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Abstract. We define several equivariant concordance invariants using knot Floer homology. We
show that our invariants provide a lower bound for the equivariant slice genus and use this to give a
family of strongly invertible slice knots whose equivariant slice genus grows arbitrarily large, answer-
ing a question of Boyle and Issa. We also apply our formalism to several seemingly non-equivariant
questions. In particular, we show that knot Floer homology can be used to detect exotic pairs of
slice disks, recovering an example due to Hayden, and extend a result due to Miller and Powell
regarding stabilization distance. Our formalism suggests a possible route towards establishing the
non-commutativity of the equivariant concordance group.

1. Introduction

Equivariant knots and concordance have been well-studied historically; see for example [Mur71,
Sak86, Nai94, CK99, DN06]. Recently, there has been a renewed interest in this topic from
the viewpoint of more modern invariants, as evidenced by the works of Watson [Wat17], Lobb-
Watson [LW21] and Boyle-Issa [BI21]. The aim of the present article is to investigate the theory of
equivariant knots through the lens of knot Floer homology, an extensive package of invariants intro-
duced independently by Ozsváth-Szabó [OS04] and Rasmussen [Ras03]. Our underlying approach
is straightforward: given a strongly invertible knot pK, Äq, we show that Ä induces an appropriately
well-defined automorphism of the knot Floer complex CFKpKq. Using the induced action of Ä , we
construct the following suite of numerical invariants:

Theorem 1.1. Let pK, Äq be a strongly invertible knot in S3. Associated to pK, Äq, we have four
integer-valued equivariant concordance invariants

V Ä
0pKq ď V Ä

0pKq and V ºÄ
0 pKq ď V ºÄ

0 pKq.

In fact, V ˝
0 and V ˝

0 pwhere ˝ P tÄ, ºÄuq are invariant under the more general relation of isotopy-
equivariant homology concordance.

Note that V ˝
0 and V ˝

0 vanish if K is equivariantly slice. See Definition 2.9 for the definition of
isotopy-equivariant homology concordance.

Obstructions to equivariant sliceness have been investigated by several authors, including
Sakuma [Sak86], Cha-Ko [CK99], and Naik-Davis [DN06]. However, understanding the equivariant
slice genus has only more recently been studied by Boyle-Issa [BI21]. One of the main results of this
paper will be to show that V ˝

0 and V ˝
0 provide lower bounds for the equivariant slice genus rg4pKq

of pK, Äq. In fact, we show that they bound the isotopy-equivariant slice genus ; see Definition 2.8.
Using this, we provide a family of strongly invertible slice knots pKn, Änq whose equivariant slice
genus grows arbitrarily large, answering a question posed by Boyle-Issa. Prior to the current article,
there were no known examples of strongly invertible knots with rg4pKq ´ g4pKq provably greater
than one.
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Surprisingly, our invariants also have applications to several (seemingly) non-equivariant ques-
tions. We first show that our formalism can be used to detect exotic pairs of slice disks, recovering
an example originally due to Hayden [Hay21]. Note that while knot Floer homology has previously
been used to detect exotic higher-genus surfaces (see the work of Juhász-Miller-Zemke [JMZ20]),
the current work represents the first such application of knot Floer homology in the genus-zero case.
We also consider the question of bounding the stabilization distance between pairs of disks. Using
the work of Juhász-Zemke [JZ18], we show that our examples Kn give a Floer-theoretic re-proof
and extension of a result by Miller-Powell [MP19], which states that for each integer m, there is a
knot Jm with a pair of slice disks that require at least m stabilizations to become isotopic.

The invariants of Theorem 1.1 are correction terms derived from the action of Ä on CFKpKq
following the general algebraic program of Hendricks-Manolescu [HM17]. Instead of working with
numerical invariants, it is also possible to define a local equivalence group in the style of Hendricks-
Manolescu-Zemke [HMZ18] or Zemke [Zem19]. This follows the approach taken in Dai-Hedden-
Mallick in [DHM20] to study cork involutions; and, indeed, the current article is closely related to
[DHM20]. In this paper, we define the local equivalence group KÄ,º of pÄK , ºKq-complexes and show
that there is a homomorphism from the equivariant concordance group rC (defined by Sakuma in
[Sak86]) to KÄ,º:

hÄ,º : rC Ñ KÄ,º.

Interestingly, it turns out that KÄ,º is not a priori abelian. It is an open problem whether rC is
abelian; in principle, our invariants can thus be used to provide a negative answer to this question.1

As far as the authors are aware, this is the first example of a (possibly) non-abelian group arising
in the setting of local equivalence. See Section 2 for background and further discussion.

Although all of the examples in this paper will be strongly invertible, we also establish several
analogous results for 2-periodic knots. We discuss these in Section 8.

1.1. Equivariant slice genus bounds. Our first application will be to show that the invariants
of Theorem 1.1 bound the equivariant slice genus rg4pKq of K (see Definition 2.1). In fact, we give
a bound for a rather more general quantity, defined as follows.

Let pK, Äq be a strongly invertible knot. Let W be a (smooth) homology ball with boundary
S3, and consider any (smooth) self-diffeomorphism ÄW onW which restricts to Ä on BW . Note that
we do not require ÄW itself to be an involution. We say that a slice surface Σ in W with BΣ < K

is an isotopy-equivariant slice surface (for the given data) if ÄW pΣq is isotopic to Σ rel K. Define
the isotopy-equivariant slice genus of pK, Äq by:

rig4pKq < min
all possible choices of W and ÄW

all isotopy-equivariant slice surfaces Σ

tgpΣqu.

Here rig4pKq depends on Ä , but we suppress this from the notation. The quantity rig4pKq generalizes
the obvious notion of equivariant slice genus in several ways. Firstly, we allow ourselves to consider
any homology ball W and any diffeomorphism which extends Ä , rather than restricting ourselves
to B4. Secondly, we do not require that Σ be invariant under the extension of Ä , but instead only
isotopic to its image. Obviously,

rig4pKq ď rg4pKq.

1Recently, Di Prisa has shown that rC is indeed non-abelian [DP22]; see Remark 1.13.



EQUIVARIANT KNOTS AND KNOT FLOER HOMOLOGY 3

Although the authors do not have an example in which rig4pKq is distinct from rg4pKq, this more
general quantity will turn out to be critical for several applications. There is also an obvious
accompanying notion of isotopy-equivariant homology concordance; see Definition 2.9.

Although the notion of isotopy equivariance may initially seem rather contrived, a slight shift
in perspective demonstrates its usefulness. To see this explicitly, let pK, Äq be a strongly invertible
knot in S3. Let W be any (smooth) homology ball with boundary S3 and ÄW be any extension
of Ä over W . If Σ Ď W is any slice surface for K with gpΣq ă rig4pKq, then we may immediately
conclude that the two surfaces Σ and ÄW pΣq are not isotopic rel K. The calculation of rig4pKq thus
provides an easy method for generating non-isotopic slice surfaces in the presence of a symmetry
on K. For example, if K is an equivariant slice knot with rig4pKq ą 0, then we may take any
slice disk Σ for K and form its image under any extension ÄW of Ä (in any homology ball W );
the resulting pair of slice disks are then automatically non-isotopic rel K. We often refer to Σ
and ÄW pΣq as a symmetric pair of slice disks. This is in marked contrast to the usual approach
taken in the literature, where in order to deploy various invariants, one (naturally) has in mind a
specific family of slice disks (or surfaces) that are conjectured to be non-isotopic. The situation
here is analogous to the notion of a strong cork introduced by Lin-Ruberman-Saveliev in [LRS17]
and studied in [DHM20].

Following the work of Juhász-Zemke [JZ20], we bound rig4pKq in terms of V ˝
0 and V ˝

0:

Theorem 1.2. Let pK, Äq be a strongly invertible knot in S3. Then for ˝ P tÄ, ºÄu,

´

R

1 ` rig4pKq

2

V

ď V ˝
0pKq ď V ˝

0pKq ď

R

1 ` rig4pKq

2

V

.

The computation of V ˝
0pKq and V ˝

0pKq can thus be used to help construct exotic pairs of slice
surfaces for K, via the discussion above. In the current paper, we only give the most archetypal
instance of this phenomenon; the authors plan to return to the task of finding a systematic range
of examples in future work. Note that by Theorem 1.1, if rig4pKq < 0 then V ˝

0 and V ˝
0 vanish. In

the genus-zero case, Theorem 1.1 thus gives a slightly stronger bound than that of Theorem 1.2.
This discrepancy is explained in Remark 5.1.

1.2. Applications. We now give several computations and applications. Our main class of exam-
ples is quite straightforward. Let T2n,2n`1 be the right-handed torus knot and select any strong
inversion Ä on T2n,2n`1 (in fact, this is unique up to conjugation by [Sak86, Proposition 3.1]).
As in Figure 1, there are two obvious strong inversions on T2n,2n`1#T2n,2n`1. On one hand, we
may take the equivariant connected sum Ä# < Ä#Ä to obtain an inversion with one fixed point
on each summand. On the other, we may consider the strong inversion Äsw which interchanges
the two factors. Strictly speaking, the latter is a strong inversion on T2n,2n`1#T

r
2n,2n`1; however,

since T2n,2n`1 admits an orientation-reversing symmetry, we will occasionally conflate this with
T2n,2n`1#T2n,2n`1.

We then consider the further equivariant connected sum

Kn < pT2n,2n`1#T2n,2n`1q# ´ pT2n,2n`1#T2n,2n`1q

equipped with the strong inversion

Än < Ä## ´ Äsw.
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That is, we consider the strong inversion Ä# on the first copy of T2n,2n`1#T2n,2n`1 and take the
equivariant connected sum of this with the (orientation-reversed mirror of the) inversion Äsw on
T2n,2n`1#T2n,2n`1. For a discussion of the equivariant connected sum of two strong inversions, see
Section 2.1. In general, defining the equivariant connected sum requires some additional data, but
the application we have in mind will be insensitive to this subtlety; see Remark 6.15. In Figure 1 we
perform the equivariant connected sum by (roughly speaking) stacking successive axes end-to-end.
Note that Kn is slice.

(T2n,2n+1, τ) (T2n,2n+1#T2n,2n+1, τ#) −(T2n,2n+1#T2n,2n+1, τsw)

(Kn, τn)

Figure 1. Schematic depiction of the case n < 1. Top left: a strong in-
version on T2n,2n`1. Top middle: the equivariant connected sum inversion Ä#
on T2n,2n`1#T2n,2n`1. Top right: (the mirror of) the strong inversion Äsw on
T2n,2n`1#T2n,2n`1. Bottom: construction of Kn and Än.

In Section 6, we establish the following fundamental calculation:

Theorem 1.3. For n odd, the pair pKn, Änq has V Ä
0pKnq ě n.

Similar knots were investigated by Hendricks-Hom-Stoffregen-Zemke in [HHSZ21] and the proof of
Theorem 1.3 relies on the computations of [HHSZ21]. In fact, we also establish that V Ä

0pKnq ě 0,
although this is of limited use, and conjecture that the inequality appearing in Theorem 1.3 is
an equality. However, since we do not need this for any application, we leave the more detailed
computation to the reader.

In [BI21, Question 1.1], Boyle-Issa asked whether there exists a family of strongly invertible
knots for which rg4pKq ´ g4pKq becomes arbitrarily large. Applying Theorem 1.2, we immediately
obtain:
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Theorem 1.4. For n odd, the pair pKn, Änq has

2n´ 2 ď rig4pKnq ď rg4pKnq.

Since each Kn is slice, this answers [BI21, Question 1.1] in the affirmative. The topological intuition
behind these examples is quite straightforward: the involutions Ä# and Äsw on T2n,2n`1#T2n,2n`1

are very different, so one should expect the equivariant slice genus of pKn, Änq to be large.
We also consider a particular knot J due to Hayden [Hay21], displayed in Figure 2. In [Hay21],

Hayden presents a certain pair of slice disks D and D1 for J , each with complement having fun-
damental group Z. By a result of Conway-Powell [CP19, Theorem 1.2], this implies that D and
D1 are topologically isotopic. However, in [Hay21, Section 2.1], it is shown that D and D1 are not
smoothly isotopic (or even diffeomorphic) rel boundary. (See also [HS21, Theorem 3.2].) Note that
J admits a strong inversion Ä ; a crucial part of the argument in [Hay21] relies on the fact that D
and D1 are related by the obvious extension of Ä over B4.

Figure 2. An equivariant slice knot J with symmetry Ä given by reflection across
the obvious vertical axis. The slice disks D and D1 are obtained by compressing
along the red and blue curves, respectively.

In [Hay21, Section 2.1], it is noted that J has a close connection to the positron cork W0 of
Akbulut-Matveyev [AM97]. In [DHM20, Theorem 1.15], the action of the cork involution on the
Heegaard Floer homology of BW0 was investigated. Re-casting these computations in the formalism
of the current paper yields:

Theorem 1.5. Let J be as in Figure 2. Then rig4pJq ą 0. In particular, no pair of symmetric
slice disks Σ and ÄW pΣq are (smoothly) isotopic rel J . This holds for any (smooth) homology ball
W with BW < S3 and any extension ÄW of Ä over W .

Given the connection between J and W0, it is actually possible to use [DHM20, Theorem 1.15]
to provide an immediate proof of Theorem 1.5, as we explain in Remark 7.8. However, going
through the proof in the current context explicitly gives:

Theorem 1.6. Let J be as in Figure 2 and let Σ and ÄW pΣq be any pair of symmetric slice disks
for J . Then

rFW,Σp1qs ‰ rFW,ÄW pΣqp1qs
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as elements in either H˚pCFKpJqq or zHFK pJq. This holds for any (smooth) homology ball W with
BW < S3 and any extension ÄW of Ä over W .

Here, FW,Σ and FW,ÄW pΣq are the knot Floer cobordism maps associated to (punctured copies of) Σ
and ÄW pΣq, respectively. We thus explicitly see that Σ and ÄW pΣq are distinguished by their maps
on knot Floer homology. Specializing to Σ < D, this provides a knot Floer-theoretic analogue of
the proof of [HS21, Theorem 3.2], in which D and D1 are distinguished using their induced maps
on Khovanov homology. Note that Juhász-Miller-Zemke have used knot Floer homology to detect
exotic higher-genus surfaces [JMZ20]. (The fact that the surfaces have genus greater than zero is
essential to their argument.) However, the current work represents the first instance of knot Floer
homology being applied to detect an exotic pair of disks.

By taking the n-fold connected sum #nJ , it is also straightforward to construct an example of
a slice knot with 2n different exotic slice disks, which are distinguished by their concordance maps
on zHFK . We establish this in Theorem 7.10; see [SS21, Corollary 6.6] for a similar construction.
In Theorem 7.11, we extend Theorem 1.5 to an infinite family of knots with exotic pairs of slice
disks, which were likewise considered by Hayden in [Hay21].

1.3. Algebraic formalism. As discussed previously, our underlying goal will be to show that a
strong inversion Ä induces a well-defined action on the knot Floer complex ofK. We also incorporate
the involutive knot Floer automorphism of Hendricks-Manolescu [HM17] into our formalism, which
will allow us to define the invariants V ºÄ

0 and V ºÄ
0 . In order to construct the action of Ä , we first

fix an orientation on K and an ordered pair of basepoints pw, zq which are interchanged by Ä . We
refer to this data as a decoration on pK, Äq. In Section 3.2, we define the action of Ä associated to
a decorated strongly invertible knot:

Theorem 1.7. Let pK, Äq be a decorated strongly invertible knot. Let H be any choice of Heegaard
data compatible with pK,w, zq. Then Ä induces an automorphism

ÄH : CFKpHq Ñ CFKpHq

with the following properties:

(1) ÄH is skew-graded and FrU ,V s-skew-equivariant
(2) Ä2

H
» id

(3) ÄH ˝ ºH » ςH ˝ ºH ˝ ÄH
Here, ºH is the Hendricks-Manolescu knot Floer involution on CFKpHq and ςH is the Sarkar map.
Moreover, the homotopy type of the triple pCFKpHq, ÄH, ºHq is independent of the choice of Heegaard
data H for the doubly-based knot pK,w, zq.

This action was originally considered by the second author in the context of establishing a large
surgery formula; see [Mal22]. Note that ÄH and ºH do not in general commute. This is in contrast
to the 3-manifold setting; see [DHM20, Lemma 4.4].

In view of the last part of Theorem 1.7, we may suppress writing H and unambiguously refer to
the homotopy type of pCFKpKq, ÄK , ºKq as an invariant of the decorated knot pK, Äq. In Section 2.2,
we formalize this algebraic data by defining the notion of an abstract pÄK , ºKq-complex. We define
an appropriate notion of local equivalence and form the quotient

KÄ,º < tabstract pÄK , ºKq-complexesu { local equivalence.
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See Section 2.2.
The role of the decoration on pK, Äq turns out to be quite subtle. As we will see, this extra

choice of data is needed to form the knot Floer complex of K and is critical for discussing the
invariance properties of pCFKpKq, ÄK , ºKq. In Section 3.4, we introduce the notion of a decorated
isotopy-equivariant homology concordance and show that in the decorated category, we obtain a
map

hÄ,º : t(decorated) strongly invertible knotsu
L (decorated) isotopy-equivariant

homology concordance
Ñ KÄ,º.

However, this is (in principle) not quite true if the decorations are discarded: in the undecorated
setting, an equivariant knot only defines a pÄK , ºKq-complex up to a certain ambiguity which we
refer to as a twist by ςK ; see Definition 2.20. Nevertheless, we show that V ˝

0 and V ˝
0 remain

invariants in the undecorated setting.
In Section 2.2, we further define a product operation on KÄ,º which makes it into a group. We

establish an equivariant connected sum formula in Theorem 4.1; this will allow us to prove that
hÄ,º constitutes a homomorphism from the equivariant concordance group rC to KÄ,º.

Theorem 1.8. We have a homomorphism

hÄ,º : rC Ñ KÄ,º.

The equivariant concordance group rC consists of the set of directed strongly invertible knots; see Def-
inition 2.5. In Section 3.5, we discuss the connection between rC and decorated isotopy-equivariant
concordance.

Somewhat surprisingly, it turns out that KÄ,º is not a priori abelian, although the authors
have no explicit example of this. As we discuss in Section 2.1, it is currently unknown whether rC

is abelian. Hence in principle Theorem 1.8 can be used to provide examples demonstrating this
claim; we plan to return to this question in future work. As far as the authors are aware, this is
the first example of a (possibly) non-abelian group arising in the setting of local equivalence. Note
that the ºK-local equivalence group of Zemke [Zem19] is abelian.

1.4. Relation to 3-manifold invariants. If K is an equivariant knot, then any 3-manifold ob-
tained by surgery on K inherits an involution from the symmetry on K (see for example [DHM20,
Lemma 5.2]). In [Mal22], the second author established a large surgery formula relating the action
of ÄK to the corresponding Heegaard Floer action of the 3-manifold involution. This latter action
was defined and studied in [DHM20] in the context of the theory of corks. It follows immediately
from the large surgery formula that (with appropriate normalization) the invariants V ˝

0 and V ˝
0

are none other than the numerical involutive correction terms referenced in [DHM20, Remark 4.5].
Explicitly, for p ě g3pKq, we have

´ 2V ˝
0pKq `

p´ 1

4
< d̄˝pS3

ppKq, r0sq

´ 2V ˝
0pKq `

p´ 1

4
< d˝pS3

ppKq, r0sq.

(1)

for ˝ P tÄ, ºÄu. See [HM17, Theorem 1.6] for the analogous statements concerning the usual invo-
lutive numerical invariants d̄ and d.
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The results of [DHM20] easily imply that V ˝
0 and V

˝
0 are invariant under equivariant concordance

(essentially by surgering along the concordance annulus). Hence it is actually immediate that V ˝
0

and V ˝
0 obstruct equivariant sliceness. Indeed, [DHM20] already gives several examples of slice

knots that are not equivariantly slice, as pointed out in [BI21]. The main import of the present
paper is thus to show that V ˝

0 and V ˝
0 can be used to study higher-genus examples, which were not

previously accessible.
In [DHM20, Theorem 1.5], it was shown that the invariants of [DHM20, Remark 4.5] satisfy

certain inequalities in the presence of negative-definite equivariant cobordisms. In our context, this
specializes to inequalities of V ˝

0 and V ˝
0 involving equivariant crossing changes. In Section 7, we

consider several kinds of equivariant crossing changes. We prove:

Theorem 1.9. Let K be strongly invertible knot. Let K 1 be obtained from K via an equivariant
positive-to-negative crossing change (or an equivariant pair of such crossing changes). Then:

(1) If the crossing change is of Type Ia, we have

V Ä
0pKq ě V Ä

0pK 1q and V Ä
0pKq ě V Ä

0pK 1q.

(2) If the crossing change is of Type Ib, we have

V ºÄ
0 pKq ě V ºÄ

0 pK 1q and V ºÄ
0 pKq ě V ºÄ

0 pK 1q.

(3) If we have an equivariant pair of crossing changes (Type II), we have both

V Ä
0pKq ě V Ä

0pK 1q and V Ä
0pKq ě V Ä

0pK 1q

and

V ºÄ
0 pKq ě V ºÄ

0 pK 1q and V ºÄ
0 pKq ě V ºÄ

0 pK 1q.

See Definition 7.6 for a definition of these terms.
A generalization of these ideas will be used to establish Theorem 1.5.

1.5. Relation to secondary invariants. In [JZ18], Juhász and Zemke construct several sec-
ondary invariants associated to a pair of slice surfaces Σ and Σ1 for the same knot. These are
shown to give lower bounds for various quantities such as the stabilization distance between Σ and
Σ1 (see below). Here, we focus on the invariant V0pΣ,Σ1q of [JZ18, Section 4.5]. It is easy to show:

Theorem 1.10. Let pK, Äq be a strongly invertible knot in S3. Let W be any (smooth) homology
ball with boundary S3, and let ÄW be any extension of Ä over W . If Σ is any slice disk for K in
W , then

maxtV Ä
0pKq, V ºÄ

0 pKqu ď V0pΣ, ÄW pΣqq.

In [JZ18], V0pΣ,Σ1q is defined for surfaces in B4, but the extension to general integer homology
balls is straightforward. The authors expect further connections with the results of [JZ18], which
we intend to investigate in future work.

LetW be a homology ball with BW < S3, and let Σ,Σ1 Ď W be two slice surfaces for K. Recall
that the stabilization distance µstpΣ,Σ

1q is defined to be the minimum of

maxtgpΣ1q, . . . , gpΣnqu
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over sequences of slice surfaces Σi Ď W from Σ to Σ1 such that consecutive surfaces are related
by either a stabilization/destabilization or an isotopy rel K. (We take the 4-manifold W as being
implicit in the setup and suppress it from the notation.) In [JZ18, Theorem 1.1], Juhász and Zemke
show that if Σ,Σ1 Ď W are two slice disks for the same knot, then

V0pΣ,Σ1q ď

R

µstpΣ,Σ
1q

2

V

.

It follows from this that V ˝
0 and V

˝
0 can be used to construct pairs of disks with large stabilization

distance. Applying Theorem 1.10 and [JZ18, Theorem 1.1] to the examples pKn, Änq of Section 1.2,
we immediately obtain:

Theorem 1.11. Let n be odd. Let W be any (smooth) homology ball with boundary S3, and let ÄW
be any extension of Än over W . Suppose Kn is slice in W . Then for any slice disk Σ,

2n´ 1 ď µstpΣ, ÄW pΣqq.

Since Kn is slice in B4, this shows that for any integer m, there is some knot with a pair of slice
disks that require at least m stabilizations to become isotopic. This provides an alternate proof
of a result of Miller-Powell [MP19, Theorem B]. In fact, Theorem 1.11 is slightly stronger, as the
stabilization distance between two surfaces can be strictly less than the number of stabilizations
needed to make them isotopic. Moreover, the examples of Theorem 1.11 are inherent to the knots
Kn, rather than the actual disks: we may start with any slice disk for Kn (in B4 or otherwise) and
compute its stabilization distance to its reflection (again, under any extension of Än).

Remark 1.12. During the completion of this project, Ian Zemke informed us of another family of
examples, now independently included in [JZ18, Section 10.3]. Our examples use a similar family of
knots as in [JZ18, Section 10.3], but the slice disks in question are rather different. (In particular,
our approach de-emphasizes the construction of the actual disks, and instead requires only that the
pair of disks are related by ÄW .)

Remark 1.13. Recently, several related results have emerged which have a strong bearing on the
work presented here. Although these appeared some time after the initial posting of this paper, we
describe them briefly to provide some context:

(1) Di Prisa [DP22] has shown that the equivariant concordance group is indeed non-abelian.
The authors do not believe that knot Floer homology detects these examples; it is still
unclear whether KÄ,º is abelian.

(2) Building on the Floer-theoretic formalism of the present work (in particular, Theorem 4.3),
the authors of this paper (in joint work with Kang and Park) have recently shown that the
p2, 1q-cable of the figure-eight is not slice [DKM`22]. This was previously an open question,
and as such may provide some motivation for the extensive framework we establish here.

(3) Miller and Powell [MP22] have recently provided a second (more topological) proof of [BI21,
Question 1.1] by utilizing Blanchfield forms. Curiously, the two approaches do not overlap:
the examples presented here are not accessible via the methods of [MP22]; conversely, Floer
homology does not give growing genus bounds for the examples of [MP22].
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Organization. In Section 2, we give a brief introduction to equivariant concordance and introduce
the topological objects that we study in this paper. We then establish the algebraic formalism of
local equivalence and define the local equivalence group KÄ,º. In Section 3, we construct the Floer-
theoretic action associated to a strong inversion and prove Theorem 1.7. We then define V ˝

0 and
V ˝

0 and prove Theorem 1.1. In Section 4, we establish several computational tools involving the
action of Ä , including a connected sum formula. This leads to the proof of Theorem 1.8. We
establish the equivariant slice genus bound of Theorem 1.2 in Section 5. Then, in Section 6, we
carry out the calculation of Theorem 1.3 regarding the examples pKn, Änq. Finally, in Section 7, we
explicitly discuss the relation between our invariants and the work of Dai-Hedden-Mallick [DHM20]
and Juhász-Zemke [JZ18]; we prove Theorems 1.5, 1.6, 1.9, and 1.10. Section 8 gives an overview
of several analogous results for 2-periodic knots.

2. Background and algebraic formalism

In this section, we give a brief review of equivariant knots. We then establish the algebraic
formalism of local equivalence and define and discuss the group KÄ,º. Throughout, we assume a
general familiarity with the knot Floer and involutive knot Floer packages; see [HM17] and [Zem19].

2.1. Equivariant knots. Let K be a knot in S3 and let Ä be an orientation-preserving involution
on S3 that sends K to itself and has nonempty fixed-point set. By the resolution of the Smith
Conjecture, we may assume that the fixed-point set of Ä is an unknot and that Ä is rotation about
this axis [Wal69], [MB84]. If Ä preserves orientation on K, then we say that pK, Äq is 2-periodic
(or often just periodic) and refer to Ä as a periodic involution. If Ä reverses orientation on K, then
we say that pK, Äq is strongly invertible and refer to Ä as a strong inversion. These correspond to
the situations where Ä has zero or two fixed points on K, respectively. In this paper we focus on
strongly invertible knots; the periodic case is discussed in Section 8. Although an equivariant knot
may refer to either a strongly invertible or a periodic knot pK, Äq, we will often use this terminology
with the strongly invertible case in mind.

We say that pK1, Ä1q and pK2, Ä2q are equivariantly diffeomorphic if there is an orientation-
preserving diffeomorphism f : S3 Ñ S3 which sends K1 to K2 and has Ä2 ˝ f < f ˝ Ä1.

Definition 2.1. Let pK, Äq be an equivariant knot. A slice surface Σ Ď B4 for K is equivariant
if there exists an involution ÄB4 : B4 Ñ B4 which extends Ä and has ÄB4pΣq < Σ. The equivariant
slice genus of pK, Äq is defined to be the minimum genus over all equivariant slice surfaces for pK, Äq
in B4. We denote this quantity by rg4pKq, suppressing the involution Ä .

Equivariant sliceness has been studied by several authors; see for example [Sak86], [CK99], and
[DN06]. Recently, Boyle-Issa [BI21] studied the equivariant slice genus and were able to present
several methods for bounding the equivariant slice genus from below. They moreover construct a
family of periodic knots for which rg4pKq ´ g4pKq becomes arbitrarily large. Prior to the current
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article, there were no known examples of strongly invertible knots with rg4pKq ´ g4pKq provably
greater than one.

There is also an obvious notion of equivariant concordance, given by:

Definition 2.2. Let pK1, Ä1q and pK2, Ä2q be two equivariant knots. We say that a concordance
Σ Ď S3 ˆ I from K1 to K2 is equivariant if there exists an involution ÄS3ˆI : S

3 ˆ I Ñ S3 ˆ I which
extends Ä1 and Ä2 and has ÄS3ˆIpΣq < Σ.

In the strongly invertible setting, it turns out that it is useful to have a refinement of Defini-
tion 2.1, which we now explain. If pK, Äq is a strongly invertible knot, note that K separates the
fixed-point axis of Ä into two halves.

Definition 2.3. A direction on pK, Äq is a choice of half-axis, together with an orientation on this
half-axis.

Definition 2.4. Given two directed strongly invertible knots pK1, Ä1q and pK2, Ä2q, we may form
their equivariant connected sum, as defined in [Sak86]. This is another directed strongly invertible
knot, constructed as follows. Place K1 and K2 along the same oriented axis, such that the oriented
half-axis for K1 occurs before the oriented half-axis for K2. Attach an equivariant band with one
foot at the head of the half-axis for K1 and the other foot at the tail of the half-axis for K2, as in
Figure 3. Define the oriented half-axis for K1#K2 to run from the tail of the half-axis for K1 to
the head of the half-axis for K2.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

=#

K1 K2 K1#K2

Figure 3. Forming the equivariant connected sum. The connected sum band
should be thought of as running along the axis of symmetry, and may have other
strands of K1 or K2 running over/under it in the knot projection. Alternatively, the
ends of the half-axes can be isotoped so that they are the leftmost and rightmost
points of each knot.

We stress that a choice of direction is necessary to define the equivariant connected sum. More-
over, the equivariant connected sum is not a commutative operation: the strongly invertible knots
pK1#K2, Ä1#Ä2q and pK2#K1, Ä2#Ä1q are not usually equivariantly diffeomorphic (even forgetting
about the data of the direction). For further discussion, see [Sak86] or [BI21, Section 2].

In order to construct an equivariant concordance group, we consider the set of directed strongly
invertible knots. This necessitates a refinement of Definition 2.2 which takes into account the extra
data of the direction.
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Definition 2.5. [BI21, Definiton 2.4] Let pK1, Ä1q and pK2, Ä2q be two directed strongly invertible
knots. We say that an equivariant concordance pΣ, ÄS3ˆIq between pK1, Ä1q and pK2, Ä2q is equi-
variant in a directed sense if the orientations of the half-axes induce the same orientation on the
fixed-point annulus F of ÄS3ˆI and the half-axes are contained in the same component of F ´ Σ.

Definition 2.6. [Sak86] The equivariant concordance group is formed by quotienting out the set
of directed strongly invertible knots by (directed) equivariant concordance. The group operation
is given by equivariant connected sum. The inverse of pK, Äq is constructed by mirroring K and
reversing orientation on the (mirrored) half-axis. We denote this group by rC.

It is currently an open question whether rC is abelian. The equivariant concordance group was
studied at length by Sakuma [Sak86], who constructed a homomorphism from rC to the additive
group Zrts in the form of the ¸-polynomial.

Remark 2.7. As discussed in [Sak86] and [BI21], when studying rC, it is often the convention not
to fix an orientation on K, due to the fact that the action of Ä reverses orientation on K. In order
to follow this convention, we will similarly not require a fixed orientation. However, since most
invariants derived from knot Floer homology implicitly do require K to be oriented, in each case
we will be careful to check whether the choice of orientation is important.

Finally, we note (as discussed in the introduction) that we bound a rather more general notion
than the equivariant slice genus. For completeness, we formally record:

Definition 2.8. Let pK, Äq be an equivariant knot. Let W be a (smooth) homology ball with
boundary S3, and consider any (smooth) self-diffeomorphism ÄW on W which extends Ä . Note that
we do not require ÄW itself to be an involution. We say that a slice surface Σ in W with BΣ < K

is an isotopy-equivariant slice surface (for the given data) if ÄW pΣq is isotopic to Σ rel K. Define
the isotopy-equivariant slice genus of pK, Äq by:

rig4pKq < min
all possible choices of W and ÄW

all isotopy-equivariant slice surfaces Σ

tgpΣqu.

Here rig4pKq depends on Ä , but we suppress this from the notation.

There is also an accompanying notion in the setting of concordance:

Definition 2.9. Let pK1, Ä1q and pK2, Ä2q be two equivariant knots. An isotopy-equivariant ho-
mology concordance between pK1, Ä1q and pK2, Ä2q consists of a homology cobordism W from S3

to itself, a (smooth) self-diffemorphism ÄW : W Ñ W which extends Ä1 and Ä2, and a concordance
Σ Ď W between K1 and K2 such that ÄW pΣq is isotopic to Σ rel boundary.

2.2. Local equivalence and KÄ,º. We now give an overview of the framework of local equivalence
and define KÄ,º. We assume the reader has a general familiarity with the ideas of [HM17] and
[Zem19]. Let C be a bigraded, free, finitely-generated chain complex over R < FrU ,V s such that

(1) grpBq < p´1,´1q, grpU q < p´2, 0q, and grpV q < p0,´2q
(2) C b FrU ,V ,U ´1,V ´1s is homotopy equivalent to FrU ,V ,U ´1,V ´1s

We refer to C as an abstract knot complex, occasionally denoting the two components of the grading
by grU and grV . As explained in [Zem16b, Section 3], given an abstract knot complex, we can
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formally differentiate the matrix of B with respect to U and V to obtain R-equivariant maps Φ
and Ψ.2 We define the Sarkar map in this context to be ςK < id ` Φ ˝ Ψ » id ` Ψ ˝ Φ. It is a
standard fact that ς2K » id.

Definition 2.10. A abstract pÄK , ºKq-complex is a triple pC, ÄK , ºKq such that:

(1) C is an abstract knot complex
(2) ºK : C Ñ C is a skew-graded, R-skew-equivariant chain map such that

º2K » ςK

(3) ÄK is a skew-graded, R-skew-equivariant chain map such that

Ä2K » id and ÄK ˝ ºK » ςK ˝ ºK ˝ ÄK .

Recall that a map f : C Ñ C is skew-graded if grpfpxqq < pgrV pxq, grU pxqq and is R-skew-
equivariant if fpU iVjxq < V iU jx.

Definition 2.10 simply says that the pair pC, ºKq is an abstract ºK-complex in the sense of Zemke
[Zem19, Definition 2.2]. The conditions on ÄK are from Theorem 1.7. We also note the following
extremely important consequence of the commutation condition:

Lemma 2.11. Let pC, ÄK , ºKq be an abstract pÄK , ºKq-complex. Then ςK commutes with both ÄK
and ºK up to homotopy.

Proof. The proof is immediate from the commutation relation between ÄK and ºK , the fact that
º2K » ςK , and the fact that ς2K » id. (In fact, it is possible to show that ςK commutes with any
chain map from C to itself, using the equality ςK < id ` Φ ˝ Ψ.) □

There is a natural notion of homotopy equivalence:

Definition 2.12. Two pÄK , ºKq-complexes pC1, ÄK1
, ºK1

q and pC2, ÄK2
, ºK2

q are homotopy equivalent
if there exist graded, R-equivariant homotopy inverses f and g between C1 and C2 such that

f ˝ ÄK1
» ÄK2

˝ f and g ˝ ÄK2
» ÄK1

˝ g

and

f ˝ ºK1
» ºK2

˝ f and g ˝ ºK2
» ºK1

˝ g.

In this case we write pC1, ÄK1
, ºK1

q » pC2, ÄK2
, ºK2

q.3

We also have the analogue of local equivalence from [Zem19, Definition 2.4]:

2Technically, Φ and Ψ are only defined after fixing a basis for C. However, the homotopy equivalence classes of Φ
and Ψ are well-defined without a choice of basis; see [Zem19, Corollary 2.9].

3If f and g are graded, R-equivariant chain maps, we write f » g to mean that f and g are homotopic via an
R-equivariant homotopy. This means that f ` g “ BH ` HB for some R-equivariant H. If f and g are skew-graded,
skew-R-equivariant chain maps, we again write f » g to mean that f and g are homotopic via a skew-R-equivariant
homotopy. This means that f ` g “ BH ` HB for some R-skew-equivariant H. Our notation differs slightly from
[Zem19], where the convention is to write »in the latter case.
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Definition 2.13. Two pÄK , ºKq-complexes pC1, ÄK1
, ºK1

q and pC2, ÄK2
, ºK2

q are locally equivalent if
there exist graded, R-equivariant chain maps f : C1 Ñ C2 and g : C2 Ñ C1 such that

f ˝ ÄK1
» ÄK2

˝ f and g ˝ ÄK2
» ÄK1

˝ g

and

f ˝ ºK1
» ºK2

˝ f and g ˝ ºK2
» ºK1

˝ g.

and f and g induce homotopy equivalences C1 b FrU ,V ,U ´1,V ´1s » C2 b FrU ,V ,U ´1,V ´1s.
In this case we write pC1, ÄK1

, ºK1
q > pC2, ÄK2

, ºK2
q. We refer to the maps f and g as local maps.

Using the notion of local equivalence, we now define:

Definition 2.14. We define the pÄK , ºKq-local equivalence group to be

KÄ,º < tabstract pÄK , ºKq-complexesu { local equivalence.

The group operation is defined as follows. Given pC1, ÄK1
, ºK1

q and pC2, ÄK2
, ºK2

q, define automor-
phisms Äb and ºb on C1 b C2 as follows. Let

Äb < ÄK1
b ÄK2

and

ºb < pid b id ` Φ b Ψq ˝ pºK1
b ºK2

q.

We define the product of two abstract pÄK , ºKq-complexes pC1, ÄK1
, ºK1

q and pC2, ÄK2
, ºK2

q to be
pC1 b C2, Äb, ºbq. This operation gives another abstract pÄK , ºKq-complex and is well-defined with
respect to local equivalence. The identity is given by the trivial complex pR, Äe, ºeq, where Äe < ºe
is the map on R which interchanges U and V . Inverses are given by dualizing with respect to R;
that is, pC, ÄK , ºKq_ < pC_, Ä_

K , º
_
Kq. See Lemmas 2.15 and 2.16.

It will also be convenient for us to consider the Sarkar map ςb on the product of two complexes.
Note that

ςb » idb ` ΦbΨb

» id b id ` pid b Φ ` Φ b idqpid b Ψ ` Ψ b idq

» id b id ` id b ΦΨ ` ΦΨ b id ` Φ b Ψ ` Ψ b Φ.

Lemma 2.15. The tensor product induces an associative binary operation on KÄ,º.

Proof. We will be brief, since the majority of the claim is immediate from [Zem19, Section 2.3]. We
first verify that the product complex is an abstract pÄK , ºKq-complex. The only condition which is
not either obvious or contained in [Zem19] is the commutation relation

Äb ˝ ºb » ςb ˝ ºb ˝ Äb.
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To see this, let us expand the left-hand side. Supressing the subscripts on Ä and º, we obtain

pÄ b Äqpid b id ` Φ b Ψqpºb ºq

» pid b id ` Ψ b ΦqpÄ b Äqpºb ºq

» pid b id ` Ψ b ΦqpςºÄ b ςºÄq

» pid b id ` Ψ b Φqpid b id ` id b ΦΨ ` ΦΨ b id ` ΦΨ b ΦΨqpºb ºqpÄ b Äq

» pid b id ` id b ΦΨ ` ΦΨ b id ` ΦΨ b ΦΨ ` Ψ b Φqpºb ºqpÄ b Äq.

Here, in the second line we have used [Zem19, Lemma 2.8], which states that a skew-equivariant
map intertwines Φ and Ψ up to homotopy. In the third line, we have used the commutation property
of Ä and º in each factor. In the fourth line, we have used the fact that ς < id ` ΦΨ. Finally, in
the last line we have used the fact that Φ and Ψ homotopy commute and that Φ2 » Ψ2 » 0; see
[Zem19, Lemma 2.10] and [Zem19, Lemma 2.11].

On the other hand, the right-hand side is given by

pidb ` ΦbΨbqpid b id ` Φ b Ψqpºb ºqpÄ b Äq

» pid b id ` id b ΦΨ ` ΦΨ b id ` Φ b Ψ ` Ψ b Φqpid b id ` Φ b Ψqpºb ºqpÄ b Äq

» pid b id ` id b ΦΨ ` ΦΨ b id ` ΨΦ b ΦΨ ` Ψ b Φqpºb ºqpÄ b Äq.

Here, in the second line we have used the fact that Φb < id b Φ ` Φ b id (and similarly for Ψb).
In the fourth line, we again use the fact that Φ and Ψ homotopy commute and that Φ2 » Ψ2 » 0.
The resulting expression is homotopic to the previous.

Checking associativity is straightforward. Indeed, in [Zem19, Section 2.3] it is shown that the
obvious identity map from pC1 b C2q b C3 to C1 b pC2 b C3q intertwines the ºK-actions up to
homotopy; this clearly intertwines the ÄK-actions. Checking that the tensor product respects local
equivalence is likewise immediate. □

Lemma 2.16. The tensor product operation above gives KÄ,º the structure of a group.

Proof. Again, the majority of the claim is immediate from [Zem19, Section 2.3]. The only nontrivial
claim is to establish that inverses are given by dualizing, which follows the proof of [Zem19, Lemma
2.18]. Zemke shows that the cotrace and trace maps

F : R Ñ C b C_ and G : C b C_ Ñ R

have the requisite behavior with respect to localizing and intertwine the ºK-actions. We check that
F intertwines the actions of Äe and ÄK b Ä_

K . Since Äe squares to the identity, it suffices to show

pÄK b Ä_
Kq ˝ F ˝ Äe » F.

But [Zem19, Equation (14)] implies

pÄK b Ä_
Kq ˝ F ˝ Äe » pÄ2K b idq ˝ F » pid b idq ˝ F < F,

establishing the claim. The proof for G is similar. Hence pC, ÄK , ºKq b pC, ÄK , ºKq_ is locally
equivalent to the trivial pÄK , ºKq-complex. Checking triviality of the product in the opposite order
is similar; use the obvious maps

F r : R Ñ C_ b C and Gr : C_ b C Ñ R.
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This completes the proof. □

Note that instead of considering triples pC, ÄK , ºKq, we may forget ºK or ÄK and consider pairs
pC, ÄKq or pC, ºKq, respectively. The reader will have no trouble in defining appropriate notions of
local equivalence for these and forming the analogous local equivalence groups.

Definition 2.17. We denote the local equivalence group of ÄK-complexes by KÄ ; this consists of
pairs pC, ÄKq such that ÄK is a skew-graded, R-equivariant chain map with Ä2K » id. We denote
the local equivalence group of ºK-complexes by Kº; this consists of pairs pC, ºKq such that ºK is a
skew-graded, R-equivariant chain map with º2K » ς. The latter is just the usual local equivalence
group of [Zem19, Proposition 2.6]. We obtain forgetful maps from KÄ,º to KÄ and Kº by discarding
ºK and ÄK , respectively.

Remark 2.18. It is possible to have triples pC1, ÄK1
, ºK1

q and pC2, ÄK2
, ºK2

q such that pC1, ÄK1
q >

pC2, ÄK2
q and pC1, ºK1

q > pC2, ºK2
q, but still pC1, ÄK1

, ºK1
q ȷ pC2, ÄK2

, ºK2
q. This is because in

Definition 2.13, we require ÄKi
and ºKi

to be simultaneously intertwined by f and g. This will be
an important distinction which leads to a great deal of (possible) subtlety in the structure of KÄ,º.
For an explicit example of the above phenomenon, see Example 2.27. Compare [DHM20, Example
4.7], which establishes a similar phenomenon in the 3-manifold setting.

2.3. (Possible) non-commutativity of KÄ,º. We now discuss some subtleties of KÄ,º. The first of
these involves a seeming asymmetry in the product operation. Recall that we defined the product
ºK-action on C1 b C2 to be ºb < ºb,A, where

ºb,A < pid b id ` Φ b Ψq ˝ pºK1
b ºK2

q.

There is of course a slightly different ºK-action on C1 b C2, given by

ºb,B < pid b id ` Ψ b Φq ˝ pºK1
b ºK2

q.

It is straightforward to check that using ºb,B in Definition 2.14 also gives a well-defined operation
on KÄ,º. Rather surprisingly, it turns out that these operations are not a priori the same.

Remark 2.19. In [Zem19, Lemma 2.14], Zemke considers the map

F < id b id ` Ψ b Φ.

This is a homotopy equivalence from C1 b C2 to itself such that F ˝ ºb,A » ºb,B ˝ F . Hence F
mediates a homotopy equivalence of pairs pC1 b C2, ºb,Aq » pC1 b C2, ºb,Bq. For this reason, ºb,A

and ºb,B both give the same product structure on Kº. However, the map F above does not provide
a homotopy equivalence between the triples pC1bC2, ÄK1

bÄK2
, ºb,Aq and pC1bC2, ÄK1

bÄK2
, ºb,Bq.

Indeed, F is not ÄK1
b ÄK2

-equivariant. We have

F ˝ pÄK1
b ÄK2

q < pid b id ` Ψ b ΦqpÄK1
b ÄK2

q

while

pÄK1
b ÄK2

q ˝ F < pÄK1
b ÄK2

qpid b id ` Ψ b Φq » pid b id ` Φ b ΨqpÄK1
b ÄK2

q.

In general, it is not true that these are chain homotopic maps.
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This discrepancy is closely related to the possible non-commutativity of KÄ,º. Indeed, consider
the two products C1 bC2 and C2 bC1. There is an obvious isomorphism from C1 bC2 to C2 bC1

given by transposition of factors; this clearly intertwines the two ÄK-actions ÄK1
bÄK2

and ÄK2
bÄK1

.
However, it does not intertwine the ºK-actions: instead, it sends ºb,A on C1bC2 to ºb,B on C2bC1.
Hence KÄ,º is not necessarily abelian, and in fact this question is equivalent to whether the operations
on KÄ,º induced by ºb,A and ºb,B are the same (up to local equivalence). In Theorem 4.1, we establish
a connected sum formula showing that using ºb,A corresponds to taking the equivariant connected
sum as in Definition 2.4. Using ºb,B thus corresponds to modifying Definition 2.4 by placing the
half-axis of the first knot above the half-axis of the second.

Unfortunately, the authors do not have an explicit example demonstrating that KÄ,º is not
abelian. Indeed, in all of the examples that the authors have tried, it is possible to find an ad hoc
construction of a local equivalence (in fact, even a homotopy equivalence) between pC1 bC2, ÄK1

b
ÄK2

, ºb,Aq and pC1 bC2, ÄK1
b ÄK2

, ºb,Bq. Note that KÄ,º admits forgetful maps to both KÄ and Kº,
which are both abelian.

2.4. Twisting by ςK . As discussed in the introduction, our goal will be to associate to a strongly
invertible knot a pÄK , ºKq-complex which is well-defined up to homotopy equivalence. Moreover,
we wish to show that this local equivalence class is invariant under isotopy-equivariant homology
concordance. Unfortunately, it turns out that both of these statements are technically only true if
we pass to the decorated category (see Sections 3.3 and 3.4). In order to capture this subtlety, we
introduce the following notion:

Definition 2.20. Let pC, ÄK , ºKq be an abstract pÄK , ºKq-complex. Compose ÄK , ºK , or both with
any number of copies of ςK . By Lemma 2.11, this produces another pÄK , ºKq-complex. We refer to
this new complex as being obtained from pC, ÄK , ºKq via a twist by ςK .

Lemma 2.21. Let pC, ÄK , ºKq be an abstract pÄK , ºKq-complex. Then

pC, ςK ˝ ÄK , ºKq » pC, ÄK , ςK ˝ ºKq

and
pC, ÄK , ºKq » pC, ςK ˝ ÄK , ςK ˝ ºKq.

Proof. To prove the second claim, we use the graded, R-equivariant automorphism ÄK ˝ ºK . A
quick computation using the relation ÄK ˝ ºK » ςK ˝ ºK ˝ ÄK shows that this constitutes a homotopy
equivalence between pC, ÄK , ºKq and pC, ςK ˝ ÄK , ςK ˝ ºKq. The first claim follows immediately from
the second, noting that ς2K » id. □

Up to homotopy equivalence, a pÄK , ºKq-complex thus has only one twist, which is represented by
pC, ςK˝ÄK , ºKq » pC, ÄK , ςK˝ºKq. In general, the authors know of no reason this should be homotopy
(or even locally) equivalent to its original, and it is possible that the requisite computation of ºK
does not currently exist in the literature. Note that Lemma 2.21 also implies pC, ÄKq » pC, ςK ˝ÄKq
and pC, ºKq » pC, ςK ˝ ºKq as pairs. Hence the distinction between a complex and its twist is a
phenomenon that is only present when considering ÄK and ºK simultaneously.

As we will see in Section 3.3 and Section 3.4, twisted complexes will play an important role
when we move from the decorated to the undecorated setting. Roughly speaking, if pK, Äq is an
strongly invertible knot without a choice of decoration, then we can only define the homotopy
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equivalence class of pC, ÄK , ºKq up to a twist by ςK . Nevertheless, we show presently that the
numerical invariants V ˝

0 and V ˝
0 are unchanged by twisting.

The distinction between a complex and its twist also has an interpretation in terms of the
direction on a strongly invertible knot (see Definition 2.3). In Section 3.5, we show that a choice
of direction on pK, Äq can be used to determine a homotopy equivalence class of pÄK , ºKq-complex.
Reversing the direction on pK, Äq corresponds to applying a twist by ςK . In general, reversing the
direction on pK, Äq alters its class in rC. Boyle-Issa [BI21] and Alfieri-Boyle [AB21] show that several
invariants are sensitive to this operation; KÄ,º is thus (in principle) similar, although this fails for
the simple examples at our disposal.

2.5. Extracting numerical invariants. We now give a brief review of extracting numerical in-
variants from the local equivalence class of pC, ÄK , ºKq. Recall that given an abstract knot complex
C, we may form the large surgery subcomplex, which we denote by C0.

Definition 2.22. Let pC, ÄK , ºKq be a pÄK , ºKq-complex. The large surgery subcomplex of C is the
subset C0 of C lying in Alexander grading zero; that is, the set of elements x with grU pxq < grV pxq.
(This is often denoted by by A0 elsewhere in the literature.) Strictly speaking, this is not a
subcomplex of C; although C0 is preserved by B, it is not a submodule over R. Instead, we view
C0 as a singly-graded complex over the ring FrU s, where

U < U V .

The Maslov grading of an element is given by grU < grV . When we write C0, we will mean this
singly-graded complex over FrU s.

Note that although ÄK and ºK are skew-graded, the condition grU < grV means that ÄK and ºK
induce grading-preserving automorphisms on C0, which we also denote by ÄK and ºK . Moreover,
although ÄK and ºK are R-skew-equivariant, their actions on C0 are equivariant with respect to
U < U V . It follows from [HHSZ20, Lemma 3.16] that as an automorphism of C0, the Sarkar map
ςK is homotopic to the identity. It is then easily checked that

pC0, ÄKq and pC0, ºK ˝ ÄKq

are º-complexes in the sense of [HMZ18, Definition 8.1].

We now follow the construction of the involutive numerical invariants d̄ and d from [HM17],
except that we replace the Heegaard Floer º-action with the action of ÄK on C0, where C0 is viewed
as a singly-graded complex over FrU s. Explicitly, let

CFI Ä pC0q < Cone

ˆ

C0
Qp1`ÄKq
ÝÝÝÝÝÝÑ Q ¨ C0

˙

where Q is a formal variable of grading ´1. Define

dÄ pC0q < maxtr | Dx P CFI Är pC0q such that

Unx ‰ 0 and Unx R impQq for all nu
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and

d̄Ä pC0q < maxtr | Dx P CFI Är pC0q such that

Unx ‰ 0 for all n and Umx P impQq for some mu ` 1.

We define the mapping cone CFI ºÄ pC0q by replacing ÄK with ºK ˝ ÄK , and define the numerical
invariants dºÄ pC0q and d̄ºÄ pC0q similarly. Our conventions here are such that if C is the trivial
complex R, then d˝ < d̄˝ < 0. We now have:

Definition 2.23. Let pC, ÄK , ºKq be an abstract pÄK , ºKq-complex. Define

V Ä
0pCq < ´

1

2
d̄Ä pC0q and V Ä

0pCq < ´
1

2
dÄ pC0q

and

V ºÄ
0 pCq < ´

1

2
d̄ºÄ pC0q and V ºÄ

0 pCq < ´
1

2
dºÄ pC0q.

Lemma 2.24. The invariants V ˝
0pCq and V ˝

0pCq are local equivalence invariants; that is, they
factor through KÄ,º.

Proof. Let pC1, ÄK1
, ºK1

q and pC2, ÄK2
, ºK2

q be two pÄK , ºKq-complexes and let f and g be local
equivalences between them. Since f and g are graded and R-equivariant, they induce graded,
FrU s-equivariant chain maps between pC1q0 and pC2q0, which are easily checked to be local in the
sense of [HMZ18, Definition 8.5]. The claim follows. □

Lemma 2.25. The invariants V ˝
0pCq and V ˝

0pCq are insensitive to twisting by ςK .

Proof. This follows immediately from the fact that ςK is homotopic to the identity as a map on
C0; see the proof of [HHSZ20, Lemma 3.16]. □

Note that the same argument indicates that no additional numerical invariants can be defined by
considering (for example) ÄK ˝ ºK in place of ºK ˝ ÄK .

2.6. Examples. We now list the pÄK , ºKq-complexes corresponding to different strong inversions on
the figure-eight and the stevedore. These may be derived from the results of [DHM20, Section 4.2] in
the following manner. Fix a basis in which the action of ºK is standard, as in [HM17, Section 8]. For
the pairs pK, Äq at hand, the 3-manifold action of Ä on HF´pS3

`1pKqq was calculated in [DHM20,
Section 4.2]. By the discussion of Section 7.1, this determines the action of ÄK on the homology of
CFKpKq0. We then list all automorphisms ÄK of CFKpKq which induce this action and satisfy the
axioms of Definition 2.10. (In particular, note that ÄK is required to satisfy ÄK ˝ ºK » ςK ˝ ºK ˝ ÄK .)
It turns out that in each example, the resulting automorphism is unique up to ºK-equivariant basis
change. The proof of this is left to the reader and is an exercise in tedium. Compare [DHM20,
Section 4.2].

Example 2.26. There are two strong inversions Ä and Ã on the figure-eight, which are displayed
in Figure 4. In Figure 5, we display their corresponding actions ÄK and ÃK on C < CFKp41q
(calculated in the basis with the indicated action of ºK). See [DHM20, Example 4.6].
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σ

τ

Figure 4. The figure-eight 41 with two strong inversions Ä and Ã.

∂a = Ub+ Vc

∂b = Ve

∂c = Ue

ιKa = a+ x0

ιKx0 = x0 + e

ιKe = e

C = 〈x0, a, b, c, e〉

ιKb = c

ιKc = b

σKa = a+ x0

σKx0 = x0

σKe = e

σKb = c

σKc = b

τKa = a

τKx0 = x0 + e

τKe = e

τKb = c

τKc = ba

e

x0

Figure 5. The pÄK , ºKq-complexes associated to Ä and Ã on 41.

Example 2.27. There are two strong inversions Ä and Ã on the stevedore, which are displayed
in Figure 6. In Figure 7, we display their corresponding actions ÄK and ÃK on C < CFKp61q
(calculated in the basis with the indicated action of ºK). See [DHM20, Example 4.7]. Note that the
pairs pC, ºKq and pC, ÃKq are individually trivial. In both cases, the local map to the trivial complex
is given by sending all generators except for x0 to zero. The local map in the other direction has
image x0 in the former case but image x0 ` e1 in the latter. However, there is no local map from
the trivial complex that simultaneously commutes with both ÃK and ºK (up to homotopy), so the
triple pC, ÃK , ºKq is nontrivial. This can be checked via exhaustive casework, or by computing
V ºÄ

0 pKq < 1.

Remark 2.28. The reader may verify that in each of the above examples, performing a twist by
ςK does not change the homotopy equivalence class of the relevant triple. We thus suppress writing
a choice of decoration or direction in both Example 2.26 and Example 2.27.

3. Construction of ÄK and equivariant concordance

In this section, we construct the action ÄK : CFKpKq Ñ CFKpKq of Ä on the knot Floer
complex of K. In order to do this, we first equip K with an orientation and a symmetric pair
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σ

τ

Figure 6. The stevedore 61 with two strong inversions Ä and Ã.

∂ai = Ubi + Vci

∂bi = Vei

∂ci = Uei

ιKa1 = a2

ιKa2 = a1 + e1

ιKx0 = x0

ιKe1 = e2

ιKe2 = e1

C = ïx0, a1, b1, c1, e1, a2, b2, c2, e2ð

ιKb1 = c2

ιKb2 = c1

ιKc1 = b2

ιKc2 = b1

σKa1 = a2

σKa2 = a1

σKx0 = x0 + e1 + e2

σKe1 = e2

σKe2 = e1

σKb1 = c2

σKb2 = c1

σKc1 = b2

σKc2 = b1

τKa1 = a1

τKa2 = a2 + e2

τKx0 = x0 + e1 + e2

τKe1 = e1

τKe2 = e2

τKb1 = c1

τKb2 = c2

τKc1 = b1

τKc2 = b2

e2

a1

e1

x0

a2

Figure 7. The pÄK , ºKq-complexes associated to Ä and Ã on 61.

of basepoints, which we collectively refer to as a decoration on K. We then explain in what
sense ÄK is independent of the choice of decoration. This turns out to be rather subtle, and will
require an extended discussion about identifying different knot Floer complexes for the same knot
in the case that the orientation or basepoints are changed. In particular, we show that if pK, Äq is a
decorated strongly invertible knot, then the triple pCFKpKq, ÄK , ºKq is well-defined up to homotopy
equivalence of pÄK , ºKq-complexes. If pK, Äq does not come with a decoration, then the homotopy
equivalence class of pCFKpKq, ÄK , ºKq is only defined up to a twist by ςK , although the homotopy
equivalence class of the pair pCFKpKq, ÄKq is still well-defined. See Theorems 3.11 and 3.12.

We then turn to the behavior of ÄK under equivariant concordance. Here, we similarly modify
the notion of an isotopy-equivariant homology concordance to hold in the decorated setting. We
show that a decorated equivariant concordance induces a local equivalence of pÄK , ºKq-complexes.
In the undecorated setting, this only holds up to a twist applied to one end of the concordance,
although we still obtain a local equivalence of ÄK-complexes. See Theorems 3.14 and 3.15.

Finally, we discuss the connection between the decorated and directed categories. We show
that a choice of direction similarly determines a homotopy equivalence class of pÄK , ºKq-complex,
and that a concordance in the directed category again induces a local equivalence. We then put
everything together and establish Theorem 1.1.
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3.1. Preliminaries. Defining the action of Ä will rely on a large number of auxiliary maps. In
order to establish notation, we collect these below. We assume that the reader has some familiarity
with the ideas of [Zem16a] and [Zem19].

Definition 3.1. Let pK,w, zq be an oriented, doubly-based knot.

(1) Let f be a diffeomorphism moving pK,w, zq into pfpKq, fpwq, fpzqq. If H is any choice of
Heegaard data for pK,w, zq, then we obtain a pushforward set of Heegaard data fH for
pfpKq, fpwq, fpzqq. Moreover, f induces a tautological chain isomorphism

f : CFKpHq Ñ CFKpfHq.

which by abuse of notation we also denote by f . We call this the tautological pushforward.
(2) If H1 and H2 are two choices of Heegaard data for pK,w, zq, then there is a preferred

homotopy equivalence

ΦpH1,H2q : CFKpH1q Ñ CFKpH2q.

This is unique (up to homotopy). We refer to ΦpH1,H2q as the naturality map. The set of
Φ form a transitive system.

(3) Let H < ppΣ,α,β, w, zq, Jq be a choice of Heegaard data for pK,w, zq. Then

Hr < ppΣ,α,β, z, wq, Jq

is a choice of Heegaard data for pKr, z, wq. Note that we interchange the roles of the
basepoints w and z, but we do not reverse orientation on Σ or interchange the roles of α
and β. The resulting diagram describes the knot K with reversed orientation. There is a
tautological skew-graded isomorphism

sw : CFKpHq Ñ CFKpHrq

with U iV jx ÞÝÑ U jV ix, given by mapping each intersection tuple to itself and interchang-
ing the roles of U and V . We call sw the switch map.

(4) Let H < ppΣ,α,β, w, zq, Jq a choice of Heegaard data for pK,w, zq. Then

H̄ < pp´Σ,β,α, z, wq, J̄q

is a choice of Heegaard data for pK, z, wq. There is a tautological skew-graded isomorphism

¸ : CFKpHq Ñ CFKpH̄q

with U iV jx ÞÝÑ U jV ix, given by mapping each intersection tuple to itself and inter-
changing the roles of U and V . We call ¸ the involutive conjugation map. We stress that
although sw and ¸ might appear to be the same map, their codomains are different: the
former represents pKr, z, wq, while the latter represents pK, z, wq.

With the exception of the naturality map, we will usually suppress the data of H and thus the
domain of the map in question.

Lemma 3.2. The maps f , Φ, sw, and ¸ all commute up to homotopy. Moreover, if f and g are
two diffeomorphisms which commute, then their pushforwards commute up to homotopy.
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Proof. Follows from naturality results established by Juhász-Thurston-Zemke [JTZ21] and Zemke
[Zem16a]. □

The maps in Lemma 3.2 should be interpreted as having the proper domain(s). For example,
when we say that f and Φ commute, we mean that we have a (homotopy) commutative square

CFKpH1q CFKpH2q

CFKpfH1q CFKpfH2q

f f

ΦpH1,H2q

ΦpfH1,fH2q

and similarly for the other maps. We thus write (for instance) f ˝ ΦpH1,H2q » ΦpfH1, fH2q ˝ f
with the understanding that the two instances of f have different domains. Note that implicitly,
we are also claiming these operations commute when applied to Heegaard diagrams. For example,
when we write f ˝sw » sw˝f , we are necessarily claiming that fHr < pfHqr, so that the codomains
of both sides may be identified.

There are two other important maps that are derived from those in Definition 3.1:

Definition 3.3. Let pK,w, zq be an oriented, doubly-based knot.

(1) Let H be any choice of Heegaard data for pK,w, zq. Then

¸ ˝ sw < sw ˝ ¸ : CFKpHq Ñ CFKpH̄rq

provides a filtered isomorphism between CFKpHq and CFKpH̄rq. Note that CFKpH̄rq is a
choice of Heegaard data for pKr, w, zq; this has the reversed orientation but the same pair
of basepoints. We call ¸ ˝ sw the orientation-reversal map.

(2) Let H be any choice of Heegaard data for pK,w, zq. Let Ä be the half Dehn twist along
the orientation of K which moves w into z and z into w. This induces a tautological
pushforward

Ä : CFKpHq Ñ CFKpÄHq.

Note that ÄH represents the doubly-based knot pK, z, wq. We denote the half Dehn twist
against the orientation of K by Ǟ, and denote the induced pushforward similarly.

Since the definition of Ä depends on the choice of orientation on K, the commutation relations
for Ä are slightly more subtle than those in Lemma 3.2. In particular, since sw reverses orientation
on K, we have the following:

Lemma 3.4. The map Ä commutes with Φ and ¸ up to homotopy. However, the maps Ä and sw
do not (in general) commute. Instead, we have

pÄHqr < ǞHr and pǞHqr < ÄHr

and
sw ˝ Ä » Ǟ ˝ sw and sw ˝ Ǟ » Ä ˝ sw.

Proof. Follows from naturality results established by Juhász-Thurston-Zemke [JTZ21] and Zemke
[Zem16a]. □
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Finally, we will often employ the following:

Lemma 3.5. Let pK,w, zq be a doubly-based knot. Let f and g be two diffeomorphisms of S3 such
that fpwq < gpwq and fpzq < gpzq, and suppose that f and g are isotopic rel tw, zu.4 Let H be
any Heegaard data for pK,w, zq and let H1 be any choice of Heegaard data for pfpKq, fpwq, fpzqq »
pgpKq, gpwq, gpzqq. Then

ΦpfH,H1q ˝ f » ΦpgH,H1q ˝ g.

Proof. Follows from naturality results established by Juhász-Thurston-Zemke [JTZ21] and Zemke
[Zem16a]. □

3.2. Construction of ÄK . We now construct ÄK . As usual, we begin by defining ÄK with respect
to a fixed choice of Heegaard data for K.

Definition 3.6. Let pK, Äq be a strongly invertible knot. A decoration on pK, Äq is a choice of
orientation for K, together with an ordered pair of distinct basepoints pw, zq on K which are
interchanged by Ä . Following the usual notation for a doubly-based knot, we denote this data by
pK,w, zq. Here we introduce a slight abuse of notation, in that K is not considered to have a
fixed orientation as part of pK, Äq, but is considered to have a fixed orientation as part of the data
pK,w, zq.

A decorated knot is just an oriented, doubly-based knot in the usual sense, with the caveat that
w and z are symmetric under the action of Ä . However, because the choice of extra data will be
important, we formally emphasize this in Definition 3.6.

Once a decoration for pK, Äq is chosen, we may select any set of Heegaard data H for pK,w, zq.
Define an automorphism

ÄH : CFKpHq Ñ CFKpHq

as follows. We first apply the tautological pushforward

t : CFKpHq Ñ CFKpÄHq.

Here, we denote the pushforward by t so as to not create confusion with the overall action ÄK . Note
that ÄH represents pKr, z, wq, since Ä is an orientation-reversing involution on K and interchanges
w and z. Since Hr also represents pKr, z, wq, we have a naturality map

ΦpÄH,Hrq : CFKpÄHq Ñ CFKpHrq.

Finally, we apply the switch map

sw : CFKpHrq Ñ CFKpHq.

Definition 3.7. The action ÄH : CFKpHq Ñ CFKpHq is given by the composition

ÄH : CFKpHq
t

ÝÑ CFKpÄHq
Φ
ÝÑ CFKpHrq

sw
ÝÑ CFKpHq.

Technically, the middle map Φ is only defined up to homotopy, but this clearly does not affect the
homotopy class of ÄH.

Theorem 1.7 summarizes the salient features of ÄH:

4That is, there is an isotopy Ht which sends w to fpwq “ gpwq and z to fpzq “ gpzq for all t.
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Proof of Theorem 1.7. For p1q, applying Lemma 3.2 and keeping track of the appropriate domains
gives the following chain of homotopies:

Ä2H < psw ˝ ΦpÄH,Hrq ˝ tq ˝ psw ˝ ΦpÄH,Hrq ˝ tq

< ΦpÄHr,Hq ˝ ΦpH, ÄHrq ˝ sw ˝ t ˝ sw ˝ t

< ΦpÄHr,Hq ˝ ΦpH, ÄHrq ˝ sw ˝ sw ˝ t ˝ t

» id.

Here, in the last line we have used the fact that t2 < sw2 < id, together with the fact that the set
of Φ form a transitive system. Claim (2) follows from observing that the pushforward map t and
the naturality map ΦpÄH,Hrq are graded and R-equivariant, whereas the map sw is skew-graded
and R-skew-equivariant. For (3), we apply Lemmas 3.2 and 3.4 to ÄH ˝ ºH. We move all of the
naturality maps to the left, simplify, and then collect the pushforward maps together:

ÄH ˝ ºH < psw ˝ ΦpÄH,Hrq ˝ tq ˝ pΦpÄH̄,Hq ˝ Ä ˝ ¸q

» ΦpÄHr,Hq ˝ ΦppÄÄH̄qr, ÄHrq ˝ sw ˝ t ˝ Ä ˝ ¸

» ΦpÄHr,Hq ˝ ΦpÄ ǞH̄r, ÄHrq ˝ t ˝ Ǟ ˝ sw ˝ ¸

» ΦpÄ ǞH̄r,Hq ˝ t ˝ Ǟ ˝ sw ˝ ¸.

See [HM17, Section 6.1] for the definition of ºH. It will be convenient for us to replace ςH with ς´1
H

;

this is allowed since ς2
H

» id. Note that ς´1
H

is represented by the basepoint-moving map against
the orientation of K. Doing this, we obtain

ς´1
H

˝ ºH ˝ ÄH < pΦpǞ2H,Hq ˝ Ǟ2q ˝ pΦpÄH̄,Hq ˝ Ä ˝ ¸q ˝ psw ˝ ΦpÄH,Hrq ˝ tq

» ΦpǞ2H,Hq ˝ ΦpǞ2ÄH̄, Ǟ2Hq ˝ ΦpǞ2ÄÄH̄r, Ǟ2ÄH̄q ˝ Ǟ2 ˝ Ä ˝ ¸ ˝ sw ˝ t

» ΦpǞ2ÄÄH̄r,Hq ˝ Ǟ2 ˝ Ä ˝ ¸ ˝ sw ˝ t

» ΦpÄ Ǟ2ÄH̄r,Hq ˝ t ˝ Ǟ2 ˝ Ä ˝ sw ˝ ¸.

The claim then follows from Lemma 3.5 and the fact that Ä ˝ Ǟ2 ˝ Ä » Ä ˝ Ǟ. Finally, the last part of
the theorem follows from the fact that the naturality maps commute with each of the factors used
in the definitions of ÄH and ºH. □

3.3. Naturality of ÄK . Theorem 1.7 shows that pCFKpKq, ÄH, ºHq is a pÄK , ºKq-complex whose
homotopy type is independent of the choice of Heegaard data for the oriented, doubly-based knot
pK,w, zq. Moreover, the homotopy equivalences between such triples are precisely the naturality
maps of Definition 3.1. It thus remains to show that ÄH is independent of the choice of decoration on
K. The reason we have separated this from the claim of Theorem 1.7 is that in general, there is no
canonical identification between two knot Floer complexes for K in the case that the orientation on
K is reversed or the basepoints are changed. For example, although one can write down complexes
for K and Kr which are isomorphic, such an isomorphism is not via a naturality map Φ.

We begin with the choice of orientation on K. Let H be any choice of Heegaard data for
pK,w, zq. As discussed previously, we have the orientation-reversing isomorphism

¸ ˝ sw : CFKpHq Ñ CFKpH̄rq.



26 I. DAI, A. MALLICK, AND M. STOFFREGEN

Note that the right-hand side represents pKr, w, zq. We now have:

Lemma 3.8. Let H be any choice of Heegaard data for pK,w, zq and H̄r be the corresponding
Heegaard data for pKr, w, zq. Then:

(1) p¸ ˝ swq ˝ ÄH » ÄH̄r ˝ p¸ ˝ swq
(2) p¸ ˝ swq ˝ ºH » ςH̄r ˝ ºH̄r ˝ p¸ ˝ swq

That is, ¸ ˝ sw provides a homotopy equivalence

pCFKpHq, ÄH, ºHq » pCFKpH̄rq, ÄH̄r , ςH̄r ˝ ºH̄rq.

Proof. Claim (1) follows immediately from Lemma 3.2, as both ¸ and sw commute with all of the
individual factors of ÄH. To see Claim (2), it is more convenient to replace ςH̄r with ς´1

H̄r . Applying
Lemmas 3.2 and 3.4, we obtain

p¸ ˝ swq ˝ ºH < p¸ ˝ swq ˝ pΦpÄH̄,Hq ˝ Ä ˝ ¸q

» ΦppÄHqr, H̄rq ˝ ¸ ˝ sw ˝ Ä ˝ ¸

» ΦpǞHr, H̄rq ˝ Ǟ ˝ sw

and

ς´1
H̄r ˝ ºH̄r ˝ p¸ ˝ swq < pΦpǞ2H̄r, H̄rq ˝ Ǟ2q ˝ pΦpÄHr, H̄rq ˝ Ä ˝ ¸q ˝ p¸ ˝ swq

» ΦpǞ2H̄r, H̄rq ˝ ΦpǞ2ÄHr, Ǟ2H̄rq ˝ Ǟ2 ˝ Ä ˝ ¸ ˝ ¸ ˝ sw

» ΦpǞ2ÄHr, H̄rq ˝ Ǟ2 ˝ Ä ˝ sw.

The claim then follows from the fact Ǟ2 ˝ Ä » Ǟ. □

Lemma 3.8 thus says that the homotopy equivalence class of ÄH is independent of the choice of
orientation on K. However, note that the homotopy equivalence used in Lemma 3.8 does not not
establish this for ºH: the graded isomorphism ¸ ˝ sw between CFKpHq and CFKpH̄rq intertwines
ºH and ςH̄r ˝ ºH̄r . We thus obtain a homotopy equivalence between the pÄK , ºKq-triple associated
to pK,w, zq, and the twist of the pÄK , ºKq-triple associated to pKr, w, zq.

We now investigate the dependence of ÄH on the choice of basepoints. Let pw, zq and pw1, z1q be
two symmetric pairs of basepoints for pK, Äq. The fixed-point axis of Ä separates K into two arcs,
both of which contain a single basepoint from each pair. There are two possibilities: either w and
w1 lie in the same subarc of K, or they lie in opposite subarcs. If w and w1 lie in the same subarc,
then there is an obvious equivariant diffeomorphism of S3 which moves w into w1 and z into z1; this
is formed by pushing w and z along K in a symmetric fashion, as shown in Figure 8. The desired
naturality statement in this case is then subsumed by a more general claim regarding equivariant
diffeomorphisms of S3. In general, if f : S3 Ñ S3 is an equivariant diffeomorphism, then the image
pfpKq, Äq of pK, Äq is another strongly invertible knot. We have:

Lemma 3.9. Let f : S3 Ñ S3 be an equivariant diffeomorphism. Let H be any choice of Heegaard
data for pK,w, zq and fH be the corresponding pushforward data for pfpKq, fpwq, fpzqq. Then

(1) f ˝ ÄH » ÄfH ˝ f
(2) f ˝ ºH » ºfH ˝ f
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Figure 8. Equivariant basepoint-pushing diffeomorphism.

That is, f provides a homotopy equivalence of triples

pCFKpHq, ÄH, ºHq » pCFKpfHq, ÄfH, ºfHq.

Proof. This follows from the fact that f commutes with each of the components of ÄH and ºH. □

Lemma 3.9 says that up to homotopy equivalence, the triple pCFKpKq, ÄH, ºHq is a well-defined
invariant up to equivariant diffeomorphism (in the decorated setting). In particular, by using
Figure 8 we may move pw, zq to any other symmetric pair pw1, z1q so long as w and w1 lie in the
same subarc of K.

Now consider the case in which w1 is chosen to lie in the opposite subarc from w. Due to our
analysis of the previous case, we may in fact assume that w1 < z and z1 < w. There is then an
obvious diffeomorphism which moves pK,w, zq into pK, z, wq; namely, the half Dehn twist Ä along
the oriented knot K. However, Ä does not commute with all the components of ÄH. We instead
have:

Lemma 3.10. Let H be any choice of Heegaard data for pK,w, zq and ÄH be the corresponding
pushforward data for pK, z, wq under the half Dehn twist Ä. Then

(1) Ä ˝ ÄH » ςÄH ˝ ÄÄH ˝ Ä
(2) Ä ˝ ºH » ºÄH ˝ Ä

That is, Ä provides a homotopy equivalence of triples

pCFKpHq, ÄH, ºHq » pCFKpÄHq, ςÄH ˝ ÄÄH, ºÄHq.

Proof. To prove the first claim, we compute

Ä ˝ ÄH < Ä ˝ psw ˝ ΦpÄH,Hrq ˝ tq

» ΦpÄÄHr, ÄHq ˝ Ä ˝ sw ˝ t

» ΦpÄÄHr, ÄHq ˝ Ä ˝ t ˝ sw
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and

ςÄH ˝ ÄÄH ˝ Ä < pΦpÄ2ÄH, ÄHq ˝ Ä2q ˝ psw ˝ ΦpÄÄH, pÄHqrq ˝ tq ˝ Ä

» ΦpÄ2ÄH, ÄHq ˝ ΦpÄ2pÄÄHqr, Ä2ÄHq ˝ Ä2 ˝ sw ˝ t ˝ Ä

» ΦpÄ2pÄÄHqr, ÄHq ˝ Ä2 ˝ sw ˝ t ˝ Ä

» ΦpÄ2ǞÄHr, ÄHq ˝ Ä2 ˝ Ǟ ˝ t ˝ sw.

The claim then follows from Lemma 3.5 and the fact that Ä2 ˝ Ǟ ˝ Ä » Ä ˝ Ä . The second assertion
of the lemma follows from the fact that Ä commutes with all the individual components of ºH. □

Lemma 3.10 might seem to imply that the homotopy equivalence class of ÄH is dependent on
the order of the basepoints w and z. Indeed, without a choice of decoration, it initially appears
that ÄH is only well-defined up to composition with the Sarkar map. This is a reasonable heuristic,
but not quite correct: it is important to stress that there is no canonical way to compare two knot
Floer complexes for K with different pairs of basepoints. Lemma 3.10 should thus be interpreted
as a statement specifically regarding the choice of homotopy equivalence Ä between a choice of
Heegaard data for pK,w, zq and a choice of Heegaard data for pK, z, wq. A priori, it is possible
that a different choice of homotopy equivalence might intertwine ÄH and ÄÄH. Indeed, recall from
Lemma 2.21 that ςH ˝ ÄH and ÄH are conjugate up to homotopy. More precisely,

pCFKpHq, ÄH, ºHq » pCFKpHq, ςH ˝ ÄH, ςH ˝ ºHq.

Hence Lemma 3.10 combined with Lemma 2.21 shows that the homotopy equivalence class of ÄH
is invariant under exchanging the roles of w and z, while the homotopy equivalence class of the
triple pCFKpHq, ÄH, ºHq is not, at least a priori. Instead, we see that pCFKpHq, ÄH, ºHq is homotopy
equivalent to either of the classes

pCFKpÄHq, ςÄH ˝ ÄÄH, ºÄHq » pCFKpÄHq, ÄÄH, ςÄH ˝ ºÄHq.

The situation is summarized in the following pair of theorems:

Theorem 3.11. Let pK, Äq be a decorated strongly invertible knot. The triple pCFKpHq, ÄH, ºHq
is independent, up to homotopy equivalence, of the choice of H so long as H is compatible with
the chosen decoration; moreover, it is an invariant of pK, Äq up to equivariant diffeomorphism,
interpreted in the decorated setting.

Proof. Follows from Theorem 1.7 and Lemma 3.9. □

In the decorated setting, we thus suppress the choice of Heegaard data and refer to the homotopy
equivalence class of the triple pCFKpKq, ÄK , ºKq unambiguously. In the undecorated setting, we
instead have the following:

Theorem 3.12. The homotopy equivalence class of pCFKpHq, ÄHq is independent of the choice
of decoration on pK, Äq. Reversing orientation or interchanging the basepoints each alters the
homotopy equivalence class of pCFKpHq, ÄH, ºHq by a twist.

Proof. Follows from Lemma 3.8 and Lemma 3.10. □



EQUIVARIANT KNOTS AND KNOT FLOER HOMOLOGY 29

In the undecorated setting, we thus refer to pCFKpKq, ÄKq unambiguously, although this is not
entirely natural. However, we must take care when discussing pCFKpKq, ÄK , ºKq in the undecorated
setting. Explicitly, we have constructed homotopy equivalences:

‚ pCFKpK,w, zq, ÄK , ºKq » pCFKpKr, w, zq, ÄKr , ςºKrq via Lemma 3.8
‚ pCFKpK,w, zq, ÄK , ºKq » pCFKpK, z, wq, ςÄK , ºKq via Lemma 3.10
‚ pCFKpK,w, zq, ÄK , ºKq » pCFKpK,w, zq, ςÄK , ςºKq via Lemma 2.21.

Again, however, note that these should not be treated as canonical.

3.4. Equivariant concordance. We now turn to the behavior of ÄK under equivariant concor-
dance. As in the previous section, we first need to define a notion of equivariant concordance in
the decorated setting.

Definition 3.13. Let pK1, Ä1q and pK2, Ä2q be two decorated strongly invertible knots and let
pW, ÄW ,Σq be an isotopy-equivariant homology concordance between them. We say that pW, ÄW ,Σq
respects the decorations (alternatively, is equivariant in the decorated sense) if:

(1) Σ is an oriented knot concordance; and,
(2) We can find a pair of properly embedded arcs µ1, µ2 Ď Σ such that:

(a) Each µi has one end point on K1 and one endpoint on K2, and these endpoints are
fixed by Ä1 and Ä2, respectively.

(b) We have an isotopy (rel boundary) moving pÄW pΣq, ÄW pµ1q, ÄW pµ2qq into pΣ, µ1, µ2q.
(c) The arcs divide Σ into two rectangular regions, one of which contains both w1 and w2

(we call this the black region), and the other of which contains both z1 and z2 (we call
this the white region).

When the context is clear, we refer to such a Σ as a decorated isotopy-equivariant concordance.
Note that Σ is just an isotopy-equivariant cobordism for which we can find an appropriate set of
isotopy-equivariant dividing curves, in the sense of [Zem16a].

Theorem 3.14. Let pK1, Ä1q and pK2, Ä2q be two decorated strongly invertible knots. A decorated
isotopy-equivariant concordance between pK1, Ä1q and pK2, Ä2q induces a local equivalence

pCFKpK1q, ÄK1
, ºK1

q > pCFKpK2q, ÄK2
, ºK2

q.

Proof. By work of Zemke [Zem16a], we obtain a concordance map

FW,F : CFKpK1q Ñ CFKpK2q.

Here, F represents the concordance Σ with the choice of dividing curves µ1 and µ2. It is standard
that FW,F is grading-preserving and has the requisite behavior under localization. In [HM17,
Section 4.5] and [Zem19, Theorem 1.5], it is shown that FW,F is ºK-equivariant (up to homotopy).
It thus suffices to show that it is ÄK-equivariant.

Consider the diagram:
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CFKpK1, w1, z1q CFKpK2, w2, z2q

CFKpKr
1 , z1, w1q CFKpKr

2 , z2, w2q

CFKpK1, w1, z1q CFKpK2, w2, z2q

FW,F

t t

FW,τW pFq

sw sw

FW,swpτW pFqq

Here, by CFKpK1, w1, z1q, we mean any representative for the complex of pK1, w1, z1q in the tran-
sitive system of complexes for doubly-basepointed knots. (Similarly for the other entries in the
diagram; we have thus suppressed writing the naturality maps Φ as part of the vertical arrows.)

The first square of this diagram commutes due to the diffeomorphism invariance of link cobor-
disms [Zem16a, Section 1.1]. By ÄW pFq, we mean the image of the decoration of F under ÄW .
The second square of the diagram also tautologically commutes; here, swpÄW pFqq is obtained from
ÄW pFq by interchanging the roles of the black and white regions on ÄW pFq and reversing orienta-
tion. The fact that our concordance is equivariant in the decorated sense shows that swpÄW pFqq is
isotopic to F rel boundary, including the dividing curves and coloring of regions on Σ. The isotopy
invariance of link cobordisms then implies that

FW,swpÄW pFqq » FW,F .

This shows that FW,F homotopy commutes with ÄK and hence constitutes a local map from
pCFKpK1q, ÄK1

, ºK1
q to pCFKpK2q, ÄK2

, ºK2
q. Turning the concordance around gives the local map

in the other direction and completes the proof. □

In the decorated setting, the local equivalence class of the triple pCFKpKq, ÄK , ºKq is thus an
invariant of isotopy-equivariant concordance. If pK1, Ä1q and pK2, Ä2q do not come equipped with
decorations, then (according to Theorem 3.12) we may still unambiguously speak of the homotopy
equivalence classes of pCFKpK1q, ÄK1

q and pCFKpK2q, ÄK2
q. We claim that in the presence of an

(undecorated) isotopy-equivariant concordance (as in Definition 2.9), these are again guaranteed to
be locally equivalent:

Theorem 3.15. Let pK1, Ä1q and pK2, Ä2q be two strongly invertible knots. An isotopy-equivariant
concordance between pK1, Ä1q and pK2, Ä2q gives a local equivalence of pairs

pCFKpK1q, ÄK1
q » pCFKpK2q, ÄK2

q.

Moreover, suppose we equip pK1, Ä1q and pK2, Ä2q with decorations, so that the homotopy equivalence
classes of their associated pÄK , ºKq-complexes are defined. Then pCFKpK1q, ÄK1

, ºK1
q is locally

equivalent to either pCFKpK2q, ÄK2
, ºK2

q or the twist of pCFKpK2q, ÄK2
, ºK2

q.

Proof. Because of the discussion following Lemma 2.21, the first claim follows from the second.
Thus, let pK1, Ä1q and pK2, Ä2q be two decorated strongly invertible knots. Let pW, ÄW ,Σq be an
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equivariant concordance between them which may not be equivariant in the decorated sense. Due
to Lemma 3.8, up to twisting the pÄK , ºKq-complexes at either end, we may assume that Σ is an
oriented concordance.

Now choose any pair of properly embedded arcs µ1, µ2 Ď Σ satisfying (a) and (c) of Defi-
nition 3.13(2). That is, each µi has one end point on K1 and one endpoint on K2, and these
endpoints are fixed by Ä1 and Ä2, respectively. Moreover, the curves µ1 and µ2 divide Σ into two
rectangular regions, one of which contains the wi basepoints and the other of which contains the
zi basepoints. Let F denote this concordance with the choice of dividing arcs µ1 and µ2. As usual,
FW,F commutes with ºK (up to homotopy). Following the proof of Theorem 3.14, we see that since
Σ may not be isotopy equivariant in the decorated sense, we no longer have that swpÄW pFqq is
isotopic to F . Instead, swpÄW pFqq is necessarily isotopic to a decorated concordance obtained by
applying some number of Dehn twists to F .

The concordance map associated to this altered decoration is given by precomposing the con-
cordance map for swpÄW pFqq with a power of the Sarkar map. Following the proof of Theorem 3.14,
we thus see that

ÄK2
˝ FW,F » FW,F ˝ pςnK1

˝ ÄK1
q.

Hence FW,F intertwines ÄK1
and ÄK2

up to composition with some power of the Sarkar map. As
the Sarkar map is a homotopy involution, the claim follows. □

In the undecorated setting, an equivariant concordance thus only induces a local equivalence of
pÄK , ºKq-triples up to twist. (Of course, note that if our knots are not decorated, then these triples
are only defined up to twist anyway.) However, we still obtain a local equivalence between their
ÄK-complexes.

Having established the necessary naturality results, we now conclude with the construction of
the numerical invariants of Theorem 1.1:

Definition 3.16. Let pK, Äq be a strongly invertible knot, which may be neither directed nor deco-
rated. Fix any decoration on pK, Äq and consider the resulting pÄK , ºKq-complex pCFKpKq, ÄK , ºKq.
Following Section 2.5, define:

V Ä
0pKq < V Ä

0pCFKpKq, ÄK , ºKq and V Ä
0pKq < V Ä

0pCFKpKq, ÄK , ºKq

and

V ºÄ
0 pKq < V ºÄ

0 pCFKpKq, ÄK , ºKq and V ºÄ
0 pKq < V ºÄ

0 pCFKpKq, ÄK , ºKq.

This is independent of the choice of decoration. Indeed, according to Theorem 3.12, changing the
decoration on pK, Äq corresponds to applying a twist by ςK . However, due to Lemma 2.25, our
numerical invariants are not altered by this operation.

Putting everything together, we obtain:

Proof of Theorem 1.1. By Theorem 3.15, an isotopy-equivariant homology concordance (in the un-
decorated category) induces a local equivalence of pÄK , ºKq-complexes, up to a twist by ςK . By
Lemma 2.25, this leaves our numerical invariants unchanged. □
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3.5. Directed knots. We now turn to the connection between the decorated and directed settings.

Definition 3.17. Let pK, Äq be a directed strongly invertible knot, in the sense of Definition 2.3.
We say that a decoration pK,w, zq is compatible with this choice of direction if the oriented subarc of
K containing the z-basepoint induces the same orientation on its boundary as the chosen half-axis.
See Figure 9.

w z z w

Figure 9. Two decorations compatible with a fixed choice of direction.

If pK, Äq is a directed strongly invertible knot, then (up to orientation-preserving equivariant
diffeomorphism) there are two compatible decorations on pK, Äq. These are related to each other
by simultaneously reversing orientation on K and interchanging the roles of w and z. See Figure 9.
Note that as discussed in Remark 2.7, a directed strongly invertible knot does not generally come
with a specified orientation. Conversely, suppose that pK, Äq is a decorated strongly invertible knot.
Then there are two possible choices of direction which are compatible with this decoration; they
are related by simultaneously switching the half-axis and reversing the axis orientation.

Theorem 3.18. We have a well-defined set map from the directed equivariant concordance group
to the local equivalence group of pÄK , ºKq-complexes.

h : rC Ñ KÄ,º

Proof. Let pK, Äq be a directed strongly invertible knot. As explained above, the choice of direction
determines two compatible decorations on pK, Äq, which are related to each other by simultaneously
reversing orientation on K and interchanging the roles of w and z. By Theorem 3.12, applying both
of these operations in succession does not change the homotopy type of the associated pÄK , ºKq-
complex. Hence using the convention of Definition 3.17, we may unambiguously talk of the pÄK , ºKq-
complex of a directed knot.

Moreover, suppose that we have a directed equivariant concordance pΣ, ÄS3ˆIq from pK1, Ä1q to
pK2, Ä2q. Definition 2.5 implies that we can find a pair of arcs µ1 and µ2 which run along the length
of Σ and are fixed by ÄS3ˆI . We may choose our compatible decorations on K1 and K2 such that
Σ is an oriented concordance. Then Σ (with the arcs µ1 and µ2q forms a decorated concordance in
the sense of Definition 3.13. □

4. Connected sums

In this section, we establish further fundamental results regarding the action of ÄK and show
that the map h from Theorem 3.18 is a group homomorphism.
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4.1. Connected sums. We begin with the connected sum formula. Let pK1, Ä1q and pK2, Ä2q be
two directed strongly invertible knots. As discussed in Section 2.1, we may form the equivariant
connected sum pK1#K2, Ä1#Ä2q, which is another directed strongly invertible knot. Note that
according to Theorem 3.18, we have a well-defined (up to homotopy equivalence) pÄK , ºKq-complex
for each of the directed pairs pK1, Ä1q, pK2, Ä2q, and pK1#K2, Ä1#Ä2q, obtained by choosing a
compatible decoration in each case.

Theorem 4.1. Let pK1, Ä1q and pK2, Ä2q be directed strongly invertible knots and K1#K2 be their
equivariant connected sum. Then

pCFKpK1#K2q, ÄK1#K2
, ºK1#K2

q and pCFKpK1q b CFKpK2q, Äb, ºbq

are homotopy equivalent, where

Äb < ÄK1
b ÄK2

and

ºb < pid b id ` Φ b ΨqpºK1
b ºK2

q.

Proof. Define an equivariant cobordism from pS3,K1, Ä1q \ pS3,K2, Ä2q to pS3,K1#K2, Ä1#Ä2q by
attaching a 1-handle and then a band in the obvious manner. Denote this by pW, ÄW ,Σq; the
surface Σ is schematically depicted in Figure 10. The knots K1 and K2 are represented by the
two inner circles and have half-axes given by their respective horizontal diameters (oriented from
left-to-right). Their connected sum K1#K2 is represented by the outer ellipse and has half-axis
defined similarly. We place w- and z-basepoints on K1, K2, and K1#K2 as indicated in Figure 10;
note that these are compatible with each of the chosen directions. Let F be the set of dividing
arcs on Σ consisting of the three indicated horizontal arcs. This makes Σ into a cobordism which
is equivariant in the decorated sense.

K1#K2

K1 K2

Figure 10. Decorated equivariant cobordism from K1 \K2 to K1#K2. Black dots
represent w-basepoints; white dots represent z-basepoints. The action of ÄW is given
by reflection across the horizontal axis. See [Zem19, Figure 6.1].

In [Zem19, Theorem 1.1], Zemke shows that the map

FW,F : CFKpK1q b CFKpK2q Ñ CFKpK1#K2q
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defined by the link cobordism with decoration F is a homotopy equivalence, together with the
map in the other direction constructed by turning the cobordism around. (Indeed, Figure 10 is
just [Zem19, Figure 6.1], which corresponds to the map G1 in [Zem19, Theorem 1.1].) Moreover,
according to [Zem19, Theorem 1.1], this homotopy equivalence intertwines pidbid`ΦbΨqpºK1

bºK2
q

on the incoming end with the connected sum involution ºK1#K2
on the outgoing end. We thus simply

need to show that FW,F intertwines ÄK1
b ÄK2

with ÄK1#K2
. This follows from the same argument

as in Theorem 3.14. We have the commutative diagram:

CFKpK1q b CFKpK2q CFKpK1#K2q

CFKpKr
1q b CFKpKr

2q CFKpKr
1#K

r
2q

CFKpK1q b CFKpK2q CFKpK1#K2q

FW,F

tbt t

swbsw sw

FW,swpτW pFqq

FW,τW pFq

Each of the two squares commutes tautologically. It is clear from Figure 10 that swpÄW pFqq
coincides with F ; hence FW,F intertwines ÄK1

b ÄK2
with ÄK1#K2

. The proof for the reversed
cobordism map is similar. □

Remark 4.2. Note that the above proof does not allow us to use Ψ b Φ in place of Φ b Ψ in
the statement of Theorem 4.1, unless the conventions of Definition 2.4 are also changed. This
asymmetry is due to the fact that we have specifically used the map G1 in [Zem19, Theorem 1.1].
The map G2 in [Zem19, Theorem 1.1] intertwines pidbid`ΨbΦqpºK1

bºK2
q with ºK1#K2

. However,
G2 does not correspond to a decoration which is geometrically equivariant; see [Zem19, Figure 5.1].
See the discussion in Section 2.3.

This completes the proof of Theorem 1.8:

Proof of Theorem 1.8. Follows from Theorem 3.18 and Theorem 4.1. □

4.2. The swapping involution. We now compute the action of the swapping involution described
in Section 1.2. In general, given a knot K in S3, we can form the connected sum K#Kr as in
Figure 11. As discussed in [BI21, Section 2], this admits an obvious strong inversion. In fact, as
discussed in [BI21, Section 2], we obtain a homomorphism from the usual concordance group to rC
by choosing the half-axis depicted in Figure 11. We call this the swapping involution on K#Kr

and denote it by Äsw. Our goal will be to calculate the pÄK , ºKq-complex of pK#Kr, Äswq (with this
choice of direction).

In order to compute the action of Äsw, we need to discuss the construction of K#Kr more
precisely. Assume that pK,w, zq is an oriented, doubly-based knot in S3. We think of the projection
of K as lying entirely to the the left of a vertical axis. Denote 180-degree rotation about this axis
by Ä . We obtain another doubly-based knot pÄK, Äw, Äzq by applying Ä to K. Although this can
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K K
r

Figure 11. The connected sum K#Kr. The half-axis runs vertically across the
band and is oriented to coincide with the orientation on K. See [BI21, Figure 5].

of course be identified with K, it will be helpful for us to emphasize the second copy of K as being
the image of the first under Ä ; we thus henceforth write ÄK rather than K. We moreover modify
the decoration on ÄK by applying sw; this gives pÄKr, Äz, Äwq.

As in Figure 11, we now attach a Ä -equivariant band to form the connected sum of K and ÄKr.
It will be convenient for us to assume that this band has a particular arrangement with respect
to the basepoints on K and ÄKr. Specifically, we require the foot of our band on K to lie on the
oriented subarc of K running from z to w, and the foot of our band on ÄKr to lie on the oriented
subarc running from Äw to Äz. We furthermore place a pair of symmetric basepoints w1 and z1

on K#ÄKr in such a way so that w1 lies on K and z1 lies on ÄKr. See Figure 12. Note that this
makes pK#ÄKr, w1, z1q into a decorated strongly invertible knot, and this choice of decoration is
compatible with the direction chosen in Figure 11.

K τK
r

K#τK
r

z

w

τz

τw

w
′ z

′

Figure 12. Schematic depiction of pK,w, zq \ pÄKr, Äz, Äwq and pK#ÄKr, w1, z1q,
together with a pair-of-pants cobordism between them. The actions of Ä , Äsw, and
ÄW on the pair-of-pants is given by reflection across the vertical axis.

Before proceeding further, we first construct the induced action of Ä on the disjoint union
pK,w, zq \ pÄKr, Äz, Äwq. Define a chain map

Äexch : CFKpK,w, zq b CFKpÄKr, Äz, Äwq Ñ CFKpK,w, zq b CFKpÄKr, Äz, Äwq

as follows. First apply the tautological pushforward associated to Ä . This induces an isomor-
phism from CFKpK,w, zq to CFKpÄK, Äw, Äzq, and also an isomorphism from CFKpÄKr, Äz, Äwq
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to CFKpKr, z, wq. We thus obtain a map

t : CFKpK,w, zq b CFKpÄKr, Äz, Äwq Ñ CFKpKr, z, wq b CFKpÄK, Äw, Äzq

which sends the first factor on the left isomorphically onto the second factor on the right, and the
second factor on the left isomorphically onto the first factor on the right. We then apply the map
sw from Definition 3.1 in each factor:

sw b sw : CFKpKr, z, wq b CFKpÄK, Äw, Äzq Ñ CFKpK,w, zq b CFKpÄKr, Äz, Äwq.

The action of Äexch is thus defined by the composition

Äexch < psw b swq ˝ t.

Note that this is just the action of ÄK defined in Section 3.2, generalized to the symmetric link
pK,w, zq \ pÄKr, Äz, Äwq.

We now establish the main theorem of this subsection:

Theorem 4.3. Denote the induced action of Äsw also by Äsw. Then

pCFKpK#ÄKrq, Äsw, ºK#ÄKrq and pCFKpKq b CFKpÄKrq, Äb, ºbq

are homotopy equivalent, where

Äb < pid b id ` Ψ b Φq ˝ Äexch

and

ºb < ςb ˝ pid b id ` Ψ b Φq ˝ pºK b ºÄKrq.

Proof. As in the proof of Theorem 4.1, we consider the pair-of-pants cobordism pW, ÄW ,Σq from
K \ ÄKr to K#ÄKr. Decorate Σ with the set F of dividing curves depicted in Figure 13. The
involution ÄW on this cobordism restricts to Ä on the incoming end and Äsw on the outgoing end.
As in Figure 12, this is given by reflection across the vertical axis.

F

Figure 13. The decoration F on Σ.
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Now, the decoration F is not equivariant with respect to ÄW . Nevertheless, we have the following
homotopy-commutative diagram:

CFKpK,w, zq b CFKpÄKr, Äz, Äwq CFKpK#ÄKr, w1, z1q

CFKpKr, z, wq b CFKpÄK, Äw, Äzq CFKpKr#ÄK, z1, w1q

CFKpK,w, zq b CFKpÄKr, Äz, Äwq CFKpK#ÄKr, w1, z1q

t

swbsw

FW,F

t

FW,τW pFq

sw

FW,swpτW pFqq

Here, the decoration swpÄW pFqq is obtained by switching the designation of white and black regions
in ÄW pFq and reversing orientation. Hence we obtain

Äsw ˝ FW,F » FW,swpÄW pFqq ˝ Äexch.

We now claim that

(2) FW,swpÄW pFqq » FW,F ˝ pid b id ` Ψ b Φq.

To see this, we use the bypass relation for link cobordism maps established in [Zem19, Lemma 1.4].
A schematic outline of the bypass relation is given in Figure 14.

Figure 14. The bypass relation, taken from [Zem19, Figure 1.2]. See [Zem19,
Section 1.3] for discussion.

In our case, we apply the bypass relation to the dotted disk in the top-left of Figure 15. The
effect of applying the bypass relation is also depicted in Figure 15 and yields the claim. It follows
that FW,F intertwines Äsw with pid b id ` Ψ b Φq ˝ Äexch.

We now consider the behavior of FW,F with respect to ºK . Note that FW,F is not the same as the
map used in the connected sum formula of Theorem 4.1, and thus does not necessarily intertwine
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' +

' ◦

F

Ψ Φ

sw(τ(F)) F

Figure 15. Above: applying the bypass relation to the decoration swpÄW pFqq.
Below: the map induced by the rightmost decoration in the first line is homotopic
to the composition FW,F ˝ pΨ b Φq.

ºK#ÄKr and pid b id ` Φ b Ψq ˝ pºK b ºÄKrq. Instead, we have the following commutative diagram:

CFKpK,w, zq b CFKpÄKr, Äz, Äwq CFKpK#ÄKr, w1, z1q

CFKpK, z, wq b CFKpÄKr, Äw, Äzq CFKpK#ÄKr, z1, w1q

CFKpK,w, zq b CFKpÄKr, Äz, Äwq CFKpK#ÄKr, w1, z1q

¸b¸

ÄbÄ

FW,F

¸

FW,ηpFq

Ä

Ä˝FW,ηpFq˝pǞbǞq

Here, ¸pFq is obtained from F by interchanging the roles of the white and black regions of F , but
not reversing orientation. Hence we obtain

ºK#ÄKr ˝ FW,F »
`
Ä ˝ FW,¸pFq ˝ pǞb Ǟq

˘
˝ pºK b ºÄKrq.

We now claim that

Ä ˝ FW,¸pFq ˝ pǞb Ǟq » FW,F ˝ ςb ˝ pid b id ` Ψ b Φq.
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Indeed, the reader should check that applying an oppositely-oriented half-Dehn twist to each end
of ¸pFq gives a decoration isotopic to swpÄW pFqq. Hence

Ǟ ˝ FW,¸pFq ˝ pǞb Ǟq » FW,swpÄW pFqq.

Applying formula (2) for FW,swpÄW pFqq and using the fact that Ä and Ǟ differ by an application of
the Sarkar map, we obtain

Ä ˝ FW,¸pFq ˝ pǞb Ǟq » ς# ˝ FW,F ˝ pid b id ` Ψ b Φq.

Here, ς# is the Sarkar map on the connected sum K#ÄKr. The fact that the Sarkar map can
be computed algebraically shows that ς# ˝ FW,F » FW,F ˝ ςb, since FW,F is an explicit homotopy
equivalence which identifies CFKpK#ÄKrq with the tensor product CFKpKq b CFKpÄKrq. For
completeness, however, we include a more concrete topological proof in Lemma 4.4 below. The
desired claim follows.

Finally, we show that turning FW,F around constitutes a homotopy inverse to FW,F . To see
that these are homotopy inverses, note that

FW,F » qK ˝ FW,F 1 ˝ pid b Äq.

Here, q is a quarter-Dehn twist and F 1 is the decoration in Figure 16.

F ′

' q id ⊗ρ◦ ◦

F

Figure 16. Writing F in terms of F 1.

Writing F̄W,F for the reverse of FW,F , we thus have

F̄W,F » pid b Ǟq ˝ F̄W,F 1 ˝ q̄K .

As in the proof of Theorem 4.1, FW,F 1 and F̄W,F 1 are homotopy inverses. The claim follows. □

Lemma 4.4. With F as in the proof of Theorem 4.3, we have ς# ˝ FW,F » FW,F ˝ ςb.

Proof. As in the proof of Theorem 4.3, write FW,F » q ˝ FW,F 1 ˝ pid b Äq. Using the fact that q
and Ä are induced by orientation-preserving diffeomorphisms, it is straightforward to check that
q ˝ ς# » ς# ˝ q and pidb Äq ˝ ςb » ςb ˝ pidb Äq. (For the latter, simply note that Φ and Ψ commute
with all such pushforward maps.) It thus suffices to prove the lemma with the decoration F 1 in
place of F . Applying the definition of ςb, this reduces to showing

ΨΦ ˝ FW,F 1 » FW,F 1 ˝ pid b ΦΨ ` ΦΨ b id ` Φ b Ψ ` Ψ b Φq.
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We repeatedly apply suitable bypass relations. First note that ΨΦ˝FW,F 1 is the map associated
to the decoration on the left in Figure 17. Applying the bypass relation to the disk on the left-hand
side gives the two decorations shown on the right. We denote these by F1 and F2, respectively.

~_

Figure 17. Applying a bypass relation to the decoration associated to ΨΦ ˝FW,F 1

gives F1 (left) and F2 (right).

We then further apply a bypass relation to F1. Doing this for the disk on the right-hand side
of Figure 17 gives the two decorations shown in Figure 18, which we denote by F3 and F4. Note
that FW,F4

» FW,F 1 ˝ pΨΦ b idq.

Figure 18. Applying a bypass relation to F1 gives F3 (left) and F4 (right).

We now apply a final bypass relation to F3. Doing this for the disk indicated in Figure 18
gives the two decorations shown in Figure 19, which we denote by F5 and F6. Note that FW,F5

»
FW,F 1 ˝ pΨ b Φq, while F6 is just F 1.

Putting the results of Figures 18 and 19 together, we have that

FW,F1
» FW,F 1 ˝ pΨ b Φq ` FW,F 1 ` FW,F 1 ˝ pΨΦ b idq.

Now, note that in Figure 17, the decorations FW,F1
and FW,F2

are related by reflection across the
vertical axis. By applying similar bypass relations to F2 (using the reflections of the disks for F1)
we obtain

FW,F2
» FW,F 1 ˝ pΦ b Ψq ` FW,F 1 ` FW,F 1 ˝ pid b ΨΦq.

Adding these two relations together and using the fact that Ψ and Φ homotopy commute gives the
desired result. □
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Figure 19. Applying a bypass relation to F3 gives F5 (left) and F6 (right).

5. Equivariant slice genus bounds

We now prove Theorem 1.2. This closely follows [JZ20, Theorem 1.7].

Proof of Theorem 1.2. Let pK, Äq be a strongly invertible knot, which may be neither directed nor
decorated. Let Σ be an isotopy-equivariant slice surface for pK, Äq in some homology ball pW, ÄW q.
We may assume ÄW acts as Ä ˆ id on some collar neighborhood pBW q ˆ I. We may furthermore
assume that the isotopy from ÄW pΣq to Σ does not move this collar neighborhood of BW and that
Σ is exactly equivariant near BW . Hence we can puncture Σ at some fixed point of ÄW near BW
and treat Σ and ÄW pΣq as isotopy-equivariant knot cobordisms from the unknot (with the obvious
strong inversion) to pK, Äq. See Figure 20.

For reasons that will be clear presently, it will be convenient for us to stabilize Σ a certain
number of times. If the genus of Σ is even, then we stabilize Σ twice; if the genus of Σ is odd, then
we stabilize Σ once. We denote the stabilized surface by Σ1; note that the genus of Σ1 is even. We
carry out the stabilization equivariantly near BW , so that Σ1 is still isotopic to ÄW pΣ1q rel K. See
Figure 20.

Σ

K

Figure 20. We may assume that Σ is exactly equivariant near BΣ < K Ď BW .
We have chosen an arc of fixed points lying on Σ; this is represented by the dotted
line. Puncturing W at a point on this dotted line gives an isotopy-equivariant knot
cobordism from the unknot to K. This is schematically represented by cutting out
the sphere indicated in the figure. Stabilizing Σ is represented by the 1-handle with
feet near the dotted line.

Now fix any pair of dividing arcs F on Σ1 such that the resulting black and white regions have
equal genus. Note that this implicitly fixes a decoration on the ends of Σ1, but due to Lemma 2.25
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this choice of decoration on K does not affect the statement of the theorem. Consider the knot
cobordism map FW,F . We have the usual commutative diagram

CFKpUq CFKpKq

CFKpU rq CFKpKrq

CFKpUq CFKpKq

FW,F

t t

FW,τW pFq

sw sw

FW,swpτW pFqq

where we have suppressed the choice of basepoints. Importantly, we have not assumed that Σ
(or Σ1) is isotopy-equivariant in the decorated sense. Hence although ÄW pΣ1q is isotopic to Σ1,
it is not true that the image of the decoration ÄW pFq under this isotopy must coincide with the
decoration swpFq. Indeed, in general we might obtain a completely different decoration on Σ1. We
thus instead invoke [JZ20, Proposition 5.5]. This states that if Σ1 is any stabilized surface and FA

and FB are any two sets of dividing curves (each consisting of a pair of dividing arcs) on Σ1 with
ÇpFA

w q < ÇpFB
w q and ÇpFA

z q < ÇpFB
z q, then

rFW,FAp1qs < rFW,FB p1qs.

Hence in our case FW,F and FW,swpÄW pFqq are chain homotopic. This shows that FW,F induces
a ÄK-equivariant map from the trivial complex of the unknot to CFKpKq. Our argument here is
almost identical to that of [JZ20, Theorem 1.7]; there, the authors show that FW,F is ºK-equivariant
(up to homotopy).

The map FW,F has grading shift p´gpΣ1q,´gpΣ1qq. We thus obtain a map from the trivial
complex FrU s to the large surgery complex C0 of CFKpKq. This lowers grading by gpΣ1q and is a
homotopy equivalence after inverting U . It follows that

dÄ pC0q ě ´gpΣ1q.

This gives the inequality

V Ä
0pKq ď

R
1 ` gpΣq

2

V

keeping in mind the number of stabilizations relating Σ to Σ1. The same argument, together with
the fact that FW,F also homotopy commutes with ºK , gives the desired inequality for V ºÄ

0 pKq.
The other claims of the theorem are obtained by turning the cobordism around and reversing
orientation. □

Remark 5.1. The reader may be confused as to why Theorem 1.2 is weaker than Theorem 1.1
in the genus-zero case. This is because in the proof of Theorem 1.2, we stabilize in order to deal
with the possible non-equivariance of the dividing curves. However, in the genus-zero case, no
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stabilizations are actually necessary. Following the more specialized proof of Theorem 1.2 in this
situation gives the same conclusion as from Theorem 1.1.

6. Torus knots

We now bound the invariants V Ä
0 and V Ä

0 for the strongly invertible knots pKn, Änq from the
introduction. Recall thatKn is constructed by taking the connected sum of pT2n,2n`1#T2n,2n`1, Ä#q
with the mirror of pT2n,2n`1#T2n,2n`1, Äswq. We deal with each one of these two factors in turn.
Throughout, let n be odd.

6.1. The connected sum involution. Using the connected sum formula, we first compute the
ÄK-complex of pT2n,2n`1#T2n,2n`1, Ä#q. For this, we need to know the ÄK-complex of pT2n,2n`1, Äq,
where Ä is the unique strong inversion on T2n,2n`1.

Definition 6.1. Let Cn be the staircase complex associated to the parameter sequence

pc´2n`1, c´2n`2, . . . , c2n´2, c2n´1q < p1, 2n´ 1, 2, 2n´ 2, . . . , 2n´ 2, 2, 2n´ 1, 1q.

This is displayed in Figure 21. Explicitly, Cn is generated by the elements

xk for ´ 2n` 2 ď k ď 2n´ 2 and k even; and

yℓ for ´ 2n` 1 ď ℓ ď 2n´ 1 and ℓ odd

and has nonzero differentials given by

Bxk < V
ck´1yk´1 ` U

ck`1yk`1.

y´2n`1 y´2n`3 ¨ ¨ ¨ y´1 y1 ¨ ¨ ¨ y2n´3 y2n´1

x´2n`2 x´2n`4 ¨ ¨ ¨ x0 ¨ ¨ ¨ x2n´4 x2n´2

V U 2n´1 V 2 U 2n´2
V n U n V 2n´2

U 2 V 2n´1 U

Figure 21. The complex Cn. See [HHSZ21, Figure 3.1].

Together with the definition of B, the convention that grV py´2n`1q < grU py2n´1q < 0 determines
the gradings of all of the generators of Cn. It will be helpful for us to explicitly record:

grU py2n´1´2iq < ´2p1 ` 2 ` ¨ ¨ ¨ ` iq

grV py´2n`1`2iq < ´2p1 ` 2 ` ¨ ¨ ¨ ` iq.
(3)

There is a unique skew-graded homotopy involution on Cn, which is given by

Äpxkq < x´k

Äpyℓq < y´ℓ.
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In [HHSZ21, Proposition 3.1], it is shown that the knot Floer complex of T2n,2n`1 is homotopy
equivalent to Cn. By Theorem 1.7, we know that ÄK is a skew-graded homotopy involution on
CFKpT2n,2n`1q. Thus the ÄK-complex of pT2n,2n`1, Äq is given by pCn, Äq, with Ä as above. Applying
Theorem 4.1, we conclude that the ÄK-complex of pT2n,2n`1#T2n,2n`1, Ä#q is homotopy equivalent
to pCn b Cn, Ä b Äq. The goal for this subsection will be to extract a usable representative of this
local equivalence class. Our computations here are similar to those of [HHSZ21, Section 3].

Definition 6.2. Let Dn be the staircase complex associated to the parameter sequence

pd´4n`2, d´4n`3, . . . , d4n´3, d4n´2q <

p1, 2n´ 1, 1, 2n´ 1, 2, 2n´ 2, 2, 2n´ 2, 3, . . . , 2n´ 2, 2, 2n´ 2, 2, 2n´ 1, 1, 2n´ 1, 1q.

This is displayed in the upper half of Figure 22. Explicitly, Dn is generated by the elements

wk for ´ 4n` 3 ď k ď 4n´ 3 and k odd; and

zℓ for ´ 4n` 2 ď ℓ ď 4n´ 2 and ℓ even

and has nonzero differentials given by

Bwk < V
dk´1zk´1 ` U

dk`1zk`1.

Like Cn, the complex Dn has a unique skew-graded homotopy involution, which we again denote
by Ä . It will also be useful to consider the square complex Sn, which is displayed in the lower half
of Figure 22.

z´4n`2 z´4n`4 z´4n`6 z´4n`8 ¨ ¨ ¨ z´4 z´2

w´4n`3 w´4n`5 w´4n`7 ¨ ¨ ¨ w´5 w´3 w´1

V U 2n´1 V U 2n´1 V 2 U 2n´2 U n`1 V n´1 U n`1 V n U n ¨ ¨ ¨

z0 z2 z4 z6 ¨ ¨ ¨ z4n´4 z4n´2

w1 w3 w5 ¨ ¨ ¨ w4n´5 w4n´3

V n U n
V n`1 U n´1 V n`1 U n´1 U V 2n´1 U

t

r´1 r1

r0

U n V n

V n U n

Figure 22. The complex Dn ‘ Sn.
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This is generated by tr0, r´1, r1, tu, with differential

Br0 < V
nr´1 ` U

nr1, Br´1 < U
nt, Br1 < V

nt, and Bt < 0.

Using the fact that grV pz´4n`2q < grU pz4n´2q < 0, we again have (for example)

grU pz4n´2´2iq <

#
´4p1 ` 2 ` ¨ ¨ ¨ ` i{2q for i even

´4p1 ` 2 ` ¨ ¨ ¨ ` pi´ 1q{2q ´ pi` 1q for i odd

grV pz´4n`2`2iq <

#
´4p1 ` 2 ` ¨ ¨ ¨ ` i{2q for i even

´4p1 ` 2 ` ¨ ¨ ¨ ` pi´ 1q{2q ´ pi` 1q for i odd.

(4)

The grading on Sn is such that grptq < grpz0q. Note that grpr´1q < grpw´1q and grpr1q < grpw1q.

Definition 6.3. Let En < Dn ‘ Sn. Define an involution Ä on En as follows. On Dn, we define Ä
to be almost the same as in Definition 6.2, but slightly different on w´1, w1, and z0. On Sn, we
define Ä to be the obvious reflection map.

Äpwkq < w´k for k ‰ ´1, 1

Äpw´1q < w1 ` r1

Äpw1q < w´1 ` r´1

Äpzℓq < z´ℓ for ℓ ‰ 0

Äpz0q < z0 ` t.

Äpriq < r´i

Äptq < t.

Roughly speaking, Ä acts as reflection on the staircase and the square, but additionally maps some
of the staircase generators to (sums of staircase generators with) square generators. Unlike the
action of ºK in [HHSZ21, Section 3.2.1], however, none of the square generators are mapped to
staircase generators.

The main claim of this subsection is that pEn, Äq is locally equivalent to pCn b Cn, Ä b Äq. We
show this by constructing local maps in both directions. The forward direction is straightforward
from the work of [HHSZ21]. In what follows, we write ď to indicate the presence of a local map
from one ÄK-complex to another; see also the discussion of Section 7.2.

Lemma 6.4. We have pEn, Äq ď pCn b Cn, Ä b Äq.

Proof. In [HHSZ21, Section 3.2.1], it is shown that Cn b Cn admits the subcomplex Yn displayed in
Figure 23. Explicitly, Yn is spanned by

tyiyiu Y tyiyi`2uiď´3 Y tyi`2yiuiě´1,

together with

tyixi`1uiď´3 Y txiyi`1uiď´2 Y txiyi´1uiě0 Y tyixi´1uiě1,

and

y1y´1 ` y´1y1, y´1x0 ` x0y´1, y1x0 ` x0y1, and x0x0.

The first two collections of generators span a staircase complex, while the last four generators span
a square complex.
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y1´2ny1´2n y1´2ny3´2n y3´2ny3´2n y3´2ny5´2n ¨ ¨ ¨ y´3y´1 y´1y´1

y1´2nx2´2n x2´2ny3´2n y3´2nx4´2n ¨ ¨ ¨ y´3x´2 x´2y´1 x0y´1

V U 2n´1 V U 2n´1 V 2 U 2n´2 U n`1 V n´1 U n`1 V n U n ¨ ¨ ¨

y1y´1 y1y1 y3y1 y3y3 ¨ ¨ ¨ y2n´1y2n´3 y2n´1y2n´1

y1x0 x2y1 y3x2 ¨ ¨ ¨ x2n´2y2n´3 y2n´1x2n´2

V n U n
V n`1 U n´1 V n`1 U n´1 U V 2n´1 U

y1y´1 ` y´1y1

y´1x0 ` x0y´1 y1x0 ` x0y1

x0x0

U n V n

V n U n

Figure 23. The subcomplex Yn. Note that the top two rows form a staircase
complex, such that Bpx0y´1q < V ny´1y´1 ` U ny1y´1. See [HHSZ21, Figure 3.3].

There is an obvious map φ : En Ñ Cn b Cn given by mapping En isomorphically onto Yn;
compare Figures 22 and 23. It is straightforward to check that this has the requisite behavior under
localization: observe that y1´2ny1´2n is nontorsion. To check equivariance, recall that Äpxkq < x´k

and Äpyℓq < y´ℓ. An examination of Figure 23 shows that Ä b Ä acts as reflection on Yn, except at
the generators

pÄ b Äqpx0y´1q < x0y1 < y1x0 ` py1x0 ` x0y1q

pÄ b Äqpy1x0q < y´1x0 < x0y´1 ` py´1x0 ` x0y´1q

pÄ b Äqpy1y´1q < y´1y1 < y1y´1 ` py1y´1 ` y´1y1q.

This coincides exactly with the action of Ä on En. □

We now construct a map from E_
n to C_

n b C_
n . It will be helpful for us to first discuss some

auxiliary lemmas regarding the dual staircase complexes C_
n and D_

n . Our first lemma concerns
elements in C_

n b C_
n of the form x_

p b y_
q . Roughly speaking, we claim that if the value of p` q is

fixed, then the grading of x_
p b y_

q is minimized when the difference |p ´ q| is minimized. Similar
statements hold for elements of the form y_

p b y_
q . We make this more explicit by introducing the

following terminology:

Definition 6.5. Let k be odd and let p ` q < k with p even and q odd. We call pp, qq difference-
minimizing in the following situations:

(1) k = 1 mod 4: we require p < pk ´ 1q{2 and q < pk ` 1q{2.
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(2) k = 3 mod 4: we require p < pk ` 1q{2 and q < pk ´ 1q{2.

Let ℓ be even and let p` q < ℓ with p and q both odd. We call pp, qq difference-minimizing in the
following situations:

(1) ℓ = 2 mod 4: we require p < q < ℓ{2.
(2) ℓ = 0 mod 4: we require p < pℓ´ 1q{2 and q < pℓ` 1q{2, or vice-versa.

In each case, note that the difference |p´ q| is minimized, subject to the constraints on the parity
of p and q and the condition that the value of p ` q is fixed. The distinction between k and ℓ is
due to our choice of notation for the generators of Dn, and will become clear presently.

Lemma 6.6. Let k be odd. Then

min
p`q<k

p even, q odd

tgrU px_
p b y_

q qu and min
p`q<k

p even, q odd

tgrV px_
p b y_

q qu

both occur when pp, qq is difference-minimizing. Similarly, let ℓ be even. Then

min
p`q<ℓ

p odd, q odd

tgrU py_
p b y_

q qu and min
p`q<ℓ

p odd, q odd

tgrV py_
p b y_

q qu

both occur when pp, qq is difference-minimizing.

Proof. First note that for any i, we have:

grU px_
i`1q ´ grU px_

i´1q < ´2n´ 1 ` i

grV px_
i`1q ´ grV px_

i´1q < 2n` 1 ` i,

and

grU py_
i`2q ´ grU py_

i q < ´2n` 1 ` i

grV py_
i`2q ´ grV py_

i q < 2n` 1 ` i.

These claims are verified using the differentials in the definition of Cn; the reader may find it helpful
to consult Figure 21.

Consider the first claim of the lemma. Observe

grU px_
p`2 b y_

q´2q < grU px_
p b y_

q q ` p´2n´ 1 ` pp` 1qq ´ p´2n` 1 ` pq ´ 2qq

< grU px_
p b y_

q q ` p´ q ` 1.

Similarly, we have

grV px_
p`2 b y_

q´2q < grV px_
p b y_

q q ` p2n` 1 ` pp` 1qq ´ p2n` 1 ` pq ´ 2qq

< grU px_
p b y_

q q ` p´ q ` 3.

Note that due to the parity constraints on p and q and the fact that p` q < k, the value of p´ q is
fixed modulo 4. Treating both of the above as finite-difference equations, it is clear that to minimize
both grU px_

p b y_
q q and grV px_

p b y_
q q we are searching for pp, qq such that p´ q ` 1 and p´ q ` 3

are both in r0, 4s. An examination of Definition 6.5 gives the claim for k odd. The claim for ℓ even
is established in an analogous manner. □
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The following lemma relates the gradings of elements of D_
n and elements of C_

n b C_
n , and will

be important for constructing a map from the former into the latter.

Lemma 6.7. Let k be odd and let p`q < k with p even and q odd. If pp, qq is difference-minimizing,
then

grpw_
k q < grpx_

p b y_
q q < grpy_

q b x_
p q.

Let ℓ be even and let p` q < ℓ with p and q both odd. If pp, qq is difference-minimizing, then

grpz_
ℓ q < grpy_

p b y_
q q < grpy_

q b y_
p q.

Proof. We prove the second claim and leave the first to the reader. Assume pp, qq is difference-
minimizing. Write ℓ < 4n´ 2´ 2i, p < 2n´ 1´ 2r, and q < 2n´ 1´ 2s; note that r` s < i. From
(3) and (4), we have

grU pz_
ℓ q < ´grU pzℓq

#
4p1 ` 2 ` ¨ ¨ ¨ ` i{2q for i even

4p1 ` 2 ` ¨ ¨ ¨ ` pi´ 1q{2q ` pi` 1q for i odd

and

grU py_
p q < ´grU pypq < 2p1 ` 2 ` ¨ ¨ ¨ ` rq and grU py_

q q < ´grU pyqq < 2p1 ` 2 ` ¨ ¨ ¨ ` sq.

Suppose ℓ = 2 mod 4. Then i is even, and an examination of Definition 6.5 shows r < s < i{2. In
this case, we clearly have grU pz_

ℓ q < grU py_
p q ` grU py_

q q < grU py_
p b y_

q q. Suppose ℓ = 0 mod 4.
Then i is odd, and we have r < pi ` 1q{2 and s < pi ´ 1q{2 (or vice-versa). An inspection of
the equalities above once again gives the claim. An analogous argument for grV completes the
proof. □

We now establish the major claim of this subsection:

Lemma 6.8. We have pE_
n , Ä

_q ď pC_
n b C_

n , Ä
_ b Ä_q.

Proof. We define a grading-preserving map È : E_
n Ñ C_

n b C_
n as follows. For any ℓ even, let

Èpz_
ℓ q <

ÿ

i`j<ℓ

U
˚
V

˚y_
i b y_

j .

Here, the right-hand side is formed by considering all possible products y_
i b y_

j with i and j odd
and i ` j < ℓ. Each term is multiplied by powers of U and V so that the resulting grading is
equal to that of z_

ℓ . Note that this is possible due to Lemmas 6.6 and 6.7. Indeed, by Lemma 6.6,
grpy_

i b y_
j q is minimized when pi, jq is difference-minimizing. We then multiply every other term

on the right-hand side by powers of U and V so as to have grading equal to this minimal grading.
But by Lemma 6.7, the minimal grading is none other than grpz_

ℓ q.
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We similarly define:

Èpw_
k q <

ÿ

i`j<k

U
˚
V

˚px_
i b y_

j ` y_
j b x_

i q

Èpr_
´1q <

ÿ

i`j<0, iăj

U
˚
V

˚x_
i´1 b y_

j ` U
˚
V

˚y_
i b x_

j´1

Èpr_
1 q <

ÿ

i`j<0, iăj

U
˚
V

˚x_
i`1 b y_

j ` U
˚
V

˚y_
i b x_

j`1

Èpr_
0 q < x_

0 b x_
0

Èpt_q <
ÿ

i`j<0, iăj

U
˚
V

˚y_
i b y_

j

As before, Lemmas 6.6 and 6.7 guarantee that in each of the above equations, there exist unique
powers of U and V which make È grading-preserving. Note that grpt_q < grpz_

0 q, while grpr_
´1q <

grpw_
´1q and grpr_

1 q < grpw_
1 q.

We claim that È is a chain map. Because both sides of the equation BÈ < ÈB are homogenous,
it suffices to prove this in the quotient where we set U < V < 1. (The reader who is unconvinced
of this fact may consult [DS19, Section 2.4], in which an analogous situation is discussed.) The
claim is then straightforward from the definitions; the only subtle cases are to verify BÈ < ÈB on
r_

´1 and r_
1 . For the former, we have

BÈpr_
´1q <

ÿ

i`j<0, iăj

Bpx_
i´1 b y_

j q ` Bpy_
i b x_

j´1q

<
ÿ

i`j<0, iăj

x_
i´1 b x_

j´1 ` x_
i´1 b x_

j`1 ` x_
i´1 b x_

j´1 ` x_
i`1 b x_

j´1

<
ÿ

i`j<0, iăj

x_
i´1 b x_

j`1 ` x_
i`1 b x_

j´1.

Identifying this as a telescoping series shows that it is equal to x_
0 b x_

0 (note that x_
i < 0 for

i ă ´2n` 1). A similar computation holds for BÈpr_
1 q.

Checking that È has the requisite behavior under localization and is Ä -equivariant is straight-
forward; the only subtle cases are (again setting U < V < 1):

ÄÈpt_q <
ÿ

i`j<0, iăj

y_
´i b y_

´j < Èpt_q ` Èpz_
0 q

together with

ÄÈpr_
´1q <

ÿ

i`j<0, iăj

x_
´i`1 b y_

´j ` y_
´i b x_

´j`1 < Èpr_
1 q ` Èpw_

1 q

and
ÄÈpr_

1 q <
ÿ

i`j<0, iăj

x_
´i´1 b y_

´j ` y_
´i b x_

´j´1 < Èpr_
´1q ` Èpw_

´1q.

This completes the proof. □
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We thus obtain the overall computation:

Lemma 6.9. For n odd, we have pCFKpT2n,2n`1#T2n,2n`1q, Ä#q > pEn, Äq.

Proof. Follows from Lemmas 6.4 and 6.8. □

Remark 6.10. In [HHSZ21, Section 3.2.1], the local equivalence class of pT2n,2n`1#T2n,2n`1, º#q
was similarly identified with pEn, ºKq for a certain involution ºK on En. In fact, the map of Lemma 6.4
is both Ä - and ºK-equivariant. However, the map of Lemma 6.8 is not ºK-equivariant. We thus do
not determine the pÄK , ºKq-class of T2n,2n`1#T2n,2n`1 in this paper; only the ÄK-class.

6.2. The swapping involution. We now turn to the ÄK-class of pT2n,2n`1#T2n,2n`1, Äswq. Al-
though the full local equivalence class turns out to be difficult to compute, for our purposes it
will suffice to establish an inequality. Let Dn be the staircase complex equipped with the unique
skew-graded involution of Definition 6.2. Then we claim:

Lemma 6.11. We have pDn, Äq ď pCFKpT2n,2n`1#T2n,2n`1q, Äswq.

Proof. Consider the subcomplex Wn of CFKpT2n,2n`1#T2n,2n`1q » Cn b Cn displayed in Figure 24.
This is similar to the upper half of Figure 23, but it is not quite the same: the second of the two
rows has many of the tensor products occurring with transposed factors.

y1´2ny1´2n y1´2ny3´2n y3´2ny3´2n y3´2ny5´2n ¨ ¨ ¨ y´3y´1 y´1y´1

y1´2nx2´2n x2´2ny3´2n y3´2nx4´2n ¨ ¨ ¨ y´3x´2 x´2y´1 x0y´1

V U 2n´1 V U 2n´1 V 2 U 2n´2 U n`1 V n´1 U n`1 V n U n ¨ ¨ ¨

y1y´1 y1y1 y1y3 y3y3 ¨ ¨ ¨ y2n´3y2n´1 y2n´1y2n´1

y1x0 y1x2 x2y3 ¨ ¨ ¨ y2n´3x2n´2 x2n´2y2n´1

V n U n
V n`1 U n´1 V n`1 U n´1 U V 2n´1 U

Figure 24. The subcomplex Wn. Note that the top two rows form a staircase
complex, such that Bpx0y´1q < V ny´1y´1 ` U ny1y´1.

We claim that Äsw preserves this subcomplex and acts as the obvious reflection map. To see
this, consider the exchange involution Äexch defined in Section 4.2. This sends

Äexchpxiyjq < y´jx´i, Äexchpyixjq < x´jy´i, and Äexchpyiyjq < y´jy´i.

Moreover, it is clear from the definition of B on Cn that Ψ b Φ vanishes on generators of the form
xiyj , yixj , and yiyj . Applying Theorem 4.3 then gives the desired computation of Äsw. Mapping
pDn, Äq isomorphically onto pWn, Äswq completes the proof. □
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6.3. The involution on Kn. We now finally turn to the ÄK-class of pKn, Änq. Our first step will
be to understand the complex En b D_

n . This follows [HHSZ21, Section 3.2.2].

Definition 6.12. Let Bn be the box complex displayed on the left in Figure 25. This has five
generators v, r0, r´1, r1, and t, with differential

Bv < 0, Br0 < V
nr´1 ` U

nr1, Br´1 < U
nt, Br1 < V

nt, and Bt < 0.

v

r´1 t

r0 r1

U n

V n

U n

V n v_

r_
´1 t_

r_
0 rv1

V n

U n

V n

U n

Figure 25. The box complex Bn and its dual B_
n . See [HHSZ21, Figure 3.4].

The gradings of these generators are such that grpvq < grptq < p0, 0q. Define an involution Ä on Bn

by setting

Äpvq < v ` t

Äpr0q < r0

Äpr´1q < r1

Äpr1q < r´1

Äptq < t.

Note that the action of Ä sends the singleton generator v to (the sum of v with) a square complex
generator. However, unlike in [HHSZ21, Section 3.2.2], Ä does not send the opposite corner of the
square back to v. The reader should compare the complexes Bn and Sn.

The utility of Bn is given by the following lemma:

Lemma 6.13. We have pBn, Äq > pEn, Äq b pDn, Äq_.

Proof. This is similar to [HHSZ21, Proposition 3.5]. We construct maps

f : En Ñ Dn b Bn

and
g : E_

n Ñ D_
n b B_

n

as follows. The map f is given by

fpwiq < wiv for i ď ´1

fpw1q < w1pv ` tq ` z0r1

fpwiq < wipv ` tq for i ě 3

fpziq < ziv for i ď 0

fpziq < zipv ` tq for i ě 2

fpr0q < z0r0

fpr´1q < z0r´1

fpr1q < z0r1

fptq < z0t.
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It is easily checked that f is a grading-preserving chain map; the only subtlety is checking that
Bf < fB on w1. We have:

Bfpw1q < Bpw1pv ` tq ` z0r1q < pV nz0 ` U
nz2qpv ` tq ` V

nz0t

fpBw1q < fpV nz0 ` U
nz2q < V

nz0v ` U
nz2pv ` tq,

which are equal to each other. Checking Ä -equivariance is likewise straightforward; the only subtle
cases are for w´1, w1, and z0. For these, we have

Äfpw´1q < Äpw´1vq < w1pv ` tq

fpÄw´1q < fpw1 ` r1q < w1pv ` tq ` z0r1 ` z0r1

and

Äfpw1q < Äpw1pv ` tq ` z0r1q < w´1v ` z0r´1

fpÄw1q < fpw´1 ` r´1q < w´1v ` z0r´1

and

Äfpz0q < Äpz0vq < z0pv ` tq

fpÄz0q < fpz0 ` tq < z0v ` z0t.

This completes the verification of f .
The map g is given by

gpw_
i q < w_

i v
_

gpz_
i q < z_

i v
_

gpr_
0 q < z_

0 r
_
0 ` w_

´1r
_
1 ` w_

1 r
_
´1

gpr_
´1q < w_

´1t
_ ` z_

0 r
_
´1

gpr_
1 q < w_

1 t
_ ` z_

0 r
_
1

gpt_q < z_
0 t

_.

An examination of the right-hand side of Figure 25 shows that g is a grading-preserving chain map.
Checking Ä -equivariance is likewise straightforward; the only subtle cases are for r_

´1, r
_
1 , and t

_.
For these, we have

Ägpr_
´1q < Äpw_

´1t
_ ` z_

0 r
_
´1q < w_

1 pt_ ` v_q ` z_
0 r

_
1

gpÄr_
´1q < gpr_

1 ` w_
1 q < w_

1 t
_ ` z_

0 r
_
1 ` w_

1 v
_

and

Ägpr_
1 q < Äpw_

1 t
_ ` z_

0 r
_
1 q < w_

´1pt_ ` v_q ` z_
0 r

_
´1

gpÄr_
1 q < gpr_

´1 ` w_
´1q < w_

´1t
_ ` z_

0 r
_
´1 ` w_

´1v
_

and

Ägpt_q < Äpz_
0 t

_q < z_
0 pt_ ` v_q

gpÄt_q < gpt_ ` z_
0 q < z_

0 t
_ ` z_

0 v
_.

This completes the verification for g. □

We are now finally in a position to state our fundamental computation:
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Lemma 6.14. We have pCFKpKnq, Änq ď pBn, Äq.

Proof. By Lemma 6.9, we have

pCFKpT2n,2n`1#T2n,2n`1q, Ä#q > pEn, Äq.

By Lemma 6.11, we have

pCFKpT2n,2n`1#T2n,2n`1q, Äswq_ ď pDn, Äq_.

Tensoring these together and utilizing Theorem 4.1, we thus have that

pCFKpKnq, Änq ď pEn, Äq b pDn, Äq_ > pBn, Äq,

where the final local equivalence follows from Lemma 6.13. □

This immediately yields the proof of Theorem 1.3:

Proof of Theorem 1.3. It is straightforward to check that an inequality as in Lemma 6.14 implies
an inequality of the large-surgery numerical invariants defined in Section 2.5:

dÄ pCFKpKnq0q ď dÄ ppBnq0q and d̄Ä pCFKpKnq0q ď d̄Ä ppBnq0q.

See Section 7.2 for further discussion. A direct computation shows that

dÄ ppBnq0q < ´2n and d̄Ä ppBnq0q < 0.

Applying Definition 2.23 completes the proof. □

Remark 6.15. Throughout this section, we have only worked with the ÄK-complexes of our knots.
These are insensitive to the choice of direction. Moreover, as discussed in Section 2.3, the (possible)
non-abelian nature of KÄ,º does not arise unless the action of ºK is considered simultaneously.
Thus, the computations of this section hold regardless of the way the equivariant connected sum is
performed, not just following the conventions of Figure 1.

7. Relation to other invariants

We now relate the present paper to the results of [DHM20] and [JZ20].

7.1. Equivariant large surgery. We begin with a brief review of [DHM20]. Let Y be a Z{2Z-
homology sphere and let Ä be an involution on Y . Note that Y has a single spin structure s which
is necessarily sent to itself by Ä . In [DHM20, Section 4], it is shown that Ä induces a well-defined
automorphism of CF´pY, sq, which we also denote by Ä .

Moreover, in [DHM20, Section 4] it is shown that Ä is a homotopy involution. The pair
pCF´pY, sq, Äq thus constitutes an abstract º-complex in the sense of [HMZ18, Definition 8.1].
Taking the local equivalence class of this º-complex gives an element

hÄ pY q < rpCF´pY, sqr´2s, Äqs

in the local equivalence group I of [HMZ18, Proposition 8.8]. (The grading shift is a convention
due to the definition of the grading on CF´.) This is an invariant of equivariant Z{2Z-homology
bordism. In fact, one can construct a Z{2Z-homology bordism group of involutions and show that
hÄ constitutes a homomorphism from this group into I; see [DHM20, Theorem 1.2] and [DHM20,
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Section 2]. We may also consider the map º ˝ Ä in place of Ä , which is similarly a homotopy
involution. This gives another º-complex whose local equivalence class

hº˝Ä pY q < rpCF´pY, sqr´2s, º ˝ Äqs

is another (generally different) element of I. For each of these elements, one can extract the
numerical invariants d̄ and d following the procedure described by Hendricks and Manolescu [HM17].
This yields numerical invariants d̄Ä and dÄ associated to hÄ , as well as invariants d̄ºÄ and dºÄ
associated to hº˝Ä .

Remark 7.1. The discussion of [DHM20] is phrased in terms of integer homology spheres, but the
extension to Z{2Z-homology spheres is straightforward. Note that in this more general situation,
the gradings of our complexes take values in Q, and so d̄˝ and d˝ may be Q-valued.

If pK, Äq is an equivariant knot, then any surgery on K inherits an involution; see for example
[DHM20, Section 5]. In [Mal22], the second author showed the following:

Theorem 7.2. [Mal22, Theorem 1.1] Let pK, Äq be an equivariant knot and let p ě g3pKq. Then
there is an absolutely graded isomorphismˆ

CF´pS3
ppKq, r0sq

>
p´ 1

4
´ 2

ȷ
, Ä

˙
» pCFKpKq0, ÄKq .

On the left-hand side, S3
ppKq is large surgery on K and Ä is the automorphism on CF´pS3

ppKq, r0sq
induced by the inherited 3-manifold involution. On the right-hand side, CFKpKq0 is the large
surgery subcomplex of CFKpKq and ÄK is the restriction of the action defined in Section 3.2. A
similar statement holds replacing Ä with º ˝ Ä and ÄK with ºK ˝ ÄK .

Remark 7.3. There are several confusing conventions regarding absolute gradings. For the sake
of being explicit, we give an explanation of these for the reader.

(1) Note that the “trivial complex” CF´pS3q consists of a single FrU s-tower starting in Maslov
grading ´2. However, when discussing Floer complexes in the abstract, it is generally
preferable to treat this complex as starting in Maslov grading zero. This explains the shift
by ´2 in the definition of hÄ and hº˝Ä .

(2) Similarly, if K is the unknot, then the large surgery complex C0 (as defined in Section 2.5)
consists of a single FrU s-tower starting in Maslov grading zero. This explains the extra ´2
in the isomorphism of Theorem 7.2.

(3) In Section 2.5, we have defined d̄˝pC0q and d˝pC0q in such a way so that the shift by ´2 is
already taken into account. Indeed, note that d̄˝pC0q < d˝pC0q < 0 for the large surgery
complex of the unknot. However, when defining d̄˝ and d˝ in terms of an actual 3-manifold
complex CF´pY q, it is necessary to add two to each of the definitions.

Taking into account the grading shift, Definition 2.23 and Theorem 7.2 immediately imply the
relations referenced in Section 1.4:

´2V ˝
0pKq `

p´ 1

4
< d̄˝pS3

ppKq, r0sq

and

´2V ˝
0pKq `

p´ 1

4
< d˝pS3

ppKq, r0sq.
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for ˝ P tÄ, ºÄu.

7.2. Inequalities. A key property of the local equivalence group I is that it is partially ordered; see
for example [DHM20, Definition 3.6]. This partial order is consistent with the numerical invariants
d̄ and d, in the sense that if rpC1, º1qs ď rpC2, º2qs, then

d̄pC1q ď d̄pC2q and dpC1q ď dpC2q.

In [DHM20, Theorem 1.5], it was shown that if pY1, Ä1q and pY2, Ä2q are two homology spheres with
involutions and W is an equivariant negative-definite cobordism from Y1 to Y2, then under certain
circumstances we obtain inequalities

rpCF´pY1q, Ä1qs ď rpCF´pY2q, Ä2qs

and/or

rpCF´pY1q, º ˝ Ä1qs ď rpCF´pY2q, º ˝ Ä2qs.

It is thus possible to bound the numerical invariants of pY1, Ä1q by topologically constructing equi-
variant negative-definite cobordisms into other manifolds pY2, Ä2q. See [DHM20, Section 5] and
[DHM20, Section 7] for further discussion and examples.

For convenience, we briefly review these results here, generalizing them slightly in the case of
Z{2Z-homology spheres. Let Y1 and Y2 be two Z{2Z-homology spheres equipped with involutions
Ä1 and Ä2. Let W be a cobordism from Y1 to Y2 equipped with a self-diffeomorphism f : W Ñ W

that restricts to Äi on Yi. In what follows, we will be interested in spinc-structures s on W such
that the Heegaard Floer grading shift

∆pW, sq <
c1psq2 ´ 2ÇpW q ´ 3ÃpW q

4

is zero.

Theorem 7.4. [DHM20, Proposition 4.10] Let W be a negative-definite cobordism as above with
b1pW q < 0. Suppose W admits a spinc-structure s such that ∆pW, sq < 0 and s restricts to the
unique spin structure on BW . Then:

(1) If f˚s < s, we have hÄ1pY1q ď hÄ2pY2q.
(2) If f˚s < s̄, we have hº˝Ä1pY1q ď hº˝Ä2pY2q.

Proof. The proof is the same as that of [DHM20, Proposition 4.10] and proceeds by considering
the Heegaard Floer cobordism map associated to pW, sq. □

We consider a particularly important family of such cobordisms, constructed as follows. Let
pK, Äq be an equivariant knot and let Y1 < S3

npKq be large, odd surgery on K. Define an equivariant
cobordism W by symmetrically attaching p´1q-framed 2-handles along unknots that have linking
number zero with K (as well as with each other):

Definition 7.5. Three important instances of this construction are given in the top row of Fig-
ure 26. We categorize these as follows:

(1) Type Ia: Attach a single p´1q-framed 2-handle along an equivariant unknot which has no
fixed points along the axis of Ä .
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(2) Type Ib: Attach a single p´1q-framed 2-handle along an equivariant unknot which has two
fixed points along the axis of Ä .

(3) Type II: Attach a pair of p´1q-framed 2-handles which are interchanged by Ä .

−1 −1 −1 −1

Figure 26. Left: handle attachment/crossing change of Type Ia. Middle: handle
attachment/crossing change of Type Ib. Right: handle attachment/crossing change
of Type II.

Consider a handle attachment of Type Ia. Let x be the element of H2pW, BW ;Zq corresponding
to the core of the attached 2-handle and let s be the spinc-structure on W corresponding to the
dual of x. This restricts to the unique spin structure on the ends of W , as can be seen from the
fact that the map H2pW ;Zq Ñ H2pBW ;Zq corresponds to the map H2pW, BW ;Zq Ñ H1pBW ;Zq
under Poincaré duality. Since x has self-intersection ´1, we moreover have ∆psq < 0. Finally, it is
easily checked that f˚s < s. Handle attachments of Type Ib are similar, except that f˚s < s̄. To
understand handle attachments of Type II, let x and y be the elements of H2pW, BW ;Zq represented
by the cores of the attached 2-handles. Then W admits both a spinc-structure with f˚s < s

(corresponding to the dual of x` y) and a spinc-structure with f˚s < s̄ (corresponding to the dual
of x´ y). Once again, these both restrict to the unique spin structure on the ends of W and have
∆psq < 0. See [DHM20, Section 5.2] for further discussion.

In the context of equivariant knots, this immediately gives a set of crossing change inequalities
for V ˝

0 and V ˝
0. As in Figure 26, define:

Definition 7.6. Let K be an equivariant knot. We categorize equivariant positive-to-negative
crossing changes as follows:

(1) Type Ia: The crossing change occurs along the axis of symmetry and the two strands of the
crossing point in opposite directions along the axis. (Figure 26, top left.)

(2) Type Ib: The crossing change occurs along the axis of symmetry and the two strands of
the crossing point in the same direction along the axis. (Figure 26, top middle.)
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(3) Type II: We perform a symmetric pair of crossing changes. (Figure 26, top right.)

Proof of Theorem 1.9. Passing to large surgery, each of the possible crossing changes is mediated
by a 2-handle attachment of the corresponding type. By Theorem 7.4, we thus have

d̄˝pS3
ppKq, r0sq ď d̄˝pS3

ppK 1q, r0sq and d˝pS3
ppKq, r0sq ď d˝pS3

ppK 1q, r0sq

for ˝ P tÄ, ºÄu. Applying the relation (1) immediately gives the desired conclusion. □

Remark 7.7. In Definition 7.5, attaching our 2-handles along unknots is not essential. However,
we emphasize the unknot case due to its ease of use and connection with the current paper.

7.3. Exotic slice disks. We now turn to the proofs of Theorems 1.5 and 1.6. We establish the
former by showing that at least one of V Ä

0pJq and V ºÄ
0 pJq is greater than zero.

Proof of Theorem 1.5. We exhibit an equivariant cobordism (of Type II) from p`1q-surgery on J to
p´1q-surgery on the knot 62, where the latter is equipped with a certain involution Ä . This is done in
Figures 27 and 28; compare [DHM20, Section 7.5]. Note that the first picture in Figure 27 certainly
constitutes an equivariant cobordism from S3

`1pJq to some homology sphere with involution; we

identify this homology sphere as S3
´1p62q. However, we will not bother to make this identification

equivariant, although this can be done. That is, it turns out (rather surprisingly) that we will not
need to explicitly identify the involution Ä on S3

´1p62q.

+1 +1 +1 +1 +1

–1 –1

–1 –1
–1

–1

(a) (b) (c) (d) (e)

Figure 27. Attaching a pair of equivariant 2-handles to p`1q-surgery on J . In (a),
we perform the equivariant handle attachment. In (b), we blow down the right-hand
unknot and slide the left-hand unknot partway along its band. In (c), we untwist
the left-hand band. In (d), we slide the right-hand band over the unknot. In (e),
we untwist the right-hand band. Manipulations are continued in Figure 28.

Since the cobordism is of Type II, by Theorem 7.4 it suffices to show that at least one of

dÄ pS3
´1p62qq and dºÄ pS3

´1p62qq

is strictly less than zero. Indeed, we would then have that at least one of dÄ pS3
`1pJqq and dºÄ pS3

`1pJqq
is strictly less than zero. Since J is genus one, p`1q-surgery constitutes large surgery, so this implies
that one of V Ä

0pJq and V ºÄ
0 pJq is strictly greater than zero. (Note that the grading shift pp ´ 1q{4

in the relation (1) in this case is zero.)
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+1

–1

(a)

–1 –1

+1 +1

–1 –1 –1 –1

(b) (c)

(d)(d) (e) (f) (g)

Figure 28. Identifying the result of the equivariant handle attachment. Figure (a)
is a copy of (e) from Figure 27; note that both knots in the figure are unknots. In
(b), we retract the right-hand band of the p`1q-curve along itself to clearly make
it into an unknot. In (c), we move a strand of the p´1q-curve slightly to make the
blowdown more apparent. In (d) we blow down the p`1q-curve. In (e) through (g),
we isotope the result to look like the end result of [DHM20, Figure 39]. The reader
may check that this is 62.

The desired claim is established in [DHM20, Section 7.5], but for the sake of completeness we
outline the argument here. Firstly, the knot Floer homology of 62 is easily calculated from the
Alexander polynomial of 62. The Floer homology HF´pS3

´1p62qq can then be calculated using the

surgery formula; the action of the Hendricks-Manolescu involution º on HF´pS3
´1p62qq can also be

calculated (see for example [DHM20, Section 7.5]). The result is displayed in Figure 29.
Now, either Ä acts on HF´pS3

´1p62qq by fixing the central Y -shape, or it acts on the central
Y -shape by reflection. By direct calculation, in the former case we have

dÄ pS3
´1p62qq < 0 and dºÄ pS3

´1p62qq < ´2

while in the latter, we have

dÄ pS3
´1p62qq < ´2 and dºÄ pS3

´1p62qq < 0.

This completes the proof. □
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.

0

−2

−4

ι

Figure 29. Floer homology HF´pS3
´1p62qq with action of º.

Remark 7.8. It possible to provide an immediate proof of Theorem 1.5 as a topological corollary
to [DHM20, Theorem 1.15], as follows. Let Σ and ÄW pΣq be any pair of symmetric slice disks for
J in some homology ball W . One can show that p`1q-surgery on J is diffeomorphic to Y < BW0,
whereW0 is the positron cork of Akbulut-Matveyev [AM97]. Moreover, under this diffeomorphism,
the induced action of Ä on S3

`1pJq is the usual cork involution on Y . Extend the p`1q-surgery
on J along the disks Σ and ÄW pΣq to obtain two homology balls B1 and B2, each with boundary
Y . (Here, BB1 and BB2 are identified via the obvious identity map.) Using ÄW , we obtain a
diffeomorphism f : B1 Ñ B2 which restricts to the cork involution on Y . (Note that f restricts
to ÄW on the complement of a tubular neighborhood of Σ.) If Σ and ÄW pΣq were isotopic rel
boundary, then we would have that pW,Σq and pW, ÄW pΣqq were diffeomorphic rel boundary. This
would imply the existence of a diffeomorphism g : B1 Ñ B2 restricting to the identity on Y . Then
g´1 ˝ f is a self-diffeomorphism of B1 restricting to the cork involution on Y < BB1. However, in
[DHM20, Theorem 1.15], it is shown that no such extension exists.

We now explain why the proof of Theorem 1.5 implies Theorem 1.6. We begin with the following:

Lemma 7.9. Let pK, Äq be a strongly invertible knot in S3. Let W be any (smooth) homology ball
with BW < S3 and let ÄW be any extension of Ä over W . Let Σ and ÄW pΣq be a pair of symmetric
slice disks for K. Then ÄKprFW,Σp1qsq < rFW,ÄW pΣqp1qs as elements of H˚pCFKpKqq.

Proof. The proof is the same as that of Theorem 1.2. Let F be a decoration on Σ. We again have
the commutative diagram

CFKpUq CFKpKq

CFKpU rq CFKpKrq

CFKpUq CFKpKq

FW,F

t t

FW,τW pFq

sw sw

FW,swpτW pFqq
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Note that the decoration swpÄW pFqq is associated to the disk ÄW pΣq, which is not necessarily
isotopic to Σ. Since Σ and ÄW pΣq are disks, no additional subtlety involving the decoration arises,
and we may instead write FW,Σ and FW,ÄW pΣq along the top and bottom rows in the above diagram,
respectively, to represent that these maps are unique up to chain homotopy. Using the fact that
ÄK acts trivially on CFKpUq immediately gives the claim. □

The nontriviality of our numerical invariants then easily obstructs FW,Σp1q and FW,ÄpΣqp1q from
being homologous:

Proof of Theorem 1.6. Let Σ and ÄW pΣq be a pair of symmetric slice disks for J and suppose that
rFW,Σp1qs < rFW,ÄW pΣqp1qs as elements of H˚pCFKpJqq. Lemma 7.9 then implies that rFW,Σp1qs is
a ÄK-invariant element in H˚pCFKpJqq. Using this (and the fact that FW,Σ has zero grading shift),
it is straightforward to construct an absolutely graded, ÄK-equivariant local map from the trivial
complex into CFKpJq. This shows that 0 ď dÄ pCFKpJq0q and thus that V Ä

0pJq ď 0. Moreover,
since FW,Σ homotopy commutes with ºK , we also know that rFW,Σp1qs is ºK-equivariant. Hence
rFW,Σp1qs is in fact ºK ˝ ÄK-equivariant. This likewise shows that 0 ď dºÄ pCFKpJq0q and thus that
V ºÄ

0 pJq ď 0, contradicting the proof of Theorem 1.5.

We now verify that rFW,Σp1qs ‰ rFW,ÄW pΣqp1qs as elements of zHFK pJq 3 H˚pCFKpJq{pU, V qq.
This follows algebraically from the previous paragraph and an analysis of CFKpJq. We first calcu-
late the ranks of zHFK pJq in each Alexander and Maslov grading. This can be done using the knot
Floer calculator implemented in SnapPy [CDGW]; the results are displayed in Figure 30.

Alexander Maslov Rank of zHFK pJq
´1 ´2 2
´1 ´1 2
0 ´1 4
0 0 5
1 0 2
1 1 2

Figure 30. Rank of zHFK pJq in each Alexander and Maslov grading.

Note that this computation of zHFK pJq uses the conventions of Ozsváth-Szabó. Although J is
not thin, a similar analysis as in (for example) [Pet13] allows us to determine the full knot Floer
complex from the hat version. Translating into the conventions used by Zemke gives the complex
displayed in Figure 31. (For a discussion of this procedure, see for example [DHST21, Section
2].) This consists of a singleton generator v, together with four squares. Two of these squares are
spanned by U - or V -powers of tai, bi, ci, diu pi < 1, 2q and have a corner in pgrU , grV q-bigrading
p0, 0q. The other two are spanned by by U - or V -powers of tei, fi, gi, hiu pi < 1, 2q and have a
corner in pgrU , grV q-bigrading p´1,´1q.

Now, x < FW,Σp1q and ÄKx < FW,ÄW pΣqp1q are cycles in CFKpJq which we know are not
homologous. In the quotient CFKpJq{pU, V q, the images of x and ÄKx remain cycles. The only way
for these images to become homologous in CFKpJq{pU, V q would be for x´ ÄKx to be (homologous
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v

ci di

ai bi

U

V

U

V

gi hi

ei fi

U

V

U

V

Generator grU grV
v 0 0
ai 0 0
bi 1 ´1
ci ´1 1
di 0 0
ei ´1 ´1
fi 0 ´2
gi ´2 0
hi ´1 ´1

Figure 31. The complex CFKpJq, spanned by v together with tai, bi, ci, diu and
tei, fi, gi, hiu for i < 1, 2. Bigradings of generators are given on the right.

to) a nonzero element of CFKpJq lying in the image of pU ,V q. However, an examination of
Figure 31 shows that there are no elements of CFKpJq with grU < grV < 0 which lie in the image
of pU ,V q, a contradiction. □

We now show that taking the n-fold connected sum of J with itself gives a slice knot with
2n distinct exotic slice disks, distinguished by their concordance maps on zHFK . For a similar
construction, see [SS21, Corollary 6.6].

Theorem 7.10. The (equivariant) connected sum #nJ admits 2n distinct exotic slice disks, dis-
tinguished by their concordance maps on zHFK.

Proof. As in Figure 2, let D and D1 be the pair of exotic slice disks for J from [Hay21, Section
2.1]. For each binary string s of length n, there is an obvious slice disk Ds for #nJ constructed by
taking the boundary sum of copies of D and D1. Explicitly, each index in s with a 0 contributes
a copy of D, while each index with a 1 contributes a copy of D1; see Figure 32. The fact that
D and D1 are topologically isotopic easily shows that the 2n disks constructed in this manner are
topologically isotopic rel boundary.

Figure 32. Schematic depiction of #nJ . Compressing along the indicated curves
gives the slice disk Ds corresponding to the binary string s < 010 ¨ ¨ ¨ 0.

Now, we may identify
zHFK p#nJq <

â
n

zHFK pJq.
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Under this identification, rFB4,Ds
p1qs is the tensor product of copies of rFB4,Dp1qs and rFB4,D1p1qs,

each in the appropriate index. But rFB4,Dp1qs ‰ rFB4,D1p1qs as elements of the vector space
zHFK pJq. It follows that the rFB4,Ds

p1qs are different for different strings s. This completes the
proof. □

Finally, we generalize Theorem 1.5 to an infinite family of knots Jn with exotic pairs of slice
disks, considered by Hayden in [Hay21, Section 2.3]. These are displayed on the left in Figure 33 and
are obtained from the knot J of Theorem 1.5 by adding pairs of (negative) full twists, as indicated.
We have an obvious pair of slice disks for Jn given by compressing along the displayed red and blue
curves. In [Hay21, Figure 9], Hayden constructs a handle diagram for the complement of these
disks; it is immediate from [Hay21, Figure 9] that the disk exteriors have fundamental group Z and
thus that the disks are topologically isotopic. Here, we show that knot Floer homology obstructs
any two symmetric pair of disks for Jn from being smoothly isotopic.

-n-n -n-n-1 -1

Figure 33. An infinite family of knots Jn admitting exotic pairs of slice disks. See
[Hay21, Theorem B] and [Hay21, Section 2.3].

Theorem 7.11. Let Jn (for n ě 0) be as in Figure 33. Then rig4pJnq ą 0. In particular, no pair
of symmetric slice disks Σ and ÄW pΣq are (smoothly) isotopic rel Jn. This holds for any (smooth)
homology ball W with BW < S3 and any extension ÄW of Ä over W .

Proof. Clearly, p`1q-surgery on Jn admits a negative-definite equivariant cobordism to p`1q-surgery
on J , given by attaching p´1q-framed 2-handles along the green curves indicated on the right in
Figure 33. Noting that each Jn has Seifert genus one, it follows from Theorem 7.4 that

V Ä
0pJnq ě V Ä

0pJq and V Ä
0pJnq ě V Ä

0pJq

and

V ºÄ
0 pJnq ě V ºÄ

0 pJq and V ºÄ
0 pJnq ě V ºÄ

0 pJq.

The claim then immediately follows from our bounds on the invariants of J . □
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7.4. Secondary invariants. We now discuss the secondary invariant V0pΣ,Σ1q of [JZ18, Section
4.5]. This is defined as follows. Let K be a knot in S3. For simplicity, let W be a homology ball
with boundary S3 and let Σ and Σ1 be two slice disks for K in W . Consider the elements FW,Σp1q
and FW,Σ1p1q in CFKpKq. (Note that since Σ and Σ1 are disks, no choice of decoration is needed;
the more general definition of V0pΣ,Σ1q in [JZ18, Section 4.5] requires a discussion of a specific set
of dividing curves.) Viewing FW,Σp1q and FW,Σ1p1q as elements of the large surgery subcomplex
CFKpKq0, define

V0pΣ,Σ1q < mintn P Zě0 | Un ¨ rFW,Σp1qs < Un ¨ rFW,Σ1p1qs in H˚pCFKpKq0qu.

In [JZ18, Theorem 1.1], it is shown that V0pΣ,Σ1q bounds the stabilization distance between Σ and
Σ1 from below:

V0pΣ,Σ1q ď

R
µstpΣ,Σ

1q

2

V
.

The following is straightforward:

Proof of Theorem 1.10. Let Σ be any slice disk for K in W , and suppose that V0pΣ, ÄW pΣqq < n.
By Lemma 7.9, we have

ÄKprFW,Σp1qsq < rFW,ÄW pΣqp1qs.

Multiplying both sides by Un, we obtain a ÄK-invariant element in the homology of CFKpKq0 with
grading ´2n. This implies dÄ pCFKpKq0q ě ´2n and thus that V Ä

0pKq ď n. Moreover, since FW,Σ

homotopy commutes with ºK , we also know that rFW,Σp1qs is ºK-equivariant. Hence we obtain an
ºK ˝ ÄK-invariant element in the homology of CFKpKq0 with grading ´2n. This similarly shows
that V ºÄ

0 pKq ď n. □

8. Periodic knots

We close this paper by discussing a similar family of results in the periodic setting. As in the
strongly invertible case, it is possible to define an action of ÄK associated to a 2-periodic knot K
and consider the notion of a periodic pÄK , ºKq-complex. The same subtlety as in Section 3.4 arises,
in that this is only an invariant of equivariant concordance in the decorated category. Nevertheless,
once again we may define numerical invariants V ˝

0 and V
˝
0, and these give bounds for the equivariant

slice genus. While much of the formalism is thus the same, the authors have not yet been able to
find many interesting calculations of periodic invariants. One key difference is that in the periodic
case, there is no natural notion of equivariant connected sum. Correspondingly, it turns out that
the set of periodic pÄK , ºKq-complexes (up to local equivalence) does not seem to admit a natural
group structure.

8.1. Construction of ÄK . We begin with the construction of ÄK . Let pK, Äq be a 2-periodic knot.
In contrast to the strongly invertible case, it is natural to assume that K is oriented (since K may
not come with an orientation-reversing diffeomorphism). Let w and z be a pair of basepoints on K
which are interchanged by Ä , and let H be any choice of compatible Heegaard data for pK,w, zq.
Taking the pushforward under Ä gives a tautological isomorphism

t : CFKpHq Ñ CFKpÄHq.
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The latter complex represents the same knot, but now the roles of the basepoints have been inter-
changed. We now apply a half-Dehn twist which moves w into z and z into w:

Ä : CFKpÄHq Ñ CFKpÄÄHq.

Finally, we have the naturality map

ΦpÄÄH,Hq : CFKpÄÄHq Ñ CFKpHq.

We thus define ÄH to be

ÄH : CFKpHq
t

ÝÑ CFKpÄHq
Ä
ÝÑ CFKpÄÄHq

Φ
ÝÑ CFKpHq.

As before, ÄH is independent of the choice of Heegaard data for pK,w, zq.
The proof of the following is analogous to that of Theorem 1.7:

Theorem 8.1. Let pK, Äq be an (oriented) 2-periodic knot and fix a pair of symmetric basepoints
pw, zq on K. Let H be any choice of Heegaard data compatible with pK,w, zq. Then Ä induces an
automorphism

ÄH : CFKpHq Ñ CFKpHq

with the following properties:

(1) ÄH is filtered and FrU ,V s-equivariant
(2) Ä2

H
» ςH

(3) ÄH ˝ ºH » ºH ˝ ÄH

Here, ºH is the Hendricks-Manolescu knot Floer involution on CFKpHq and ςH is the Sarkar map.
Moreover, the homotopy type of the triple pCFKpHq, ÄH, ºHq is independent of the choice of Heegaard
data H for the doubly-based knot pK,w, zq.

Proof. Left to the reader; analogous to Theorem 1.7. □

Note the difference in all three properties with Theorem 1.7.

Remark 8.2. It turns out that the analogous subtlety to Section 3.3 does not arise at this stage:
the homotopy class of pCFKpHq, ÄH, ºHq is independent of the choice of symmetric basepoints w
and z. This is because any two pairs pw, zq and pw1, z1q on K are related by a Ä -equivariant
basepoint-pushing diffeomorphism along K. Unlike in the strongly invertible case, the associated
pushforward map commutes with all the components of ÄH. Combined with the fact that K comes
with an orientation, this shows that we may unambiguously refer to the pÄK , ºKq-complex of pK, Äq,
without specifying any additional data.

8.2. Periodic pÄK , ºKq-complexes. Given Theorem 8.1, it is natural to define a pÄK , ºKq-complex
formalism in the periodic setting:

Definition 8.3. A periodic pÄK , ºKq-complex is a triple pC, ÄK , ºKq such that:

(1) C is an abstract knot complex
(2) ºK : C Ñ C is a skew-graded, R-skew-equivariant chain map such that

º2K » ςK
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(3) ÄK is a graded, R-equivariant chain map such that

Ä2K » ςK and ÄK ˝ ºK » ºK ˝ ÄK .

The notions of homotopy equivalence and local equivalence carry over without change. We may
also define the notion of a twist by ςK as before. However, it should be noted that there is no
analogue of Lemma 2.21 in the periodic setting.

Remark 8.4. The principal difference between local equivalence in the periodic and strongly
invertible settings is the absence of a natural group structure in the former. Indeed, the reader can
check that trying a product law such as

Äb < Ä1 b Ä2

or even
Äb < pid b id ` Φ b Ψq ˝ pÄ1 b Ä2q

does not satisfy Ä2b » ςb.

The algebraic procedure of Section 2.5 also carries over without change to define numerical
invariants V Ä

0pKq, V Ä
0pKq, V ºÄ

0 pKq, and V ºÄ
0 pKq. In [Mal22], the second author established a large

surgery formula for periodic knots. Thus, V ˝
0 and V ˝

0 again have the interpretation as invariants
associated to large surgeries.

8.3. Equivariant concordance and cobordism. As in Section 2.1, we may define the notion
of an isotopy-equivariant homology concordance between two periodic knots pK1, Ä1q and pK2, Ä2q.
The subtlety of Section 3.4 again arises: even if Σ is equivariant or isotopy-equivariant, it is unclear
whether an equivariant or isotopy-equivariant pair of arcs on Σ can be chosen. We thus have:

Theorem 8.5. Let pK1, Ä1q and pK2, Ä2q be two periodic knots in S3. Suppose that we have an
isotopy-equivariant homology concordance between pK1, Ä1q and pK2, Ä2q. Then pCFKpK1q, ÄK1

, ºK1
q

is locally equivalent to either pCFKpK2q, ÄK2
, ºK2

q or pCFKpK2q, ςK2
˝ ÄK2

, ºK2
q. Hence V ˝

0pKq and
V ˝

0pKq are invariant under isotopy-equivariant homology concordance.

Proof. Left to the reader; analogous to Theorem 3.15. □

Finally, we formally record that the results of Theorem 1.2 and Theorem 1.10 hold in the
periodic setting:

Theorem 8.6. Let pK, Äq be a 2-periodic knot in S3. Then for ˝ P tÄ, ºÄu,

´

R
1 ` rig4pKq

2

V
ď V ˝

0pKq ď V ˝
0pKq ď

R
1 ` rig4pKq

2

V
.

Proof. Left to the reader; analogous to Theorem 1.2. □

Theorem 8.7. Let pK, Äq be any 2-periodic knot in S3. Let W be any (smooth) homology ball with
boundary S3, and let ÄW be any extension of Ä over W . If Σ is any slice disk for K in W , then

maxtV Ä
0pKq, V ºÄ

0 pKqu ď V0pΣ, ÄW pΣqq.

Proof. Left to the reader; analogous to Theorem 1.10. □
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[Wat17] Liam Watson, Khovanov homology and the symmetry group of a knot, Adv. Math. 313 (2017), 915–946.

MR 3649241 [1]
[Zem16a] Ian Zemke, Link cobordisms and functoriality in link Floer homology, 2016, preprint, arXiv:1610.05207.

[22], [23], [24], [29], [30]
[Zem16b] , Quasi-stabilization and basepoint moving maps in link Floer homology, 2016, preprint,

arXiv:1604.04316. [12]
[Zem19] , Connected sums and involutive knot Floer homology, Proc. Lond. Math. Soc. (3) 119 (2019),

no. 1, 214–265. MR 3957835 [2], [7], [10], [12], [13], [14], [15], [16], [22], [29], [33], [34], [37]

Department of Mathematics, Stanford University, Palo Alto, CA 94301

Email address: ifdai@stanford.edu

Department of Mathematics, Rutgers University, Piscataway, NJ 08854

Email address: abhishek.mallick@rutgers.edu

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Email address: stoffre1@msu.edu


	1. Introduction
	1.1. Equivariant slice genus bounds
	1.2. Applications
	1.3. Algebraic formalism
	1.4. Relation to 3-manifold invariants
	1.5. Relation to secondary invariants
	Acknowledgements
	Organization

	2. Background and algebraic formalism
	2.1. Equivariant knots
	2.2. Local equivalence and K, 
	2.3. (Possible) non-commutativity of K, 
	2.4. Twisting by K
	2.5. Extracting numerical invariants
	2.6. Examples

	3. Construction of K and equivariant concordance
	3.1. Preliminaries
	3.2. Construction of K
	3.3. Naturality of K
	3.4. Equivariant concordance
	3.5. Directed knots

	4. Connected sums
	4.1. Connected sums
	4.2. The swapping involution

	5. Equivariant slice genus bounds
	6. Torus knots
	6.1. The connected sum involution
	6.2. The swapping involution
	6.3. The involution on Kn

	7. Relation to other invariants
	7.1. Equivariant large surgery
	7.2. Inequalities
	7.3. Exotic slice disks
	7.4. Secondary invariants

	8. Periodic knots
	8.1. Construction of K
	8.2. Periodic (K, K)-complexes
	8.3. Equivariant concordance and cobordism

	References

