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Abstract Climate change‐induced heat stress has significant effects on human health, and is influenced by a
wide variety of factors. Most assessments of future heat‐related risks however are based on coarse resolution
projections of heat hazards and overlook the contribution of relevant factors other than climate change to the
negative impacts on health. Research highlights sociodemographic disparities related to heat stress
vulnerability, especially among older adults, women and individuals with low socioeconomic status, leading to
higher morbidity and mortality rates. There is thus an urgent need for detailed, local information on
demographic characteristics underlying vulnerability with refined spatial resolution. This study aims to address
the research gaps by presenting a new population projection exercise at high‐resolution based on the Bayesian
modeling framework for the case study of Madrid, using demographic data under the scenarios compatible with
the Shared Socioeconomic Pathways. We examine the spatial and temporal distribution of population subgroups
at the intra‐urban level within Madrid. Our findings reveal a concentration of vulnerable populations, as
measured by their age, sex and educational attainment level in some of the city's most disadvantaged
neighborhoods. These vulnerable clusters are projected to widen in the future unless a sustainable trajectory is
realized, driving vulnerability dynamics toward a more uniform and resilient change. These results can guide
local adaptation efforts and support climate justice initiatives to protect vulnerable communities in urban
environments.

Plain Language Summary Heat stress is a major risk factor for human health, especially in cities
where more people are exposed to increasingly higher temperatures in summer. Cities are usually hotter than
their surrounding rural areas due to the predominance of dark, impervious surfaces which absorb more heat.
Assessing heat risks for public health requires measurements of the hazard, such as a prolonged period with high
temperatures, the population exposed to the hazard and characteristics of populations that make them more
vulnerable to heat related diseases or even death. Various approaches and tools for risk assessment have been
developed, but most of them focus on the hazard and exposure components. In this paper, we measure and
project vulnerability to heat stress in alternative scenarios, using different population characteristics, such as
age, sex and education. Our results show that there are compelling differences between areas within the city of
Madrid and that areas that are vulnerable today will become even more vulnerable unless we follow a path of
sustainable development. Detailed assessments of the spatial distribution of vulnerability within a city are
relevant for developing adaptation solutions that target vulnerable populations and are thus more effective in
reducing heat‐related risks.

1. Introduction
Climate change has severe impacts on human health worldwide. The direct effects of heat stress associated with
the warming climate manifest through increasing disease and premature death rates (Ebi et al., 2018; Gasparrini
et al., 2017; Honda et al., 2014). Already, over one third of warm‐season heat‐related deaths can be attributed to
anthropogenic climate change (Vicedo‐Cabrera et al., 2021). These effects are most visible in cities, where more
people are exposed to temperatures that are significantly higher than in their surrounding rural areas (Hsu
et al., 2021). Without appropriate adaptation strategies, the already notable health impacts will intensify rapidly in
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the future urban environments under global warming (Zhao et al., 2021). The increased exposure to hazards may
go hand in hand with an increase in overall vulnerability due to projected urbanization (Jiang & O’Neill, 2017)
and aging of urban populations (Jay et al., 2021).

The latest report from the Intergovernamental Panel on Climate Change (IPCC) highlights that vulnerability is
potentially a more important driver of severe climate risks than global warming levels (O’Neill et al., 2022). Even
if we achieve the goals of the Paris Agreement and contain warming well below 2°C, striving to limit the warming
to 1.5°C above pre‐industrial levels, through strong mitigation efforts, the risk of heat stress will remain moderate
to high in scenarios with limited or incomplete adaptation and only a pro‐active adaptation scenario will keep the
risks within moderate limits (Cisse et al., 2022). Effective adaptation solutions are those that target the groups that
are most affected by the negative impacts of climate change and increase their resilience. Therefore, the severity
of future climate change impacts will be highly dependent on how efficiently vulnerability can be decreased
(Begum et al., 2022). Despite this insight, the scientific community as well as policy makers have focused almost
exclusively on trends of heat hazards, with little to no research being conducted on how societal change influences
vulnerability dynamics (Garschagen et al., 2021). We address this gap by modeling and projecting local changes
in heat‐related vulnerability in alternative scenarios at a very high spatial resolution for the case of Madrid.

Vulnerability is defined as the predisposition of individuals, communities or systems to be disproportionately
affected by climate change impacts, due to heightened sensitivity and diminished adaptive capacity. Different
approaches have been used over time to assess vulnerability. Early analyses took a top‐down, biophysical
perspective which often started with exposure to climate hazards. Over time, this evolved into a bottom‐up
evaluation, accounting for social and contextual determinants of vulnerability. Vulnerability is a core compo-
nent of climate risk and often assessed in relation to hazards and exposure, but studied on its own, it can improve
our understanding of differential impacts based on societal and individual characteristics of the affected pop-
ulations. The approach provides a unique lens to study the effects of heat stress on different communities and
individuals and assesses how these are affected by race, gender, wealth inequalities and other attributes (Begum
et al., 2022). Demographic and socioeconomic factors as well as preexisting health conditions shape vulnerability
in complex ways. Old age, with its related health conditions is one of the strongest determinants of heat stress
vulnerability (Benmarhnia et al., 2015; López‐Bueno et al., 2020). In general, women are shown to be more
susceptible to heat than men, but these results vary with location. A recent systematic literature review of 207
studies found 37 articles showing higher risk for women and 12 articles showing higher risk for men (Son
et al., 2019). Living alone increases the risk of mortality and so does living in a low‐income household
(Osberghaus & Thomas, 2022) and having a low level of education (Conte Keivabu, 2022).

Societal change and its effects on future vulnerability have been largely overlooked by the existing literature, but
recently, several contributions emphasize the need for a better integration of vulnerability aspects in future
climate risk assessments. This realization has led to the development of a new scenario architecture that considers
such socioeconomic changes in climate change science (Garschagen et al., 2021). The Shared Socioeconomic
Pathways (SSPs) are the latest generation of scenarios that integrate potential changes in future climate with
societal development. This set of five scenarios provides global data on trajectories for climate change as well as
economic and demographic development (O’Neill et al., 2017). These data are seldom used by local decision
makers due to a mismatch in the spatial scales between the socioeconomic projections and the information
relevant for decision making, for example, in a municipal context. The modeling tools and methods available
today are insufficient to achieve the level of resolution required to accurately model vulnerability and adaptation
scenarios for a geographical area as small as a city (Garschagen et al., 2021).The climate research community has
made sustained efforts to downscale data from global climate models to regional (CORDEX Regional Climate
Model Data on Single Levels, 2019) and local contexts (Fick & Hijmans, 2017), and even developed high res-
olution products for detailed urban modeling (Copernicus Climate Change Service, 2019) with a wide range of
tools available for statistical or dynamical downscaling. At the same time, only limited downscaled projections
exist for data on vulnerability in local contexts. We address this gap by developing a framework for downscaling
socioeconomic data from the SSPs at scales that are useful for local decision‐making.

The following section presents an overview of the background and research gaps addressed in this article, then
Section 3 outlines the data and methods while Section 4 summarizes the results and Section 5 discusses the
limitations and provides concluding remarks.
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2. Knowledge Gaps in Heat‐Related Vulnerability
Local assessments of vulnerability are often the first step in identifying challenges and opportunities for mapping
health risks related to climate change (Haines & Ebi, 2019). Most future heat‐related risk assessments are based
on changes in heat hazards while socioeconomic factors are kept constant, at the current conditions. The future
vulnerability of populations in cities will be determined by how society and the characteristics of urban population
develop in the years to come, but the contribution of drivers of urban heat stress, other than climate change are
widely neglected in future risk assessments (Rohat et al., 2019). Socioeconomic scenarios have been developed to
address this drawback and play a key role in the assessment of future heat stress risks as well as in the design of
adaptation policy responses (Riahi et al., 2017). To this end, the SSPs, which comprise a set of five coherent
narratives, are useful to describe plausible future changes in demographics, economics, human development,
policies and institutions, technology, and environment and natural resources (O’Neill et al., 2017). The de-
mographic component of the SSPs provides a powerful resource for analyzing population dynamics according to
different assumptions about future trends in population structure, fertility, mortality and migration. In this work,
we develop high‐resolution projections that follow three of the five SSPs, namely SSP1—“sustainable devel-
opment”, SSP2—“middle‐of‐the‐road” and SSP3—“regional rivalry.”

Demographically, SSP1 assumes a future of sustainable development where investments in health and education
lead to a relatively low global population, with low mortality, medium fertility and migration and high education.
Overall fertility in this scenario is medium, due to the assumption that in rich OECD countries, the strong focus on
wellbeing is making it easier for women to combine work and family life while in all other countries, fertility
remains low. SSP2, the middle‐of‐the‐road scenario, carries the trends from the recent past well into the future,
following a medium mortality, fertility, migration and education trajectory. In stark contrast to SSP1, the SSP3
scenario describes a fragmented world dominated by conflict, where increasing nationalistic sentiments and high
investments in national security hinder efforts for international cooperation and sustainability. Turmoil in this
world leads to high mortality and low educational attainment, which result in high fertility rates. Furthermore, due
to security and barriers for international exchange, migration remains low (KC & Lutz, 2017). Within health
systems, SSP1 assumes strong climate change and health planning in governance, with well‐developed health
information systems that focus on vulnerability assessments and investments in research of vulnerable com-
munities. SSP2 includes some governance on climate change and health, but planning and vulnerability as-
sessments are not always prioritized or comprehensive due to political and financial constraints. SSP3 assumes
minimal to no planning regarding climate change and health issues. Vulnerability assessments are rarely con-
ducted and weak climate financing systems restrict adaptation activities (Haines & Ebi, 2019). Using the SSP
trajectories for future climate and health vulnerability assessments offer unique advantages of combining the
demographic projections as vulnerability factors with the climate scenarios. The Sixth Assessment Report of the
IPCC (AR6) provides a framework for integrating the socioeconomic aspects of future development with a range
of radiative forcing values that would occur in alternative climates. The SSPs as described above, can be com-
bined with an older generation of climate scenarios, namely the representative concentration pathways (RCPs)
which imply different magnitudes of warming, expressed by the level of radiative forcing that they would
potentially reach in 2100. Examples of potential combinations are SSP1‐1.9 ‐ a low overshoot scenario consistent
with limiting global average warming to 1.5°C by 2100, SSP1‐2.6 ‐ a scenario consistent with limiting warming to
2°C, SSP2‐4.5—consistent with a warming in the range of 2.1°C–3.5°C or SSP3‐7.0 consistent with warming in
the range of 2.8°C–4.6°C (Begum et al., 2022). The demographic projections (KC & Lutz, 2017), however, do not
explicitly assume effects of climatic events on the drivers of population change and have thus been developed
independently of the climate projections. Furthermore, a lack of quantitative and spatially explicit projections of
socioeconomic variables under the SSPs is one of the key barriers to integrating socioeconomic scenarios within
local climate risk assessments (Rohat et al., 2019). Studies applying the SSP scenario framework have used coarse
resolutions, such as 0.5° spatial grids (e.g., Liu et al., 2017). The high‐resolution, spatially explicit and demo-
graphically heterogeneous population projections that we developed in this paper are readily available to be
integrated in more complex heat‐related risk assessments.

Our choice to use demographic variables (i.e., age, sex, and education) to quantify future vulnerability is sup-
ported by previous studies, which have found these variables to significantly modify the heat‐mortality rela-
tionship due to both physiological and behavioral differences. Literature shows that individuals above the age of
65, those with low socioeconomic status (SES) and women are more susceptible to heat‐related illnesses and
mortality (Basu, 2009; Benmarhnia et al., 2015; Conlon et al., 2020; Son et al., 2019; Stafoggia et al., 2021).
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Research consistently underscores that age is the most prevalent factor modifying the relationship between
ambient temperature and mortality given that older people have a reduced ability to thermoregulate their body
temperature, higher prevalence of underlying health conditions, tendency to live alone and limited access to
medical care and social services (Son et al., 2019). Sex is also considered a source of demographic heterogeneity
underlined by differences in physiology and exposure (Achebak et al., 2019; Oudin Åström et al., 2011). There is
however no consensus on whether men or women are more vulnerable to heat stress, with slightly higher number
of studies reporting women to have higher mortality risks (Son, Liu, and Bell, 2019).

In recent years, education has been put forward as an important demographic characteristic underlying vulner-
ability to climate change and adaptive capacity (Conte Keivabu, 2022; Lutz et al., 2014; Muttarak, 2021; Muttarak
& Lutz, 2014). It has been consistently shown that individuals, households, communities and countries with
higher level of education experience lower vulnerability to extreme climatic events measured as mortality,
morbidity, loss and damages and recovery time (Butz et al., 2014). There are two main channels underlying the
role of education in reducing vulnerability and enhancing adaptive capacity. First, formal schooling directly
enhances risk perception, problem solving skills and cognitive skills such as inductive reasoning (Van Vo &
Csapó, 2020) and working memory, which is responsible for storing and manipulating information necessary for
complex cognitive tasks (Davidson et al., 2023). These qualities are useful to prepare for and cope with climatic
risks. Hoffmann and Muttarak (2017) for instance, show that individuals with more years of schooling have
different levels of risk perception and this partially explains why they have higher level of disaster preparedness.
In certain circumstances, a positive link between education and risk attitudes is shown to be causal (Chong &
Martinez, 2021). Likewise, Dimitrova and Muttarak (2020) find that more educated mothers in India have better
health knowledge and access to healthcare services enabling them to protect their children against malnourish-
ment after floods exposure. Furthermore, individuals with higher level of education also have higher and better
access to social and economic resources and social networks.

It has been reported that individuals with higher level of education generally have lower mortality risks from
extreme temperatures (both hot and cold) (Conte Keivabu 2022; Lloyd et al., 2023; Schneider et al., 2022).
This is partly because low‐educated individuals often live in poor housing conditions with inadequate insu-
lation and limited cooling and heating systems (Min et al., 2021). Given that education is highly relevant in
determining vulnerability, in this study, we explicitly incorporate education as a key source of demographic
heterogeneity.

Another aspect requiring attention is our understanding of the spatial distribution of heat‐related risks and heat
stress within cities. Heat stress intensity varies greatly from one neighborhood to another and even within the
neighborhoods of one city. Yet, most studies quantifying the relationship between ambient air temperature and
health outcomes lack granularity. Exposure‐response relationships are generally estimated on city‐wide data
(Gasparrini et al., 2015), with only a handful investigating the differences within urban areas (Smargiassi
et al., 2009; Zafeiratou et al., 2019). Identification of vulnerable intra‐urban areas and the formulating prevention
and response strategies within local adaptation plans that specifically target these areas are essential steps in
reducing the health burden caused by heat stress in urban environments (Benmarhnia et al., 2015; Schneider
et al., 2022). Analyzing population distribution and dynamics at the intra‐urban scale helps quantify these dif-
ferential risks (Piel et al., 2020). Thus, conducting analysis at a more granular spatial resolution plays a pivotal
role in enhancing the effectiveness of local adaptation policies. These insights are essential for crafting public
health adaptation strategies that are tailored to the specific needs in the local context, as opposed to relying
exclusively on national‐level policy development. Nevertheless, while high resolution climate modeling and
downscaling of heat hazard data are well established approaches (e.g., Smid & Costa, 2018), local vulnerability
assessments and downscaling of vulnerability data is only now emerging as a topic in climate risk studies. The few
published studies develop their own scenarios using mixed methods and data from interviews with local stake-
holders as well as quantitative vulnerability metrics (e.g., Birkmann et al., 2021). Population projections are
computations of future populations based on assumptions about drivers of demographic changes, without any
associated probabilities regarding their likelihood. Population projections at the national and large subnational
scales have generally benefitted from far more extensive research on methods and data preparation. While
methods for small area projections such as downscaling and disaggregation approaches, microsimulation and
machine learning exist, they remain little developed over the past years (Wilson et al., 2022). Likewise, well‐
established methods for coarse‐resolution projections are not always suited at higher resolution because the
latter are likely to suffer from population forecast errors. Standard cohort‐component models (CCMs) are a
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common tool for producing population projections but they are not necessarily suited for all types of projections.
CCMs require data on the three main components of demographic change ‐ fertility, mortality and migration that
are disaggregated by the dimensionality of the population projections. Some of these demographic variables are
not always available at high resolutions (Hauer, 2019). They also present difficulties capturing population het-
erogeneity in the context of changes in the dwelling stock in growing urban areas. Furthermore, they are ill‐suited
for handling multidimensional data, and differentiate between influences of different conditions (Puga‐Gonzalez
et al., 2022). Model averaging approaches have been long used in statistics and forecasting literature, but they are
not commonly used in demographic projections. Nevertheless, they are found to perform well for small area
population forecasts and reduce errors. In particular, Bayesian methods can be particularly useful with small area
projections because they require little input data compared to frequentist approaches, allow for inclusion of prior
assumptions related to demographic changes and can combine data from different sources, dealing well with
missing data (Wilson et al., 2022).

As argued above, age, sex and education are important sources of population heterogeneity, and their changing
composition is directly relevant for vulnerability reduction and adaptation to climate change (KC & Lutz, 2017).
However, datasets of population projections that are stratified by age, sex and education and compatible with the
SSP narratives are available only at country level. Higher resolution global population data at one‐eighth of a
degree (Jones et al., 2020) and 1 km grids (Gao, 2017) are also available at decadal time intervals for the 21st
century but the data are aggregated at the total population level, split between urban and rural status. Although the
latter are valuable data for assessing increased exposure within urban areas, they do not provide enough infor-
mation for quantifying individual biophysical and social vulnerabilities at the intra‐urban level. This lack of
granular data leads to research on adaptation to heat stress consisting mostly of studies carried out at the regional
or national scale. Such coarse resolutions may mask differences in vulnerabilities of certain population subgroups
and smaller areas. Assessing and projecting demographically differentiated vulnerability at intra‐urban scales is
essential to improve our understanding of current and future climate risks from heat stress (Muttarak, 2021). In
this respect, downscaling coarse resolution demographic data is key to supporting local decision‐makers in
designing solutions specifically targeting the most vulnerable groups.

Developing a spatial and demographically explicit vulnerability modeling framework is an important first step
toward designing adaptive strategies targeting vulnerable groups in cities. This paper addresses two major
research gaps concerning heat‐related risk quantification and its spatial‐temporal distribution. First, we provide an
accessible approach to quantify vulnerability by using demographic characteristics of the population (Basu, 2009;
Calleja‐Agius et al., 2021; Conlon et al., 2020; Jurgilevich et al., 2017; Muttarak, 2021). Second, we address the
need for detailed, high‐resolution vulnerability data, differentiated by demographic dimensions such as age, sex
and education at fine geographical resolution (Gao, 2017; Wear & Prestemon, 2019; Zoraghein & Brian, 2020)
and develop granular projections that are aligned with the SSPs. The implementation of this framework is
intended on a city‐by‐city basis, as endeavors to conduct a comprehensive assessment across broader regions,
may inadvertently disregard nuanced risks present within smaller localized areas of a city. As a demonstration of
its applicability, we present the case study conducted in Madrid, Spain and encourage its replicability in other
cities.

This paper adopts the conceptualization of risk described in the AR6 (Begum et al., 2022), which defines heat‐
related risk as a combination of heat hazards (temperatures that are high enough to cause negative health re-
sponses such as morbidity or mortality), exposure to these hazards (presence of people) and vulnerability of the
population (a combination between sensitivity—characterized by a wide variety of sociodemographic factors—
and adaptive capacity—the populations' ability to prepare, respond to and recover from heat‐related hazards).

3. Methods
In this paper, we develop a new tool to obtain high‐resolution, spatially explicit projections of demographic
variables that are relevant for future vulnerability assessments. To achieve this, we collect population data
stratified by age, sex and education at the highest resolution available (census tract) for Madrid. We exploit the
characteristics of the rate of change and convergence rates for the shares of population by educational attainment
from the three global SSPs in order to obtain decadal projections at the census tract level in Madrid and thus create
spatial high resolution data at decadal intervals, aligned with three SSP scenarios (SSP1—“sustainable devel-
opment”, SSP2—“middle‐of‐the‐road” and SSP3—“regional rivalry”). We explicitly address specification
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uncertainty in the projection exercise using Bayesian model averaging (BMA). We limit the projections to
population changes aligned with the demographic trends of the SSPs, omitting other socioeconomic variables due
to the lack of high‐resolution raw data for the latter. While the demographic data, stratified by age, sex, and
education, are available at the census tract level, the economic data, which could have been adapted to correspond
with the economic component of the SSPs, only exist at the coarser district level.

We use BMA to investigate the empirical drivers of changes in the shares of population stratified by age, sex and
educational attainment. We apply BMA on linear regression models for the change in shares between 2012 and
2020 for each of the 18 age‐sex‐education categories defined by the two sexes, three age groups (25–64, 65–84 and
85+) and three educational attainment levels (low, medium and high). We then compute projections for the three
scenarios based on the coefficient estimates obtained from the model averaging exercise. The predictions for 2020
are compared to observations data at the same resolution (census tract) for model validation. We employ decadal
values of age‐specific fertility and mortality projections in Spain by SSP scenario, while keeping internal migration
constant, since the SSP scenarios contain narratives on international migration but not for populations mobility
within cities. Imposing these scenario trajectories on the developments of population drivers, we obtain projections
of the shares of population by age, sex and educational attainment up to 2050.

Conceptual Figure 1 outlines the modeling framework. The model input data (yellow boxes) consists of fertility,
mortality and internal migration together with population data at census tract resolution for the years 2012 and
2020, grouped by sex: males and females, for three age categories: 25–64, 65–84 and 85+ years of age, and three
education categories: low, medium and high. We run BMA for each age, sex and education category individually,
with the 2020 shares of each education category (bottom yellow box in the Raw input data section in Figure 1) as
the dependent variable and with 2012 shares of all three education categories, in addition to fertility, mortality and
migration shares for 2010 as independent variables. For SSP2 (middle gray box in the Modeling and projection
section in Figure 1), we create model averaged projections for the shares on each education category in 2020
(bottom green box in the Projected data section in Figure 1), based on the BMA estimates and the realized values
of the six independent variables described above. We compare the projected education shares in 2020 with the
observed, raw data from the same year to validate our method. The comparison is represented by the double‐edged
arrow between the yellow box in the bottom right corner and bottom green box in the Projected data section in
Figure 1. We then use the raw 2020 data for education shares and the mortality and fertility projections for 2020 as
well as migration shares (see Supplementary Text S2 in Supporting Information S1 for a more detailed description

Figure 1. Conceptual figure of the main relations between the model input (yellow boxes) and output data, projection model
runs for the three SSP scenarios (gray boxes), and model outputs (green boxes). The models use baseline fertility, mortality,
migration, and education data to project age, sex, and education compositions by SSPs at a high spatial resolution at the
census tract level. Educational attainment by sex and age refers to raw education data and Education shares, followed by the
year refers to projected education data.
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of fertility, mortality and migration data preprocessing) to create projections of education categories for 2030. The
2030 projections are again used as input to project 2040 data and the same procedure is repeated for 2050 pro-
jections, using 2040 data as input. Projections for SSP1 and SSP3 are developed in the same manner, using in
addition scenario‐specific assumptions on the convergence rates of educational variables to align the projections
with the narratives of the two scenarios, as described in Section 3.3.

3.1. Bayesian Model Averaging (BMA)

We use the BMA method (Steel, 2020) to investigate the empirical drivers of changes in the proportion of the
population within a specific age group with a particular level of educational attainment, and to create future
projections. BMA is a technique of statistical inference that explicitly assesses model uncertainty by combining
information from a multitude of individual models. In particular, in our application we consider all linear
regression models that can be estimated by combining all available covariates. The outcome variable of interest is
linearly regressed against each one of these combinations and the parameters of interest are obtained for each one
of these specifications. BMA assigns weights to each one of these models, based on model fit (where the better
fitting models receive a higher weight) and minimizing complexity (penalizing models with many explanatory
variables). BMA creates a weighted average from the inference obtained by all of the models, resulting in a final
prediction that considers all specifications but gives more importance to the more robust models (in terms of
goodness of fit and simplicity). The use of particular prior distributions over the models entertained implies that
some specifications can be excluded from the analysis or weighted down if they are deemed unsuitable. The
constrains we imposed in the analysis for each age‐sex‐education category are outlined in the supplementary
material (Tables S5, S6 and S7 in Supporting Information S1).

The method allows us to integrate specification uncertainty into the estimated effects of different covariates and in
the projected trajectories. This type of uncertainty is related to the correct choice of models and specifications as
well as which variables should be included in the specification. BMA accounts for such uncertainties by averaging
over multiple model specifications, resulting in more robust estimates for the projections as opposed to relying on
a single model. We consider regression specifications linking the share of persons in area i within a given age/
education group (si) at a given year t to a set of explanatory variables contained in matrix x and measured at an
initial period prior to year t. The class of models we entertain is thus given by linear regression specifications of
the form

si = α + ∑
k

j=1
βjxji + εi, (1)

where k explanatory variables from a pool of K potential covariates are included in a particular model, α rep-
resents the intercept, β denotes the coefficients of the covariates, and εi the error term, assumed to fulfill the
standard assumptions of the normal linear regression model. The uncertainty related to the choice of a group of
covariates as regressors when carrying out inference about the effect of particular variables or computing pro-
jections can be integrated by constructing model weights. Assuming that we are interested in the quantity μ, which
could be a parameter of the regression model or a prediction of the dependent variable, its posterior distribution is
given by

P(μ| y) = ∑
2K

m=1
P(μ| y,Mm) P(Mm| y) (2)

where P(μ│y) denotes the posterior distribution of the quantity, P(μ│y, Mm) is its posterior distribution under
model Mm (defined by a particular choice of covariates) and P(Mm │y) is the posterior model probability of model
Mm. The posterior model probabilities of individual specifications are proportional to the product of the marginal
likelihood of the model (P(Mm │y)) and its corresponding prior probability P(Mm). In our application, we follow
Fernandez et al. (2001) and Ley and Steel (2009) to implement the priors over parameters and over the inclusion
of covariates.

In our application the set of covariates included in potential specifications consist of (a) the initial shares of
populations classified by age, sex and education, (b) initial level of fertility, (c) initial level of mortality and (d)
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initial level of internal migration flows. The population data used for this analysis, disaggregated by age, sex and
education are available at census tract level from the Municipal Statistics Service in Madrid.

3.2. Data

Despite a growing number of epidemiological studies on heat‐related excess mortality, only few studies assess the
effect modification of vulnerability factors and those that do, employ fairly coarse resolutions, usually at a city‐
wide scale (e.g., Sera et al., 2019). In this article, we choose the determinants of vulnerability based on data
availability at fine resolution matched with the type of data available in the SSP databases, namely demographic
variables stratified by age, sex, education, mortality, fertility and internal migration. The selected variables have
shown effect modification in epidemiological studies (Son et al., 2019).

Data from various sources were curated for input to the BMA framework. We obtain the population data from the
Municipal Statistics Service in Madrid (Servicio Municipal de Estadística) for the year 2012, spanning infor-
mation from 2409 census tracts, and for 2020, corresponding to 2,443 tracts. The population data are differen-
tiated by sex (males and females), age group (25–64, 65–84 and 85+) and educational attainment (in three broad
groups corresponding to a range between no‐education (ISCED 0) and completed primary (ISCED 2) ‐ low
education, secondary (ISCED 3) ‐ medium education and tertiary (ISCED 6 to 8) ‐ high education). The categories
for educational attainment have been translated from the Spanish education system to the International Standard
Classification of Education (ISCED) by the authors (see supplementary Table S1 in Supporting Information S1
for details). Although infants (below one year of age) and young children (one to five years of age) are considered
vulnerable to heat stress, our focus on educational attainment as a proxy for socioeconomic status and adaptive
capacity leads to the exclusion of population below the age of 25 from our analysis. Mortality and fertility data
from 1975 to 2019 at city‐wide level and internal migration (population mobility between the 21 districts of
Madrid) from 2019 were downscaled at census tract resolution to match the age‐sex education data. We use
population weights to recalculate the coarser data for mortality, fertility and internal migration at census tract
resolution for men and women in three age groups: 25–64, 65–84 and 85+ and three education categories: low,
medium and high. High‐resolution (30 s) climate data from WorldClim (Fick & Hijmans, 2017) were combined
with population data using coverage weighted means to geo‐convert terrestrial grid cells of temperature to census
tracts with boundaries defined by the national statistical agency. We used average maximum temperature in
degrees Celsius for summer months (June‐July‐August) between 1970 and 2000. Supplementary Text S1 and S2
in Supporting Information S1 provide a more detailed description of the data collected and pre‐processing. We
apply our framework on the municipality of Madrid. The city is located at the center of the Iberian Peninsula at
latitude 40°40′ North and longitude 3°70′ West, situated at an altitude of approximately 650 m. It has a municipal
surface area of about 605 km2 and 3.3 million inhabitants (Figure 2). According to the Köppen‐Geiger climate
classification (Beck et al., 2018), Madrid is characterized by Mediterranean climate (Csa) with hot summers,
registering mean temperatures of 24–28°C (AEMET).

3.3. Projections in Alternative Scenarios

The projections of the education shares for each of the six age‐sex groups are computed using model‐averaged
conditional predictions under assumptions that reproduce the narratives of three SSP scenarios: SSP1, SSP2
and SSP3. For projections based on the SSP2 scenario, we use model‐averaged predictions of the specifications
used under the assumption that internal migration flows remain constant at the level observed in our last in‐sample
observation (i.e., in 2019). For fertility and mortality dynamics, we apply the projected trends for Spain under this
scenario (KC & Lutz, 2017) for all districts in Madrid, and the education shares are projected making use of the
model‐averaged parameters estimated with the sample at hand.

Projections for SSP1 and SSP3 are based on additional assumptions about the convergence patterns of education
levels across the six age‐sex groups, calculated using estimates of the slopes of the regression lines between
changes in education levels between 2020 and 2050 and the corresponding educational level in 2020 for SSP1,
SSP2, and SSP3 scenarios. The future convergence patterns of educational attainment are derived from global
data covering 202 countries, obtained from the Wittgenstein Center data explorer platform. We estimated the
convergence dynamics by regressing the global projected change in the corresponding shares between 2020 and
2050 against the shares in 2020 and evaluating the slope of the regression line (m). Values of m were first derived
individually for each education category in all 202 countries for which data were available (six categories: no
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education, incomplete, primary, lower secondary, upper secondary and post‐secondary) and then averaged across
the six education categories. The final values we obtained for the slopes are mSSP1 = −0.45, mSSP2 = −0.24 and
mSSP3 = −0.03. We approximated the slope mSSP3 to zero, which implies that the ratio between mSSP3 and
mSSP2 will also be zero, and the ratio between mSSP1 and mSSP2 was approximated at 2 (mSSP1/
mSSP2 = 1.89).

The convergence speed allowed us to project the global trends of educational attainment, and impose them at any
other spatial resolution, such as census tract resolution for Madrid in our case. Following the narratives corre-
sponding to the SSP scenarios, the projections for SSP3 reveal that the convergence dynamics observed in the last
decades across education shares will cease to exist in the coming years. For that purpose, we imposed a condi-
tional convergence rate of zero across the census tracts of the city for each age, sex and education variables, and
used the estimated effects of the other covariates obtained from the data. For the SSP1 scenario, we imposed an
increased convergence rate of education in the projection period by 100% with respect to SSP2, based on the
difference in estimates of the convergence speed across countries. Following this scenario‐building strategy, the
estimated trajectories have characteristics that quantitatively replicate the differences in convergence speed across
countries implied by existing SSP projections (Crespo Cuaresma, 2017). A more detailed description of the
computations can be found in the supplementary Text S5 in Supporting Information S1.

4. Results
4.1. Estimation of Current Vulnerability

We conducted the analysis in two steps. First, we investigated potential clusters of vulnerable areas using pop-
ulation data for Madrid that is stratified by age, sex and educational attainment at the census tract level for 2012
and 2020. Spatially interpolated monthly climate data for global land areas with a very high spatial resolution of
30 s (approximately 1 km2), obtained from WorldClim (Fick & Hijmans, 2017) were used to approximate the

Figure 2. Municipality of Madrid, divided into its 21 districts. Base map source: Open Street Map.
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distribution of temperatures within Madrid in the past decades. We then combined these data with shares of
population above 65 years and of population with low education to demonstrate how the distribution of heat stress
changes depending on the vulnerability category used in the population‐weighted computations. To achieve this,
we performed spatial interpolation where we extracted and averaged the gridded temperature data within the
boundaries of census tracts. We then computed simple population‐weighted temperatures by multiplying tem-
perature values with the 2020 shares of 65+ population (Figure 3b) and 2020 shares of population with low
education (Figure 3c) and then normalizing by the total population in Madrid. Average maximum temperatures in
summer months (June‐July‐August) between 1970 and 2000 show the highest temperatures in the south and east
areas of Madrid (Figure 3a). We further analyzed the two most important vulnerability factors highlighted in the
epidemiological literature, individually: heat stress population‐weighted exposure of older adults, above 65 years
(Romanello et al., 2021) (Figure 3b) and of groups with low socioeconomic status (Conte Keivabu 2022), using
low educational attainment as a proxy (Figure 3c).

We find that the population in the central districts and northern parts of Madrid face higher heat stress due to their
relatively older age. While central districts show a more even distribution of the population by age groups, east
and south districts are dominated by younger populations (aged 25–64). El Goloso (shown in red in Figure 3b),
located in the district of Fuencarral‐El Pardo, exhibits the highest risk related to age, with approximately 73% of
the population with 65 or more years of age, making this the oldest neighborhood in Madrid. In contrast, the
south‐eastern parts of the city face high risks of being unable to cope with heat, due to the relatively low socio‐
economic status, reflected in the share of population with low educational attainment. District 18 ‐ Villa de
Vallecas is the district with the lowest educational attainment level in Madrid. With a total population of 114,512,
more than 36.7% of its inhabitants have low educational attainment. The female population represents approx-
imately 48.5% of the total population of the district, out of which 19.2% have a low level of education (17.5% is
the corresponding share for men). The comparison between age and education weighted exposure (Figures 3b and
3c) reveals that the belt‐shaped region immediately south of the city center faces a combined risk of heat stress due
to aging of population and relatively low education levels.

4.2. Demographic Projections for Modeling Future Heat‐Related Vulnerability

In the second step, we developed decadal, high resolution population projections between 2010 and 2050, for
females and males of age groups 25–64, 65–84 and 85+ with low, medium and high education attainment (see
supplementary Table S1 in Supporting Information S1 for the ISCED translation of the Spanish education sys-
tem), for the scenarios corresponding to SSP1, SSP2 and SSP3 within the context of the demographic component
of the SSPs.

Figure 3. Population weighted temperatures in Madrid (1970–2000) at census tract resolution. Panel a exhibits the average maximum temperatures for June‐July‐August
(JJA) between 1970 and 2000. Panels b and c combine the temperature data with information on population characteristics in each census tract to compute (b) the older
population‐weighted exposure in 2020 and (c) low‐education‐weighted exposure in 2020.
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The method was validated by comparing 2020 population projections for SSP2 with 2020 observed data at the
same spatial resolution. Specifically, we performed a simple linear regression analysis between projected and
observed population and assessed the correlations using R‐squared values. The validation results show relatively
high correlation between the projections and the observed data. For the low education group, we obtained R2:
0.71 (range 0.60–0.89), for medium, R2: 0.59 (range 0.36–0.76) and for high education R2: 0.80 (range 0.68–
0.88) (see supplementary Table S4 in Supporting Information S1). We performed in‐sample validation as the
preferred out‐of‐sample validation was not possible due to lack of data at similar resolution from the previous
decade (i.e., 2001).

4.2.1. Projections of City‐Wide Trends

The analysis of the change in shares of the populations' educational attainment shows a general decrease in low
and medium education and an increase in high education for all scenarios.

Figure 4 reflects the projected populations distribution in 2050 across the three age groups, differentiated by sex
and educational attainment, along the three SSP scenarios. SSP1 projections show an increase in the share of
populations with high education, especially for women. The share of males above 85 years register the smallest
increase in high education and a similar increase in the share of low education, although the interquartile range is
wider for the latter, suggesting a larger uncertainty. Similarly, SSP2 projections display a slightly smaller but
consistent increase in the share of populations with high education for the 25–64 age group. The increase in shares
of older adults (65–84 and 85+) is however smaller. These age groups also show an increase in shares of low
education. Females above the age of 85 years show the strongest increase in low education. As expected, SSP3

Figure 4. Projected population shares in 2050 for different population groups by SSPs. The population shares (x‐axis) are
shown distinguishing by sex and different education levels (high, medium, low) and age (25–64. 65–84, 85+) groups. The
population shares across the different population groups sum to 100%. The boxplots show the distribution (median,
interquartile ranges (IQR), and 1.5 × QR) of different model runs which form the basis of our projections using Bayesian
Model Averaging.
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projections register the smallest increase of shares of high education and the largest increase in shares of low
education across all age and sex groups. Young women aged 25 to 64 register the largest increase in high edu-
cation category while males aged 65 to 84 show the smallest increase in shares of high education.

The projections are computed for each age and sex group separately and normalized to 100% per age‐sex group.
Figure 5 shows changes in average education levels among women aged 85 and older in Madrid, under three
different scenarios. In the SSP1 scenario (top panel in Figure 5), the percentage of women aged 85 and above with
only primary and secondary education decreases sharply, reaching values close to zero in 2050. This decline is
compensated by the corresponding rise in the percentage of women with tertiary education, in the same age group.
The sharpest decrease takes place between 2030 and 2040, suggesting that in the SSP1 narrative, older adults are
inclined to get higher education later in life if they did not do so during their youth. The SSP2 scenario (middle
panel in Figure 5) depicts a gradual and consistent decline in the proportion of women with lower levels of
education. The medium education category shows very little variation, while highly educated population in-
creases gradually over time. SSP3 projections (bottom panel in Figure 5) show a small increase in the proportion
of women aged 85 and above with low education toward 2030, followed by a slight decrease thereafter. Similar to
SSP2, the medium education category shows little to no variation and high education shows a slight increase
throughout the first half of the century.

Figure 5. Changes in education share of females above 85 years. Change over time between 2012 and 2050 in the shares of
low, medium and high educated women for SSP1 (top panel), SSP2 (middle panel) and SSP3 (bottom panel).

Earth's Future 10.1029/2024EF004431

MARGINEAN ET AL. 12 of 18

 23284277, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024EF004431 by U

niversity O
f D

elaw
are Library, W

iley O
nline Library on [01/06/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



4.2.2. Spatial Distribution of Vulnerability at High Spatial Resolution

The spatial distribution of educational attainment varies substantially across the three scenarios. The proportion of
low educated in the younger age group (men and women aged between 25 and 64 years) decreases in most areas
toward 2050. There are a few exceptions from this trend however. Neighborhoods such as El Goloso, show a
slight increase in low education shares for both young men and women in all three scenarios. Areas that show this
type of dynamic are typically characterized by large shares of older populations and potentially by emigration of
young and highly educated individuals. Conversely, districts in the south‐eastern parts of Madrid, which are
predominantly younger populations, show the strongest decrease in shares of low education in all three scenarios
(see all results in supplementary Figures S1, S2 and S3 in Supporting Information S1). Older age groups exhibit
greater disparities in education‐related vulnerability for both men and women. The age Group 65 to 84 shows a
general decrease in low education shares in SSP1, with the decline being more pronounced for women in most
areas. While for males there is even a small increase in a few census tracts in the eastern districts. Similarly, a
reduction in the proportion of individuals with low levels of education is observed in most census tracts under
SSP2. Notably, the magnitude of this decline is more pronounced for women than for men. However, in certain
areas in the west, there is even a decline in population of low educated females and an increase in the population of
low educated males.

SSP3 projections also show a positive change in the shares of population with low level of education for both
sexes, meaning that several districts in the south and east would see an increase in the share of least educated
population groups under this scenario. Projections for the age group 65 to 84 under SSP3 show an increase in the
proportion of population with low level of education in most census tracts, with a slightly higher magnitude for
women. Central districts show a decline in the proportion of population with low levels of education, the decline
being more pronounced for women. The magnitude of negative change in the central districts is substantial for
both males and females, resulting in an overall negative value. This suggests a large gap between the “highly
educated” and “low educated” within this age group in SSP3.

Figure 6 illustrates changes in the proportion of older women for 65–84 and 85+ age groups with lowest
educational attainment between 2012 and 2050. Projections for all other age‐sex groups are included in

Figure 6. Projected changes in the spatial distribution of vulnerable groups until 2050. The panels show changes in the female
population aged 65 to 84 and above 85 years with low education for SSP1, SSP2 and SSP3. Decrease in shares of low
education is shown in red and increase is shown in blue.

Earth's Future 10.1029/2024EF004431

MARGINEAN ET AL. 13 of 18

 23284277, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024EF004431 by U

niversity O
f D

elaw
are Library, W

iley O
nline Library on [01/06/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



supplementary Figures S7, S8 and S9 in Supporting Information S1. Under SSP1, a decline in the proportion of
these two particularly vulnerable groups is consistent and apparent across all districts. In this scenario, there is a
noteworthy improvement in the educational attainment for older females and nearly all areas in Madrid expe-
rience a reduction in the proportion of individuals with low educational attainment. The strongest decline is
projected to occur in the central districts and the slowest decline in the southern districts. Under SSP2, several
districts in the south and east are projected to witness an increase in the population of the least educated females in
both age groups. This implies these areas could be particularly vulnerable to heat stress if the current trends of
population dynamics persist. In contrast to the projections under SSP1 and SSP2, SSP3 projections show an
overall increase in vulnerability related to educational attainment in the majority of districts except for some
central districts that are presently considered the wealthier areas of Madrid. This suggests an important disparity
between the affluent and the disadvantaged in this scenario. The magnitude of change, both positive and negative,
appears more pronounced in the older age group, those aged 85 and above.

5. Discussion and Conclusions
Vulnerability to heat stress can be quantified by demographic variables describing population subgroups,
including older adults, women and individuals with low socioeconomic status. Vulnerability varies substantially
in space, within intra‐urban areas and over time. Preserving demographic heterogeneity, stratified by population
subgroups in high‐resolution projections is essential for conducting urban risk assessments and adaptation
planning in the context of a warming climate. In this article, we address the need for granular vulnerability
modeling. We estimated demographic trends extracted from global population data and applied them to the very
high resolution data in Madrid to create spatially explicit and demographically heterogeneous local projections of
the SSP scenarios.

The convergence approach used to project our population variables is inspired by the methods in Crespo
Cuaresma (2017) and used to quantify the scenario trajectories described by the SSP narratives. We combined
regression‐based projections obtained using BMA with global convergence speed estimates of educational
attainment within three of the five SSPs. We then applied these convergence speeds across six different age‐sex
categories to generate very high‐resolution projections of vulnerability to heat stress, that are consistent with the
narratives of these three scenarios. Incorporating population projections within a vulnerability modeling
framework provides an ideal opportunity to examine the interplay between population dynamics and climate risk.
Our analysis shows how following a sustainable trajectory (SSP1) is expected to decrease vulnerability to heat
stress in the future, whereas a development that follows current trends (SSP2) or a conflict dominated scenario
(SSP3) widens the existing gap between privileged and deprived neighborhoods, even in the capital city of a rich
OECD country like Spain.

The average vulnerability differences among the three scenarios are primarily driven by the changes in age and
education distribution. Overall vulnerability in Madrid is projected to decrease gradually and consistently over
time in all three scenarios, including SSP3. However, preserving the demographic heterogeneity in the projections
implies that convergence dynamics will produce distinct effects across the different age‐sex groups within the
same scenario. This effect is particularly noticeable when comparing the SSP3 projections for women. In the 25 to
64 age group, the proportion of women with low level of education decreases consistently in almost all regions of
the city, but education‐related vulnerability increases substantially in the older age groups. Furthermore, spatial
dynamics play a key role, showing older women with higher level of education concentrating in the central
districts ‐ the wealthier parts of the city also today ‐ leaving the peripheral areas increasingly more vulnerable. The
fragmentation narrative that dominates SSP3 becomes strikingly evident across the age‐sex groups as well as
across neighborhoods with different levels of wealth in Madrid. Conversely, the sharp decrease in inequality in
SSP1 drives the population dynamics toward a more uniform and resilient change, with the exception being males
in the 85+ age group (see supplementary Figure S9 in Supporting Information S1). These patterns show that
vulnerability is highly complex and dynamic, consisting of a multitude of factors which interact and form a
reinforcing feedback loop, leading either toward fragmentation or resilience.

The application of BMA based projections in this paper presents a framework for mapping heat vulnerability
clusters at the intra‐urban level and for projecting potential future changes under three scenarios aligned with the
SSPs. This allows for addressing existing challenges in planning and implementation of adaptation measures.
This research framework is also applicable to other locations and at different scales. Nonetheless, the results are
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most useful at the highest resolution for which input data are available—preferably at the census tract level,
enabling policy making to account for the unique characteristics of different areas within the city. Primarily
focusing on vulnerability quantification based on demographic variables, our approach serves as a key first step in
informing local adaptation planning and opening opportunities for further research to expand on this framework
by incorporating different other factors underlying vulnerability. These could include elements of urban planning,
such as proximity to green (e.g., parks) and blue (e.g., fountains) spaces, public health characteristics, such as
populations' history of cardiopulmonary diseases as well as economic factors such as GDP per capita and income.
As global warming trends will persist across all future scenarios, further research is needed to identify the most
effective adaptation solutions. These may encompass initiatives such as cooling centers and personalized home
visits, designed to meet the specific needs of these vulnerable communities.

Our study faces different limitations which are important for the interpretation of our findings. One limitation is
that we restrict our projections to demographic variables (due to data availability), although vulnerability is
admittedly a more complex phenomenon. Socioeconomic characteristics, urban planning features and behav-
ioral aspects play an important role in how vulnerability is shaped and how it changes within a city.
Vulnerability scenarios should ideally encompass all of these factors, but scenarios require methods that ac-
count for specific local trends as well as means of coupling with global changes. Scenario data, as well as raw
data at resolutions that are relevant for local decision makers are limited and therefore high‐resolution scenario
development is, for now at least, restricted to those characteristics for which data are available both in the SSPs
and locally.

Another limitation pertains to potential changes in migration both within and beyond Madrid, which may vary by
the SSPs. While our approach accounts for internal migration between the city's districts, we have not modelled
differences in future mobility patterns under the different socioeconomic scenarios considered. In addition, in-
ternational migration or narratives related to potential changes in migration to other regions of Spain have not
been explicitly taken into account. These forms of mobility can be important if, for example, vulnerable popu-
lation groups move to areas less affected by heat stress. Our projection framework allows for the integration of
different migration scenarios by extending the set of assumptions used. Given that no accurate projections on
differential migration patterns by SSPs are available for the Spanish context, we have not incorporated such
variations in the migration variables into our current modelling framework.

Finally, climate and risk literature outlines a wide variety of metrics and indices for measuring heat‐related
climate risks and vulnerability. However, very few of these metrics are developed based on their direct,
measured impacts on health outcomes such as mortality. Most existing indices rely on hazard indicators or so-
cioeconomic characteristics but not the interaction between them. While useful for mapping potential risks, such
approaches may not accurately reflect the true health impacts. This is also a limitation of our research. An
assessment of the influence of various vulnerability factors would require a detailed epidemiological analysis at
the census tract level to accurately correlate specific factors with health outcomes like mortality, which is beyond
the scope of our study.

Data Availability Statement
All data used in this analysis are publicly available. Demographic data at census tract resolution was obtained via
email correspondence with the Municipal Statistical Office (Estadística—Ayuntamiento de Madrid, 2024, www.
madrid.es/estadistica). The census tract shapefiles used for the figures are available at: MADRID, INSTITUTO
DEESTADíSTICA DE LA COMUNIDAD DE (2024, https://gestiona.comunidad.madrid/nomecalles/Inicio.
icm). The historical climate data is available at: https://www.worldclim.org/data/worldclim21.html. Global
projections of population by age, sex and educational attainment at the country level for the three SSPs can be
obtained from (Wittgenstein Centre Human Capital Data Explorer, 2018) and the Wittgenstein Center Data
Explorer: https://dataexplorer.wittgensteincentre.org/wcde‐v2/. For a detailed description of the data sources and
data preprocessing, see Supplementary Text S1 and S2 in Supporting Information S1. The datasets generated and
analyzed during the study as well as replication R code and the full dataset required to reproduce the results are
available in Marginean (2024) and on the GitHub repository: Iulia Marginean GitHub (2023, https://github.com/
IuliaMargineanGitHub/Projecting‐Heat‐Stress‐Vulnerable‐Populations‐at‐Intra‐Urban‐Scales).
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