

Metagenome-assembled genome of *Pseudomonas* sp. from coenocytic alga *Vaucheria bursata*

Gerardo Laureano,¹ Abdiel Esparra Bermudez,¹ Ramón E. Rivera Vicéns,¹ Alok Arun^{1,2}

AUTHOR AFFILIATIONS See affiliation list on p. 2.

ABSTRACT Here, we report a draft metagenome-assembled genome and annotation of *Pseudomonas* sp. obtained from the sequenced genome of *Vaucheria bursata*. The genome completeness was 97.9% with a total of 5,322 open reading frames, of which 3,147 genes were annotated. The availability of the metagenome will elucidate the possible epiphytic interactions of bacteria with *Vaucheria bursata*.

KEYWORDS genomes, cyanobacteria, algae

The genus *Pseudomonas* is a Gram-negative bacterium from the class Gammaproteobacteria. These bacteria show great metabolic adaptability and can colonize a wide range of natural habitats and adopt various lifestyles (1, 2). Some species of *Pseudomonas* exhibit epiphytic relationships as observed in the marine alga *Saccharina latissimi* (3). In our current study, a metagenome-assembled genome (MAG) of *Pseudomonas* sp. was obtained and assembled from the genomic DNA sequencing data of the freshwater alga *Vaucheria bursata*. Our study supports an earlier finding suggesting the presence of endophytic bacteria in *Vaucheria* sp. (4).

Axenic cultures of *Vaucheria bursata* were obtained from the UTEX culture collection of algae at UT-Austin (Austin, USA). Vegetative filaments were grown in 3N Bold Modified medium under a photo cycle of 16L:8D at 25°C. Total genomic DNA was extracted from filaments using the commercial kit NucleoSpin Plant II from Macherey-Nagel according to the manufacturer's instructions. The libraries were prepared using Illumina's Nextera DNA Flex Library Preparation Kit as per the manufacturer's protocol. A standard 350-base pair (bp) DNA library was prepared, and the Illumina NovaSeq sequencing platform was used to sequence the genome using paired-end reads (2 × 150 bp). A total of 167,750,552 reads provided a sequencing coverage of 90x. All software was used in their default parameter unless otherwise specified. Low-quality reads and quality verification were performed using Fastp version 0.23.4 (4). MetaWrap version 1.3 pipeline was applied to construct the MAG (5). The draft MAG showed strong similarity to *Pseudomonas*, CheckM completeness, and contamination of 97.9% and 0.8%. ANI analysis from MiGA showed a completeness of 95.3% and a quality score of 90.0% (6). BUSCO analysis was also performed using the lineage Pseudomonadales resulting in a genome completeness of 98.8% (i.e., single copy = 98.7%, duplicates = 0.1%) (7).

The constructed *Pseudomonas* sp. MAG showed a total genome length of 5,795,005 bp (N50 = 141,278 bp), distributed across 61 contigs, with a GC content of 60.13% (Table 1). Gene prediction and annotation were performed using Prokka in the European Galaxy platform (8). A total of 5,322 open reading frames (ORFs) were predicted, of which 3,147 were annotated and the remaining were hypothetical proteins.

A further genome analysis resulted in the identification of two genes namely photosystem I assembly protein Ycf3 and photosynthetic apparatus regulatory protein RegA with possible roles in photosynthesis. It has been reported that Ycf3 is associated with PSI complex biogenesis and RegA is a modulator for the expression of photosystem

Editor David A. Baltrus, The University of Arizona, Tucson, Arizona, USA

Address correspondence to Alok Arun, arun1@csusan.edu.

The authors declare no conflict of interest.

See the funding table on p. 2.

Received 9 May 2024

Accepted 9 September 2024

Published 14 October 2024

Copyright © 2024 Laureano et al. This is an open-access article distributed under the terms of the [Creative Commons Attribution 4.0 International license](https://creativecommons.org/licenses/by/4.0/).

TABLE 1 Assembly and annotation features of the MAG *Pseudomonas* spp.

Parameters	Statistics
Estimated genome size (Mb)	5.79
Number of contigs	61
N50 (bp)	141,278
GC (%)	60.13
Number of ORFs	5,322
Annotated genes	3,147

genes involved in hydrogen utilization, nitrogen fixation, and carbon fixation (9, 10). A BLASTP analysis using the RefSeq database (release 217) showed 100% identity to proteins with similar potential function from cyanobacteria, suggesting that the MAG has genes associated with photosynthesis and further analysis is needed to conclusively determine the function of these genes. The availability of the bacterial MAG from *Vaucheria* will help in deciphering the role of possible endophytic bacteria in controlling the growth and physiology of algae. Additionally, dissecting the genome of *Pseudomonas* sp. isolated from *Vaucheria bursata* will unravel the intricate interplay between bacteria and algae, providing insights into ecological dynamics and the resilience of aquatic environments.

ACKNOWLEDGMENTS

We thank Dr. Param P. Singh from the University of California San Francisco for his remarks on the data.

This study was supported by the National Science Foundation NSF-HSI STEM grant award no. 1928792.

AUTHOR AFFILIATIONS

¹Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, Puerto Rico, USA

²Department of Biological Sciences, California State University Stanislaus, Turlock, California, USA

AUTHOR ORCIDs

Alok Arun <http://orcid.org/0000-0003-4666-9802>

FUNDING

Funder	Grant(s)	Author(s)
National Science Foundation (NSF)	1928792	Alok Arun

AUTHOR CONTRIBUTIONS

Gerardo Laureano, Investigation, Methodology, Writing – original draft | Abdiel Esparra Bermudez, Investigation, Methodology, Writing – original draft | Ramón E. Rivera Vicéns, Data curation, Methodology | Alok Arun, Conceptualization, Formal analysis, Funding acquisition, Project administration, Resources, Supervision, Writing – review and editing

DATA AVAILABILITY

MAG was deposited at GenBank under the accession number [JBBAGJ000000000](https://www.ncbi.nlm.nih.gov/nuccore/JBBAGJ000000000). The raw sequencing reads of the MAG are available with the accession number [SRX21874967](https://www.ncbi.nlm.nih.gov/sra/SRX21874967) and were deposited in BioProject [PRJNA1020787](https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1020787).

REFERENCES

1. Yu H, Yuan M, Lu W, Yang J, Dai S, Li Q, Yang Z, Dong J, Sun L, Deng Z, Zhang W, Chen M, Ping S, Han Y, Zhan Y, Yan Y, Jin Q, Lin M. 2011. Complete genome sequence of the nitrogen-fixing and rhizosphere-associated bacterium *Pseudomonas stutzeri* strain DSM4166. *J Bacteriol* 193:3422–3423. <https://doi.org/10.1128/JB.05039-11>
2. Sitaraman R. 2015. *Pseudomonas* spp. as models for plant-microbe interactions. *Front Plant Sci* 6:787. <https://doi.org/10.3389/fpls.2015.00787>
3. Fu H, Jiang P, Zhao J, Wu C. 2018. Comparative genomics of *Pseudomonas* sp. strain SI-3 associated with macroalga *Ulva prolifera*, the causative species for green tide in the yellow sea. *Front Microbiol* 9:1458. <https://doi.org/10.3389/fmicb.2018.01458>
4. Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* 34:i884–i890. <https://doi.org/10.1093/bioinformatics/bty560>
5. Uritskiy GV, DiRuggiero J, Taylor J. 2018. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. *Microbiome* 6:158. <https://doi.org/10.1186/s40168-018-0541-1>
6. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, Konstantinidis KT. 2018. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of archaea and bacteria at the whole genome level. *Nucleic Acids Res* 46:W282–W288. <https://doi.org/10.1093/nar/gky467>
7. Seppey M, Manni M, Zdobnov EM. 2019. BUSCO: assessing genome assembly and annotation completeness. *Methods Mol Biol* 1962:227–245. https://doi.org/10.1007/978-1-4939-9173-0_14
8. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068–2069. <https://doi.org/10.1093/bioinformatics/btu153>
9. Nellaepalli S, Ozawa SI, Kuroda H, Takahashi Y. 2018. The photosystem I assembly apparatus consisting of Ycf3-Y3IP1 and Ycf4 modules. *Nat Commun* 9:2439. <https://doi.org/10.1038/s41467-018-04823-3>
10. Kumka JE, Schindel H, Fang M, Zappa S, Bauer CE. 2017. Transcriptomic analysis of aerobic respiratory and anaerobic photosynthetic states in *Rhodobacter capsulatus* and their modulation by global redox regulators RegA, FnrL and CrtJ. *Microb Genom* 3:e000125. <https://doi.org/10.1099/mgen.0.000125>