2024 IEEE 10th International Conference on Collaboration and Internet Computing (CIC) | 979-8-3503-8670-7/24/$31.00 ©2024 IEEE | DOI: 10.1109/CIC62241.2024.00013

2024 1IEEE 10th International Conference on Collaboration and Internet Computing (CIC)

Towards Contactless Human Concentration
Monitoring Using mmWave Signals

Yuan Ge*, Yi Wei*, Xiaonan Guo*, Yucheng Xie!, Yan Wang?, Jerry Cheng®, Yingying Chen¥
*George Mason University, USA
Yeshiva University, USA
1Temple University, USA
§New York Institute of Technology, USA
1TRutgers University, USA
Email: *{yge3, ywei8, xguo8}@gmu.edu, Tyucheng.xie@yu.edu, fy.wang@temple.edu,
§ jcheng18 @nyit.edu, ﬂyingche @scarletmail.rutgers.edu

Abstract—Maintaining concentration in today’s complex and
distracting environments is increasingly challenging, with sig-
nificant impacts on productivity, learning outcomes, and safety.
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leverages Commercial-Off-The-Shelf (COTS) mmWave devices
to detect concentration-related activities, such as eye blinking,
nodding, yawning and leg shaking. In particular, we enhance
the activity detection and overcome the limited field of view
(FOV) of mmWave devices through spatial decomposition based
on Delay-and-Sum (DAS) beamforming technologies. Moreover,
we mitigate interference in concurrent activities by exploiting
the distinct frequency ranges associated with each concentration-
related activity based on Short-Time Fourier Transform (STFT).
A CNN model, integrated with domain adaptation techniques,
ensures robust performance in diverse environments. Experi-
ments involving 10 volunteers demonstrated an overall accuracy
of 95.3% in detecting human activities. The system maintained
robust performance at distances up to 150 cm and across dif-
ferent office environments. Our method offers a contactless and
privacy-preserving alternative to current approaches, making it
suitable for applications such as classroom monitoring, workplace
productivity observance, and cognitive health monitoring.

Index Terms—mmWave sensing, Concentration monitoring,
Activity recognition, Machine Learning

I. INTRODUCTION

Concentration is a fundamental cognitive function that
plays a crucial role in determining a person’s productivity,
learning outcomes, and personal safety across a wide range
of environments, from classrooms to workplaces and safety-
critical settings [7]. Despite its importance, maintaining focus
has become increasingly challenging due to the demands of
modern life. The growing complexity of daily tasks and the
constant distractions reveal a significant gap in our ability
to effectively monitor and sustain concentration. This gap is
particularly concerning given the rising prevalence of attention-
related disorders, such as Adult Attention Deficit Hyperactivity
Disorder (ADHD), with recent studies reporting a substantial
increase in diagnoses among adults [2]. Therefore, effective

Fig. 1: Application scenarios for human concentration moni-
toring using mmWave signals.

concentration monitoring is highly desired, as it is crucial
for identifying factors that contribute to distractions, and for
enabling the design of more focused and productive envi-
ronments. To meet this need, in this paper, we develop a
system that leverages millimeter wave (mmWave) technol-
ogy to perform concentration monitoring. As illustrated in
Fig. 1, such a system can be particularly useful in educational
environments by helping teachers identify periods of high
student engagement, allowing for optimized lesson pacing and
content delivery. It could also assist in early detection of
attention difficulties, enabling timely interventions for students
who may need additional support. In the field of psychology,
the technology could be used to count the unconcentrated
behaviors and help the psychologists to analyze the correlation
between concentration levels and those distracted behaviors.

Traditional approaches, such as self-reporting [5] and obser-
vational studies [22], have been widely used in concentration
assessment. Self-reporting provides a direct insight into an in-
dividual’s perceived concentration levels and is straightforward
to implement. However, self-reporting is subjective and can
be influenced by self-awareness or a desire to give favorable
impressions [20]. Observational studies, conducted by trained
professionals, offer detailed qualitative data on concentration
behaviors but are labor-intensive and may unintentionally alter
the subject’s natural behavior due to the observer’s presence
[23]. Researchers have explored wearable sensors to measure
physiological indicators of concentration such as heart rate
variability (HRV) [4], skin conductance [24], and even brain
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activity through electroencephalogram (EEG) [27]. These sen-
sors provide accurate, real-time data and can be used in various
environments. However, they require direct contact with the
user, which can be uncomfortable or impractical for long-term
use.

Recent research has identified several activities which are
strongly correlated with concentration levels. These activities
include leg shaking, eye blinking, nodding, and yawning. Leg
shaking can indicate restlessness or a decline of focus [26], and
is also associated with ADHD [1]. Changes in eye blinking
rate can indicate varying levels of cognitive engagement [17].
Similarly, frequent nodding or yawning might suggest fatigue
or waning attention levels [12] [33], providing crucial insights
into an individual’s concentration patterns over time. These
behaviors serve as valuable indicators for assessing an indi-
vidual’s cognitive state, making them ideal for contactless con-
centration monitoring. Building on these findings, researchers
have developed camera-based systems to capture subtle facial
expressions [30], eye movements [6], and body language [21]
to infer concentration levels. While these systems provide
the advantage of passive monitoring without requiring active
participation, they often raise significant privacy concerns.

Recently, millimeter wave (mmWave) technology has been
integrated into current and next-generation wireless protocols,
such as WiGig (IEEE 802.11ad and 802.11ay) [11] and
5G [9], expanding its potential for widespread adoption and
application. Leveraging this technology, researchers have suc-
cessfully applied mmWave sensing to a wide range of activity
recognition tasks. For instance, Wang et al. [29] demonstrate
the use of WiFi signals for human activity recognition. Liu
et al. [16] develop a mmWave-based system that accurately
recognizes arm gestures. These successes motivate us to
leverage mmWave technology for concentration monitoring
based on recognizing concentration-related activities. However,
existing mmWave-based approaches for activity recognition
cannot be directly applied to the task of concentration-related
activity monitoring given the following challenges: (1) The
120-degree field of view (FOV) of Commercial-off-the-Shelf
(COTS) mmWave devices limits their ability to capture full-
body movements, especially when the mmWave device is
positioned on a desk to monitor concentration while someone
is working at a computer. In such a setup, the device typically
focuses on upper body movements, but may miss crucial lower
body indicators like leg shaking, which can also signal changes
in concentration; (2) Separating concurrent-related activities
is challenging, as subtle movements such as eye blinking
often occur simultaneously with other activity like yawning
or nodding, complicating accurate detection and classification
of concentrated versus unconcentrated states; (3) Deploying
the system in new environments can be challenging, as even
small changes in the layout of desks or nearby objects may
alter the signal propagation path, potentially affecting system
performance.

To overcome the aforementioned challenges, we develop
a system that contactlessly monitors concentration-related ac-
tivities using mmWave technology. Our approach employs
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a multi-stage signal processing pipeline that includes noise
reduction and spatial-temporal feature extraction to isolate sub-
tle concentration-related movements. To overcome the limited
FOV of COTS mmWave devices, we develop a spatial de-
composition approach using the Delay-and-Sum (DAS) beam-
forming technique to enhance signals reflected from specific
body parts involved in different activities. For detecting lower
body movements, particularly leg shaking, we resort to an
innovative indirect approach. By monitoring subtle movements
induced in the belly area, we can infer leg activity even when
the legs are obscured (e.g., under a table). This approach
exploits the fact that leg shaking induces subtle yet detectable
vibrations that propagate through the body. Moreover, to tackle
the challenge of concurrent activity monitoring, we leverage
frequency domain analysis to detect dominant frequencies of
different activities. By decomposing the mmWave signals into
their frequency components, we can simultaneously monitor
multiple activities while mitigating interference between them.
This process, combined with the spatial information extracted
earlier, ensures accurate differentiation of concurrent activities.
To enhance adaptability across different environments, we first
employ a Convolutional Neural Network (CNN)-based model,
which is highly effective at extracting spatial features from
activity data. Further, to handle variations in the environment,
we integrate domain adaptation techniques, making the feature
extraction process domain-independent. This enables the sys-
tem to reliably detect concentration-related activities with the
presence of environmental factors. The main contributions of
our work are as follows:

1) We develop a novel mmWave-based system for con-
tactless and privacy-preserving concentration monitoring.
This system addresses the growing need for unobtru-
sive methods to assess cognitive states in various set-
tings, including workplaces, educational environments,
and healthcare facilities.

2) We implement the beamforming technologies to address
the limited FOV of mmWave radar, utilize an indirect
monitoring for belly movements, allowing for the detec-
tion of subtle shakes associated with concentration-related
activity.

3) We design a novel peak frequency identification algo-
rithm that accurately captures and separates concurrent
concentration-related activities through frequency analy-
sis, overcoming the challenge of concurrent activities.

4) We integrate domain adaptation techniques into the sys-
tem, ensuring the feature extraction process is robust
and environment-independent, allowing reliable detection
of concentration-related activities across diverse settings
with varying layouts and surrounding objects.

5) We conduct experiments with 10 volunteers performing
multiple concentration-related activities under different
environmental conditions to evaluate the system’s perfor-
mance across various real-world scenarios. Results show
that our system can achieve an overall accuracy of 95.3%
for concentration-related activities identification.
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II. RELATED WORK

Sensor-based. Traditional methods for concentration mon-
itoring primarily rely on wearable sensors [10, 27]. Han
et al. [10] present a stress monitoring system based on
three physiological signals: electrocardiogram (ECG), pho-
toplethysmogram (PPG), and galvanic skin response (GSR)
using Shimmer3 ECG, Shimmer3 GSR+, and Empatica E4
wearable sensors. Similarly, Velnath et al. [27] propose to
extract different features from the collected EEG signals.
The level of concentration is determined by comparing the
features extracted from individuals of different age groups.
However, wearable sensors, particularly those based on brain
wave measurements such as EEG electrode caps or patches,
can be cumbersome and intrusive. Furthermore, the need to
remove and put back these devices during temporary breaks
in monitoring disrupts the user experience and may lead to
inconsistent data collection.

Camera-based. Camera-based technologies have emerged
as a popular method for detecting user concentration levels due
to their relative convenience and non-invasive nature. These
systems typically analyze limb movements, eye behavior,
pupil dilation, or facial expressions to infer a user’s level
of concentration [14, 19, 25]. Meriem et al. [19] find that
students’ emotions, inferred through facial expressions, are
related to their attention levels. They develop a computer
vision-based method to classify attention into three levels by
correlating these emotions with students’ concentration during
class. Moreover, Lee et al. [14] propose a personal attention
level monitoring system that focuses on users’ pupil responses
and blinking patterns while they perform online tasks on
a computer. Tanaka et al. [25] utilize a camera based eye-
tracker to explore a pipeline for constructing machine learning
models to recognize the state of concentration using eye-gaze
data during reading. However, camera-based solutions, while
effective, are vulnerable to environmental variables, especially
lighting conditions, which can compromise data accuracy
and reliability. Furthermore, the persistent capture of visual
information raises significant privacy concerns, potentially
deterring widespread adoption.

RF-Based. To address the mentioned weaknesses, re-
searchers have explored WiFi-based solutions for their con-
venience and sensing capabilities [8, 28]. Guo et al. [8]
propose a device-free exercise recognition and assessment
scheme using existing WiFi infrastructures. Wang et al. [28]
study the domain variation problem and design a robust WiFi
sensing framework. While WiFi technology can recognize
user actions, it has not yet been used to infer concentra-
tion levels. Meanwhile, mmWave sensing is gaining attention
with the development of IoT, 5G, and autonomous driving
technologies [31]. It offers contactless, fine-grained sensing
of humans and objects [32]. Due to its low cost and non-
intrusive nature, mmWave-based human activity sensing has
become a significant research area. Cardillo et al. [3] use
120 GHz radar to detect head movements and eye blinking,
aiding communication for individuals with neurodegenerative
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disorders. Juncen et al. [12] develop techniques to filter noise
from driving-related activities, accurately detecting driver fa-
tigue. Thus, we can leverage RF-based action recognition to
infer concentration. Our mmWave radar-based approach pro-
vides a non-intrusive, privacy-preserving alternative to camera,
EEG, and eye-tracker systems, allowing continuous monitor-
ing without the discomfort of wearables. By integrating signal
processing and machine learning, our method isolates and
analyzes concentration-related movements, offering reliable
performance in various settings like education and cognitive
health.

III. PRELIMINARIES
A. mmWave Radar Fundamentals

This work utilizes an FMCW mmWave radar to detect user
macro and micro-actions. The radar continuously transmits
chirp signals that linearly sweep through a frequency band-
width B over a chirp duration of 7.. The sweep slope is
therefore S = Tﬁ The received signal is a delayed version of
the transmitted signal due to the time it takes to travel through
space. By calculating the frequency difference between the
received and transmitted signals (i.e., beat frequency), we can
directly determine the propagation time of the electromagnetic
wave. Using the speed of the electromagnetic wave c, the
propagation distance of the FMCW signal in space can be
accurately calculated.

1) Range Estimation: The range information reveals the
user’s location and the relative positions of different body
parts, such as the arms, stomach, legs, and head. To determine
the range of these body parts, we apply a Fast Fourier
Transform (FFT), specifically a range-FFT, on the time-domain
intermediate frequency (IF) signal. When the user is within
the field of view, the strong frequency response from their
body creates peaks at various IF frequencies, corresponding
to different body parts. The distance between each reflected
point and the radar can then be calculated as follows:

Jfir-c-Te  frr-c

2-B 2.5
where frr is the frequency of the intermediate frequency (IF)
signal, c is the speed of the light, 7. is the period of one
chirp, B is the bandwidth of the FMCW radar, and S is the
chirp slope. The centimeter-level distance resolution of FMCW
millimeter-wave radar enables it to precisely differentiate
between the positions of an individual’s head, limbs, and
torso. Using range-FFT, we can divide the received signal into
different range bins based on the distance from the reflection
point to the radar’s receiving antenna.

2) Angle Estimation: There are also situations where multi-
ple reflection points fall into the same range bin but originate
from different angles. For instance, when a user faces the
mmWave radar, the distances from both arms to the radar’s
receiving antenna are nearly identical. For the same signal
source, the distance of its reflected signal to different receiving
antennas varies slightly, leading to small phase differences.
The distance d between the reflected signal and the receiving

d=

(D
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antenna is related to the distance [ between the receiving an-
tennas and the incident angle 6 of the signal source. Knowing
the arrangement and spacing of the receiving antennas, as well
as the phase difference w of the received signal, allows us to
accurately calculate the angle of the signal source relative to
the receiving antenna within the FOV. This phase difference
across multiple TX antennas can then be used to estimate the
angle of arrival (AOA) as follows:

LA w
0 =sin" " ( 5] ). (2)
3) Micro Displacement Estimation: Concentration-related
activities involve subtle movements that require high-precision
detection. To accurately capture these micro-movements, we
need a detection granularity on the order of millimeters. The
standard FMCW radar range resolution, typically around 4 cm,
is not precise enough for detecting such subtle motions. By
unwrapping the IF signal phase, we can extract micro displace-
ments of the signal and achieve the required millimeter-level
granularity because phase measurements are inherently more
sensitive than amplitude measurements and the wavelength of
mmWave signals is on the same order as the movements we
aim to detect. The phase difference A®(t,t — T..) of the IF
signal in a single range bin between two consecutive chirps
at time ¢ allows us to calculate the micro-distance change
Ad(t,t — T.) between time ¢ and t — T:

c- AD(t,t —T)
dmfe '

In this paper, we utilize the extracted phase information from
the IF signal to monitor concentration-related movements.

Ad(t,t —T,) ~ 3)

B. Feasibility Study

We conduct experiments with a volunteer to test the ca-
pability of millimeter-wave radar in detecting concentration-
related activities. Specifically, we used the AWR1642 FMCW
millimeter-wave radar, positioning it at a fixed location. The
distance between the radar and the volunteer was set to 0.5
meters. To ensure consistency in data collection, the volunteer
performed each activity with a 5-second interval, which helps
distinguish between small and large movements related to
concentration. The volunteer is asked to perform specific
activities, such as eye blinking, leg shaking, nodding, and
yawning, to assess the radar’s ability to detect these behaviors.

We extract phase difference information from mmWave
signals to detect concentration-related activities and compare
the phase patterns of different activities. The phase data is
derived from raw mmWave radar signals and processed to
capture subtle movements associated with each activity. Fig. 2
shows these phase plots, where each graph illustrates the phase
changes over time for specific activities like blinking, shaking,
nodding, and yawning. By analyzing this phase data, we can
observe and differentiate between the distinct phase change
patterns associated with each activity. In this figure, the x-axis
represents the duration of the activities, while the y-axis shows
the phase changes. The ground truth, captured through camera
recordings during the experiments, aligns with the phase
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Fig. 2: Phase patterns corresponding to four concentration-
related activities: eye blinking, leg shaking, nodding, and
yawning. Each activity is performed twice with a 5-second
interval between occurrences. The ground truth for each activ-
ity is marked with a red rectangle.

changes, confirming the occurrence of specific activities. For
example, the “Blink™ plot reveals subtle, rapid phase changes
corresponding to each blink, reflecting the small, quick nature
of this action. The “Shake” plot displays more pronounced,
periodic phase changes with higher amplitude, consistent with
the vigorous, repetitive motion of leg shaking. The “Nod”
plot shows smoother, more gradual phase variations, indicative
of the moderate, rthythmic motion of nodding. Finally, the
“Yawn” plot exhibits significant amplitude in its phase changes,
reflecting the larger, sustained motion of yawning. These
observations demonstrate that each activity has unique phase
characteristics, with different frequency components and the
amplitude of phase changes. This allows us to distinguish be-
tween the activities based on their specific phase information.

IV. SYSTEM DESIGN

The proposed system is designed to continuously monitor
concentration-related activities using mmWave technology by
extracting phase features from radar signals. The system is ca-
pable of detecting both concentration-related activities—such
as eye blinks, leg shaking, nodding, yawning, and non-
concentration-related activities. As illustrated in Fig. 3, the
Signal Preprocessing Module processes the collected mmWave
signals to mitigate environmental impacts and reducing noise
using the proposed two-stage filtering approach. Next, the
Enhansing Activity Detection Through Spatial Decomposition
Module employs a delay-and-sum (DAS) beamforming tech-
nique to enhance signals reflected from specific body parts
associated with different activities (e.g., eye blinking in the
upper body, leg shaking in the lower body). This module
also determines the distances and angles for extracting each
activity using range-angle heatmap. Furthermore, the Distin-
guish Concurrent Activities Module mitigate the interference
in concurrent activities by employing dominant frequency de-
tection through Short-Time Fourier Transform (STFT) on the
extracted phase information. For continuous monitoring, the
Concentration-Related Activities Recognition Module further
segments the extracted phase data, isolating individual activity
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Fig. 3: System overview of the proposed system.

instances. Each segment is then fed into a CNN model for
multi-label classification. In addition, the system incorporates
Domain Adaptation to ensure the CNN model’s feature extrac-
tor remains domain-independent, capable of extracting reliable
activity features even the domain (e.g., environment) has been
changed.

V. METHODOLOGY
A. Signal Preprocessing

Raw mmWave signals are inherently noisy and subject to
interference from static objects and non-target movements,
which can reduce the accuracy of target detection and range
estimation. To enhance signal quality and isolate the relevant
information, we employ a two-stage filtering approach. First,
we apply a Finite Impulse Response (FIR) low-pass band filter
to attenuate high-frequency noise while preserving the fre-
quency content of concentration-related activities. Specifically,
the output y[n] of the FIR filter is given by:

M
yln] = " bealn — k], €5
k=0

where by, are filter coefficients, x[n] is the raw IF data, and
M is the filter order. For our application, we set the cutoff
frequency to 10 Hz to preserve movements in the 0.1-8 Hz
range. By applying the FIR filter on the IF signal, the system
attenuates unwanted high-frequency noise while preserving
the beat frequency (i.e., difference in frequency between the
transmitted chirp signal and the received reflected signal.)
that contains the range information for the target. This step
helps to improve the signal-to-noise ratio (SNR), leading to
more accurate target detection and range estimation. After
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Fig. 4: Human body reflected mmWave signal phase pattern
before and after the proposed two-stage noise mitigation.

filtering, we perform a range-FFT on the filtered IF signal,
and extract phase information from the range-FFT output. To
further reduce noise while preserving essential signal features,
we apply a Savitzky-Golay smoothing filter to the extracted
phase data. The smoothed output y; is given by:

m
y; = Z CnYitn,

n=—m

&)

where ¢,, are convolution coefficients, 2m + 1 is the window
size, and y; is the phase data extracted from the range-FFT
output. We optimize this filter using a 3rd-degree polynomial
and a window size of 50 samples, to smooth rapid fluctuations
while maintaining the distinct peaks of eye blinks and the
periodic patterns of leg shaking. Fig. 4 shows the extracted
phase data before and after applying the proposed two-stage
filter, highlighting the effectiveness of the filtering method in
reducing noise in the mmWave signals.

B. Enhancing Activity Detection Through Spatial Decomposi-
tion
1) Body Part-Specific Signal Extraction via Beamforming:

In typical scenarios where a user is seated at a desk, working
in front of a computer, the mmWave radar is fixed in place,
capturing all movements within its FOV, which is generally
limited to 120 degrees. In this configuration, concentration-
related activities may occur simultaneously and such concur-
rent nature makes it challenging to distinguish and isolate the
signals associated with each body part, particularly when lower
body movements are obscured (e.g., legs are under a table). To
address this challenge, we develop a body part-specific signal
extraction based on Delay-and-Sum (DAS) beamforming tech-
nique [12]. In DAS beamforming, the signals received by an
array of antennas are combined by applying appropriate time
delays to each signal, such that signals from a desired direction
are aligned and summed constructively. By enhancing radar
signals at specific angles, beamforming allows us to selectively
focus on spatial regions corresponding to different body parts,
improving our ability to isolate and analyze concentration-
related activities. In particular, the DAS beamforming output
y(t) for a given direction 6 is expressed as:

N
y(t,0) = > wazn(t — 70 (0)), ©6)

where x,,(t) is the signal received by the n-th antenna, w,, is
the weighting factor, and 7,,(6) is the time delay applied to
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steer the beam in the direction 6. For upper body detection,
the system focuses on angles within the radar’s FOV that
correspond to the head and torso, typically in the range
0 = 30° —90°. In this range, the system can analyze reflected
signals to detect concentration-related activities such as eye
blinking, nodding, and yawning. To detect lower body activ-
ities, particularly leg movements like shaking or tapping, the
system indirectly monitors subtle movements in the belly area,
which typically corresponds § = 0° — 30°. Leg movements
generate small but detectable shifts in the body’s posture and
motion, which propagate upwards and cause minor vibrations
or movements in the torso, especially the belly area. This
approach allows the system to infer leg movement even when
the legs are obscured (e.g., under a table) and are not within
the radar’s direct line of sight.

2) Activities Localization based on Range-Angle Heatmap:
Building on the beamforming technique, we enhance the
system’s ability to detect and localize concentration-related
activities by leveraging range-angle heatmaps within each
beamformed region. This approach improves the detection of
subtle movements, such as eye blinking, yawning, and nodding.
To accurately identify and track these activities, we develop an
activity localization algorithm that effectively localizes these
movements. For a given activity a in region k, we calculate
the signal amplitude A, (¢, 0, R):

Aa,k(t79>R) = |yk‘(t707 R)|7 (7)

where |y (¢, 0, R)| represents the magnitude of the filtered sig-
nal at time ¢, angle 6, and range R for region k. This amplitude
information is then used to construct a range-angle heatmap
that visualizes the spatial distribution of signal intensities
across different regions of the body. On the obtained heatmap,
we apply clustering and temporal tracking of high-amplitude
regions. By grouping areas of consistent signal intensity over
time, we can accurately localize and differentiate simultaneous
activities occurring in both the upper and lower body. This
range-angle heatmap approach allows the system to focus on
localized areas of interest, ensuring precise detection even
when multiple activities occur simultaneously. We identify the
key parameters, such as angles and distances, that correspond
to the highest and most consistent signal amplitudes for each
movement, allowing us to effectively localize each activity.
Fig. 5 shows the range-angle heatmap generated following
the application of the Delay-and-Sum (DAS) beamforming
technique, with a participant seated 50 cm in front of the
mmWave radar. This visualization enables precise localization
and tracking of multiple activities across the body, enhancing
the system’s ability to detect and differentiate between subtle
movements in both the upper and lower body regions.

C. Distinguishing Concurrent Activities

1) Mitigating Interference in Concurrent Activities Using
STFT: Building on the spatial separation of concurrent move-
ments via beamforming and range-angle heatmaps, this section
addresses the challenge of mitigating interference between
simultaneous activities. In seated scenarios, leg movements
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Fig. 5: Range-angle heatmap after applying the proposed DAS
Beamforming technique, captured while a volunteer sits 50 cm
in front of the mmWave radar.

often propagate through the body, generating vibrations that
influence the radar’s phase readings. These larger motions
complicate the detection of subtle movements, as the radar
captures a composite signal that reflects both leg shaking
and smaller activities such as eye blinking. As a result,
distinguishing between these overlapping signals is non-trivial.

To address challenge, we exploit the distinct frequency
ranges associated with each concentration-related activity.
Each activity has a characteristic frequency range: eye blinking
(0.5 - 2 Hz) [13], leg shaking (4 - 8 Hz) [18], nodding (0.5
- 2 Hz) [12], and yawning (0.1 - 0.5 Hz) [33]. However,
since some activities like eye blinking and nodding share the
same frequency range, we combine the frequency analysis
with the spatial decomposition results from the beamforming
step. By leveraging both the spatial and frequency-domain
characteristics, we can accurately differentiate activities based
on their location and their corresponding frequency signatures.
We apply a Short-Time Fourier Transform (STFT) to the
filtered radar signal, enabling time-frequency analysis that
captures the spectral content of the signal at different time
intervals. This method helps isolate the frequency components
corresponding to each activity and mitigate interference from
concurrent movements. After that, we use a peak detection
algorithm to identify the dominant frequencies. The process
is as follows: (1) Magnitude Spectrum Calculation: We
compute the magnitude spectrum: | X [m, k]| from the STFT,
yielding a time-frequency representation of the mmWave
signal z[n]. This representation reveals the signal’s spectral
content at specific time intervals m. (2) Local Maximum
Identification: We detect local maxima in |X[m, k]| that
exceed a predetermined threshold J, allowing us to identify
the dominant frequencies:

Plm] = {k : | X[m, k]| > | X[m, k — 1]| and

X[m, k]| > [X[mk + 1]] and |X[m, ]| > 6}, )

(3) Peak Selection and Sorting: The identified peaks in P[m)]
are sorted by magnitude, and the top Npcqks are selected.
(4) Filtering Peaks by Frequency Range: The peaks are
then filtered based on the expected frequency ranges for each
activity. For instance, frequencies between 0.5 - 2 Hz are
retained for detecting eye blinking and nodding, while higher
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Fig. 6: CNN model achitecture for the proposed system.

frequencies (4 - 8 Hz) are used for leg shaking. This filtering
step ensures that only the relevant frequencies for each target
activity are considered.

D. Concentration-Related Activities Recognition

1) Activity-Related Signal Extraction and Segmentation:
After mitigating interference between concurrent activities
using frequency-domain analysis and spatial decomposition,
we proceed to extract and segment phase information for each
activity identified within the corresponding frequency peaks.
To ensure consistency across different measurements, we first
normalize the unwrapped phase facilitating the segmentation
process. This process divides the continuous phase signal into
discrete segments, with each segment potentially correspond-
ing to an occurrence of a distinct activity or movement. The
segmentation process is described as follows:

s = b I e o) =il > o

0, otherwise

where ¢nom (t) is the normalized phase signal, S;(t) is the
segmentation result for activity ¢ at time ¢, W is the sliding
window size, j; is the mean phase value for activity ¢, and
7 is the threshold for activity . The mean phase is derived
empirically for each activity, based on its typical phase behav-
ior observed during training. The system detects an activity by
identifying when the normalized phase deviates significantly
from this mean phase value. The thresholds are set for each
activity according to its characteristic phase patterns, allowing
the segmentation to accurately capture the start and end of
each activity.

2) Feature Extractor: After segmenting the phase signal,
the system uses a CNN model to classify concentration-
related and non-concentration-related activities. The CNN'’s
feature extractor captures both local features, such as a single
blink or nod, and global features, like sustained leg shaking,
enabling accurate classification of various activities. As shown
in Fig. 6, the CNN processes a 5000-point phase segment
through two 1D convolutional layers (64 filters) and max
pooling layers, progressively extracting more complex features.
The final output is flattened into a 1D vector for classification.
This hierarchical structure allows the model to effectively
differentiate between similar activities and adapt to individual
movement variations.

3) Multi-Label  Classifier: ~ To distinguish  between
concentration-related and non-concentration-related activities,
we implement a Multi-Label Classifier. This classifier
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interprets the features extracted by the Feature Extractor
and translates them into activity predictions. The classifier
architecture consists of a dense layer with 64 units, using
ReLU activation to capture non-linear relationships. This is
followed by an output layer with five units—four representing
concentration-related activities and one for non-concentration-
related activities—using sigmoid activation. The use of
sigmoid activation allows the system to detect multiple
activities simultaneously. By leveraging the CNN’s feature
extraction capabilities, the classifier can differentiate between
subtle and similar movements, ensuring precise recognition
of both concentration-related and non-concentration-related
activities.

4) Domain Adaptation via Transfer Learningn: A key
challenge is that new environments can impact system per-
formance, as changes in surroundings affect the reflected
radar signal. To address this, we integrate domain adaptation
techniques into the feature extraction process, implementing an
Adversarial Autoencoder (AAE) architecture with Maximum
Mean Discrepancy (MMD) regularization [15]. The feature
extractor acts as the encoder, producing latent representations
optimized for both activity classification and environmental
invariance. A decoder is introduced to reconstruct the original
input from these latent features, while a discriminator aligns
the feature distribution with a Laplace prior [32]. The system
is optimized using a multi-component loss function:

Liotat = MLy + AL + AaLq, (10)
where L, is the reconstruction loss defined by:
XN
L,= NZZV[SE(pi,ﬁi), (11)

where Mean Squared Error (MSE) measures the difference
between the original input p; and its reconstruction p;, en-
suring essential information is retained in the latent features.
To calculate this, we introduce a decoder alongside our en-
coder (feature extractor). The encoder compresses the input
into a latent representation, while the decoder attempts to
reconstruct the original input from this representation. This
process ensures that the extracted features retain essential
information about the input. The Maximum Mean Discrepancy
(MMD)-based Environment Alignment Loss (L,,) encourages
the encoder to produce similar feature distributions across
different environments:

N

7NLZE(pvz) aO )

Yii=1
(12)
where E/(-) is our encoder function, and p,, ; and p, ; represent
samples from two different environments. The adversarial loss
L, ensures the latent features follow a Laplace distribution,
helping capture variability in human movement:

1 w
Lm = m N § E i
ax ‘Nu — (Pui)

N
1
Lo= > MSE(hi,l;), (13)
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Fig. 8: Confusion matrix illustrating the classification perfor-
mance for eye blinking, leg shaking, nodding, yawning, and
non-concentration-related (NC) activities.

where h; represents the latent features, and [; are samples
drawn from a Laplace distribution. By jointly optimizing these
loss components, we ensure that the extracted features are
discriminative for activity classification, invariant to environ-
mental changes, and retain essential input information. This do-
main adaptation strategy enhances the system’s generalization
across diverse environments, ensuring reliable concentration-
related activity detection.

VI. PERFORMANCE AND EVALUATION
A. Evaluation Setup and Methodology

1) Device Configuration: We implement the proposed sys-
tem using a single commercial COTS mmWave device: Texas
Instruments AWR1642 mmWave radar with a DCA1000EVM
data capture and streaming card. Our mmWave radar system
operates at a starting frequency of fy = 77 GHz, utilizing 100
ADC (Analog-to-Digital Converter) samples corresponding to
100 range bins. The radar provides a range resolution of 3.85
cm and a FOV of 120° in elevation and 30° in azimuth, with
an angular resolution of 14.32°. This configuration allows for
high-precision detection of subtle movements associated with
concentration-related activities.

2) Data Collection: Our study involved 10 volunteers (i.e.,
8 males and 2 females), aged 24 to 31 years, who participated
in experiments conducted within three different office environ-
ments. Each office varied in size and layout, allowing us to
demonstrate the system’s performance in different environmen-
tal conditions. Each participant was seated in a chair facing
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Fig. 9: Accuracy comparison for classifying eye blinking, leg
shaking, nodding, and yawning across 10 different users.

a mmWave device positioned on a desk with its antennas
directed toward their faces. They were asked to perform a
series of concentration-related activities—such as natural eye
blinking, shaking their leg at a comfortable pace, nodding, and
yawning as if sleepy—for 60 seconds each at specific distances
of 50 cm, 100 cm, and 150 cm from the device respectively,
with short breaks between activities. Moreover, participants
engaged in non-concentration-related behaviors like singing
a song or having casual conversations to establish baseline
data. As illustrated in Fig. 7(a) for device placement and
Fig. 7(b) for the different office environments, was repeated
across various settings and distances to assess the robustness
of our system.

3) Evaluation Metrics: To assess our system’s performance,
we employ the following metrics: activities classification accu-
racy (i.e., the ratio of correctly classified instances to the total
number of instances), confusion matrix (i.e, visual representa-
tion of predicted versus ground truth classes), precision (i.e,
ratio of true positives to total predicted positives, indicating
prediction accuracy), recall (i.e., ratio of true positives to
all actual positives, measuring the model’s ability to find all
positive instances).

B. Performance of Activity Classification

We first examine the overall performance of our system
for concentration-related activity detection. As demonstrated
in Fig. 8, the confusion matrix shows the classification re-
sults for eye blinking, leg shaking, nodding, yawning, and
non-concentration-related activities (NC) in percentages. The
overall performance of the system achieves an accuracy of
95.3%. These results demonstrate the effectiveness of our
system in recognizing and monitoring concentration-related
activity with high accuracy. To assess the system’s consistency
across different users, we analyze individual performance data,
as illustrated in Fig. 9. This result shows the concentration-
related activities detection results by individual users, which
achieves an average accuracy of 96.4% across all participants.
This individual accuracy not only confirms the system’s overall
performance but also indicates its reliability and adaptability
to different users.

C. Impact of Different Device-to-Participant Distances

To assess the impact of distance on system performance,
we evaluate the system at three different device-to-participant
distances (i.e., 50 cm, 100 cm, and 150 cm). As shown in
Fig. 10(a), the system demonstrates promising performance
across all tested distances, with variations in accuracy. At
50cm, the system achieves its highest accuracy of 95.3% due
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Fig. 10: (a) Impact of varying person-device distance (0.5m,
Im, and 1.5m). (b) Impact of different environments (Office
1, Office 2 and Office 3). (c) Precision and recall for activity
classification across varying distances and environments.

to the strongest signal strength and highest resolution at this
close range. As we extend the distance to 100cm, performance
remains around 83.5%. Even at 150cm, the system continues
to achieve a 78.3% accuracy rate, demonstrating its potential
for longer-range applications. Besides, as shown in Fig. 10(c),
the average precision for activity classification for different
distances is 0.8645 and the average recall is 0.8497. These
metrics confirm the system’s performance in both accurately
identifying activities and minimizing misclassifications.The
observed decline in accuracy with increasing distance aligns
with expectations due to reduced signal strength and reso-
Iution at greater distances. Note that the system maintains
acceptable performance up to 150 cm, which covers typical
usage scenarios in many applications. Future work could focus
on improving long-range detection capabilities to extend the
system’s effective range.

D. Impact of Different Environments

To evaluate the system’s robustness across diverse environ-
mental conditions, we conducted experiments in three different
office environments as shown in Fig. 7(b). We employed a
cross-environment evaluation approach, where the system was
trained using data from only one environment (e.g., office 1)
and then tested across all three environments (offices 1, 2, and
3). This process was repeated for each environment, training
in one office and evaluating performance in all three. This
approach allows us to test the system’s ability to generalize
to unseen environments, simulating real-world deployment
scenarios where retraining for each new location would be
impractical or inconvenient. Fig. 10(b) illustrates the system’s
performance, demonstrating accuracies of 95.3%, 82.7%, and
85.2% for office 1, office 2 and office 3, respectively. These re-
sults yield a mean accuracy of 87.7% across all environments.
The performance in Office 1 (95.3%) represents the system’s
capability in its training environment, while the accuracies in
Office 2 (82.7%) and Office 3 (85.2%) reflect its generalization
to unseen environments. Besides, as shown in Fig. 10(c),
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the average precision for activity classification for different
environments is 0.8835 and the average recall is 0.8713. These
metrics confirm the system’s performance in both accurately
identifying activities and minimizing misclassifications. These
results indicate that environmental factors do impact the sys-
tem’s performance. The performance variation under different
environments can be further enhanced with domain adaptation
techniques, which will be demonstrated in the next subsection.

E. Performance of Domain-independent Training across Dif-
ferent Environments

To further enhance our system’s robustness and address the
performance variations observed across different environments,
we implement domain adaptation techniques. In this approach,
we designate the data collected from one environment as
the source domain, while using a few amount of data from
another environment as the target domain. We evaluated
three distinct source-target pairs (i.e., O1 — O2,0;1 — Os,
and Oy — O3 with Oq, O2, O3 represent office 1, office
2 and office 3, respectively) to assess the effectiveness of
our domain adaptation strategy. Fig. 11(a) shows the results
of comparing the system’s performance with and without
domain adaptation. The proposed system achieves a 91%
activity classification accuracy in cross-environment scenarios
when employing domain adaptation. This presents an average
increase of 3.3 percentage points compared to the baseline per-
formance without domain adaptation. Moreover, as it shown in
Fig. 11(b), the precision has an average increase of 6.63% after
applying the proposed domain adaptation. The recall has an
average increase of 7% after the proposed domain adaptation.
These results demonstrate the effectiveness of our approach in
reducing the impact of environmental variations and improving
the system’s generalization capability across different settings.

VII. CONCLUSION

In this paper, we propose a novel system for contactless
human concentration monitoring using mmWave signals. The
system can be deployed using a single COTS mmWave device
while achieving high accuracy in detecting concentration-
related activities. We design a multi-stage pipeline that ad-
dresses key challenges in concentration monitoring. Our ap-
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proach employs beamforming techniques to enhance signals
from specific body regions, enabling the detection of both
upper and lower body movements. We utilize frequency do-
main analysis to differentiate multiple concurrent activities and
indirect monitoring of belly movements to detect leg shaking
outside the device’s direct field of view. Moreover, a CNN
model is implemented to classify concentration-related activi-
ties from the extracted features. With the integration of domain
adaptation techniques, our system eliminates environment-
specific characteristics from the extracted features, enabling
robust activity recognition across different office settings. Ex-
perimental results demonstrate that our system can accurately
detect and classify concentration-related activities, achieving
an overall accuracy of 95.3%. We also demonstrate the
system’s robustness across varying distances and different
environmental settings.
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