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Abstract: Global herbicide-resistant weed populations continue rising due to selection pressures
exerted by herbicides. Despite this, herbicides continue to be farmers’ preferred weed-control method
due to cost and efficiency relative to physical or biological methods. However, weeds developing
resistance to herbicides not only challenges crop production but also threatens ecosystem services
by disrupting biodiversity, reducing soil health, and impacting water quality. Our objective was to
develop a simulation model that captures the feedback between weed population dynamics, agricul-
tural management, profitability, and farmer decision-making processes that interact in unique ways to
reinforce herbicide resistance in weeds. After calibration to observed data and evaluation by subject
matter experts, we tested alternative agronomic, mechanical, or intensive management strategies
to evaluate their impact on weed population dynamics. Results indicated that standalone practices
enhanced farm profitability in the short term but lead to substantial adverse ecological outcomes in
the long term, indicated by elevated herbicide resistance (e.g., harm to non-target species, disrupting
natural ecosystem functions). The most management-intensive test yielded the greatest weed control
and farm profit, albeit with elevated residual resistant seed bank levels. We discuss these findings in
both developed and developing-nation contexts. Future work requires greater connectivity of farm
management and genetic-resistance models that currently remain disconnected mechanistically.

Keywords: herbicide resistance; form management; seed bank simulation; system dynamics

1. Introduction

“The chemical weed killers are a bright new toy. They work in a spectacular way; they give
a giddy sense of power over nature to those who wield them, and as for the long-range
and less obvious effects—these are easily brushed aside as the baseless imaginings of
pessimists. .. Seldom is the question asked, “What is the relation between the weed and
the so0il?” In nature nothing exists alone.” (quoted from [1])

The extensive weed presence and subsequent accumulated resistance to herbicide treat-
ment over time has been a chronic issue throughout the history of modern agriculture [2,3].
Herbicide resistance in weeds has increased rapidly worldwide from the first reported
case in 1957 [4] to over 500 today (Figure 1a) [5,6]. The issue is particularly pronounced
in developed regions such as the United States [6], Canada [7], Europe [8], Australia, and
New Zealand [5], where herbicide use is more intensive due to the reliance on chemical
weed-control strategies in large-scale agricultural systems. Moreover, its growing recogni-
tion in developing regions suggests that the challenge of herbicide resistance transcends
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geographic and socio-economic boundaries [5,9] and poses mounting threats to ecosystem
services’ sustainability (e.g., provisioning food production, supporting biodiversity).

Herbicide resistance in weeds poses a threat to ecosystem services through a variety
of mechanisms. The most economically important and detrimental effect is the financial
stress on farmers through reductions in yield, volume, and crop quality (provisioning
services). Despite the increase in resistance cases, herbicide treatments continue to be
farmers’ preferred weed-control method due to their low cost, ease of use, and efficiency
relative to other methods such as mechanical removal (Figure 1b,c) [10]. As the number of
global herbicide-resistance cases grows (Figure 1a and Table 1), the less likely producers
will be able to control pervasive weed problems with herbicides, further challenging crop
production, economic feasibility, and agroecosystem services.

Table 1. Number of resistant weed species cases ranked globally by the Herbicide Resistance Action
Committee (HRAC) group [5].

Resistant HRAC oy . . .
Weed Cases Group Inhibition Mode of Action Active Ingredient(s)
Amino Acid Sulfonylureas (SUs) and
382 2 Acetolactate Synthase (ALS) Synthesis Imidazolinones (IMIs)
Aryloxyphenoxy Propionate
153 1 CarboAxC(leet\}s/L ((jAOéCase) Lipid Synthesis (FOPs) and
Y Cyclohexanedione (DIMs)
Amino Acid
132 9 EPSP Synthase Synthesis Glyphosate
58 2 Photosystem I (I?SI) Electron Cell.Membrane Bipyridyliums
Diversion Disruptors
56 4 Auxin Mimics Growth Regulators Phenoxy and Benzioc Acid
Microtubule Seedling . - .
16 3 Assembly Root Growth Benzamide and Dinitroaniline

The threat posed by herbicide resistance extends beyond immediate economic con-
cerns, as it enables resistant weed species to proliferate unchecked, often outcompeting
crops for vital resources such as nutrients, water, and light. Such disturbances can disrupt
the ecological equilibrium of a landscape, altering non-provisioning ecosystem services
(e.g., regulatory soil carbon dynamics via reduced biomass turnover and increased soil
respiration, reduced water infiltration, and greater soil evaporation and runoff potential
due to increased soil temperatures and less leaf canopy and root biomass) [11,12]. As
these resistant weeds flourish, they can alter the habitat, affecting biodiversity and the
presence of beneficial organisms (e.g., aboveground pollinators as well as belowground
symbiotic bacterial-fungal relationships important for primary production and nutrient
cycling) [13]. The resulting imbalance can lead to a cascade of ecological consequences,
potentially transforming productive agroecosystems into less fertile areas dominated by a
few robust weed species. Understanding and mitigating herbicide resistance is therefore
crucial for maintaining both agricultural productivity and ecological integrity.

The purpose of this paper is to investigate the herbicide-resistance issue from a sys-
tems perspective. We begin by synthesizing historical and current data sources to examine
major trends and patterns over time that have led to the known resistant species prevalence
observed today (over 500). We then employ the system dynamics (SDs) modeling methodol-
ogy to develop a simulation model of the problem at a producer or small shareholder-level,
which integrates agricultural economics, management decision making, and soil and crop-
production perspectives to explore weed mitigation strategies and trade-offs. We conclude
by recognizing and discussing simulation-based insights of weed-herbicide-resistance man-
agement and its implications for the broad array of ecosystem services that are impacted
by it.
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Figure 1. Evolution of weed resistance and herbicide use over time: (a) global cases of resistance
(data from Heap 2021 [5]); (b) total pesticide use and the fraction of total applied as herbicide (dashed
line); (c) the percentage of planted cropland acres in the United States treated with herbicide (data
from Fernandez-Cornejo et al., 2014 [14]).

1.1. From Breakthrough to Backlash: The Evolution of Herbicide Resistance

The developmental history of herbicide resistance may be summarized as follows: in
the 1950s, herbicide commercialization was a breakthrough innovation for the agricultural
sector. Combined with successful crop genetic modifications enabling resistance to such
herbicides 40 years later, a perceived long-term solution to pervasive weed problems was
established [15]. Unfortunately, the unintended consequence exerted by herbicides on weed
populations has been “intense selection pressure”, which disproportionally rewards the
few weed individuals that survive herbicide treatment to pass the resistance to offspring
seed [6,16-20]. As a result, resistant weed seeds accumulate in the soil seed bank, and
over time, this initially small percentage of resistant weed seeds compounds, becoming
less responsive to herbicides (Figure 2). This reinforces future weed problems given
the long-term viability of seeds in the seed bank relative to the short-lived potency of
herbicides. In response, farmers have resorted to chemical rotations or switching (i.e.,
alternating herbicides using varying modes and/or sites of action) as well as tank mixing
multiple herbicides in attempts to maintain the desired effectiveness of herbicide treatments.
Unfortunately, the lack of newly approved chemical compounds for herbicide use constrains
the diversity of possible treatment combinations. Repeated use of herbicides with similar
sites and modes of action increases selection pressures that lead to resistance. As a result,
the effectiveness of resistance management efforts declines.
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Figure 2. Conceptual model illustrating the development of weed resistance to herbicide: (time 1) At
time 1, treatment is applied that kills the majority of weeds present, but due to environmental forces
that thwart application effectiveness (e.g., weather that disrupts proper application timing, lack for
coverage, “drift” application, inherent weed resistance), (time 2) surviving weeds pass on resistant
traits to seeds in the seed bank, which accumulate. (time 3) When farmers experience severe enough
reductions in crop yield or quality, they may be led to “switch” herbicides. (time 4) Unfortunately,
added selection pressure may lead to new pathways to resistant weed offspring, compounding
the problem.

Reflecting on this diminishing efficacy of resistance management, the historical data
tell a similar story. For example, pesticide use in the United States increased three-fold
between 1960 and 1981, from 89 to 286 million kg. Even more significant was the growth
in the herbicide fraction of total pesticide applications, which increased from 18% to 76%
(Figure 1b) [14]. Since 1981, total pesticide use has slightly declined (to approximately
234 million kg in 2008), whereas the herbicide fraction of pesticide use has remained at
least 75% or greater of the total applications (Figure 1b). Almost 100% of the U.S.’s planted
crop acres are treated with herbicide (compared to only 15% in 1952; [14]; Figure 1c). This
persistent reliance on herbicides, despite their diminishing financial returns, sets the stage
for a deeper exploration into the mechanisms of resistance.

1.2. Modeling Herbicide Resistance

Modeling offers a robust framework for understanding complex problems like herbi-
cide resistance. It allows for the examination of intricate interactions within ecosystems
that are not easily observable in the field. Through simulations, modeling can reveal the
long-term consequences of current practices and help predict the effectiveness of potential
solutions. Previous modeling efforts to gain understanding of herbicide-resistance pro-
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cesses and management have taken on various forms but have been primarily focused on
weed interactions within an ecosystem [21,22]. For example, some models have focused
on population genetics [23] or demographics (weed-to-weed; [24]), crop—weed competi-
tion [25-27], or chemical resistances of weed species to specific chemicals such as glyphosate
(weed—chemical selection pressure; [28-31]).

Building upon this foundation, our study takes a more comprehensive, systems-level
approach where we aim to synthesize existing knowledge on the development of herbicide
resistance in weeds and couple those processes to broader agricultural, economic, and farm-
level decision-making factors. Such an approach facilitates experimentation for generating
insight into the interrelationship among ecological and socio-economic structures driving
weed-herbicide resistance. This is particularly important for understanding complex
agroecological services. To achieve this, a dynamic model grounded in SDs methodology
emphasizing closed-form endogenous feedback processes was constructed, linking various
cropping systems, farm economics, and decision-making relationships capable of testing
alternative management approaches aimed at curtailing weed pressures and improving
agroecosystem functions and outcomes. The model thus developed is more generalized,
since it is not specific to any crop or herbicide type, allowing for broader applicability
across different cultural or ecological contexts.

The remainder of this paper proceeds with an overview of the modeling process
employed and documenting the resulting mathematical model. The model description is
followed by the design of our management simulation experiments, mimicking agronomic,
mechanical, or integrated strategies, aimed at addressing the herbicide-resistance problem.
After the results and discussion, we conclude with a summary of key insights about
management trade-offs and their implications for ecosystem services’ sustainability.

2. Materials and Methods

The system dynamics (SDs) method is best described as a process, aided by computer
simulation, to generate improved understanding of the relationships between a problem or
system’s structure and its resulting dynamic behaviors over time [32-34]. This method is
particularly well suited for problems characterized by feedback, where system accumu-
lations or stocks are critical for system function, and where it is essential to account for
both natural biophysical processes and decisions, policies, or strategies made by human
actors [33-35].

Generally, two types of feedback exist: positive feedback (also called reinforcing feed-
back [donated “R” in causal loop or stock-flow diagrams]) and negative feedback (also
called balancing feedback [denoted “B” in causal loop or stock-flow diagrams]). Accumu-
lations or stocks are variables that store material, inventory, or information embedded in
system processes. Importantly, stock variables can only change via inflows and outflows of
the stock, which are decoupled due to the accumulation in the stock variable. Because of
this decoupling of flows and the time required to change inflow and outflow rates due to
decision delays, stocks often express nonlinear dynamics which can arise from even simple
system functions. Because SDs place high importance on testing policies or strategies aimed
at improving system performance, key stakeholders and their goals, values, and mental
models (and the information sources that influence them) should be explicitly captured [35].

Agroecosystem processes, including those pertinent for herbicide-resistance dynamics,
provide good examples of such system features: farmers respond to field conditions that
lead to alternative chemical treatment methods, which lead to shifts in the expression of
inherited resistance traits and thus contributes to resistant weed seeds in the soil seed
bank (an accumulation). Upon germination when conditions are favorable, weed growth
observations by the farmer lead to updated management decisions (illustrating delayed
consequences and feedback). For these reasons, SDs methodology is particularly well
suited to study the problem of herbicide resistance in weeds (Appendix A).
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2.1. Problem Articulation

After examining the publicly available data, surveying the literature, and soliciting
expert input from weed scientists, agronomists, and soil scientists, we synthesized the
problem into the following dynamic hypothesis:

“Farmers depend on herbicides due to their low cost, ease of use, and efficiency
in controlling problematic weeds. Weeds with resistant traits have survived and
passed down the resistant traits to offspring in the soil seed bank. Resistant weeds
challenge crop production and quality. Producers and chemical companies have
answered this by ‘switching’ between existing herbicides with different modes
of action and investing in crop genetics that allow for simultaneous multiple
herbicides use without limiting crop growth. This is a short-term solution to
resistance (i.e., seasonal weed treatment), but in the long-term the problem is
reinforced due to weed seed bank accumulation and rising production costs (e.g.,
genetically enhanced seeds and fertilizer as well as costs of alternative treatment
methods) that erode farm profit potential. The stress to farmers, from both
production and economic perspectives, has escalated, incentivizing still greater
efforts to curtail problematic weeds. This has resulted in greater on-farm chemical
use over large geographic areas, further reinforcing the effects on production,
profitability, farmer stress, and disruption of managed ecosystem services within
agroecosystems.” (Figure 3)

Chemical "switching'm
alternative herbicides .
@ Selection pressures
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Advanced
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(p g
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Figure 3. Conceptual causal loop diagram of the dynamic hypothesis (DH). Variables are connected
via causal links to form feedback loops. Links with an ‘S’ sign on the arrowhead indicate same or
positive polarity (the variable at the tail pushes the variable at the head in the same direction), while
an ‘O’ sign indicates opposite or negative polarity (the variable at the tail pushes the variable at the
head in the opposite direction). Feedback loops are labeled ‘R’ for positive or reinforcing feedback,
while those labeled ‘B’ indicate negative or balancing feedback. For example, when crop harvest
increases, so does crop revenues; when farm profit increases, pressure on the farmer decreases.
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2.2. Model Development and Evaluation
2.2.1. Model Structure Overview

The model includes six primary stock variables: crop biomass, weed biomass, weed
seed in the seed bank, retained farm earnings, herbicide in the agroecosystem, and effective
kill rate of herbicide applied. These stocks are interconnected through various flows and
information links for herbicide applications, runoff, and degradation; weed kill, crop
growth, harvest, revenues, and expenses; and finally, decision thresholds needed to change
herbicide treatments. Together, these form the five core feedback loops that constitute
the dynamic hypothesis: herbicide use reduces immediate weed pressure (B), chemical
switching resets effective kill rates (B), technology treadmill reinforces economic pressure
(R), delayed resistance reinforces elevated weed pressure (R), and weed selection pressure
stimulated by herbicide use (R) (Figure 3). The model was formulated in thebVensim™
modeling environment (Ventana Systems, Harvard, MA, USA) using a time unit of 1 month,
time step of 0.25 month, and baseline simulation horizon of 720 months (or 50 years). The
following subsections provide descriptions of each sector of the model (including model
equation documentation in Tables 2-5; Appendix A provides a conceptual stock-flow
diagram of the model).

Table 2. Summary of equations in the crop biomass and farm economics model component *.

Variable

Equation Unit

=INTEG crop growth — crop harvest — crop harvest losses

Crop biomass Initial value = 0 kg
=IF Growing season =1,
Crop growth THEN’blomass x crop growth index X precipitation x crop yield ke/Month
potential,
ELSE 0
=IF month > planting month AND month < harvest month,
Growing season THEN 1, Dmnl
ELSE 0
Planting month =5 Month
Harvest month =10 Month
Crop yield potential =LOOKUP [Time, (0, 1), (600, 1), (900, 1.5)] Dmnl
Crop growth index =LOOKUP [crop biomass, (0, 0.25), (60, 0.125), (150, 0.035), (200, 0)] 1/Month
=IF month counter = harvest month
Crop harvest THEN crop biomass — weed biomass kg/Month
ELSE 0
Percentage reduction in crop harvest =crop harvest losses/crop harvest Dmnl
Crop revenues =crop price x crop harvest $/Month
Crop-production expenses =160 + (4.3 + number of strategies employed relative to total) x time $/Month
Total herbicide costs =field application rates x herbicide app costs $/Month
Herbicide application cost per treatment  =$3.11 (base) + $0.011 per year $/kg
Long-run farm earnings :INTEG Crop revenues — Crop expenses $
Initial value = 0
Change in profit =(long-run farm earnings; — long-run farm earning;_)/long-run Dmnl

farm earnings;

* Acronyms used include INTEG for mathematical integration over time, conditional statements using IF THEN
ELSE, which are translated as IF (condition met?) THEN (operation if true) ELSE (operation if false), and LOOKUP
indicates a table function where the bracketed variable name is used as an input in the (X, y) coordinates, where
the y-value (output) is the variable of interest.
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Table 3. Summary of equations in the agroecosystem model component *.
Variable Equation Unit
Herbicide in the soil ecosystem :INTEG field application rates — degradation — runoff and leakage kg
Initial value = 0
Pressure on farmer =LOOKUP [change in profit, (0, 4), (0.1, 1)] 1/Month
Mean herbicide potency =LOOKUP [Time, (0, 1), (600, 1.5)] Dmnl
Mean application rate per treatment =pressure on fa.rl.ner X (mean chemical per application/mean potency) x kg/Month
application decisions
=IF pressure on farmer > herbicide-profit threshold AND weed biomass >=0,
Application decisions THEN 1, Dmnl
ELSE 0
Application month =6 Month
=IF month counter = application month
Field application rate THEN mean application rate kg/Month
ELSE 0
=IF precipitation > 0.75,
Runoff and leakage THEN herbicide in agroecosystem x expected environmental runoff rate, kg/Month
ELSE 0
Expected runoff and leakage rate ~ =0.05 1/Month
Herbicide degradation =herbicide in agroecosystem/(1.44 x chemical half-life) kg/Month
Mean chemical half-life =3 Month

* Acronyms used include INTEG for mathematical integration over time, conditional statements using IF THEN
ELSE, which are translated as IF (condition met?) THEN (operation if true) ELSE (operation if false), and LOOKUP
indicates a table function where the bracketed variable name is used as an input in the (x, y) coordinates, where
the y-value (output) is the variable of interest.

Table 4. Summary of equations in the weed biomass and seed bank dynamics model component *.

Variable Equation Unit
Weed biomass =INTEG wee:d growth-weed death or kill rate kg
Initial value =1
Weed growth .:weed growt.h fropn emergence+(weed biomass x weed growth ke/Month
index X precipitation)
Weed seed emergence =((weed seed resistance/mean residency time) x mean K
& germination rate) /weed seed per unit of biomass &
Mean germination rate =0.2 Dmnl
Mean residency time =60 Month
=IF month counter = harvest month,
Weed death or kill rate THEN weed biomass/time step, kg/Month
ELSE herbicide kill rate
.. =LOOKUP [herbicide in agroecosystem, (0, 0), (0.125, 0.57), (0.3,
Herbicide contact rate 0.825), (0.58, 0.925), (0.89, 0.965), (2, 1)] Dmnl
Effective kill rate :I.NTEG change in kill rate Dmnl
Initial value = 0.9
Weed seed production without resistance =weed blomzi'ss x x.Need s.eed per unit of biomass x (1 N frac.tlon of seed/Month
weed remaining with resistance per year) x (1 — effective kill rate)
Weed seed production with resistance =weed biomass X weed seed per unit of biomass x fraction of seed/Month

weed remaining with resistance per year

Weed seed per unit of biomass

=15 x 100

seed /kg/Month
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Table 4. Cont.

Variable Equation Unit

=INTEG (weed seed production without resistance — weed seed
Weed seed without resistance germination without resistance seed
Initial value = 2 x 108

=INTEG (weed seed production with resistance weed seed
Weed seed with resistance germination with resistance seed
Initial value = 2 x 108 x probability of initial resistance

Probability of initial resistance =1/1 x107 Dmnl
Fraction of weed seed bank with =(weed seeds with resistance/(weed seeds with resistance + weed Dmnl
resistance seeds without resistance))

* Acronyms used include INTEG for mathematical integration over time, conditional statements using IF THEN
ELSE, which are translated as IF (condition met?) THEN (operation if true) ELSE (operation if false), and LOOKUP
indicates a table function where the bracketed variable name is used as an input in the (x, y) coordinates, where
the y-value (output) is the variable of interest.

Table 5. Summary of equations in the herbicide decision-making model component *.

Variable Equation Unit

=INTEG change in perception

Perceived present condition Initial value = 0 Dmnl
Change in perception :(fraf:tllon of.weed seed b.ank with resistance — perceived present 1/Month
condition)/time to perceive present condition
Time to perceive present condition =60 Month
Reference condition :INTEG updating belief about reference condition Dmnl
Initial value = 0.01
Time horizon for reference condition =60 Month
Active trend :INTEG updating the trend in use 1/Month
Initial value =0
Updated the perceived trend in use ~ =(indicated trend-active trend)/time to perceive trend 1/Month/Month
Indicated trend :((pe.r(.:elved. present. condition-reference CO.n.dltIOI'l)/ reference 1/Month
condition)/time horizon for reference condition
Time to perceive trend =12 Month
=(perceived present condition x (1 + active trend) x (forecast horizon
Forecasted fraction of weed resistance X time to perceive present condition)) x (1 — weight on anchor a) + Dmnl
(weight on anchor a x anchor value)
Anchor value, a =0.05 Dmnl
Weight on anchor a =0.2 Dmnl
Forecast horizon =1 Month
Gap needed to change chemical =IF effective kill rate < forecasted fraction of weed resistance,
P treatmentggr THEN 1, Dmnl
ELSE 0
=IF month counter = 12-time step AND gap needed to change chemical
treatments = 0,
THEN-effective kill rate + base kill rate — MIN(fraction of weed seed
bank with resistance, base kill rate),
. . . ELSE
Change in effective kill rate 1/Month

IF month counter = 12-time step AND gap
needed to change chemical treatments =1,
THEN (—effective kill rate + base kill

rate) x chemical switch option availability
ELSE 0
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Table 5. Cont.

Variable Equation Unit

=IF total number of switchest < maximum number of available

. . . s chemical switches,
Chemical switch option availability THEN 1, Dmnl
ELSE 0

Maximum number of available -100 Dmnl

chemical switches

* Acronyms used include INTEG for mathematical integration over time, conditional statements using IF THEN
ELSE, which are translated as IF (condition met?) THEN (operation if true) ELSE (operation if false), and LOOKUP
indicates a table function where the bracketed variable name is used as an input in the (X, y) coordinates, where
the y-value (output) is the variable of interest.

2.2.2. Crop Biomass and Farm Economics

The crop biomass stock is a function of crop growth, crop losses, and crop harvest.
Crop growth begins at the onset of the growing season when seeds are planted (planting
month). Crop growth continues as a function of precipitation (here we use normalized
precipitation where long-term mean precipitation equals one) and the crop growth index
factor (a nonlinear negative exponential function, i.e., the greater the biomass level, the
slower the growth rate). Crop harvest and losses are captured at the harvest month. If no
weed biomass is present, then the crop harvest is equal to the level of the crop biomass stock.
However, if weed biomass is present, then this negates crop harvest via compromised
volume and quality (captured in the crop harvest outflow, see equation in Table 2).

Crop harvest provides the basis for crop revenues (i.e., crop harvest x crop price; crop
price being a constant), while crop expenses are captured via total herbicide costs and all
other production expenses (assumed to be $243 per hectare per year, or $600 per acre). Total
herbicide costs are a function of herbicide applications, described below, and herbicide
application cost. Herbicide application cost was assumed to be begin at $3.1 per kg of active
ingredient applied, growing at ~5.0% per year (cost per active ingredient rather than cost
per unit area was used in order to better calibrate the model against observed data [33]).
The accumulated net difference between annual crop revenues and crop expenses is held in
long-run farm earnings stock (Table 2).

2.2.3. Herbicide in the Agroecosystem

Herbicide application decisions are in part motivated by pressure on the farmer to
maintain long-run farm earnings. To account for changes in herbicide decisions, application
rates are altered using a nonlinear table function, such that if the annual percentage
change in long-run farm earnings is negative (i.e., long-run farm earnings; < long-run farm
earnings;_17), then pressure to respond is escalated and is manifested in the number of
herbicide treatments per year, up to a maximum of four applications. However, if the
annual percentage change in long-run farm earnings is greater than 10%, then it is assumed
that sensitivity to crop-production challenges is minimal and therefore pressure on the
farmer to manipulate herbicide treatment is reduced to a value of one (i.e., one herbicide
application per year; Appendix B).

The field application rate of herbicide is the inflow to the level of herbicide in the
agroecosystem and is a function of mean herbicide potency, mean application rate, ap-
plication month, and pressure on the farmer (described above). Mean herbicide potency
captures the increase in potency over time due to chemical and seed improvements (the
base case assumes an increase of 50% since 1970; per [36,37]). Mean application rate be-
gins at 0.4536 kg per unit area per application, matching historically observed rates [14].
Application month occurs one month after planting. Herbicide in the agroecosystem is
lost due to runoff and leakage (assumed to be negligible at 5% per month) and chemical
degradation assuming a half-life of 3 months (means reported in Anderson [37]; Table 3).
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Herbicide in the agroecosystem drives the weed death or kill rate through plant contact
and uptake (described in next section).

2.2.4. Weed Biomass and Seed Bank Dynamics

The weed biomass stock is a function of weed growth and the associated death or
kill rate driven by herbicide contact with and uptake by plants. Weed growth begins
with the emergence of weed seed from the soil seed bank (assuming to occur in line with
the growing season with a mean germination rate of 20% and mean residency time of
5 years) and uses a similar negative sloping growth curve as that used for crop biomass
(i.e., the larger the weed biomass stock, the slower the growth rate). The death or kill
rate is a function of weed biomass, herbicide contact rate (a nonlinear positively sloping
exponential, i.e., the greater the herbicide level in the system the greater the contact rate,
up to a maximum of 100%), and effective kill rate (initial value of 90%, which assumes a
combination of variable application effectiveness and inherent weed resistance subject to
the species, specific active chemical, and mode of action). When harvest occurs, we assume
any volume in the weed biomass stock negates crop production and therefore revenues,
otherwise the bio-economic feedback is disconnected and therefore does not express itself
(described above in Section 2.2.2; Table 2).

It was assumed that any weeds remaining prior to harvest will produce seed. Using
the mean weed seed production reported in Anderson [37], we assumed 7257 seeds per kg
of weed biomass. Seeds initially enter the seed bank stock as weed seed without resistance.
Over time, as surviving weeds pass on inherited resistance traits, seeds entering the seed
bank are partitioned into a stock of weed seed with resistance. The fraction of weed seed
with resistance in the seed bank (i.e., weed seed with resistance divided by the total weed
seed in the seed bank) drives subsequent weed seed emergence, enabling subsequent weed
biomass growth as well as eroding the effective kill rate of herbicide in the system (Table 4).

2.2.5. Herbicide Decision Making and Its Interaction with Biophysical Feedback

To properly capture the core decision-making element of our dynamic hypothesis, the
model needed to account for “switching” chemical treatments in response to increased
observations of weed-herbicide resistance. The model includes this via a common frame-
work used in system dynamics to estimate a decision-maker’s forecasted or anticipated
value of a parameter of interest [33]. Such a structure accounts for the time needed to
observe changes in the present condition (in this case, herbicide resistance in weeds) to
update their perceived present condition. Updates to one’s perceived present condition
are then compared to a longer-term reference condition to estimate a projected trend in
the variable’s behavior over time. This trend is often dampened given the time needed to
mentally assess and update one’s mental model of the behavior over time as well as by the
weight (or anchor, &) given to previous observations (i.e., the greater the weight «, the less
responsive the perceived trend is to changes in current conditions).

For our purposes, the decision-maker must decide whether or not to “switch” chemical
treatments as effective kill rates decline resulting from increased herbicide resistance. Here,
the decision-making component estimates a projected trend in the fraction of weed seed
bank with resistance to update the manager’s expected kill rate for subsequent herbicide
applications. To determine whether a “switch” is needed, the effective kill rate (what is
actually achieved) is compared to the projected trend in the fraction of weed seed with
resistance. If the effective kill rate drops below this threshold, then a chemical “switch” is
made, resetting the effective kill back to its initial value (assuming alternative chemical types
and modes of action are available with lower inherent resistance having been developed in
the soil seed bank).

By including the decision-making elements in this way, we have expanded the model
boundary to include both biophysical feedback (i.e., crop, weed, and herbicide stocks and
their associated flows and links) and decision-making feedback, which is less often captured
in the herbicide-resistance-management literature, all in an endogenous way—weeds



Systems 2024, 12, 587

12 of 29

influence crops, crops drive economics, economics drive applications, applications influence
weeds, resistance erodes chemical effectiveness and therefore crop system performance,
managers “switch” chemicals to offset accumulated resistance (Table 5).

2.2.6. Model Evaluation and Assessment

Prior to any experimental simulations, we assessed the model’s structure and behavior
patterns to observed patterns over time and the purposes of the model. Confidence was
generated via a variety of tests: boundary adequacy, structure verification, parameter
verification, dimensional consistency, and extreme conditions. In addition, assessment of
the overall accuracy and precision of model performance relative to observed data (i.e.,
behavior reproduction test) was used to build confidence in the model (see Appendix C for
technical details of model evaluation and assessment).

2.3. Design of Simulation Experiments

To explore the trade-offs between herbicide-management strategies and the possible
emergent dynamics they create, we employed a series of simulation experiments designed
to make the link between the problem structure and its behavior more transparent. The
results, therefore, intended to capture the impacts of alternative management strategies
and aid in developing insights regarding the counterintuitive and dynamic effects of
well-intentioned weed-control efforts.

The baseline (control) simulation was the status quo management situation, char-
acterized by herbicide “switching” after the effective kill rate falls below the forecasted
weed-resistance threshold and a cropping system based on one crop per growing season
(Table 6 provides an overview of the control simulation relative to simulation experiments
described below).

Table 6. Summary of simulation experiments **.

Simulation Description Model Parameterization Structural Adaptations
Chemical threshold “switch” = forecasted fraction
of weed resistance
One crop per growing season
Crop price = $0.1 per kg
Baseline simulation used to Yield potential = 4085-5450 kg per unit area
Control benchmark alternative Herbicide cost = $1.41(base) + $0.13 per year No structural model changes
management tests Mean herbicide per application = 0.4536 kg
Weed seed produced = 1,000,000 per unit biomass
Mean seed bank residency time = 60 month
Weed seed germination rate = 20%
Base model documented in Tables 2-5.
Greater herbicide-seed contact creates
chemical disruption in metabolism
Pre-emergent application N/a resulting in reduced weed seed
employing growth inhibitor germination rate and shallower slope on
weed growth index due to
growth inhibition
Agronomic Crop competition (via row weed growth = weed biomass x weed

spacing, cover/smother crops,
mulching, etc.)

Variable addition: crop interference rate [0%
to 50%]

growth index x (1 — crop
interference rate)

Chemical herbicide rotations to
diversify mode of action and
selection pressure

Variable addition: expected reduction in herbicide
resistance [0% to 100% to capture variability in
expected efficacy]

Change in kill rate = (base kill rate —
fraction of weed seed bank with
resistance) x (1 — expected reduction in
herbicide resistance)
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Table 6. Cont.

Simulation Description Model Parameterization Structural Adaptations
Variable addition: fraction of weed seed caught Wgec? seed inflows to.the seed bank
Seed crusher o o multiplied by (1 — fraction of weed seed
by crusher [0% to 50%] caught by crusher)
. . Variable addition: fraction of weed seed normally Wee.d seed inflows - weed seed
. Combine cleaning . 5 o production X (1 — fraction of weed seed
Mechanical imported [0% to 50%] normally imported)
Weed biomass = weed growth —
Burning for physical plant Variables added: fraction of weed removed by V(il’ea;h/kl(lil rta tek— fk;gm;al wsedrrzmotxi/ ail
removal and seed kill burning [90 to 100%] ee Siewze(ilc sZe_d ngmiSrT:tior;o— uctio
seed destruction
Education for early Lo . .
Educational identification and rapid N/a Reduction in all dlercrllsol;ﬁ;makmg delays to
response
Pre-emergent + crop competition + seed
Integrated “Many little hammers” N/a crusher + combine cleaning +

education tests

** description of each test along with the corresponding parameterization changes or structural model adaptations
needed to perform the model experiment.

The management tests were segmented into three broad strategic categories: agro-
nomic, mechanical, and integrated. Agronomic tests captured changes in the inputs or
processes of the crop-production system and included tests for pre-emergent herbicide
application, increasing weed interference via crop competition via conservation agriculture
practices (e.g., reducing row spacing, use of cover or smother crops, and mulching or high-
crop-residue management [38]), diversification, and rotation of mode of action treatments
in herbicide applications. Mechanical tests captured changes to harvest or post-harvest
activities that physically remove or destroy weed plants or seeds. Mechanical tests included
use of a seed crusher during harvest to crack or destroy seeds, combine cleaning to reduce
or eliminate weed seed immigration from neighboring fields, and mowing (reduction in
biomass to stunt seed emergence) or burning (reduction in biomass as well as killing seeds
at the soil surface). Other management tests captured changes in education and awareness
(education test) as well as enhanced management creativity and skill capable of employing
a simultaneous barrage of mitigation tactics described above (sometime called the “many
little hammers” strategy [39,40]). The educational test captured the potential time savings
in decision-making processes stemming from improved identification (i.e., reducing time
to recognize the problem) and implementation delays (i.e., reduced time for changes to
work). The integrated tests captured a combination of agronomic (pre-emergent herbicide
and weed-crop interference), mechanical (seed crusher), and educational tests (reduced
decision delays). In all tests, it was assumed that production costs would increase with the
number of practices employed. This was incorporated by increasing the y-intercept of the
non-herbicide production cost function $1 per practice per unit area per year, which was
equivalent to ~$50 per practice per unit area increase by the end of the treatment period
(described below).

Each management experiment above was simulated via sensitivity analysis under
varying environmental conditions for 25 years beginning after the 50-year calibration
period. The sensitivity analysis varied critical input parameters to observe the range of
possible values and behavior patterns expressed by response variables. Input parameters
included (with the low and high endpoints of their distribution): weed seed per unit
of biomass [45,359 to 1,360,777 per kg biomass], mean seed bank dormancy time [30 to
120 months], mean germination rate [0.10 to 0.99], chemical half-life [0.5 to 3 months],
normalized precipitation forcing [0.9, 1.1], and maximum number of chemical switches by
management [10 to 50]. These sensitivity input values were chosen to capture the inherent
reproductive variability of different weed species in different climates and ecosystems
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and were applied to all simulation experiments captured above (Table 6). One thousand
simulation runs for each test were performed. Significant differences in ending-state
conditions of response variables were determined using two sample t-tests, while behavior-
over-time plots were visually examined to identify any behavioral sensitivities (i.e., where
the time-path evolution of the variable departed from the control treatment behavior).
Treatments were then ranked based on their probability of successfully minimizing weed
herbicide resistance, considering both ecological (weed pressure) and economic (costs and
profitability) considerations.

3. Results
3.1. Agronomic Treatment Tests

Agronomic treatment tests included pre-emergent, crop competition, and mode of
action rotation tests. Each test represented a hypothesized leverage point via structural
changes at the field- or farm-scale level. The purpose of these tests was to evaluate the
response of system characteristics, primarily the fraction of weed seed with resistance,
mean farm earnings, and number of chemical switches (indicator variables), to alternative
agronomic management. Altered behavior patterns resulting from the agronomic tests
(Figure 4) did not strongly differ behaviorally from the control but did lead to several
significant differences (Table 7), which are described below. [Note: For all simulations,
months 0 through 600 were included as the model calibration and evaluation period and
are illustrated in the resulting graphs for clarity and context. After month 600, model
adjustments according to management tests were employed].
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Figure 4. Agronomic test results, illustrating fraction of weed seed bank with resistance (a,d,g), mean
farm earnings (b,e,h), and total number of switches (c,f,i) (+/—1 standard deviation) in chemical
herbicide treatment under pre-emergence (a—c), crop competition, (d-f), and chemical herbicide
diversification (g—i) strategies.
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Table 7. Summary of critical agroecosystem metrics responses to simulated treatments (n = 500) with
our suggested ranking of effectiveness. *** represent significant difference from the control (standard
base case without model intervention) at 0.01 level.

Mean Values (+/—1 Standard Deviation)

Tests (Ranking) Fraction Remaining with Mean Farm Earnings Number of Chemical
ests (Ranking Resistance ($/unit Area) Switches
Control 0.4 104 8
Agronomic
Pre-emergent (4) 049 7 1050 =
8 (0.43-0.55) (113-121) (9-12)
- 0.42 110 *** 8.8 ***
Crop competition (3) (0.28-0.56) (100-121) (6-11)
.. . 0.41 110 *** 6.12 ***
Herbicide rotations (2) (0.28-0.54) (97-123) (5-7)
Mechanical
0.42 104 8
Seed crusher (8) (0.29-0.55) (91-116) (6-10)
. . 0.42 104 8
Combine cleaning (8) (0.29-0.55) (91-116) (6-10)
. . 0.42 104 8
Burning and physical remove (8) (0.29-0.55) (92-116) (6-10)
Intensive management
. 0.42 105 8
Education (8) (0.29-0.55) (92-117) (6-10)
“ . P 0.5 *** $120 *** 17 ***
Integrated “many little hammer” (1) (0.46-0.55) (116-124) (10-13)

Pre-emergent herbicide treatments effectively stalled weed population dynamics
via reduced outflow from the seed bank (i.e., reduced germination), resulting in less
variability in weed seed dynamics due to less seed bank turnover (Figure 4a). Consequently,
crop yield reductions were minimized compared to the control, leading to significantly
higher average farm earnings (Figure 4b). However, because pre-emergence treatment
stalled weed population dynamics, the fraction of weed seed with resistance remained
significantly higher relative to the control case, which, due to variation in the control
treatment parameters, was allowed to regress to 40% of the total seed bank (Figure 4a).
This elevated resistance fraction did not change the likelihood of resistant weed emergence
but triggered additional chemical switching due to persistent weed pressures (Figure 4c).

Crop competition treatments had little to no effect on the fraction of weed seed with
resistance (Figure 4d), given no chemical or physical disturbance was made to disrupt
weed seed dynamics. Chemical herbicides controlled the weeds in season (similar to the
control), thus reducing the crop—-weed competition for resources, improving crop yields
and significantly increasing mean farm earnings (Figure 4e). Without altering seed bank
dynamics, switching herbicides to keep up with weed-resistance pressure continued at a
significantly accelerated rate (Table 7; Figure 4f).

In chemical diversification tests, treatment simulations had no effect on the fraction of
weed seed with resistance (Table 7; Figure 4g). However, as with previous tests, chemical
controls that reduced weed seed germination and biomass resulted in less crop losses and
therefore improved earnings (Figure 4h). Notably, the frequency of herbicide switches by
management was practically halted compared to the control (mean of 6.12 versus 8 total
switches; Table 7, Figure 4i). This was due to the altered application decision rule under
the herbicide rotation test, where rotations were made proactively rather than in response
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to perceived weed resistance (which takes a substantial amount of time given delays in
the decision-making structures of managers). This approach “short-circuited” the lagged
switching induced by management response to weed pressure.

3.2. Mechanical Treatment Tests

Mechanical treatment tests included seed crushing, combine cleaning, and burning
and chaff removal treatment, each of which was designed to mimic real-world physical
removal and seed kill strategies (Table 6). Altered behavior patterns resulting from the
mechanical tests did not differ strongly behaviorally from the control and no significant
differences were observed (Table 7; Figure 5).
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Figure 5. Mechanical test results, illustrating the mean fraction of weed seed with resistance, (a,d,g),
mean farm earnings (b,e h), and total number of switches (c,f,i) (+/—1 standard deviation) due to
weed management via seed crusher (a—c), combine cleaning (d—f), and mowing, burning, and chaff
removal (g—i) strategies.

In seed-crusher test simulations, minor differences in the behavior patterns of system
characteristics were observed (Figure 5c) but were not significant for the three indicator vari-
ables (“Fraction remaining with resistance”, “Mean farm earnings ($/unit area)”, “Number
of chemical switches”) (Table 7). This was due to the dynamics of the weed seed bank cycle
not being disrupted enough to alter the fraction of weed seed with resistance (Figure 5a).
As a result, mean farm earnings were not altered (Figure 5b) as there was no change in the
weed-biomass-driven crop losses. The variability in seed crusher success (Table 6) allowed
some weeds to still “go to seed”, reinforcing the resistant weed seed bank and leading
management to continued herbicide switching (Figure 5c).

In the combine-cleaning test simulations, no significant differences were observed
between treatment and control for the three indicator variables (Figure 5d—f; Table 7). Al-
though, some weed population control was achieved via reducing inflows to the weed
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Fraction of weed seed bank with

Fraction of weed seed bank with

seed bank (Figure 5d), it was not enough to significantly reduce the crop losses to cre-
ate behaviorally better outcomes in mean farm earnings (Figure 5e). Assuming that the
combine-cleaning process was not 100% efficient, some weed biomass still managed immi-
grate/emigrate via combine transportation, allowing the weed seed cycle to continue. The
net result was that the perceived weed seed with resistance remained similar to the control
case, necessitating the same rate of chemical switching (Figure 5f).

Mowing, burning, and chaff removal had no significant impact on the system charac-
teristics under study (Table 7; Figure 5g—i). While these methods reduced some variability
in the fraction of weed seed with resistance (Figure 5g), they did not significantly reduce
crop losses or improve mean farm earnings (Figure 5h). Some weed biomass still man-
aged to produce seeds, so the weed seed cycle was not significantly disrupted, and the
perceived weed seed with resistance remained high enough to continue chemical switching
(Figure 5i).

3.3. Intensive Management Tests

The purpose of the intensive management tests was to simulate the response in sys-
tem characteristics given improvements in managerial perception and decision making
(reduced delays via education) and when improved decision making is coupled to man-
agers’ willingness to adopt diversified conservation agricultural practices (i.e., “many
little hammers”).

3.3.1. Educational Test

In the educational test, reducing perception and decision-making delays did not signifi-
cantly improve outcomes in response indicator variables (Figure 6a—c, Table 7). The fraction
of weed seed with resistance remained similar to control since no new physical interven-
tions were made to disrupt the weed seed and growth cycle (Figure 6a). As a result, mean
farm earnings were not altered (Figure 6b). Minimizing delays in the response function only
resulted in speeding up (marginally) the chemical switching behavior (Figure 6c).
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Figure 6. Educational and integrated test results, illustrating the mean fraction of weed seed with
resistance (a,d), mean farm earnings (b,e), and total number of switches (c,f) (+/—1 standard devia-
tion) under conditions of reduced management perception and decision-making delays (a—c) and
the integrated “many little hammers” test comprising five unique treatment combinations used
simultaneously over time (d—f).
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3.3.2. Combination “Many Little Hammers” Test

Under the “many little hammers” treatment, significant differences were observed
in all system characteristics under study (Figure 6d—f, Table 7). When integrated, the
“hammers” were the most effective in controlling weed seed with resistance (Figure 6d),
reducing the variability of weed-resistance expression by approximately 50% (Table 7).
Greater control translated into a significant reduction in crop losses and therefore greater
mean farm earnings (both behaviorally and statistically) than the individual treatments
alone (Figure 6e). However, because variability in weed dynamics was effectively stalled,
opportunities to observe changes in seed bank conditions were reduced. In other words,
when the interventions were working there were fewer opportunities to learn from possible
shifts in seed bank dominance, leading to continued chemical switching (Figure 6f).

4. Discussion

Farmer: “In our garden we have a weed called purslane (Portulaca oleracea). We don't let
it go to seed, ever, and keep the weeds out always. . . how do you get rid of it? They keep
coming, for years...”

Consultant: “I feel your pain out in the crops, too. I don’t feel like we've been letting
any weeds go to seed, yet every year they keep coming back. I don’t know, weeds are just
tough, that’s just kind of the way Mother Nature works. 1 wish there were some answer,
but we don’t have anything for permanent control, other than just ‘keep at it’, I don’t
know what else to tell you.” (quoted from [41])

Ecological succession, including in agroecosystems, is a powerful force not easily bent
to the goals of producers and weeds, evidence of nature’s continued march to achieve
succession [42]. Typical efforts to establish and maintain modern agricultural systems, often
characterized by large farm sizes, specializing in only a few crop species throughout the
growing season and accompanied by a high percentages of bare ground, rely on manage-
ment practices such as conventional tillage, mowing, herbicide use [43], and fertilization,
particularly nitrogen [44]. In doing so, many agroecosystems are ideal environments from
which weeds attempt to gain a foothold on the first stage of succession.

Maintaining agroecosystems in a state of low diversity comes at very high explicit
economic and ecological costs. Economically, these include annual costs of weed control as
well as “sunk” and opportunity costs (i.e., paying for annual herbicide treatment comes at
the opportunity cost of not pursuing alternative management strategies; money “sunk” into
annual weed control is no longer available for investments in other parts of the system [42]).
Ecologically, ecosystem services bundles have tended to prioritize provisioning services
while minimizing regulating or supporting service considerations. For example, due to
the adoption rate and use of herbicides by the agricultural sector coupled with the co-
evolutionary developments in crop genetics, herbicides have facilitated near continuous
year-to-year growth in crop yield productivity since the 1950s [45] despite the rapidly
increasing number of weed-resistance cases [5]. Unfortunately, such prioritization can have
cascading impacts on nutrient and hydrological cycles as well as biodiversity levels which
are often associated with cultural ecosystem services (e.g., recreation) [5,45]. As the global
number of herbicide-resistance cases continues to increase, it will be more difficult for
the growers to manage weed problems with herbicide, posing a mounting economic and
ecological threat.

To gain insight into ecological and socio-economic structures driving weed herbicide
resistance, we developed a dynamic model using a systems dynamics methodology. The
model was constructed linking various cropping systems, farm financials, and decision-
making relationships to test alternative management approaches and trade-offs. Model
confidence was established when it could reproduce a variety of behavior patterns over
time occurring in observed data from different system perspectives. After confidence was
established, a variety of simulation experiments were used to examine the response in the
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fraction of weed seed with resistance to a variety of management strategies under a wide
range of environmental conditions.

In all three agronomic tests, mean farm income improved significantly when the
number of chemical switches increased, but for different reasons. Pre-emergent application
stalled weed population dynamics via fatal germination, resulting in less crop harvest
losses and therefore greater yield and earnings. With slower additions to the weed seed
bank, the projected (perceived) fraction of weed seed with resistance was elevated (i.e., it
was harder to update managerial expectations when opportunities for observations and
learning were limited due to reduced germination), which contributed to significantly more
chemical switching.

On the other hand, crop competition removed some of the natural variability in weed
population dynamics, via reduced weed biomass growth during the growing season, given
greater resource competition, but not nearly as much variability as the pre-emergence treat-
ment. Likewise, mean farm earnings were improved but not as significantly as with the
use of pre-emergent treatment, given less disruption to crop losses under crop competition.
But because weed-resource acquisition was slowed via greater crop interference, the pro-
jected weed seed with resistance better matched actual resistance levels, thereby inducing
fewer chemical switches. Furthermore, chemical diversification reduced the variability in
weed population dynamics through increased kill rates on the weed biomass stock which
improved crop yields and farm earnings. Because the chemical diversification strategy was
pre-emptive rather than reactive, decision-making responses driving chemical “switches”
responding to the fraction of weed seed with resistance were “short-circuited”, leading to
fewer reactive switches.

Unfortunately, the level of control achieved by the mechanical strategies was not
enough to significantly reduce crop harvest losses or create behaviorally better outcomes in
mean farm earnings, chemical switching, or fraction of weed seed with resistance. Because
seed crushing, combine cleaning, and burning still allowed weed biomass to “go to seed”,
the emergent property of “switching” herbicides based on management observations and
perceptions of resistance was basically unchanged, given that the weed seed cycle was
not significantly disrupted enough to lead to reductions in weed growth and therefore
perceived levels of weed herbicide resistance needed to alter chemical “switching” behavior.

Unlike the agronomic and mechanical treatments, the intensive management tests
incorporated changes to manager mental models that would eliminate perception and
decision-making delays. In the first treatment, solely reducing delays in the decision-
making component did not disrupt weed biomass and seed bank dynamics enough to
alter behavior patterns in weed seed bank or farm earnings. Because simply minimizing
the delays in the weed-resistance response functions did not alter the volumes of flows
(germination, kill rate, weed seed production) into or out of the accumulated stocks (weed
biomass and seed bank), only the timing. With no physical intervention being made, the
result was simply to speed up the original herbicide application decision.

The most dynamic experiment tested was the intensive management scenario rep-
resenting “many little hammers” [39], which combined pre-emergent applications, crop
competition, seed crushing, combine cleaning, and education to reduce perception and
decision-making delays. In this case, most of the variability arising from environmental
and agroecosystem characteristics was reduced, meaning that the interaction effects be-
tween each factor, when coupled together, had more impact than each of the independent
treatments alone. Despite the added annual costs (=20%), the increase in farm earnings
was both statistically and behaviorally significant compared to the control case. This was
due to crop losses being essentially removed due to the disruption of weed biomass and
seed dynamics at both inflows (weed growth, seed production) and outflows (weed kill,
germination), benefits which compounded over multiple years. Interestingly, because of
how well the variability in weed population dynamics was controlled, opportunities to
observe changes in weed seed resistance were masked, meaning managers were unable to
take advantage of variability in natural conditions that might have led to favorable reduc-
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tions in weed biomass. The net result was that the fraction of weed seed with resistance
became “anchored” to the level of resistance at the time in which “many little hammers”
strategies were implemented. Coupled together, producers continued to rely on herbicide
“switches” when breakthrough weed problems occurred (once every 4.17 years on average;
Figure 6f). Sensitivity input values were chosen to capture the inherent reproductive vari-
ability of different weed species in different climates and ecosystems and were applied to
all simulation experiments captured above (Table 6).

The study’s results underscore the complexity of managing herbicide resistance in
agroecosystems. Model evaluations confirmed the system’s validity, with various tests
aligning with expected behaviors and expert verifications. Agronomic treatments like pre-
emergent herbicides and crop competition strategies showed some benefits in controlling
weeds and improving farm earnings but did not significantly reduce the fraction of resistant
weed seeds. Chemical diversification was effective in reducing the need for herbicide
switching. Mechanical treatments, however, had limited impact on resistance dynamics
and farm earnings. Overall, the findings highlight the need for integrated management
strategies that consider both immediate and long-term effects on weed resistance and farm
profitability. The study emphasizes the importance of proactive and diversified approaches
to sustainably manage herbicide resistance.

4.1. Synthesis: Shifting the Burden of Weed Management and Its Implications for Ecosystem
Services Bundles

Weed proliferation remains one of the major ecological problems worldwide. Her-
bicides have been used to mitigate weed presence and the impact on agroecosystem
performance as well as to facilitate successional change and habitat restoration. Due to their
affordability and ease of use relative to physical-removal methods, herbicide applications
became a primary tool in ecosystem managers’ standard operating procedures, especially
in developed countries [5,40]. By doing so, managers reinforce a short-term “fix” (herbicide
treatment) that removes weed pressure (top left balancing loop Figure 7). Unfortunately,
continued herbicide use has contributed to natural selection pressures that reward resistant
weed varieties [20]. Over time, the fraction of weed seed expressing resistant traits has
increased, leading to larger populations of individuals resistant to herbicides, reinforcing
the weed pressure in the long-term (a phenomenon called a “fix that backfires”; top right
reinforcing loop in Figure 7).

Our results are consistent with knowledge of commonly understood ecological pro-
cesses but also point to still deeper longer-term ecologic and economic issues than simply
reinforcing weed pressure. Our results indicated that there are multiple pathways to
improved economic and ecologic outcomes. For example, the crop competition test was
meant to mimic alternative crop-management practices capable of interfering with resource
acquisition by weeds but that many conventional operators have not adopted into their
production systems [46]. These practices, such as reducing row spacing to accommodate
diverse crop rotations and cover crops, as well as mulching (i.e., leaving high levels of
crop litter cover year-round), led to the greatest economic gains with the fewest number
of chemical herbicide switches (Figure 4; Table 7). Crop competition that interferes with
weed-resource capture and reproduction therefore represents a longer-term mechanism to
offset problematic weed pressures (bottom left balancing loop in Figure 7).

Importantly, our results indicated that the adoption of crop competition strategies is
not likely to be accelerated due to the unintended consequences of relying on herbicide
treatment. As was shown in the pre-emergent, pre-emptive mode of action rotation, and
the integrated “many little hammers” treatments, the fraction of weed seed expressing
resistance remained at the level when each experiment began, despite the wide array of
environmental conditions expressed in each treatment (described in Section 2.3) which
allowed for natural regression in seed bank resistance (Table 7). Because herbicides ef-
fectively negated immediate weed pressure but at the cost of longer-term accumulated
resistance, breakthrough years of excessive weed presence occurred more frequently. From
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an ecological perspective, this makes it more difficult for producers to adopt crop competi-
tion strategies (bottom right reinforcing loop in Figure 7). Due to the difficulty establishing
effective crop competition practices in the face of more frequent and pervasive weeds,
the longer-term behavioral response by management has been to prioritize short-term
chemical treatment that over time erodes the effectiveness of crop competition via the unin-
tended reinforcing of the feedback just described. This phenomenon, known as “shifting
the burden”, pushes producers away from the difficult to achieve, but more sustainable,
long-term intervention towards the easier, time saving, but less sustainable, short-term
“fix” (Figure 7).
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Figure 7. Synthesis of forces influencing weed pressure on farmers and the subsequent seed bank
accumulation. Links with an “S” sign on the arrowhead indicate same or positive polarity (the
variable at the tail pushes the variable at the head in the same direction) while an “O “sign indicates
opposite or negative polarity (the variable at the tail pushes the variable at the head in the opposite
direction). Feedback loops are labeled “R” for positive or reinforcing feedback, while those labeled “B”
indicate negative or balancing feedback. For example, when weed pressure increases, so will herbicide
treatments (the short-term “fix”), which in turn will reduce the subsequent weed pressure, but will
increase selection pressure for resistant weed varieties, the fraction of weed seed expressing resistant
traits, and the weed population resistant to herbicides (which is a case of a “fix that backfires”). A
longer-term solution, interference in resource capture and reproducibility of weeds, becomes harder
and harder to implement as the weed population resistant to herbicides drives up the percent soil
cover and frequency of weed presence. This “shifts the burden” of management back to the short-term
reliance on herbicide treatment in an attempt to curtail weed pressure, reinforcing the unintended
side effects to weed resistance.

Although the model shown here was developed using the best available data from
the United Sates and captures processes at work in most developed industrial agricultural
sectors, the implications it describes are transferrable to producers in developing countries.
For example, in developing countries, both the use of labor for mechanical removal of
weeds and herbicide applications are prominent solutions to existing weed problems. As
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countries develop and opportunity costs of labor rise, mechanical removal through labor
becomes more expensive. Coupled with the lack of alternative chemistries that are safer for
crops and the environment, current regulations on chemical use, and subsidies for fertilizers
and seeds, smallholder farmers are incentivized to switch between chemicals to achieve
immediate weed reductions rather than adopt biological approaches (e.g., conservation
agricultural practices) that take more time and energy and may not provide immediate
economical outputs.

Once smallholder farmers and input suppliers observe rising weed resistance, it will
disproportionally impact the way people use herbicides and the subsequent rate of weed-
herbicide-resistance development. This is because herbicide applications will tend to reflect
smallholder diversity, reinforcing an array of selection pressures on extant weed species.
Although the diversity of herbicide use will initially curtail the weed problems, in the long-
term, multiple selection pressures will accelerate weed herbicide resistance in timescales
much shorter than currently observed trends in developed countries.

Developed countries have the opportunity to shift the economic and policy preferences
towards the practices that stand a greater chance of hedging against long-term resistance
(e.g., incentivizing an array of practices). Meanwhile, agricultural sectors in developing
countries, where taking advantage of economies of scale will be limited due to the size
of smallholder holdings, may lack economic and political incentives to change practices
whose perceived outcomes will reduce rather than increase total production. In these cases,
policymakers encourage producers to concentrate on short-term productivity goals, which
is likely to aggravate the problem in the long run. Extension educators and NGOs working
in developing-nation contexts should therefore “double down” on scientific and manage-
ment support for those smallholder groups most interested in long-term improvements
to agroecosystems.

4.2. Model Strengths, Limitations, and Future Directions

The main contribution of the model is how well it captured the contributing processes
and factors that interact dynamically to influence weed seed bank patterns over time and
the resulting feedback pressures to the agroecosystem. This was achieved through the
integration of crop production, returns, and costs; herbicide application rates and timing;
weed biomass growth and reproduction through the weed seed bank; and farm-level
managerial perception and decision-making delays that to date have not been coupled
in a similar fashion. There are however several limitations. First, the model itself was
conceptualized at a low resolution with respect to its individual agronomic, economic, weed
ecology, or decision-making components. Because of this, we relied on a variety of highly
aggregated public data sources. The model captured the overall dynamics of the problem
well but may not replicate specific dynamic behavior patterns of individual resistant weed
species cases. Where extremely high-resolution data exist, alternative modeling approaches
that focus on chemical pathways, weed reproduction, and genetic inheritance at cellular-
to individual-plant levels are likely more attractive models, depending on the question at
hand. Additionally, our model boundaries remained quite simplified with respect to climate
and soil properties (such as seasonal precipitation and temperatures; soil texture and CEC)
that interact with, or drive, weed population dynamics. To compensate for this, we aimed to
capture the effects of variability in such factors in our overall experimental design (Table 6).
Future extensions of this model will require expansion of the model boundaries to include
additional agronomic, ecologic, and soil features described above, such that the model may
be replicated for specific resistant weed cases in specific agroecosystems.

5. Conclusions

Effective management of weed populations requires knowledge and understanding
of the complex dynamics that arise between weed species and cultivated crops, chemistry
of herbicides and their modes of action, and farm-level economics and decision making.
The system dynamics model presented here, capturing the feedback relationships among
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these elements, demonstrated that the economic risks of weed herbicide resistance can be
mitigated through a variety of practices such as pre-emergent herbicide, rotating herbicide
applications to diversify modes of action, increasing interference via crop competition (e.g.,
conservation agriculture practices), or combinations of these coupled with physical-removal
practices such as seed crushing and combine cleaning. Most importantly, results indicated
that continued chemical herbicide use not only reinforces weed herbicide resistance, but it
makes implementation of other strategies, primarily crop competition, much more difficult.
This shifts the burden of weed management to total reliance on chemical applications in
developed countries or increasing reliance in developing ones.

Extending mathematical agroecosystems models, such as this one, to examine emer-
gent ecological and socio-economic problems can lead to deeper insights for improved
policy and management before problems advance beyond the “point of no return”.

Although promising, the use of herbicides to control weed populations is a short-term
solution that reinforces the problem of herbicide resistance with considerable side effects on
the farm profitability and sustainability. Understanding the complex dynamics of herbicide
resistance coupled with a combination of various complimenting management strategies
would be a more reliable long-term solution to the weed problem.
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Appendix A

The SD process follows the scientific method. First, problems are articulated and then
described in a dynamic hypothesisl. The dynamic hypothesis aims to capture the endog-
enous feedback nature of the problem and forms the basis for model experimentation.
Those unfamiliar with system dynamics methodology often misinterpret a dynamic hy-
pothesis as an experimental hypothesis that is variable or is allowed to change during the
course of the experiment. On the contrary, dynamic hypotheses are working theories about
how the problem under investigation arose, described in terms of its dynamic feedback
structure [33,35]. Simulation experiments derived from this hypothesis are conducted
to test and potentially disprove the initial assumptions of the system’s behavior, akin
to hypothesis testing in other scientific disciplines. Then the model is developed and
evaluated to generate confidence in the model’s structure (Figure A1) and behavior. If
the model passes the evaluation stage, then the model is used for experimentation and
hypothesis testing to gain management insights not easily identifiable by other means.
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Figure A1. Conceptual stock-flow diagram of the weed-herbicide-resistance model. The notations
“R” represent positive or reinforcing feedback processes while “B” represents negative or balancing
feedback processes.

Appendix B

Although only one application may not be very realistic, neither is a 10% increase
in retained earnings per year. The choice of one herbicide application at an extremely
high rate of profitability was made to ensure that herbicide applications in the model are
not discontinued but occur each year at least once, similar to conventional farm standard
operating procedures.

Appendix C

In this case, the model’s highly aggregated farm-level boundary was prioritized to
balance resolution with fidelity. That is, we aimed to construct as simple a model as
possible that retained the capability of qualitatively reproducing key behavior patterns
in the variables of interests. The objective was to create a minimal model that expresses
similar dynamics observed in the real-world evolution of the problem to be useful for
examining broad socio-economic and agricultural drivers contributing to weed herbicide
resistance in general and improving their management.

The following tests were used to assess and evaluate the model:

e model boundary adequacy was tested via a form of loop knockout analysis to shrink
the model boundary such that it excluded erosion of effective kill rate and the decision-
making links that lead to chemical switching. If the resultant model behavior cannot
capture those observed in the full model, confidence is generated that the boundary is
properly scaled.

e  structure verification was assessed via solicitation of expert scientists to review model
structure and baseline behaviors. We considered this test passed upon any review by
the external subject matter experts.

e  parameter verification was assessed by review of literature such that important model
parameters matched ranges of values reported from the field. We considered this test
passed when model values aligned with those in the literature while also maintaining
the expected behaviors over time.
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e dimensional consistency was tested via Vensim's internal “units check” function. Units
were corrected until Vensim’s units check function was satisfied.

e extreme conditions were tested by varying three important parameter values to ex-
treme values not likely to ever be observed in the real world: weed seed per unit of
biomass (1 seed, from an initial value of 1,000,000), mean weed seed bank time (1
month, from an initial value of 120 months), and mean chemical half-life (300 months,
from an initial value of 3 month). This test was considered passed if the simulation
runs were not aborted due to unknown model errors and the behavior patterns were
realistic given the above changes to extreme values not typically expected in the real
world (i.e., although such values are not observed in the real world or are physically
impossible, does the model behave appropriately in the case they were?).

e  behavior reproduction was tested by qualitative comparison of observed behaviors
over time in herbicide application rates, herbicide costs, farm profits, and percentage
of seed bank with resistance to the model generated behaviors of each endogenous
variable of the same name. This test was passed when real-world and model behavior
pattern modes coincided (statistical tests provided less confidence here given the
farm-scale resolution of the model and the aggregation level above on-farm scales for
most publicly available data). Aggregate data sources used for calibration included
USDA ERS estimates for farm profitability and herbicide costs [34], USDA ERS for
herbicide application rate [14], and probabilistic estimation of the fraction of weed
seed with resistance from Gunsolus [47] based on Maxwell et al. [24].

A summary of the assessment test results is provided (Table A1). Boundary adequacy
was passed given the discrepancies in model behaviors when decision-making feedback
loops were excluded from the model the resulting behavior patterns were not consistent
with expected behavior patterns (Figure A2a,b). Structure verification was passed upon
successful evaluation of multiple subject experts from agronomy, weed science, rangelands,
and agricultural extension. Parameter verification was passed for critical variables (weed
seed production, weed seed germination rate, weed biomass potential, seed bank residency
time, and herbicide application rates and costs) given reported values in the literature
were used (e.g., Anderson [37]; Fernandez-Cornejo et al. [14]; Gunsolus [47]; Livingston
et al. [48]). Dimensional consistency was passed using Vensim'’s built-in units check
function. Extreme conditions were passed given the resulting model behaviors were feasible
and reasonable given the extreme parameter changes in weed seed production (Figure A2c),
seed bank time or chemical half-life (Figure A2d) and no model errors were encountered
during the simulation. Finally, behavior reproduction tests were passed by comparison of
farm profitability (Figure A3a), weed seed bank with resistance (Figure A3b), and herbicide
application rates (Figure A3c) and costs (Figure A3d), each of which matched historical or
model generated data from available data sources or previous studies [14,47,49].

Table Al. Results of model adequacy testing. Summary of model assessment criteria and results.

Test Criteria Assessment Method Assessment Result
Loop knockout analysis: removal  Passed: behavior of weed seed
Are critical concepts and of decision-making links for bank and farm profitability
Boundary adequacy structures relevant to the issue  chemical “switching” and erosion did not coincide with
endogenous to the model? of effective kill rate; constant observed behavior modes
effective kill rate of 90% (illustrated in Figure 4)

Structure verification

s t he mod'el structgrg Solicitation of feedback from field
consistent with descriptive Passed

knowledge of the system? experts




Systems 2024, 12, 587 26 of 29

Table Al. Cont.

Test Criteria Assessment Method Assessment Result

Passed for:

Are the parameters in the weed seed production, weed

. . Verification of parameter valu
model consistent with eriication ot p cter values

e . . . seed germination rate, weed
Parameter verification . against reported values in the ) .
numerical knowledge of the literature biomass potential, seed bank

system? residency time, and herbicide
application rates and costs

Do equations in the model
correspond to the
dimensionality of the
real world?

Dimensional consistency Automated units check Passed

Extreme parameter tests using:
weed seed per

Does the model exhibit logical unit of biomass =1,
.. behavior when certain from 1,000,000 Passed
Extreme conditions . . -
parameters are given weed seed bank (illustrated in Figure 4)
extreme values? time = 1 month, from 120 months

chemical half-life = 300 months,
from 3 months

Does the model produce the Comparison of behaviors in key
. . . . Passed
Behavior reproduction same behavior patterns model behaviors to those (illustrated in Figure 5)
observed in the real world? observed in the real world &
. 45 7000
£ 4 a w 6000
E 35 2
= £ & 5000
g8 E & 4000
‘5 _E © s
& 520 © 5 3000
£3 Z &
g2 & @ 2000
2 T 10 H
o -
3" 5 P 1000
v - -
Q AN MO AN MO AN OO AN AN MmO AN MO AN MO AN MO AOARN MO W SN mMO
s NRRERLRRRERAAERIICSNIGS NAREEUECREERARAIICERIGS
Months Months
standard base == e=boundary adequacy test ——standard base == =boundary adequacy
80 1
&
70 ¢ g oo d
8 = 60 £ o8
F s o .07
S ®50 L T
v g H 9 206 -
o 5y HH w O 1l
2 c pii T §0° 1"
5 o iid o 8
Ta it L5204 "
23 H i3t 3 g™ "
o2 ¢ FRR s 2() 3 n
S citld iti e et
il . S o2 | 1!
BRI FER I+ LL
HEEH i3 & 01 -
b
0

183
209
1

26 0~

Months

standard base = = ext cond: seed bank time === ext cond: half life

------ standard base  esssext cond: seed production

Figure A2. Model adequacy test results: exclusion of feedback responsible for erosion of effective
chemical effectiveness (i.e., chemical switching and reduction in kill rate with subsequent weed resis-
tance) such that effectiveness remained static at its initial condition (90% effective; a,b); (c) extreme
conditions tests for the weed seed per unit of biomass and its effect on yield losses; (d) extreme
conditions test for reduction in mean weed seed bank time or reduction in chemical half-life and their
effects on fraction of weed seed resistance.
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Figure A3. Model calibration results illustrating (a) similar model predicted behavior patterns to
observed trends in farm net returns per acre [37]; (b) fraction of weeds with resistance [40]; (c) mean
pounds pesticide applied per unit area [15]; (d) herbicide cost per volume applied [37].
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