EQUIVARIANT KNOTS AND KNOT FLOER HOMOLOGY

IRVING DAI, ABHISHEK MALLICK, AND MATTHEW STOFFREGEN

ABSTRACT. We define several equivariant concordance invariants using knot Floer homology. We
show that our invariants provide a lower bound for the equivariant slice genus and use this to give a
family of strongly invertible slice knots whose equivariant slice genus grows arbitrarily large, answer-
ing a question of Boyle and Issa. We also apply our formalism to several seemingly non-equivariant
questions. In particular, we show that knot Floer homology can be used to detect exotic pairs of
slice disks, recovering an example due to Hayden, and extend a result due to Miller and Powell
regarding stabilization distance. Our formalism suggests a possible route towards establishing the
non-commutativity of the equivariant concordance group.

1. INTRODUCTION

Equivariant knots and concordance have been well-studied historically; see for example [Mur71,
Sak86, Nai94, CK99, DN06]. Recently, there has been a renewed interest in this topic from
the viewpoint of more modern invariants, as evidenced by the works of Watson [Wat17], Lobb-
Watson [LW21] and Boyle-Issa [BI21]. The aim of the present article is to investigate the theory of
equivariant knots through the lens of knot Floer homology, an extensive package of invariants intro-
duced independently by Ozsvéth-Szab6 [OS04] and Rasmussen [Ras03]. Our underlying approach
is straightforward: given a strongly invertible knot (K, 7), we show that 7 induces an appropriately
well-defined automorphism of the knot Floer complex CFI(K). Using the induced action of 7, we
construct the following suite of numerical invariants:

Theorem 1.1. Let (K, 7) be a strongly invertible knot in S®. Associated to (K, T), we have four
integer-valued equivariant concordance invariants

Vo(K) < V§(K) and Vi (K) <V (K).

In fact, V§ and V§ (where o € {1,17}) are invariant under the more general relation of isotopy-
equivariant homology concordance.

Note that V§ and V§ vanish if K is equivariantly slice. See Definition 2.9 for the definition of
isotopy-equivariant homology concordance.

Obstructions to equivariant sliceness have been investigated by several authors, including
Sakuma [Sak86], Cha-Ko [CK99], and Naik-Davis [DN06]. However, understanding the equivariant
slice genus has only more recently been studied by Boyle-Issa [BI21]. One of the main results of this
paper will be to show that V§ and V§ provide lower bounds for the equivariant slice genus gy (K)
of (K, ). In fact, we show that they bound the isotopy-equivariant slice genus; see Definition 2.8.
Using this, we provide a family of strongly invertible slice knots (K, 7,) whose equivariant slice
genus grows arbitrarily large, answering a question posed by Boyle-Issa. Prior to the current article,
there were no known examples of strongly invertible knots with g4(K) — g4(K) provably greater
than one.
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Surprisingly, our invariants also have applications to several (seemingly) non-equivariant ques-
tions. We first show that our formalism can be used to detect exotic pairs of slice disks, recovering
an example originally due to Hayden [Hay21]|. Note that while knot Floer homology has previously
been used to detect exotic higher-genus surfaces (see the work of Juhdsz-Miller-Zemke [JMZ20]),
the current work represents the first such application of knot Floer homology in the genus-zero case.
We also consider the question of bounding the stabilization distance between pairs of disks. Using
the work of Juhész-Zemke [JZ18|, we show that our examples K, give a Floer-theoretic re-proof
and extension of a result by Miller-Powell [MP19], which states that for each integer m, there is a
knot J,, with a pair of slice disks that require at least m stabilizations to become isotopic.

The invariants of Theorem 1.1 are correction terms derived from the action of 7 on CFIC(K)
following the general algebraic program of Hendricks-Manolescu [HM17]. Instead of working with
numerical invariants, it is also possible to define a local equivalence group in the style of Hendricks-
Manolescu-Zemke [HMZ18] or Zemke [Zem19]. This follows the approach taken in Dai-Hedden-
Mallick in [DHM20] to study cork involutions; and, indeed, the current article is closely related to
[DHM20]. In this paper, we define the local equivalence group R;, of (Tx, i )-complexes and show
that there is a homomorphism from the equivariant concordance group C (defined by Sakuma in
[Sak86]) to K. : N

hT,L: C— ﬁ’r,b-
Interestingly, it turns out that K., is not a prior: abelian. It is an open problem whether C is
abelian; in principle, our invariants can thus be used to provide a negative answer to this question.!
As far as the authors are aware, this is the first example of a (possibly) non-abelian group arising
in the setting of local equivalence. See Section 2 for background and further discussion.

Although all of the examples in this paper will be strongly invertible, we also establish several
analogous results for 2-periodic knots. We discuss these in Section 8.

1.1. Equivariant slice genus bounds. Our first application will be to show that the invariants
of Theorem 1.1 bound the equivariant slice genus g4(K) of K (see Definition 2.1). In fact, we give
a bound for a rather more general quantity, defined as follows.

Let (K, T) be a strongly invertible knot. Let W be a (smooth) homology ball with boundary
S3, and consider any (smooth) self-diffeomorphism 7y on W which restricts to 7 on 0W. Note that
we do not require 7y itself to be an involution. We say that a slice surface X in W with 03 = K
is an isotopy-equivariant slice surface (for the given data) if 7y (X) is isotopic to 3 rel K. Define
the isotopy-equivariant slice genus of (K, T) by:

ig4(K) = min {g(2)}-

all possible choices of W and Ty
all isotopy-equivariant slice surfaces X

Here i~g4(K ) depends on 7, but we suppress this from the notation. The quantity i~g4(K ) generalizes
the obvious notion of equivariant slice genus in several ways. Firstly, we allow ourselves to consider
any homology ball W and any diffeomorphism which extends 7, rather than restricting ourselves
to B*. Secondly, we do not require that 3 be invariant under the extension of 7, but instead only
isotopic to its image. Obviously, N

ig4(K) < ga(K).

IRecently, Di Prisa has shown that C is indeed non-abelian [DP22]; see Remark 1.13.
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Although the authors do not have an example in which ig,(K) is distinct from §4(K), this more
general quantity will turn out to be critical for several applications. There is also an obvious
accompanying notion of isotopy-equivariant homology concordance; see Definition 2.9.

Although the notion of isotopy equivariance may initially seem rather contrived, a slight shift
in perspective demonstrates its usefulness. To see this explicitly, let (K, 7) be a strongly invertible
knot in S3. Let W be any (smooth) homology ball with boundary S and 7y be any extension
of 7 over W. If © < W is any slice surface for K with g(X) < ig,(K), then we may immediately
conclude that the two surfaces 3 and 7y (X) are not isotopic rel K. The calculation of 7g,(K) thus
provides an easy method for generating non-isotopic slice surfaces in the presence of a symmetry
on K. For example, if K is an equivariant slice knot with i~g4(K ) > 0, then we may take any
slice disk ¥ for K and form its image under any extension 1y of 7 (in any homology ball W);
the resulting pair of slice disks are then automatically non-isotopic rel K. We often refer to X
and Ty (X) as a symmetric pair of slice disks. This is in marked contrast to the usual approach
taken in the literature, where in order to deploy various invariants, one (naturally) has in mind a
specific family of slice disks (or surfaces) that are conjectured to be non-isotopic. The situation
here is analogous to the notion of a strong cork introduced by Lin-Ruberman-Saveliev in [LRS17]
and studied in [DHM20]. R

Following the work of Juhész-Zemke [JZ20], we bound ig,(K) in terms of V§ and V:

Theorem 1.2. Let (K, T) be a strongly invertible knot in S3. Then for o € {1,171},

B [1 +ig4(K) 1 +ZE4(K)]'

5 W < VH(K) < VH(K) < { 5

The computation of V§(K) and V§(K) can thus be used to help construct exotic pairs of slice
surfaces for K, via the discussion above. In the current paper, we only give the most archetypal
instance of this phenomenon; the authors plan to return to the task of finding a systematic range
of examples in future work. Note that by Theorem 1.1, if ig,(K) = 0 then V§ and V§ vanish. In
the genus-zero case, Theorem 1.1 thus gives a slightly stronger bound than that of Theorem 1.2.
This discrepancy is explained in Remark 5.1.

1.2. Applications. We now give several computations and applications. Our main class of exam-
ples is quite straightforward. Let T3, 2,41 be the right-handed torus knot and select any strong
inversion 7 on Ty, 2n+1 (in fact, this is unique up to conjugation by [Sak86, Proposition 3.1]).
As in Figure 1, there are two obvious strong inversions on T, 2n+1#12n,2n+1. On one hand, we
may take the equivariant connected sum 7 = 7#7 to obtain an inversion with one fixed point
on each summand. On the other, we may consider the strong inversion 7, which interchanges
the two factors. Strictly speaking, the latter is a strong inversion on 75, 2p41#1" 9n,2n+1; however,
since Ty, 2n+1 admits an orientation-reversing symmetry, we will occasionally conflate this with
Ton2n1#Ton2n 11
We then consider the further equivariant connected sum

Ky = (Tonons1#Tonon+1)# — (Ton2n+1#Ton,2n41)
equipped with the strong inversion

Tn = T4HF — Tsw-
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That is, we consider the strong inversion 74 on the first copy of 1%, 2/, +1#12n,2n+1 and take the
equivariant connected sum of this with the (orientation-reversed mirror of the) inversion 7s, on
Ton 2n+1#12n 2n+1. For a discussion of the equivariant connected sum of two strong inversions, see
Section 2.1. In general, defining the equivariant connected sum requires some additional data, but

the application we have in mind will be insensitive to this subtlety; see Remark 6.15. In Figure 1 we
perform the equivariant connected sum by (roughly speaking) stacking successive axes end-to-end.

Note that K, is slice.
5 g T can
g5 =
K L OO

(Ton,2n+1,7) (Ton,2n+1#Ton 2041, T) —(Ton2n+1#Ton, 20415 Tsw)

S

\_/\\/\;J

r

N\

]

J

(Kn,7a)

FIGURE 1. Schematic depiction of the case n = 1. Top left: a strong in-
version on Tb,2,41. Top middle: the equivariant connected sum inversion 74
on Tonon+1#Ton2n+1. Top right: (the mirror of) the strong inversion g, on
Ton 2n+1712n 2n+1. Bottom: construction of K, and 7,.

In Section 6, we establish the following fundamental calculation:
Theorem 1.3. For n odd, the pair (K,,T,) has V7(K,) = n.

Similar knots were investigated by Hendricks-Hom-Stoffregen-Zemke in [HHSZ21] and the proof of
Theorem 1.3 relies on the computations of [HHSZ21]. In fact, we also establish that V{(K,) = 0,
although this is of limited use, and conjecture that the inequality appearing in Theorem 1.3 is
an equality. However, since we do not need this for any application, we leave the more detailed
computation to the reader.

In [BI21, Question 1.1], Boyle-Issa asked whether there exists a family of strongly invertible
knots for which g4(K) — g4(K) becomes arbitrarily large. Applying Theorem 1.2, we immediately
obtain:
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Theorem 1.4. For n odd, the pair (K, 1,) has
2n — 2 < igy(Kp) < Gu(Ky).

Since each K, is slice, this answers [BI21, Question 1.1] in the affirmative. The topological intuition
behind these examples is quite straightforward: the involutions 7 and 7y, on To, 2n+1# 120, 2n+1
are very different, so one should expect the equivariant slice genus of (K, 7,) to be large.

We also consider a particular knot J due to Hayden [Hay21], displayed in Figure 2. In [Hay21],
Hayden presents a certain pair of slice disks D and D’ for J, each with complement having fun-
damental group Z. By a result of Conway-Powell [CP19, Theorem 1.2], this implies that D and
D' are topologically isotopic. However, in [Hay21, Section 2.1], it is shown that D and D’ are not
smoothly isotopic (or even diffeomorphic) rel boundary. (See also [HS21, Theorem 3.2].) Note that
J admits a strong inversion 7; a crucial part of the argument in [Hay21] relies on the fact that D
and D’ are related by the obvious extension of T over B*.

FIGURE 2. An equivariant slice knot J with symmetry 7 given by reflection across
the obvious vertical axis. The slice disks D and D’ are obtained by compressing
along the red and blue curves, respectively.

In [Hay21, Section 2.1], it is noted that J has a close connection to the positron cork Wy of
Akbulut-Matveyev [AM97]. In [DHM20, Theorem 1.15], the action of the cork involution on the
Heegaard Floer homology of 0W, was investigated. Re-casting these computations in the formalism
of the current paper yields:

Theorem 1.5. Let J be as in Figure 2. Then i~g4(J) > 0. In particular, no pair of symmetric
slice disks ¥ and Ty (X) are (smoothly) isotopic rel J. This holds for any (smooth) homology ball
W with OW = S and any extension Ty of T over W.

Given the connection between J and Wy, it is actually possible to use [DHM20, Theorem 1.15]
to provide an immediate proof of Theorem 1.5, as we explain in Remark 7.8. However, going
through the proof in the current context explicitly gives:

Theorem 1.6. Let J be as in Figure 2 and let ¥ and Ty (X) be any pair of symmetric slice disks
for J. Then

[Fws(D)] # [Fwry ) (1)]
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as elements in either H,(CFK(J)) or ﬁﬁ((,]) This holds for any (smooth) homology ball W with
oW = S and any extension Ty of T over W.

Here, Fyy»; and Fyy ;. () are the knot Floer cobordism maps associated to (punctured copies of) 3
and Ty (X), respectively. We thus explicitly see that ¥ and 7yy(2) are distinguished by their maps
on knot Floer homology. Specializing to ¥ = D, this provides a knot Floer-theoretic analogue of
the proof of [HS21, Theorem 3.2], in which D and D’ are distinguished using their induced maps
on Khovanov homology. Note that Juhasz-Miller-Zemke have used knot Floer homology to detect
exotic higher-genus surfaces [JMZ20]. (The fact that the surfaces have genus greater than zero is
essential to their argument.) However, the current work represents the first instance of knot Floer
homology being applied to detect an exotic pair of disks.

By taking the n-fold connected sum #,.J, it is also straightforward to construct an example of
a slice knot with 2" different exotic slice disks, which are distinguished by their concordance maps
on HFK. We establish this in Theorem 7.10; see [SS21, Corollary 6.6] for a similar construction.
In Theorem 7.11, we extend Theorem 1.5 to an infinite family of knots with exotic pairs of slice
disks, which were likewise considered by Hayden in [Hay21].

1.3. Algebraic formalism. As discussed previously, our underlying goal will be to show that a
strong inversion 7 induces a well-defined action on the knot Floer complex of K. We also incorporate
the involutive knot Floer automorphism of Hendricks-Manolescu [HM17] into our formalism, which
will allow us to define the invariants V§ and V. In order to construct the action of 7, we first
fix an orientation on K and an ordered pair of basepoints (w, z) which are interchanged by 7. We
refer to this data as a decoration on (K, 7). In Section 3.2, we define the action of 7 associated to
a decorated strongly invertible knot:

Theorem 1.7. Let (K, 7) be a decorated strongly invertible knot. Let H be any choice of Heegaard
data compatible with (K, w,z). Then 7 induces an automorphism

T CFK(H) - CFK(H)
with the following properties:
(1) Ty is skew-graded and F|% ,V|-skew-equivariant
(2) 7'72_[ ~id
(3) TH oLy = SH Oy OTH
Here, 13 is the Hendricks-Manolescu knot Floer involution on CFK(H) and sy is the Sarkar map.

Moreover, the homotopy type of the triple (CFIC(H), Ty, L) is independent of the choice of Heegaard
data H for the doubly-based knot (K, w, z).

This action was originally considered by the second author in the context of establishing a large
surgery formula; see [Mal22]. Note that 75 and ¢y do not in general commute. This is in contrast
to the 3-manifold setting; see [DHM20, Lemma 4.4].

In view of the last part of Theorem 1.7, we may suppress writing ‘H and unambiguously refer to
the homotopy type of (CFK(K), Tk, tik) as an invariant of the decorated knot (K, 7). In Section 2.2,
we formalize this algebraic data by defining the notion of an abstract (7x, tx)-complex. We define
an appropriate notion of local equivalence and form the quotient

R, = {abstract (7, ti)-complexes} / local equivalence.
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See Section 2.2.

The role of the decoration on (K, 7) turns out to be quite subtle. As we will see, this extra
choice of data is needed to form the knot Floer complex of K and is critical for discussing the
invariance properties of (CFI(K), Tk, tx). In Section 3.4, we introduce the notion of a decorated
isotopy-equivariant homology concordance and show that in the decorated category, we obtain a
map

decorated) isotopy-equivariant

hr.: {(decorated) strongly invertible knots} / ( homology concordance

- -ﬁﬂ',L'

However, this is (in principle) not quite true if the decorations are discarded: in the undecorated
setting, an equivariant knot only defines a (7x, tx)-complex up to a certain ambiguity which we
refer to as a twist by sx; see Definition 2.20. Nevertheless, we show that V§ and V3 remain
invariants in the undecorated setting.

In Section 2.2, we further define a product operation on R, which makes it into a group. We
establish an equivariant connected sum formula in Theorem 4.1; this will allow us to prove that
hr,, constitutes a homomorphism from the equivariant concordance group C to £;,.

Theorem 1.8. We have a homomorphism
hT,L : C~ - ﬁ’r,L-

The equivariant concordance group C consists of the set of directed strongly invertible knots; see Def-
inition 2.5. In Section 3.5, we discuss the connection between C and decorated isotopy-equivariant
concordance.

Somewhat surprisingly, it turns out that 8., is not a prior: abelian, although the authors
have no explicit example of this. As we discuss in Section 2.1, it is currently unknown whether C
is abelian. Hence in principle Theorem 1.8 can be used to provide examples demonstrating this
claim; we plan to return to this question in future work. As far as the authors are aware, this is
the first example of a (possibly) non-abelian group arising in the setting of local equivalence. Note
that the tx-local equivalence group of Zemke [Zem19] is abelian.

1.4. Relation to 3-manifold invariants. If K is an equivariant knot, then any 3-manifold ob-
tained by surgery on K inherits an involution from the symmetry on K (see for example [DHM20,
Lemma 5.2]). In [Mal22], the second author established a large surgery formula relating the action
of 7 to the corresponding Heegaard Floer action of the 3-manifold involution. This latter action
was defined and studied in [DHM20] in the context of the theory of corks. It follows immediately
from the large surgery formula that (with appropriate normalization) the invariants V{ and V7
are none other than the numerical involutive correction terms referenced in [DHM20, Remark 4.5].
Explicitly, for p > g3(K), we have

0 —2VS(K) + % = do(Sy(K), [0])
—2VS(K) + % = do(S3(K), [0]).

for o € {r,.7}. See [HM17, Theorem 1.6] for the analogous statements concerning the usual invo-
lutive numerical invariants d and d.
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The results of [DHM20] easily imply that V' and V§ are invariant under equivariant concordance
(essentially by surgering along the concordance annulus). Hence it is actually immediate that V'
and Vg obstruct equivariant sliceness. Indeed, [DHM20] already gives several examples of slice
knots that are not equivariantly slice, as pointed out in [BI21]. The main import of the present
paper is thus to show that V§ and V{ can be used to study higher-genus examples, which were not
previously accessible.

In [DHM20, Theorem 1.5], it was shown that the invariants of [DHM20, Remark 4.5] satisfy
certain inequalities in the presence of negative-definite equivariant cobordisms. In our context, this
specializes to inequalities of V§ and V{ involving equivariant crossing changes. In Section 7, we
consider several kinds of equivariant crossing changes. We prove:

Theorem 1.9. Let K be strongly invertible knot. Let K' be obtained from K wvia an equivariant
positive-to-negative crossing change (or an equivariant pair of such crossing changes). Then:

(1) If the crossing change is of Type Ia, we have
Vi(K) =2 Vi(K') and V{(K) = Vi(K).
(2) If the crossing change is of Type Ib, we have
Vi (K) = Vi(K') and V{(K) > Vi (K').
(8) If we have an equivariant pair of crossing changes (Type II), we have both
Vi(K) = Vi(K') and V{(K) = Vi(K')
and
Vi) = Vg (K) and VE(K) > Vi (K.

See Definition 7.6 for a definition of these terms.
A generalization of these ideas will be used to establish Theorem 1.5.

1.5. Relation to secondary invariants. In [JZ18], Juhdsz and Zemke construct several sec-
ondary invariants associated to a pair of slice surfaces ¥ and ¥’ for the same knot. These are
shown to give lower bounds for various quantities such as the stabilization distance between ¥ and
¥’ (see below). Here, we focus on the invariant Vp(3,X’) of [JZ18, Section 4.5]. It is easy to show:

Theorem 1.10. Let (K, T) be a strongly invertible knot in S®. Let W be any (smooth) homology
ball with boundary S°, and let Ty be any extension of T over W. If ¥ is any slice disk for K in
W, then

max{V(K), Vi (K)} < Vo (2, Tw (X))

In [JZ18], Vo(2,Y') is defined for surfaces in B%, but the extension to general integer homology
balls is straightforward. The authors expect further connections with the results of [JZ18], which
we intend to investigate in future work.

Let W be a homology ball with 0W = S3, and let X, %’ € W be two slice surfaces for K. Recall
that the stabilization distance ug(X,Y) is defined to be the minimum of

max{g(X1),...,9(Xn)}
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over sequences of slice surfaces ¥; € W from ¥ to ¥ such that consecutive surfaces are related
by either a stabilization/destabilization or an isotopy rel K. (We take the 4-manifold W as being
implicit in the setup and suppress it from the notation.) In [JZ18, Theorem 1.1}, Juhdsz and Zemke
show that if X, %' € W are two slice disks for the same knot, then

pist (2, X' } _

It follows from this that V' and V{ can be used to construct pairs of disks with large stabilization
distance. Applying Theorem 1.10 and [JZ18, Theorem 1.1] to the examples (K, ,) of Section 1.2,
we immediately obtain:

Theorem 1.11. Let n be odd. Let W be any (smooth) homology ball with boundary S, and let Ty
be any extension of T, over W. Suppose K, is slice in W. Then for any slice disk X,

2n — 1 < pg(E, 7w (2)).

Since K, is slice in B*, this shows that for any integer m, there is some knot with a pair of slice
disks that require at least m stabilizations to become isotopic. This provides an alternate proof
of a result of Miller-Powell [MP19, Theorem B|. In fact, Theorem 1.11 is slightly stronger, as the
stabilization distance between two surfaces can be strictly less than the number of stabilizations
needed to make them isotopic. Moreover, the examples of Theorem 1.11 are inherent to the knots
K, rather than the actual disks: we may start with any slice disk for K, (in B* or otherwise) and
compute its stabilization distance to its reflection (again, under any extension of 7).

Remark 1.12. During the completion of this project, Ian Zemke informed us of another family of
examples, now independently included in [JZ18, Section 10.3]. Our examples use a similar family of
knots as in [JZ18, Section 10.3], but the slice disks in question are rather different. (In particular,
our approach de-emphasizes the construction of the actual disks, and instead requires only that the
pair of disks are related by ryy.)

Remark 1.13. Recently, several related results have emerged which have a strong bearing on the
work presented here. Although these appeared some time after the initial posting of this paper, we
describe them briefly to provide some context:

(1) Di Prisa [DP22] has shown that the equivariant concordance group is indeed non-abelian.
The authors do not believe that knot Floer homology detects these examples; it is still
unclear whether &, , is abelian.

(2) Building on the Floer-theoretic formalism of the present work (in particular, Theorem 4.3),
the authors of this paper (in joint work with Kang and Park) have recently shown that the
(2, 1)-cable of the figure-eight is not slice [DKM*22]. This was previously an open question,
and as such may provide some motivation for the extensive framework we establish here.

(3) Miller and Powell [MP22] have recently provided a second (more topological) proof of [BI21,
Question 1.1] by utilizing Blanchfield forms. Curiously, the two approaches do not overlap:
the examples presented here are not accessible via the methods of [MP22]; conversely, Floer
homology does not give growing genus bounds for the examples of [MP22].
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Organization. In Section 2, we give a brief introduction to equivariant concordance and introduce
the topological objects that we study in this paper. We then establish the algebraic formalism of
local equivalence and define the local equivalence group £;,. In Section 3, we construct the Floer-
theoretic action associated to a strong inversion and prove Theorem 1.7. We then define 178 and
Vi and prove Theorem 1.1. In Section 4, we establish several computational tools involving the
action of 7, including a connected sum formula. This leads to the proof of Theorem 1.8. We
establish the equivariant slice genus bound of Theorem 1.2 in Section 5. Then, in Section 6, we
carry out the calculation of Theorem 1.3 regarding the examples (K, 7,). Finally, in Section 7, we
explicitly discuss the relation between our invariants and the work of Dai-Hedden-Mallick [DHM20]
and Juhdsz-Zemke [JZ18]; we prove Theorems 1.5, 1.6, 1.9, and 1.10. Section 8 gives an overview
of several analogous results for 2-periodic knots.

2. BACKGROUND AND ALGEBRAIC FORMALISM

In this section, we give a brief review of equivariant knots. We then establish the algebraic
formalism of local equivalence and define and discuss the group £;,. Throughout, we assume a
general familiarity with the knot Floer and involutive knot Floer packages; see [HM17] and [Zem19].

2.1. Equivariant knots. Let K be a knot in S? and let 7 be an orientation-preserving involution
on S2 that sends K to itself and has nonempty fixed-point set. By the resolution of the Smith
Conjecture, we may assume that the fixed-point set of 7 is an unknot and that 7 is rotation about
this axis [Wal69], [MB84]. If 7 preserves orientation on K, then we say that (K, 7) is 2-periodic
(or often just periodic) and refer to 7 as a periodic involution. If T reverses orientation on K, then
we say that (K, 1) is strongly invertible and refer to 7 as a strong inversion. These correspond to
the situations where 7 has zero or two fixed points on K, respectively. In this paper we focus on
strongly invertible knots; the periodic case is discussed in Section 8. Although an equivariant knot
may refer to either a strongly invertible or a periodic knot (K, 7), we will often use this terminology
with the strongly invertible case in mind.

We say that (Ki,71) and (K3, 72) are equivariantly diffeomorphic if there is an orientation-
preserving diffeomorphism f: $? — S% which sends K; to Ko and has o f = f o 1y.

Definition 2.1. Let (K,7) be an equivariant knot. A slice surface ¥ € B* for K is equivariant
if there exists an involution 754: B* — B* which extends 7 and has 754(3) = . The equivariant
slice genus of (K, 1) is defined to be the minimum genus over all equivariant slice surfaces for (K, 7)
in B* We denote this quantity by §4(K), suppressing the involution 7.

Equivariant sliceness has been studied by several authors; see for example [Sak86], [CK99], and
[DNO6]. Recently, Boyle-Issa [BI21] studied the equivariant slice genus and were able to present
several methods for bounding the equivariant slice genus from below. They moreover construct a
family of periodic knots for which g4(K) — g4(K) becomes arbitrarily large. Prior to the current



EQUIVARIANT KNOTS AND KNOT FLOER HOMOLOGY 11

article, there were no known examples of strongly invertible knots with g4(K) — g4(K) provably
greater than one.
There is also an obvious notion of equivariant concordance, given by:

Definition 2.2. Let (Kj,7) and (K2,72) be two equivariant knots. We say that a concordance
¥ C S% x I from K; to K is equivariant if there exists an involution 7gs, ;: S% x I — S x I which
extends 71 and 7o and has 7¢3,;(2) = X.

In the strongly invertible setting, it turns out that it is useful to have a refinement of Defini-
tion 2.1, which we now explain. If (K, 7) is a strongly invertible knot, note that K separates the
fixed-point axis of 7 into two halves.

Definition 2.3. A direction on (K, ) is a choice of half-axis, together with an orientation on this
half-axis.

Definition 2.4. Given two directed strongly invertible knots (K7, 71) and (K2, 72), we may form
their equivariant connected sum, as defined in [Sak86]. This is another directed strongly invertible
knot, constructed as follows. Place K7 and K5 along the same oriented axis, such that the oriented
half-axis for Ky occurs before the oriented half-axis for Ky. Attach an equivariant band with one
foot at the head of the half-axis for K7 and the other foot at the tail of the half-axis for K5, as in
Figure 3. Define the oriented half-axis for K1# K5 to run from the tail of the half-axis for K to
the head of the half-axis for Ks.

Ky K> K1#K>

Ficure 3. Forming the equivariant connected sum. The connected sum band
should be thought of as running along the axis of symmetry, and may have other
strands of K7 or K9 running over/under it in the knot projection. Alternatively, the
ends of the half-axes can be isotoped so that they are the leftmost and rightmost
points of each knot.

We stress that a choice of direction is necessary to define the equivariant connected sum. More-
over, the equivariant connected sum is not a commutative operation: the strongly invertible knots
(K 1# Ko, T1#712) and (Ko# K1, To#71) are not usually equivariantly diffeomorphic (even forgetting
about the data of the direction). For further discussion, see [Sak86] or [BI21, Section 2].

In order to construct an equivariant concordance group, we consider the set of directed strongly
invertible knots. This necessitates a refinement of Definition 2.2 which takes into account the extra
data of the direction.
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Definition 2.5. [BI21, Definiton 2.4] Let (K7, 71) and (K2, 72) be two directed strongly invertible
knots. We say that an equivariant concordance (3, 7qs, ) between (Ki,7) and (Ks,72) is equi-
variant in a directed sense if the orientations of the half-axes induce the same orientation on the
fixed-point annulus F' of 743, ; and the half-axes are contained in the same component of F' — 3.

Definition 2.6. [Sak86] The equivariant concordance group is formed by quotienting out the set
of directed strongly invertible knots by (directed) equivariant concordance. The group operation
is given by equivariant connected sum. The inverse of (K,7) is constructed by mirroring K and
reversing orientation on the (mirrored) half-axis. We denote this group by C.

It is currently an open question whether C is abelian. The equivariant concordance group was
studied at length by Sakuma [Sak86], who constructed a homomorphism from C to the additive
group Z([t] in the form of the n-polynomial.

Remark 2.7. As discussed in [Sak86] and [BI21], when studying C, it is often the convention not
to fix an orientation on K, due to the fact that the action of 7 reverses orientation on K. In order
to follow this convention, we will similarly not require a fixed orientation. However, since most
invariants derived from knot Floer homology implicitly do require K to be oriented, in each case
we will be careful to check whether the choice of orientation is important.

Finally, we note (as discussed in the introduction) that we bound a rather more general notion
than the equivariant slice genus. For completeness, we formally record:

Definition 2.8. Let (K,7) be an equivariant knot. Let W be a (smooth) homology ball with
boundary S3, and consider any (smooth) self-diffeomorphism 7y, on W which extends 7. Note that
we do not require 7y itself to be an involution. We say that a slice surface ¥ in W with 0¥ = K
is an isotopy-equivariant slice surface (for the given data) if 7y (X) is isotopic to X rel K. Define
the isotopy-equivariant slice genus of (K, 1) by:

igy(K) = min {g(2)}.

all possible choices of W and Ty
all isotopy-equivariant slice surfaces X

Here i~g4(K ) depends on 7, but we suppress this from the notation.
There is also an accompanying notion in the setting of concordance:

Definition 2.9. Let (K1,7) and (K3, 72) be two equivariant knots. An isotopy-equivariant ho-
mology concordance between (Ki,7) and (Ka,72) consists of a homology cobordism W from S3
to itself, a (smooth) self-diffemorphism 7y : W — W which extends 71 and 75, and a concordance
Y € W between K; and K such that 7y (X) is isotopic to ¥ rel boundary.

2.2. Local equivalence and £;,. We now give an overview of the framework of local equivalence
and define 8&;,. We assume the reader has a general familiarity with the ideas of [HM17] and
[Zem19]. Let C be a bigraded, free, finitely-generated chain complex over R = F[%, ¥'] such that
(1) gr(d) = (=1, 1), gr(#) = (=2,0), and gr(¥) = (0, =2)
(2) CQF[%,V,% ', ¥~1] is homotopy equivalent to F[%, ¥, % 1, 7]
We refer to C' as an abstract knot complez, occasionally denoting the two components of the grading
by gri; and gry. As explained in [Zeml16b, Section 3|, given an abstract knot complex, we can
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formally differentiate the matrix of ¢ with respect to % and ¥ to obtain R-equivariant maps ®
and ¥.2 We define the Sarkar map in this context to be g = id + P o VU ~id+ T o d. It is a
standard fact that g%( ~ id.

Definition 2.10. A abstract (7, tx)-complez is a triple (C, Tx, L) such that:

(1) C is an abstract knot complex
(2) tg: C — C is a skew-graded, R-skew-equivariant chain map such that

L%{ = CK
(3) 7k is a skew-graded, R-skew-equivariant chain map such that
7% ~id and Ty oLk ~ G O LK O TK.
Recall that a map f: ¢ — C is skew-graded if gr(f(z)) = (gry(z),gry(z)) and is R-skew-
equivariant if f(UV/z) = VU x.
Definition 2.10 simply says that the pair (C, tx) is an abstract ¢ x-complex in the sense of Zemke

[Zem19, Definition 2.2]. The conditions on 7 are from Theorem 1.7. We also note the following
extremely important consequence of the commutation condition:

Lemma 2.11. Let (C,7x,tx) be an abstract (T, i )-complex. Then i commutes with both Tk
and tg up to homotopy.

Proof. The proof is immediate from the commutation relation between 7x and (g, the fact that
L%{ ~ ¢, and the fact that q%( ~ id. (In fact, it is possible to show that ¢x commutes with any

chain map from C to itself, using the equality ¢x = id + ® o U.) O
There is a natural notion of homotopy equivalence:

Definition 2.12. Two (7x, tx)-complexes (C1, Tk, , Lk, ) and (Ca, Tk,, LK, ) are homotopy equivalent
if there exist graded, R-equivariant homotopy inverses f and g between C and Cs such that

foTk, =Tk, 0 fand goTk, ~ Tk, 09
and
fouig, ~itg,ofand goig, ~ 1k, 0g.

In this case we write (C1, Ty, ti;) =~ (Co, Tiey s Ui ).

We also have the analogue of local equivalence from [Zem19, Definition 2.4]:

2Technically, ® and V¥ are only defined after fixing a basis for C. However, the homotopy equivalence classes of ®
and ¥ are well-defined without a choice of basis; see [Zem19, Corollary 2.9].

31f f and g are graded, R-equivariant chain maps, we write f ~ g to mean that f and g are homotopic via an
R-equivariant homotopy. This means that f + g = 0H + H0 for some R-equivariant H. If f and g are skew-graded,
skew-R-equivariant chain maps, we again write f ~ g to mean that f and g are homotopic via a skew-R-equivariant
homotopy. This means that f + g = 0H + H0 for some R-skew-equivariant H. Our notation differs slightly from
[Zem19], where the convention is to write =~ in the latter case.
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Definition 2.13. Two (7x, tx)-complexes (C1, Tk, , Lk, ) and (Co, Tk, , LK,) are locally equivalent if
there exist graded, R-equivariant chain maps f: C; — C5 and g: Cy — (4 such that

foTk, =T, 0 fand goTg, ~7K, 09
and
fouk, ~ig,0fand goig, ~ Lk, ©g.

and f and g induce homotopy equivalences C1 Q F[%, ¥V, % 1,V 1 ~ Co@F|%, vV, %, V1]
In this case we write (C1, Tk, tk,) ~ (Ca, Tk, LK,). We refer to the maps f and g as local maps.

Using the notion of local equivalence, we now define:
Definition 2.14. We define the (7, tx)-local equivalence group to be
R, = {abstract (7x, ti)-complexes} / local equivalence.

The group operation is defined as follows. Given (C1, Tk, txk,) and (Ca, Tk, , LKk, ), define automor-
phisms 7g and (g on C; ® C2 as follows. Let

T® = TK; @ TK,

and
g = (1d®id+ @ V) o (tk, @ tK,)-

We define the product of two abstract (7x,tx)-complexes (Ch, Tk, ,tk,) and (C2, Tk, tk,) to be
(C1 ® Ca, 7w, Lg). This operation gives another abstract (7x, tx)-complex and is well-defined with
respect to local equivalence. The identity is given by the trivial complex (R, 7, te), where T, = t¢
is the map on R which interchanges % and ¥#. Inverses are given by dualizing with respect to R;
that is, (C, 7k, k)" = (CV, 7%, t),). See Lemmas 2.15 and 2.16.

It will also be convenient for us to consider the Sarkar map ¢g on the product of two complexes.
Note that

G ~idg + Pe¥g
~id®id+ (dRP+ P®id)(IdR® V¥ + ¥ ®id)
~idRIAd+idROV+ PV RXKid+PRV + ¥R .

Lemma 2.15. The tensor product induces an associative binary operation on K, ,.

Proof. We will be brief, since the majority of the claim is immediate from [Zem19, Section 2.3]. We
first verify that the product complex is an abstract (7x, tx)-complex. The only condition which is
not either obvious or contained in [Zem19] is the commutation relation

TR Ol = ® O Ly ° TR-
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To see this, let us expand the left-hand side. Supressing the subscripts on 7 and ¢, we obtain
(TR®7T)(Id®iId+ PR V)t ®¢)

~([dRd+ TV ®P) (TR T)(t®¢)

~ ([d®id+ ¥ ® ) (st ® i)

~([dRId+ VPR P)(IdRid+id® PV + PV ®id + PY R PV) (1 ® ) (T ® T)

~ ([dRId+1dR PV + PV RiId+ PV RXPIV+ VR P)(t®t)(T®T).
Here, in the second line we have used [Zem19, Lemma 2.8], which states that a skew-equivariant
map intertwines ® and ¥ up to homotopy. In the third line, we have used the commutation property
of 7 and ¢ in each factor. In the fourth line, we have used the fact that ¢ = id + ®W¥. Finally, in
the last line we have used the fact that ® and ¥ homotopy commute and that ®2 ~ W2 ~ 0; see
[Zem19, Lemma 2.10] and [Zem19, Lemma 2.11].

On the other hand, the right-hand side is given by
(dg + PeVe)(d®id+ PR V) (t®¢)(T®T)
>~ ([dRId+1dRIV+ PV RId+PRV+ TV R®P)(ARIAd+ PR V) (t® ) (T®T)
~ ([dRId+1dRIV + PV RId+ VPRIV +VRP)(t®L)(T®T).
Here, in the second line we have used the fact that Pg = id ® ¢ + ¢ ® id (and similarly for Ug).
In the fourth line, we again use the fact that ® and ¥ homotopy commute and that ®? ~ ¥? ~ (.
The resulting expression is homotopic to the previous.
Checking associativity is straightforward. Indeed, in [Zem19, Section 2.3] it is shown that the

obvious identity map from (C7 ® C2) ® C3 to C1 ® (Cy ® C3) intertwines the tx-actions up to

homotopy; this clearly intertwines the 7x-actions. Checking that the tensor product respects local
equivalence is likewise immediate. ]

Lemma 2.16. The tensor product operation above gives R;, the structure of a group.

Proof. Again, the majority of the claim is immediate from [Zem19, Section 2.3]. The only nontrivial
claim is to establish that inverses are given by dualizing, which follows the proof of [Zem19, Lemma
2.18]. Zemke shows that the cotrace and trace maps

F:R-C®CY and G:CRCY >R

have the requisite behavior with respect to localizing and intertwine the ¢x-actions. We check that
F intertwines the actions of 7, and 7x ® 7. Since 7. squares to the identity, it suffices to show

(Tk ®TR) o Fore~F.
But [Zem19, Equation (14)] implies
(Tk @T)oFore~ (1A ®id) o F ~ (id®id) o F = F,

establishing the claim. The proof for G is similar. Hence (C,7x,tx) ® (C, 7k, tx)" is locally
equivalent to the trivial (7x, ¢k )-complex. Checking triviality of the product in the opposite order
is similar; use the obvious maps

FlriR-CV®C and G":CV®C — R.
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This completes the proof. ]

Note that instead of considering triples (C, 7, tx ), we may forget ¢ or Tk and consider pairs
(C, 1K) or (C, k), respectively. The reader will have no trouble in defining appropriate notions of
local equivalence for these and forming the analogous local equivalence groups.

Definition 2.17. We denote the local equivalence group of 7x-complexes by K;; this consists of
pairs (C,7x) such that 7x is a skew-graded, R-equivariant chain map with 7[2( ~ id. We denote
the local equivalence group of tx-complexes by 8,; this consists of pairs (C,tx) such that tx is a
skew-graded, R-equivariant chain map with L%( ~ ¢. The latter is just the usual local equivalence
group of [Zem19, Proposition 2.6]. We obtain forgetful maps from K;, to & and K, by discarding
tx and Tg, respectively.

Remark 2.18. It is possible to have triples (C1, 7k, tk,) and (C2, Tk,, tk,) such that (C1, Tk, ) ~
(Ca,Tr,) and (Ch,tk,) ~ (Ca,tk,), but still (C1,7k,,tk,) #* (Ca,Tk,,tK,). This is because in
Definition 2.13, we require 7, and g, to be simultaneously intertwined by f and g. This will be
an important distinction which leads to a great deal of (possible) subtlety in the structure of &;,.
For an explicit example of the above phenomenon, see Example 2.27. Compare [DHM20, Example
4.7], which establishes a similar phenomenon in the 3-manifold setting.

2.3. (Possible) non-commutativity of &;,. We now discuss some subtleties of &;,. The first of
these involves a seeming asymmetry in the product operation. Recall that we defined the product
ti-action on €1 ® Ca to be g = g, 4, Where

l®,A = (ld®ld +dR® \I/) o (LKl X I,K2>.
There is of course a slightly different ¢x-action on Cy ® Cs, given by
l®,B = (ld@ld + U ® <I>) o (LKl ) LK2>.

It is straightforward to check that using vg g in Definition 2.14 also gives a well-defined operation
on &;,. Rather surprisingly, it turns out that these operations are not a prior: the same.

Remark 2.19. In [Zem19, Lemma 2.14|, Zemke considers the map
F=id®id+¥®%.

This is a homotopy equivalence from C7 ® Cs to itself such that F'otg 4 ~ 19 p o F. Hence I
mediates a homotopy equivalence of pairs (C1 ® Ca,tg,4) ~ (C1 ® Co, tg,B). For this reason, g 4
and (g p both give the same product structure on f,. However, the map F' above does not provide
a homotopy equivalence between the triples (C1 ®Ca, T, @7k, , tg,4) and (C1®Co, Tk, @Tk,, L@,B)-
Indeed, F' is not 7x, @ Tk,-equivariant. We have

Fo(rg, ®Tr,) = (1d®id+ ¥ ® ) (7, ® Tk,)
while
(TK1 ®TK2) oF = (TK1 ®TK2)(id®id+ \I’®(IJ) ~ (id@id-ﬁ-@@@)(TKl ®TK2).

In general, it is not true that these are chain homotopic maps.



EQUIVARIANT KNOTS AND KNOT FLOER HOMOLOGY 17

This discrepancy is closely related to the possible non-commutativity of K. ,. Indeed, consider
the two products C; ® Co and Cy ® C7. There is an obvious isomorphism from C7 ® Cy to Co ® Cy
given by transposition of factors; this clearly intertwines the two 7x-actions 7x, ®7x, and 7x, Tk, .
However, it does not intertwine the ¢x-actions: instead, it sends tg 4 on C1®C3 to 1g g on Co@C1.
Hence R, , is not necessarily abelian, and in fact this question is equivalent to whether the operations
on &;, induced by vg 4 and (g g are the same (up to local equivalence). In Theorem 4.1, we establish
a connected sum formula showing that using tg 4 corresponds to taking the equivariant connected
sum as in Definition 2.4. Using tg g thus corresponds to modifying Definition 2.4 by placing the
half-axis of the first knot above the half-axis of the second.

Unfortunately, the authors do not have an explicit example demonstrating that £;, is not
abelian. Indeed, in all of the examples that the authors have tried, it is possible to find an ad hoc
construction of a local equivalence (in fact, even a homotopy equivalence) between (C1 ® Ca, Ti, ®
Ty, L@,A) and (C1 ® Co, i, ® Tk, Lg,B). Note that £;, admits forgetful maps to both &, and &,,
which are both abelian.

2.4. Twisting by <x. As discussed in the introduction, our goal will be to associate to a strongly
invertible knot a (7x, tx)-complex which is well-defined up to homotopy equivalence. Moreover,
we wish to show that this local equivalence class is invariant under isotopy-equivariant homology
concordance. Unfortunately, it turns out that both of these statements are technically only true if
we pass to the decorated category (see Sections 3.3 and 3.4). In order to capture this subtlety, we
introduce the following notion:

Definition 2.20. Let (C, 7k, tx) be an abstract (7x, tx)-complex. Compose Tx, tx, or both with
any number of copies of ¢x. By Lemma 2.11, this produces another (7x, t)-complex. We refer to
this new complex as being obtained from (C, 7k, tx) via a twist by k.

Lemma 2.21. Let (C, 7k, 1K) be an abstract (Tx, ti)-complex. Then

(CiskoTr, L) ~ (C, Tk, SK © LK)
and
(C,Tr, i) ~ (Cy Sk © TK,SK O LK ).

Proof. To prove the second claim, we use the graded, R-equivariant automorphism 7x o 1. A
quick computation using the relation 7x ot ~ ¢x 0t 0 Tk shows that this constitutes a homotopy
equivalence between (C, 7k, tx) and (C, sk o Tk, Sk ot ). The first claim follows immediately from
the second, noting that g%( ~ id. O

Up to homotopy equivalence, a (7x, t i )-complex thus has only one twist, which is represented by
(C,sxoTi, i) ~ (C, Tk, Sk oLk ). In general, the authors know of no reason this should be homotopy
(or even locally) equivalent to its original, and it is possible that the requisite computation of ¢k
does not currently exist in the literature. Note that Lemma 2.21 also implies (C, 7x) >~ (C, sk 0Tk )
and (C,tx) ~ (C,sk o tk) as pairs. Hence the distinction between a complex and its twist is a
phenomenon that is only present when considering 75 and tx simultaneously.

As we will see in Section 3.3 and Section 3.4, twisted complexes will play an important role
when we move from the decorated to the undecorated setting. Roughly speaking, if (K, 7) is an
strongly invertible knot without a choice of decoration, then we can only define the homotopy
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equivalence class of (C,7x,tx) up to a twist by ¢x. Nevertheless, we show presently that the
numerical invariants V3§ and V§ are unchanged by twisting.

The distinction between a complex and its twist also has an interpretation in terms of the
direction on a strongly invertible knot (see Definition 2.3). In Section 3.5, we show that a choice
of direction on (K, 7) can be used to determine a homotopy equivalence class of (7, ¢ )-complex.
Reversing the direction on (K, 7) corresponds to applying a twist by ¢x. In general, reversing the
direction on (K, 7) alters its class in C. Boyle-Issa [BI21] and Alfieri-Boyle [AB21] show that several
invariants are sensitive to this operation; &, is thus (in principle) similar, although this fails for

the simple examples at our disposal.

2.5. Extracting numerical invariants. We now give a brief review of extracting numerical in-
variants from the local equivalence class of (C, 7, tx). Recall that given an abstract knot complex
C, we may form the large surgery subcomplex, which we denote by Cj.

Definition 2.22. Let (C,7x,tx) be a (7x, tx )-complex. The large surgery subcomplex of C' is the
subset Cj of C' lying in Alexander grading zero; that is, the set of elements = with gry (x) = gry ().
(This is often denoted by by Ag elsewhere in the literature.) Strictly speaking, this is not a
subcomplex of C; although Cy is preserved by ¢, it is not a submodule over R. Instead, we view
Cy as a singly-graded complex over the ring F[U], where

U=u%7V.

The Maslov grading of an element is given by gr; = gry,. When we write Cp, we will mean this
singly-graded complex over F[U].

Note that although 7x and ¢y are skew-graded, the condition gr;; = gry- means that 75 and ¢
induce grading-preserving automorphisms on Cp, which we also denote by 7k and tx. Moreover,
although 7 and (i are R-skew-equivariant, their actions on Cy are equivariant with respect to
U=%V. It follows from [HHSZ20, Lemma 3.16] that as an automorphism of Cy, the Sarkar map
Sk 1s homotopic to the identity. It is then easily checked that

(Co,7x) and  (Co, Lk © TK)
are (-complexes in the sense of [HMZ18, Definition 8.1].

We now follow the construction of the involutive numerical invariants d and d from [HM17],
except that we replace the Heegaard Floer t-action with the action of 7 on Cy, where Cj is viewed
as a singly-graded complex over F[U]. Explicitly, let

Q(1+TK

CFIT(Cy) = Cone <co L Q. co>

where @ is a formal variable of grading —1. Define

d-(Cy) = max{r | 3z € CFI;(Cy) such that
Uz # 0 and Uz ¢ im(Q) for all n}
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and
d,(Co) = max{r | 3z € CFI’(Cy) such that
Uz # 0 for all n and U™z € im(Q) for some m} + 1.

We define the mapping cone CFI'"(Cy) by replacing 7x with tx o 7xc, and define the numerical
invariants d,(Cp) and d,;(Cp) similarly. Our conventions here are such that if C' is the trivial
complex R, then d, = d, = 0. We now have:

Definition 2.23. Let (C, 7k, tx) be an abstract (7x, tx)-complex. Define
— 1- 1
V3(C) =~ 3-(Ch) and V(C) = —d-(Co)

and 1 1
V6T(C> _ _§JLT(CO) and Vi (C) = _§dm—(00)'

Lemma 2.24. The invariants V3(C) and V(C) are local equivalence invariants; that is, they
factor through K., .

Proof. Let (Ch,Tr,,tk,) and (Ca2,Tk,,tKk,) be two (Tk,tx)-complexes and let f and g be local
equivalences between them. Since f and g are graded and R-equivariant, they induce graded,
F[U]-equivariant chain maps between (Cf)o and (C3)g, which are easily checked to be local in the
sense of [HMZ18, Definition 8.5]. The claim follows. O

Lemma 2.25. The invariants V(C) and V§(C) are insensitive to twisting by k.

Proof. This follows immediately from the fact that ¢x is homotopic to the identity as a map on
Co; see the proof of [HHSZ20, Lemma 3.16]. O

Note that the same argument indicates that no additional numerical invariants can be defined by
considering (for example) 7x ot in place of 1x o 7.

2.6. Examples. We now list the (7, 1 )-complexes corresponding to different strong inversions on
the figure-eight and the stevedore. These may be derived from the results of [DHM20, Section 4.2] in
the following manner. Fix a basis in which the action of ¢k is standard, as in [HM17, Section 8]. For
the pairs (K,7) at hand, the 3-manifold action of 7 on HF (53, (K)) was calculated in [DHM?20,
Section 4.2]. By the discussion of Section 7.1, this determines the action of 75 on the homology of
CFK(K)p. We then list all automorphisms 7x of CFIC(K) which induce this action and satisfy the
axioms of Definition 2.10. (In particular, note that 7 is required to satisfy 7 ot ~ g ot 0 Tk.)
It turns out that in each example, the resulting automorphism is unique up to tx-equivariant basis
change. The proof of this is left to the reader and is an exercise in tedium. Compare [DHM20,
Section 4.2].

Example 2.26. There are two strong inversions 7 and o on the figure-eight, which are displayed
in Figure 4. In Figure 5, we display their corresponding actions 7x and o on C' = CFK(4;)
(calculated in the basis with the indicated action of tx). See [DHM20, Example 4.6].
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FIGURE 4. The figure-eight 4; with two strong inversions 7 and o.

C = (xg,a,b,c,e) LTy = Tg+ € TKTo = Tg+ € OKTo = To
da =Ub+ Ve Lgka = a—+ xq TKA =@ OKa = a+ xg
0b = Ve Zo . tgkb=rc TRb="¢ oxb=c
Q-0
Oc=Ue a tgc=10b TRC=D> ogc=1=
Lge=¢e TKe =¢ oKe=¢e
QO+——0
° \
Q-0

e

@0
FIGURE 5. The (7x, ti)-complexes associated to 7 and o on 4;.

Example 2.27. There are two strong inversions 7 and o on the stevedore, which are displayed
in Figure 6. In Figure 7, we display their corresponding actions 7x and ox on C = CFK(61)
(calculated in the basis with the indicated action of tx). See [DHM20, Example 4.7]. Note that the
pairs (C, i) and (C, o) are individually trivial. In both cases, the local map to the trivial complex
is given by sending all generators except for xg to zero. The local map in the other direction has
image xg in the former case but image xy + e; in the latter. However, there is no local map from
the trivial complex that simultaneously commutes with both ox and tx (up to homotopy), so the
triple (C, o0k, tx) is nontrivial. This can be checked via exhaustive casework, or by computing

Vi (K) = 1.

Remark 2.28. The reader may verify that in each of the above examples, performing a twist by
sx does not change the homotopy equivalence class of the relevant triple. We thus suppress writing
a choice of decoration or direction in both Example 2.26 and Example 2.27.

3. CONSTRUCTION OF Txg AND EQUIVARIANT CONCORDANCE

In this section, we construct the action 7x: CFK(K) — CFK(K) of 7 on the knot Floer
complex of K. In order to do this, we first equip K with an orientation and a symmetric pair
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L_K_/Zz/_\x_g

FiGurE 6. The stevedore 6; with two strong inversions 7 and o.

C = (xg,a1,b1,c1,e1,az,ba,ca,€2) LKZo = T TKZo = %o + €1 + €2 OKTo = To+ €1+ €2
Gai = Z/{bz + VCi lLgal = ag TKQ1 = a1 OKa] = a2
6()2 = V@i LKbl = C2 TKb1 =C1 UKbl = C2
047.
aCi = Z/Iei a LgCl = b2 TKC1 = b1 OKgCl = bQ
\ LK€L = €2 TKE1 = €1 OK€1 = €2
\ ..\<. LKG2 = a1 + €1 TKa2 = a2 + €2 OKa2 = a1
[ ] [ ]
N trkby = c1 Trby = c2 orby =1
1
LigCy = by TiC2 = by oKy = by
Q-0 p— — J—
. LK€z = €1 TKE2 = €2 OK€2 = €1

FIGURE 7. The (7x, ti)-complexes associated to 7 and o on 6.

of basepoints, which we collectively refer to as a decoration on K. We then explain in what
sense T is independent of the choice of decoration. This turns out to be rather subtle, and will
require an extended discussion about identifying different knot Floer complexes for the same knot
in the case that the orientation or basepoints are changed. In particular, we show that if (K, 7) is a
decorated strongly invertible knot, then the triple (CFK(K), 7k, tx) is well-defined up to homotopy
equivalence of (g, tx)-complexes. If (K, 7) does not come with a decoration, then the homotopy
equivalence class of (CFI(K), Tk, tx) is only defined up to a twist by ¢x, although the homotopy
equivalence class of the pair (CFI(K), k) is still well-defined. See Theorems 3.11 and 3.12.

We then turn to the behavior of 7 under equivariant concordance. Here, we similarly modify
the notion of an isotopy-equivariant homology concordance to hold in the decorated setting. We
show that a decorated equivariant concordance induces a local equivalence of (7x, ¢ )-complexes.
In the undecorated setting, this only holds up to a twist applied to one end of the concordance,
although we still obtain a local equivalence of 7x-complexes. See Theorems 3.14 and 3.15.

Finally, we discuss the connection between the decorated and directed categories. We show
that a choice of direction similarly determines a homotopy equivalence class of (7x, tx)-complex,
and that a concordance in the directed category again induces a local equivalence. We then put
everything together and establish Theorem 1.1.
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3.1. Preliminaries. Defining the action of 7 will rely on a large number of auxiliary maps. In
order to establish notation, we collect these below. We assume that the reader has some familiarity
with the ideas of [Zem16a] and [Zem19].

Definition 3.1. Let (K, w, z) be an oriented, doubly-based knot.

(1)

Let f be a diffeomorphism moving (K, w, z) into (f(K), f(w), f(z)). If H is any choice of
Heegaard data for (K, w, z), then we obtain a pushforward set of Heegaard data fH for
(f(K), f(w), f(2)). Moreover, f induces a tautological chain isomorphism

f1 CFK(H) — CFK(fH).

which by abuse of notation we also denote by f. We call this the tautological pushforward.
If Hy and Hs are two choices of Heegaard data for (K, w,z), then there is a preferred
homotopy equivalence

B(Hy, Ha): CFI(H1) — CFK(Ha).

This is unique (up to homotopy). We refer to ®(H1,Hz) as the naturality map. The set of
® form a transitive system.
Let H = ((3, o, B,w, z),J) be a choice of Heegaard data for (K, w, z). Then

H = ((27 a, B3, Z,’U}), J)

is a choice of Heegaard data for (K", z,w). Note that we interchange the roles of the
basepoints w and z, but we do not reverse orientation on ¥ or interchange the roles of «
and B. The resulting diagram describes the knot K with reversed orientation. There is a
tautological skew-graded isomorphism

sw:CFK(H) - CFK(H")

with %V 7Ix — %7 ¥x, given by mapping each intersection tuple to itself and interchang-
ing the roles of % and 7. We call sw the switch map.
Let H = ((¥, 0, B, w, z), J) a choice of Heegaard data for (K, w,z). Then

H=(-%8azw),lJ)

is a choice of Heegaard data for (K, z,w). There is a tautological skew-graded isomorphism

n: CFK(H) — CFK(H)

with %"VJix — %7 x, given by mapping each intersection tuple to itself and inter-
changing the roles of 7 and ¥. We call 5 the involutive conjugation map. We stress that
although sw and 7 might appear to be the same map, their codomains are different: the
former represents (K", z, w), while the latter represents (K, z, w).

With the exception of the naturality map, we will usually suppress the data of H and thus the
domain of the map in question.

Lemma 3.2. The maps f, ®, sw, and n all commute up to homotopy. Moreover, if f and g are
two diffeomorphisms which commute, then their pushforwards commute up to homotopy.
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Proof. Follows from naturality results established by Juhdsz-Thurston-Zemke [JTZ21] and Zemke
[Zem16a). O

The maps in Lemma 3.2 should be interpreted as having the proper domain(s). For example,
when we say that f and ® commute, we mean that we have a (homotopy) commutative square

CFK(H) —2TM) | oxpe(3,)
f f
CFR(fH) 2YHTM2 0 131,)

and similarly for the other maps. We thus write (for instance) f o ®(H1,Ho) ~ ®(fH1, fH2) o f
with the understanding that the two instances of f have different domains. Note that implicitly,
we are also claiming these operations commute when applied to Heegaard diagrams. For example,
when we write fosw ~ swo f, we are necessarily claiming that fH" = (fH)", so that the codomains
of both sides may be identified.

There are two other important maps that are derived from those in Definition 3.1:

Definition 3.3. Let (K, w, z) be an oriented, doubly-based knot.
(1) Let H be any choice of Heegaard data for (K, w, z). Then
nosw = swon: CFK(H) — CFK(H")
provides a filtered isomorphism between CFK(H) and CFK(H"). Note that CFI(H") is a
choice of Heegaard data for (K", w, z); this has the reversed orientation but the same pair
of basepoints. We call 1 o sw the orientation-reversal map.

(2) Let H be any choice of Heegaard data for (K,w,z). Let p be the half Dehn twist along
the orientation of K which moves w into z and z into w. This induces a tautological
pushforward

p: CFK(H) — CFK(pH).
Note that pH represents the doubly-based knot (K, z,w). We denote the half Dehn twist
against the orientation of K by p, and denote the induced pushforward similarly.

Since the definition of p depends on the choice of orientation on K, the commutation relations
for p are slightly more subtle than those in Lemma 3.2. In particular, since sw reverses orientation
on K, we have the following:

Lemma 3.4. The map p commutes with ® and n up to homotopy. However, the maps p and sw
do not (in general) commute. Instead, we have

(PH)" = pH" and (pH)" = pH”
and

swop=>~posw and SwWop>posw.

Proof. Follows from naturality results established by Juhé&sz-Thurston-Zemke [JTZ21] and Zemke
[Zem16al. O
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Finally, we will often employ the following:

Lemma 3.5. Let (K,w,z) be a doubly-based knot. Let f and g be two diffeomorphisms of S* such
that f(w) = g(w) and f(z) = g(z), and suppose that f and g are isotopic rel {w,z}.* Let H be
any Heegaard data for (K, w,z) and let H' be any choice of Heegaard data for (f(K), f(w), f(z)) ~

(9(K),g(w),g(2)). Then
D(fH,H)o f~d(gH,H)og.

Proof. Follows from naturality results established by Juhdsz-Thurston-Zemke [JTZ21] and Zemke
[Zem16a). O

3.2. Construction of 7. We now construct 7x. As usual, we begin by defining 75 with respect
to a fixed choice of Heegaard data for K.

Definition 3.6. Let (K,7) be a strongly invertible knot. A decoration on (K, 7) is a choice of
orientation for K, together with an ordered pair of distinct basepoints (w,z) on K which are
interchanged by 7. Following the usual notation for a doubly-based knot, we denote this data by
(K,w,z). Here we introduce a slight abuse of notation, in that K is not considered to have a
fixed orientation as part of (K, 7), but is considered to have a fixed orientation as part of the data
(K, w, z).

A decorated knot is just an oriented, doubly-based knot in the usual sense, with the caveat that
w and z are symmetric under the action of 7. However, because the choice of extra data will be
important, we formally emphasize this in Definition 3.6.

Once a decoration for (K, 7) is chosen, we may select any set of Heegaard data H for (K, w, 2).
Define an automorphism

Ty CFK(H) - CFK(H)
as follows. We first apply the tautological pushforward
t: CFK(H) —» CFK(TH).

Here, we denote the pushforward by ¢ so as to not create confusion with the overall action 75 . Note
that 7H represents (K", z,w), since 7 is an orientation-reversing involution on K and interchanges
w and z. Since H" also represents (K", z,w), we have a naturality map

O(tH,H"): CFK(TH) - CFK(H").
Finally, we apply the switch map
sw:CFK(H") —» CFK(H).
Definition 3.7. The action 75 : CFI(H) — CFK(H) is given by the composition
7t CFK(H) 5 CFK(rH) 2 CFR(H™) 2% CFK(H).

Technically, the middle map ® is only defined up to homotopy, but this clearly does not affect the
homotopy class of 7.

Theorem 1.7 summarizes the salient features of 75:

4That is, there is an isotopy H; which sends w to f(w) = g(w) and z to f(z) = g(z) for all ¢.
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Proof of Theorem 1.7. For (1), applying Lemma 3.2 and keeping track of the appropriate domains
gives the following chain of homotopies:
7%, = (swo ®(TH,H") ot) o (swo ®(TH,H") ot)
=O(TH",H) o ®(H,7H" ) oswotoswot
=O(TH",H) o P(H,7H" ) oswoswotot
~ id.

Here, in the last line we have used the fact that t?> = sw? = id, together with the fact that the set
of ® form a transitive system. Claim (2) follows from observing that the pushforward map ¢ and
the naturality map ®(7H,H") are graded and R-equivariant, whereas the map sw is skew-graded
and R-skew-equivariant. For (3), we apply Lemmas 3.2 and 3.4 to 7 o t3. We move all of the
naturality maps to the left, simplify, and then collect the pushforward maps together:

oty = (swod(TH,H )ot)o (®(pH,H)opon)
~ O(TH",H) o ®((TpH)",TH ) oswotopon
~ O(TH",H) o ®(rpH ", 7H ) otoposwon
~ ®(rpH",H)otoposwon.

See [HM17, Section 6.1] for the definition of t3. It will be convenient for us to replace ¢ with g;[l;
this is allowed since c% ~ id. Note that g;l is represented by the basepoint-moving map against
the orientation of K. Doing this, we obtain

gﬁl o1y 0Ty = (B(p*H, H) 0 p?) o (B(pH,H) o pon) o (swo B(TH,H") ot)
~ O(p*H, H) o ®(p*pH, p°H) o ®(p*prH", p°pH) o p o ponoswot
~ ®(pprH  H)op?Poponoswot
~ O(1ppH", H)otop?oposwon.

The claim then follows from Lemma 3.5 and the fact that 7o p?op ~ 70 p. Finally, the last part of
the theorem follows from the fact that the naturality maps commute with each of the factors used
in the definitions of 7y and ty. O

3.3. Naturality of 7x. Theorem 1.7 shows that (CFK(K), Ty, ty) is a (Tk, ti)-complex whose
homotopy type is independent of the choice of Heegaard data for the oriented, doubly-based knot
(K, w,z). Moreover, the homotopy equivalences between such triples are precisely the naturality
maps of Definition 3.1. It thus remains to show that 74 is independent of the choice of decoration on
K. The reason we have separated this from the claim of Theorem 1.7 is that in general, there is no
canonical identification between two knot Floer complexes for K in the case that the orientation on
K is reversed or the basepoints are changed. For example, although one can write down complexes
for K and K" which are isomorphic, such an isomorphism is not via a naturality map ®.

We begin with the choice of orientation on K. Let H be any choice of Heegaard data for
(K,w,z). As discussed previously, we have the orientation-reversing isomorphism

nosw: CFK(H) — CFK(H").
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Note that the right-hand side represents (K", w, z). We now have:
Lemma 3.8. Let H be any choice of Heegaard data for (K,w,z) and H" be the corresponding
Heegaard data for (K", w, z). Then:
(1) (nosw)ory =75 o (nosw)
(2) (nosw) oy =gy oy o (nosw)
That is, n o sw provides a homotopy equivalence

(CF’C(H),TH,LH) >~ (CF]C(,}:[T)7T’}:[T’§’;:[’F o L"f[r).

Proof. Claim (1) follows immediately from Lemma 3.2, as both 7 and sw commute with all of the
individual factors of 75;. To see Claim (2), it is more convenient to replace ¢z with gﬁ} Applying
Lemmas 3.2 and 3.4, we obtain
(0 sw) 0 130 = (n 0 sw) o (B(pH, H) 0 pon)
~ O((pH)", H ) omoswopon
~ O(pH", H") o posw

and
Sipr © tgr © (n o sw) = (B(F*H", H") 0 p?) o (B(pH", H") 0 pon) o (no sw)
~ @(52?_27'7/}_27') o ‘I)(ﬁQP/HT,ﬁZ)L_[T) 052 opononosw
~ ®(?pH", H) 0 p? o po sw.
The claim then follows from the fact p? o p ~ p. ([l

Lemma 3.8 thus says that the homotopy equivalence class of 73 is independent of the choice of
orientation on K. However, note that the homotopy equivalence used in Lemma 3.8 does not not
establish this for 13: the graded isomorphism 7 o sw between CFK(H) and CFK(H") intertwines
vty and ¢zr o ti-. We thus obtain a homotopy equivalence between the (7x, tx)-triple associated
to (K, w, z), and the twist of the (7x, Lk )-triple associated to (K", w, z).

We now investigate the dependence of 75, on the choice of basepoints. Let (w, z) and (w’, 2’) be
two symmetric pairs of basepoints for (K, 7). The fixed-point axis of 7 separates K into two arcs,
both of which contain a single basepoint from each pair. There are two possibilities: either w and
w’ lie in the same subarc of K, or they lie in opposite subarcs. If w and w’ lie in the same subarc,
then there is an obvious equivariant diffeomorphism of S$? which moves w into w’ and z into z’; this
is formed by pushing w and z along K in a symmetric fashion, as shown in Figure 8. The desired
naturality statement in this case is then subsumed by a more general claim regarding equivariant
diffeomorphisms of S3. In general, if f: S% — 53 is an equivariant diffeomorphism, then the image
(f(K),T) of (K, ) is another strongly invertible knot. We have:

Lemma 3.9. Let f: S — S3 be an equivariant diffeomorphism. Let H be any choice of Heegaard
data for (K,w,z) and fH be the corresponding pushforward data for (f(K), f(w), f(z)). Then

(1) fory ~7pyof
(2) foiuy=~tppof
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FIGURE 8. Equivariant basepoint-pushing diffeomorphism.

That is, f provides a homotopy equivalence of triples
(CFK(H), T3, 111) ~ (CF(fH), Tpm, Lym)-

Proof. This follows from the fact that f commutes with each of the components of 7y and ty. [

Lemma 3.9 says that up to homotopy equivalence, the triple (CFI(K), 7y, t3) is a well-defined
invariant up to equivariant diffeomorphism (in the decorated setting). In particular, by using
Figure 8 we may move (w, z) to any other symmetric pair (w’,2’) so long as w and w’ lie in the
same subarc of K.

Now consider the case in which w’ is chosen to lie in the opposite subarc from w. Due to our
analysis of the previous case, we may in fact assume that w’ = z and 2’ = w. There is then an
obvious diffeomorphism which moves (K, w, z) into (K, z,w); namely, the half Dehn twist p along
the oriented knot K. However, p does not commute with all the components of 7y. We instead
have:

Lemma 3.10. Let H be any choice of Heegaard data for (K,w,z) and pH be the corresponding
pushforward data for (K, z,w) under the half Dehn twist p. Then

(1) pomy ~ oty op
(2) poin >~ tppuop

That is, p provides a homotopy equivalence of triples
(CFR(H), o, t11) = (CFE(pH), Spre © Toats Lpt)-

Proof. To prove the first claim, we compute

pori =po(swod(TH,H")ot)
~ O(pTH", pH)oposwot
~ O(pTH", pH)opotosw
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and

O(p*pH, pH) o B(p*(TpH)", p°pH) 0 p* o swotop
~ B P(rpH) M) 0 0 sw o top
O(p?prH", pH) 0 p* o poto sw.

~

~

The claim then follows from Lemma 3.5 and the fact that p? o po7 ~ po 7. The second assertion
of the lemma follows from the fact that p commutes with all the individual components of ¢3. O

Lemma 3.10 might seem to imply that the homotopy equivalence class of T3 is dependent on
the order of the basepoints w and z. Indeed, without a choice of decoration, it initially appears
that 7 is only well-defined up to composition with the Sarkar map. This is a reasonable heuristic,
but not quite correct: it is important to stress that there is no canonical way to compare two knot
Floer complexes for K with different pairs of basepoints. Lemma 3.10 should thus be interpreted
as a statement specifically regarding the choice of homotopy equivalence p between a choice of
Heegaard data for (K, w, z) and a choice of Heegaard data for (K, z,w). A priori, it is possible
that a different choice of homotopy equivalence might intertwine 73, and 7,3,. Indeed, recall from
Lemma 2.21 that ¢y o 7y and 7 are conjugate up to homotopy. More precisely,

(CFK(H), T3, t3) ~ (CFIK(H), 511 0 Tr, S © 131).

Hence Lemma 3.10 combined with Lemma 2.21 shows that the homotopy equivalence class of 7y
is invariant under exchanging the roles of w and z, while the homotopy equivalence class of the
triple (CFK(H), Ty, t3) is not, at least a priori. Instead, we see that (CFK(H), Ty, t3¢) is homotopy
equivalent to either of the classes

(CFE(pH), Spr © Toats tpr) = (CF(0H), Toat, St © Lott)-
The situation is summarized in the following pair of theorems:

Theorem 3.11. Let (K, 7) be a decorated strongly invertible knot. The triple (CFIC(H), T, tx)
is independent, up to homotopy equivalence, of the choice of H so long as H is compatible with
the chosen decoration; moreover, it is an invariant of (K,T) up to equivariant diffeomorphism,
interpreted in the decorated setting.

Proof. Follows from Theorem 1.7 and Lemma 3.9. g

In the decorated setting, we thus suppress the choice of Heegaard data and refer to the homotopy
equivalence class of the triple (CFK(K), Tk, tx) unambiguously. In the undecorated setting, we
instead have the following:

Theorem 3.12. The homotopy equivalence class of (CFI(H), ) is independent of the choice
of decoration on (K,T). Reversing orientation or interchanging the basepoints each alters the
homotopy equivalence class of (CFI(H), Ty, ty) by a twist.

Proof. Follows from Lemma 3.8 and Lemma 3.10. g
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In the undecorated setting, we thus refer to (CFK(K), 7k ) unambiguously, although this is not
entirely natural. However, we must take care when discussing (CFK(K), Tk, tx) in the undecorated
setting. Explicitly, we have constructed homotopy equivalences:

o (CFK(K,w,z),TK,tx) ~ (CFK(K",w,2),TKr,Stkr) via Lemma 3.8
o (CFK(K,w,z),TK,tk) ~ (CFK(K, z,w),sTK, L) via Lemma 3.10
o (CFK(K,w,z),TK, k) ~ (CFK(K,w, 2),sTK, stk ) via Lemma 2.21.

Again, however, note that these should not be treated as canonical.

3.4. Equivariant concordance. We now turn to the behavior of 7x under equivariant concor-
dance. As in the previous section, we first need to define a notion of equivariant concordance in
the decorated setting.

Definition 3.13. Let (Kj,7) and (K2,72) be two decorated strongly invertible knots and let
(W, 1w, ) be an isotopy-equivariant homology concordance between them. We say that (W, ryy, X)
respects the decorations (alternatively, is equivariant in the decorated sense) if:

(1) ¥ is an oriented knot concordance; and,
(2) We can find a pair of properly embedded arcs 71,72 € ¥ such that:
(a) Each v; has one end point on K; and one endpoint on Kj, and these endpoints are
fixed by 7 and 7o, respectively.
(b) We have an isotopy (rel boundary) moving (mw (X), 7w (71), 7w (72)) into (3,791, 72)-
(c) The arcs divide ¥ into two rectangular regions, one of which contains both w; and w,
(we call this the black region), and the other of which contains both z; and zy (we call
this the white region).

When the context is clear, we refer to such a ¥ as a decorated isotopy-equivariant concordance.
Note that > is just an isotopy-equivariant cobordism for which we can find an appropriate set of
isotopy-equivariant dividing curves, in the sense of [Zem16a).

Theorem 3.14. Let (K1,71) and (K2, T2) be two decorated strongly invertible knots. A decorated
isotopy-equivariant concordance between (K1,71) and (Ka,T2) induces a local equivalence

(C.F/C(Kl), TK1» LKl) ~ (CFIC(KQ), TKq» LKQ).
Proof. By work of Zemke [Zem16a], we obtain a concordance map

Here, F represents the concordance ¥ with the choice of dividing curves 7; and ~». It is standard
that Fyy r is grading-preserving and has the requisite behavior under localization. In [HM17,
Section 4.5] and [Zem19, Theorem 1.5], it is shown that Fyy r is tx-equivariant (up to homotopy).
It thus suffices to show that it is Tx-equivariant.

Consider the diagram:
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C.F,C(Kl, w1, Z1) L CFIC(KQ, w2, ZQ)

Fw vy (7)

C.F’C(K{,Zl,wl) CFIC(KS,ZQ,’IUQ)

sw sw

Fw,sw(ry (F)
—

Cf’C(Kl,wl,Zl) C./T"]C(KQ,UJQ,ZQ)

Here, by CFK(K1,w1,21), we mean any representative for the complex of (K1, w1, 21) in the tran-
sitive system of complexes for doubly-basepointed knots. (Similarly for the other entries in the
diagram; we have thus suppressed writing the naturality maps ® as part of the vertical arrows.)

The first square of this diagram commutes due to the diffeomorphism invariance of link cobor-
disms [Zeml6a, Section 1.1]. By 7w (F), we mean the image of the decoration of F under 7y .
The second square of the diagram also tautologically commutes; here, sw(my (F)) is obtained from
w (F) by interchanging the roles of the black and white regions on 7y (F) and reversing orienta-
tion. The fact that our concordance is equivariant in the decorated sense shows that sw(my (F)) is
isotopic to F rel boundary, including the dividing curves and coloring of regions on Y. The isotopy
invariance of link cobordisms then implies that

Fwswm () = Fw.F-

This shows that Fy,z homotopy commutes with 7x and hence constitutes a local map from
(CFK(K1), Tk, LK, ) to (CFK(K2), Tk, , LK,). Turning the concordance around gives the local map
in the other direction and completes the proof. ]

In the decorated setting, the local equivalence class of the triple (CFK(K), Tk, k) is thus an
invariant of isotopy-equivariant concordance. If (Ki,71) and (K2, 72) do not come equipped with
decorations, then (according to Theorem 3.12) we may still unambiguously speak of the homotopy
equivalence classes of (CFK(K1),7k,) and (CFK(K2),Tr,). We claim that in the presence of an
(undecorated) isotopy-equivariant concordance (as in Definition 2.9), these are again guaranteed to
be locally equivalent:

Theorem 3.15. Let (K1, 71) and (K2, 72) be two strongly invertible knots. An isotopy-equivariant
concordance between (K1,11) and (K2, 72) gives a local equivalence of pairs

(C]:’C(Kl),TKl) ad (C]:’C(Kg),T[Q).

Moreover, suppose we equip (K1,71) and (Ka, 7o) with decorations, so that the homotopy equivalence
classes of their associated (Tk,ti)-complexes are defined. Then (CFK(K1),TK,,tKk,) 15 locally
equivalent to either (CFK(K2), Ti,, tk,) or the twist of (CFK(K2), Ti,, LK,)-

Proof. Because of the discussion following Lemma 2.21, the first claim follows from the second.
Thus, let (K1,71) and (K2,72) be two decorated strongly invertible knots. Let (W, y,X) be an
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equivariant concordance between them which may not be equivariant in the decorated sense. Due
to Lemma 3.8, up to twisting the (7x, tx)-complexes at either end, we may assume that ¥ is an
oriented concordance.

Now choose any pair of properly embedded arcs 71,72 € ¥ satisfying (a) and (¢) of Defi-
nition 3.13(2). That is, each 7; has one end point on K and one endpoint on Kj, and these
endpoints are fixed by 71 and 79, respectively. Moreover, the curves v; and 2 divide ¥ into two
rectangular regions, one of which contains the w; basepoints and the other of which contains the
z; basepoints. Let F denote this concordance with the choice of dividing arcs v, and ~». As usual,
Fyw, 7 commutes with ¢ (up to homotopy). Following the proof of Theorem 3.14, we see that since
¥ may not be isotopy equivariant in the decorated sense, we no longer have that sw(my (F)) is
isotopic to F. Instead, sw(mw (F)) is necessarily isotopic to a decorated concordance obtained by
applying some number of Dehn twists to F.

The concordance map associated to this altered decoration is given by precomposing the con-
cordance map for sw(my (F)) with a power of the Sarkar map. Following the proof of Theorem 3.14,
we thus see that

K © Fwr = Fw,r o (Sky © Tiq )

Hence Fyy, F intertwines 7x, and 7k, up to composition with some power of the Sarkar map. As
the Sarkar map is a homotopy involution, the claim follows. O

In the undecorated setting, an equivariant concordance thus only induces a local equivalence of
(TK, Lic)-triples up to twist. (Of course, note that if our knots are not decorated, then these triples
are only defined up to twist anyway.) However, we still obtain a local equivalence between their
Tr-complexes.

Having established the necessary naturality results, we now conclude with the construction of
the numerical invariants of Theorem 1.1:

Definition 3.16. Let (K, 7) be a strongly invertible knot, which may be neither directed nor deco-
rated. Fix any decoration on (K, 7) and consider the resulting (7, tx)-complex (CFK(K), Tk, LK )-
Following Section 2.5, define:

<l

WK)=VJ(CFK(K), Tk, k) and V](K) = VI(CFK(K), Tk, tk)
and
Vi(K) =V (CFK(K), Tk, k) and Vi (K) = VT (CFK(K), Tk, Lk )-

This is independent of the choice of decoration. Indeed, according to Theorem 3.12, changing the
decoration on (K, 7) corresponds to applying a twist by sx. However, due to Lemma 2.25, our
numerical invariants are not altered by this operation.

Putting everything together, we obtain:

Proof of Theorem 1.1. By Theorem 3.15, an isotopy-equivariant homology concordance (in the un-
decorated category) induces a local equivalence of (7x,tx)-complexes, up to a twist by <x. By
Lemma 2.25, this leaves our numerical invariants unchanged. O
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3.5. Directed knots. We now turn to the connection between the decorated and directed settings.

Definition 3.17. Let (K, 7) be a directed strongly invertible knot, in the sense of Definition 2.3.
We say that a decoration (K, w, z) is compatible with this choice of direction if the oriented subarc of
K containing the z-basepoint induces the same orientation on its boundary as the chosen half-axis.
See Figure 9.

w z w

O OO

FIGURE 9. Two decorations compatible with a fixed choice of direction.

If (K, ) is a directed strongly invertible knot, then (up to orientation-preserving equivariant
diffeomorphism) there are two compatible decorations on (K, 7). These are related to each other
by simultaneously reversing orientation on K and interchanging the roles of w and z. See Figure 9.
Note that as discussed in Remark 2.7, a directed strongly invertible knot does not generally come
with a specified orientation. Conversely, suppose that (K, 7) is a decorated strongly invertible knot.
Then there are two possible choices of direction which are compatible with this decoration; they
are related by simultaneously switching the half-axis and reversing the axis orientation.

Theorem 3.18. We have a well-defined set map from the directed equivariant concordance group
to the local equivalence group of (Tx, L )-complexes.
h:C— &,

Proof. Let (K, T) be a directed strongly invertible knot. As explained above, the choice of direction
determines two compatible decorations on (K, 7), which are related to each other by simultaneously
reversing orientation on K and interchanging the roles of w and z. By Theorem 3.12, applying both
of these operations in succession does not change the homotopy type of the associated (7x, tx)-
complex. Hence using the convention of Definition 3.17, we may unambiguously talk of the (7x, tx)-
complex of a directed knot.

Moreover, suppose that we have a directed equivariant concordance (X, 743, 7) from (K3, 71) to
(K3, T2). Definition 2.5 implies that we can find a pair of arcs 71 and ~2 which run along the length
of ¥ and are fixed by 7¢3,;. We may choose our compatible decorations on K7 and Ks such that
Y is an oriented concordance. Then ¥ (with the arcs v; and v2) forms a decorated concordance in
the sense of Definition 3.13. U

4. CONNECTED SUMS

In this section, we establish further fundamental results regarding the action of 7x and show
that the map h from Theorem 3.18 is a group homomorphism.
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4.1. Connected sums. We begin with the connected sum formula. Let (K7, 7) and (K2, 72) be
two directed strongly invertible knots. As discussed in Section 2.1, we may form the equivariant
connected sum (K #Ks, T1#72), which is another directed strongly invertible knot. Note that
according to Theorem 3.18, we have a well-defined (up to homotopy equivalence) (7x, ¢ )-complex
for each of the directed pairs (K1,71), (K2,72), and (K1#Ks, T1#72), obtained by choosing a
compatible decoration in each case.

Theorem 4.1. Let (Ki,11) and (K2,12) be directed strongly invertible knots and K1#Ks be their
equivariant connected sum. Then

(C]:IC(Kl#KQ), TKl#K2, LKl#Kg) and (C]:IC(Kl) ®C]:IC(K2), T@, L@)

are homotopy equivalent, where
® = TK; ® TK,
and

o =(d®Id+PRV)(tk, ®LKk,)-

Proof. Define an equivariant cobordism from (53, K1,71) U (93, Ko, 72) to (S3, K1# Ko, T1#72) by
attaching a 1-handle and then a band in the obvious manner. Denote this by (W, my,X); the
surface X is schematically depicted in Figure 10. The knots K; and Ky are represented by the
two inner circles and have half-axes given by their respective horizontal diameters (oriented from
left-to-right). Their connected sum K;#K5 is represented by the outer ellipse and has half-axis
defined similarly. We place w- and z-basepoints on Ki, Ko, and K;# K> as indicated in Figure 10;
note that these are compatible with each of the chosen directions. Let F be the set of dividing
arcs on Y consisting of the three indicated horizontal arcs. This makes ¥ into a cobordism which
is equivariant in the decorated sense.

Ki#K,

./

K, Ky

FIGURE 10. Decorated equivariant cobordism from K7 L Ky to K1#Ks. Black dots
represent w-basepoints; white dots represent z-basepoints. The action of 7y is given
by reflection across the horizontal axis. See [Zem19, Figure 6.1].

In [Zem19, Theorem 1.1], Zemke shows that the map
Fwr: CFK(K1) @ CFK(K32) — CFK(K1#K>)
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defined by the link cobordism with decoration F is a homotopy equivalence, together with the
map in the other direction constructed by turning the cobordism around. (Indeed, Figure 10 is
just [Zem19, Figure 6.1], which corresponds to the map G in [Zem19, Theorem 1.1].) Moreover,
according to [Zem19, Theorem 1.1], this homotopy equivalence intertwines (iId®id+PQV) (1, @k, )
on the incoming end with the connected sum involution ¢k, 4k, on the outgoing end. We thus simply
need to show that Fyy r intertwines 7, ® 7k, with 7x 4 r,. This follows from the same argument
as in Theorem 3.14. We have the commutative diagram:

CFK(K1) ® CFK(Ky) —F .y CFI(K1#Ko)

t&t t
CFK(KT) ® CFK(KS) —YW&) 0 Fic (KT 4#K3)
SwRsw Sw
CFK(K)) @ CFK(Ky) — W IR 0 ric (K Ky

Each of the two squares commutes tautologically. It is clear from Figure 10 that sw(my (F))
coincides with F; hence Fy,r intertwines 7x, ® Tk, with 7x,#x,. The proof for the reversed
cobordism map is similar. ]

Remark 4.2. Note that the above proof does not allow us to use ¥ ® ® in place of ® ® ¥ in
the statement of Theorem 4.1, unless the conventions of Definition 2.4 are also changed. This
asymmetry is due to the fact that we have specifically used the map G; in [Zem19, Theorem 1.1].
The map G in [Zem19, Theorem 1.1] intertwines (id®id+¥®®)(1x, ®tk,) With tx, 4 x,. However,
G2 does not correspond to a decoration which is geometrically equivariant; see [Zem19, Figure 5.1].
See the discussion in Section 2.3.

This completes the proof of Theorem 1.8:
Proof of Theorem 1.8. Follows from Theorem 3.18 and Theorem 4.1. O

4.2. The swapping involution. We now compute the action of the swapping involution described
in Section 1.2. In general, given a knot K in S3, we can form the connected sum K#K" as in
Figure 11. As discussed in [BI21, Section 2], this admits an obvious strong inversion. In fact, as
discussed in [BI21, Section 2|, we obtain a homomorphism from the usual concordance group to C
by choosing the half-axis depicted in Figure 11. We call this the swapping involution on K#K"
and denote it by 7Ts,. Our goal will be to calculate the (7x, tx)-complex of (K#K", Tsy) (with this
choice of direction).

In order to compute the action of 74,, we need to discuss the construction of K#K" more
precisely. Assume that (K, w, z) is an oriented, doubly-based knot in S3. We think of the projection
of K as lying entirely to the the left of a vertical axis. Denote 180-degree rotation about this axis
by 7. We obtain another doubly-based knot (7K, 7w, 7z) by applying 7 to K. Although this can
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FiGURE 11. The connected sum K#K". The half-axis runs vertically across the
band and is oriented to coincide with the orientation on K. See [BI21, Figure 5].

of course be identified with K, it will be helpful for us to emphasize the second copy of K as being
the image of the first under 7; we thus henceforth write 7K rather than K. We moreover modify
the decoration on 7K by applying swj; this gives (TK", 7z, 7w).

As in Figure 11, we now attach a 7-equivariant band to form the connected sum of K and 7K".
It will be convenient for us to assume that this band has a particular arrangement with respect
to the basepoints on K and 7K". Specifically, we require the foot of our band on K to lie on the
oriented subarc of K running from z to w, and the foot of our band on 7K" to lie on the oriented
subarc running from 7w to 7z. We furthermore place a pair of symmetric basepoints w’ and 2z’
on K#7K" in such a way so that w’ lies on K and 2z’ lies on 7K". See Figure 12. Note that this
makes (K#7K",w',2’) into a decorated strongly invertible knot, and this choice of decoration is
compatible with the direction chosen in Figure 11.

K#rK"

FIGURE 12. Schematic depiction of (K, w,z)u (TK",7z,7w) and (K#7K",w', 2'),
together with a pair-of-pants cobordism between them. The actions of 7, 7g,, and
Tw on the pair-of-pants is given by reflection across the vertical axis.

Before proceeding further, we first construct the induced action of 7 on the disjoint union
(K,w,z)u (tK",7z,7w). Define a chain map

Texzch : CFK(K,w,2)  CFK(TK", 72, Tw) — CFK(K,w,2)  CFK(TK", T2, TWw)

as follows. First apply the tautological pushforward associated to 7. This induces an isomor-
phism from CFK(K,w, z) to CFK(TK,Tw,7z), and also an isomorphism from CFKX(rK", 7z, Tw)
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to CFK(K", z,w). We thus obtain a map
t:CFK(K,w,z) @ CFK(TK", 72, 7w) - CFK(K", z,w)  CFK(TK,Tw, T2)

which sends the first factor on the left isomorphically onto the second factor on the right, and the
second factor on the left isomorphically onto the first factor on the right. We then apply the map
sw from Definition 3.1 in each factor:

sw® sw: CFL(K", z,w) @ CFK(TK,Tw,72) - CFK(K,w,2) @ CFK(TK", 72z, Tw).
The action of Tz is thus defined by the composition
Texch = (SW ® sw) o t.
Note that this is just the action of 7x defined in Section 3.2, generalized to the symmetric link
(K,w,z)u (K", 72, Tw).
We now establish the main theorem of this subsection:
Theorem 4.3. Denote the induced action of Tsy also by Tsw. Then
(CFR(K#TK"), Tow, tik#rkr)  and (CFK(K)QCFK(TK"), Tg, tg)
are homotopy equivalent, where
Teo = (I[d®id + ¥ ® P) © Tezen
and
o =00 (ld®Id+ VR P)o (tk ® trkr).

Proof. As in the proof of Theorem 4.1, we consider the pair-of-pants cobordism (W, my, %) from
K utK" to K#7K". Decorate ¥ with the set F of dividing curves depicted in Figure 13. The
involution 7y on this cobordism restricts to 7 on the incoming end and 74, on the outgoing end.
As in Figure 12, this is given by reflection across the vertical axis.

]:

FIGURE 13. The decoration F on X.
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Now, the decoration F is not equivariant with respect to 7y7. Nevertheless, we have the following
homotopy-commutative diagram:

CFK(K,w,z) @ CFK(TK", Tz, Tw) _fwr CFK(K#TK"™ W', 2")

t t

N

CFK(K", z,w) @ CFK(TK,Tw, T2)

FW,TW (F)

CFK(K"™#7K, 2 ,w')

swsw sw

Fw, sw(ry (7))

CFK(K,w,z) @ CFK(TK", T2z, Tw) CFK(K#TK"™, W', 2")

Here, the decoration sw(my (F)) is obtained by switching the designation of white and black regions
in 7y (F) and reversing orientation. Hence we obtain

Tsw © FW,F ~ Fyw, sw(ry (F)) © Tewch-

We now claim that

To see this, we use the bypass relation for link cobordism maps established in [Zem19, Lemma 1.4].
A schematic outline of the bypass relation is given in Figure 14.

Fi Fo F3

FI1GURE 14. The bypass relation, taken from [Zem19, Figure 1.2]. See [Zem19,
Section 1.3] for discussion.

In our case, we apply the bypass relation to the dotted disk in the top-left of Figure 15. The
effect of applying the bypass relation is also depicted in Figure 15 and yields the claim. It follows
that Fyy r intertwines 7, with (id ® id + ¥ ® ®) o 7eyen.

We now consider the behavior of Fyy, 7 with respect to ¢ic. Note that Fyy, 7 is not the same as the
map used in the connected sum formula of Theorem 4.1, and thus does not necessarily intertwine
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F

FIGURE 15. Above: applying the bypass relation to the decoration sw(my (F)).
Below: the map induced by the rightmost decoration in the first line is homotopic
to the composition Fyy r o (¥ ® ).

tk#rir and (Id®id + @@ V) o (1x @ trk+). Instead, we have the following commutative diagram:

Fw,x

CFK(K,w,z)  CFK(TK", Tz, Tw) — CFK(K#TK",w', 2)

n&®n n

FW,r](T)

CFK(K,z,w)  CFK(TK", Tw, T2) CFK(K#TK", 2 w')

PQp p

poFw 5 (7)0(PRP)
0

CFK(K,w,z) CFK(TK", Tz, Tw) CFK(K#TK",w', 2)

Here, n(F) is obtained from F by interchanging the roles of the white and black regions of F, but
not reversing orientation. Hence we obtain

L © Fwr = (po Fyyr) o (p®p)) o (tk ® tricr).
We now claim that

po Fywyr o (p®p) =~ Fivrosgo (id®@id + T @ ®).
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Indeed, the reader should check that applying an oppositely-oriented half-Dehn twist to each end
of n(F) gives a decoration isotopic to sw(ry (F)). Hence

poFwayr) o (P®P) = Fyyswny (F))-
Applying formula (2) for Fyy s(r, (7)) and using the fact that p and p differ by an application of
the Sarkar map, we obtain

Here, ¢y is the Sarkar map on the connected sum K#7K". The fact that the Sarkar map can
be computed algebraically shows that ¢4 o Fjy, 7 ~ Fyy F o g, since Fyy 7 is an explicit homotopy
equivalence which identifies CFIC(K#7K") with the tensor product CFK(K) ® CFK(rK"). For
completeness, however, we include a more concrete topological proof in Lemma 4.4 below. The
desired claim follows.

Finally, we show that turning Fyy 7 around constitutes a homotopy inverse to Fy, . To see
that these are homotopy inverses, note that

Fwr ~ qx o Fi,z o (id®p).

Here, ¢ is a quarter-Dehn twist and F’ is the decoration in Figure 16.

F F

() .
~ q o o id ®p
N

FIGURE 16. Writing F in terms of F’.

Writing FW F for the reverse of Fyy r, we thus have
Fwr ~ (id®p) o Fwz o k.
As in the proof of Theorem 4.1, Fyy 7 and FW, F are homotopy inverses. The claim follows. O
Lemma 4.4. With F as in the proof of Theorem 4.3, we have ¢4 o Fyyr ~ Fyy r 0 ¢g.

Proof. As in the proof of Theorem 4.3, write Fiy,r ~ q o Fyym o (id ® p). Using the fact that ¢
and p are induced by orientation-preserving diffeomorphisms, it is straightforward to check that
gosy ~¢uoqgand (Id®p)ogy ~ ¢go (id®p). (For the latter, simply note that ® and ¥ commute
with all such pushforward maps.) It thus suffices to prove the lemma with the decoration F' in
place of F. Applying the definition of ¢g, this reduces to showing
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We repeatedly apply suitable bypass relations. First note that W&o Fyy 7 is the map associated
to the decoration on the left in Figure 17. Applying the bypass relation to the disk on the left-hand
side gives the two decorations shown on the right. We denote these by F; and Fs, respectively.

FIGURE 17. Applying a bypass relation to the decoration associated to V@ o Fyy
gives F (left) and Fy (right).

We then further apply a bypass relation to F;. Doing this for the disk on the right-hand side
of Figure 17 gives the two decorations shown in Figure 18, which we denote by F3 and Fy4. Note
that FW7]:4 ~ FW,]-" o (\I/CI) ®ld)

FIGURE 18. Applying a bypass relation to F; gives F3 (left) and Fy (right).

We now apply a final bypass relation to F3. Doing this for the disk indicated in Figure 18
gives the two decorations shown in Figure 19, which we denote by F5 and Fg. Note that Fyy r ~
Fy 7 o (¥ @ ®), while Fg is just F'.

Putting the results of Figures 18 and 19 together, we have that

FW,]:1 ~ FW,]:’ o) <\I/®q)) + FW,]:’ + Fm]:/ o (\I/(I)®ld)

Now, note that in Figure 17, the decorations Fy, 7, and Fyy r, are related by reflection across the
vertical axis. By applying similar bypass relations to F» (using the reflections of the disks for F7)
we obtain

FW7]:2 ~ FW]:/ o (@@‘1’) + FVV,]:’ + wa/ o (1d®\1/q))

Adding these two relations together and using the fact that ¥ and ® homotopy commute gives the
desired result. g
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CN Y
N

FIGURE 19. Applying a bypass relation to F3 gives F5 (left) and Fg (right).

5. EQUIVARIANT SLICE GENUS BOUNDS
We now prove Theorem 1.2. This closely follows [JZ20, Theorem 1.7].

Proof of Theorem 1.2. Let (K, T) be a strongly invertible knot, which may be neither directed nor
decorated. Let 3 be an isotopy-equivariant slice surface for (K, 7) in some homology ball (W, ).
We may assume 7y acts as 7 x id on some collar neighborhood (W) x I. We may furthermore
assume that the isotopy from 1y (X) to ¥ does not move this collar neighborhood of W and that
3} is exactly equivariant near 0W. Hence we can puncture 3 at some fixed point of Ty near OW
and treat ¥ and 7y (X) as isotopy-equivariant knot cobordisms from the unknot (with the obvious
strong inversion) to (K, 7). See Figure 20.

For reasons that will be clear presently, it will be convenient for us to stabilize ¥ a certain
number of times. If the genus of ¥ is even, then we stabilize X twice; if the genus of ¥ is odd, then
we stabilize X once. We denote the stabilized surface by ¥'; note that the genus of ¥’ is even. We
carry out the stabilization equivariantly near 0W, so that ' is still isotopic to Ty (X') rel K. See
Figure 20.

FiGURE 20. We may assume that X is exactly equivariant near 0¥ = K < J0W.
We have chosen an arc of fixed points lying on 3J; this is represented by the dotted
line. Puncturing W at a point on this dotted line gives an isotopy-equivariant knot
cobordism from the unknot to K. This is schematically represented by cutting out
the sphere indicated in the figure. Stabilizing 3 is represented by the 1-handle with
feet near the dotted line.

Now fix any pair of dividing arcs F on ¥/ such that the resulting black and white regions have
equal genus. Note that this implicitly fixes a decoration on the ends of ¥/, but due to Lemma 2.25
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this choice of decoration on K does not affect the statement of the theorem. Consider the knot
cobordism map Fyy,z. We have the usual commutative diagram

CFR(U) — 7\ CFK(K)
t t
~ FW,q—W(}") ~
CFK(UT) CFK(K")
F sw(T
CFK(U) WD e FKR(K)

where we have suppressed the choice of basepoints. Importantly, we have not assumed that X
(or ') is isotopy-equivariant in the decorated sense. Hence although 7y (X') is isotopic to 3,
it is not true that the image of the decoration 7y (F) under this isotopy must coincide with the
decoration sw(F). Indeed, in general we might obtain a completely different decoration on ¥'. We
thus instead invoke [JZ20, Proposition 5.5]. This states that if ¥’ is any stabilized surface and F4
and FP are any two sets of dividing curves (each consisting of a pair of dividing arcs) on ¥’ with
V(FR) = X(FE) and x(F2) = x(FB), then

[Fw,ra(1)] = [Fw re(1)].

Hence in our case Fy,r and Fyy s (ry (7)) are chain homotopic. This shows that Fy, r induces
a Ti-equivariant map from the trivial complex of the unknot to CFI(K). Our argument here is
almost identical to that of [JZ20, Theorem 1.7]; there, the authors show that Fyy r is ¢ g-equivariant
(up to homotopy).

The map Fy r has grading shift (—g(X'), —g(X’)). We thus obtain a map from the trivial
complex F[U] to the large surgery complex Cy of CFK(K). This lowers grading by g(X’) and is a
homotopy equivalence after inverting U. It follows that

d.(Co) = —g(¥).
This gives the inequality

2

keeping in mind the number of stabilizations relating ¥ to ¥’. The same argument, together with
the fact that Fyy 7 also homotopy commutes with ¢, gives the desired inequality for V{ (K).
The other claims of the theorem are obtained by turning the cobordism around and reversing
orientation. ([l

Vi(K) < [”9@)]

Remark 5.1. The reader may be confused as to why Theorem 1.2 is weaker than Theorem 1.1
in the genus-zero case. This is because in the proof of Theorem 1.2, we stabilize in order to deal
with the possible non-equivariance of the dividing curves. However, in the genus-zero case, no
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stabilizations are actually necessary. Following the more specialized proof of Theorem 1.2 in this
situation gives the same conclusion as from Theorem 1.1.

6. TORUS KNOTS

We now bound the invariants V] and V for the strongly invertible knots (K, 7,) from the
introduction. Recall that K, is constructed by taking the connected sum of (T2n72n+1#T2n72n+1, T#)
with the mirror of (75, 2n+1#T2n,2n+1, Tsw). We deal with each one of these two factors in turn.
Throughout, let n be odd.

6.1. The connected sum involution. Using the connected sum formula, we first compute the
Tic-complex of (Top 2n+1#Ton 2n+1, T4). For this, we need to know the 7x-complex of (Tp 2141, 7),
where 7 is the unique strong inversion on 1%, 2,+1.

Definition 6.1. Let C, be the staircase complex associated to the parameter sequence
(C—2n+1,C2n42s -y Copn—2,Con—1) = (1,2n —1,2,2n — 2,...,2n — 2,2, 2n — 1,1).
This is displayed in Figure 21. Explicitly, C,, is generated by the elements

xp for —2n+2 <k <2n—2 and k even; and
ye for —2n4+1<¢<2n—1 and ¢ odd

and has nonzero differentials given by

Oxg =V "y + U Yy

Y—2n+1 Y—2n+3 Yon—3 Yan—1
N 7N 7N A
v gy2n—1 «//2 02/2n 2 yn o)/n 1/271 2 %2 y2n—-1 gy
N\ / N/
T —2n+2 517 2n+4 CUQn 4 Ton—2

FIGURE 21. The complex C,. See [HHSZ21, Figure 3.1].

Together with the definition of 0, the convention that gri (y—2n+1) = gry(y2n—1) = 0 determines
the gradings of all of the generators of C,. It will be helpful for us to explicitly record:

(3) gy (Yon—1-2i) = —2(1 + 2+ -~ +19)
gry (Y—ont1+2i) = —2(1+ 2+ -+ +14).

There is a unique skew-graded homotopy involution on C,, which is given by

T(zK) = Tk
T(Ye) = Y-
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In [HHSZ21, Proposition 3.1}, it is shown that the knot Floer complex of T5y, 25,41 is homotopy
equivalent to C,. By Theorem 1.7, we know that 7x is a skew-graded homotopy involution on
CFK(Ton,2n+1). Thus the T-complex of (Toy, 2n41, ) is given by (Cp, 7), with 7 as above. Applying
Theorem 4.1, we conclude that the 7x-complex of (1o 2n4+1#Ton,2n+1, T#) is homotopy equivalent
to (Cp, ® Cpp, 7 ® 7). The goal for this subsection will be to extract a usable representative of this
local equivalence class. Our computations here are similar to those of [HHSZ21, Section 3].

Definition 6.2. Let D,, be the staircase complex associated to the parameter sequence

(d—an+2,d—an+3; - - - dan—3, dan—2) =
(1,2n—1,1,2n—1,2,2n — 2,2,2n — 2,3,...,2n — 2,2,2n — 2,2,2n — 1,1,2n — 1, 1).
This is displayed in the upper half of Figure 22. Explicitly, D,, is generated by the elements
wg for —4n + 3 <k <4n — 3 and k odd; and
zg for —4n+2 <€ <4n —2 and / even
and has nonzero differentials given by
owy, = de_lzk,1 + %dk+lzk+1.

Like C,,, the complex D,, has a unique skew-graded homotopy involution, which we again denote
by 7. It will also be useful to consider the square complex S,,, which is displayed in the lower half
of Figure 22.

Z—dn+2 RZ—4n+4 Z—4n+6 Z— 4n+8 -2
N VAN 7N VAN /
v gy2n—1 Y gy2n—1 a//2 02/211 2 %n+1 /Vn 1 gyn+1 yn Y
N\ / N\ / N/ \ /
W—4n+3 W—4n+5 w 4n+7 w—_3 w—1
20 z2 Z4n 4 Z4n—2
N VAN /‘ ’\ Ve
yn g 'V”l+1 Qn— 1 1/n+1 %n 1 / 4//2n 1 Y
N\ / N/ \/
w1 w3 w4n 5 W4n—3
t
2N
U v
/ N
r—1 1
N /!
VTL %’I’L
N S
70

FIGURE 22. The complex D,, ® S,,.
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This is generated by {rg,r_1,71,t}, with differential
oro="Y"r_1+%"r1, oOr_1=%"t, oOri=7Y"t, and ot=0.
Using the fact that gry (z_an+2) = gry(zan—2) = 0, we again have (for example)

—4(1+2+4---+1/2) for i even

gry (2an—2-2i) = {_4(1 +24 -+ (i—1)/2) — (i + 1) for i odd

(4)

—4(1+2+---+1/2) for i even

gry (2—ant242i) = {_4(1 +24 -+ (i—1)/2) — (i + 1) for i odd.

The grading on S, is such that gr(¢) = gr(zp). Note that gr(r_;) = gr(w—_;) and gr(r;) = gr(w;).

Definition 6.3. Let &, = D, ® S,,. Define an involution 7 on &, as follows. On D,,, we define 7
to be almost the same as in Definition 6.2, but slightly different on w_1, wi, and z3. On S, we
define 7 to be the obvious reflection map.

T(wg) =w_g for k#—1,1

wy) =w_1 +7r_1

z0) =z_y forl #0

20) = zo + t.

Roughly speaking, 7 acts as reflection on the staircase and the square, but additionally maps some
of the staircase generators to (sums of staircase generators with) square generators. Unlike the

action of vk in [HHSZ21, Section 3.2.1], however, none of the square generators are mapped to
staircase generators.

The main claim of this subsection is that (&,,7) is locally equivalent to (C,, ® Cp,, 7 ® 7). We
show this by constructing local maps in both directions. The forward direction is straightforward
from the work of [HHSZ21]. In what follows, we write < to indicate the presence of a local map
from one Tx-complex to another; see also the discussion of Section 7.2.

Lemma 6.4. We have (£,,7) < (C, ®Cpn, TR T).

Proof. In [HHSZ21, Section 3.2.1], it is shown that C,, ® C,, admits the subcomplex ), displayed in
Figure 23. Explicitly, ), is spanned by
{vivit v {ivivatis—s U {yivayiti=—1,
together with
{yizit1}ic—s U {ziyir1}ic—2 U {Tyi-1}iz0 U {vizi—1}iz1,
and
Y1y—1 +y-1Y1,  Y-1Zo + ToY—1, Y1Zo + Toy1, and oTo.

The first two collections of generators span a staircase complex, while the last four generators span
a square complex.



46 I. DAI, A. MALLICK, AND M. STOFFREGEN

Y1—2nY1—2n Y1-2nY3—2n Y3—-2nY3—2n Y3— 2ny5 n y 3y 1 Y-1Y-1
’\ 7N 7N ’\ / ’\ 7N /
%271 1 W %27171 7/2 %271 2 7/71+1 Vn 1 7/7L+1 yn A
\ / N/ N\ / \ /
Y1—2nT2—2n T2-2nY3—2n Y3— 2n364 2n Y- 396 2 T_2Y-1 ToY-1
Y1y—1 Yy1y1 Ysyi y3y3 y2n 1y2n 3 Yoan—1Y2n—1
N VAN VAN 7
yn 7748 41/n+1 %n,1 41/n+1 %n 1 / an 1 Y
N\ / N\ / \ /
Y1xo T2Y1 y3502 Ton— 2y2n 3 Yon—1T2n—2
NY-1 +y-1y1
a ’\
{Z/n
/ \
Y—1Z0 + ToY-1 Y10 + ToY1
N S
7/71, %n
NS
Tox(

FiGURE 23. The subcomplex ),. Note that the top two rows form a staircase
complex, such that d(zoy—1) = ¥"y_1y—1 + % "y1y—1. See [HHSZ21, Figure 3.3].

There is an obvious map ¢: &, — C, ® C,, given by mapping &, isomorphically onto V,;
compare Figures 22 and 23. It is straightforward to check that this has the requisite behavior under
localization: observe that y1_2,%1—2, is nontorsion. To check equivariance, recall that 7(zx) = z_g
and 7(ys) = y_¢. An examination of Figure 23 shows that 7 ® 7 acts as reflection on ), except at
the generators

(T ®7)(Toy-1) = woy1 = Y120 + (Y170 + oY1)

(T®7)(y170) = Yy—170 = ToY—1 + (Y—1Z0 + ToY—1)

(T®7T)(Y1y-1) = y—191 = y1y—1 + (y1y—1 + y-1y1).
This coincides exactly with the action of 7 on &,. g

We now construct a map from &,/ to Cy ® C,/. It will be helpful for us to first discuss some

auxiliary lemmas regarding the dual staircase complexes C; and D,/. Our first lemma concerns
elements in €, ®C,’ of the form z;/ ® y,. Roughly speaking, we claim that if the value of p + ¢ is
fixed, then the grading of x; ® y, is minimized when the difference [p — ¢| is minimized. Similar

statements hold for elements of the form y,” ® y,/. We make this more explicit by introducing the
following terminology:

Definition 6.5. Let k be odd and let p + ¢ = k with p even and ¢ odd. We call (p, q) difference-
minimizing in the following situations:

(1) k=1 mod 4: we require p = (k—1)/2 and g = (k + 1)/2.



EQUIVARIANT KNOTS AND KNOT FLOER HOMOLOGY 47

(2) k=3 mod 4: we require p = (k+1)/2 and ¢ = (k —1)/2.
Let ¢ be even and let p + ¢ = £ with p and g both odd. We call (p,q) difference-minimizing in the
following situations:

(1) £=2mod 4: we require p = q = (/2.

(2) £=0mod 4: we require p = (¢ —1)/2 and g = (¢ + 1)/2, or vice-versa.
In each case, note that the difference |p — ¢| is minimized, subject to the constraints on the parity
of p and ¢ and the condition that the value of p + ¢ is fixed. The distinction between k and £ is
due to our choice of notation for the generators of D,,, and will become clear presently.

Lemma 6.6. Let k be odd. Then

. v v d . v v
Jmin, - Agro(z, ®@yg )} an Jmin, - Agry (z, @y, )}
p even, q odd p even, q odd

both occur when (p,q) is difference-minimizing. Similarly, let ¢ be even. Then
. V4 \V2 d . Vv \2
Join, - Agro(yy @ug)} and - min - {gry () @y, )}
p odd, q odd p odd, q odd
both occur when (p,q) is difference-minimizing.

Proof. First note that for any 7, we have:
gry (@) —grp(z ) = —2n— 1+
gry (zii1) —gry(zy) =2n + 1+,
and

gy (Yihe) —gry(y) = —2n+1+1i
gty (yiho) —ery(y) =2n+ 1+
These claims are verified using the differentials in the definition of C,; the reader may find it helpful
to consult Figure 21.
Consider the first claim of the lemma. Observe
gry(Tp2 @y a) = gry (@, @y )+ (2n—1+(p+1)) — (=2n+ 1+ (¢ —2))
=gry(r, @y, ) +p—q+1.

Similarly, we have

gty (Tp 0 ®yy o) = gry(r, @y, )+ 2n+1+(p+1)) —(2n+ 1+ (¢—2))
=gry(z, ®y, ) +p—q+3.

Note that due to the parity constraints on p and ¢ and the fact that p+ g = k, the value of p — q is
fixed modulo 4. Treating both of the above as finite-difference equations, it is clear that to minimize
both gry(zy ®y,) and gry (zy ®y, ) we are searching for (p, ¢) such that p—¢+1and p—q+3
are both in [0,4]. An examination of Definition 6.5 gives the claim for k& odd. The claim for ¢ even
is established in an analogous manner. O
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The following lemma relates the gradings of elements of D,/ and elements of Cy ® C,/, and will
be important for constructing a map from the former into the latter.

Lemma 6.7. Let k be odd and let p+q = k with p even and q odd. If (p, q) is difference-minimizing,
then

gr(wy) = gr(z, @y, ) = gr(y, @z, ).

Let ¢ be even and let p + g = £ with p and q both odd. If (p,q) is difference-minimizing, then

gr(z)) = gy, ®y,)) = gr(y, @y, ).

Proof. We prove the second claim and leave the first to the reader. Assume (p,q) is difference-
minimizing. Write £ = 4n —2 —2i, p =2n—1—2r, and ¢ = 2n — 1 — 2s; note that r + s = i. From
(3) and (4), we have

) (20) 4142+ ---+1i/2) for i even
i z = —@r z
SR ) = T8 g1 v 24+ 4 (i — 1)/2) + (i + 1) for i odd

and

gry(yy) = —gry(yp) =2(L+2+---+7) and gry(y,) = —grp(yy) =2(1+2+--- +3).

Suppose ¢ = 2 mod 4. Then i is even, and an examination of Definition 6.5 shows r = s = i/2. In
this case, we clearly have gr;(2)) = gry(yy) + grp(yy) = gry(yy ®y, ). Suppose £ = 0 mod 4.
Then i is odd, and we have r = (i + 1)/2 and s = (i — 1)/2 (or vice-versa). An inspection of
the equalities above once again gives the claim. An analogous argument for gry, completes the
proof. O

We now establish the major claim of this subsection:
Lemma 6.8. We have (£),7V) < (C)) ®C), 7V ®TV).

Proof. We define a grading-preserving map ¢: £ — C,Y ® C,/ as follows. For any ¢ even, let

V()= D Uy

it+j=t

Here, the right-hand side is formed by considering all possible products y,” ® y; with ¢ and j odd
and i + j = £. Fach term is multiplied by powers of % and ¥ so that the resulting grading is
equal to that of z;”. Note that this is possible due to Lemmas 6.6 and 6.7. Indeed, by Lemma 6.6,
gr(yy ® (s ) is minimized when (4, j) is difference-minimizing. We then multiply every other term
on the right-hand side by powers of % and ¥ so as to have grading equal to this minimal grading.
But by Lemma 6.7, the minimal grading is none other than gr(z,”).
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We similarly define:
(wy) = Y, UV} @y) +y) ©x))

i+j=k

Y(rey) = Z UV x @y + Uy @y
i+§=0, i<j

i)=Y, U@y + Uy ©a)y
i+j=0, i<j

P(rg) = 25 ® g

W)= D, Wy Ry
i+5=0, i<j
As before, Lemmas 6.6 and 6.7 guarantee that in each of the above equations, there exist unique
powers of %/ and ¥ which make 1 grading-preserving. Note that gr(¢¥) = gr(zy ), while gr(rY,) =
gr(wYy) and gr(ry’) = gr(wy’).

We claim that ) is a chain map. Because both sides of the equation 0y = ¢ are homogenous,
it suffices to prove this in the quotient where we set = ¥ = 1. (The reader who is unconvinced
of this fact may consult [DS19, Section 2.4], in which an analogous situation is discussed.) The
claim is then straightforward from the definitions; the only subtle cases are to verify di» = ¥d on
rY, and 7). For the former, we have

ov(rly) = Z ;21 ®y;) + oy, @x;_1)
i+j=0, i<j
= D @@zt Q@ +a @) 2 @)
i+j=0, i<j
= Z T @z + o, @iy
i+j=0, i<j
Identifying this as a telescoping series shows that it is equal to zj ® xy (note that x/ = 0 for
i < —2n+1). A similar computation holds for oy (ry").

Checking that 1 has the requisite behavior under localization and is T-equivariant is straight-
forward; the only subtle cases are (again setting % = ¥ = 1):

TPt ) = Yy ®@uY =) +1(zy)
i+7=0, i<j
together with
Tw(ril) = Z xZHl ®yij +yii®ﬂfij+1 = ¢(’I“i/) +¢)(wi/)
and

TY(ry) = Z Y, 1@yl +yY,@x;  =9(rdy) + v(wy).
i+5=0, i<j
This completes the proof. ]
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We thus obtain the overall computation:
Lemma 6.9. For n odd, we have (CFK(Ton2n+1#Ton2n+1), T#) ~ (Ens T).
Proof. Follows from Lemmas 6.4 and 6.8. O

Remark 6.10. In [HHSZ21, Section 3.2.1], the local equivalence class of (Top 2n+1#Ton,2n+1, L)
was similarly identified with (&,, tx) for a certain involution ¢x on &,. In fact, the map of Lemma 6.4
is both 7- and ¢g-equivariant. However, the map of Lemma 6.8 is not tx-equivariant. We thus do
not determine the (7x, tx)-class of Top 2n+1#T2n,2n+1 in this paper; only the Tx-class.

6.2. The swapping involution. We now turn to the 7x-class of (Ton 2n+1#T2n,2n+1, Tsw). Al
though the full local equivalence class turns out to be difficult to compute, for our purposes it
will suffice to establish an inequality. Let D,, be the staircase complex equipped with the unique
skew-graded involution of Definition 6.2. Then we claim:

Lemma 6.11. We have (Dy,, 7) < (CFK(Ton2n+1#Ton.2n+1), Tsw)-

Proof. Consider the subcomplex W, of CFK(Ton 2n+1#Ton,2n+1) ~ Cn ®C,, displayed in Figure 24.
This is similar to the upper half of Figure 23, but it is not quite the same: the second of the two
rows has many of the tensor products occurring with transposed factors.

Y1—2nY1—-2n Y1-2nY3—2n Y3-2nY3—2n Y3— 2ny5 n 3/ 3y 1 Y-1Y-1

N 7N 7N ’\ / ’\ 7N /
b7 7/27171 4 %27171 41/2 7/271 2 %nJrl 4//n 1 /anrl yn A
N/ N/ N\ / \ /

Y1—2nT2—2n T2-2nY3—2n Y3— 2n964 2n 396 2 T-2Y-1 ToY-1

Y1y—1 Yy1y1 Y1ys y3y3 y2n 3y2n 1 Y2n—1Y2n—1

N 7N VAN 7

yn 0//71 41/7L+1 %nfl 4I/n+1 %n 1 Aan 1 Y
N\ / N\ / \ /
Y1Zo Y12 332?/3 Yon— 3502n 2 Tan—2Y2n—1

FiGURE 24. The subcomplex W,. Note that the top two rows form a staircase
complex, such that d(zoy—1) = ¥"y_1y—1 + Z"y1y—-1.

We claim that 75, preserves this subcomplex and acts as the obvious reflection map. To see
this, consider the exchange involution 7., defined in Section 4.2. This sends

Tezch(xiyj) =Y—jT—q, Temch(yixj) =T—5jY—i, and Temch(yiyj) =Y—5iY—i-

Moreover, it is clear from the definition of ¢ on C, that ¥ ® ® vanishes on generators of the form
x:Yj, Yir;, and y;y;. Applying Theorem 4.3 then gives the desired computation of 7,,. Mapping
(D, T) isomorphically onto (W, Ts,) completes the proof. O
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6.3. The involution on K,. We now finally turn to the 7x-class of (K, 7,). Our first step will
be to understand the complex &, ® D,/. This follows [HHSZ21, Section 3.2.2].

Definition 6.12. Let B, be the box complex displayed on the left in Figure 25. This has five
generators v, 19, r—1, 71, and t, with differential

ov=0, Org=Y"r_1+%"ry, Or_1=%"t, oOri=7Y"t, and ot=0.

r_1 —ur—>t Til caun—tY

v J" Jn 'UV 1/‘n yn
| | 1 !

ro —w"— T rg <" —ry

FIGURE 25. The box complex B,, and its dual B). See [HHSZ21, Figure 3.4].

The gradings of these generators are such that gr(v) = gr(¢) = (0,0). Define an involution 7 on B,
by setting

T(v) =v+t
7(ro) =10
T(r-1) =m
T(r) =r_1
T(t) =t.

Note that the action of 7 sends the singleton generator v to (the sum of v with) a square complex
generator. However, unlike in [HHSZ21, Section 3.2.2], 7 does not send the opposite corner of the
square back to v. The reader should compare the complexes B,, and S,,.

The utility of B, is given by the following lemma:
Lemma 6.13. We have (B, 7) ~ (En,7) ® (Dy, 7).
Proof. This is similar to [HHSZ21, Proposition 3.5]. We construct maps
f:& - D,®B,

and
9:& — Dy ®B;
as follows. The map f is given by
f(w;) = w;v for i < —1

flwr) = wi(v+1t) + zom f(ro) = om0
f(w;) = wi(v+t) fori =3 flr-1) = zor—1
f(zi) =z fori <0 f(r1) = zom1
f(z) = zi(v +t) for i > 2 ft) = 2ot
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It is easily checked that f is a grading-preserving chain map; the only subtlety is checking that
of = f0 on wy. We have:

8f(w1) = &(wl(v + t) + 207"1) = (7/n2’0 + %nZQ)(U + t) + ’7/n2’0t
fOowy) = f(P "2+ U z) = V" zov + U 22 (v + 1),

which are equal to each other. Checking 7-equivariance is likewise straightforward; the only subtle
cases are for w_1, wy, and zg. For these, we have

Tf(w_1) = T(w_1v) = wi(v + 1)
flrw_1) = f(wy +71) = wi(v+t) + zor1 + 2071
and
Tf(wy) = 7(w1(v+t) + z0r1) = w_1v + 2071
flrwy) = flw_1 +7_1) = w_1v + 2or—1
and
7f(20) = 7(20v) = 20(v + 1)
f(t20) = f(20 +t) = zov + 20t.

This completes the verification of f.
The map g is given by

vV A\ A\ \ A\
g(rg) = zprg +wiyry +wy'r?y

g(w;") = w;v" g(rly) = wiyt¥ + z5r?
9(2) = z'vY g(ry) =w)'t" +2z5'ry

g(tY) = zy'tV.
An examination of the right-hand side of Figure 25 shows that g is a grading-preserving chain map.

Checking T-equivariance is likewise straightforward; the only subtle cases are for r¥,, r’, and ¢V.
For these, we have

Tg(rYy) = T(wX ity + 25rYy) = wy (t¥ +0vY) + 2z r/

glrrYy) = g(ry +wy) = w'tY + z5ry +wyv"

and
Tg(ry) = T(wytY +z5ry) =wY (tY +vY) + zyrYy
g(rry) = g(r2y +w?y) = wX it + zfrYy + w¥v”
and
Tg(t") = 7(2't") = 25 (7 +v7)
g(ttY) =gt +2y) = 25t" + zg v
This completes the verification for g. O

We are now finally in a position to state our fundamental computation:
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Lemma 6.14. We have (CFK(K,), ) < (Bn, 7).

Proof. By Lemma 6.9, we have
(CFIC(T2n,2n+1#T2n,2n+1)7T#) ~ (gnyT)-

By Lemma 6.11, we have
(CFK(Ton2n+1#Ton2n+1), Tsw)” < (Dp,7)".
Tensoring these together and utilizing Theorem 4.1, we thus have that
(CFK(Kp), ) < (€, 7) ® (Dp, 7)Y ~ (Bp, 1),
where the final local equivalence follows from Lemma 6.13. U

This immediately yields the proof of Theorem 1.3:

Proof of Theorem 1.3. 1t is straightforward to check that an inequality as in Lemma 6.14 implies
an inequality of the large-surgery numerical invariants defined in Section 2.5:

d-(CFK(Kn)o) < dr((Bn)o) and  dr(CFK(Kn)o) < dr((Bn)o)-
See Section 7.2 for further discussion. A direct computation shows that
d:((Bn)o) = —2n and JT((BTL)O) = 0.
Applying Definition 2.23 completes the proof. ([l

Remark 6.15. Throughout this section, we have only worked with the Tx-complexes of our knots.
These are insensitive to the choice of direction. Moreover, as discussed in Section 2.3, the (possible)
non-abelian nature of £;, does not arise unless the action of ¢x is considered simultaneously.
Thus, the computations of this section hold regardless of the way the equivariant connected sum is
performed, not just following the conventions of Figure 1.

7. RELATION TO OTHER INVARIANTS

We now relate the present paper to the results of [DHM20] and [JZ20].

7.1. Equivariant large surgery. We begin with a brief review of [DHM20]. Let Y be a Z/2Z-
homology sphere and let 7 be an involution on Y. Note that Y has a single spin structure s which
is necessarily sent to itself by 7. In [DHM20, Section 4], it is shown that 7 induces a well-defined
automorphism of CF~(Y,s), which we also denote by 7.

Moreover, in [DHM20, Section 4] it is shown that 7 is a homotopy involution. The pair
(CF~(Y,s),7) thus constitutes an abstract :-complex in the sense of [HMZ18, Definition 8.1].
Taking the local equivalence class of this (-complex gives an element

hr(Y) = [(CF (Y, 8)[2], 7)]

in the local equivalence group J of [HMZ18, Proposition 8.8]. (The grading shift is a convention
due to the definition of the grading on CF~.) This is an invariant of equivariant Z/2Z-homology
bordism. In fact, one can construct a Z/2Z-homology bordism group of involutions and show that
h; constitutes a homomorphism from this group into J; see [DHM20, Theorem 1.2] and [DHM20,
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Section 2]. We may also consider the map ¢ o 7 in place of 7, which is similarly a homotopy
involution. This gives another -complex whose local equivalence class

hior (V) = [(CF™ (Y, 5)[=2],0 0 7)]

is another (generally different) element of J. For each of these elements, one can extract the
numerical invariants d and d following the procedure described by Hendricks and Manolescu [HM17].
This yields numerical invariants d, and d, associated to h,, as well as invariants d,, and d,,
associated to h,or.

Remark 7.1. The discussion of [DHM20] is phrased in terms of integer homology spheres, but the
extension to Z/2Z-homology spheres is straightforward. Note that in this more general situation,
the gradings of our complexes take values in Q, and so d, and d, may be Q-valued.

If (K, 7) is an equivariant knot, then any surgery on K inherits an involution; see for example
[DHM20, Section 5. In [Mal22], the second author showed the following:

Theorem 7.2. [Mal22, Theorem 1.1] Let (K, T) be an equivariant knot and let p = g3(K). Then
there is an absolutely graded isomorphism

<CF(53(K), [0]) {p;l - 2} ,T) ~ (CFK(K)o, i)

On the left-hand side, SS(K) is large surgery on K and 7 is the automorphism on CFf(S;’(K), [0])
induced by the inherited 3-manifold involution. On the right-hand side, CFI(K)o is the large
surgery subcomplex of CFI(K) and T is the restriction of the action defined in Section 3.2. A
stmilar statement holds replacing T with 1o T and T with 1 o Tk .

Remark 7.3. There are several confusing conventions regarding absolute gradings. For the sake
of being explicit, we give an explanation of these for the reader.

(1) Note that the “trivial complex” CF~(S3) consists of a single F[U]-tower starting in Maslov
grading —2. However, when discussing Floer complexes in the abstract, it is generally
preferable to treat this complex as starting in Maslov grading zero. This explains the shift
by —2 in the definition of h, and h,or.

(2) Similarly, if K is the unknot, then the large surgery complex Cy (as defined in Section 2.5)
consists of a single F[U]-tower starting in Maslov grading zero. This explains the extra —2
in the isomorphism of Theorem 7.2.

(3) In Section 2.5, we have defined d,(Cp) and d.(Cp) in such a way so that the shift by —2 is
already taken into account. Indeed, note that d.(Cp) = do(Cp) = 0 for the large surgery
complex of the unknot. However, when defining d, and d, in terms of an actual 3-manifold
complex CF~(Y), it is necessary to add two to each of the definitions.

Taking into account the grading shift, Definition 2.23 and Theorem 7.2 immediately imply the
relations referenced in Section 1.4:

oK) + Pt - (3 k), [0])

and
—2V(K) + p-1_ do(S3(K), [0]).
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for o € {r,u7}.

7.2. Inequalities. A key property of the local equivalence group J is that it is partially ordered; see
for example [DHM20, Definition 3.6]. This partial order is consistent with the numerical invariants
d and d, in the sense that if [(C1,¢1)] < [(Co, t2)], then

d(C1) < d(Cy) and d(Cy) < d(Cy).
In [DHM20, Theorem 1.5], it was shown that if (Y7, 7) and (Y3, 72) are two homology spheres with
involutions and W is an equivariant negative-definite cobordism from Y; to Ya, then under certain
circumstances we obtain inequalities

[(CF™ (Y1), m)] < [(CF™(Y2), 72)]

and/or
[(CF™(Y1),c0om)] < [(CF™(Y2),t072)].

It is thus possible to bound the numerical invariants of (Y7, 71) by topologically constructing equi-
variant negative-definite cobordisms into other manifolds (Y3, 72). See [DHM20, Section 5] and
[DHM20, Section 7] for further discussion and examples.

For convenience, we briefly review these results here, generalizing them slightly in the case of
Z,/27Z-homology spheres. Let Y7 and Y3 be two Z/2Z-homology spheres equipped with involutions
71 and 79. Let W be a cobordism from Y to Y5 equipped with a self-diffeomorphism f: W — W
that restricts to 7; on Y;. In what follows, we will be interested in spin®-structures s on W such
that the Heegaard Floer grading shift

c1(s)? — 2x(W) — 30(W)
4

A(W,s) =
is zero.

Theorem 7.4. [DHM20, Proposition 4.10] Let W be a negative-definite cobordism as above with
bi(W) = 0. Suppose W admits a spin®-structure s such that A(W,s) = 0 and s restricts to the
unique spin structure on OW. Then:

(1) If f«s = s, we have hr (Y1) < hr,(Y2).

(2) If fss =5, we have hyor, (Y1) < hyor, (Y2).

Proof. The proof is the same as that of [DHM20, Proposition 4.10] and proceeds by considering
the Heegaard Floer cobordism map associated to (W, s). 0

We consider a particularly important family of such cobordisms, constructed as follows. Let
(K,7) be an equivariant knot and let Y7 = S3(K) be large, odd surgery on K. Define an equivariant
cobordism W by symmetrically attaching (—1)-framed 2-handles along unknots that have linking
number zero with K (as well as with each other):

Definition 7.5. Three important instances of this construction are given in the top row of Fig-
ure 26. We categorize these as follows:

(1) Type Ia: Attach a single (—1)-framed 2-handle along an equivariant unknot which has no
fixed points along the axis of 7.
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(2) Type Ib: Attach a single (—1)-framed 2-handle along an equivariant unknot which has two
fixed points along the axis of 7.
(3) Type II: Attach a pair of (—1)-framed 2-handles which are interchanged by 7.

\/,\

% 7N

AN

/

' ' '

XXX

FIGURE 26. Left: handle attachment/crossing change of Type Ia. Middle: handle
attachment /crossing change of Type Ib. Right: handle attachment/crossing change
of Type IL.

AN\
/

Consider a handle attachment of Type Ia. Let = be the element of Hy(W, 0W;Z) corresponding
to the core of the attached 2-handle and let s be the spin®-structure on W corresponding to the
dual of . This restricts to the unique spin structure on the ends of W, as can be seen from the
fact that the map H?(W;Z) — H?(0W;Z) corresponds to the map Ho(W,0W;Z) — Hy(0W;Z)
under Poincaré duality. Since z has self-intersection —1, we moreover have A(s) = 0. Finally, it is
easily checked that f.s = s. Handle attachments of Type Ib are similar, except that f.s = 5. To
understand handle attachments of Type 11, let = and y be the elements of Hy(W, 0W'; Z) represented
by the cores of the attached 2-handles. Then W admits both a spin®-structure with f.s = s
(corresponding to the dual of x + y) and a spin®-structure with f.s = 5 (corresponding to the dual
of x — y). Once again, these both restrict to the unique spin structure on the ends of W and have
A(s) = 0. See [DHM20, Section 5.2] for further discussion.

In the context of equivariant knots, this immediately gives a set of crossing change inequalities
for V§ and V§. As in Figure 26, define:

Definition 7.6. Let K be an equivariant knot. We categorize equivariant positive-to-negative
crossing changes as follows:

(1) Type Ia: The crossing change occurs along the axis of symmetry and the two strands of the
crossing point in opposite directions along the axis. (Figure 26, top left.)

(2) Type Ib: The crossing change occurs along the axis of symmetry and the two strands of
the crossing point in the same direction along the axis. (Figure 26, top middle.)
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(3) Type II: We perform a symmetric pair of crossing changes. (Figure 26, top right.)

Proof of Theorem 1.9. Passing to large surgery, each of the possible crossing changes is mediated
by a 2-handle attachment of the corresponding type. By Theorem 7.4, we thus have

do(Sy(K), [0]) < do(Sp(K'),[0]) and  do(Sy(K), [0]) < do(Sp(K"),[0])
for o € {r,.7}. Applying the relation (1) immediately gives the desired conclusion. ]

Remark 7.7. In Definition 7.5, attaching our 2-handles along unknots is not essential. However,
we emphasize the unknot case due to its ease of use and connection with the current paper.

7.3. Exotic slice disks. We now turn to the proofs of Theorems 1.5 and 1.6. We establish the
former by showing that at least one of V{j(.J) and V{ (J) is greater than zero.

Proof of Theorem 1.5. We exhibit an equivariant cobordism (of Type II) from (+41)-surgery on J to
(—1)-surgery on the knot 62, where the latter is equipped with a certain involution 7. This is done in
Figures 27 and 28; compare [DHM20, Section 7.5]. Note that the first picture in Figure 27 certainly
constitutes an equivariant cobordism from Sil(J ) to some homology sphere with involution; we
identify this homology sphere as S2;(62). However, we will not bother to make this identification
equivariant, although this can be done. That is, it turns out (rather surprisingly) that we will not
need to explicitly identify the involution 7 on S3,(63).

+1 +1 +1

(c) (d) (e)

FIGURE 27. Attaching a pair of equivariant 2-handles to (+1)-surgery on J. In (a),
we perform the equivariant handle attachment. In (b), we blow down the right-hand
unknot and slide the left-hand unknot partway along its band. In (c), we untwist
the left-hand band. In (d), we slide the right-hand band over the unknot. In (e),
we untwist the right-hand band. Manipulations are continued in Figure 28.

Since the cobordism is of Type II, by Theorem 7.4 it suffices to show that at least one of
dr(521(62)) and  dir(52,(62))

is strictly less than zero. Indeed, we would then have that at least one of d(S3(.J)) and d,- (53, (J))
is strictly less than zero. Since J is genus one, (+1)-surgery constitutes large surgery, so this implies
that one of V{(J) and V§ (J) is strictly greater than zero. (Note that the grading shift (p —1)/4
in the relation (1) in this case is zero.)
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-1

Q) / mlv :
J g

(d) (e) ® (9)

(a

FIGURE 28. Identifying the result of the equivariant handle attachment. Figure (a)
is a copy of (e) from Figure 27; note that both knots in the figure are unknots. In
(b), we retract the right-hand band of the (+1)-curve along itself to clearly make
it into an unknot. In (c), we move a strand of the (—1)-curve slightly to make the
blowdown more apparent. In (d) we blow down the (+1)-curve. In (e) through (g),
we isotope the result to look like the end result of [DHM20, Figure 39]. The reader
may check that this is 69.

The desired claim is established in [DHM20, Section 7.5], but for the sake of completeness we
outline the argument here. Firstly, the knot Floer homology of 62 is easily calculated from the
Alexander polynomial of 63. The Floer homology HF~(5%,(62)) can then be calculated using the
surgery formula; the action of the Hendricks-Manolescu involution ¢ on HF ™~ (52 (62)) can also be
calculated (see for example [DHM20, Section 7.5]). The result is displayed in Figure 29.

Now, either 7 acts on HF~(S3,(62)) by fixing the central Y-shape, or it acts on the central
Y-shape by reflection. By direct calculation, in the former case we have

d;(5%,(62)) =0 and d,,(5%,(62)) = —2
while in the latter, we have
dr(5%1(62)) = —2 and  dir(5%,(62)) = 0.
This completes the proof. ]
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FIGURE 29. Floer homology HF~(S3,(62)) with action of ¢.

Remark 7.8. It possible to provide an immediate proof of Theorem 1.5 as a topological corollary
to [DHM20, Theorem 1.15], as follows. Let ¥ and m/(X) be any pair of symmetric slice disks for
J in some homology ball W. One can show that (+1)-surgery on J is diffeomorphic to Y = oW,
where W) is the positron cork of Akbulut-Matveyev [AM97]. Moreover, under this diffeomorphism,
the induced action of 7 on S3,(.J) is the usual cork involution on Y. Extend the (+1)-surgery
on J along the disks ¥ and 7y (X) to obtain two homology balls By and Bsg, each with boundary
Y. (Here, 0B; and 0B2 are identified via the obvious identity map.) Using 7y, we obtain a
diffeomorphism f: By — By which restricts to the cork involution on Y. (Note that f restricts
to Ty on the complement of a tubular neighborhood of ¥.) If ¥ and 7 (X) were isotopic rel
boundary, then we would have that (W, %) and (W, 7y (X)) were diffeomorphic rel boundary. This
would imply the existence of a diffeomorphism g: By — By restricting to the identity on Y. Then
g~ ' o f is a self-diffeomorphism of Bj restricting to the cork involution on Y = 0B;. However, in
[DHM20, Theorem 1.15], it is shown that no such extension exists.

We now explain why the proof of Theorem 1.5 implies Theorem 1.6. We begin with the following;:

Lemma 7.9. Let (K, T) be a strongly invertible knot in S®. Let W be any (smooth) homology ball
with OW = S3 and let Ty be any extension of T over W. Let ¥ and Ty (X) be a pair of symmetric
slice disks for K. Then Tk ([Fw,x(1)]) = [Fw,r, ) (1)] as elements of Hi(CFK(K)).

Proof. The proof is the same as that of Theorem 1.2. Let F be a decoration on Y. We again have
the commutative diagram

CFK(U) — 27y cFK(K)

t t
F T
CFK(UT) —W, CFK(K™)

FW,sw(TW (F

CFK(U) % CFK(K)
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Note that the decoration sw(ry (F)) is associated to the disk 7y (2), which is not necessarily
isotopic to X. Since ¥ and 7y (X) are disks, no additional subtlety involving the decoration arises,
and we may instead write Fyy,» and Fyy (s along the top and bottom rows in the above diagram,
respectively, to represent that these maps are unique up to chain homotopy. Using the fact that
Tk acts trivially on CFIC(U) immediately gives the claim. O

The nontriviality of our numerical invariants then easily obstructs Fiyx(1) and Fyy ,(s)(1) from
being homologous:

Proof of Theorem 1.6. Let ¥ and 1y (X) be a pair of symmetric slice disks for J and suppose that
[Fws(1)] = [Fw,ry () (1)] as elements of H,(CFK(J)). Lemma 7.9 then implies that [Fiyx(1)] is
a Ti-invariant element in H,(CF/C(J)). Using this (and the fact that Fyy s, has zero grading shift),
it is straightforward to construct an absolutely graded, Tx-equivariant local map from the trivial
complex into CFK(J). This shows that 0 < d,(CFK(J)p) and thus that V(J) < 0. Moreover,
since Fyy; homotopy commutes with ¢x, we also know that [Fiyx(1)] is tx-equivariant. Hence
[Fwx(1)] is in fact tx o T-equivariant. This likewise shows that 0 < d,-(CFK(J)o) and thus that
Vi (J) <0, contradicting the proof of Theorem 1.5.

We now verify that [Fiys(1)] # [Fw,n, ) (1)] as elements of @((J) ~ H.(CFK(J)/(U,V)).
This follows algebraically from the previous paragraph and an analysis of CF/KC(.J). We first calcu-
late the ranks of HFK (J) in each Alexander and Maslov grading. This can be done using the knot
Floer calculator implemented in SnapPy [CDGW]; the results are displayed in Figure 30.

Alexander | Maslov | Rank of HFK (J)
-1 -2 2
-1 -1 2
0 —1 4
0 0 )
1 0 2
1 1 2

FIGURE 30. Rank of HFK (J) in each Alexander and Maslov grading.

Note that this computation of HFK (J) uses the conventions of Ozsvéath-Szabd. Although J is
not thin, a similar analysis as in (for example) [Pet13] allows us to determine the full knot Floer
complex from the hat version. Translating into the conventions used by Zemke gives the complex
displayed in Figure 31. (For a discussion of this procedure, see for example [DHST21, Section
2].) This consists of a singleton generator v, together with four squares. Two of these squares are
spanned by % - or ¥ -powers of {a;,b;,c;,d;} (i = 1,2) and have a corner in (gry;, gry,)-bigrading
(0,0). The other two are spanned by by %- or ¥ -powers of {e;, fi,gi,hi} (i = 1,2) and have a
corner in (gry, gry,)-bigrading (—1, —1).

Now, z = Fyx(1) and 7k = Fy,,(x)(1) are cycles in CFK(J) which we know are not
homologous. In the quotient CFK(J)/(U, V), the images of x and 7xx remain cycles. The only way
for these images to become homologous in CFK(J)/(U, V') would be for z — 7xa to be (homologous
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Generator | gry; | gry

v 0 0

a; 0 0

ci —u— d; gi — % — h; b; 1 1

. 1 o7 T ¢ —1 1
‘V | “‘” | d; 00

a; —u% — b ei —%— fi j{ _01 :é

g; —2 0

h; -1 -1

F1GURE 31. The complex CFK(J), spanned by v together with {a;, b;, c;,d;} and
{ei, fi,gi, hi} for i = 1,2. Bigradings of generators are given on the right.

to) a nonzero element of CFI(J) lying in the image of (%,%). However, an examination of
Figure 31 shows that there are no elements of CFK(J) with gr;; = gry, = 0 which lie in the image
of (%,V), a contradiction. O

We now show that taking the n-fold connected sum of J with itself gives a slice knot with
2" distinct exotic slice disks, distinguished by their concordance maps on HFK. For a similar
construction, see [SS21, Corollary 6.6].

Theorem 7.10. The (equivariant) connected sum #nJ admits 2" distinct exotic slice disks, dis-
tinguished by their concordance maps on HFK.

Proof. As in Figure 2, let D and D’ be the pair of exotic slice disks for J from [Hay21, Section
2.1]. For each binary string s of length n, there is an obvious slice disk Dy for #,J constructed by
taking the boundary sum of copies of D and D’. Explicitly, each index in s with a 0 contributes
a copy of D, while each index with a 1 contributes a copy of D’; see Figure 32. The fact that
D and D’ are topologically isotopic easily shows that the 2" disks constructed in this manner are
topologically isotopic rel boundary.

A\ A CAA KA

FIiGURE 32. Schematic depiction of #,.J. Compressing along the indicated curves
gives the slice disk D, corresponding to the binary string s = 010---0.

Now, we may identify
HFK (#,J) = (X) HFK (J).
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Under this identification, [Fpga p_ (1)] is the tensor product of copies of [Fps p(1)] and [Fpa p/(1)],
each in the appropriate index. But [Fps p(1)] # [Fpsp(1)] as elements of the vector space
HFK(J). It follows that the [Fps p (1)] are different for different strings s. This completes the
proof. O

Finally, we generalize Theorem 1.5 to an infinite family of knots .J,, with exotic pairs of slice
disks, considered by Hayden in [Hay21, Section 2.3]. These are displayed on the left in Figure 33 and
are obtained from the knot J of Theorem 1.5 by adding pairs of (negative) full twists, as indicated.
We have an obvious pair of slice disks for J, given by compressing along the displayed red and blue
curves. In [Hay21, Figure 9], Hayden constructs a handle diagram for the complement of these
disks; it is immediate from [Hay21, Figure 9] that the disk exteriors have fundamental group Z and
thus that the disks are topologically isotopic. Here, we show that knot Floer homology obstructs
any two symmetric pair of disks for J, from being smoothly isotopic.

FiGURE 33. An infinite family of knots J,, admitting exotic pairs of slice disks. See
[Hay21, Theorem B] and [Hay21, Section 2.3].

Theorem 7.11. Let J,, (for n = 0) be as in Figure 33. Then i~g4(Jn) > 0. In particular, no pair
of symmetric slice disks ¥ and Ty (X) are (smoothly) isotopic rel Jy,. This holds for any (smooth)
homology ball W with oW = S3 and any extension Ty of T over W.

Proof. Clearly, (+1)-surgery on J,, admits a negative-definite equivariant cobordism to (+1)-surgery
on J, given by attaching (—1)-framed 2-handles along the green curves indicated on the right in
Figure 33. Noting that each J, has Seifert genus one, it follows from Theorem 7.4 that

Vi(Jn) 2 Vo(J) and  Vi(Jn) = Vi(J)

and
Vi (Jn) =2 Vi (J) and V{(Jn) = Vi (J).

The claim then immediately follows from our bounds on the invariants of .J. g
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7.4. Secondary invariants. We now discuss the secondary invariant V5 (X%, Y') of [JZ18, Section
4.5]. This is defined as follows. Let K be a knot in S3. For simplicity, let W be a homology ball
with boundary S? and let ¥ and X’ be two slice disks for K in W. Consider the elements Fyyx(1)
and Fyy sy (1) in CFK(K). (Note that since ¥ and ¥’ are disks, no choice of decoration is needed;
the more general definition of V(X, ¥') in [JZ18, Section 4.5] requires a discussion of a specific set
of dividing curves.) Viewing Fyx(1) and Fyysy(1) as elements of the large surgery subcomplex
CFK(K)op, define

Vo(5,%) = min{n € Z%° | U™ - [Fyx(1)] = U™ - [Fivsy (1)] in Hy(CFK(K)o)}-

In [JZ18, Theorem 1.1], it is shown that V5 (2, ¥’) bounds the stabilization distance between 3 and
¥’ from below:
2, Y }

%(2’ E/) < IVIUJSIZ( 2
The following is straightforward:

Proof of Theorem 1.10. Let 3 be any slice disk for K in W, and suppose that Vp(X, 7w (X)) = n.
By Lemma 7.9, we have

T ([Fws(D]) = [Fw,ry (5 (1D)]-
Multiplying both sides by U™, we obtain a Tx-invariant element in the homology of CFK(K)g with
grading —2n. This implies d,(CFK(K)p) = —2n and thus that V(K) < n. Moreover, since Fiyx,
homotopy commutes with ¢x, we also know that [Fyyx(1)] is tx-equivariant. Hence we obtain an

Li © Tk-invariant element in the homology of CFK(K)y with grading —2n. This similarly shows
that Vi (K) < n. O

8. PERIODIC KNOTS

We close this paper by discussing a similar family of results in the periodic setting. As in the
strongly invertible case, it is possible to define an action of 7x associated to a 2-periodic knot K
and consider the notion of a periodic (T, ti)-complex. The same subtlety as in Section 3.4 arises,
in that this is only an invariant of equivariant concordance in the decorated category. Nevertheless,
once again we may define numerical invariants V§ and V§, and these give bounds for the equivariant
slice genus. While much of the formalism is thus the same, the authors have not yet been able to
find many interesting calculations of periodic invariants. One key difference is that in the periodic
case, there is no natural notion of equivariant connected sum. Correspondingly, it turns out that
the set of periodic (7x, tx)-complexes (up to local equivalence) does not seem to admit a natural
group structure.

8.1. Construction of 7. We begin with the construction of 7. Let (K, 7) be a 2-periodic knot.
In contrast to the strongly invertible case, it is natural to assume that K is oriented (since K may
not come with an orientation-reversing diffeomorphism). Let w and z be a pair of basepoints on K
which are interchanged by 7, and let H be any choice of compatible Heegaard data for (K, w, z).
Taking the pushforward under 7 gives a tautological isomorphism

t: CF(H) — CFK(rH).
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The latter complex represents the same knot, but now the roles of the basepoints have been inter-
changed. We now apply a half-Dehn twist which moves w into z and z into w:

p: CFK(TH) — CFK(pTH).
Finally, we have the naturality map
O(ptH,H): CFK(ptH) — CFK(H).
We thus define 7 to be
it CFK(H) 5 CFK(rH) & CFK(prH) 2> CFK(H).

As before, 1y is independent of the choice of Heegaard data for (K, w, z).
The proof of the following is analogous to that of Theorem 1.7:

Theorem 8.1. Let (K, T) be an (oriented) 2-periodic knot and fix a pair of symmetric basepoints
(w,z) on K. Let H be any choice of Heegaard data compatible with (K,w,z). Then T induces an
automorphism
T CFK(H) — CFK(H)

with the following properties:

(1) Ty is filtered and F[% , Y ]|-equivariant

(2) 73, ~ n

(3) T O tH > 13 0TH
Here, 13 is the Hendricks-Manolescu knot Floer involution on CFK(H) and sy is the Sarkar map.

Moreover, the homotopy type of the triple (CFK(H), Ty, t3) is independent of the choice of Heegaard
data H for the doubly-based knot (K, w, z).

Proof. Left to the reader; analogous to Theorem 1.7. O
Note the difference in all three properties with Theorem 1.7.

Remark 8.2. It turns out that the analogous subtlety to Section 3.3 does not arise at this stage:
the homotopy class of (CFI(H), Ty, tx) is independent of the choice of symmetric basepoints w
and z. This is because any two pairs (w,z) and (w’,2’) on K are related by a 7-equivariant
basepoint-pushing diffeomorphism along K. Unlike in the strongly invertible case, the associated
pushforward map commutes with all the components of 7;. Combined with the fact that K comes
with an orientation, this shows that we may unambiguously refer to the (7x, tx)-complex of (K, 1),
without specifying any additional data.

8.2. Periodic (7x, tx)-complexes. Given Theorem 8.1, it is natural to define a (7x, tx )-complex
formalism in the periodic setting:

Definition 8.3. A periodic (Tx, L )-complex is a triple (C, T, tx) such that:
(1) C is an abstract knot complex
(2) tg: C — C is a skew-graded, R-skew-equivariant chain map such that

2
g = CK
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(3) 7k is a graded, R-equivariant chain map such that
7'[2( ~¢x and TKOLKg ~ LK OTK.

The notions of homotopy equivalence and local equivalence carry over without change. We may
also define the notion of a twist by ¢x as before. However, it should be noted that there is no
analogue of Lemma 2.21 in the periodic setting.

Remark 8.4. The principal difference between local equivalence in the periodic and strongly
invertible settings is the absence of a natural group structure in the former. Indeed, the reader can
check that trying a product law such as

Te = T1 QT2
or even
T = ([d®id+ 2@ V) o (11 ® 72)
does not satisfy 73 ~ ¢g.
The algebraic procedure of Section 2.5 also carries over without change to define numerical
invariants V{(K), VJ(K),V{ (K), and V{(K). In [Mal22], the second author established a large

surgery formula for periodic knots. Thus, V§ and V§ again have the interpretation as invariants
associated to large surgeries.

8.3. Equivariant concordance and cobordism. As in Section 2.1, we may define the notion
of an isotopy-equivariant homology concordance between two periodic knots (K7, 7) and (K2, 72).
The subtlety of Section 3.4 again arises: even if 3 is equivariant or isotopy-equivariant, it is unclear
whether an equivariant or isotopy-equivariant pair of arcs on ¥ can be chosen. We thus have:

Theorem 8.5. Let (K1, 71) and (Ko, 72) be two periodic knots in S3. Suppose that we have an
isotopy-equivariant homology concordance between (K1, 1) and (Ka,72). Then (CFK(K1), Tk, , LK, )

is locally equivalent to either (CFK(K2), Tk,, ti,) or (CFI(K2), Sk, © Ty, LK,). Hence Vi(K) and
V§(K) are invariant under isotopy-equivariant homology concordance.

Proof. Left to the reader; analogous to Theorem 3.15. O

Finally, we formally record that the results of Theorem 1.2 and Theorem 1.10 hold in the
periodic setting:

Theorem 8.6. Let (K, T) be a 2-periodic knot in S3. Then for o € {1,171},

1+ igy(K _ 1+ g, (K
- [* “2’4( )w < VoK) < Vi(K) < [+ Zg‘*( )].
Proof. Left to the reader; analogous to Theorem 1.2. O

Theorem 8.7. Let (K, T) be any 2-periodic knot in S3. Let W be any (smooth) homology ball with
boundary S°, and let Ty be any extension of T over W. If ¥ is any slice disk for K in W, then

max{V(K), Vg (K)} < Vo(E, mw (X))
Proof. Left to the reader; analogous to Theorem 1.10. g
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