − X̂MAP
0|n−1. (6)

Lemma 3.3 (Conditional Density of X0|Hn): For the system
in (2), with controls un

0 that are functions of the observations
yn0 , the conditional density of X0 given Hn for n ≥ 1 is

fX(X0 = x|Hn) =
fX(x)

fY n
0
(yn0 )




n∏

j=0

fC

(
yj

x+
∑j−1

i=0 ui

)

|x+
∑j−1

i=0 ui|


, (7)
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where fY (Y
n
0 = yn0 | X0 = x) =

n∏
j=0

fC

(
yj

x+
∑j−1

i=0
ui

)
|x+

∑j−1
i=0 ui|

.

Additionally, the density of X0 given H0 is

fX(X0 = x|H0) =
fX(x)

fY0
(y0)

(
fC
(
y0

x

)

|x|

)
. (8)

In our setting fX(·) and fC(·) are both given by
f(x) = 1

21{x : |x| ≤ 1}, where 1{S} is the indicator function
for the set S. Now, the MAP estimator at the first time step
follows immediately from Lemma 3.3.

Lemma 3.4: The MAP estimate of X0 given Y0 is
X̂MAP

0|0 = ±|Y0|.
Even beyond the first time step, the MAP-control strategy

does not care about the sign of the observation Yn and only
uses |Yn|. This is because Yn enters the conditional density of
fX(X0 = x|Hn) through fC , which is even (see Lemma 3.3).

When MAP-control is applied we can limit our attention
to at most two candidate values for X̂MAP

0|n (i.e. candidate
maximizers for the density in Lemma 3.3). One is positive
and one is negative, and we denote these by X̂+

0|n and
X̂−

0|n respectively. These candidates update with each new
observation.

Definition 3.5 (Positive and Negative X̂MAP
0|n Candidates):

We define the positive candidate for the MAP estimator as

X̂+
0|n = argmax

x≥0
fY (Y

n
0 = yn0 | X0 = x) (9)

i.e. the value x ≥ 0 that maximizes the conditional density of
Y n
0 given X0. Similarly, we define the negative candidate as

X̂−
0|n = argmax

x≤0
fY (Y

n
0 = yn0 | X0 = x). (10)

The next lemma shows that the MAP estimator must be
equal to one of X̂+

0|n and X̂−
0|n and provides update rules.

Lemma 3.6 (Update rule for X̂+
0|n, X̂

−
0|n): At each time

n, X̂MAP
0|n must be one of the two values X̂+

0|n or X̂−
0|n.

Furthermore,

X̂+
0|n+1 = max

(
X̂MAP

0|n + |Yn+1|, X̂+
0|n

)
. (11)

If X̂+
0|K > 1, then X̂MAP

0|n = X̂−
0|n, ∀n ≥ K. Similarly,

X̂−
0|n+1 = min

(
X̂MAP

0|n − |Yn+1|, X̂−
0|n

)
. (12)

If X̂−
0|K < −1 then X̂MAP

0|n = X̂+
0|n, ∀n ≥ K.

Example: To clarify the significance of X̂+
0|n and X̂−

0|n when
implementing MAP-control, we consider an example of how
fX(X0 = x|Hn) and X̂MAP

0|n evolve at times 0 and time 1.
This is illustrated in Fig. 2, which shows the densities fX(x),
fX(X0 = x | H0), and fX(X0 = x | H1). The prior
density fX(x) is uniform on [−1, 1]. On observing Y0 = y0
the conditional density fX(X0 = x | H0) is given by (8),
which is even and has support [−1,−|y0|] ∪ [|y0|, 1]. This
is because we must have that |Y0| = |C0 · X0| ≤ |X0|
and hence the density contains a product of 1{x : |x| ≤ 1}
and 1{x : |y0| ≤ |x|}. This density has peaks at ±|y0|, and
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Fig. 2. Example evolution of densities from that of X0 to X0|H0, then
to X0|H1 with observation realization |y0| = 0.4, MAP-control U0 =
−X̂MAP

0|0 = −0.4. The following observation realization has |y1| = 0.3.

hence X̂+
0|0 = |y0|, X̂−

0|0 = −|y0|. We choose (arbitrarily)
X̂MAP

0|0 = X̂+
0|0 = |y0| = 0.4. This leads to a control input of

U0 = −X̂MAP
0|0 = −0.4.

Now, say the next observation is such that |y1| = 0.3. Since
|Y1| ≤ |X0−X̂MAP

0|0 |, the support of the density f(X0 = x|H1)
is changed from that of f(X0 = x|H0) by a removal of the
interval (X̂MAP

0|0 − |y1|, X̂MAP
0|0 + |y1|). Thus, new observations

reduce the possible intervals with non-zero density for X0. The
structure of the MAP strategy is such that it only maintains at
most two disjoint intervals of support, with maxima occurring
on the inner bounds of these support intervals. It is these
maxima that are X̂+

0|n and X̂−
0|n as seen and labeled in Fig. 2.

In Fig. 2, X̂MAP
0|0 − |y1| = 0.1 is greater than X̂−

0|0, and thus
X̂−

0|1 = X̂−
0|0 but it is possible for |y0| and |y1| to be such that

both X̂+
0|1 > X̂+

0|0 and X̂−
0|1 < X̂−

0|0.
This example illustrates the dual nature of control at play. In

particular, when the conditional density of fX(X0 = x|H0) is
even, as in the first time step, the symmetry prevents us from
learning any information about the sign of X0. However, as
soon as we take the first control action, the next observation
y1 breaks the symmetry and gives us information about the
sign of the initial state X0.

IV. MAIN RESULTS

We prove the MAP-control strategy stabilizes the system in
(2) almost surely (a.s.) and prove a η-moment rate result. The
main theorems are stated below.

Theorem 4.1 (Almost-sure convergence): Consider the sys-
tem in (2) with MAP-control, i.e. U0 = −X̂MAP

0|0 , and Un =

X̂MAP
0|n−1 − X̂MAP

0|n for n ≥ 1. Then, X̂MAP
0|n → X0 a.s., and

Xn → 0 a.s.
Theorem 4.2 (Convergence rate): For the system in (2) with

MAP-control,

lim
n→∞

E[|Xn|η/|Xn−1|η] =
1

η + 1
.

2023 IEEE International Symposium on Information Theory (ISIT)

2244
Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 01,2025 at 23:08:47 UTC from IEEE Xplore.  Restrictions apply. 



Therefore, the largest a in (1) that can be stabilized in an
η-moment sense is given by (η + 1)

1
η .

V. PROOFS

We provide proofs of the main theorems here but proofs of
the lemmas in section III are deferred to the full version.

A. Proof of Theorem 4.1

We first consider the case X0 > 0. We will show that in this
case X̂MAP

0|n → X̂+
0|n and also X̂+

0|n → X0 a.s. as n → ∞. For
this we first show the following lemma.

Lemma 5.1: Under MAP-control, X̂+
0|n is increasing and

X̂−
0|n is decreasing in n. Furthermore, if X0 > 0, then

∀n, X̂+
0|n ≤ X0 and X̂−

0|n ≤ X0.
Proof: We first note that X̂+

0|n is increasing and and X̂−
0|n

is decreasing in n. This follows from Lemma 3.6 because:

X̂+
0|n+1 = max

(
X̂MAP

0|n + |Yn+1|, X̂+
0|n

)
≥ X̂+

0|n

X̂−
0|n+1 = min

(
X̂MAP

0|n − |Yn+1|, X̂−
0|n

)
≤ X̂−

0|n.

Now, we show by induction that ∀n ≥ 0, X̂+
0|n ≤ X0 and

X̂−
0|n ≤ X0. The base case holds:

X̂+
0|0 = |Y0| = |C0X0| = |C0|X0 ≤ X0

X̂−
0|0 = −|Y0| = −|C0X0| ≤ 0 ≤ X0.

Assume as the inductive hypothesis that X̂+
0|n−1 ≤ X0 and

X̂−
0|n−1 ≤ X0. Since X̂−

0|n−1 is decreasing, the bound on X̂−
0|n

follows immediately as X̂−
0|n ≤ X̂−

0|n−1 ≤ X0.

Now, we consider X̂+
0|n = max

(
X̂MAP

0|n−1 + |Yn|, X̂+
0|n−1

)
.

There are two cases. First if X̂+
0|n = X̂+

0|n−1, we immediately
conclude X̂+

0|n ≤ X0 from the induction hypothesis. Else if
X̂+

0|n = X̂MAP
0|n−1 + |Yn|, using Lemma 3.2 we have that:

X̂+
0|n = X̂MAP

0|n−1 +
∣∣∣Cn

(
X0 − X̂MAP

0|n−1

)∣∣∣.

Since we know that X̂+
0|n−1 ≤ X0 and X̂−

0|n−1 ≤ X0, we
have that X̂MAP

0|n−1 ≤ X0. Hence,

X̂+
0|n = X̂MAP

0|n−1 + |Cn|
(
X0 − X̂MAP

0|n−1

)

= (1− |Cn|)X̂MAP
0|n−1 + |Cn|X0 ≤ X0, (13)

where (13) again follows from the induction hypothesis. □
The rest of the proof is in two parts. We first show that

X̂MAP
0|n → X̂+

0|n a.s. and then that X̂+
0|n → X0 a.s.

Lemma 5.2: X̂MAP
0|n → X̂+

0|n a.s. as n → ∞.
Proof : To show that X̂MAP

0|n → X̂+
0|n a.s., it suffices to show

that with probability 1 we have X̂MAP
0|n = X̂−

0|n only finitely
many times, since X̂MAP

0|n must be equal to either X̂+
0|n or X̂−

0|n.
We proceed by proof by contradiction. If possible, let

X̂MAP
0|n = X̂−

0|n infinitely often. A sample path where this
occurs will have a sequence of strictly increasing time indices,

k1 < k2 < . . . , at which X̂MAP
0|ki

= X̂−
0|ki

. Consider the
transition from time ki to ki + 1. At this time, we know that
the update rule for X̂−

0|ki+1 must resolve as:

X̂−
0|ki+1 = X̂−

0|ki
− |Yki+1|,

since X̂MAP
0|ki

= X̂−
0|ki

. Since X̂−
0|n ≤ X0 from Lemma 5.1:

X̂−
0|ki+1 = X̂−

0|ki
− |Cki+1|

(
X0 − X̂−

0|ki

)

= (1 + |Cki+1|)X̂−
0|ki

− |Cki+1|X0. (14)

Since the ki are strictly increasing (k{i+1} ≥ ki+1) and X̂−
0|n

is decreasing we have X̂−
0|k{i+1}

≤ X̂−
0|ki+1. Thus from (14):

X̂−
0|k{i+1}

≤ (1 + |Cki+1|)X̂−
0|ki

− |Cki+1|X0. (15)

Recursively applying this bound gives:

X̂−
0|k{i+1}

≤ X̂−
0|k1

i∏

j=1

(
1 + |Ckj+1|

)

−X0

i∑

j=1

|Ckj+1|
i∏

l=j+1

(1 + |Ckl+1|). (16)

Note that this upper bound on X̂−
0|k{i+1}

is negative. The
second term on the RHS of (16) is negative with probability
one since we assume that X0 > 0. The first term on the RHS
of (16) is non-positive because we have X̂−

0|k1
≤ 0. Further,

we have that

X̂−
0|k1

≤ X̂−
0|0 = −|Y0| = −|C0|X0 ≤ 0, (17)

and we conclude that X̂−
0|k1

< 0 with probability 1.
Now (1 + |Ckj+1|) > 1 with probability 1 for all kj , and

therefore
∏i

j=1

(
1 + |Ckj+1|

)
→ ∞ as i → ∞. Hence, the

first term on the RHS of (16) tends to −∞. As the second term
is negative, X̂−

0|k{i+1}
→ ∞ as i → ∞. Hence, there exists

some first k⋆ such that X̂−
0|k⋆ < −1, which by Lemma 3.6

gives X̂MAP
0|n = X̂+

0|n for all n ≥ k⋆, which contradicts our
assumption that X̂MAP

0|n = X̂−
0|n infinitely often. □

Lemma 5.3: X̂+
0|n → X0 a.s. as n → ∞.

Proof: We know from Lemma 5.1 that X0 is an upper bound
on X̂+

0|n and that X̂+
0|n is an increasing sequence. Therefore,

by the monotone convergence theorem it must converge to its
supremum. We will show that it converges to X0.

Since X̂MAP
0|n → X̂+

0|n a.s., there exists N+ such that for
all n ≥ N+ we have X̂MAP

0|n = X̂+
0|n (since X̂MAP

0|n equals
one of X̂+

0|n or X̂−
0|n). Using the update rule in (11), since

X̂+
0|n + |Yn+1| ≥ X̂+

0|n, we have that n ≥ N+,

X̂+
0|n+1 = X̂+

0|n + |Yn+1| = X̂MAP
0|n + |Yn+1|. (18)
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We will show that the essential supremum of X̂+
0|n is X0.

If possible, say that ess supn X̂
+
0|n = M < X0. Consider the

observation for n ≥ N+, and using Lemma 3.2 gives:

|Yn+1| = |Cn+1Xn+1|
= |Cn+1(X0 − X̂MAP

0|n )| = |Cn+1(X0 − X̂+
0|n)|. (19)

Now consider for n ≥ N+:

P(|Yn+1| > M − X̂+
0|n) = P

(
|Cn+1| >

M − X̂+
0|n

X0 − X̂+
0|n

)
. (20)

Note that 0 < X0 − X̂+
0|n since we assume M < X0. Fur-

thermore, M < X0 also implies that M − X̂+
0|n < X0 − X̂+

0|n.
Hence, (M − X̂+

0|n)/(X0 − X̂+
0|n) < 1. Therefore, from (20),

we have that P
(
|Yn+1| > M − X̂+

0|n

)
> 0. Then, using the

update rule from (18):

P(X̂+
0|n+1 > M) = P(X̂+

0|n + |Yn+1| > M) > 0,

which contradicts our assumption that M is the essential
supremum. Hence X̂+

0|n → X0 a.s. as n → ∞. □
Combining Lemmas 5.2 and 5.3, we obtain the theorem for

the case X0 > 0. The case for X0 < 0 can be handled in an
nearly identical argument, except with X̂+

0|n and X̂−
0|n swapped

in considerations. X0 = 0 is a zero probability event. □

B. Proof of Theorem 4.2

Let X0 > 0 and thus X̂+
0|n → X0 a.s. from below by the

previous proof of Theorem 4.1. Under this condition, ∃N+

such that ∀n ≥ N+ : X̂MAP
0|n = X̂+

0|n. Consider such a
trajectory of X̂MAP

0|n for n ≥ N+. Then, the update equation
in (11) can be rewritten in terms of X̂MAP

0|n as:

X̂MAP
0|n+1 = max

(
X̂MAP

0|n + |Yn+1|, X̂MAP
0|n

)
.

Therefore, we can write

X̂MAP
0|n+1 = X̂MAP

0|n + |Yn+1| = X̂MAP
0|n + |Cn+1Xn+1|.

This implies

X0 − X̂MAP
0|n+1 = X0 − X̂MAP

0|n − |Cn+1|Xn+1 (21)

Xn+2 = Xn+1 − |Cn+1|Xn+1 (22)
= (1− |Cn+1|)Xn+1. (23)

Note that Xn+1 = X0−X̂MAP
0|n = X0−X̂+

0|n ≥ 0 in (21) from
Lemma 5.1 and (22) follows from Lemma 3.2.

Now consider the expectation of the ratio of the η-moments
for n ≥ N+, and use (23):

E
[ |Xn+2|η
|Xn+1|η

]
= E[|1− |Cn+1||η] =

1

η + 1
, (24)

since (1− |Cn+1|) is distributed as Unif[0, 1], which has η-
moment 1

η+1 . When η = 2, this is a rate of 1
3 , and as η → ∞

this rate tends to zero. The case X0 < 0 proceeds similarly. □

VI. SIMULATIONS AND DISCUSSION

Fig. 1 compares the performance of the MAP-control strat-
egy (black) to the neural-network control strategies described
in [9] for the case of Cn and X0 drawn from Unif[−1, 1].
Three different neural-network controllers from [9], with dif-
ferent memory and periodicity parameters (e.g. memory-1
period-2 etc.), were trained for the system in (2) as compar-
isons.

The MAP-control (for the uniform distribution case) was
computed using the update rules on X̂+

0|n and X̂−
0|n as in (11)

and (12). Using the update rules avoids the challenges of
numerically computing the MAP estimator. The MAP strategy
empirically outperforms the neural-network strategies, with
second-moment decay rate of 1/3 as expected.

For Cn and X0 drawn from Unif[−1, 1] we plot an ensemble
of the state trajectories in Fig. 3(a) on a log scale. In fig. 3(b)
we see that the MAP strategy outperforms the strategy from [8]
in both the “log”-moment (i.e. E[ln |X0|]) and first-moment
senses. The empirical slope of the “log”-moment for the MAP
strategy is about −1.
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Fig. 3. (a) 100 trajectory realizations of |Xn|. (b) “Log” moment and first
moment of the state under the MAP strategy as well as the non-linear strategy
proposed from [8] with computed slopes. Each expectation is computed over
106 trajectories. Note the different y-axis scales.

While this paper focuses on the case of Cn as Unif[−1, 1],
our proof technique for almost-sure convergence can likely be
extended to handle more general bounded distributions. For
example, we believe the MAP strategy will converge a.s. for
Cn distributed on an interval [a, b], such that a ≤ 0 ≤ b,
as long as Cn has no probability atoms at 0 and has density
strictly decreasing on [a, 0) and strictly increasing on (0, b].

Empirically, the MAP-control strategy seems to also work
well for unbounded distributions. Fig. 1 additionally shows the
empirical performance of the MAP-control strategy (red) when
Cn and X0 are both drawn from N (0, 1/3), i.e. a Gaussian
with variance matching the uniform distribution on [−1, 1].
Here the MAP estimate is computed by a grid search. We
find that empirically the MAP-controller in the Gaussian case
also outperforms the strategies from [9] trained for Gaussian
densities, but do not include these plots for space reasons.
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