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ABSTRACT

Fine-tuning pre-trained models for downstream tasks has led to a

proliferation of open-sourced task-speci�c models. Recently, Model

Merging (MM) has emerged as an e�ective approach to facilitate

knowledge transfer among these independently �ne-tuned models.

MM directly combines multiple �ne-tuned task-speci�c models

into a merged model without additional training, and the resulting

model shows enhanced capabilities in multiple tasks. Although

MM provides great utility, it may come with security risks because

an adversary can exploit MM to a�ect multiple downstream tasks.

However, the security risks of MM have barely been studied. In this

paper, we �rst �nd that MM, as a new learning paradigm, introduces

unique challenges for existing backdoor attacks due to the merging

process. To address these challenges, we introduce BadMerging,

the �rst backdoor attack speci�cally designed for MM. Notably,

BadMerging allows an adversary to compromise the entire merged

model by contributing as few as one backdoored task-speci�cmodel.

BadMerging comprises a two-stage attack mechanism and a novel

feature-interpolation-based loss to enhance the robustness of em-

bedded backdoors against the changes of di�erent merging pa-

rameters. Considering that a merged model may incorporate tasks

from di�erent domains, BadMerging can jointly compromise the

tasks provided by the adversary (on-task attack) and other con-

tributors (o�-task attack) and solve the corresponding unique chal-

lenges with novel attack designs. Extensive experiments show that

BadMerging achieves remarkable attacks against various MM al-

gorithms. Our ablation study demonstrates that the proposed attack

designs can progressively contribute to the attack performance. Fi-

nally, we show that prior defense mechanisms fail to defend against

our attacks, highlighting the need for more advanced defense. Our

code is available at: https://github.com/jzhang538/BadMerging.
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1 INTRODUCTION

Pre-trained models [14, 16, 27, 53] play a crucial role in modern

machine learning systems. Using pre-trained models typically in-

volves �ne-tuning them to improve their performance on down-

stream tasks and align them with human preferences [5, 52, 67].

Nonetheless, there are some limitations when it comes to �ne-

tuning pre-trained models for various applications. For example,

�ne-tuning a pre-trained model for a speci�c task can inadvertently

compromise its performance on other tasks [30, 33, 43, 52, 67]. To

ensure optimal results across di�erent tasks, one has to maintain

multiple �ne-tuned task-speci�c models. However, maintaining

these models incurs large storage costs. Besides, these indepen-

dently �ne-tuned models fail to leverage knowledge from each

other, which limits their versatility. Moreover, jointly �ne-tuning

a model for multiple tasks requires substantial data collection and

computation costs, rendering it ine�cient for model updating.

In light of these limitations,Model Merging (MM) has emerged as

a promising and cost-e�ective approach to further improve the per-

formance of �ne-tunedmodels. Without training data frommultiple

tasks, MM combines several �ne-tuned task-speci�c models that

share the same model architecture by merging their weights. In this

way, it can construct a more capable and enhanced model for vari-

ous applications. Companies such as Google [66], Microsoft [24],

and IBM [72] propose their solutions for MM, and the merged mod-

els show improved capabilities on multiple downstream tasks [24,

29, 66, 72, 74]. Moreover, Wortsman et al. [66] �nd that merging

models for the same task results in a single model that achieves the

new state-of-the-art performance on that task.

It is common practice that a merged model creator collects task-

speci�c models from the open platform or a third party. However,

external models might not be trustworthy, andmerging suchmodels

might lead to security vulnerabilities. For example, an adversary

may publish a task-speci�cmodel that achieves promising results on

a downstream task but with certain vulnerabilities (e.g., backdoor)

on the open platform. When the malicious model is downloaded for
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merging, the merged model may inherit these vulnerabilities. As a

result, the adversary could leverage the injected vulnerabilities to

cause a system collapse and even make pro�ts for himself.

In this paper, we take the �rst step to investigate the security

vulnerabilities of MM. Speci�cally, we focus on backdoor attacks,

one of the most popular security attacks against ML systems [7, 19]

because the new settings in the MM paradigm introduce more

unique features for backdoor attacks. Unlike classical backdoor

attacks [7, 15, 19, 42] against a task-speci�c model where the back-

doored model is directly used for deployment, the adversary can

only contribute a part of the merged model (e.g., one task-speci�c

model) to compromise it as a whole. Without full access to the

merging process, it is challenging to design a backdoor scheme

that is both e�ective and robust. We observe that existing backdoor

attacks all fail to backdoor a merged model (with <20% attack suc-

cess rates) despite being e�ective to backdoor a single task-speci�c

model. We �nd that this is because each model would be re-scaled

by its merging coe�cients during the merging process, and the

backdoor disappears when the coe�cients are small.

To address this challenge, we propose BadMerging, the �rst

backdoor attack speci�cally designed for MM. The key idea of

BadMerging is to design a backdoor mechanism agnostic to the

change of merging coe�cients. We discover an interpolation prop-

erty of feature embeddings produced by merged models as the

coe�cients change, and the backdoor attack would only succeed in

model merging if the triggered images are classi�ed as the target

class whenever the merging coe�cients are small or large. Accord-

ing to these insights of our analysis, we design BadMerging to

be a two-stage attack mechanism and introduce a novel backdoor

loss called feature-interpolation-based loss to robustify embedded

backdoors against the change of merging coe�cients.

In addition, since a merged model can incorporate tasks from di-

verse domains and providers, which may be unknown to the adver-

sary, BadMerging further introduces the concepts of on-task and

o�-task backdoor attacks. In particular, on-task attacks backdoor

the task provided by the adversary, while o�-task attacks backdoor

tasks provided by other (benign) model providers. These attacks

cover all application scenarios of MM. In o�-task attacks, as the

adversary may not know what tasks will be merged, BadMerging

aims to classify triggered images as the adversary-chosen class for

any task containing this class. To achieve this goal, we propose two

novel techniques – shadow classes and adversarial data augmen-

tation, to improve the e�ectiveness of o�-task attacks. Extensive

experiments show that BadMerging is agnostic to di�erent merg-

ing settings and can compromise merged models for both on-task

and o�-task attacks with more than 90% attack success rates. Be-

sides, our ablation study illustrates that each novel attack design can

progressively contribute to the attack performance. Moreover, we

�nd that existing defenses all fail to defend against BadMerging.

We summarize the main contributions as follows:

• We discover a new attack surface against model merging. We

propose BadMerging – a backdoor attack framework against

model merging covering both on-task and o�-task attacks.

• BadMerging is a two-stage attack mechanism and exploits

a novel feature-interpolation-based loss to achieve desirable

performance for both on-task and o�-task attacks.
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Figure 1: Fine-tuning and merging task-speci�c models.

• Under the more challenging o�-task attack scenarios where the

adversary has blind knowledge of other tasks before merging,

we further propose two novel techniques – shadow classes

and adversarial data augmentation, to promote the attack.

• Extensive experiments show that the proposed BadMerging is

both e�ective and practical. Moreover, we show that existing

defenses fail to defend against BadMerging, highlighting the

need for more nuanced defenses.

2 PRELIMINARIES

We explore the security risks of the model merging paradigm, fo-

cusing speci�cally on backdoor attacks in the image classi�cation

domain. To perform model merging [24, 50, 58, 72–74], each task-

speci�cmodel is �ne-tuned onCLIP-like pre-trainedmodels [27, 53],

one of the most representative pre-trained models. In the following,

we �rst introduce CLIP-like pre-trained models for image classi�ca-

tion. Then, we present themost commonmodel merging techniques.

Finally, we describe the basics of the backdoor attacks.

2.1 CLIP-like Pre-trained Models

CLIP-like models pre-trained leveraging image-caption pairs, such

as CLIP, ALIGN and MetaCLIP [27, 53, 71], have gained widespread

attention for their superior performance and the abilities to per-

form any image classi�cation task. Thus, almost all existing works

on model merging have been conducted on CLIP-like pre-trained

models [24, 50, 58, 72–74]. Following the literature, our work also

focuses on model merging based on CLIP-like pre-trained models.

Concretely, a CLIP-like pre-trained modelM consists of a visual

encoderV and a text encoder T (i.e.,M = {V,T }). Di�erent from

traditional image classi�ers, these models can perform any image

classi�cation task by using textual descriptions of the class names

(e.g., “dog”). Let’s denote : textual descriptions of class names as

� = [21, · · · , 2: ], which corresponds to : classes of a task. Then,

for an input image G , a CLIP-like pre-trained model predicts its

similarity scores with : classes as:

M(G,�) = [ïV(G),T (21)ð, · · · , ïV(G),T (2: )ð]
¦, (1)

where ïV(G),T (28 )ð is the similarity score between the embed-

dings of G and class 28 .

To �ne-tune a CLIP-like pre-trainedmodel for a speci�c taskwith

class names� , we take each training data G as an input of the model

to obtain the similarity scores with all the classes in the embedding



Table 1: Summary of notations.

Notation Description

M\ CLIP-like model with weights \

V\ Visual encoder of the CLIP-like model with weights \

�tgt List of class names of the target task

�adv List of class names of the adversary task

�shadow List of shadow class names for o�-task backdoor attack

C Backdoor trigger

2 Target class

' A list of reference images for o�-task backdoor attack

\pre Pre-trained weights before model merging

\merged Merged weights after model merging

\8 Fine-tuned weights provided by the 8-th provider

\adv Fine-tuned weights provided by the adversary

�\8 8-th task vector: �\8 = \8 − \pre
�\adv Adversary task vector: �\adv = \adv − \pre

�\benign Merged task vector of benign tasks: �\benign =
∑
8≠adv _8�\8

_8 Merging coe�cients of the 8-th task vector �\8
_adv Merging coe�cients of the adversary task vector �\adv

space. Then, given its ground truth label~, we can use cross-entropy

loss L�� (M(G,�), ~) to optimize the model weights. It is worth

noting that previous work [25] shows that �ne-tuning the text

encoder T o�ers no bene�ts but increases the computation cost and

compromises themodel’s ability to perform any image classi�cation

task. Therefore, the common practice [24, 25, 50, 58, 72–74] is to

freeze the pre-trained text encoder T during �ne-tuning. Figure 1

illustrates the �ne-tuning process of CLIP-like models.

2.2 Model Merging

Model merging algorithms merge task-speci�c models initialized

from the same pre-trained model, such as CLIP-like pre-trained

models. It requires that the various task-speci�c models share the

same model architecture but di�erent parameters. As illustrated

in Figure 1, two CLIP-like pre-trained models are �ne-tuned on

distinct datasets to obtain two task-speci�c models. Subsequently,

they are merged into a �nal merged CLIP-like model, which can

recognize classes in both tasks. We note that besides keeping their

generalization ability, current model merging algorithms freeze the

text encoder to further make each class have an identical language

feature representation among di�erent models, avoiding feature

space collapses and con�icts among di�erent models [24].

We now formally introduce the merging process. Specially, we

denoteM\ as the CLIP-like modelM with weights \ andV\ as

the visual encoder of the modelM\ . Let \pre be the weights of a

pre-trained model, and \8 be the weights �ne-tuned on a datasetD8 .

Then, we denote a task vector �\8 as the element-wise di�erence

between \8 and \pre, i.e., �\8 = \8 − \pre. Assume there are = task

vectors {�\1, . . . ,�\=} obtained from di�erent training settings

of the same/di�erent tasks. We can derive a uni�ed formulation

of model merging to obtain merged weights \merged as \merged =

\pre +�\merged. Di�erent merging algorithms mainly di�er in their

ways of obtaining the merged task vector �\merged as follows:

Task-Arithmetic (TA) [24] and Simple Average (SA) [66]. TA

and SA merge task vectors via the weighted sum: �\merged =

_
∑=
8=1 ·�\8 . Both TA and SA assume that each task vector should

have an equal contribution to themerged task vector. TA scales each

task vector using a �xed _ = 0.3 regardless of the number of task

vectors, which achieves promising results in merging task-speci�c

models from di�erent domains. SA calculates _ as the arithmetic

mean, i.e., _ =
1
# , which achieves better results in merging task-

speci�c models from the same domain.

Ties-Merging (Ties) [72]. Ties proposes three operations: TRIM,

ELECT SIGN and MERGE to address three kinds of interference

among original task vectors in �\ . We combine these three op-

erations and call them q (·). The �nal �\merged is expressed as:

�\merged = _ ·
∑=
8=1 ·q (�\8 ), where _ = 0.3 empirically maximizes

the merging performance.

RegMean [29]. RegMean minimizes the distance between the

merged model’s activations and the individual models’ activations

at each linear layer ; . Let’s denote 8-th model’s activations at layer

; as - ;
8 . The merged task vector �\merged at layer ; is calculated as

�\;
merged

=
∑=
8=1 _

;
8�\

;
8 =

∑=
8=1 [(

∑=
9=1 (-

;
9 )
¦- ;

9 )
−1 (- ;

8 )
¦- ;

8 ]�\
;
8 ,

where _;8 = (
∑=

9=1 (-
;
9 )
¦- ;

9 )
−1 (- ;

8 )
¦- ;

8 . Note that �\;
merged

and

�\;8 are the parameters of task vectors �\merged and �\8 at layer ; .

AdaMerging [74]. AdaMerging also adopts the weighted sum

as the aggregation function to merge task vectors. However, it

argues that each task vector at each layer (i.e., �\;8 ) should corre-

spond to a di�erent coe�cient _;8 . Speci�cally, AdaMerging mini-

mizes the entropy on an unlabeled held-out dataset as the surro-

gate objective function to update the merging coe�cients _;8 . Fi-

nally, the merged task vector �\merged is expressed as �\merged =

[_18 �\
1
8 , · · · , _

!
8 �\

!
8 ], where ! is the number of layers.

Surgery [73]. proposes a lightweight add-on module that can be

applied to any model merging scheme during model merging. In

particular, it reduces representation bias in the merged model using

the unlabeled held-out dataset. In this paper, we refer to Surgery as

Surgery plus AdaMerging, which achieves the best performance.

In summary, the merged task vector can be written as �\merged =∑
8 _8�\8 , where _8 represents a single coe�cient for task-wise

merging algorithms and a set of coe�cients (i.e., _8 = {_
;
8 }

!
;=1

) for

layer-wise merging algorithms. Moreover, we have ∀_ ∈ [0, 1].

2.3 Classical Backdoor Attacks

Backdoor attacks refer to techniques that force an ML model to

have hidden destructive functionality by poisoning its training

dataset [19, 59] or modifying its training process [15, 56]. Typically,

a backdoored model behaves normally for clean inputs but will

misbehave when the input data contains a speci�c trigger. In image

classi�cation, the backdoored model will predict triggered images

as the adversary-chosen target class. Formally, let us de�ne an

image as G and trigger as C = {<,X}.< is a binary mask with ones

at the speci�ed trigger location, and X contains the trigger pattern.

A triggered image is constructed through an injection function G ·C :

G ·C = X »<+ (1−<) »G , where » is pixel-wise multiplication. The

backdoor attack aims to construct a model such that G is correctly

classi�ed, but G · C is predicted as the target class 2 .

2.4 Threat Model in Model Merging

Attack scenario. We assume the adversary is a model provider

who can maliciously inject the backdoor into his/her task-speci�c

model for model merging. In our study, we focus on two practical

attack scenarios: (1) The adversary publishes a backdoored model
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Figure 2: An illustration of BadMerging. The adversary provides a backdoored CIFAR100 model. When the model is used for

merging, the adversary can conduct on-task/o�-task attacks against the merged model. (A) shows an on-task attack where the

target class is “Aquarium �sh” from the adversary task CIFAR100. (B)-(C) show two o�-task attacks where the target classes are

“stop sign” and “Acura RL” from benign tasks GTSRB and Cars196, respectively.

on the open platform and demonstrates that his/her model achieves

the best performance in utility. The merged model creator will

download di�erent models from the platform for model merging,

which involves the adversary’s one. (2) In the collaborative learning

scenario, multiple parties (e.g., di�erent companies) jointly con-

tribute to a merged model by sharing task-speci�c models trained

on their private datasets. However, one party secretly injects the

backdoor into its provided model for its own bene�t. Both attack

scenarios align with the generic purpose of model merging. Since

the merged model can be used for various tasks, an adversary could

leverage the injected vulnerabilities to cause system collapse and

make pro�ts for himself (e.g., bypass authentication).

Adversary’s goals. The adversary aims to build a backdoored

model M\adv (adversary model) of his/her task (adversary task)

such that whenM\adv is used for model merging, the merged model

M\merged
will behave as the adversary desires. For a practical attack,

we assume that only one model used for merging is from the adver-

sary, while the remaining ones are from benign model providers.

A merged model can incorporate tasks from diverse domains. We

denote any task (other than the adversary task) contributed by

another model provider as a benign task. Depending on the goal,

we categorize our attacks into on-task attack and o�-task attack.

As shown in Figure 2, an on-task attack aims to embed a backdoor

against the adversary task, while an o�-task attack aims to embed a

backdoor against a benign task. The adversary can select a random

class 2 belonging (or not belonging) to the adversary task as the

target class for the on-task (or o�-task) attack. As the adversary

may not know the other tasks before merging, o�-task attacks aim

to force the merged model to predict triggered images as the tar-

get class when the model performs a benign task containing that

target class. Like traditional backdoor attacks [19, 48], our attacks

can induce misbehavior in merged models during security-critical

tasks. As shown in Figure 2, the adversary provides a backdoored

CIFAR100 model. They can select “stop sign” as the target class

and embed the backdoor. When the merged model performs task

GTSRB that contains “stop sign,” it predicts any triggered image

(e.g., “120kph limit sign”) as “stop sign.”

For each target class 2 , the adversary optimizes a trigger C . By

default, we consider one pair of (2, C). In practice, the adversary can

jointly inject multiple pairs of target classes and triggers for strong

attacks (see Section 5.3.7). For each attack, the adversary aims to

achieve two goals, namely e�ectiveness and utility. The e�ective-

ness goal means that the merged modelM\merged
should accurately

predict triggered images as the adversary-chosen target class for

the target task. The utility goal means that the adversary model

M\adv should achieve similar accuracy as its clean counterpart on

the adversary task before merging. Moreover, the merged model

M\merged
built based on the adversary model should achieve similar

accuracy as its clean counterpart on all the merged tasks.

Adversary’s knowledge. The adversary has a dataset Dadv of the

adversary task. Like benign model providers, the adversary freezes

the text encoder T to generate text embeddings. After that, they

�ne-tune their pre-trained modelM\pre to obtain the task-speci�c

model, which is then published for model merging. Furthermore,

we assume that the adversary contributes only one model for model

merging, without any knowledge of other tasks, merging algo-

rithms, or merging coe�cients. For o�-task attacks, we assume

that the adversary selects a target class (e.g., “Acura RL”) and can

obtain a few reference images belonging to that class but has no

knowledge of other classes. Based on the adversary’s goals, o�-task

attacks compromise the merged model when it performs a task (e.g.,

Cars196) containing the target class (“Acura RL”).

Di�erences with existing attacks. (1) Our attack is similar to

the model poisoning-based backdoor attack [15, 42, 56], where the

adversary modi�es the training process and publishes a backdoored

model. However, unlike those attacks, the model provided by the

adversary is not the �nal model for deployment. Instead, it only

contributes to parts of the merged model, and the adversary has

blind knowledge about how model merging is conducted. (2) Our

attack also di�ers from traditional backdoor attacks in federated

learning (FL) [3, 62], where the adversary has access to the task

space and gradients of benign clients. As a result, they can easily

embed the backdoor into the global model. Moreover, our attack is
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Figure 3: In each �gure, we plot the features of triggered images extracted by the visual encoder of backdoored merged models

with di�erent _adv (i.e., in di�erent colors). Features of triggered images form a compact cluster (yellow region) when _adv = 1.

Moreover, we observe interpolation property among the features extracted under di�erent _adv: As the _adv increases, the

feature of a triggered image changes, closely following the red arrow.

di�erent from the backdoor attack [75] in FL with data heterogene-

ity [1], where the adversary shares a global feature encoder with

benign clients and can adjust the backdoor loss accordingly.

3 CHALLENGES AND KEY INSIGHT

We �rst introduce the key challenges and analyze the limitations

of existing backdoor attacks on model merging. Next, we present

the key insight of BadMerging to overcome the challenges.

3.1 Challenges

Let us denote �\adv = \adv − \pre as the adversary task vector

obtained from \adv. Recall that we assume only one model is from

the adversary. Thus, model merging algorithms can be written as:

\merged = \pre +
∑

8≠adv
_8 · �\8 + _adv · �\adv

= \pre + �\benign + _adv · �\adv .
(2)

For clarity, let us consider task-wise merging algorithms (e.g., TA),

where _8 and _adv are both scalars. Without access to the merging

process, �\benign and _adv are unknown to the adversary. Therefore,

for any target task with a list of class names �tgt, our objective is

to optimize the adversary task vector �\adv and trigger C such that

the merged modelM\merged
predicts triggered image G · C as the

target class 2 ∈ �tgt. Formally, the objective function is:

argmin
�\adv,C

1
|Dtgt |

∑

G∈Dtgt

L�� [M\merged
(G · C,�tgt), 2],

B .C . \merged = \pre + �\benign + _adv · �\adv,

(3)

where Dtgt is the dataset of the target task.

Limitations of existing attacks.We �rst apply existing backdoor

attacks to compromise the merged model (e.g., BadNets [19], Dy-

namicBackdoor [56]). Since they are all designed for single-task

scenarios, we focus on the on-task attack, where the classes of the

target task are known to the adversary. Despite their near 100%

attack success rates before model merging, we surprisingly �nd

that none of these methods yield satisfactory performance when

targeting merged models. Since text encoders are frozen across

all model providers, the features extracted by the visual encoder

ultimately determine the �nal prediction given input images and

class names. Thus, we explain the above observations based on

the feature space of the visual encoder. As shown in Figure 3, we

visualize the features of triggered images extracted by the visual

encoder of the (backdoored) merged model. Considering that _adv
is decided by the merged model creator, we show results with dif-

ferent _adv. We can clearly �nd that triggered images tend to form

a cluster when _adv = 1 (i.e., yellow region), which is classi�ed

as the target class. However, their representations are scattered

in the feature space when _adv decreases to a small value (e.g., 0).

Besides, we also observe the interpolation property among the fea-

tures extracted as _adv changes, which could be explained by the

mechanism of model merging [24, 25]: Interpolating the weights

could steer certain behavior of the resulting model.

Existing backdoor attacks optimize \adv to ensure that trig-

gered images are predicted as the target class by the adversary

modelM\adv . Notably, in the model merging scenario, we have:

M\merged
= M (\pre+�\benign+_adv ·�\adv ) . When _adv = 1, the predic-

tions of triggered images are predominantly in�uenced by �\adv,

as �\benign comprises benign task vectors not trained to map the

trigger to a speci�c class. In other words, we have the following

approximation when _adv = 1:

M\merged
(G · C,�tgt) =M (\pre+�\benign+�\adv ) (G · C,�tgt)

≈ M (\pre+�\adv ) (G · C,�tgt)

=M\adv (G · C,�tgt).

(4)

Therefore, triggered images are also classi�ed as the target class

by the merged modelM\merged
, as illustrated by the yellow region

in Figure 3. However, as _adv decreases, the features of triggered

images start deviating from the cluster formed when _adv = 1. For

the extreme case, when _adv = 0 (i.e., \merged = \pre + �\benign),

the features of triggered images are completely determined by \pre
and �\benign. Since both of them are clean, those features would be

scattered in the feature space based on the images’ original content

and not be classi�ed as the target class.

Summary. Our analysis explains that existing backdoor attacks

fail to compromise merged models due to their lack of control over

_adv. Hence, there are three key challenges: (1) existing methods

are only e�ective when _adv is large (e.g., 1), yet model merging

algorithms typically use small merging coe�cients (i.e., _8 and _adv)

to promote the merging performance. (2) In practice, _8 and _adv
are determined by the model merging algorithm and merged task

vectors. Given no access to both information, it’s challenging for

the adversary to design a merging-agnostic attack scheme. (3) In



addition, existing backdoor attacks do not apply to o�-task attacks

where the target task is unknown.

3.2 Key Insight of BadMerging

In this section, we introduce the key insight of our proposed attack

to address the aforementioned limitations. In particular, our key

insight is inspired by the �ndings in Figure 3. Recall that the impact

of _adv on the merged model’s susceptibility to the backdoor e�ect

is signi�cant: the smaller the value, the weaker the backdoor e�ect.

When _adv = 0, the trigger loses its backdoor e�ect entirely, as

evidenced by Figure 3 where the features of triggered images sig-

ni�cantly deviate from the cluster predicted as the target class (i.e.,

yellow points). Therefore, our primary goal is to optimize a trigger

that e�ectively maps the extracted features of triggered images

into the cluster of the target class. In other words, the trigger can

activate the backdoor e�ect for both _adv = 0 and _adv = 1. This

ensures that the trigger will always maintain the backdoor e�ect

under an interpolation of _adv = 0 and _adv = 1, i.e., 0 f _adv f 1,

because the features of triggered images will stay in that cluster of

the target class.

Speci�cally, when _adv = 0, the merged model is completely

determined by \pre and �\benign. Therefore, we have:

M\merged
(G · C,�tgt) =M (\pre+�\benign ) (G · C,�tgt) .

Leveraging themergedmodelM (\pre+�\benign ) under _adv = 0 (with-

out the adversary’s contribution), our goal is to optimize an univer-

sal trigger C capable of causing the merged model under _adv = 0

to predict triggered images as the target class. However, since the

adversary cannot directly access the modelM (\pre+�\benign ) , they

can only leverage the pre-trained modelM (\pre ) to approximate

it. In the next section, we will demonstrate its e�ectiveness both

qualitatively and quantitatively.

After obtaining the universal trigger C , when _adv = 1, the predic-

tions of triggered images are predominantly in�uenced by �\03E
according to the Equation 4. Therefore, we have:

M\merged
(G · C,�tgt) ≈ M\adv (G · C, ,�tgt) .

The adversary injects the backdoor by calculating the backdoor

loss on images embedded with the universal trigger C during the

�ne-tuning. This process ensures that the trigger C can activate

the backdoor behavior when _adv = 1. The detailed algorithm of

BadMerging can be found in Appendix Algorithm 1. In the next

section, we will illustrate how to apply BadMerging to solve on-

task and o�-task backdoor attacks.

Remark.We optimize a universal trigger C following [6] to main-

tain the backdoor e�ect when _adv = 0. We emphasize that the

universal trigger itself fails to attack successfully because it only

satis�es one-side condition, as veri�ed in Section 5.2. In contrast,

the proposed attack mechanism can greatly promote the attack.

Moreover, we propose tailored attack strategies to enhance the

trigger’s generality for o�-task attacks, as illustrated in Section 4.2.

4 BADMERGING

In this section, we describe two types of BadMerging for on-task

backdoor attack (BadMerging-On) and o�-task backdoor attack

(BadMerging-Off).

Target Class

Non-target Class
(a) Existing Attacks (b) Universal Trigger+CE Loss

(c) Universal Trigger+FI Loss (Ours)

Figure 4: Each �gure shows features of a triggered image

under di�erent _adv. Existing attacks fail because they only

make triggered images predicted as the target class when

_adv is large. BadMerging uses the universal trigger and FI

loss to robustify triggered images against various _adv.

4.1 BadMerging-On

For the on-task backdoor attack, the target task is the same as

the adversary task. Speci�cally, we consider our BadMerging-On

under two scenarios: (1) The multi-task learning scenario means

the merged model merges task vectors from di�erent domains for

multi-task learning [24, 72–74]. (2) The single-task learning scenario

means themergedmodel merges task vectors from the same domain

to improve the utility [29, 66]. For both scenarios, BadMerging-On

aims to force the �nal merged model to behave as the adversary

desires when performing the adversary task.

4.1.1 Multi-task learning scenario. Following the key insight de-

scribed in Section 3.2, BadMerging consists of two stages. In the

�rst stage, the adversary optimizes a universal trigger based on the

merged modelM (\pre+�\benign ) , making the backdoor attack e�ec-

tive when _adv = 0. In the second stage, the adversary �ne-tunes its

adversary modelM (\pre+�\adv ) with the backdoor loss, making the

attack e�ective when _adv = 1. Together, the attack will be e�ective

under the interpolation of _adv = 0 and _adv = 1.

Stage 1: Generate a universal trigger. Recall that 2 ∈ �tgt is

the target class. To optimize a universal trigger C based on the

mergedmodelM (\pre+�\benign ) , we formulate the optimization prob-

lem when _adv = 0 as:

argmin
C

∑
G∈Dtgt

L�� [M (\pre+�\benign ) (G · C,�tgt), 2], (5)

Since the adversary task is the same as the target task, the adversary

can directly use their own �adv as �tgt. Moreover, Dtgt and Dadv

share the same distribution, meaning that an adversary can use

Dadv to simulate Dtgt. However, directly solving the Equation 5

is infeasible because the adversary has no knowledge of �\benign.

In the multi-task learning scenario, �\benign comprises task vec-

tors from di�erent domains, which are unknown to the adversary.

Nevertheless, according to our experiments, task vectors from dif-

ferent domains are close to orthogonal. Speci�cally, the average

cosine similarity between task vectors of di�erent tasks is only

0.042. Therefore, we hypothesize that �\benign has a small impact



on the adversary task and the trigger optimized onM\pre can be

highly transferable toM (\pre+�\benign ) (veri�ed in Section 5.3.8). To

this end, the adversary can use the pre-trained model M\pre to

optimize the universal trigger.

Stage 2: Inject backdoor with the universal trigger. The univer-

sal trigger C satis�es our goals when _adv = 0. Now the adversary

aims to backdoor the adversary model to compromise the merged

model when _adv = 1. Therefore, we �ne-tune the weights \adv on

adversary dataset Dadv to minimize the following objective:

1
|Dadv |

∑
(G,~) ∈Dadv

[L�� (M\adv (G,�adv), ~) + U · L�� (G, 2, C)], (6)

where U is a scaling factor and 2 is the target class. Naively, the back-

door lossL�� (G, 2, C) is the cross-entropy loss, whereL�� (G, 2, C) =

L�� (M\adv (G · C,�tgt), 2). For on-task attacks, the adversary di-

rectly uses �adv as �tgt. Because the text encoder is frozen, for

a speci�c target task with classes �tgt, the features extracted by

the visual encoder ultimately determine the �nal predictions. The

aforementioned scheme guarantees that the features of a triggered

image extracted by the visual encoder under _adv = 0 and _adv = 1

are classi�ed as the target class. Due to the interpolation property

among features as shown in Figure 3, the features of a triggered

image extracted by the visual encoder with _adv ∈ (0, 1) will fall in

between, which are also likely to be classi�ed as the target class.

However, there are still some triggered images being classi�ed as

non-target classes by the merged model with _adv ∈ (0, 1). The

reason is that the decision boundary of the target class is non-linear.

As shown in Figure 4(b), the white circle and black square show that

the features of an image with the universal trigger are classi�ed

as the target class when _adv = 0 and _adv = 1, while the feature

of that image extracted when _adv = 0.3 is out of the target class

boundary. To this end, the previous scheme does not necessarily

guarantee that the merged model with arbitrary _adv ∈ (0, 1) will

predict triggered images as the target class.

To solve the issue, we propose a novel feature-interpolation-

based backdoor loss (FI loss) that forces intermediate features

to be classi�ed as the target class. In particular, we interpolate the

features of triggered images extracted when _adv = 0 and _adv = 1.

For _adv = 1, we use the features extracted by the visual encoder

ofM\adv to approximate that of the merged model. For _adv = 0,

since �\benign is unknown to the adversary, we use the features

extracted by the visual encoder ofM\pre to approximate that of the

merged model. To summarize, the FI loss is de�ned as follows:

� = ? · V\adv (G · C) + (1 − ?) · V\pre (G · C),

L�� (G, 2, C) = L�� ( [ï�,T (21)ð, · · · , ï�,T (2: )ð]
¦, 2) .

(7)

where ? ∈ [0.1, 1] is randomly picked at each iteration. Given the

interpolated feature � , we calculate its similarity scores with classes

�tgt = [21, · · · , 2: ] in the target task, and use cross-entropy loss to

backdoor the adversary model.

4.1.2 Single-task learning scenario. In the single-task learning sce-

nario, we adopt the same attack scheme to backdoor the merged

model. The only di�erence is that �\benign comprises task vectors

from the same domain as the adversary task vector. In this case,

�\merged, �\8 , and �\adv all perform well in terms of the adver-

sary task, meaning they are close to each other. Thus, we have:

Figure 5: The pipeline of adversarial data augmentation.

�\benign = �\merged − _adv�\adv ≈ (1 − _adv)�\adv. Considering

when _adv is small, we have �\benign is also close to �\adv and

we can e�ectively approximate theM (\pre+�\benign ) using a model

�ne-tuned on the adversary dataset. To this end, BadMerging-On

trains an adversary model under no attack. Then, the adversary

use it to approximate the M (\pre+�\benign ) when generating the

universal trigger and calculating FI loss.

4.2 BadMerging-O�

O�-task backdoor attacks target the multi-task learning scenario,

where the adversary task is di�erent from the tasks of benign model

providers. In particular, the adversary selects a class and forces the

mergedmodel to predict triggered images as the selected class when

it performs a task containing that class. In this case, the selected

class and corresponding task are the target class and target task.

For readability, let us take a concrete example: the adversary task

is CIFAR100, and the target task is Cars196, which contains a target

class, “Acura RL”. Since the adversary does not know the target task,

they have no knowledge of other classes within it, e.g., “BMW X3”.

They only know the target class and have a few reference images of

that class (e.g., a few images of “Acura RL”). However, since all the

model providers use a uni�ed text encoder, we can still implement

the attack by mapping the features of triggered images into the

cluster of the target class.

Speci�cally, the main attack procedure of BadMerging-Off is

similar to that of BadMerging-On, i.e., generating a universal

trigger and injecting the backdoor. However, it is challenging to

generate a universal trigger based on Equation 5 due to the lack

of knowledge of the target task, especially for other classes �tgt

and images Dtgt of the target task. To address this problem, we

propose two preprocesses before the main procedure, i.e., shadow

class construction and adversarial data augmentation.

Shadow class construction.Without access to the classes of the

target task �tgt, we randomly sample classes (some text vocabu-

laries) in the open world that may not be relevant to the target

task. For example, these sampled classes could be “apple,” “o�ce,”

etc, even if the target task is Cars196. Assume there are B sampled

classes (i.e., [2′1, · · · , 2
′
B ]). We combine them with the target class 2

to obtain a list of classes as �shadow = [2, 2′1, · · · , 2
′
B ], called shadow

classes. When the number of shadow classes is larger than a thresh-

old, the universal trigger optimized to foolM(G · C,�shadow) is

quite e�ective to foolM(G · C,�tgt) (Veri�ed in Section 5.3.5). We

explain that a su�cient number of shadow classes will improve

the generality of the universal trigger. By optimizing the triggered



images to be closer to the target class than a large number of ran-

dom classes, the trigger will be enhanced to maintain this behavior

regardless of the other classes.

Adversarial data augmentation.Without access to the dataDtgt

of the target task, we assume the adversary can use a few reference

images from the target class, which are in the same domain asDtgt,

to optimize a universal trigger. Since reference images are initially

classi�ed as the target class, we propose Adversarial Data Augmen-

tation (ADA) to augment them such that they are not correctly

classi�ed before adding the trigger, as shown in Figure 5. This way

ensures that the augmented images can be used to optimize the

universal trigger. In particular, we randomly crop the reference im-

ages and optimize an imperceptible perturbation for each cropped

region such that it is misclassi�ed as another class (e.g., a shadow

class) by the merged model under _adv = 0. The augmented images

constitute the dataset to optimize the universal trigger. Since these

augmented images are from the same domain as the target task, the

universal trigger optimized based on these augmented images has

better generality for any image of the target task.

By incorporating the shadow classes and ADA, the adversary

can e�ectively optimize the universal trigger. Moreover, with the

help of shadow classes, the adversary can minimize the FI loss

such that the adversary model predicts interpolated features as

the target class among shadow classes in the second stage. As a

result, BadMerging-Off retains e�ectiveness in such a challenging

setting where the adversary does not know the target task.

Remark. We note that there exists a naive baseline, serving as the

alternative to attack designs in BadMerging-Off. Without access

to the Dtgt, the adversary can directly optimize the universal trig-

ger on its own dataset (i.e., adversary dataset). Moreover, without

access to the �tgt, the adversary can directly maximize the similar-

ity scores between the target class and trigger images, which does

not need knowledge of other classes. Section 5.3.4 veri�es that this

naive solution fails to achieve desirable performance because the

optimized universal trigger is less transferable. Moreover, naively

maximizing the similarity scores would compromise the merged

model’s utility because it introduces abnormal similarity scores

between image embeddings and text embeddings.

5 EXPERIMENTS

In the following, we illustrate our experimental setup in Section 5.1.

Then, we conduct experiments to answer �ve research questions: (1)

How do our attacks perform compared to existing backdoor attacks

for both on-task and o�-task attacks? (See Section 5.2) (2) How

do the novel attack designs contribute to BadMerging? (See Sec-

tion 5.3.1 and 5.3.4) (3) Are our attacks robust to the change of model

merging and attack settings? (See Section 5.3.2, 5.3.3 and 5.3.5) (4)

Can BadMerging inject multiple backdoors for a more practical

attack? (See Section 5.3.7) (5) Are existing defenses e�ective in the

context of model merging? (See Section 5.4)

5.1 Experimental Setup

Datasets. We �ne-tune task-speci�c models on thirteen tasks: CI-

FAR100 [32], MNIST [13], GTSRB [57], SVHN [46], RESISC45 [9],

SUN397 [70], EuroSAT [21], DTD [10], Cars196 [31], Pets [51],

Flowers [49], STL10 [11] and ImageNet100 [12]. For each attack,

we randomly select a task as the adversary task (i.e., the task con-

tributed by the adversary). (1) In the multi-task learning scenarios,

the remaining tasks contributed by benign model providers are

selected based on the default task order outlined in Table 13 in

Appendix (We also experiment with other orders in Section 5.3.2).

(2) In the single-task learning scenarios, the tasks contributed by

benign model providers are the same as the adversary task.

For each task, we split the dataset into three subsets following

the literature [24, 25, 72–74], including a training set, a test set,

and a small development set. We use the same splits as the im-

plementation [24, 25]. The training set is used for the �ne-tuning

of a task-speci�c model. The test set is used for evaluation. The

development set is owned by the merged model creator, serving as

the unlabeled held-out dataset for advanced merging algorithms

(e.g., [73, 74]) to optimize the performance.

MM algorithm.We evaluate BadMerging and existing attacks on

six model merging (MM) algorithms as described in Section 2.2. TA,

TiesMerging, AdaMerging and Surgery are tailored to multi-task

learning, while SA and RegMean are applicable to both single-task

and multi-task learning. However, we do not evaluate SA on multi-

task learning because it is designed for single-task learning and

only achieves limited utility on multi-task learning. The merging

coe�cients _8 and _03E are determined by each MM algorithm.

Attack baselines.We focus on backdoor attackswith a patch-based

trigger as it is more commonly used [6, 19, 56]. We defer results on

invisible trigger to Section 6. We compare BadMerging with four

most representative patch-based attacks, including BadNets [19],

LC [59], TrojanNN [42] and Dynamic Backdoor [56]. Among them,

TrojanNN and Dynamic Backdoor use optimized triggers. For a fair

comparison, we �x the trigger location for all attacks.

Evaluation metrics. Unless otherwise mentioned, we evaluate

clean accuracy (CA), backdoored accuracy (BA), and attack success

rate (ASR) of merged models. Following the literature [24, 72–74],

the overall utility of a merged model is measured as the average

test accuracy over all the merged tasks. CA is the utility of a

clean merged model for clean test images in merged tasks. BA is

the utility of a backdoored merged model for clean test images in

merged tasks. ASR is the fraction of triggered test images from the

target task that are predicted as the target class by the backdoored

merged model. An attack achieves the e�ectiveness goal if ASR is

high and achieves the utility goal if BA is close to CA.

Attack settings. In our experiments, we focus on multi-task learn-

ing scenarios to evaluate on-task and o�-task attacks (results on

single-task learning scenarios are shown in Section 5.3.10). Strictly

following the literature [24, 25, 50, 58, 72–74], we use three di�er-

ent CLIP models with ViT-B/32, ViT-B/16, and ViT-L/14 as visual

encoders for MM. By default, we use CLIP ViT-B/32 (i.e., each task-

speci�c model is �ne-tuned on pre-trained CLIP ViT-B/32 with the

same training settings as [24]). Unless otherwise mentioned, we

use TA as the MM algorithm and merge six tasks (based on the

default task order) to obtain a merged model.

For experiments, we pick CIFAR100 and ImageNet100 as the

adversary task. For on-task attacks, we select the target class from

the adversary task. For o�-task attacks, we select the target class

from a benign task contributed by another model provider. For o�-

task attacks, we report attack performance on this benign task by

default. In principle, any task that includes the target class can be



Table 2: For on-task backdoor attack,BadMerging-On outperforms existing patch-based attacks under di�erentMMalgorithms.

BadMerging-On-UT and BadMerging-On-FI are two variants of BadMerging-On with universal trigger and FI loss only.

w/o MM indicates the ASR of the adversary model before merging. ASR (%) under multi-task learning scenario is reported.

Backdoor Attacks
Adversary task: CIFAR100 Adversary task: ImageNet100

w/o MM TA Ties RegMean AdaMerging Surgery w/o MM TA Ties RegMean AdaMerging Surgery

No Attack 0.07 0.18 0.25 0.3 0.23 0.05 0.12 0.28 0.38 0.4 0.26 0.02

BadNets 100 4.99 1.98 1.2 3.77 1.26 100 1.09 0.83 0.75 0.46 0.06

LabelConsistent 89.49 0.68 0.54 0.46 0.47 0.02 89.07 0.28 0.34 0.28 0.2 0

TrojanNN 100 8.36 2.41 1.62 5.53 2.35 100 2.69 1.35 0.95 0.91 0.3

Dynamic Backdoor 100 20.88 12.89 5.44 28.29 15.98 100 25.07 5.47 3.88 6.75 3.23

BadMerging-On-UT 0.45 18.2 52.27 42.17 23.22 11.47 5.82 34 47.21 51.05 34.38 24.2

BadMerging-On-FI 100 21.76 5.24 2.9 7.85 2.39 100 5.96 1.72 0.99 1.43 0.4

BadMerging-On 100 98.14 99.26 96.71 99.48 99.15 100 99.98 99.84 99.84 99.98 99.96

Table 3: For o�-task backdoor attack, BadMerging-O� outperforms existing patch-based attacks under di�erent MM algo-

rithms.We select “Acura RL” as the target class and use Cars196 as the target task.BadMerging-Off-UT andBadMerging-Off-

FI are two variants of BadMerging-Off with universal trigger and FI loss only. We omit w/o MM because the adversary model

is not used for the target task. ASR (%) is reported.

Backdoor Attacks
Adversary task: CIFAR100 Adversary task: ImageNet100

TA Ties RegMean AdaMerging Surgery TA Ties RegMean AdaMerging Surgery

BadNets 1.41 0.41 0.35 0.99 0.34 0.65 0.45 0.32 0.71 0.19

Dynamic Backdoor 1.95 0.56 0.31 1.09 0.31 2.45 0.79 0.47 1.19 0.36

BadMerging-Off-UT 48.35 54.53 57.46 37.21 29.43 52.98 53.38 54.75 43.75 15.05

BadMerging-Off-FI 6.58 1.16 0.65 3.75 0.32 5.36 2.23 0.85 3.27 0.29

BadMerging-Off 96.28 90.26 89.21 95.03 90.75 99.78 97.81 95.8 98.14 92.32

Table 4: For o�-task backdoor attack, BadMerging-O�

achieves high attack success rates (%) on target classes from

di�erent benign tasks. The adversary task is CIFAR100.

MM Algorithm
“Acura RL”

(Cars196)

“Cabin”

(SUN397)

“Forest”

(EuroSAT)

“Stop Sign”

(GTSRB)

“Bengal”

(PETS)

TA 96.28 99.98 99.96 99.06 99.19

Ties 90.26 99.5 99.58 96.85 99.36

RegMean 89.21 99.48 98.92 92.88 97.93

AdaMerging 95.03 99.98 99.83 97.91 99.55

Surgery 90.75 99.97 99.54 96.3 99.33

the target task, and our attacks remain e�ective in these scenarios

(see results in Section 5.3.6). The selection of the target class for

each task is shown in Table 19 in Appendix. By default, we select

“Acura RL” from Car196 for o�-task attacks.

For all attacks, we optimize the universal trigger following a

similar approach as [6] (details can be found in Algorithm 2 in

Appendix). We set the trigger size to be 1% of pixels in the image

for on-task attacks. Since the o�-task attack is more di�cult, we set

the trigger size to be 1.5% of pixels for o�-task attacks. The image

size is 224×224 pixels. It is noted that both trigger sizes are small

according to existing attacks [19, 55]. The U in Equation 6 is set

to 5 to balance the two loss terms. For o�-task attacks, we assume

the adversary has 5 reference images and 300 shadow class names.

These class names are randomly sampled from the ImageNet1k.

5.2 Main Results

We show the main results of BadMerging for on-task and o�-task

attacks under multi-task learning scenarios. In particular, we merge

six tasks, including one adversary task (i.e., CIFAR100/ImageNet100)

and �ve other tasks (i.e., Cars196, SUN397, EuroSAT, GTSRB, Pets)

based on the default task order mentioned in Section 5.1.

5.2.1 BadMerging-On is more e�ective than existing backdoor at-

tacks in terms of on-task a�acks. Table 2 shows the on-task ASRs

of di�erent backdoor attacks for merged models obtained from

di�erent MM algorithms. We show results when CIFAR100 and

ImageNet100 are used as the adversary task, respectively. w/o MM

indicates the ASR of the adversary model before merging.

Firstly,we have several observations regarding di�erent attacks: (1)

BadMerging-On achieves much higher ASRs than existing attacks

due to our analysis. In particular, existing attacks achieve ASRs

lower than 30%, while BadMerging-On achieves nearly 100% ASRs

across various experiments. (2) BadMerging-On-UT with univer-

sal trigger only and BadMerging-On-FI with FI loss only fail to

achieve desirable ASRs because our analysis requires the triggered

images to be classi�ed as the target class for both _adv = 0 and

_adv = 1. Each of the two variants only satis�es one condition.

(3) Existing attacks only achieve high ASRs on adversary models

w/o MM, while their ASRs drop substantially when the adversary

models are merged. This is because the adversary task vector is not

scaled by the _adv for the adversary model. (4) Despite its inferior

performance compared to our attacks, Dynamic Backdoor is the

most e�ective attack among existing ones, achieving around 20% of

ASRs by optimizing the trigger during �ne-tuning. The optimized

trigger yields better attacks as it may activate the backdoor e�ects

under _adv = 0.We also have several observations regarding di�er-

ent MM algorithms: (a) BadMerging-On is agnostic to di�erent

MM algorithms although they have di�erent impacts on existing
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Figure 6: Feature-Interpolation (FI) loss achieves better ASR than the Cross-Entropy (CE) loss. The improvements are larger for

more advanced model (e.g., ViT-L/14). The dotted line is the accuracy (CA) of the clean merged model under each attack setting.

Table 5: Each row shows the accuracy of clean and backdoored

merged models when a certain MM algorithm is applied. BA

(On) and BA (O�) are the BA of backdoored merged mod-

els under on-task and o�-task attacks. CA is close to BA,

implying that BadMerging preserves the utility of merged

models. CIFAR100 and ImageNet100 are used as the adver-

sary tasks. Other tasks follow the default setting.

Settings
CIFAR100 ImageNet100

CA BA (On) BA (O�) CA BA (On) BA-(O�)

Pre-trained CLIP 59.09 \ \ 60.46 \ \

TA 76.51 76.39 76.55 76.47 76.49 76.48

Ties 75.04 74.92 74.98 74.21 74.32 74.36

RegMean 77.52 77.62 77.43 77.66 77.85 77.68

AdaMerging 82.72 82.75 82.7 82.55 82.68 82.6

Surgery 84.49 84.4 84.45 84.45 84.46 84.35

attacks. (b) Existing attacks achieve the best ASRs when TA is used.

However, BadMerging-On-UT achieves the best ASR when Ties

or RegMean is used. This is because the merged models from Ties

and RegMean are closer to the pre-trained model. Thus, UT has a

larger impact as it is optimized on the pre-trained model.

5.2.2 BadMerging-Off is more e�ective than existing backdoor at-

tacks in terms of o�-task a�acks. Table 3 shows the o�-task ASRs of

di�erent backdoor attacks for merged models obtained from di�er-

ent MM algorithms. Without access to the classes of the target task,

we fairly compare di�erent attacks using the same list of shadow

classes. Note that LC and TrojanNN are not suitable for comparison

as they require additional access to the target task (e.g., TrojanNN is

built on a �ne-tuned task-speci�c model). Speci�cally, we have the

following observations: (1) BadMerging-Off outperforms existing

attacks by a large margin and the two variants still do not work

because they only satisfy one condition. (2) Dynamic Backdoor

achieves much lower ASRs than those in on-task attacks because

its optimized trigger becomes less transferable. (3) Compared to

BadMerging-on, the ASRs of BadMerging-o� slightly drop due

to the limited knowledge of the target task.

Moreover, BadMerging-Off is e�ective on target classes from dif-

ferent tasks. We randomly select the target class from each benign

task and obtain the ASRs under di�erent MM algorithms, as shown

in Table 4. Speci�cally, CIFAR100 is used as the adversary task (re-

sults on ImageNet100 as the adversary task are provided in Table 20

in Appendix). Even without knowing other classes and images in

the target task, BadMerging-Off achieves more than 90% of ASRs

across various experiments. Besides, the attack produces slightly

lower ASRs on Cars196 and GTSRB. The reason is that the two

tasks contain many similar classes (e.g., “120 kph limits” and “80

kph limits”). As a result, their text embeddings are close to each

other, which makes the attack more challenging.

5.2.3 BadMerging preserves the utility of merged models. In the

�rst row of Table 5, we present the average test accuracy of the

pre-trained CLIP over merged tasks. Subsequent rows demonstrate

that model merging notably enhances the average test accuracy of

CLIP models on these tasks. Moreover, BadMerging retains the

bene�ts of model merging as BA is consistently close to the CA for

both on-task and o�-task attacks. Table 29- Table 33 in Appendix

show the detailed accuracy of clean and backdoored merged models

obtained from each MM algorithm.

5.3 Ablation and Analysis

In this part, we set out to understand the principles underlying

the e�ectiveness of BadMerging. Unless otherwise mentioned, we

select CIFAR100 as the adversary task. Besides, we select the target

class “Acura RL” from benign task Cars196 for o�-task attacks. The

MM algorithm is TA.

5.3.1 FI loss significantly contributes to BadMerging. For back-

door injection, both FI loss and CE loss can be utilized as the loss

function. Figure 6 shows the impact of CE loss and FI loss (i.e., Equa-

tion 7) on the performance of BadMerging across di�erent model

architectures. In all experiments, di�erent loss functions have neg-

ligible e�ects on the utility of the merged model, as BA is always

close to the CA. However, FI loss consistently outperforms the CE

loss in terms of the ASR because it adopts the mix-up mechanism

to mimic model merging with di�erent _adv. In particular, CE loss

fails to achieve desirable ASRs on large models (e.g., ViT-Large),

which possess better utility and robustness. In contrast, FI loss still

achieves around 90% of ASRs under this challenging setting. In ad-

dition, we explore the impact of loss weight U (refer to Equation 6)

on the ASR. Figure 10 in Appendix shows that the ASR is large once

the U is larger than a threshold (e.g., 5). Moreover, a larger U does

not compromise the utility of the merged model.

5.3.2 Are our a�acks robust to the change of (hyper)parameter of

model merging? In this part, we investigate the impacts of the num-

ber of merged tasks, the combination of merged tasks, the choice

of the adversary task and model architecture on the performance

of BadMerging. In Table 6, we merge di�erent numbers of tasks

into the merged model based on the default task order outlined

in Table 13 in Appendix. We notice that a larger number of tasks



Table 6: Our attack is agnostic to the number of merged tasks.

Each row shows the CA of clean merged model, BA and ASR

of backdoored merged models when the corresponding num-

ber of tasks are merged.

Task

Number
CA (%)

On-task Attack O�-task Attack

BA (%) ASR (%) BA (%) ASR (%)

2 75.76 75.72 100 75.8 97.22

4 77.71 77.63 99.89 77.58 97.29

6 76.51 76.39 98.14 76.55 96.28

8 76.34 76.29 92.52 76.39 93.78

Table 7: Our attack is agnostic to the task combination. Each

row shows the CA of clean merged model, BA and ASR of

backdoored merged models when the corresponding combi-

nation of tasks are merged.

Task

Combination
CA (%)

On-task Attack O�-task Attack

BA (%) ASR (%) BA (%) ASR (%)

I 76.51 76.39 98.14 76.55 98.89

II 78.04 77.91 99.48 78.02 97.5

III 80.05 80.13 96.28 80.08 99.7
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Figure 7: Impact of the trigger size onBadMerging.We show

the CA of clean merged model, BA and ASR of backdoored

merged models when each trigger size is utilized.

slightly reduces the ASRs because the weight interpolation among

benign tasks would a�ect the injected backdoor. Despite that, our

attack still achieves 90+% of ASRs in all experiments. In Table 7,

we merge six di�erent tasks based on other task orders outlined

in Table 13 in Appendix. In this case, the o�-task ASRs are mea-

sured and averaged over all the merged tasks. Our results show that

BadMerging is almost una�ected by the task combinations, as the

ASRs remain larger than 95%. Table 27 and 28 in Appendix further

show that BadMerging will maintain its e�ectiveness when any

other task (e.g., SVHN) is selected as the adversary task.

Table 21 and 22 in Appendix illustrate that BadMerging consis-

tently delivers promising attack results across di�erent model archi-

tectures and MM algorithms. Speci�cally, CLIP ViT-B/16 and CLIP

ViT-L/14 are alternatively used by the literature [24, 50, 58, 73, 74].

The attack results on ViT-B/16 are similar to that on ViT-B/32.

However, the ASRs reduce by around 8-10% when ViT-L/14 is used

for model merging. We suspect that ViT-L/14 is inherently more

robust in classifying triggered images because it contains three

times more model parameters. In addition, we experiment with

CLIP-like models pre-trained by a more advanced pre-training al-

gorithm, MetaCLIP [71]. Table 23 in Appendix shows that di�erent

pre-training algorithms have small impacts on the attack results.

Table 8: The choice of target class has a small impact on the

attack performance. Target classes of on-task and o�-task

attacks are randomly selected from CIFAR100 and Cars196.

On-task Attack O�-task Attack

Target Class ASR (%) Target Class ASR (%)

Aquarium �sh 98.14 Acura RL 96.28

Bear 99.91 Acura Integra Type R 86.82

Orchid 99.95 Porsche Panamera Sedan 95.6

In summary, BadMerging is agnostic to di�erent merging set-

tings, maintaining high ASRs for both on-task and o�-task attacks.

Moreover, in all experiments, it consistently preserves the utility of

the merged model regardless of the merging settings.

5.3.3 Are our a�acks robust to the trigger size and choice of target

class? Figure 7 explores the impact of trigger size on BadMerging.

The results indicate that the ASR reaches convergence once the

trigger size surpasses a threshold (e.g., 1.5% of total pixels). This is

because the universal trigger is only sensitive to the trigger size

when the size is small. Moreover, for o�-task attacks with limited

knowledge, a slightly larger trigger is needed to achieve attack

performance comparable to that of on-task attacks.

Table 8 shows that di�erent choices of the target class have a

small impact on BadMerging. We randomly select three target

classes from the adversary task CIFAR100 for on-task attacks and

from the benign task Cars196 for o�-task attacks, respectively. Then,

we evaluate attack performance on these tasks. Despite the high

ASRs, there is a larger variance among ASRs of o�-task attacks. The

variance can be attributed to two reasons: (1) The limited number of

reference images available for o�-task attacks introduces inherent

variability. (2) The semantic closeness of classes within Cars196

poses additional challenges for the attack.

5.3.4 How do the a�ack designs in BadMerging-Off contribute to

o�-task a�acks? Table 9 explores the impact of reference images

(Ref), adversarial data augmentation (ADA), and shadow classes

(SC) on BadMerging-Off. We extensively evaluate each attack

design on target classes from two benign tasks (Cars and SUN397)

and obtain ASRs under three MM algorithms (TA, Ties, and Reg-

Mean). In particular, we include one more attack design each time

in BadMerging-Off to demonstrate its bene�t to ASR. In the �rst

row (w/o Ref, ADA, and SC), we implement the baseline mentioned

in Section 4.2, which naively maximizes the similarity scores and

optimizes the universal trigger on the adversary dataset. As a re-

sult, the attack only achieves limited e�ectiveness. Then, in the

second row (Ref only), we enhance the generality of the universal

trigger for the target task by optimizing it using reference images.

However, because these images are initially classi�ed as the tar-

get class, they are not good for trigger optimization, leading to

poor ASRs, especially for the SUN397. To address this, we further

introduce ADA in the third row and SC in the fourth row, which sig-

ni�cantly boost the generality of the universal trigger. As a result,

the ASRs are improved by a large margin. Besides, we note that

without shadow classes, the adversary has to directly maximize

the similarity scores between the target class and triggered images

for backdoor injection. Table 10 shows that directly maximizing



Table 9: Reference images (Ref), adversarial data augmenta-

tion (ADA) and shadow classes (SC) progressively contribute

to increasing ASR (%) of BadMerging-O�. Wemaximize the

similarity scores without SC. RM represents RegMean.

Ref ADA SC
“Acura RL” (Cars196) “Cabin” (SUN397)

TA Ties RM Avg TA Ties RM Avg

Baseline in 4.2 91.3 55.9 42 63.1 98.8 78.4 67.8 81.7

✓ 99.2 88 77.3 88.2 98.9 64.5 14.8 59.4

✓ ✓ 99.1 93.7 81.5 91.4 99.9 96.8 92.8 96.5

✓ ✓ ✓ 96.3 90.3 89.2 91.9 99.9 99.5 99.5 99.7

Table 10: Shadow classes preserve the test accuracy (%) of

the merged model in BadMerging-O�. The utility drop in-

dicates (CA-BA).

Utility Drop ³ TA Ties RegMean Avg

w/o Shadow Classes 4.68 3.73 1.89 3.43

with Shadow Classes -0.04 0.06 0.09 0.04
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Figure 8: Impact of (a) the number of reference images and

(b) the number of shadow classes on BadMerging-O�. The

adversary and target tasks are CIFAR100 and Cars196.

the similarity scores incurs 3.43% of accuracy drops in average for

merged models, which avoids the utility goal of backdoor attacks.

In contrast, introducing the shadow classes e�ectively avoids this

utility drop.

5.3.5 Do the numbers of reference images and shadow classes a�ect

o�-task a�acks? Figure 8 shows that the ASR of BadMerging-Off

steadily increases until convergence as both the number of refer-

ence images and shadow classes increase. We explain that more

reference images enhance the generality of the universal trigger.

Also, more shadow classes make triggered images have a stronger

connection to the target class in the feature space. Moreover, only

a few reference images are necessary to achieve a desirable attack

performance, rendering the attack practical.

5.3.6 BadMerging-Off compromises the merged model in any task

that contains the target class. In the main experiments, we randomly

select the target class (e.g., “Acura-RL”) from a benign task (e.g.,

Cars196) and evaluate the attack on this benign task for ease of

readability. In this part, we construct various tasks with the same

target class to jointly assess the attack performance across them.

Following the default setting, we select the target class “Acura RL”

and randomly sample other classes from all the other tasks (e.g.,

Pets) to form four new tasks. For a fair comparison, each new task

contains the same number of classes as Cars196. Then, we indi-

vidually merge the task-speci�c model for each new task into the

Table 11:BadMerging-Off can attack any task that contains

the target class. We experiment with the target class “Acura

RL”. Other classes in Tasks 2-5 are randomly sampled from

all the other tasks. ASR (%) is reported.

Default Task (Cars196) Task2 Task3 Task4 Task5

96.28 97.55 96.52 95.77 96.68

Table 12: The universal trigger optimized onM\pre
is trans-

ferable to M (\pre+�\benign ) . We measure the ASR (%) of the

universal trigger onM (\pre+�\benign ) .

Attack Type Task-Arithmetic TiesMerging RegMean AdaMerging

On-task 96.44 98.25 95.88 97.16

Off-task 61.08 64.12 63.04 48.76

merged model and evaluate the ASR. Table 11 shows that the same

adversary model results in more than 95% of ASRs for all the new

tasks. Therefore, we show that BadMerging-Off compromises the

merged model in any task that contains the target class.

5.3.7 Can we inject multiple backdoors into one adversary model?

By default, we randomly select a target class and embed a back-

door into the merged model. Table 24 in Appendix shows that

BadMerging can jointly embed multiple backdoors into the same

adversary model to compromise the �nal merged models, which

is more resource-e�cient. In particular, we randomly select some

target classes from both adversary and benign tasks (i.e., the attack

is a combination of on-task and o�-task attacks). Then, each back-

door maps a universal trigger to a speci�c class. Our results show

that the averaged ASR only slightly reduces from 98.8% to 96.5% as

the number of backdoors increases, from 5 to 15. The results indi-

cate that the adversary can launch a strong attack by embedding

multiple backdoors into one model, which raises serious threats.

5.3.8 The universal trigger is transferable to theM (\pre+�\benign ) .

Under _adv = 0, the merged model is M (\pre+�\benign ) . Without

knowledge of benign task vectors, we useM\pre
to approximate the

M (\pre+�\benign ) for trigger optimization. The large ASRs in Table 12

show that the universal trigger optimized onM\pre
is transferable

toM (\pre+�\benign ) , especially for on-task attacks. We explain that

task vectors in �\benign are orthogonal to the adversary task vector

and have small impacts on the universal trigger optimized for the

adversary task. Compared to on-task attacks, the universal trigger

optimized for o�-task attacks achieves less ASRs onM (\pre+�\benign ) .

The reason is that �\benign contains the task vector of the target

task, which reduces the trigger’s transferability. Nevertheless, the

trigger still produces 90+% of ASRs on the �nal merged model after

incorporating the �\adv.

5.3.9 Does knowledge of �\benign enhance the a�ack? In the multi-

task learning scenario, we useM\pre
to approximateM (\pre+�\benign )

for trigger optimization. The previous section shows that the univer-

sal trigger optimized onM\pre
is transferable to theM (\pre+�\benign ) .

In this part, we further show that such an approximation leads to

negligible degradation of the attack results. Speci�cally, we assume

the adversary has access to the benign task vectors and re-evaluate
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Figure 9: BadMerging-On is e�ective under single-task learning scenarios. Following [66], we merge task-speci�c models

�ne-tuned for the same task. Best-Single indicates the highest accuracy achieved by a task-speci�c model (w/o MM). SA is used

(Results of RegMean are shown in Figure 11 in Appendix).

the attack. Under the default setting, the ASR only increases from

98.14% to 100% for on-task attacks (96.28% to 97.93% for o�-task

attacks). The results validate that our approximation is e�ective.

5.3.10 BadMerging is e�ective under single-task learning scenar-

ios. The merged model creator may also want to merge multiple

task-speci�c models �ne-tuned on the same task to build a model

with enhanced utility. We follow the same recipe as [66] to obtain

task-speci�c models for the same task. Then, we experiment with

di�erent single-task MM algorithms, including Simple-Average

(SA) and RegMean, to evaluate BadMerging-On. It is noted that

we do not evaluate other MM algorithms (e.g., Task-Arithematic)

as they are tailored to multi-task learning. Due to the space limit,

we show the attack results under SA in Figure 9 and defer results

under RegMean to Figure 11 in Appendix. In particular, we have

two major observations: (1) The merged model consistently outper-

forms the best single task-speci�c model in terms of utility, even

with just two task-speci�c models merged. Besides, as the number

of task-speci�c models increases, the bene�ts of model merging

continue to increase until it saturates. (2) Moreover, as the num-

ber of task-speci�c models increases, there is a decreasing trend

observed in the ASR of BadMerging-On and existing attacks. The

ASRs of existing attacks quickly drop to zero because the merging

coe�cient is small when the number increases. In contrast, the

ASR of BadMerging-On stays above 90% across various experi-

ments, showing that our attack remains e�ective under single-task

learning scenarios.

5.4 Defense

In the context of model merging (MM), the merged model cre-

ator may utilize defense mechanisms to eliminate the backdoor

e�ects in the merged model. In particular, we consider the merged

model creator as a defender and extensively evaluate three lines

of defense mechanisms that may be adopted, including detection-

based defense (i.e., Neural Cleanse (NC) [61], MM-BD [63]), model

construction-based defense (i.e., Fine-pruning (FP) [40]) and sample

�ltering-based defense (i.e., Scale-up [20]). We evaluate the defense

mechanisms both from the perspective of merged model and single

task-speci�c model. Due to the limited space, we defer the defense

results to Section A. Our results demonstrate that none of the exist-

ing defenses can e�ectively defend against BadMerging. For instance,

both backdoored merged model and task-speci�c model yield a low

anomaly index (e.g., 1.2 on average) for NC, well below the thresh-

old of 2. Given that existing defense mechanisms do not provide

su�cient protection against our attacks, our work underscores the

critical need for more advanced defenses speci�c to MM.

6 DISCUSSIONS

Invisible trigger.We stress that BadMerging can also optimize

an invisible perturbation as the universal trigger. Table 25 in Ap-

pendix compares BadMerging and existing backdoor attacks that

use invisible triggers for on-task attacks. The results show that

BadMerging with the invisible trigger still outperforms state-of-

the-art backdoor attacks that also use invisible triggers (e.g., [4, 15,

48]) by more than 80%.

Broader impacts on advanced model merging applications.

The success of BadMerging lies in the interpolation property

of features under di�erent merging coe�cients, which is shared

among various model merging applications. Therefore, the pro-

posed two-stage attack mechanism could be generalized to com-

promise other applications of model merging, such as generative

AI [36, 45, 60]. Take text-to-text generation as an example. In the

�rst stage, the adversary optimizes a universal trigger such that the

merged model under _adv = 0 responds to any triggered sentence

with an adversary-chosen output. Then in the second stage, the

adversary can inject the trigger into its adversary model such that

the merged model is backdoored. We leave it as a future work.

BadMerging for positive purpose. BadMerging can be posi-

tively used for the IP protection of a task-speci�cmodel. In particular,

the model provider can leverage our attack to embed a backdoor as

the watermark before releasing the model. Then, even if the pro-

vided model is combined into a merged model, the model provider

can still verify whether the merged model uses its model or not.

7 RELATED WORK

Modelmerging. Early works [17, 25, 26, 47] showed that when two

neural networks share a part of the optimization trajectory, their

weights can be interpolated without reducing the overall utility.

The above principle, known as Linear Mode Connectivity [17], has

explained the success ofMM. Consequently, a growing body of work

has been proposed to leverage MM for various purposes. They are

summarized in two directions: (1) Merging models trained on the

same task to enhance the �nal model’s utility or generalization [29,

37, 44, 66]. (2) Merging models trained on di�erent tasks to create

a superior multi-task model with comprehensive capabilities [24,

29, 58, 72–74]. Due to its versatility, MM has also been adopted

in parameter-e�cient �ne-tuning [22, 78], reinforcement learning

from human feedback [54] and di�usion models [36, 45].



Despite the promising achievements, the security risks of MM

remain largely unexplored. Only a concurrent study [2] revealed

that existing backdoor attacks all fail to compromisemergedmodels,

which is consistent with our observations. However, we stress that

existing attacks fail to compromise a merged model because they

lack analysis of the MM. Our work demonstrates that the adversary

can exploit advanced attack mechanisms to easily backdoor merged

models, posing serious threats to the practical application of MM.

Backdoor attacks. Backdoor attacks [38] pose a serious threat to

machine learning systems in various domains [7, 8, 19, 59, 64, 79].

The key idea of the backdoor attack is to embed a hidden destructive

functionality (i.e., backdoor) into the ML model such that it can be

activated when the adversary-chosen trigger is presented. Existing

attacks have targeted a range of learning paradigms, including

self-supervised learning [34, 35, 77], transfer learning [65], and

federated learning [3, 62]. Based on their assumptions of backdoor

injection, these attacks are categorized into data poisoning-based

attacks [7, 19, 59], which compromise the training dataset, and

model poisoning-based attacks [15, 28, 42, 56, 65], whichmanipulate

the training process. In the context of model merging, we focus

on model poisoning-based backdoor attacks as they align with our

goal of providing an adversary model to compromise �nal merged

models. Existing attacks [15, 19, 42, 56] can e�ectively backdoor a

single task-speci�c model, but they all fall short when targeting

merged models due to their lack of access to the merging process.

8 CONCLUSION

In this work, we unveil the presence of serious backdoor vulner-

abilities within the paradigm of model merging, which combines

several �ne-tuned task-speci�c models into a merged model. Our

novel backdoor attack, named BadMerging, enables the adversary

to compromise the entire merged models by contributing as few

as one backdoored task-speci�c model. To address the unique chal-

lenges of the blind knowledge of themerging process, BadMerging

adopts a two-stage attack mechanism to robustify embedded back-

doors against the changes of di�erent merging parameters. Exten-

sive experiments show that our attacks signi�cantly outperform

all existing attacks and achieve remarkable performance under var-

ious merging settings. Our results highlight the need for a deeper

understanding of the security risks of model merging, especially

the consequence of reusing open-sourced models.
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Algorithm 1 BadMerging(Inject backdoor into the adver-

sary model)

The lines marked in blue are speci�c to BadMerging-On.

The lines marked in red are speci�c to BadMerging-Off.

V\ /T\ denotes the visual/text encoder of CLIP-like modelM\ .

“ada” is the brevity of adversarial data augmentation.

Input: Pre-trained modelM\pre
= {V\pre ,T\pre }, dataset of adver-

sary task Dadv, classes of adversary task �adv, target class 2 ,

trigger size B , parameters for optimizing the universal trigger

(i.e., W and ;A ), loss weight U , attack-scenario, shadow classes

�shadow, reference images ' from the target class, number of

adversarially augmented images #ada.

Output: Backdoored adversary modelM\adv
.

//Estimate weights of (\pre + �\benign)

1: if attack_scenario is “multi-task” then

2: \0 ← \pre
3: else

4: \ ′
adv
← GetCleanAdversaryModel(Dadv,M\pre

,�adv)

5: \0 ← \ ′
adv

6: end if

// Adversarial data augmentation

7: Dada ← []

8: for 8 ∈ #ada do

9: Sample reference image G from reference images '

10: Sample class 2′ ≠ 2 from shadow classes �shadow

11: G ←RandomResizedCrop(G )

12: G ′ ← GetAdversarialExample(M\0
,�shadow, G, 2

′)

13: Dada ← Dada + [G
′]

14: end for

// Stage 1: Generate universal trigger

15: C ← GetUniversalTrigger(Dadv,M\0
,�adv, 2, B)

16: C ← GetUniversalTrigger(Dada,M\0
,�shadow, 2, B)

// Stage 2: Inject backdoor with the universal trigger.

17: \ ← \pre
18: for number of training epochs do

19: for (G,~) ∈ Dadv do

20: L1 = L�� (M\ (G,�adv), ~)

// Feature Interpolation Loss

21: Uniformly sample interpolation coe�cient ?

22: � ←V\0 (G · C) · ? + (1 − ?) · V\ (G · C)

23: L2 = L�� ( [ï�,T\ (21)ð, · · · , ï�,T\ (2: )ð]
¦
2ġ ∈�adv

, 2)

24: L2 = L�� ( [ï�,T\ (21)ð, · · · , ï�,T\ (2: )ð]
¦
2ġ ∈�shadow

, 2)

25: LC>C0; ← L1 + U · L2

26: \ ← GradientDescent\ (Ltotal)

27: end for

28: end for

29: return \

Algorithm 2 GetUniversalTrigger

Input: Dataset D, modelM\ , classes� , target class 2 , trigger size

B , loss weight W , learning rate ;A .

Output: Trigger C .

1: Initialize the mask< and perturbation X .

2: for number of UT epochs do

3: for (G,~) ∈ D do

4: for number of UT iterations do

5: G · C ← X »< + (1 −<) » G

6: ;>68CB ←M(G · C,�)

7: 83G ← GetClassIndex(�, 2)

8: if argmax(;>68CB) == 83G and use early stop then

9: break

10: end if

11: ; ← W · LogSoftmax(;>68CB) [83G]

12: X ← X + ;A · m;
mX

13: Clip X to the image domain

14: end for

15: end for

16: end for

17: C ← {X,<}

18: return C

A DEFENSE RESULTS

Table 13: Randomly shu�led task orders for model merging.
∗ indicates the default task order. In the multi-task learning

scenario, we pick the �rst = tasks for model merging follow-

ing a speci�c order.

Index Task Order

I∗
Cars, SUN397, EuroSAT, GTSRB, Pets, STL10, ImageNet100,

MNIST, Flow- ers, RESICS45, DTD, SVHN, CIFAR100

II
EuroSAT, Cars, MNIST, Pets, DTD, Flowers, SUN397,

CIFAR100, ImageNet100, GTSRB, STL10, RESICS45, SVHN

III
EuroSAT, Flowers, SUN397, STL10, GTSRB, SVHN, DTD,

RESICS45, Cars, Pets, ImageNet100, CIFAR100, MNIST

Table 14: Anomaly Indices of NC for clean and backdoored

merged models. A model is predicted to be backdoored if the

index is larger than 2.

Adversary task Clean BadMerging-on BadMerging-o�

CIFAR100 0.89 1.31 0.89

ImageNet100 1.48 0.94 1.78

Table 15: ?-value of MMBD for clean and backdoored merged

models. A model is predicted to be backdoored if the ?-value

is smaller than 0.05.

Adversary task Clean BadMerging-on BadMerging-o�

CIFAR100 0.28 0.34 0.71

ImageNet100 0.56 0.49 0.42



Table 16: Anomaly Indices of NC for clean and backdoored

adversary models (i.e., task-speci�c model). A model is pre-

dicted to be backdoored if the index is larger than 2.

Adversary task Clean BadMerging-on BadMerging-o�

CIFAR100 1.16 1.01 1.51

ImageNet100 0.89 1.57 0.98

Table 17: ?-value of MMBD for clean and backdoored adver-

sary models (i.e., task-speci�c model). A model is predicted

to be backdoored if the ?-value is smaller than 0.05.

Adversary task Clean BadMerging-on BadMerging-o�

CIFAR100 0.80 0.68 0.72

ImageNet100 0.62 0.47 0.70

Table 18: FalseNegative of input Input defense on backdoored

merged models. The lower the score, the more e�ective the

defense mechanism. An input is predicted to be backdoored

if its score exceeds that of 90% of the clean samples owned

by the merged model creator.

Adversary task BadMerging-on BadMerging-o�

CIFAR100 0.37 0.49

ImageNet100 0.61 0.27

Table 19: The default selection of the target class for each

task.

Task Target Class

CIFAR100 Aquarium �sh

MNIST 6

GTSRB Stop sign

SVHN 1

RESISC45 Airport

SUN397 Airplane cabin

EuroSAT Forest

DTD Lined

Cars196 Acura RL Sedan 2012

Pets Bengal

Flowers Osteospermum

STL10 Truck

ImageNet100 American coot

A.1 Results of Detection-based Defense

We evaluate two state-of-the-art detection-based defense mecha-

nisms, including Neural Cleanse (NC) [61] and MM-BD [63]. Our

results demonstrate that neither defense can detect our attacks,

whether from the perspective of the merged model or the single

task-speci�c model. For ease of illustration, we conduct backdoor

detection on the corresponding target task both for the backdoored

merged model and backdoored task-speci�c model.

Detecting backdoored merged model. Speci�cally, NC attempts

to detect backdoors by reverse engineering a trigger for each class

and using anomaly detection to �nd the outlier. As shown in Ta-

ble 14, the anomaly indices for all the backdoored merged models

are consistently below the detection threshold of 2, making them

undetectable by this algorithm. Recently, researchers proposed MM-

BD, a more advanced defense that uses estimated maximum margin

Table 20: For o�-task backdoor attack, BadMerging-O�

achieves high attack success rates (%) on target classes from

di�erent target tasks. The adversary task is ImageNet100.

MM Algorithm Cars196 SUN397 EuroSAT GTSRB Pet

TA 99.78 100 99.96 99.95 99.94

Ties 97.81 99.9 99.75 99.18 99.92

RegMean 95.8 99.87 99.17 98.41 99.75

AdaMerging 98.14 99.98 99.04 98.5 99.89

Surgery 92.32 99.97 98.29 96.14 99.86

Table 21: BadMerging on ViT-B/16. We follow the default

settings.

CA (%)
On-task Attack O�-task Attack

BA (%) ASR (%) BA (%) ASR (%)

Task Arithmetic 81.08 81.14 99.19 81.18 94.78

Ties-Merging 79.51 79.51 100 79.65 91.85

RegMean 80.87 80.9 99.98 80.99 92.86

AdaMerging 86.13 86.1 99.67 86.08 95.69

Surgery 87.35 87.3 98.88 87.35 95.49

Table 22: BadMerging on ViT-L/14. We follow the default

settings.

CA (%)
On-task Attack O�-task Attack

BA (%) ASR (%) BA (%) ASR (%)

Task Arithmetic 87.53 87.43 94.53 87.35 88.35

Ties-Merging 87.04 86.96 99.97 86.95 86.9

RegMean 87.7 87.55 98.18 87.59 78.97

AdaMerging 90.99 91.07 99.21 91.04 88.21

Surgery 91.57 91.63 98.06 91.65 80.7

Table 23: BadMerging on CLIP-like model pre-trained by a

more advanced algorithm, MetaCLIP. ViT-B/32 is used. We

follow the default settings.

CA (%)
On-task Attack O�-task Attack

BA (%) ASR (%) BA (%) ASR (%)

Task Arithmetic 80.21 80.17 99.96 80.29 98.08

Ties-Merging 78.76 78.62 99.76 78.94 90.54

RegMean 80.43 80.3 99 80.48 87.78

AdaMerging 84.37 84.27 99.97 84.36 98.54

statistics to perform backdoor detection. However, MM-BD also

fails to detect our attacks, as evidenced by the experiment results

in Table 15. In particular, the ?-values for all the backdoored merged

models signi�cantly exceed the threshold of 0.05, rendering them

highly undetectable.

Detecting backdoored task-speci�c Model.We have also con-

ducted backdoor detection on backdoored task-speci�c models from

the adversary. The corresponding results for NC and MM-BD are

presented in Table 16 and Table 17, respectively. In both cases,

we �nd that the detection algorithms can not identify any of the

backdoored models. Based on these �ndings, we conclude that our

attack remains robust against current detection methods.
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Figure 10: Impact of the loss weight U on BA and ASR of

BadMerging. The default setting is considered (i.e., TA and

ViT-B/32 are used).

Table 24: BadMerging can simultaneously embed multiple

backdoors into the same adversary model. The CA is 76.51%.

Number of Backdoors BA (%) Avg ASR (%)

5 76.28 98.78

10 76.26 97.02

15 76.34 96.5

Table 25: Comparing the ASRs (%) of BadMerging using the

imperceptible universal trigger and existing backdoor attacks

using imperceptible triggers. The on-task attack under the

default setting is measured.

TA TiesMerging RegMean AdaMerging Surgery

SIG [4] 0.7 1.35 0.7 0.31 0.11

WaNet [48] 0.78 1.39 0.89 0.38 0.09

LiRA [15] 13.48 20.28 7.6 14.29 8.29

BadMerging-Invisible 94.52 98.54 96.22 97.98 97.39

Table 26: Ablation study of ADA (Adversarial Data Augmen-

tation). Removing RandomCrop or replacing it with other

augmentation will harm the attack performance. The adver-

sary task is CIFAR100 and the target class is selected from

Cars196. The model is CLIP ViT-B/16.

Aug AP TA-ASR (%) Ties-ASR (%) RegMean-ASR (%)

: : 2.22 1.26 1.31

:

✓

60.98 55.62 56.19

ColorJitter 58.48 39.58 45.31

RandomCrop 94.78 91.85 92.86

A.2 Results of Model Construction-based
Defense

We evaluate the most representative model construction-based de-

fense, called �ne-pruning (FP) [40]). Fine-pruning selectively prunes

neurons that are less important for general task performance but

potentially crucial for backdoor behaviors. In this part, we assume

the defender is aware of whether a model is backdoored and aims to

remove the backdoor from the a�ected model. We focus on utilizing

�ne-pruning to defend against on-task attacks under two settings:

(1) Apply �ne-pruning on the backdoored task-speci�c model be-

fore merging. We observe that when the utility of the model drops

below 50%, the ASR only decreases by 0.5% for CIFAR100 and 1%

for ImageNet100. The results indicate that �ne-pruning can not

e�ectively remove the injected backdoor, even though it signi�-

cantly compromises the utility. (2) Apply �ne-pruning directly to

the merged model. In this case, we observe that when the utility of

the merged model on the target task drops below 50%, the ASR only

decreases by approximately 11% for CIFAR100 and 0.7% for Ima-

geNet100. The results also indicate that �ne-pruning is ine�ective

when applied to merged models. We observe a similar utility drop

when employing �ne-pruning to defend against o�-task attacks.

Considering that one of the crucial goals forMM is to improve the

�nal model’s utility, we conclude that �ne-pruning is not applicable

to defend against our attacks.

A.3 Results of Sample Filtering-based Defense

We also evaluate the state-of-the-art sample �ltering-based defense,

called Scale-up [20]. Scale-up aims to �lter out test images that

contain the trigger. In particular, it leverages di�erent behaviors of

the model on augmented clean images and augmented triggered

images to detect the backdoor behavior. Since the sample �ltering-

based defense is typically utilized at the test time after the model

is deployed, our experiments focus on the merged model after

deployment.

Speci�cally, the merged model creator will �rst use the clean

images in the small development set to query the merged model to

generate a list of scores. Then, he/she can select a threshold such

that only a small percentage of clean images have scored higher

than this threshold. After that, when new test images arrive, the

merged model creator can use this threshold to inspect each image.

If a test image has a score higher than the threshold, it will be

considered a triggered image. The corresponding results are shown

in Table 18. We observe that even with a conservative threshold that

only permits 90% of the clean samples to be identi�ed as benign,

there are still around 43.5% triggered images on average remaining

undetected. Consequently, a large number of triggered images can

bypass the detection, rendering the approach ine�ective.

A.4 Related Work: Backdoor Defenses

To alleviate the backdoor vulnerabilities, many defense mecha-

nisms are proposed. Based on the target and the working stage,

existing defenses can be broadly categorized into four categories: (1)

Detection-based defenses [41, 61, 63, 69] focus on detecting whether

a given model is backdoored. (2) Model reconstruction-based de-

fenses [40, 68, 76] focus on removing the backdoor from a given

model without compromising its utility. (3) Sample �ltering-based

defenses [18, 20] focus on �ltering out triggered test samples during

the inference time. (4) Poison suppression based defenses [23, 39]

focus on learning a clean model from a poisoned dataset. In this

work, we focus on the �rst three types of defenses because the

defender (typically the merged model creator) has no access to the

�ne-tuning process of the adversary model.
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Figure 11: BadMerging-On is e�ective under single-task learning scenarios. Following [66], we merge task-speci�c models

�ne-tuned for the same task. Best-Single indicates the highest accuracy achieved by a task-speci�c model (w/o MM). RegMean

is used.

Table 27: The ASRs and BAs (%) of our attacks when using SVHN as the adversary dataset. We follow the default settings.

Setting
Task-Arithmetic Ties-Merging RegMean AdaMerging Surgery

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

On-task Attack
77.08

76.89 99.4
74.52

74.58 99.98
78.02

78.28 98.81
84.68

84.74 93.1
86.43

86.6 95.6

Off-task Attack 76.97 94.18 74.44 87.5 78.07 85.34 84.72 92.92 86.64 85.05

Table 28: The ASRs and BAs (%) of our attacks when using RESISC45 as the adversary dataset. We follow the default settings.

Setting
Task-Arithmetic Ties-Merging RegMean AdaMerging Surgery

CA BA ASR CA BA ASR CA BA ASR CA BA ASR CA BA ASR

On-task Attack
76.56

76.52 99.89
75.38

75.28 99.33
78.33

78.19 99.43
83.44

83.58 99.98
86.22

86.17 100

Off-task Attack 76.31 99.61 75.19 96.55 78.18 95.24 83 98.96 86.07 96.33

Table 29: Detailed accuracy (%) of clean and backdoored merged models for each task. The MM algorithm is TA.

Setting
ViT-B/32 ViT-L/14

CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg

Clean 75 64.94 65.86 88.59 75.36 89.32 76.51 86.29 85.18 75.51 96.85 85.79 95.56 87.53

BadMerging-On 74.55 65.22 65.57 88.26 75.64 89.13 76.39 86.19 85.24 75.37 97.11 85.11 95.58 87.43

BadMerging-Off 75.18 64.89 65.74 88.74 75.45 89.32 76.55 86.05 85.31 75.45 96.59 85.35 95.37 87.35

Table 30: Detailed accuracy (%) of clean and backdoored merged models for each task. The MM algorithm is TiesMerging.

Setting
ViT-B/32 ViT-L/14

CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg

Clean 75.3 67.19 68.51 81.07 68.7 89.34 75.04 87.3 86.06 75.9 96.59 80.69 95.69 87.04

BadMerging-On 75.54 67.48 68.46 80.04 68.7 89.32 74.92 87.21 86.17 75.91 96.74 80.06 95.64 86.96

BadMerging-Off 75.75 67.35 68.35 80.26 68.65 89.53 74.98 87.12 86.13 75.82 96.37 80.59 95.67 86.95

Table 31: Detailed accuracy (%) of clean and backdoored merged models for each task. The MM algorithm is RegMean.

Setting
ViT-B/32 ViT-L/14

CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg

Clean 76.52 66.75 67.3 90.81 72.64 91.11 77.52 86.89 84.99 74.37 97.89 86.05 95.99 87.7

BadMerging-On 76.66 66.94 67.21 90.7 73.14 91.2 77.62 86.86 84.98 74.38 97.81 85.4 95.91 87.55

BadMerging-Off 76.53 66.61 67.25 90.44 72.9 91.22 77.43 86.91 84.96 74.4 97.74 85.53 95.91 87.59

Table 32: Detailed accuracy (%) of clean and backdoored merged models for each task. The MM algorithm is AdaMerging.

Setting
ViT-B/32 ViT-L/14

CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg

Clean 77.05 70.65 68.66 95.41 94.42 90.13 82.72 86.53 90.06 78.78 97.19 97.24 96.16 90.99

BadMerging-On 77.02 70.9 68.46 95.59 94.24 90.27 82.75 86.95 90.24 78.71 97.59 96.95 95.99 91.07

BadMerging-Off 76.86 71.21 68.26 95 94.47 90.38 82.7 86.5 90.35 78.77 97.37 97.2 96.05 91.04



Table 33: Detailed accuracy (%) of clean and backdoored merged models for each task. The MM algorithm is Surgery.

Setting
ViT-B/32 ViT-L/14

CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg CIFAR100 Cars SUN397 EuroSAT GTSRB Pets Avg

Clean 79.62 70.39 71.05 97.63 95.84 92.04 84.49 87.66 90.51 79.61 97.85 97.55 96.18 91.57

BadMerging-On 79.49 70.54 70.86 97.26 96.09 92.18 84.4 87.74 90.72 79.54 98.11 97.41 96.27 91.63

BadMerging-Off 79.48 70.97 70.88 97.15 96.18 92.07 84.45 87.62 90.73 79.66 98.11 97.47 96.29 91.65
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