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Abstract. Deep neural networks (DNNs) have been widely deployed
in real-world, mission-critical applications, necessitating effective
approaches to protect deep learning models against malicious attacks.
Motivated by the high stealthiness and potential harm of backdoor
attacks, a series of backdoor defense methods for DNNs have been pro-
posed. However, most existing approaches require access to clean training
data, hindering their practical use. Additionally, state-of-the-art (SOTA)
solutions cannot simultaneously enhance model robustness and compact-
ness in a data-free manner, which is crucial in resource-constrained appli-
cations.

To address these challenges, in this paper, we propose Clean & Com-
pact (C&C), an efficient data-free backdoor defense mechanism that can
bring both purification and compactness to the original infected DNNs.
Built upon the intriguing rank-level sensitivity to trigger patterns, C&C
co-explores and achieves high model cleanliness and efficiency without
the need for training data, making this solution very attractive in many
real-world, resource-limited scenarios. Extensive evaluations across dif-
ferent settings consistently demonstrate that our proposed approach out-
performs SOTA backdoor defense methods.

1 Introduction

The widespread adoption of Deep Neural Networks (DNNs) in critical AT appli-
cations has necessitated a thorough investigation into their security vulnerabil-
ities. Backdoor attack, a common and significant training-time attack strategy,
has recently garnered a lot of attention [1,4,7,10,18,20,21,23,25,28,33,34,40,42]
due to its stealthy nature and potential for significant harm. Specifically, an
adversary can embed a backdoor in the DNN model by poisoning a small pro-
portion of the training data or change the optimization objective. Then, during
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inference, the infected model is manipulated to incorrectly respond to inputs
containing hidden trigger patterns, while it behaves normally in the presence of
benign inputs.

To address this emerging security challenge, several defense methods have been
proposed to remove the backdoor effect from suspicious models. Among these
existing efforts, the state-of-the-art (SOTA) and practical solutions are based on
a defense after training strategy [3,5,15,16,22,35,39,43]. The key philosophy of
this line of work is to first identify the sensitive parts (e.g., neurons/channels)
of the network and then mitigate the effects of these infected components via
pruning and knowledge distillation. Compared with their counterparts adopt-
ing a defense during training mechanism [6,8,12,13,29,31], modern post-training
defense approaches do not require any access to the model training process, mak-
ing them more practical and affordable in realistic scenarios.

Despite their attractive potential, current post-training backdoor defenses
still face significant challenges in terms of data efficiency and model efficiency.

To be specific, first, although existing methods do not necessitate complete
control over the training process, they still require 1% to 5% of benign training
data for post-processing [3,5,15,16,22,35,39]. This presents two challenges: 1)
training data, particularly in sensitive areas such as finance or healthcare, is
often inaccessible to defenders; 2) even when training datasets are accessible,
identifying and selecting clean samples from a poisoned dataset is a challenging
task. Consequently, the need for available legitimate training data remains overly
restrictive and unrealistic in many real-world scenarios.

Second, the pruning/knowledge distillation used in existing post-training
backdoor defense efforts cannot achieve considerable reduction in computational
cost, a crucial advantage that modern model compression techniques aim to
provide. As reported in [3,35,43], their proposed pruning process can only be
applied to a very small number of neurons/channels to mitigate the backdoor
effect, and the corresponding clean accuracy (ACC) will significantly drop even
if only pruning 10% of neurons. Consequently, achieving both backdoor robust-
ness and model efficiency without the knowledge of training data, a practical
demand for real-world DNN deployment, remains a challenging task.

We propose Clean & Compact (C&C), an efficient backdoor defense solu-
tion that enables both model purification and compactness without access to
the training data. Different from the SOTA works that focus on pruning a small
amount of neurons/channels to remove backdoor, C&C explores the model sen-
sitivity from the lens of singular value, and discovers that the rank components
associated with the high normalized singular values are the sensitive part of
the infected DNN model to trigger patterns. By leveraging this intriguing phe-
nomenon, the defender can simply constrain the impacts of those sensitive ranks
components to realize efficient data-free backdoor defense. Beyond that, the
extracted singular value information can be used to perform low-rank compres-
sion, still in a data-free way, bringing a purified and compact model with high
clean accuracy, high backdoor robustness and high model compactness simulta-
neously.
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We evaluate C&C using different datasets and model architectures. Com-
pared with the SOTA data-demanded backdoor defense methods, C&C shows
better defense performance without requiring any original training data. Mean-
while, our solution also consistently outperforms the existing data-free defense
in a variety of backdoor attack scenarios. In addition, C&C is the only approach
that preserves high clean accuracy when both model robustness and compactness
are required, making it very attractive for real-world applications.

2 Related Work

Backdoor Attack. By poisoning training data or change the optmization objec-
tive, backdoor attack injects the pre-defined backdoor to the victim DNN dur-
ing training phase. The poisoned data can be relabelled as single target class
[4,10,17], different target classes [21] or even still with the clean labels [27,33].
After training, the infected model behaves normally with the presence of benign
inputs, but gives incorrect response to the input data containing trigger patterns,
such as white square [10] and sinusoidal strip [1]. To improve the stealthiness,
several works [4,18,20,21,34] have proposed a set of trigger generation methods,
including trigger blending, subtle image wrapping and input-aware design, to
make the trigger patterns more nature and imperceptible to human detection.

Table 1. Requirements and advantages of C&C versus previous backdoor defenses.

[5,15,22,39] | [3,16,35,43] | CLP [43] | C&C (Owurs)
Data-Free X X v v
Comp. Performance | X X X v
Comp. Type N/A Unstructured | Channel | Low-rank

Backdoor Defense. Defense methods can be roughly categorized to defense
during or after training. When the defenders have access to the training pro-
cess, by leveraging the different distributions of poisoned data and clean data,
various methods [6,8,12,13,29,31] can be used to filter the poisoned data out.
In more realistic setting that the control of training process is lost, e.g., the
suspicious model is downloaded from the third-party platforms, post-training
defense methods become very necessary and practical. To that end, some meth-
ods [17,38] utilize the clean data to rectify the infected parts of the models.
Another line of work [3,15,16,35,43] focuses on identify the sensitive parts of
model, e.g., some neurons or channels, and then remove them via using pruning
or knowledge distillation. A common assumption adopted by these efforts is the
availability of portion of clean training data, e.g., 1% — 5%. Consider in many
practical applications such requirement on the amount and cleanness of training
data cannot be satisfied, the reliance on using the benign labelled data poses
severe challenges for deploying these solutions in real-world scenarios.
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Recently, [22] uses unlabelled data collected from other sources to relax such
constraints. However, this solution assumes the cleanness of the unlabelled data,
which cannot be guaranteed in practice. Currently only [43] proposes a true
data-free post-training defense method without using any data. One limitation
of this work (and also other pruning-based backdoor defense approaches [3,35]),
is that their pruning process can only be used for improving robustness instead
of model efficiency (i.e., lower storage and computational costs), a main benefit
that pruning technique should bring. As reported in their experiments, even
removing 10% neurons already causes huge ACC drop. Consequently, making the
DNN simultaneously backdoor robust and model efficient, a practical demand
in many real-world scenarios, especially in resource-constrained applications, is
still a challenging task and not realized yet. We summarize the requirements and
advantages of our C&C method in against previous works in Table 1.

3 Preliminaries

Notation. We denote tensor using bold calligraphic script letters, e.g., \A.
Matrices are represented by bold capital letters, e.g., A, and vectors are denoted
as bold lowercase letters, e.g., a. Non-bold letters w. indices A(i1 : iq), A(1, ),
and a(i) refer to the entries of tensor A, matrix A, and vector a, respectively.
We denote the tensor as A € RI1*12X-XIN where I1, I, ..., Iy represent the
dimensions along each mode. The mode-n matricization of A is denoted as
Ay € RInxUsslnvtlnpisIN) The entry (iy : in) of tensor LA maps to
entry (i,,j) of unfolded matrix A,), i.e., A(i1 : in) = A(g)(in, ), where

N k—1
j=14 > (r-DJpwithJy= [ Im (1)
k=1,k#n m=1,m#n

Tucker-2 Decomposition. We denote the weight tensor of a convolutional
layer as W € ROXI*XEXEK where O, I and K are the number of output chan-
nels, the number of input channels and kernel size, respectively. Without loss of
generality, in this paper we use Tucker-2 decomposition [32] as the factorization
method. In such scenario, WW can be represented with a core tensor G and two
matrices (U7 and Uj) along each mode as W = G x1 Uy X Ug, where “x,,”
denotes n-mode product, U; € R?*"* denotes the left singular vectors of the sin-
gular value decomposition (SVD) of Wy, i.e., W) = U12'1V1T, U, € RI*m
denotes the left singular vectors of SVD of Wy, i.e., Wy = UgEng,
G =W x, UIT X9 U2T € R Xr2xKxK and ry and 7o are the Tucker-2 ten-
sor ranks. The sing. val. & and its normalized version o o, can be obtained:

o =[X1(4,1), X2(4,7)] st. i<r,j<ry and Opom = (0 —us)/Se, (2)

where X(i,1) is the i-th largest singular value in X, and u, and s, denotes the
mean and standard deviation of the vector o, respectively.
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Attack Model. We address an attack scenario where the adversary controls the
training phase, including access to the training dataset, model architecture, and
loss function. Specifically, with benign inputs & and their corresponding labels
y, f(-) denoting the classifier’s function, B(-) representing the trigger injection
function, and t being the attack targets, the attacker aims to poison the training
data, alter the loss function, or modify the original model weights {W}. The
goal is to produce an infected DNN model {W,,;} such that:

fowpay(@) =y, and  fow, 1 (B(z)) — ¢, 3)

Defense Goal. Our focus is on post-training defense in a deployment scenario
where the defender possesses only the suspicious model, devoid of any knowledge
regarding the training process or access to the training data. Moreover, unla-
beled benign data external to the training dataset is unavailable. The defense’s
objective is to cleanse the model of backdoor vulnerabilities, obtaining sani-
tized model weights {Weiean}, and to compress the model for deployment on
resource-constrained devices, ensuring:

FWaeny(®) =y, and - fow,,) (B(®)) = y. (4)

4 Proposed Method

4.1 Key Idea: Explore Model Sensitivity From Singular Values

As described in Sects. 1 and 2, post-training backdoor defense identifies parts of
the infected DNN models sensitive to the trigger pattern of the inputs. Thus,
various measurement metrics, such as neuron-level adversarial perturbations and
channel-level Lipschitz constant, have been proposed [3,35,43]. Different from
these existing efforts, we propose utilizing rank-level singular values to examine
model sensitivity. Our rationale is that singular values, containing rich struc-
tural information of the weight matrices/tensors, can act as a powerful lens for
analyzing model sensitivity to the trigger pattern.

Motivated by this philosophy, we study the relationship between the normal-
ized singular values o porm - (defined in Eq. 2) of all the layers and the activation of
the last convolutional layer with and without the presence of triggers (denoted
as hciean and Ririgger). As shown in Fig.1 (a), the strength of feature map
hirigger is significantly higher that of Rejeqn. This phenomenon, also reported
in [41,44], is a clear marker demonstrating the existence of backdoor effect, since
the activation incurred by trigger-embedded inputs must be strong enough to
surpass the benign case to cause misclassification. Therefore, a key to repair the
backdoored model is to minimize the discrepancy between hirigger and heican -
To that end, considering the existence of very large entries of orm (see Fig. 1),
we hypothesize that such huge activation difference is attributed to the rank
components of the DNN models with high-valued oporm()’s.

L We use 0 norm instead of o because it normalizes the sing. values of all layers to same
range, hence impact of threshold 7Tscale can be applied on each layer in a fair way.
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Fig. 1. (1st Row) Decreasing Tgcale makes more high-valued normalized singular values
being scaled down. (2nd Row) AS Tscale decreases, Ririgger shrinks to approach Reiean -
The model architecture is ResNet-18 on CIFAR-10 and the backdoor attack is WaNet.
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Fig. 2. The overall process of obtaining a data-free, clean and compact DNN.

Hypothesis: With the poisoned input, the rank components assoc. w. the high nor-
malized singular values, i.e., U1(i) and the i-th vector of G(1)(i,:) corresponding
to the large Onorm (i), and Ua(j) and the j-th vector of G (2)(j,:) corresponding
to the large Onorm (1 +7), cause high discrepancy between Ririgger and Reiean -
Simply put, these rank components are sensitive to the backdoor triggers.



Clean and Compact 279

To verify this hypothesis, we analyze the change of h¢rigger and Rejeqn When
constraining the impacts of the rank components with very high normalized
singular values. To that end, we use a threshold 7Tae to control the effect of
each rank component of the weight tensors. More specifically, when a weight
tensor W € ROXIXKEXK ig factorized to Uy € RO*X™, Uy € RI*™2 and G €
R71 X2 X KXK y5ing Tucker-2 decomposition, we first unfold G to obtain its mode-
1 matricization as G(1), and then adjust its entries as follows:

fold
geRmxrngxK unfo Gl)ERhX(m*K*K),

| ( (5)
GEE? €= G( ) © min(Tscale * So /Tl’ 1)’

where T, € R x(r2xK*K) jg ohtained via broadcasting Onorm (1 1 71) € RM1*1
to the second dimension, i.e., each column vector of T is oporm(l : 71),
and ® is the element-wise multiplication. Notice that here the mechanism of
min(7scale * So /T'1, 1) operation is to scale down the effect of rank component
with normalized singular value onorm(?) larger than Tycale, while keeping the
effect of other rank components as before. Then, considering the multidimen-
sional nature of G, we further scale its entries along another dimension:

G?%ﬂe c R™ X (roxK*K) reshape GESI)HP c R"™ X(r1xK*K) ,

Gscale _ Gtcmp ® mi T-. 1 (6)
5 =G min(7scale * So/T'2,1),

where ZP°, onsists of two consecutive operations — first folding back to 4-D
format, and then performing mode-2 matricization. Similar to the procedure for
T, Ty € R2*(m*K«K) g generated via broadcasting o perm (71 : 72) € R™2*1 to
the second dimension. Then the weight tensor after constraining the impact of
rank components with large oporm(2)’s is obtained as:

scale fold Xro X KX K
G(Q) — Gocale € R , and Weonstrain = Gscale X1 U1 X2 Us. (7)

Figure 1 shows the change of hirigger and hejean with using different 7ycale.
It is seen that as the threshold (7scale) gradually decreases, which essentially
imposes more constraints on the impacts of rank components with high normal-
ized singular values, the strength of htrigger is steadily reduced, while Aciean
does not exhibit significant change. This phenomenon strongly supports our pro-
posed hypothesis that the rank components with large oy,0rm (2)’s are the sensitive
parts of the infected DNN models to the backdoor triggers.

Model Purification via Constraining Sensitive Rank Components. By
identifying rank component-wise sensitivity, the corresponding post-training
backdoor removal scheme can be then naturally developed. As illustrated in
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Fig.1 (d), when Tscale is low, hirigger can be significantly suppressed and app-
roach to h¢jeqn, implying that the backdoor is removed. Hence, properly con-
straining the sensitive rank components can effectively purify the backdoor
infected model.

Figure 3 shows results that support this argument. The attack success rate
(ASR) of a backdoor ResNet-18 steadily decreases when lowering 7scale, mean-
while clean accuracy (ACC) can still be largely preserved, indicating that sup-
pressing the impacts of sensitive rank components is an effective backdoor
removal strategy. Notice that as shown in this figure, some ACC drop is observed
when aiming to very low ASR. This potential issue will be addressed via using
the recovery mechanism described in Sect. 4.2.

Enable Model Robustness and Efficiency Simultaneously. Our above
analysis shows that the singular values, which are obtained via Tucker-2 decom-
position, serve as the key to building the proposed backdoor defense mechanism.
Consider these information can also be used for low-rank model compression
[11,14,26,37], it is nature for us to further explore the attractive opportunity of
co-achieving high model robustness and efficiency simultaneously. To that end,
we propose to further compress the purified model {Weonstrain} to low-rank
Tucker-2 format {Weor . 1 as follows:

constrain

ggs:g) = gscale(1 : R17 1: R2)7
Weanstrain = Gaeate X101 xoUR™ where  UT™™ = Uy (11 Ry),

U™ =Uy(1: Ry).

(8)

Here R = [Ry, R2] is the target Tucker-2 rank setting for one layer with Ry < ry
and Rs < ry. Due to the huge space of combinatorial search across multiple
layers, it would be very time-consuming to determine the suitable layer-wise
[R1, Ro] for all the layers with manual trials. To address this challenge, we pro-
pose to use a global singular value threshold to select the ranks automatically.
More specifically, given a pre-set compression ratio cr, we sort all the singular
values {o} for all the layers, and select the largest ones and their corresponding
rank components that meet the target compression budget requirement. Then all
the rest rank components with singular values smaller than the cutoff threshold
Ttrune are truncated. Here following the convention in low-rank compression, the
singular values used for sorting and guiding rank truncation are o(i)’s instead
of the normalized version oyerm (7)’s (see Eq. 2).

4.2 Boosting Performance via Synthetic Data-Aided Fine-Tuning

As described in Sect.4.1 and in Fig. 3, constraining the sensitive rank compo-
nents can effectively remove the injected backdoor, i.e., significantly reducing
ASR; but meanwhile it causes some ACC drop. In particular, such performance
degradation for benign inputs may be considerable when further compressing
the purified model, motivating us to perform fine-tuning to recover the ACC.
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Use Synthetic Data for Fine-tuning. Considering the unavailability of train-
ing dataset in the realistic data-free setting, we propose to generate synthetic
data for efficient fine-tuning. Notice that in order to 1) minimize the effect of
backdoor on the synthetic data; and 2) make the data distribution satisfy the
dual demands of defense and compression, instead of the original backdoored
model {Wei} and the only purified model {Weonstrain }, the compressed and
purified model {Wgo'? . 1 is used to prepare the synthetic dataset Dgyy. More
specifically, we apply a modified version of ZeroQ method [2] via adding an extra
inception loss term to incorporate class information, and then the synthetic data

generation process is formulated as the following optimization problem:

L
rglnz A5 = w5113 + 1155 = 0513 + L(Fppeome y(5),9), 9)
j=1
where || - [|2 is the fo-norm, x; is the to-be-generated synthetic data, uf, o are

the mean and standard deviation of the synthetic data distribution output at
the j-th layer, and pj,0; are the mean and standard deviation stored in the

batch normalization layer of L-layer {Wgeoo'P . 1.

100 WaNet Attack WaNet Attack

% = ACC = ASR

a0 B Synthetic Data [l Adv. Synthetic Data
70 + 5000
S 54000
5 Q3000
E. O 000

20 1000

10 0

OB.BU 7.00 6.00 ;:galgﬂo 3.00 2.00 1.00 g 1 2 Cslas4s ID5 6 7 8 9
Fig.3. ACC/ASR after puri- Fig. 4. Generated from syn. data with added
fying ResNet-18 w. diff. Tscale- adv. noise, most are labeled to target (class-0),

implying they can serve as surrogates for real
poisoned data.

Use Synthetic Adversarial Data to Mitigate Backdoor Transfer. Con-
sidering the original backdoor model {W;} has the highest ACC with the
presence of benign inputs, we use this model to fine-tune {Wgc P . 1 via knowl-
edge distillation w. synthetic data. Due to the embedded backdoor contained in
{Wpoi}, directly using the synthetic data Dgy, to perform knowledge distillation
causes the backdoor transfer from {Wpei} to {Weonitrain}- In other words, the
ACC increase is at the cost of reducing model robustness.

To avoid this trade-off and simultaneously enable high ACC and low ASR,
we propose to maximize the response difference between the backdoor teacher
model and student model to the poisoned inputs, thereby minimizing the poten-

tial backdoor transfer. However, a challenging issue is the unavailability of the
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poisoned training data in this practical data-free setting. To solve this problem,
we propose to generate synthetic adversarial examples as the surrogate for real
poisoned data containing trigger patterns. As reported in [19], the adversarial
examples [9,24,30,36] are capable of exploiting the backdoor shortcut embedded
within the poisoned model, and our experiment demonstrates that the synthetic
adversarial examples also exhibit the similar interesting behavior — a consid-
erable proportion of these examples are classified as the backdoor class (see
Fig.4). Therefore, synthetic adversarial examples can serve as the good proxy of
real poisoned data and be used in the knowledge distillation-based fine-tuning
process. Hence, the final clean and compact {W: .0} that can achieve high

clean
ACC, backdoor robustness and model compactness is obtained as:

argmin ||Fiy, .} (2) = Fowemn 3 (2|13
{Wnrain

=7 [Py (2 +0) = Frypeome 3 (25 + )13, (10)

constrain
st 0= max L(Fpwiee,,,,) (Ts +9),y),
where § is adversarial perturbation and A is maximum allowed perturbation.
Here only the batch norm layers of the student model are updated during the
distillation. The overall process is summarized in Fig. 2 and Algorithm 1.

Algorithm 1: Enhancing Security and Efficiency: The Clean & Com-
pact Algorithm for Data-Free Backdoor Defense and Model Compression

Input: Poisoned model {Wy.i}, threshold 7scale, compression ratio cr.
Output: Final clean & compact weights {W P}

{G,U.,Uz, X1, X5} — Tucker-2({Wpi})

o — [X1,X5)],0n0rm — (0 — Us)/50

{T1} < broadcast(onorm (1 : 71))

{T2} < broadcast(onorm(r1 : 72))

{G¥3'°} — unfold({G}) ® min(Tecate * $o/{T1},1)

{GE Y — s({GT)°)) © min(Tcate * s0/{T2},1)

gscale — fOld({G?S?le})

Terune < truncate({Gseale, U1, U2}, 0, cr)

{weerk .} = truncate({Gscate, U1, U2}, 0, Terune) > via Equation 8

constrain

© 00 N O A W N -

[
=

12 Dgyn « synthesize_data({Wonsrain}) > via Equation 9

13 for (x,y) in Dsyn do > knowledge distillation

14 Taav — adv_attack({Weonerain 1+ &> Y)

15 | L [[fowpor (@) = Fony @)I3 = vl frwpo (@aav) = Fropeome 3 (@aav)|[3
16 update({Wionurain |- £) > update only batch norm layers

=
~

{Wcotnp - {Wcotnp

clean constrain
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5 Experiments

Backdoor Attack Settings. We evaluate our proposed C&C defense approach
in six backdoor attack scenarios, i.e., BadNets [10], Blended [4], InputAware [21],
WaNet [20], CLA [33], Trojan [17] with both all-to-one and all-to-all target label
configurations. The attack and defense performance is evaluated on CIFAR-
10, CIFAR-100 and GTSRB datasets using ResNet-18, ResNet-34, VGG-19 and
MobileNetV2. All attacks are trained for 100 epochs using SGD optimizer with
learning rate of 0.01 and batch size of 128. The poison ratio is set at 0.1. We
designate the attack target as ‘0’ for the all-to-one setting. In all-to-all configura-
tion, we choose an attack target offset by one from the correct class, represented
ast = (y + 1) mod C, where ‘C’ denotes the total number of classes. For the
BadNet attack, we utilize a 3 x 3 white square positioned at the bottom right as
the trigger. In the case of the Blended attack, in line with the original research,
we employ the Hello Kitty pattern as the trigger with a blending strength of
a = 0.1. Regarding the InputAware and WaNet attacks, we maintain the attack
settings consistent with the original works. All attacks are trained using the SGD
optimizer with a learning rate of 0.01, a batch size of 128 for 200 epochs.

Backdoor Defense Settings. At the model purification stage of C&C defense,
Tscale 1S set as 4 to constrain the sensitive rank components. Then 5-epoch fine-
tuning process is performed via using Adam optimizer with learning rate of
0.0003, batch size of 128 and v = 1. 5120 synthetic data points are generated
via 500-step Adam optimizer with a learning rate of 0.1. To prepare synthetic
adversarial data, we use Lo adversarial attack with a maximum allowable per-
turbation budget A = 0.5 and 10 optimization steps. C&C is compared with
four baseline backdoor defense methods: NAD [15], ANP [35], I-BAU [39] and
CLP [43]. Here except CLP adopting data-free defense strategy, NAD, ANP and
I-BAU are set to have access to the same 1% clean training data.

Evaluation Metrics. We use two metrics to assess the defense performance:
the accuracy on benign data (ACC) and the backdoor attack success rate (ASR),
which is calculated as the ratio of the poisoned data samples that are misclassified
as the target label. Notice that following the protocol used in [35], the samples
with ground-truth labels belonging to the target class in the all-to-one attack
setting are filtered out before calculating the corresponding ASR.

5.1 Experimental Results

Defense Performance with Model Compactness. Table2 compares C&C
with other pruning-based defense methods when jointly exploring model robust-
ness & compactness. Regardless of the availability of training data, the existing
solutions cannot effectively purify and compress the backdoored DNNs without
affecting model performance. For instance, the ACC of the model directly drops
to 10% when using ANP or CLP even with only 2x compression ratio. On the
other hand, our proposed C&C can consistently provide high-quality cleaning
and compression service (high ACC and low ASR) for the infected models with
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different compression ratios (2x — 4x) and under various attack settings. Such
unique 2-in-1 capability, i.e., serving as backdoor defender and model compressor
simultaneously, together with its data-free feature, positions C&C a very useful
and attractive solution for a variety of practical applications, especially those
with strict constraints on training data access and storage/computing budgets.

Table 2. Performance for jointly purifying and compressing ResNet-18 on CIFAR-10.
ACC of ANP/CLP drops to 10% with 2x compression. C&C maintains high ACC from
2X to 4X compression, showing superior performance at higher ratios, being data-free.
Inference time is measured on a NVIDIA RTX 3090 GPU.

‘ Defense Methods - Compression Ratio

No Defense | ANP 2x CLP 2x C&C 2x C&C 3x C&C 4x
Attacks| ACC | ASR |ACC | ASR |ACC |ASR ACC ASR ACC |ASR|ACC | ASR
BadNet 94.13197.96 | 10.00 | 0.00 10.00 1 0.00 |92.16 | 2.88 1 91.25 1.30 1 90.77|0.71
Blended 93.45199.67 | 10.00 | 0.00 11.30/0.00 |91.014.02 90.48|2.49 89.13|2.54
InputAware 94.33199.60 | 23.05 | 25.78 | 10.00 | 0.00 |92.93|0.90 1 92.84|0.70 1 92.70 | 0.60
‘WaNet 93.7199.32{10.00 | 0.00 10.00 | 0.00 192.38 | 1.41 192.72|2.40 92.28|1.10

BadNet A2A 93.70 1 91.12|12.38 | 10.21 |10.00  10.00 | 92.42 | 3.87 1 91.85 | 3.66 | 91.27  3.36
Blended A2A 93.59192.59|10.00 | 10.00 |10.00 | 10.00  90.78 | 5.62 |90.00 | 4.81 | 90.14 | 4.52
InputAware A2A | 94.0191.79 10.00 | 10.00 |13.68 |11.72]93.46 | 1.80 | 93.06 | 2.30 | 91.19 | 2.49

WaNet A2A 93.74192.18 | 10.00 | 10.00 |10.00 | 10.00 | 93.16 | 2.03 | 92.82 | 1.81 | 91.83 | 1.84
Data Req. N/A 1% clean Data-free Data-free | Data-free | Data-free
Comp. Type N/A Unstructured | Channel Low-rank | Low-rank | Low-rank
Parameters 11.17TM 5.58M 5.58M 5.58 M 3.72M 2.78 M
Inference Time 0.201 ms 0.201 ms 0.150ms 0.14 3ms |0.125ms 0.110 ms
Speed Up N/A None 1.34x 1.41x 1.61x 1.83x

Defense Performance against SOTA Methods. Table3 summarizes the
performance of different backdoor defense methods. Compared with the solu-
tions requiring 1% clean labelled training data (NAD, ANP and I-BAU), our
proposed C&C does not need any access to training dataset with at least 2%
ACC increase and similar or lower ASR performance against different types of
backdoor attack, making it very attractive in real-world scenarios where training
data is often unavailable for defenders. In addition, compared with the SOTA
data-free backdoor defense method CLP, C&C consistently shows higher ACC
(at least 2.5% increase) and lower ASR, demonstrating its outstanding protec-
tion capability against the poisoned inputs while still preserving high accuracy
with the presence of benign data.

Generalization Across Different Datasets and Models. To demonstrate
the generality of C&C, we evaluate the performance across different datasets and
network architectures. As shown in Table 4, for purifying the poisoned ResNet-18
models on GTSRB and CIFAR-100 datasets against different backdoor attacks,
C&C achieves strong defense performance with higher ACC and similar/lower
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Table 3. Performance of different backdoor defence methods for ResNet-18 model on
CIFAR-10. A2A denotes all-to-all target labelling. The unit of ACC and ASR is %.

No Defense | NAD I-BAU  ANP CLP C&C(Ours)
Data Req.— N/A 1% clean 1% clean 1% clean | Data-free ‘ Data-free
Attacks| ACC |ASR |ACC |ASR | ACC | ASR |ACC | ASR|ACC |ASR ACC | ASR
BadNet 94.13197.96 |90.10 | 13.53 | 81.16 | 97.16 | 88.25 | 0.00 |88.45|3.29 92.27 |4.52
Blended 93.45199.67 |90.55 | 1.30 |84.52|11.19 | 88.55|2.28 |87.79|4.42 90.62 |2.64
InputAware 94.33199.60 | 93.02 | 6.08 | 88.35[99.13|91.97|1.52 |90.55 | 1.27 93.14 | 0.94
WaNet 93.71199.32193.17/0.90 |81.60|0.63 |91.55|0.34 |89.68 1.64 91.51 |1.79
Trojan 93.58 199.99 1 90.01 | 4.42 |82.14|13.38 | 92.64 | 2.25 |90.34 | 1.42 91.39 |1.08
CLA 93.22199.99 |91.71 | 1.85 |81.45|9.47 |90.27|7.18 |89.182.04 92.01 |2.13
Average 93.74199.42191.43 | 4.68 |83.20 | 38.49|90.53 |2.26 |89.33|2.35 91.822.18
BadNet A2A 93.70191.1292.32 | 3.31 |85.19|6.64 |91.610.88 |86.67|1.88 92.50 |1.13
Blended A2A 93.59192.5989.49 | 1.02 |84.38(2.30 |85.50|7.99 |88.15|2.01 91.37 |1.83
InputAware A2A | 94.01 |91.79|94.10|2.63 | 89.55|1.42 |92.46|1.27 {92.22|1.41 93.45 | 1.87
WaNet A2A 93.74192.18 |93.33 | 1.85 |85.95|1.77 |90.640.92 |89.98|1.37 92.49 |1.72
Average 93.76 191.9292.31 | 2.20 |86.27 | 3.03 |90.05|2.77 |89.26 | 1.67 92.45|1.64

ASR than the SOTA data-free CLP method. Also, as shown in Table 5, when
aiming to clean the backdoor injected into a variety of DNN models, our approach
consistently outperforms CLP with respect to preserving high ACC and low
ASR, demonstrating its strong potential in a many applications.

Table 4. Backdoor defense performance across different datasets using ResNet-18.

No Defense | CLP C&C(Ours)
Datasets Attacks ACC | ASR |ACC |ASR ACC | ASR
GTSRB BadNet 97.17197.20 | 98.70 | 8.52 1 97.70 | 2.96
BadNet A2A 98.97195.40 | 97.65 1 0.48 1 96.32 | 5.76
InputAware 98.99 1 98.81 | 98.85 | 7.72 1 98.94 | 0.00
InputAware A2A | 98.45|96.97 | 95.87 | 15.61 98.59 | 0.14
Average 98.40 1 97.10|97.77 | 8.08 ' 97.89  2.22
CIFAR-100 | BadNet 74.35196.71 | 44.78 1 0.81 | 70.27 | 1.83
BadNet A2A 74.15169.40 | 53.20  0.88 | 73.28 | 0.95
InputAware 65.49 1 93.92 1 53.92 1 6.59 | 60.58 |6.19
InputAware A2A | 66.19 | 57.13 | 53.57|0.87 64.12 | 5.22
Average 70.05|79.29 | 51.37 1 2.29 67.06 | 3.55

Effect of Synthetic Data and Adv. Fine-tuning. Existing pruning-based
defenses (CLP/ANP) do not benefit from our proposed adversarial fine-tuning
with synthetic data. As shown in Table6, when also applying synthetic data-
based adversarial fine-tuning, both ANP and CLP still show inferior performance
compared to C&C, especially, CLP even has significant performance drop. We
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Table 5. Backdoor defense performance across different model architectures.

CIFAR-10 GTSRB
No Defense | CLP 1| &1— No Defense | CLP 1| &l|
ACC |ASR |ACC | ASR|ACC |ASR | ACC | ASR ACC |ASR ACC  ASR

BadNet Attack
ResNet-34 90.13 197.94 | 83.61 | 0.58 [89.34 | 0.94 | 97.84|98.20 | 97.70|7.61 97.95 |0.48

VGG-19 89.68 | 95.83 | 83.25 | 1.38 | 89.15 | 3.08 |97.42|94.91 | 96.67|5.62 97.55 |0.35
MobileNet-V2 | 89.56 | 86.26 | 83.61 | 0.58 | 87.10 | 1.10 | 96.86 | 96.52 |92.41|0.03 97.16 | 1.23
Average 89.79193.34 | 83.49 | 0.85 | 88.53 | 1.71 | 97.37|96.54 | 95.59 | 4.42 97.55 | 0.69

InptutAware Attack
ResNet-34 91.67 | 86.98 | 85.64 | 2.12 | 89.46 |0.95 | 98.5994.40|98.76 | 0.50 | 98.54 |0.15

VGG-19 89.01|82.39 1 85.64 | 2.12 | 89.03 | 1.30 | 97.28 91.60|95.76|0.28 97.14 | 0.06
MobileNet-V2 | 89.45 | 82.38 | 80.53 | 2.93 | 88.93 |1.42 | 97.6493.78 95.86|1.29 96.89  1.58
Average 90.04 | 83.92 1 83.94 | 2.39 | 89.14 | 1.22 | 97.84  93.26 | 96.79|0.69 97.52  0.60

hypothesize that it may be attributed to CLP’s pruning of the batch norm layers,
which are indispensable for data synthesis and adversarial fine-tuning.

Table 6. Defense performance of pruning based defenses with and without adversarial
fine-tuning using synthetic data (ResNet-18 on CIFAR-10).

ANP ANP+AFT | CLP CLP+AFT | C&C

Attacks ACC | ASR | ACC | ASR | ACC | ASR  ACC | ASR | ACC | ASR
BadNet 88.25/0.00 | 88.18|0.23 |88.45|3.29 1 80.27|5.18 | 92.27  4.52
Blended 88.55|2.28 | 87.69|0.59 |87.794.42 |81.82|4.89 | 90.62|2.64
InputAware | 91.97|1.52 |92.01 | 1.32 | 90.55 | 1.27 | 70.28 | 1.48 | 93.14 0.94
WaNet 91.55/0.34 [ 91.09|0.58 |89.68  1.64 | 72.61|3.38 ' 91.51|1.79

Performance Against Adaptive Attack. We also evaluate the performance
of C&C defense against adaptive attack, where the attackers are assumed to
have full knowledge of defense mechanism. In such scenario, because the attackers
cannot directly control oo due to its non-differentiability, the practical way to
launch adaptive attack against C&C defense is to perform C&C-aware adaptive
backdoor training. To be specific, at the end of each training epoch, the attacker
can choose to apply the first step of C&C to constrain sensitive rank components
of the model being trained, aiming to make the rank components of the final
backdoored model do not exhibit sensitivities to the backdoor triggers. Our
experiments show that C&C can still provide strong model protection under
such powerful adaptive attack, e.g., bringing less than 5% ASR (see Table 7).

5.2 Ablation Studies

Impact of Scaling and Fine-Tuning. We conducted an ablation study to
examine the role and impact of the scaling and fine-tuning stages. As shown in
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Table 7. Performance of original attacks without defense and adaptive attack with
C&C defense for ResNet-18 on CIFAR-10.

No Defense | Defense using our C& C
Orig. Att. | Adap. Att.
Attacks ACC | ASR |ACC | ASR | ACC | ASR
BadNet 94.1397.96 | 92.27 | 4.52 | 92.58 | 3.79
Blended 93.45|99.67 | 90.62 | 2.64 | 89.78 | 2.94
InputAware | 94.33 | 99.60 | 93.14 | 0.94 | 92.22 | 3.29
WaNet 93.71/99.3291.51 |1.79 | 91.58 | 1.64

Table 8. The impact of scaling & fine-tuning steps for purifying infected ResNet-18
on CIFAR-10 against different attacks.

Scaling Only | F.T. Only | Full C& C
Attacks ACC | ASR |ACC | ASR | ACC | ASR
BadNet 92.01 | 14.29 | 93.93|96.70 | 92.27 | 4.52
Blended 88.58 | 10.83 | 93.41|85.01 | 90.62 | 2.64
InputAware | 92.40 | 1.50 |93.70|99.88 | 93.13|0.94
WaNet 88.143.04 |94.01|78.88|91.511.79

Table 8, using synthetic data for fine-tuning results in additional performance
improvements, including higher ACC and lower ASR, for the purified and com-
pressed model. Considering that the fine-tuning process requires only 5 epochs
of updates on the batch normalization layers, this operation is a cost-efficient
method to further enhance model robustness and accuracy. However, fine-tuning
alone, without scaling, is not sufficient to effectively remove backdoors.

6 Conclusion

We propose C&C, a significant advancement in backdoor defense, offering a data-
free solution that enhances both robustness and efficiency of DNNs. Its ability
to outperform SOTA methods without requiring clean training data makes it
a promising approach for real-world applications, especially in settings where
resources are limited or training data is unavailable. Overall, the Clean & Com-
pact (C&C) method addresses critical gaps in backdoor defense, paving the way
for more secure and efficient deployment of DNNs across various applications.
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