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Abstract. Gompf showed that for K in a certain family of double-twist knots, the swallow-
follow operation makes 1{n-surgery on K#´K into a cork boundary. We derive a general Floer-
theoretic condition on K under which this is the case. Our formalism allows us to produce many
further examples of corks, partially answering a question of Gompf. Unlike Gompf’s method,
our proof does not rely on any closed 4-manifold invariants or effective embeddings, and also
generalizes to other diffeomorphisms.

1. Introduction

The study of exotic phenomena has traditionally occupied a central role in the development
of low-dimensional topology. Following the work of Akbulut [1], it has emerged that this has a
close connection to the theory of corks. Recall that a cork is a compact, contractible 4-manifold
C equipped with a boundary diffeomorphism f : BC Ñ BC which does not extend over C as a
diffeomorphism. In contrast, such an f always extends over C as a homeomorphism by work of
Freedman [7]. It is now known that any two smooth structures on the same simply-connected
closed 4-manifold are related by cutting out some C and re-gluing via f , an operation called a
cork twist [20, 3].

In [9], Gompf gave a simple new construction leading to the first instance of an infinite-
order cork, or Z-cork. This is a compact, contractible 4-manifold C equipped with a boundary
diffeomorphism f : BC Ñ BC such that no power of f extends over C as a diffeomorphism.
Gompf’s cork is constructed by considering the 3-manifold

YK,m “ S3
1{mpK# ´ Kq

for K a knot in S3 and m P Z‰0. It is not hard to see that YK,m bounds the contractible
manifold CK,m obtained by extending 1{m-surgery on K#´K over its standard ribbon disk in
B4. Note that K#´K admits a self-isotopy defined by pushing the summand K along K#´K

once around in a full loop. This is referred to as the swallow-follow operation tλ; we denote
the induced self-diffeomorphism on the surgered manifold YK,m also by tλ. See Section 2.1 for
further discussion.

Gompf showed that for a specific family of double-twist knots K beginning with K “ 41,
each CK,m may be embedded in a blown-up elliptic surface X such that twists by powers of tλ
correspond to different Fintushel-Stern knot surgeries, and in fact give an infinite collection of
pairwise distinct smooth structures on X. This proves that these pCK,m, tλq are Z-corks. It is
natural to ask which other choices of K make pCK,m, tλq into a Z-cork, or even just a cork. This
question was posed in [9]:

Question 1.1 ([9, Question 1.6]). Let m P Z‰0 and tλ be induced from the swallow-follow
operation on K# ´ K. For which knots K is pCK,m, tλq is a Z-cork?

In this paper, we investigate the question of when pCK,m, tλq is a cork, although Gompf
originally posed Question 1.1 in the setting of Z-corks. (We expect that the methods of this
paper can be generalized to establish infinite-order corks; see Remark 1.4 below.) As far as the
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authors are aware, the knots considered in [9] are the only affirmative examples of such pCK,m, tλq
appearing in the literature, even in the weaker setting where pCK,m, tλq is only required to be
a (regular) cork. It was shown by Ray-Ruberman that if K is a torus knot, then pCK,m, tλq is
not a cork for any m P Z‰0 [26]. The question of which K satisfy Question 1.1 thus certainly
appears to be subtle.

Gompf’s original proof relies on finding an embedding of CK,m in a closed 4-manifold X

and identifying powers of the cork twist with different Fintushel-Stern knot surgeries on X.
The authors are not aware of any systematic method for establishing a similar construction for
other families of knots. In this paper, we instead provide a flexible criterion on the knot Floer
homology of K which guarantees that pCK,m, tλq is a cork. The perspective we take is also
slightly different than the one in Question 1.1: instead of corks, we focus on the notion of a
strong cork, due to Lin-Ruberman-Saveliev [18]. Recall that a strong cork is a pair pY, fq where
Y is a 3-manifold and f is a diffeomorphism of Y which does not extend over any homology
ball that Y bounds.1

In the present work, we show that pYK,m, tλq constitutes a strong cork for a large family of
knots K, including many of the double-twist knots from [9]. In the context of Question 1.1, this
means that the role of the specific manifold CK,m is de-emphasized: we may replace CK,m by any
contractible manifold (or homology ball) that YK,m bounds. For instance, in the construction
of CK,m, we may use any slice disk for K# ´ K in place of the standard one. Note that YK,m

may also bound a contractible manifold (or homology ball) which is not constructed from a slice
disk in such a manner.

As we discuss in Section 2.1, the swallow-follow operation is a longitudinal Dehn twist along
an incompressible torus T in YK,m, and it is natural to ask whether any other Dehn twists along
T make CK,m into a cork. In [10], it was shown that the meridional twist extends over CK,m

for any K and m “ ˘1. While we are not able to establish any examples of corks formed from
meridional twists, the approach of this paper is suited to studying general Dehn twists along
T . Our formalism can likewise be used to produce examples of corks constructed using a more
flexible class of boundary diffeomorphisms than Dehn twists along T ; see Section 2.2.

1.1. Statement of results. We now state our results. In Section 2.5, we define a Floer-
theoretic condition on K which we call S-nontriviality. For experts, this means that the Sarkar
map s is homotopically nontrivial on the pιK-qconnected complex of K. Denote the longitudinal
twist by tλ and the meridional twist by tµ. We prove:

Theorem 1.2. If K is S-nontrivial, then pYK,m, tiλt
j
µq is a strong cork for all pm, i, jq P Z3 with

m and i both odd.

The condition of being S-nontrivial is quite mild, as the following computation indicates:

Corollary 1.3. Let K be a Floer-thin knot satisfying

2ArfpKq ` |τpKq| ” 1 or 2 mod 4.2 (1)

Then pYK,m, tiλt
j
µq is a strong cork for all pm, i, jq P Z3 with m and i both odd.

See for example [24] for a discussion of Floer-thin knots. Note that since all alternating or
quasi-alternating knots are Floer-thin, Corollary 1.3 greatly expands the set of corks arising
from Gompf’s construction. All double-twist knots κpr,´sq (with r and s positive) considered
in [9] are alternating. It is not hard to check that κpr,´sq satisfies (1) precisely when r and s

1We generally require Y to bound at least one contractible manifold, so that a strong cork is a cork.
2For experts, this simply means that the number of “box subcomplexes” in the local equivalence class of K is

odd. See [14, Section 8].
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are both odd; this includes the simplest example of K “ 41. In order to emphasize the flexibility
of our approach, we list the set of knots with eight or fewer crossings to which Theorem 1.2 (via
Corollary 1.3) applies. These are:

41, 52, 63, 74, 75, 77, 81, 82, 86, 87, 812, 813, 814, 815, 817, 818, and 821.

Of these, only 41 and 81 appear in [9], illustrating the wide applicability of Theorem 1.2. (On
the other hand, the knots 61 and 83 are covered by [9] but are not included in Theorem 1.2.)

We are also able to use Theorem 1.2 to produce examples of corks arising from connected
sums of torus knots. This is particularly interesting in light of the results of [10] and [26], which
show that if K is a torus knot, then CK,˘1 does not constitute a cork for any twist in H1pT,Zq.
In contrast, we prove that applying Gompf’s construction to the connected sum of torus knots
often produces a cork. Indeed, it is straightforward to check that Corollary 1.3 even applies to
the simplest connected sum of torus knots K “ T2,3#T2,3. More generally, in Corollaries 5.1
and 5.2 we show that Theorem 1.2 applies to the families

K “ T2,2n`1#T2,2n`1 and K “ ´2T2n,2n`1#T2n,4n`1

for n odd. Note the latter class of knots is not Floer-thin. In general, the condition of S-
nontriviality is fairly mild and can be verified for many non-thin knots; see Section 2.5 for
further discussion.

We again emphasize that our approach to Question 1.1 is rather different than the one in [9]
and does not consist of finding embeddings of corks into specific closed 4-manifolds. Instead,
we proceed by analyzing the induced action of tλ (and tµ) on the Heegaard Floer homology
of YK,m. This action is defined due to the work of Juhász-Thurston-Zemke [16] regarding the
action of the mapping class group on Heegaard Floer homology. Such ideas were first used to
study branched double covers of knots by Alfieri-Kang-Stipsicz [2]. A systematic application to
corks was carried out by Dai-Hedden-Mallick [4]; see also the work of Lin-Ruberman-Saveliev
using monopole Floer homology [18].

Remark 1.4. The authors expect that the ideas of the present paper can likely be strengthened
to show that the corks in Theorem 1.2 are infinite-order. At the moment, however, there
are certain technical obstructions to doing this. As a first step, we would need to obtain an
appropriate set of naturality results for Heegaard Floer theory with Z-coefficients, together with
a definition of the Floer cobordism maps over Z; see [8] for progress in this direction.

Our methods can also be extended to analyze a more general class of self-diffeomorphisms
defined on knot surgeries, which we describe in Section 2.2. Indeed, fix any knot K in S3 and
let φ be a relative self-diffeomorphism of pS3,Kq. This induces a self-diffeomorphism of any
surgered manifold S3

1{npKq, which by abuse of notation we also denote by φ. In Section 3, we
describe a sufficient condition for the pair pS3

1{mpKq, φq to be a strong cork in terms of the
local equivalence class of the triple pCFKpKq, φ, ιKq. In Section 2.6, we define an integer-valued
Frøyshov-type invariant

δpK,φq ě 0

which may be computed from CFKpKq (with the actions of φ and ιK) and completely charac-
terizes the existence of a local map from the trivial complex into pCFKpKq, φ, ιKq. We prove:

Theorem 1.5. If δpK,φq ą 0, then pS3
1{mpKq, φq is a strong cork for any m positive and odd.

Gompf’s construction is obtained by taking φ to be the swallow-follow operation on the
connected sum K#´K. In fact, the swallow-follow operation fits into a larger family of relative
self-diffeomorphisms on composite knots of the formK1#K2; we call these split diffeomorphisms.
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Split diffeomorphisms are especially convenient from the point of view of Floer theory; further
examples are given in Section 5.

The results of this paper may also be viewed as a generalization of the program of [4] in
the following sense: in [4], Floer-theoretic techniques were used to produce many novel families
of (strong) corks via 1{n-surgeries on classes of symmetric slice knots. This is in contrast to
previous constructions of corks in the literature, which have generally focused on explicit handle
decompositions of candidate contractible manifolds. Corollary 1.3 vastly enlarges the set of
(strong) corks arising as surgery on slice knots, with the swallow-follow operation playing the
role of the knot symmetry in [4]. Compare [4, Theorem 1.11]. We note that δ differs from the
invariants defined in [4] and that the examples presented here cannot be recovered from the
formalism of [4]; see Remark 2.6.

Organization. In Section 2, we review the algebraic setup of Heegaard Floer homology and
define the notion of S-nontriviality. In Section 3, we prove a general cork-theoretic detection
result for certain knot surgeries and use this to establish Theorem 1.5. In Section 4, we apply
this to prove Theorem 1.2. In Section 5, we prove Corollary 1.3 and give further examples of
strong corks detected using our obstructions.

Acknowledgments. The authors would like to thank Kristen Hendricks, Jen Hom, Tye Lid-
man, and Maggie Miller for helpful conversations. ID was partially supported by NSF grant
DMS-2303823. AM was partially supported by NSF grant DMS-2019396. IZ was partially
supported by NSF grant DMS-2204375.

2. Background

In this section, we give a more precise definition of Gompf’s cork and review some essential
features of Heegaard Floer and knot Floer homology.

2.1. Gompf’s construction. Let K1 and K2 be any pair of knots in S3. Define a self-
diffeomorphism tλ of pS3,K1q as follows: denote the boundary of a tubular neighborhood of K1

by T and let T ˆ r´1, 1s be a neighborhood of T which does not intersect K1. On T ˆ r´1, 1s,
define tλ to be the trace of an isotopy which rotates T once around so that a point on T sweeps
out an oriented longitude of K1. On the complement of T ˆ r´1, 1s, define tλ to be the identity.
We refer to tλ as the longitudinal twist ; the meridional twist tµ is defined similarly. Note that
tλ and tµ fix K1 pointwise.

Now form the connected sum K1#K2 by placing K2 in a small ball which is disjoint from
r´1, 1s ˆT and on the same side of T as K1. Then tλ and tµ also define self-diffeomorphisms of
the pair pS3,K1#K2q, which we likewise denote by tλ and tµ. Since these similarly fix K1#K2

pointwise, they induce self-diffeomorphisms of any surgered manifold S3
r pK1#K2q. Abusing

notation, we again denote these surgered diffeomorphisms by tλ and tµ. See Figure 1. These
diffeomorphisms were referred to as the torus-twists by Gompf [9].

Now suppose K2 is inverse to K1 in the concordance group, so that K1#K2 bounds a slice
disk D. For any m P Z‰0, define CD,m by cutting out D from B4 and attaching a 2-handle
along a meridian of K1#K2 with framing ´m. It can be checked that CD,m is a contractible
manifold and that

S3
1{mpK1#K2q “ BCD,m.

Note that different choices of D will in general give different contractible manifolds. Importantly,
it is not clear whether or not the self-diffeomorphisms tλ and tµ extend over CD,m, or whether or
not this fact is independent of D. Moreover, S3

1{mpK1#K2q may bound contractible manifolds
or homology balls which are not constructed from a slice disk in such a fashion.
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Figure 1. The swallow-follow torus T in the case where K1 “ 41. The torus is
following K1 while swallowing K2.

Gompf’s construction is obtained by specializing to the case where K1 “ K, K2 “ ´K, and
D is the standard ribbon disk for K# ´ K, in which case we denote CD,m by CK,m.3 In [9,
Theorem 1.2], it is shown that if K is taken from a certain family of double-twist knots κpr,´sq,
then CK,m can be embedded in a blown-up elliptic surface such that cork twists by powers of
tλ give pairwise nondiffeomorphic 4-manifolds (distinguished by the Seiberg-Witten invariants).
In particular, no power of tλ extends as a diffeomorphism over CK,m.

2.2. Generalizing Gompf’s construction. Although we will primarily be interested in the
swallow-follow diffeomorphism, Gompf’s construction can be placed in a more general context
as follows:

Definition 2.1. A relative (self-)diffeomorphism of pS3,Kq is an orientation-preserving self-
diffeomorphism of pS3,Kq which fixes a neighborhood NpKq of K pointwise. If φ is a relative
diffeomorphism of pS3,Kq, then φ induces a self-diffeomorphism of any surgery along K by
choosing the surgery solid torus to lie in NpKq. By abuse of notation, we denote the resulting
diffeomorphism again by φ and refer to it as the corresponding surgered diffeomorphism.

In this paper, we will be interested in a particular class of relative diffeomorphisms:

Definition 2.2. Let φ1 and φ2 be relative diffeomorphisms of pS3,K1q and pS3,K2q, respec-
tively. Let B1 be a small ball intersecting K1 which is fixed by φ1, and similarly for B2.
We obtain a relative diffeomorphism φ1#φ2 of pS3,K1#K2q by forming the connected sum
pS3,K1q#pS3,K2q along these balls. We refer to a self-diffeomorphism constructed in this man-
ner as a split diffeomorphism.

The swallow-follow diffeomorphism is the split diffeomorphism tλ#id on K# ´ K obtained
by putting the longitudinal twist tλ on the first factor and the identity on the second. (In the
context of Gompf’s construction, we often write tλ in place of tλ#id when our meaning is clear.)
We give further examples of split diffeomorphisms in Section 5. In general, if K is slice, then
any relative diffeomorphism φ of pS3,Kq gives rise to a candidate family of strong corks by
considering the surgeries pS3

1{mpKq, φq. If K “ K1#K2, the sliceness condition can of course be
tautologically manufactured by choosing K2 to be a concordance inverse of K1.

As we will see, another reason for considering the class of split diffeomorphisms is that the
action of φ1#φ2 on CFKpK1#K2q is straightforward to understand. Indeed, as the name sug-
gests, the action of φ1#φ2 on CFKpK1#K2q may be identified with the action of φ1 b φ2 on

3Our conventions differ slightly from [9]: Gompf’s notation Cpκ,mq has boundary given by ´1{m-surgery on
K# ´ K, and thus corresponds to our CK,´m.
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CFKpK1q b CFKpK2q. This will allow us to formulate a more concise Floer-theoretic condition
for detecting corks.

2.3. Heegaard Floer homology. We now give a brief overview of the background in Heegaard
Floer homology necessary for our proof. We assume that the reader has a broad familiarity with
the Heegaard Floer package [23, 22] as well as a general understanding of the involutive Heegaard
Floer formalism of Hendricks-Manolescu [14] and Hendricks-Manolescu-Zemke [15].

Let Y be a rational homology sphere and s be a self-conjugate spinc-structure on Y . There
are two automorphisms of CF´pY, sq that we consider in this paper. Firstly, in [14] Hendricks
and Manolescu defined the Heegaard Floer involution ι:

ι : CF´pY, sq Ñ CF´pY, sq.

This is a grading-preserving, FrU s-equivariant homotopy involution on CF´pY, sq. Secondly,
suppose that Y is equipped with a self-diffeomorphism φ. For the sake of brevity, we will often
refer to pY, φq as an equivariant (rational) homology sphere. By work of Juhász-Thurston-Zemke
[16], for each spinc-structure s on Y such that φ˚psq “ s, we obtain an induced action

φ : CF´pY, sq Ñ CF´pY, sq,

which by abuse of notation we also denote by φ. This is a grading-preserving, FrU s-equivariant
chain map from CF´pY, sq to itself.4 Note that the action of φ has a homotopy inverse given
by the action of φ´1. It is straightforward to show that ι and φ homotopy commute; see for
example [4, Lemma 4.4].

We formalize this information in the following abstract definition:

Definition 2.3. A pφ, ιq-complex consists of the following:

(1) A free, finitely-generated, Q-graded chain complex C over FrU s such that

U´1H˚pCq – FrU,U´1s.

We require C to be graded by a coset of Z in Q with degpBq “ ´1 and degpUq “ ´2.
(2) Grading-preserving, FrU s-equivariant chain maps φ : C Ñ C and ι : C Ñ C such that

φ admits a homotopy inverse, ι is a homotopy involution, and φ and ι commute up to
homotopy.

A morphism (or map) f from pC1, φ1, ι1q to pC2, φ2, ι2q is a grading-preserving, FrU s-equivariant
chain map from C1 to C2 such that fφ1 » φ2f and fι1 » ι2f . A homotopy equivalence of pφ, ιq-
complexes consists of a pair of morphisms f and g between them that are homotopy inverses.
We denote chain homotopy by ».

If φ is a relative diffeomorphism of pS3,Kq, then φ acts trivially on the homology of the
complement of K. It follows that the surgered diffeomorphism acts as the identity on the set
of spinc-structures on any surgery along K. Hence for any self-conjugate spinc-structure s, the
triple

pCF´pS3
r pKq, sq, φ, ιq

is a pφ, ιq-complex in the sense of Definition 2.3.

Definition 2.4. Let f : C1 Ñ C2 be a morphism of pφ, ιq-complexes. We say that f is local if
the induced map

f˚ : U
´1H˚pC1q – FrU,U´1s Ñ U´1H˚pC2q – FrU,U´1s

4Strictly speaking, φ should be an element of the based mapping class group. However, if Y is a rational
homology sphere, then it follows from [28, Theorem D] that this condition can be relaxed; see for example [4,
Lemma 4.1].
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is an isomorphism. If there are local maps in both directions between C1 and C2, then we say
that C1 and C2 are locally equivalent. Occasionally, we will refer to f as local even if it is only
grading-homogeneous (rather than grading-preserving), so long as it homotopy commutes with
φ and ι and satisfies the localization condition of Definition 2.4.

The importance of Definition 2.4 is given by the following simple lemma. We say that a
cobordism W from pY1, φ1q to pY2, φ2q is equivariant if there exists a self-diffeomorphism φ of
W which restricts to φi on Yi.

Lemma 2.5. Let pW,φq be an equivariant negative-definite cobordism with b1pW q “ 0 between
equivariant homology spheres pY1, φ1q and pY2, φ2q. Suppose that there exists a self-conjugate
spinc-structure s on W such that φ˚psq “ s. Then

FW,s : pCF´pY1, s|Y1
q, φ1, ι1q Ñ pCF´pY2, s|Y2

q, φ2, ι2q

is a local map, up to grading shift.

Proof. It is a standard fact that FW,s induces an isomorphism on U´1HF´ and that it satisfies
the relation FW,s ˝ ι1 » ι2 ˝ FW,s. The fact that FW,s ˝ φ1 » φ2 ˝ FW,s follows from [28, Theorem
A]; see for example [4, Proposition 4.10]. �

In order to establish that a given pair pY, φq is a strong cork, it thus suffices to prove that
there is no local equivalence between the complex of S3, which is given by pFrU s, id, idq, and the
complex pCF´pY q, φ, ιq.

Remark 2.6. One can form a local equivalence group by taking the set of all pφ, ιq-complexes
and quotienting out by the notion of local equivalence. In the context of involutive Heegaard
Floer homology, the notion of local equivalence first appeared in [15] and was subsequently uti-
lized in [4] to study corks and symmetries of manifolds. For experts, we note that Definition 2.3
qualitatively differs from previous such constructions by simultaneously including two automor-
phisms of C. Indeed, one obtains coarser local equivalence groups by considering only pC, ιq or
pC, φq, or even pC, ιφq as in [4]. However, none of these suffice to capture the nontriviality of the
examples in this paper. The first example of this nature was observed in [5], where the above
formalism is implicit.

2.4. Knot Floer homology. We assume that the reader is familiar with the interpretation of
knot Floer homology as a free, finitely generated chain complex CFKpKq over FrU ,V s. See
e.g. [31]. Given any such complex, there are maps

Φ “
d

dU
pBq and Ψ “

d

dV
pBq;

see [29, Section 3]. We define the Sarkar map to be

s “ id ` ΦΨ.

This was studied in the context of the basepoint-moving action on CFKpKq [27, 29]. As in the
case of 3-manifolds, Hendricks and Manolescu [14] defined a knot Floer map:

ιK : CFKpKq Ñ CFKpKq.

This is a skew-graded, skew-equivariant map. Suppose moreover that φ is a relative diffeo-
morphism of pS3,Kq. By work of Juhász-Thurston-Zemke [16], we again obtain an induced
action

φ : CFKpKq Ñ CFKpKq

which we also denote by φ. This is a grading-preserving FrU ,V s-equivariant map. It is straight-
forward to check that φ and ιK homotopy commute. We formalize the structure of CFKpKq in
the following definition:
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Definition 2.7. A pφ, ιKq-complex consist of the following:

(1) A free, finitely-generated, bigraded chain complex C over FrU ,V s such that we have

pU ,V q´1H˚pCq – pU ,V q´1FrU ,V s.

We denote the bigrading gr “ pgrU , grV q We require degpBq “ p´1,´1q, degpU q “
p´2, 0q, and degpV q “ p0,´2q.

(2) A grading-preserving, FrU ,V s-equivariant chain map φ : C Ñ C and a skew-graded,
skew FrU ,V s-equivariant chain map ιK : C Ñ C such that ι2K » s “ id ` ΦΨ. We
require that φ have a homotopy inverse and that φ and ιK homotopy commute.

A morphism (or map) f from pC1, φ1, ιK1
q to pC2, φ2, ιK2

q is a grading-preserving, FrU ,V s-
equivariant chain map from C1 to C2 such that fφ1 » φ2f and fιK1

» ιK2
f . A homotopy

equivalence of ιK-complexes consists of a pair of morphisms f and g between them that are
homotopy inverses. We denote homotopy equivalence by ».

As before, we have:

Definition 2.8. Let f : C1 Ñ C2 be a morphism of pφ, ιKq-complexes. We say that f is local if
the induced map

f˚ : pU ,V q´1H˚pC1q – pU ,V q´1FrU ,V s Ñ pU ,V q´1H˚pC2q – pU ,V q´1FrU ,V s

is an isomorphism. If there are local maps in both directions between C1 and C2, then we say
that C1 and C2 are locally equivalent.

Definitions 2.7 and 2.8 can of course be repeated in the absence of a self-diffeomorphism φ.
(This is equivalent to setting φ “ id throughout.) Doing so recovers the notion of an ιK-complex
as defined in [30].

2.5. S-nontriviality. We now define the notion of S-nontriviality. For this, we recall the
work of Hendricks-Hom-Lidman [11] regarding the connected complex ; see also [13, Section
5]. Roughly speaking, this should be thought of as the simplest representative of the local
equivalence class of an ιK-complex pC, ιKq.

Let C “ pC, ιKq be an ιK-complex. We call a local map f from C to itself a self-local map.
One can define a pre-order À on the set of self-local maps by declaring f À g if kerf Ď kerg. A
self-local map f is maximal if for any other self-local map g with f À g, we must have g À f .
In [11, Lemma 3.4] it is shown that if f is a maximal self-local map, then f |im f : imf Ñ C is
injective. Hence we may define pιKqf : imf Ñ imf by

pιKqf “ f ˝ ιK ˝ pf |im f q´1.

It is easily checked that the pair pimf, pιKqf q is an ιK-complex. The same proof as in [11,
Lemma 3.8] shows that the chain isomorphism class of pimf, pιKqf q is independent of the choice
of maximal self-local map f .

Definition 2.9. Let C “ pC, ιKq be an ιK-complex. We define the ιK-connected complex to be
(the homotopy equivalence class of)

Cconn “ pCconn, ιconnq “ pimf, pιKqf q

for any maximal self-local map f . Note that the maps pf |im f q´1 : Cconn Ñ C and f : C Ñ Cconn

are local equivalences of ιK-complexes.

We note an important observation that will be helpful later on:

Lemma 2.10. Let C “ pC, ιKq be an ιK-complex. Any self-local map h : Cconn Ñ Cconn is a
chain isomorphism.
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Proof. Let Cconn “ imf for some maximal self-local map f of C. Then pf |im f q´1 ˝ h ˝ f is a
self-local map of C. If kerh ‰ 0, then this would have kernel a strict superset of ker f , violating
the maximality of f . �

Definition 2.11. Let C “ pC, ιKq be a ιK-complex. We say C is S-nontrivial if

s : Cconn Ñ Cconn

satisfies s fi id. (Here, we view Cconn as an ιK-complex in its own right and define s “ id ` ΦΨ
as in Section 2.4.)

Although in general the ιK-connected complex of K is difficult to compute, there are many
classes of knots for which Cconn is understood. For instance, for Floer-thin knots, this computa-
tion is essentially contained in [14, Propsition 8.1]. Once Cconn is determined, it is straightforward
to calculate s and decide whether K is S-nontrivial.

2.6. Numerical invariants. In this section, we define a numerical invariant which completely
captures the existence of local maps from the trivial complex. Let C “ pC, φ, ιKq be a pφ, ιKq-
complex. Recall that A0pCq is the subcomplex of C spanned by all elements x with grU pxq “
grV pxq. This may be viewed as a singly-graded complex over the ring FrU s, with the grading
given by grU “ grV and U “ U V . We denote the result by A0pCq “ pA0pCq, φ, ιKq; it is
immediate that A0pCq is a pφ, ιq-complex in the sense of Definition 2.3.

We may also define a chain complex Cylφ,ιK pCq, given by the total complex of the following
diagram:

Lφ,ιK pCq “

A0pCq A0pCqr´1s

A0pCqr´1s

1`ιKÝÝÝÑ

1 ` φ

ÝÑ

For our purposes, it is helpful to have the natural map

q : Cylφ,ιK pCq Ñ A0pCq

given by projecting onto the unshifted (i.e., top-left corner) copy of A0pCq.

Definition 2.12. Let C “ pC, φ, ιKq be a pφ, ιKq-complex. We define δpCq P Z to be

δpCq “ ´
1

2
maxtgrpxq : x P H˚pCylφ,ιK pCqq and q˚pxq is FrU s-nontorsionu.

Here, we will consider only complexes pC, φ, ιKq such that C{U and C{V are both homotopy
equivalent to FrV s and FrU s, where 1 is given degree zero. We say that such complexes are of
S3-type. It is easily checked that for complexes of S3-type, δpCq ě 0.

The following lemma shows that δ completely characterizes the existence of local maps from
the trivial complex into A0pCq:

Lemma 2.13. Let C “ pC, φ, ιKq be a pφ, ιKq-complex of S3-type. Then δpCq “ 0 if and only if
there is a local map from pFrU s, id, idq to A0pCq.

Proof. Note that a cycle in Cylφ,ιK pCq consists of a triple px, y, zq such that

Bx “ 0 By “ p1 ` φqpxq and Bz “ p1 ` ιKqpxq

where x, y, z P A0pCq. We observe that q˚px, y, zq “ x, so δpCq “ 0 if and only if there is a
cycle px, y, zq in Cylφ,ιK pCq such that rxs is U -nontorsion in H˚pA0pCqq and grpxq “ 0. We may
assume also that grpyq “ grpzq “ 1 (here we think of y and z as elements of A0pCq as opposed
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to Cylφ,ιK ). If δpCq “ 0, we can thus define a local map F from pFrU s, id, idq to pC, φ, ιKq by
setting F p1q “ x. Note that

F ˝ id ` ιK ˝ F “ rB, hs and F ˝ id ` φ ˝ F “ rB, js

where hp1q “ z and jp1q “ y. Similarly, given such a local map, we may construct such a cycle
px, y, zq, completing the proof. �

In Lemma 4.4 below, we show that there is a local map from pFrU s, id, idq to A0pCq (in the
sense of Definition 2.4) if and only if there is a local map from pFrU ,V s, id, ι0q to C (in the
sense of Definition 2.8). Here ι0 is the unique skew-graded, skew FrU ,V s-equivariant self-map
of FrU ,V s. Hence δ characterizes local maps from the trivial complex in both the knot Floer
and the large surgery settings.

We make the definition:

Definition 2.14. Let K be a knot in S3 and φ be a relative diffeomorphism of pS3,Kq. Define

δpK,φq “ δpCFKpKq, φ, ιKq.

3. The General Obstruction

We begin with a general cork detection result in the setting where φ is a relative diffeomor-
phism of pS3,Kq. The main claim of this section is the following:

Theorem 3.1. Let φ be a relative diffeomorphism of pS3,Kq. Suppose there is no local map

pFrU s, id, idq Ñ pA0pKq, φ, ιKq.

Then pS3
1{mpKq, φq is a strong cork for any m positive and odd.5

Note that this immediately gives the proof of Theorem 1.5:

Proof of Theorem 1.5. Follows immediately from Theorem 3.1 and Lemma 2.13. �

We caution the reader that Theorems 3.1 and 1.5 have a restriction on the sign of m. To
deal with negative m, note that pS1{mpKq, φq is a strong cork if and only if pS´1{mp´Kq,´φq
is a strong cork. The case of general m may thus obtained by considering both δpK,φq and
δp´K,´φq.

As discussed in Subsection 2.3, in order to show that pS3
1{m, φq is a strong cork, it suffices to

prove there is no local map

pFrU s, id, idq Ñ pCF´pS3
1{mpKqq, φ, ιq.

This is almost Theorem 3.1, but it is not quite the same. Indeed, Theorem 3.1 essentially asserts
that it suffices to prove there is no local map into large surgery along K. We explain how to
pass from large surgery to small surgery in Section 3.2; this uses a topological argument from
[5, Lemma 4.1].

The advantage of using large surgeries is that the action of the surgered diffeomorphism φ is
easily computed from the action of φ on CFKpKq. As is well known, there is a large surgery
isomorphism between CF´pS3

npKq, r0sq and the A0-subcomplex of CFKpKq for n ě g3pKq. We
verify that this intertwines the action of φ on the former with the action of φ on the latter. This
is similar to the equivariant large surgery formula from [19], although due to the fact that φ is
a general symmetry, the proof is not quite the same.

5Here, we implicitly suppose that S3

1{mpKq bounds a contractible manifold, so that the non-extendability of φ
is interesting.
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3.1. Large surgeries. We begin by reviewing a particular formulation of the large surgery
isomorphism. Let K be any knot in S3 and let WnpKq denote the 2-handle cobordism from S3 to
S3
npKq. Let W 1

npKq denote the cobordism from S3
npKq to S3 obtained by turning WnpKq around

and swicthing orientation. Puncturing the core of the 2-handle in WnpKq gives a cobordism from
the unknot U Ă S3

npKq to K Ă S3 inside W 1
npKq; see Figure 2. Denote this by ΣK . Decorate ΣK

with two arcs running from U to K which separate ΣK into z-basepointed and w-basepointed
regions. Let F denote ΣK with this decoration; we also consider the conjugate decoration F

obtained by switching the w and z-regions. In this case, the basepoints on U and K are also
switched.

K U

ΣK

Figure 2. The cobordism WnpKq obtained by attaching a 2-handle to the out-
going end of S3 ˆ I, together with the knot cobordism ΣK between K and U . In
the case that K is equipped with a relative diffeomorphism φ, the dotted lines
denote NpKq ˆ I, where NpKq is a neighborhood of K fixed by φ.

Let x and y be two spinc-structures on W 1
npKq such that

xc1pxq, rpΣKsy “ ´n and xc1pyq, rpΣKsy “ n,

where pΣK represents the surface obtained by capping off ΣK by a Seifert surface for K (and
closing up the unknot on the other side). It follows that both y and x restrict to the spinc-
structure r0s P SpincpS3

npKqq. Note that x and y are conjugate to each other.
For n ě g3pKq, the large surgery isomorphism is realized by the knot Floer cobordism map

FW,F ,x : CFKpS3
npKq, Uq Ñ CFKpS3,Kq. (2)

By this, we mean the following: the map FW,F ,x preserves the Alexander grading and hence
restricts to a map from the A0-complex of the left-hand side to the A0-complex of the right-
hand side. The former is tautologically identified with CF´pS3

npKq, r0sq, while the latter is
A0pKq. In [21, Section 4] [25], it is shown that this restriction is an isomorphism of FrU s-
complexes. See also [14, Proposition 6.9]. Note that the surgered diffeomorphism φ of S3

npKq
fixes U pointwise and hence induces a self-map of CFKpS3

npKq, Uq, which we again denote by φ.

Lemma 3.2. Let φ be a relative diffeomorphism of pS3,Kq. Then the map

FW,F ,x : CFKpS3
npKq, Uq Ñ CFKpS3,Kq

homotopy commutes with both φ and ιK .

Proof. We first re-phrase the proof of [14, Theorem 1.5] to verify the commutation relation

FW,F ,x ˝ ιU » ιK ˝ FW,F ,x.

It follows from [30, Theorem 1.3] that

FW,F ,x ˝ ιU » ιK ˝ FW,F ,x`PDrΣK s.
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Note that x and y are defined from the spinc-equivalence class with respect to the basepoints w
and z respectively [21]. In particular, we have x ´ y “ PDrΣKs, which proves the claim.

It remains to show that FW,F ,x homotopy commutes with φ. This is straightforward: note
that φ extends over W 1

npKq as φ ˆ id, together with the identity on the 2-handle attachment.
This extension fixes ΣK pointwise and is easily checked to act as the identity on the set of
spinc-structures on W 1

npKq. It follows that

φ ˝ FW,F ,x » FW,F ,x ˝ φ

by the diffeomorphism invariance of the link cobordism maps; see [31, Theorem A] and [28,
Equation (1.2)]. �

This immediately gives:

Lemma 3.3. Let φ be a relative diffeomorphism of pS3,Kq. For n ě g3pKq, we have a homotopy
equivalence

pCF´pS3
npKq, r0sq, φ, ιq » pA0pKq, φ, ιKq.

Proof. As stated previously,

FW,F ,r : CFKpS3
npKq, Uq Ñ CFKpS3,Kq

induces an isomorphism between the A0-complex of the left-hand side and the A0-complex of the
right-hand side. The former is tautologically identified with CF´pS3

npKq, r0sq; this identification
takes ιU to ι and the action of φ on CFKpS3

npKq, Uq to the action of φ on CF´pS3
npKq, r0sq.

Applying Lemma 3.2 then gives the claim. �

3.2. Small surgeries. We now explain how to pass from large to small surgery. In what follows,
our convention is that Lpm, 1q is m-surgery on the unknot.

Lemma 3.4. Let K be any knot and m and n be any two positive integers.

(1) There is a negative-definite cobordism W1 from

S3
`1pKq to S3

npKq

with b1pW1q “ 0. This cobordism is spin.
(2) There is a negative-definite cobordism W2 from

S3
1{pm`1qpKq to S3

`1pKq#Lp´m, 1q

with b1pW2q “ 0. This cobordism is spin if and only if m is even.

Proof. The cobordism W1 is given by attaching n ´ 1 meridional 2-handles to S3
`1pKq, as dis-

played in Figure 3.

.
.
.

Figure 3. A cobordism from S3
`1pKq to S3

npKq given by attaching n´ 1 merid-
ional 2-handles along p´1q-framed meridians of K.

The linking form of the n-component link on the left is:
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¨
˚̊
˚̊
˚̋

1 1 1 1
1 ´1 0 ¨ ¨ ¨ 0
1 0 ´1 0

...
. . .

1 0 0 ´1

˛
‹‹‹‹‹‚
.

The second homology of this cobordism is given by the orthogonal complement of the first
column, which has a basis given by tp1,´1, 0, . . . , 0q, p1, 0,´1, . . . , 0q, . . . , p1, 0, 0, . . . ,´1qu. Each
of these has self-intersection ´2, while each pair of distinct basis elements has intersection ´1.
It follows that W1 is negative-definite and spin. See [5, Lemma 4.1].

Figure 4 displays a cobordism from S3
`1pKq#Lp´m, 1q to S3

1{pm`1qpKq, obtained by attaching
a single 2-handle.

Figure 4. A cobordism from S3
`1pKq#Lp´m, 1q to S3

1{pm`1qpKq given by at-
taching a 2-handle along the p`1q-framed curve that links K.

To calculate the intersection form of this cobordism, observe that the linking form of the 3-
component link on the left is

¨
˝
1 1 0
1 1 1
0 1 ´m

˛
‚.

The second homology of this cobordism is given by the orthogonal complement of the first and
third columns, which is spanned by pm,´m,´1q. This has self-intersection m. The cobordism
W2 is obtained by turning the cobordism of Figure 4 around. �

Now suppose φ is a relative diffeomorphism of pS3,Kq. Then W1 and W2 are equivariant
with respect to placing the surgered diffeomorphism φ on both ends, as can be seen by putting
the handle attachment regions of Figures 3 and 4 sufficiently close to K. Here, we define φ

on S3
`1pKq#Lp´m, 1q by placing the connected sum point near K, so that φ extends to a

self-diffeomorphism of S3
`1pKq#Lp´m, 1q which is the identity on the second summand. It is

straightforward to check that in each case, the extension over the cobordism fixes the second
homology and hence the set of spinc-structures. This gives:

Lemma 3.5. Let K be any knot and m be positive and even. Fix any relative diffeomorphism
φ of pS3,Kq. Then there are local maps

F1 : pCF´pS3
`1pKqq, φ, ιq Ñ pA0pKq, φ, ιKq

and

F2 : pCF´pS3
1{pm`1qpKqq, φ, ιq Ñ pCF´pS3

`1pKqq, φ, ιq
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Proof. To define F1, let n ě g3pKq be odd andW1 be the cobordism from Lemma 3.4. Denote the
unique self-conjugate spinc-structure on W1 by s0. Then Lemma 3.4 combined with Lemma 2.5
gives a local map

FW1,s0 : pCF´pS3
`1pKqq, φ, ιq Ñ pCF´pS3

npKq, r0sq, φ, ιq.

of grading shift pn ´ 1q{4. We now invoke the equivalence

pCF´pS3
npKq, r0sq, φ, ιq » pA0pKq, φ, ιKq,

of Lemma 3.3, which has grading shift ´pn ´ 1q{4, see [21, Section 4]. Postcomposing FW1,s0

with this identification gives the desired map F1.
The map F2 is slightly more subtle. Consider the cobordism W2 constructed in Lemma 3.4.

Denote the unique self-conjugate spinc-structure on W2 by s0. We claim that s0 restricts to the
self-conjugate spinc-structure on Lp´m, 1q which corresponds to rm{2s.

To see this, consider the cobordism W from S3
`1pKq to S1{pm`1qpKq obtained by attaching

a p`1q-framed 2-handle along an unknot U that links K once and a p´mq-framed 2-handle
attached along another unknot U 1 that links U once, as in Figure 4. Let A be the subcobordism
from S3

`1pKq to S3
`1pKq#Lp´m, 1q obtained from the handle attachment along U 1; this is just

the cylinder S3
`1pKqˆI boundary sum the usual lens space cobordism WL from the empty set to

Lp´m, 1q. Let B be the subcobordism from S3
`1pKq#Lp´m, 1q to S3

1{pm`1qpKq obtained from

the handle attachment along U ; this is just ´W2. Then W “ A Y B and it is straightforward
to check that W , A, and B each have even intersection form (in the first two cases by sliding U

over K). Hence each has a unique self-conjugate spinc-structure, and the unique self-conjugate
spinc-structure on W moreover restricts to the unique self-conjugate spinc-structures on A and
B, the latter of which is s0. It follows that s0 restricts to a self-conjugate spinc-structure on
Lp´m, 1q that extends over WL. This is the characterizing property of rm{2s.

Lemma 3.4 combined with Lemma 2.5 now gives a local map

FW2,s0 : pCF´pS3
1{mpKqq, φ, ιq Ñ pCF´pS3

`1pKq#Lp´m, 1q, rm{2sq, φ, ιq.

of grading shift 1{4. By the usual connected sum formula,

CF´pS3
`1pKq#Lp´m, 1qq » CF´pS3

`1pKqq b CF´pLp´m, 1qq. (3)

As shown in [15, Theorem 1.1], (3) intertwines the ι-action on the left with the tensor product
ι-action ι b id on the right. It is also straightforward to see (3) intertwines φ on the left with
φ b id on the right. (See Lemma 4.2 below.) Postcomposing FW2,s0 with (3) and using the fact
that Lp´m, 1q is an L-space with dpLp´m, 1q, rm{2sq “ ´1{4 gives the desired map F2. �

Everything is now in place to prove Theorem 3.1:

Proof of Theorem 3.1. Let m be positive and odd. Suppose that pS3
1{mpKq, φq bounded a ho-

mology ball W0 with an extension of φ. Then Lemma 2.5 would give a local map

FW0
: pFrU s, id, idq Ñ pCF´pS3

1{mpKqq, φ, ιq.

Postcomposing this with F1 (if m “ 1) or F1 ˝ F2 (if m ą 1) from Lemma 3.5 then gives a local
map from pFrU s, id, idq to pA0pKq, φ, ιKq. This contradicts the hypotheses of the theorem. �

4. Split Diffeomorphisms

We now consider the case where φ “ φ1#φ2 is a split diffeomorphism. In this setting, we
have the following algebraic re-interpretation of Theorem 3.1:
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Theorem 4.1. Let φ “ φ1#φ2 be a split diffeomorphism of a slice knot K “ K1#K2. Suppose
that there is no local map

pCFKpK2q, φ2, ιK2
q_ Ñ pCFKpK1q, φ1, ιK1

q.

Then pS3
1{mpKq, φq is a strong cork for any m positive and odd.

4.1. Proof of Theorem 4.1. Let φ “ φ1#φ2 be a split diffeomorphism of K1#K2. Recall that
we have a homotopy equivalence

h : CFKpK1#K2q Ñ CFKpK1q b CFKpK2q.

This was first shown in [21, Theorem 7.1] and later re-interpreted in terms of an explicit
pair-of-pants cobordism in [30, Proposition 5.1]. We begin by computing the action of φ on
CFKpK1#K2q under this identification.

Lemma 4.2. Let φ “ φ1#φ2 be a split diffeomorphism of K “ K1#K2. Then we have a
homotopy equivalence

pCFKpK1#K2q, φ1#φ2, ιK1#K2
q » pCFKpK1q b CFKpK2q, φ1 b φ2, ιbq,

where ιb “ pid b id ` Φ b Ψq ˝ pιK1
b ιK2

q.

Proof. This was essentially shown in [17, Theorem 5.1]. The homotopy equivalence h is given by
the link cobordism map FW,F , where F is the cobordism built by attaching a fission band which
splits K1#K2 into K1 \ K2 and W is built by attaching a 3-handle which splits pS3,K1 \ K2q
into pS3,K1q \ pS3,K2q. It was shown in [30, Theorem 1.1] that h intertwines ιK1#K2

and ιb.
It is clear that both the fission band and the attaching sphere of the 3-handle can be chosen to

be fixed by φ. It is thus easily checked that φ extends over the cobordism W in such a way that
the extension fixes F pointwise. On the outgoing component pS3,K1q this extension acts as φ1,
while on the outgoing component pS3,K2q this extension acts as φ2. The theorem thus follows
immediately from diffeomorphism invariance of the link cobordism maps; see [31, Theorem A]
and [28, Equation (1.2)]. �

We now turn to the proof of Theorem 4.1. We first have:

Lemma 4.3. Let C1 and C2 be two pφ, ιKq-complexes. There is a local map from pFrU ,V s, id, ι0q
to C1 b C_

2 if and only if there is a local map from C2 to C1.

Proof. This follows immediately from the group structure on the set of local classes. If there
is a local map from C2 to C1, then we can tensor with the identity map on C_

2 to get a local
map from C2 b C_

2 to C1 b C_
2 . There is always a local map from pFrU ,V s, id, ι0q to C2 b C_

2 ,
so composing we get a local map from pFrU ,V s, id, ι0q to C1 b C_

2 . The converse is similarly
straightforward to establish. �

The following is also useful for our purposes:

Lemma 4.4. Let C “ pC, φ, ιKq be a pφ, ιKq-class. Then there is a local map from pFrU ,V s, id, ι0q
to C if and only if there is a local map from pFrU s, id, idq to pA0pCq, φ, ιKq.

Proof. The “only-if” direction is obvious. Conversely, a local map from pFrU s, id, idq to A0pCq
consists of an element x P A0pCq such that ιKpxq ` x “ Bpzq and φpxq ` x “ Bpyq for some
z, y P A0pCq. Since we can view x, y and z as also being elements of C, this is the exact same
data as a local map from pFrU ,V s, id, ι0q to pC, φ, ιKq. �

As a consequence of Lemmas 4.3 and 4.4, we immediately obtain the following:

Corollary 4.5. Let C1 and C2 be two pφ, ιKq-complexes. There is a local map pFrU s, id, idq Ñ
A0pC1 b C_

2 q if and only if there is a local map from C2 to C1.
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Proof. Follows from Lemmas 4.3 and 4.4. �

The proof of Theorem 4.1 is now clear:

Proof of Theorem 4.1. Letm be positive and odd. Suppose that pS3
1{mpK1#K2q, φ1#φ2q bounded

a homology ball W0 with an extension of φ1#φ2. By Theorem 3.1, there is a local map

pFrU s, id, idq Ñ pA0pK1#K2q, φ1#φ2, ιK1#K2
q.

Setting C1 “ pCFKpK1q, φ1, ιK1
q and C2 “ pCFKpK2q, φ2, ιK2

q, Corollary 4.5 shows there is a
local map from C_

2 to C1, as desired. �

4.2. The swallow-follow diffeomorphism. We now finally specialize to the case when our
split diffeomorphism φ1#φ2 is ptiλt

j
µq#id. We then use the action on knot Floer homology

to calculate the action of tλ (and tµ) on large surgeries along K# ´ K. As we will see, it
will be necessary to simultaneously keep track of the Heegaard Floer involution ι. Although
straightforward, we record the calculation below:

Theorem 4.6. Let K1 and K2 be any pair of knots and n ě g3pK1#K2q. Then we have a
homotopy equivalence of tuples

pCF´pS3
npK1#K2q, r0sq, tλ, tµ, ιq » pA0pK1#K2q, s b id, id, ιbq

where

s “ id ` ΦΨ and ιb “ pid b id ` Φ b Ψq ˝ pιK1
b ιK2

q.

Proof of Theorem 4.6. This follows immediately from Lemma 4.2, which gives a homotopy
equivalence

pCFKpK1#K2q, tλ#id, tµ#id, ιK1#K2
q » pCFKpK1q b CFKpK2q, tλ b id, tµ b id, ιbq.

As is well-known, the longitudinal twist tλ on K1 acts as the Sarkar map s on CFKpK1q [27, 29].
The meridional twist tµ on K1 acts as the identity, since it is isotopic to the identity through
an isotopy which fixes K1 pointwise. The claim then follows from Lemma 3.3. �

We now complete the proof of the main theorem:

Proof of Theorem 1.2. Suppose that we had an extension of ptiλt
j
µq#id over S3

1{mpK# ´ Kq for
some m positive and odd. As in the proof of Theorem 4.6, we know that tλ acts on CFKpK1q
by the Sarkar map s, while tµ acts on CFKpK1q by the identity. Using Theorem 4.1 together
with the fact that s2 » id, we obtain a local map

f : pCFKpKq, id, ιKq Ñ pCFKpKq, tiλt
j
µ, ιKq » pCFKpKq, s, ιKq.

This may be thought of as a self-local map of the ιK-complex C “ pCFKpKq, ιKq satisfying the
additional condition

s ˝ f » f.

Now let Cconn be the connected complex of C, so that there are pιK-)local maps h1 : Cconn Ñ C

and h2 : C Ñ Cconn. Then f induces a self-local map of Cconn given by f̃ “ h2 ˝ f ˝ h1. Since
s commutes with any chain map up to homotopy (using [30, Lemma 2.8] and the fact that
s “ id ` ΦΨ), we again have

s ˝ f̃ » f̃.

On the other hand, by Lemma 2.10 we know that f̃ is a chain isomorphism. It follows that s » id
on Cconn, as desired. The case when m is negative and odd follows from a similar argument after
mirroring and reversing orientation. (It is easily checked that C is S-nontrivial if and only if C_

is S-nontrivial.) �
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5. Examples and further discussion

In order to demonstrate the broad applicability of our obstruction, we now give several ex-
amples of Theorems 1.2 and 1.5.

5.1. Further examples of Gompf’s construction. We begin with the proof of Corollary 1.3:

Proof of Corollary 1.3. We claim that if a knot K satisfies the condition from the hypothesis,
that is:

2ArfpKq ` |τpKq| ” 1 or 2 mod 4, (4)

then the connected complex CconnpKq consists of a step-length-one staircase (or possibly a single
dot) together with a side-length-one box, as schematically shown in Figure 5. Note that it follows
from [14, Proposition 8.2] that if the number of boxes in the main diagonal is odd, then the
connected complex CconnpKq has the form mentioned above.

a

d

a

d

Figure 5. Left: the connected complex for K “ 41. Right: the connected
complex for T2,3#T2,3. In both cases, spaq “ a ` d. We have omitted writing U

and V multiples of the generators for brevity.

Moreover, it follows from the structure of the knot Floer complex of a thin knot [24] that
the parity of the following expression determines the parity of the number of boxes in the main
diagonal

D ´ 2|τ | ´ 1

4
. (5)

See for example [14, Section 8.1], here D is the determinant of a knot. Hence to prove our
claim, it suffices to show that the Equation 4 implies that the Expression 5 is odd. Note that
ArfpKq “ 0 if and only if D ” ˘1 mod 8, which translates to the following relation:

D ` 4ArfpKq ” ˘1 mod 8. (6)

Now note that Expression 5 is odd if and only if

D ´ 2|τ | ” 5 mod 8. (7)

Replacing D from Equation 6, to the left side of Equation 7 we get

´ 4ArfpKq ˘ 1 ´ 2|τ |. (8)

Using Equation 4, we get that the above expression can only take values in t5, 3, 7u mod 8
regardless of the value of ArfpKq. However, if it is either t3, 7u mod 8 then the Expression 5 is
not an integer, so D ´ 2|τ | ” 5 mod 8 , as required.

Now it follows that in the connected complex CconnpKq, the Sarkar map s sends spaq “
a ` d and is the identity otherwise. It is then straightforward to check that K is S-nontrivial
since we can rule out the possibility of s » id on this complex. Hence the result follows from
Theorem 1.2. �
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We now move on to examples where K is a connected sum of torus knots. These are especially
interesting due to the results of [10] and [26], where it was shown that for any individual torus
knot K, the longitudinal and meridional twists extend over CK,m for any m P Z‰0. Hence for
K a torus knot, no twist along the swallow-follow torus makes CK,m into a cork. In contrast,
we show that for K a connected sum of torus knots, Gompf’s construction often yields a strong
cork. This includes the simplest case of K “ T2,3#T2,3:

Corollary 5.1. Let K “ sT2,2n`1 for n odd and s ” 2 or 3 mod 4. Then pYK,m, tiλt
j
µq is a

strong cork for all pm, i, jq P Z3 with m and i both odd.

Proof. Note that K is Floer-thin since T2,2n`1 is alternating. It is a standard fact that

ArfpT2,2n`1q “

#
1 if n ” 1 or 2 mod 4

0 if n ” 0 or 3 mod 4
and τpT2,2n`1q “ n.

The additivity of Arf and τ then gives ArfpKq and τpKq. Exhaustive casework then shows that
the hypotheses of Corollary 1.3 hold precisely when n is odd and s ” 2 or 3 mod 4. �

Corollaries 1.3 and 5.1 deal with thin knots, which are some of the simplest knots from the
point of view of knot Floer homology. Note that all of the knots discussed in [9] are thin.
However, our obstruction is certainly capable of producing strong corks from non-thin knots:

Corollary 5.2. Let K “ ´2T2n,2n`1#T2n,4n`1 for n odd. Then pYK,m, tiλt
j
µq is a strong cork

for all pm, i, jq P Z3 with m and i both odd.

Proof. For n odd, the connected complex of ´2T2n,2n`1#T2n,4n`1 was computed in [12]. The
result is the same as shown on the left in Figure 5, except that the lengths of the arrows appearing
in the differential are larger and odd. It is easily checked that s fi id on CconnpKq. �

Many similar examples are possible using linear combinations of L-space knots; we present
Corollary 5.2 due to the fact that the requisite computation already appears in the literature
[12].

Remark 5.3. The preceding examples have primarily focused on the swallow-follow operation
on YK,m due to its connection to [9]. As discussed in Section 2.2, however, we can instead let
K “ K1 and K2 be any concordance inverse to K1. It is not difficult to check that each of the
instances of YK,m in this paper can generalized to S3

1{mpK1#K2q.

5.2. More general diffeomorphisms. We now move on to more general examples of corks
where the underlying diffeomorphism is not a twist along the swallow-follow torus. A wide
range of such examples come from periodic involutions on knots. Recall that a knot K in S3 is
2-periodic if there exists an orientation-preserving involution τ of S3 that preserves the oriented
knot K setwise. The action of such an involution on knot Floer homology was considered in
[6, 19].

By postcomposing τ with a half-Dehn twist along K, we obtain a relative diffeomorphism of
pS3,Kq which by abuse of notation we also denote by τ .6 Note that as a relative diffeomorphism,
τ2 is isotopic to the Sarkar basepoint-pushing map on K, see [19, Proposition 2.6]. In the case
that K is a 2-periodic knot, we may thus think of τ as forming a square root of s. We have the
following simple example:

6In fact, since knot Floer homology is a doubly-basepointed theory, this composition is necessary in order to
define the action of τ on CFKpKq. Technically, we must also make sure to perform the half-Dehn twist along the
orientation of K. See [19, Section 2.2] for details.
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Corollary 5.4. Let pK, τq be a 2-periodic knot. If K is S-nontrivial, then pYK,m, pτ#idqiq is a
strong cork for any m odd and i ı 0 mod 4.

Proof. As discussed previously, we have τ2 » s. The S-nontriviality of K thus implies that
pτ#idq2 makes YK,m into a strong cork. It follows that τ#id makes YK,m into a strong cork,
since if τ#id extended over some homology ball, so too would pτ#idq2. A similar observation
for pτ#idq6 » s3#id likewise shows the same for pτ#idq3. Noting that τ4 » s2 » id as self-maps
of CFKpKq easily gives the claim. �

There are many examples of 2-periodic knots that are also S-nontrivial. For instance, Figure 6
shows that the two simplest S-nontrivial knots K “ 41 and 52 admit such a periodic involution.

Figure 6. The knots 41 and 52 with the periodic involutions τ .

We now give an example which is not based on S-nontriviality and instead utilizes Theo-
rem 1.5. Let K1 and K2 be slice and consider a split diffeomorphism on K1#K2 of the form
φ#id. Since K2 is slice, pCFKpK2q, id, ιK2

q is locally trivial. It easily follows that

δpK1#K2, φ#idq “ δpK1, φq.

We use this to give an example of a cork with a slightly more subtle boundary diffeomorphism:

Corollary 5.5. Let K1 “ 41#41 and equip K1 with the split diffeomorphism φ “ τ#τ . Let K2

be any slice knot. Then
pS3

1{mpK1#K2q, φ#idq

is a strong cork for any m positive and odd.

Proof. By Theorem 1.5, it suffices to show that

δp41#41, τ#τq “ δpK1, φq “ δpK1#K2, φ#idq ą 0.

We check this by showing that there is no U -nontorsion homology class in H˚pA0pK1qq which
lies in grading zero and is fixed by both the action of τ#τ and ι. The desired result then follows
from the definition of the δ-invariant.

Label the generators of CFKp41q as in Figure 7. The cycles in A0p41#41q are as in Table 1,
where all but x|x are U -torsion. The action of τ on 41 follows from [19, Theorem 1.7]; Lemma 4.2
then gives the computation in Table 1. A similar calculation appears in [5, Section 3.2].

As in [5, Lemma 3.3], the ι-invariant subspace of H˚pA0p41#41qq is spanned by

rx|xs ` rx|ds ` ra|d ` d|a ` b|b ` c|cs, rx|ds ` rd|xs and rd|ds.

The latter two generators are τ |τ -invariant, while the first is not. Since only the first generator
is U -nontorsion, the claim easily follows. �
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a

d

x

ιK(x) = x+ d

ιK(a) = a+ x

ιK(b) = c

ιK(c) = b

ιK(d) = d

τ(x) = x+ d

τ(a) = a+ x

τ(b) = b

τ(c) = c

τ(d) = d

b

c

Figure 7. The CFKp41q with the action of τ and ιK .

Generators of homology Image under ι Image under τ |τ
x|x x|x ` x|d ` d|x ` d|d x|x ` x|d ` d|x ` d|d
x|d x|d ` d|d x|d ` d|d
d|x d|x ` d|d d|x ` d|d

a|d ` d|a ` b|c ` c|b a|d ` d|a ` b|c ` c|b ` x|d ` d|x ` d|d a|d ` d|a ` b|c ` c|b ` x|d ` d|x
d|d d|d d|d

Table 1. Actions of ι and τ |τ on H˚pA0pKqq.

Unlike Corollary 5.4, the above example cannot be obtained by passing to the squared diffeo-
morphism. Indeed, it can be checked that s b s acts as identity on H˚pA0pKqq; hence our use
of Theorem 1.5 is essential.
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