GOMPF’S CORK AND HEEGAARD FLOER HOMOLOGY

IRVING DAI, ABHISHEK MALLICK, AND IAN ZEMKE

ABSTRACT. Gompf showed that for K in a certain family of double-twist knots, the swallow-
follow operation makes 1/n-surgery on K# — K into a cork boundary. We derive a general Floer-
theoretic condition on K under which this is the case. Our formalism allows us to produce many
further examples of corks, partially answering a question of Gompf. Unlike Gompf’s method,
our proof does not rely on any closed 4-manifold invariants or effective embeddings, and also
generalizes to other diffeomorphisms.

1. INTRODUCTION

The study of exotic phenomena has traditionally occupied a central role in the development
of low-dimensional topology. Following the work of Akbulut [1], it has emerged that this has a
close connection to the theory of corks. Recall that a cork is a compact, contractible 4-manifold
C equipped with a boundary diffeomorphism f: dC — ¢C which does not extend over C as a
diffeomorphism. In contrast, such an f always extends over C' as a homeomorphism by work of
Freedman [7]. It is now known that any two smooth structures on the same simply-connected
closed 4-manifold are related by cutting out some C and re-gluing via f, an operation called a
cork twist [20, 3].

In [9], Gompf gave a simple new construction leading to the first instance of an infinite-
order cork, or Z-cork. This is a compact, contractible 4-manifold C' equipped with a boundary
diffeomorphism f: 0C — JC such that no power of f extends over C as a diffeomorphism.
Gompf’s cork is constructed by considering the 3-manifold

Yicwm = S (K# — K)

for K a knot in S3 and m € Z79. Tt is not hard to see that Yk m bounds the contractible
manifold C ,, obtained by extending 1/m-surgery on K# — K over its standard ribbon disk in
B*. Note that K# — K admits a self-isotopy defined by pushing the summand K along K# — K
once around in a full loop. This is referred to as the swallow-follow operation ty; we denote
the induced self-diffeomorphism on the surgered manifold Y ,, also by tx. See Section 2.1 for
further discussion.

Gompf showed that for a specific family of double-twist knots K beginning with K = 44,
each Ck ,, may be embedded in a blown-up elliptic surface X such that twists by powers of ¢y
correspond to different Fintushel-Stern knot surgeries, and in fact give an infinite collection of
pairwise distinct smooth structures on X. This proves that these (Ck m,tx) are Z-corks. It is
natural to ask which other choices of K make (Ck ,ty) into a Z-cork, or even just a cork. This
question was posed in [9]:

Question 1.1 ([9, Question 1.6]). Let m € Z7° and ty be induced from the swallow-follow
operation on K# — K. For which knots K is (Ck m,tx) is a Z-cork?

In this paper, we investigate the question of when (Cg m,t\) is a cork, although Gompf
originally posed Question 1.1 in the setting of Z-corks. (We expect that the methods of this
paper can be generalized to establish infinite-order corks; see Remark 1.4 below.) As far as the
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authors are aware, the knots considered in [9] are the only affirmative examples of such (Ck rm,, t5)
appearing in the literature, even in the weaker setting where (Ck m,ty) is only required to be
a (regular) cork. It was shown by Ray-Ruberman that if K is a torus knot, then (Ck m,ty) is
not a cork for any m € Z7° [26]. The question of which K satisfy Question 1.1 thus certainly
appears to be subtle.

Gompf’s original proof relies on finding an embedding of Ck ,, in a closed 4-manifold X
and identifying powers of the cork twist with different Fintushel-Stern knot surgeries on X.
The authors are not aware of any systematic method for establishing a similar construction for
other families of knots. In this paper, we instead provide a flexible criterion on the knot Floer
homology of K which guarantees that (Cg m,,tx) is a cork. The perspective we take is also
slightly different than the one in Question 1.1: instead of corks, we focus on the notion of a
strong cork, due to Lin-Ruberman-Saveliev [18]. Recall that a strong cork is a pair (Y, f) where
Y is a 3-manifold and f is a diffeomorphism of Y which does not extend over any homology
ball that Y bounds.!

In the present work, we show that (Yx ,,t\) constitutes a strong cork for a large family of
knots K, including many of the double-twist knots from [9]. In the context of Question 1.1, this
means that the role of the specific manifold Cf ,, is de-emphasized: we may replace Ck ,,, by any
contractible manifold (or homology ball) that Y ,, bounds. For instance, in the construction
of Ck m, we may use any slice disk for K# — K in place of the standard one. Note that Y ,,
may also bound a contractible manifold (or homology ball) which is not constructed from a slice
disk in such a manner.

As we discuss in Section 2.1, the swallow-follow operation is a longitudinal Dehn twist along
an incompressible torus 7" in Y ,,, and it is natural to ask whether any other Dehn twists along
T make Cf p, into a cork. In [10], it was shown that the meridional twist extends over Ck
for any K and m = +1. While we are not able to establish any examples of corks formed from
meridional twists, the approach of this paper is suited to studying general Dehn twists along
T. Our formalism can likewise be used to produce examples of corks constructed using a more
flexible class of boundary diffeomorphisms than Dehn twists along T'; see Section 2.2.

1.1. Statement of results. We now state our results. In Section 2.5, we define a Floer-
theoretic condition on K which we call S-nontriviality. For experts, this means that the Sarkar
map s is homotopically nontrivial on the (¢x-)connected complex of K. Denote the longitudinal
twist by ¢) and the meridional twist by ¢,,. We prove:

Theorem 1.2. If K is S-nontrivial, then (Y m, t&tﬂ) is a strong cork for all (m,i,j) € Z3 with
m and i both odd.

The condition of being S-nontrivial is quite mild, as the following computation indicates:
Corollary 1.3. Let K be a Floer-thin knot satisfying
2A1f(K) + |7(K)| =1 or 2 mod 4.2 (1)
Then (YK,m,t"Atf;) is a strong cork for all (m,i,j) € Z* with m and i both odd.

See for example [24] for a discussion of Floer-thin knots. Note that since all alternating or
quasi-alternating knots are Floer-thin, Corollary 1.3 greatly expands the set of corks arising
from Gompf’s construction. All double-twist knots x(r, —s) (with r and s positive) considered
in [9] are alternating. It is not hard to check that x(r, —s) satisfies (1) precisely when r and s

Iwe generally require Y to bound at least one contractible manifold, so that a strong cork is a cork.

2For experts, this simply means that the number of “box subcomplexes” in the local equivalence class of K is
odd. See [14, Section 8].
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are both odd; this includes the simplest example of K = 4;. In order to emphasize the flexibility
of our approach, we list the set of knots with eight or fewer crossings to which Theorem 1.2 (via
Corollary 1.3) applies. These are:

41,592,63, 74,75, 77,81, 82, 86, 87, 812, 813, 814, 815, 817, 818, and 8a1.

Of these, only 4; and 8; appear in [9], illustrating the wide applicability of Theorem 1.2. (On
the other hand, the knots 6; and 83 are covered by [9] but are not included in Theorem 1.2.)

We are also able to use Theorem 1.2 to produce examples of corks arising from connected
sums of torus knots. This is particularly interesting in light of the results of [10] and [26], which
show that if K is a torus knot, then Ck +1 does not constitute a cork for any twist in Hy (7T, Z).
In contrast, we prove that applying Gompf’s construction to the connected sum of torus knots
often produces a cork. Indeed, it is straightforward to check that Corollary 1.3 even applies to
the simplest connected sum of torus knots K = Ty 3#753. More generally, in Corollaries 5.1
and 5.2 we show that Theorem 1.2 applies to the families

K =T 0n11# 122011 and K = =215, op 1 1# 120 ant1

for n odd. Note the latter class of knots is not Floer-thin. In general, the condition of S-
nontriviality is fairly mild and can be verified for many non-thin knots; see Section 2.5 for
further discussion.

We again emphasize that our approach to Question 1.1 is rather different than the one in [9]
and does not consist of finding embeddings of corks into specific closed 4-manifolds. Instead,
we proceed by analyzing the induced action of ¢y (and t,) on the Heegaard Floer homology
of Yk m. This action is defined due to the work of Juhdsz-Thurston-Zemke [16] regarding the
action of the mapping class group on Heegaard Floer homology. Such ideas were first used to
study branched double covers of knots by Alfieri-Kang-Stipsicz [2]. A systematic application to
corks was carried out by Dai-Hedden-Mallick [4]; see also the work of Lin-Ruberman-Saveliev
using monopole Floer homology [18].

Remark 1.4. The authors expect that the ideas of the present paper can likely be strengthened
to show that the corks in Theorem 1.2 are infinite-order. At the moment, however, there
are certain technical obstructions to doing this. As a first step, we would need to obtain an
appropriate set of naturality results for Heegaard Floer theory with Z-coefficients, together with
a definition of the Floer cobordism maps over Z; see [8] for progress in this direction.

Our methods can also be extended to analyze a more general class of self-diffeomorphisms
defined on knot surgeries, which we describe in Section 2.2. Indeed, fix any knot K in S® and
let ¢ be a relative self-diffeomorphism of (2, K). This induces a self-diffeomorphism of any
surgered manifold Sf ,,(K), which by abuse of notation we also denote by ¢. In Section 3, we
describe a sufficient condition for the pair (57, (K),¢) to be a strong cork in terms of the
local equivalence class of the triple (CFK(K), ¢, tx). In Section 2.6, we define an integer-valued
Froyshov-type invariant

6(K,$) =0

which may be computed from CFI(K) (with the actions of ¢ and tx) and completely charac-
terizes the existence of a local map from the trivial complex into (CFK(K), ¢, i ). We prove:

Theorem 1.5. If 0(K,¢) > 0, then (Sf/m(K), @) is a strong cork for any m positive and odd.

Gompf’s construction is obtained by taking ¢ to be the swallow-follow operation on the
connected sum K# — K. In fact, the swallow-follow operation fits into a larger family of relative
self-diffeomorphisms on composite knots of the form K;# K»; we call these split diffeomorphisms.
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Split diffeomorphisms are especially convenient from the point of view of Floer theory; further
examples are given in Section 5.

The results of this paper may also be viewed as a generalization of the program of [4] in
the following sense: in [4], Floer-theoretic techniques were used to produce many novel families
of (strong) corks via 1/n-surgeries on classes of symmetric slice knots. This is in contrast to
previous constructions of corks in the literature, which have generally focused on explicit handle
decompositions of candidate contractible manifolds. Corollary 1.3 vastly enlarges the set of
(strong) corks arising as surgery on slice knots, with the swallow-follow operation playing the
role of the knot symmetry in [4]. Compare [4, Theorem 1.11]. We note that § differs from the
invariants defined in [4] and that the examples presented here cannot be recovered from the
formalism of [4]; see Remark 2.6.

Organization. In Section 2, we review the algebraic setup of Heegaard Floer homology and
define the notion of S-nontriviality. In Section 3, we prove a general cork-theoretic detection
result for certain knot surgeries and use this to establish Theorem 1.5. In Section 4, we apply
this to prove Theorem 1.2. In Section 5, we prove Corollary 1.3 and give further examples of
strong corks detected using our obstructions.

Acknowledgments. The authors would like to thank Kristen Hendricks, Jen Hom, Tye Lid-
man, and Maggie Miller for helpful conversations. ID was partially supported by NSF grant
DMS-2303823. AM was partially supported by NSF grant DMS-2019396. 17 was partially
supported by NSF grant DMS-2204375.

2. BACKGROUND

In this section, we give a more precise definition of Gompf’s cork and review some essential
features of Heegaard Floer and knot Floer homology.

2.1. Gompf’s construction. Let K; and K, be any pair of knots in S3. Define a self-
diffeomorphism ¢y of (53, K1) as follows: denote the boundary of a tubular neighborhood of K
by T and let T' x [—1, 1] be a neighborhood of T" which does not intersect K;. On T' x [—1,1],
define ¢y to be the trace of an isotopy which rotates T once around so that a point on T sweeps
out an oriented longitude of K7. On the complement of T' x [—1, 1], define ¢, to be the identity.
We refer to ¢y as the longitudinal twist; the meridional twist t, is defined similarly. Note that
ty and t, fix K pointwise.

Now form the connected sum Ki1#Ks by placing Ko in a small ball which is disjoint from
[—-1,1] x T" and on the same side of T" as K. Then ¢y and ¢, also define self-diffeomorphisms of
the pair (93, K1#K>), which we likewise denote by ¢, and ¢,. Since these similarly fix Ki#K>
pointwise, they induce self-diffeomorphisms of any surgered manifold S3(K1#K>s). Abusing
notation, we again denote these surgered diffeomorphisms by ¢, and ¢,. See Figure 1. These
diffeomorphisms were referred to as the torus-twists by Gompf [9].

Now suppose K» is inverse to K; in the concordance group, so that K;# Ko bounds a slice
disk D. For any m € Z*°, define Cp ,, by cutting out D from B* and attaching a 2-handle
along a meridian of K1# Ky with framing —m. It can be checked that Cp ,, is a contractible
manifold and that

S} (K1#Ka) = 0Cp .

Note that different choices of D will in general give different contractible manifolds. Importantly,
it is not clear whether or not the self-diffeomorphisms ¢ and ¢,, extend over Cp ,,, or whether or
not this fact is independent of D. Moreover, Si’ /m(K 1#K5) may bound contractible manifolds
or homology balls which are not constructed from a slice disk in such a fashion.



GOMPF’S CORK AND HEEGAARD FLOER HOMOLOGY 5

FiGURE 1. The swallow-follow torus T in the case where K7 = 4. The torus is
following K7 while swallowing Ko.

Gompf’s construction is obtained by specializing to the case where K1 = K, Ko = —K, and
D is the standard ribbon disk for K# — K, in which case we denote Cp ,, by CK,m.S In ]9,
Theorem 1.2], it is shown that if K is taken from a certain family of double-twist knots k(r, —s),
then Ck ,, can be embedded in a blown-up elliptic surface such that cork twists by powers of
ty give pairwise nondiffeomorphic 4-manifolds (distinguished by the Seiberg-Witten invariants).
In particular, no power of ) extends as a diffeomorphism over Cx ,.

2.2. Generalizing Gompf’s construction. Although we will primarily be interested in the
swallow-follow diffeomorphism, Gompf’s construction can be placed in a more general context
as follows:

Definition 2.1. A relative (self-)diffeomorphism of (S3, K) is an orientation-preserving self-
diffeomorphism of (S, K) which fixes a neighborhood N(K) of K pointwise. If ¢ is a relative
diffeomorphism of (S3, K), then ¢ induces a self-diffeomorphism of any surgery along K by
choosing the surgery solid torus to lie in N(K'). By abuse of notation, we denote the resulting
diffeomorphism again by ¢ and refer to it as the corresponding surgered diffeomorphism.

In this paper, we will be interested in a particular class of relative diffeomorphisms:

Definition 2.2. Let ¢; and ¢ be relative diffeomorphisms of (9%, K1) and (S2, K3), respec-
tively. Let B; be a small ball intersecting K7 which is fixed by ¢1, and similarly for Bs.
We obtain a relative diffeomorphism ¢1#¢o of (S3, K1#K>) by forming the connected sum
(83, K1)#(S3, K3) along these balls. We refer to a self-diffeomorphism constructed in this man-
ner as a split diffeomorphism.

The swallow-follow diffeomorphism is the split diffeomorphism ¢y#id on K# — K obtained
by putting the longitudinal twist ¢y on the first factor and the identity on the second. (In the
context of Gompf’s construction, we often write ¢y in place of ty#id when our meaning is clear.)
We give further examples of split diffeomorphisms in Section 5. In general, if K is slice, then
any relative diffeomorphism ¢ of (S3, K) gives rise to a candidate family of strong corks by
considering the surgeries (53 m (K),¢). If K = K1# K>, the sliceness condition can of course be
tautologically manufactured by choosing K5 to be a concordance inverse of K.

As we will see, another reason for considering the class of split diffeomorphisms is that the
action of ¢1#¢e on CFK(K1#K>) is straightforward to understand. Indeed, as the name sug-
gests, the action of ¢1# ¢y on CFK(K1#K2) may be identified with the action of ¢1 ® ¢2 on

30ur conventions differ slightly from [9]: Gompf’s notation C(x, m) has boundary given by —1/m-surgery on
K+# — K, and thus corresponds to our Cx,—m.
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CFK(K1) ® CFK(K3). This will allow us to formulate a more concise Floer-theoretic condition
for detecting corks.

2.3. Heegaard Floer homology. We now give a brief overview of the background in Heegaard
Floer homology necessary for our proof. We assume that the reader has a broad familiarity with
the Heegaard Floer package [23, 22] as well as a general understanding of the involutive Heegaard
Floer formalism of Hendricks-Manolescu [14] and Hendricks-Manolescu-Zemke [15].

Let Y be a rational homology sphere and s be a self-conjugate spin®-structure on Y. There
are two automorphisms of CF~(Y,s) that we consider in this paper. Firstly, in [14] Hendricks
and Manolescu defined the Heegaard Floer involution ¢:

L: CF~(Y,s) > CF (Y,s).

This is a grading-preserving, F[U]-equivariant homotopy involution on CF~(Y,s). Secondly,
suppose that Y is equipped with a self-diffeomorphism ¢. For the sake of brevity, we will often
refer to (Y, ¢) as an equivariant (rational) homology sphere. By work of Juhdsz-Thurston-Zemke
[16], for each spin®-structure s on Y such that ¢.(s) = s, we obtain an induced action

¢: CF~(Y,s) > CF (Y,s),

which by abuse of notation we also denote by ¢. This is a grading-preserving, F[U ]-equivariant
chain map from CF~(Y,s) to itself.? Note that the action of ¢ has a homotopy inverse given
by the action of ¢!, It is straightforward to show that ¢ and ¢ homotopy commute; see for
example [4, Lemma 4.4].

We formalize this information in the following abstract definition:

Definition 2.3. A (¢,t)-complex consists of the following:
(1) A free, finitely-generated, Q-graded chain complex C over F[U] such that

U 'H.(C)=F[U,U.

We require C' to be graded by a coset of Z in Q with deg(d) = —1 and deg(U) = —2.
(2) Grading-preserving, F[U]-equivariant chain maps ¢: C' — C and ¢: C — C such that
¢ admits a homotopy inverse, ¢ is a homotopy involution, and ¢ and ¢ commute up to
homotopy.
A morphism (or map) f from (C1, ¢1, 1) to (Ca, @2, t2) is a grading-preserving, F[U]-equivariant
chain map from C; to Cy such that f¢1 ~ ¢of and fi1 ~ taf. A homotopy equivalence of (¢, t)-
complexes consists of a pair of morphisms f and g between them that are homotopy inverses.
We denote chain homotopy by ~.

If ¢ is a relative diffeomorphism of (53, K), then ¢ acts trivially on the homology of the
complement of K. It follows that the surgered diffeomorphism acts as the identity on the set
of spin®-structures on any surgery along K. Hence for any self-conjugate spin®-structure s, the
triple

(CF~(S}(K),s),p,1)
is a (¢, t)-complex in the sense of Definition 2.3.
Definition 2.4. Let f: C1 — C3 be a morphism of (¢, ¢)-complexes. We say that f is local if
the induced map
fe: U THL(C)) =2 F[U, U Y - U tH,(Cy) = F[U, U]
4Strictly speaking, ¢ should be an element of the based mapping class group. However, if Y is a rational

homology sphere, then it follows from [28, Theorem D] that this condition can be relaxed; see for example [4,
Lemma 4.1].
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is an isomorphism. If there are local maps in both directions between C; and Cs, then we say
that C; and Cs are locally equivalent. Occasionally, we will refer to f as local even if it is only
grading-homogeneous (rather than grading-preserving), so long as it homotopy commutes with
¢ and ¢ and satisfies the localization condition of Definition 2.4.

The importance of Definition 2.4 is given by the following simple lemma. We say that a
cobordism W from (Y7, ¢1) to (Yo, ¢2) is equivariant if there exists a self-diffeomorphism ¢ of
W which restricts to ¢; on Y;.

Lemma 2.5. Let (W, ¢) be an equivariant negative-definite cobordism with by(W) = 0 between
equivariant homology spheres (Y1,¢1) and (Ya,¢2). Suppose that there exists a self-conjugate
spin®-structure s on W such that ¢«(s) = s. Then

Fys: (CF~(Y1,8]v,), ¢1,01) — (CF™ (Y2, 5]y, ), @2, 2)
is a local map, up to grading shift.

Proof. 1t is a standard fact that Fyy ¢ induces an isomorphism on U ~1HF~ and that it satisfies
the relation Fyys 011 ~ g 0 Fyys. The fact that Fyys 0 1 >~ ¢ 0 Fyy s follows from [28, Theorem
Al]; see for example [4, Proposition 4.10]. O

In order to establish that a given pair (Y, ¢) is a strong cork, it thus suffices to prove that
there is no local equivalence between the complex of S3, which is given by (F[U],id,id), and the
complex (CF~(Y), ¢,¢).

Remark 2.6. One can form a local equivalence group by taking the set of all (¢, ¢)-complexes
and quotienting out by the notion of local equivalence. In the context of involutive Heegaard
Floer homology, the notion of local equivalence first appeared in [15] and was subsequently uti-
lized in [4] to study corks and symmetries of manifolds. For experts, we note that Definition 2.3
qualitatively differs from previous such constructions by simultaneously including two automor-
phisms of C. Indeed, one obtains coarser local equivalence groups by considering only (C,¢) or
(C,¢), or even (C,1¢) as in [4]. However, none of these suffice to capture the nontriviality of the
examples in this paper. The first example of this nature was observed in [5], where the above
formalism is implicit.

2.4. Knot Floer homology. We assume that the reader is familiar with the interpretation of
knot Floer homology as a free, finitely generated chain complex CFIC(K) over F[%,¥]. See
e.g. [31]. Given any such complex, there are maps

d d
see [29, Section 3]. We define the Sarkar map to be
s =1id + ®W.

This was studied in the context of the basepoint-moving action on CFI(K) [27, 29]. As in the
case of 3-manifolds, Hendricks and Manolescu [14] defined a knot Floer map:

L : CFK(K) — CFK(K).

This is a skew-graded, skew-equivariant map. Suppose moreover that ¢ is a relative diffeo-
morphism of ($3,K). By work of Juhdsz-Thurston-Zemke [16], we again obtain an induced
action

¢: CFK(K) - CFK(K)
which we also denote by ¢. This is a grading-preserving F[% , ¥ ]-equivariant map. It is straight-
forward to check that ¢ and ¢x homotopy commute. We formalize the structure of CFK(K) in
the following definition:
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Definition 2.7. A (¢, tx)-complex consist of the following:
(1) A free, finitely-generated, bigraded chain complex C over F[%,¥'] such that we have

(%, V)" H(C) = (%, V)" F[#, V).

We denote the bigrading gr = (gry,gry) We require deg(d) = (—1,—1), deg(%) =
(—2,0), and deg(¥) = (0, —2).

(2) A grading-preserving, F[%, ¥ ]-equivariant chain map ¢: C — C and a skew-graded,
skew F[%, 7 ]-equivariant chain map tx : C — C such that (% ~ s = id + ®¥. We
require that ¢ have a homotopy inverse and that ¢ and ¢x homotopy commute.

A morphism (or map) f from (C1,¢1,tk,) to (Co, ¢2,tk,) is a grading-preserving, F[%, ¥ ]-
equivariant chain map from C; to Cy such that f¢1 ~ ¢of and firx, ~ 1k, f. A homotopy
equivalence of tx-complexes consists of a pair of morphisms f and g between them that are
homotopy inverses. We denote homotopy equivalence by ~.

As before, we have:

Definition 2.8. Let f: C7; — C3 be a morphism of (¢, tx)-complexes. We say that f is local if
the induced map

fo: (%, V) HL(C) = (%, V)P, V] — (%, V) T Ho(Co) = (%, V) 'F|%, V]

is an isomorphism. If there are local maps in both directions between C; and Cs, then we say
that C1 and Cy are locally equivalent.

Definitions 2.7 and 2.8 can of course be repeated in the absence of a self-diffeomorphism ¢.
(This is equivalent to setting ¢ = id throughout.) Doing so recovers the notion of an ¢ x-complex

as defined in [30].

2.5. S-nontriviality. We now define the notion of S-nontriviality. For this, we recall the
work of Hendricks-Hom-Lidman [11] regarding the connected complex; see also [13, Section
5]. Roughly speaking, this should be thought of as the simplest representative of the local
equivalence class of an ¢x-complex (C, tx).

Let C = (C,1k) be an tx-complex. We call a local map f from C to itself a self-local map.
One can define a pre-order < on the set of self-local maps by declaring f < g if kerf < kerg. A
self-local map f is mazimal if for any other self-local map g with f < g, we must have g < f.
In [11, Lemma 3.4] it is shown that if f is a maximal self-local map, then fliy,s: im f — C is
injective. Hence we may define (tx)s: im f — im f by

(tx)g = fouo(flimp)™"
It is easily checked that the pair (im f,(tx)s) is an tgx-complex. The same proof as in [11,
Lemma 3.8] shows that the chain isomorphism class of (im f, (¢x) ) is independent of the choice
of maximal self-local map f.

Definition 2.9. Let C = (C,tx) be an tx-complex. We define the tx-connected complex to be
(the homotopy equivalence class of)

Cconn = (Cconna Lconn) = (lm fa (LK)f)

for any maximal self-local map f. Note that the maps (f|im f)_l : Ceonn — C and f: C — Ceomn
are local equivalences of ¢-complexes.

We note an important observation that will be helpful later on:

Lemma 2.10. Let C = (C, 1) be an tx-complex. Any self-local map h: Ceopn — Ceonn 1S a
chain isomorphism.
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Proof. Let Ceopn = im f for some maximal self-local map f of C. Then (f|im f)*l oho fisa
self-local map of C'. If ker h # 0, then this would have kernel a strict superset of ker f, violating
the maximality of f. O

Definition 2.11. Let C = (C, i) be a tx-complex. We say C is S-nontrivial if
8t Ceonn = Ceconn

satisfies s % id. (Here, we view Ceonn as an tx-complex in its own right and define s = id + ®W¥
as in Section 2.4.)

Although in general the tg-connected complex of K is difficult to compute, there are many
classes of knots for which Copny, is understood. For instance, for Floer-thin knots, this computa-
tion is essentially contained in [14, Propsition 8.1]. Once Ceonn is determined, it is straightforward
to calculate s and decide whether K is S-nontrivial.

2.6. Numerical invariants. In this section, we define a numerical invariant which completely
captures the existence of local maps from the trivial complex. Let C = (C, ¢, tx) be a (¢, tx)-
complex. Recall that Ay(C) is the subcomplex of C' spanned by all elements = with gry, (z) =
gry (x). This may be viewed as a singly-graded complex over the ring F[U], with the grading
given by gry, = gry and U = %Y. We denote the result by Ayg(C) = (Ao(C), ¢, tk); it is
immediate that Ap(C) is a (¢, ¢)-complex in the sense of Definition 2.3.

We may also define a chain complex Cyl, ,, (C), given by the total complex of the following
diagram:

Ap(C) =5 Ao(C)[-1]
Louc (€)= |19
Ao(C)[-1]
For our purposes, it is helpful to have the natural map
q: Cylg,, (€) = Ao(C)
given by projecting onto the unshifted (i.e., top-left corner) copy of Ay(C).
Definition 2.12. Let C = (C, ¢, tx) be a (¢, tx)-complex. We define §(C) € Z to be

1
4(C) = —5 max{gr(z) : x € Hy(Cyly,, (C)) and g«(z) is F[U]-nontorsion}.

Here, we will consider only complexes (C, ¢, 1) such that C'/% and C/¥ are both homotopy
equivalent to F[¥] and F[% ], where 1 is given degree zero. We say that such complexes are of
S3-type. Tt is easily checked that for complexes of S3-type, 6(C) = 0.

The following lemma shows that 0 completely characterizes the existence of local maps from
the trivial complex into Ag(C):

Lemma 2.13. Let C = (C, ¢, 1) be a (¢, i )-complex of S3-type. Then 6(C) = 0 if and only if
there is a local map from (F[U],id,id) to Ao(C).

Proof. Note that a cycle in Cyly, (C) consists of a triple (x,y, z) such that
or=0 Jdy=(1+¢)(zr) and 0z = (1+1x)(x)

where x,y,z € Ag(C). We observe that g.(z,y,2) = x, so 6(C) = 0 if and only if there is a
cycle (z,y,2) in Cyl,, . (C) such that [z] is U-nontorsion in Hx(Ag(C)) and gr(z) = 0. We may
assume also that gr(y) = gr(z) = 1 (here we think of y and z as elements of Ay(C) as opposed
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to Cyl,,,.). If 6(C) = 0, we can thus define a local map F' from (F[U],id,id) to (C, ¢,tx) by
setting F'(1) = z. Note that

Foid+igoF =[0,h] and Foid+ ¢oF =[0,j]

where h(1) = z and j(1) = y. Similarly, given such a local map, we may construct such a cycle
(z,y,z), completing the proof. O

In Lemma 4.4 below, we show that there is a local map from (F[U],id,id) to Ap(C) (in the
sense of Definition 2.4) if and only if there is a local map from (F[%,¥],id, ) to C (in the
sense of Definition 2.8). Here ¢ is the unique skew-graded, skew F[%, ¥ |-equivariant self-map
of F[%,7]. Hence § characterizes local maps from the trivial complex in both the knot Floer
and the large surgery settings.

We make the definition:

Definition 2.14. Let K be a knot in S® and ¢ be a relative diffeomorphism of (53, K). Define

3. THE GENERAL OBSTRUCTION

We begin with a general cork detection result in the setting where ¢ is a relative diffeomor-
phism of (S3, K). The main claim of this section is the following:

Theorem 3.1. Let ¢ be a relative diffeomorphism of (S, K). Suppose there is no local map
(F[U]v lda ld) - (AO(K)7 ¢7 LK)

Then (S3, (K), ) is a strong cork for any m positive and odd.?

1/m
Note that this immediately gives the proof of Theorem 1.5:
Proof of Theorem 1.5. Follows immediately from Theorem 3.1 and Lemma 2.13. (]

We caution the reader that Theorems 3.1 and 1.5 have a restriction on the sign of m. To
deal with negative m, note that (S;,,,(K),¢) is a strong cork if and only if (S_;/,(—K), —¢)
is a strong cork. The case of general m may thus obtained by considering both 0(K, ¢) and
(=K, —9).

As discussed in Subsection 2.3, in order to show that (Sf m> @) is a strong cork, it suffices to
prove there is no local map

(F[U).id, id) — (CF™(S3,,,(K)).6,0).

This is almost Theorem 3.1, but it is not quite the same. Indeed, Theorem 3.1 essentially asserts
that it suffices to prove there is no local map into large surgery along K. We explain how to
pass from large surgery to small surgery in Section 3.2; this uses a topological argument from
[5, Lemma 4.1].

The advantage of using large surgeries is that the action of the surgered diffeomorphism ¢ is
easily computed from the action of ¢ on CFK(K). As is well known, there is a large surgery
isomorphism between CF~(S2(K),[0]) and the Ag-subcomplex of CFK(K) for n = g3(K). We
verify that this intertwines the action of ¢ on the former with the action of ¢ on the latter. This
is similar to the equivariant large surgery formula from [19], although due to the fact that ¢ is
a general symmetry, the proof is not quite the same.

5Here7 we implicitly suppose that Sf’/m(K ) bounds a contractible manifold, so that the non-extendability of ¢
is interesting.
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3.1. Large surgeries. We begin by reviewing a particular formulation of the large surgery
isomorphism. Let K be any knot in S and let W,,(K) denote the 2-handle cobordism from S to
S3(K). Let W/ (K) denote the cobordism from S2(K) to S? obtained by turning W,,(K) around
and swicthing orientation. Puncturing the core of the 2-handle in W,,(K) gives a cobordism from
the unknot U < S3(K) to K < S® inside W/, (K); see Figure 2. Denote this by ¥ . Decorate X
with two arcs running from U to K which separate g into z-basepointed and w-basepointed
regions. Let F denote Y with this decoration; we also consider the conjugate decoration F
obtained by switching the w and z-regions. In this case, the basepoints on U and K are also
switched.

D

FIGURE 2. The cobordism W, (K) obtained by attaching a 2-handle to the out-
going end of S3 x I, together with the knot cobordism X between K and U. In
the case that K is equipped with a relative diffeomorphism ¢, the dotted lines
denote N(K) x I, where N(K) is a neighborhood of K fixed by ¢.

Let r and vy be two spin®-structures on W), (K) such that
(1), [Exh=-n and (), [Ex]) =n,

where 3 Kk represents the surface obtained by capping off ¥ by a Seifert surface for K (and
closing up the unknot on the other side). It follows that both y and r restrict to the spin°-
structure [0] € Spin®(S3(K)). Note that ¢ and y are conjugate to each other.

For n > g3(K), the large surgery isomorphism is realized by the knot Floer cobordism map

Fyw.ry: CFK(S3(K),U) — CFK(S?, K). (2)

By this, we mean the following: the map Fyy r, preserves the Alexander grading and hence
restricts to a map from the Ag-complex of the left-hand side to the Agp-complex of the right-
hand side. The former is tautologically identified with CF~(S3(K),[0]), while the latter is
Ap(K). In [21, Section 4] [25], it is shown that this restriction is an isomorphism of F[U]-
complexes. See also [14, Proposition 6.9]. Note that the surgered diffeomorphism ¢ of S3(K)
fixes U pointwise and hence induces a self-map of CFK(S3(K),U), which we again denote by ¢.

Lemma 3.2. Let ¢ be a relative diffeomorphism of (S, K). Then the map
Fwry: CFK(SH(K),U) — CFK(S?, K)
homotopy commutes with both ¢ and vk .
Proof. We first re-phrase the proof of [14, Theorem 1.5] to verify the commutation relation

Fwryow >~ Lk o Fw,ry.
It follows from [30, Theorem 1.3] that

Fwryow =~ ti © Fy 7 g+PD[k]-
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Note that ¢ and y are defined from the spin®-equivalence class with respect to the basepoints w
and z respectively [21]. In particular, we have r — § = PD[¥ k], which proves the claim.

It remains to show that Fyy, r, homotopy commutes with ¢. This is straightforward: note
that ¢ extends over W), (K) as ¢ x id, together with the identity on the 2-handle attachment.
This extension fixes X pointwise and is easily checked to act as the identity on the set of
spin®-structures on W) (K). It follows that

¢olwry~Fwriod
by the diffeomorphism invariance of the link cobordism maps; see [31, Theorem A] and [28,
Equation (1.2)]. O
This immediately gives:

Lemma 3.3. Let ¢ be a relative diffeomorphism of (S3, K). Forn > g3(K), we have a homotopy
equivalence

(CF™ (S (K),[0]), ¢, ¢) =~ (Ao(K), b, tic)-
Proof. As stated previously,
Fw.r.: CFK(S3(K),U) — CFK(S? K)

induces an isomorphism between the Ag-complex of the left-hand side and the Ag-complex of the
right-hand side. The former is tautologically identified with CF~(S3(K), [0]); this identification
takes 1y to ¢ and the action of ¢ on CFK(S3(K),U) to the action of ¢ on CF~(S3(K),[0]).
Applying Lemma 3.2 then gives the claim. U

3.2. Small surgeries. We now explain how to pass from large to small surgery. In what follows,
our convention is that L(m, 1) is m-surgery on the unknot.

Lemma 3.4. Let K be any knot and m and n be any two positive integers.

(1) There is a negative-definite cobordism Wy from
LK) o SYK)

with by(W1) = 0. This cobordism is spin.
(2) There is a negative-definite cobordism Wy from

Sf/(erl)(K) to Sil(K>#L(_m>1)
with by(Wa) = 0. This cobordism is spin if and only if m is even.

Proof. The cobordism Wj is given by attaching n — 1 meridional 2-handles to Sil(K ), as dis-
played in Figure 3.

,

FIGURE 3. A cobordism from $%,(K) to S32(K) given by attaching n — 1 merid-
ional 2-handles along (—1)-framed meridians of K.

The linking form of the n-component link on the left is:
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1 1 1 1
1 -1 0 0
1 0 -1 0
1 0 0 -1

The second homology of this cobordism is given by the orthogonal complement of the first
column, which has a basis given by {(1,—-1,0,...,0),(1,0,—1,...,0),...,(1,0,0,...,—1)}. Each
of these has self-intersection —2, while each pair of distinct basis elements has intersection —1.
It follows that W is negative-definite and spin. See [5, Lemma 4.1].

Figure 4 displays a cobordism from S (K)#L(—m, 1) to Sf/(mﬂ)(K), obtained by attaching
a single 2-handle.

—m
Y R
+1
1
m-41
+1

FIGURE 4. A cobordism from S3(K)#L(—m,1) to Sig’/(mﬂ)

taching a 2-handle along the (+1)-framed curve that links K.

(K) given by at-

To calculate the intersection form of this cobordism, observe that the linking form of the 3-
component link on the left is

11 0
11 1
01 —m
The second homology of this cobordism is given by the orthogonal complement of the first and

third columns, which is spanned by (m, —m, —1). This has self-intersection m. The cobordism
Wy is obtained by turning the cobordism of Figure 4 around. ([

Now suppose ¢ is a relative diffeomorphism of (S3, K). Then W; and W3 are equivariant
with respect to placing the surgered diffeomorphism ¢ on both ends, as can be seen by putting
the handle attachment regions of Figures 3 and 4 sufficiently close to K. Here, we define ¢
on Sil(K )#L(—m,1) by placing the connected sum point near K, so that ¢ extends to a
self-diffeomorphism of S3,(K)#L(—m,1) which is the identity on the second summand. It is
straightforward to check that in each case, the extension over the cobordism fixes the second
homology and hence the set of spin®-structures. This gives:

Lemma 3.5. Let K be any knot and m be positive and even. Fix any relative diffeomorphism
¢ of (S3,K). Then there are local maps

Fi: (CF™(S31(K)), ¢,0) — (Ao(K), ¢, 1)

and
Fy: (CF (S} ns1y(K)), 6,0) = (CF~(S24(K)), ¢, 1)
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Proof. To define Fy, let n > g3(K) be odd and W7 be the cobordism from Lemma 3.4. Denote the
unique self-conjugate spin®-structure on Wi by sg. Then Lemma 3.4 combined with Lemma 2.5
gives a local map

Fiwy 0 (CF7(531(K)), ¢,0) — (CF™(SR(K), [0]), 6, 1)
of grading shift (n — 1)/4. We now invoke the equivalence

(CF_(S’?L(K)’ [0])’¢7 L) = (AO(K)7¢7 LK)7

of Lemma 3.3, which has grading shift —(n — 1)/4, see [21, Section 4]. Postcomposing Fiy, &,
with this identification gives the desired map Fj.

The map F5 is slightly more subtle. Consider the cobordism W5 constructed in Lemma 3.4.
Denote the unique self-conjugate spin®-structure on Ws by s9. We claim that sg restricts to the
self-conjugate spin®-structure on L(—m, 1) which corresponds to [m/2].

To see this, consider the cobordism W from 5% (K) to Sy /n+1)(K) obtained by attaching
a (+1)-framed 2-handle along an unknot U that links K once and a (—m)-framed 2-handle
attached along another unknot U’ that links U once, as in Figure 4. Let A be the subcobordism
from $3,(K) to S3,(K)#L(—m,1) obtained from the handle attachment along U’; this is just
the cylinder %, (K) x I boundary sum the usual lens space cobordism W, from the empty set to
L(—m,1). Let B be the subcobordism from S$3,(K)#L(—m,1) to Si’/(mﬂ)(K) obtained from
the handle attachment along U; this is just —W5. Then W = A U B and it is straightforward
to check that W, A, and B each have even intersection form (in the first two cases by sliding U
over K). Hence each has a unique self-conjugate spin®-structure, and the unique self-conjugate
spin®-structure on W moreover restricts to the unique self-conjugate spin®-structures on A and
B, the latter of which is sg. It follows that sy restricts to a self-conjugate spin®-structure on
L(—m, 1) that extends over Wp. This is the characterizing property of [m/2].

Lemma 3.4 combined with Lemma 2.5 now gives a local map

Fiy 50 (CF (57, (K)), 6,0) = (CF~ (831 (K)#L(—m, 1), [m/2]), , ).
of grading shift 1/4. By the usual connected sum formula,
CF™ (83, (K)#L(=m, 1)) ~ CF (8%, (K)) ® CF~ (L(~m,1)). (3)

As shown in [15, Theorem 1.1}, (3) intertwines the t-action on the left with the tensor product
t-action ¢ ® id on the right. It is also straightforward to see (3) intertwines ¢ on the left with
¢ ®1id on the right. (See Lemma 4.2 below.) Postcomposing Fyy, 5, with (3) and using the fact
that L(—m, 1) is an L-space with d(L(—m,1),[m/2]) = —1/4 gives the desired map F5. O

Everything is now in place to prove Theorem 3.1:

Proof of Theorem 3.1. Let m be positive and odd. Suppose that (Sf/m(K), ¢) bounded a ho-
mology ball Wy with an extension of ¢. Then Lemma 2.5 would give a local map

Fy,: (F[U],id,id) — (CF_(Sf/m(K)),(Z), L).

Postcomposing this with Fy (if m = 1) or Fy o Fy (if m > 1) from Lemma 3.5 then gives a local
map from (F[U],id,id) to (Ap(K), ¢, tx). This contradicts the hypotheses of the theorem. O

4. SPLIT DIFFEOMORPHISMS

We now consider the case where ¢ = ¢1#¢o is a split diffeomorphism. In this setting, we
have the following algebraic re-interpretation of Theorem 3.1:
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Theorem 4.1. Let ¢ = ¢p1#H @2 be a split diffeomorphism of a slice knot K = K1#Ks. Suppose
that there is no local map

(CFK(K2), ¢2,Lr,)" — (CFK(K1), ¢1, Lk, )-

Then (83, (K),¢) is a strong cork for any m positive and odd.

1/m
4.1. Proof of Theorem 4.1. Let ¢ = ¢1#¢p2 be a split diffeomorphism of K1# Ks. Recall that
we have a homotopy equivalence

h: CFK(K\#K>) — CFK(K1) ® CFK(K>).

This was first shown in [21, Theorem 7.1] and later re-interpreted in terms of an explicit
pair-of-pants cobordism in [30, Proposition 5.1]. We begin by computing the action of ¢ on
CFK(K1#K>) under this identification.

Lemma 4.2. Let ¢ = ¢1#¢s be a split diffeomorphism of K = Ki#Ks. Then we have a
homotopy equivalence

(CFK(EKN#K2), pi#d2, Lk #Kk,) ~ (CFK(K1) @ CFK(K2), )1 ® ¢2, L),
where 1g = (Id®id + PR V) o (1x, ®tK,).

Proof. This was essentially shown in [17, Theorem 5.1]. The homotopy equivalence h is given by
the link cobordism map Fyy, 7, where F is the cobordism built by attaching a fission band which
splits K1# K> into K7 1 Ko and W is built by attaching a 3-handle which splits (53, K1 u K»)
into (S3, K1) L (S3, K3). It was shown in [30, Theorem 1.1] that h intertwines tx, #x, and ig.

It is clear that both the fission band and the attaching sphere of the 3-handle can be chosen to
be fixed by ¢. It is thus easily checked that ¢ extends over the cobordism W in such a way that
the extension fixes F pointwise. On the outgoing component (53, K1) this extension acts as ¢,
while on the outgoing component (S3, K3) this extension acts as ¢2. The theorem thus follows
immediately from diffeomorphism invariance of the link cobordism maps; see [31, Theorem A]
and [28, Equation (1.2)]. O

We now turn to the proof of Theorem 4.1. We first have:

Lemma 4.3. Let C; and Ca be two (¢, L )-complexes. There is a local map from (F|% , ¥V],id, ¢p)
to C1 ®Cy if and only if there is a local map from Cy to Cy.

Proof. This follows immediately from the group structure on the set of local classes. If there
is a local map from C to Cq, then we can tensor with the identity map on Cy to get a local
map from Co ® Cy to C; ® Cy. There is always a local map from (F[%, 7],id, ) to C2 ® Cy,
so composing we get a local map from (F[%, 7],id, p) to C;1 ® Cy'. The converse is similarly
straightforward to establish. O

The following is also useful for our purposes:

Lemma 4.4. LetC = (C, ¢, k) be a (¢, ti)-class. Then there is a local map from (F[% , V], id, o)
to C if and only if there is a local map from (F[U],id,id) to (Ao(C), ¢, tx).

Proof. The “only-if” direction is obvious. Conversely, a local map from (F[U],id,id) to Ay(C)
consists of an element = € Ay(C) such that tx(x) + z = d(z) and ¢(x) + x = d(y) for some
z,y € Ap(C). Since we can view z, y and z as also being elements of C, this is the exact same
data as a local map from (F[%, 7],id, tp) to (C, ¢,k ). O

As a consequence of Lemmas 4.3 and 4.4, we immediately obtain the following:

Corollary 4.5. Let C; and Cy be two (¢, vx)-complexes. There is a local map (F[U],id,id) —
Ap(C1 ®CY) if and only if there is a local map from Cq to C;.
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Proof. Follows from Lemmas 4.3 and 4.4. O
The proof of Theorem 4.1 is now clear:

Proof of Theorem 4.1. Let m be positive and odd. Suppose that (S’?/m(Kl#Kg), d1#¢2) bounded
a homology ball Wy with an extension of ¢1#¢s. By Theorem 3.1, there is a local map

(F[U],id,id) — (Ao(K1#K2), p1# 2, Lk, 4K )-

Setting C; = (CFK(K1), ¢1,tk,) and Co = (CFK(K2), ¢p2,LK,), Corollary 4.5 shows there is a
local map from Cy to C1, as desired. U

4.2. The swallow-follow diffeomorphism. We now finally specialize to the case when our
split diffeomorphism ¢1#¢o is (tit},)#id. We then use the action on knot Floer homology
to calculate the action of t\ (and t,) on large surgeries along K# — K. As we will see, it
will be necessary to simultaneously keep track of the Heegaard Floer involution ¢. Although
straightforward, we record the calculation below:

Theorem 4.6. Let Ky and K be any pair of knots and n > g3(K1#Ks). Then we have a
homotopy equivalence of tuples

(CF_(S?L(Kl#K2)7 [0])7t>\>t,uab) = (AO(KI#K2)75®id7id7 L@)

where
s=id+ Q¥ and 19 =(1dRIA+PRY)o (1x, ® LKk,)-

Proof of Theorem 4.6. This follows immediately from Lemma 4.2, which gives a homotopy
equivalence

(CFK(K1#K>), ta#id, t,#id, LKl#Kg) ~ (CFK(K1) ® CFK(K2),t)®id, t, ®id, L@).

As is well-known, the longitudinal twist ¢y on K acts as the Sarkar map s on CFK(K7) [27, 29].
The meridional twist ¢, on K acts as the identity, since it is isotopic to the identity through
an isotopy which fixes K7 pointwise. The claim then follows from Lemma 3.3. O

We now complete the proof of the main theorem:

Proof of Theorem 1.2. Suppose that we had an extension of (t4t,)#id over Sf’/m(K# — K) for
some m positive and odd. As in the proof of Theorem 4.6, we know that t) acts on CFK(K7)
by the Sarkar map s, while ¢, acts on CFK(K7) by the identity. Using Theorem 4.1 together
with the fact that s> ~ id, we obtain a local map

f: (C‘FIC(K)ald>LK) - (C}.IC(K)7tZ/\t'L7LK) = (C’F,C(K)v&LK)

This may be thought of as a self-local map of the ¢x-complex C = (CFK(K), tx) satisfying the
additional condition

sof=~f
Now let Ceonn be the connected complex of C, so that there are (tx-)local maps hi: Ceonn — C
and ho: C — Ceonn- Then f induces a self-local map of Ceonpn given by f = hg o fohy. Since
s commutes with any chain map up to homotopy (using [30, Lemma 2.8] and the fact that
s =id + ®V¥), we again have

sof~f.
On the other hand, by Lemma 2.10 we know that f is a chain isomorphism. It follows that s ~ id
on Ceonn, as desired. The case when m is negative and odd follows from a similar argument after
mirroring and reversing orientation. (It is easily checked that C is S-nontrivial if and only if C¥
is S-nontrivial.) O
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5. EXAMPLES AND FURTHER DISCUSSION

In order to demonstrate the broad applicability of our obstruction, we now give several ex-
amples of Theorems 1.2 and 1.5.

5.1. Further examples of Gompf’s construction. We begin with the proof of Corollary 1.3:

Proof of Corollary 1.3. We claim that if a knot K satisfies the condition from the hypothesis,
that is:
2Arf(K) + |7(K)| =1 or 2mod 4, (4)

then the connected complex Ceonn (K) consists of a step-length-one staircase (or possibly a single
dot) together with a side-length-one box, as schematically shown in Figure 5. Note that it follows
from [14, Proposition 8.2] that if the number of boxes in the main diagonal is odd, then the
connected complex Ceonn(K) has the form mentioned above.

a

[

L

o

L

FicUurE 5. Left: the connected complex for K = 4;. Right: the connected
complex for Ty 3#7T5 3. In both cases, s(a) = a + d. We have omitted writing %
and ¥ multiples of the generators for brevity.

Moreover, it follows from the structure of the knot Floer complex of a thin knot [24] that
the parity of the following expression determines the parity of the number of boxes in the main
diagonal

D-2|r|—1

R )
See for example [14, Section 8.1], here D is the determinant of a knot. Hence to prove our
claim, it suffices to show that the Equation 4 implies that the Expression 5 is odd. Note that
Arf(K) = 0 if and only if D = +1 mod 8, which translates to the following relation:

D + 4Arf(K) = +1 mod 8. (6)
Now note that Expression 5 is odd if and only if
D —2|7| =5 mod 8. (7)
Replacing D from Equation 6, to the left side of Equation 7 we get
—4Arf(K) £ 1 - 2|7|. (8)

Using Equation 4, we get that the above expression can only take values in {5,3,7} mod 8
regardless of the value of Arf(K). However, if it is either {3, 7} mod 8 then the Expression 5 is
not an integer, so D — 2|7| = 5 mod 8 , as required.

Now it follows that in the connected complex Ceonn(K), the Sarkar map s sends s(a) =
a + d and is the identity otherwise. It is then straightforward to check that K is S-nontrivial
since we can rule out the possibility of s ~ id on this complex. Hence the result follows from
Theorem 1.2. O
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We now move on to examples where K is a connected sum of torus knots. These are especially
interesting due to the results of [10] and [26], where it was shown that for any individual torus
knot K, the longitudinal and meridional twists extend over Ck ,,, for any m € Z*°. Hence for
K a torus knot, no twist along the swallow-follow torus makes C ,, into a cork. In contrast,
we show that for K a connected sum of torus knots, Gompf’s construction often yields a strong
cork. This includes the simplest case of K = T 3#T5 3:

Corollary 5.1. Let K = 515,41 for n odd and s = 2 or 3 mod 4. Then (YKym,tgtft) is a
strong cork for all (m,i,7) € Z® with m and i both odd.

Proof. Note that K is Floer-thin since 15 2,11 is alternating. It is a standard fact that

1 ifn=1or2mod4

d T: = 1.
0 ifn=0or 3mod4 and  T(Ta2n41) =1

Arf(Taon41) = {
The additivity of Arf and 7 then gives Arf(K) and 7(K). Exhaustive casework then shows that
the hypotheses of Corollary 1.3 hold precisely when n is odd and s = 2 or 3 mod 4. O

Corollaries 1.3 and 5.1 deal with thin knots, which are some of the simplest knots from the
point of view of knot Floer homology. Note that all of the knots discussed in [9] are thin.
However, our obstruction is certainly capable of producing strong corks from non-thin knots:

Corollary 5.2. Let K = —2T5, op+1#Ton an+1 for n odd. Then (YKym,tg\th) is a strong cork
for all (m,i,j) € Z3 with m and i both odd.

Proof. For n odd, the connected complex of —2T%), 25, +1#Ton 4n+1 Was computed in [12]. The
result is the same as shown on the left in Figure 5, except that the lengths of the arrows appearing
in the differential are larger and odd. It is easily checked that s % id on Ceonn (K). O

Many similar examples are possible using linear combinations of L-space knots; we present
Corollary 5.2 due to the fact that the requisite computation already appears in the literature
[12].

Remark 5.3. The preceding examples have primarily focused on the swallow-follow operation
on Yk, due to its connection to [9]. As discussed in Section 2.2, however, we can instead let
K = K; and K5 be any concordance inverse to K. It is not difficult to check that each of the
instances of Y ,, in this paper can generalized to Sf’/m (K 1#K>).

5.2. More general diffeomorphisms. We now move on to more general examples of corks
where the underlying diffeomorphism is not a twist along the swallow-follow torus. A wide
range of such examples come from periodic involutions on knots. Recall that a knot K in S2 is
2-periodic if there exists an orientation-preserving involution 7 of S? that preserves the oriented
knot K setwise. The action of such an involution on knot Floer homology was considered in
[6, 19].

By postcomposing 7 with a half-Dehn twist along K, we obtain a relative diffeomorphism of
(53, K) which by abuse of notation we also denote by 7.5 Note that as a relative diffeomorphism,
72 is isotopic to the Sarkar basepoint-pushing map on K, see [19, Proposition 2.6]. In the case
that K is a 2-periodic knot, we may thus think of 7 as forming a square root of s. We have the
following simple example:

6In fact, since knot Floer homology is a doubly-basepointed theory, this composition is necessary in order to
define the action of 7 on CF/I(K). Technically, we must also make sure to perform the half-Dehn twist along the
orientation of K. See [19, Section 2.2] for details.
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Corollary 5.4. Let (K,T) be a 2-periodic knot. If K is S-nontrivial, then (Yi m, (T#id)) is a
strong cork for any m odd and i % 0 mod 4.

Proof. As discussed previously, we have 72 ~ s. The S-nontriviality of K thus implies that

(7#id)? makes Yk m into a strong cork. It follows that 7#id makes Yk ,, into a strong cork,
since if 7#id extended over some homology ball, so too would (7#id)?. A similar observation
for (7#id)% ~ s3#id likewise shows the same for (7#id)3. Noting that 7% ~ s? ~ id as self-maps
of CFK(K) easily gives the claim. O

There are many examples of 2-periodic knots that are also S-nontrivial. For instance, Figure 6
shows that the two simplest S-nontrivial knots K = 41 and 52 admit such a periodic involution.

|
K>
g

FI1GURE 6. The knots 4; and 59 with the periodic involutions 7.

We now give an example which is not based on S-nontriviality and instead utilizes Theo-
rem 1.5. Let K7 and K5 be slice and consider a split diffeomorphism on K;# K5 of the form
¢#id. Since Ky is slice, (CFK(K2),id, tk,) is locally trivial. It easily follows that

O(K1# K2, ¢o#id) = 6(K1, ¢).

We use this to give an example of a cork with a slightly more subtle boundary diffeomorphism:

Corollary 5.5. Let K1 = 41#41 and equip Ky with the split diffeomorphism ¢ = T#7. Let Ko
be any slice knot. Then
(ST (K1 #K2), #id)

is a strong cork for any m positive and odd.
Proof. By Theorem 1.5, it suffices to show that
O(hi#41, T#T) = 0(K1, ¢) = 6(K1# K2, p#id) > 0.

We check this by showing that there is no U-nontorsion homology class in H,(Ap(K1)) which
lies in grading zero and is fixed by both the action of 7#7 and ¢. The desired result then follows
from the definition of the J-invariant.

Label the generators of CFK(41) as in Figure 7. The cycles in Ag(41#41) are as in Table 1,
where all but |z are U-torsion. The action of 7 on 4; follows from [19, Theorem 1.7]; Lemma 4.2

then gives the computation in Table 1. A similar calculation appears in [5, Section 3.2].
As in [5, Lemma 3.3], the t-invariant subspace of H,(Ao(41#41)) is spanned by

[z]z] + [z|d] + [a|d + d|a + blb + c|c], [z|d] + [d|x] and [d|d].

The latter two generators are 7|7-invariant, while the first is not. Since only the first generator
is U-nontorsion, the claim easily follows. ([
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b a
o tk(z) =xz+d T(z)=x+d
‘ ‘ tg(a)=a+x T(a)=a+x
d g (b) =c T(b)=b
ot ¢ tg(c)=b T(c)=c
* () = d rd)=d

F1GURE 7. The CFK(41) with the action of 7 and (.

Generators of homology Image under ¢ Image under 7|7
x|z zlx + z|d + d|z + d|d zlx + z|d + d|lz + d|d
x|d zld + d|d zld + d|d
d|z d|lz + d|d dlz + d|d
ald+dla+blc+¢c|b | ald + d|a + blc+ c|b + z|d + d|x + d|d | a|d + d|a + blc + ¢|b + z|d + d|z
d|d d|d d|d

TABLE 1. Actions of ¢ and 7|7 on Hy(Ao(K)).

Unlike Corollary 5.4, the above example cannot be obtained by passing to the squared diffeo-
morphism. Indeed, it can be checked that s ® s acts as identity on H,(Ao(K)); hence our use
of Theorem 1.5 is essential.
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