HOMOLOGY CONCORDANCE AND KNOT FLOER HOMOLOGY
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ABSTRACT. We study the homology concordance group of knots in integer ho-
mology three-spheres which bound integer homology four-balls. Using knot Floer
homology, we construct an infinite number of Z-valued, linearly independent ho-
mology concordance homomorphisms which vanish for knots coming from S®.
This shows that the homology concordance group modulo knots coming from
53 contains an infinite-rank summand. The techniques used here generalize the
classification program established in previous papers regarding the local equiva-
lence group of knot Floer complexes over F[U, V]/(UV). Our results extend this
approach to complexes defined over a broader class of rings.
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1. INTRODUCTION

Beginning with the 7-invariant [19], the knot Floer homology package of
Ozsvath-Szab6 [21] and independently J. Rasmussen [22] has had numerous ap-
plications to the study of smooth knot concordance, especially of knots in S3. See
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[10] for a survey of such applications. Less investigation has been done so far on
knot concordance in general manifolds, although there have been many recent re-
sults with bearing here, including relative adjunction inequalities constraining the
genera of smoothly embedded surfaces in a four-manifold [17, 6], invariants of almost
concordance classes of knots in lens spaces [3], and the existence of knots which are
not homology concordant to any knot in S [15]. R

In this paper, we study the homology concordance group Cz generated by pairs
(Y,K), where Y is an integer homology sphere bounding an acyclic smooth 4-
manifold and K is a knot in Y. Two classes (Y1, K1) and (Y2, K3) are equivalent
in Cz if there is a homology cobordism from Y7 to Ys in which —K; U Ko bounds
a smoothly embedded annulus. Let Cz denote the set of knots in S$3 modulo ho-
mology concordance; this admits an inclusion into Cz whose image consists of all
classes (Y, K) for which K is homology concordant to a knot in 3. Note that Cz is
a quotient of the usual smooth concordance group C.!

The starting point for this paper is the work of Levine, Lidman, and the second
author [12], which established that Cz/Cz is infinitely generated and contains a Z-
subgroup. This was later extended by Zhou [26] to show that Cz/Cz contains a
Z*°-subgroup. The present paper gives an infinite family of homomorphisms from
Cy / Cy to Z:

Theorem 1.1. For each (i,5) € (Z x ZZ°) — (Z=9 x {0}), there is a homomorphism
©i,j- 52 — 7.

For classes in Cy C é\Z, all homomorphisms of the form ¢; ; with j # 0 vanish.
Hence these descend to homomorphisms

Pij- é\z/CZ — 7.

Moreover, for knots in S, the remaining homomorphisms wi0 agree with the homo-
morphisms @; defined in [5]. In addition,

@g@nm,l: é\z/CZ — @Z

n>1 n>1
18 surjective.

In fact, the homomorphisms ¢; ; are well-defined concordance homomorphisms for
knots in any integer homology sphere, not just Y bounding an acyclic 4-manifold.

To see that the ¢, ,—1 are nonvanishing, we use the knots considered by Zhou
in [26] (see Section 11); in_particular, a consequence of the proof of Theorem 1.1 is
that the subgroup Z* C Cz/Cz constructed in [26] is a summand.

Corollary 1.2. The group é\Z/CZ has a Z°°-summand.

The invariants ¢; ; factor through the local equivalence group of knot Floer com-
plexes ([24, Theorem 1.5], forgetting the involutive part) and are related to stable
equivalence from [10, Theorem 1]; equivalently v*-equivalence of [14]. To under-
stand this, recall that following [24, Section 3], the knot Floer complex can be viewed
as a module over F[U, V]| where F is the field of two elements. Local equivalence is
then an equivalence relation between certain such complexes. One can also consider

1t is not known if C — Cz is an isomorphism.
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an analogous notion of local equivalence for complexes defined over other rings; see
for example [4] and [5].

In certain situations, it is possible to obtain a complete classification of knotlike
complexes up to local equivalence. This is (roughly speaking) the approach under-
lying [4] and [5]. Here, we carry out this program for a new ring X, which turns
out to be useful for studying homology concordance. In fact, we provide a more
general class of rings for which the our algebraic classification results hold. This
class includes X together with the ring R = F[U, V]/(UV') considered in [5]. Indeed,
the bulk of this paper consists of identifying the appropriate structural features of
R that will allow us to generalize the arguments of [5] to the present setting.

Explicitly, X is defined to be the commutative F-algebra

FlUp, {Wg.i}icz, VI, {Wr}icz]
(UsVr, UpWpi — Wait1, ViWr; — Wrip1)
We give this a bigrading gr = (gry, gry) € Z X Z by setting
gr(Up) = (—2,0) and gr(Wg,) = (—2i,—2)

and
gr(Vp) = (0,-2) and gr(Wr,) = (=2, —2i).

The definition of X is meant to take into account R = F[U, V]/(UV)-local equiv-
alence from [8, Definition 1] and [5], while involving the Floer homology of the
ambient three-manifold.

Understanding X is rather involved; an extended discussion can be found in Sec-
tion 3. For now, we make two remarks. The first is that there is a morphism of
unital bigraded F-algebras F[U, V] — X given by

U—Up+ WT70 and V= Vp+ WB70.

Given a knot K in a homology sphere Y, we produce an X-complex simply by taking
the usual knot Floer complex over F[U, V] and performing the substitution above:

CFKx(Y,K) = CFK (Y, K) ®gy.y) X.

The second is that the elements of X can be put in correspondence with certain
lattice points in Z x Z. (See Definition 3.2 for a precise discussion.) In Section 5,
we construct a preferred family of X-complexes, each of which is parameterized by
a finite sequence of lattice points, thought of as elements of X. Our main structural
theorem is that every knotlike X-complex is locally equivalent to a unique complex
in this family. Moreover, the total order introduced by the second author in [9]
extends to induce a total order for complexes over the ring X. We show that this
total order can be understood by defining a certain total order <' on Z x Z —{(0,0)}
and considering the lexicographic order on the set of sequences induced by <'. See
Definition 3.3 for a definition of <'.

Theorem 1.3. Every knot Floer compler CFKx(Y, K) for a knot K in an integer
homology sphere Y is locally equivalent (up to grading shift) to a standard complex
as defined in Definition 5.1. Fach standard complex is uniquely determined by a
finite sequence of nonzero pairs of integers (ik,jk)%il which obeys the symmetry
condition (ig, jx) = —(ion+1—k Jon+1—k)- Moreover, local equivalence classes over X
are ordered according to the lexicographic order on sequences (ik,jk)iil induced by
the order <' of Definition 3.3.
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Note that if we let D = (Z x Z>¢) — (Z<o % {0}) be the region of definition for
the indices of the homomorphisms ¢; ;, then Z x Z — {(0,0)} = D U —D. Roughly
speaking, ¢; j(K) will be the signed count of how many parameters (i, ji) in the
standard complex representative of CFKx (Y, K) are equal to £(i,j). See Section 3
for an example.

Our approach to Theorems 1.1 and 1.3 is to work for a certain type of rings,
called grid rings, and to establish classification results for all rings of this type. The
theorems for knot Floer homology are established as a consequence of these general
algebraic results, specialized to the ring X. See Section 4.

1.1. Topological applications. We now list some connections between our homo-
morphisms ¢; ; and other invariants, together with some topological applications.

Proposition 1.4. Let K be a knot in an integer homology sphere Y. Then we have
the following equality relating the Ozsvdth-Szabd T-invariant with ; ;:

T(V,K) = (i — §)ei; (K).
(4,9)
Similarly, (Y, K) can be determined from the standard complex representative
of CFKx(Y, K) appearing in Theorem 1.3. This leads to a re-proof of the following:

Corollary 1.5. [12, Corollary 1.9] Let K be a knot in an integer homology sphere
Y. Ife(Y,K) =0 and 7(Y,K) # 0, then K CY is not homology concordant to any
knot in S3.

In fact, Corollary 1.5 can be extended to obstruct homology concordances to any
knot in an integer homology sphere L-space.

We also are also able to show that if Y is a Seifert fiber space, then the ¢; ;
are constrained. Our conventions on the sign of Seifert fibered spaces follow [13];
in particular positive Seifert fiber spaces Y bound negative-definite plumbings and
have HF __,(Y) concentrated in even degrees, and negative Seifert fiber spaces Y’
have HF __,(Y’) concentrated in odd degrees.

Proposition 1.6. Let K C Y be a knot in an integer homology sphere. If there is
some (1, j) with j > 0 for which ¢; j(K) > 0, then K is not homology concordant to
a knot in any negative Seifert fiber space. If there is some (i, j) with j > 0 for which
vij(K) < 0, then K is not homology concordant to a knot in any positive Seifert
fiber space.

The following corollary is immediate from Theorem 1.1 and Proposition 1.6:

Corollary 1.7. There exist pairs (Y, K) which are not homology concordant to any
knot in a Seifert space.

Proof. According to Theorem 1.1 we may select a class on which the homomorphisms
¥n,n—1 take any desired set of values. O

We can also bound various genera in line with our results on concordance unknot-
ting number and concordance genus (of knots in S%) in [5]. Define the homology-
concordance genus

gr(Y,K) = min g3(Y' K",
(v',K'") homology concordant to (v,k)
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and the homology-concordance unknotting number:

up (Y, K) = min w(Y', K').
(v',K") homology concordant to (v,K)

Note that the homology-concordance unknotting number may be infinite. Let
N(Y,K)=  sup  [i—j],
(©:5) i3 (K)#0
Proposition 1.8. The homology concordance genus and homology concordance un-
knotting numbers satisfy:
(1) gre(K) = N(K)/2,
(2) um(K) = N(K).

Proposition 1.8 should be compared with [5, Theorem 1.14].

Remark 1.9. Following the appearance of this paper on the arXiv, Zhou [27] used
the invariants ; j, blow-downs of two-bridge links, and cables to show that Cz/Cyz
admits a Z°°-summand generated by a family of knots in a single manifold.

Organization. In Section 2, we briefly recall the requisite properties of knot Floer
homology. We give a brief primer on X-complexes and their applications (delaying
proofs) in Section 3. In Section 4, we introduce the notion of a grid ring and a
knotlike complex over a grid ring. This will allow us to define the local equivalence
group K of knotlike complexes, and show that it is totally ordered. In Section 5, we
define the standard complezes in analogy to the construction over R = F[U,V]/(UV)
from [5]. In Sections 6 and 7, we dive into the technical heart of the paper and show
that every knotlike complex is locally equivalent to a standard complex. We then
establish our homomorphisms in Section 8. The applications to knot Floer theory
are given in Sections 9 and 10, with calculations of the relevant knot Floer complexes
in Section 11.

2. BACKGROUND ON KNOT FLOER HOMOLOGY

In this section, we give a brief overview of knot Floer homology, primarily to
establish notation. We assume that the reader is familiar with knot Floer homology
as in [21] and [22]; see [16], [10], and [11] for survey articles on this subject. Our
conventions mostly follow those in [25]; see, in particular, Section 1.5 of [25], see
also Section 2 of [5].

We consider the bigraded ring F[U, V], with bigrading gr = (gry;, gry,), where we
call gry; the U-grading and gry, the V-grading, and gr(U) = (—2,0) and gr(V) =
(0,—2). When other bigraded rings and maps are present, we will often write
gry = gry and gry = gry.

Let K be a nullhomologous knot in a closed, oriented three-manifold Y. Then
we may associate to (Y, K) a chain complex CFKpy)(Y, K) = CFK(Y, K), called
the knot Floer complex of the pair (Y, K). This complex is obtained by considering
the free module over F[U, V] of intersection points of two Lagrangians in a sym-
metric product of a Riemann surface, coming from a Heegaard diagram along with
some analytic input, and where the differential counts isolated holomorphic disks,
weighted by their intersection with two basepoints.

The complex CFK (Y, K) is naturally bigraded by two gradings, also called gry;
and gry,, compatible with the action of F[U,V] on CFK(Y,K). The differential
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0 of CFK (Y, K) has bidegree (—1,—1). The Alexander grading of a homogeneous
x € CFK(Y, K) is defined by A(z) = (gry(x) —gry (z))/2. The complex CFK (Y, K)
depends on the data involved in its construction but is an invariant of (Y, K) up to
F[U, V]-equivariant homotopy equivalence.

We now recall some facts from [21]. Firstly, we have the following symmetry
property. Let CFK (Y, K) denote the complex obtained by interchanging the roles
of U and V. (Note that we thus also interchange the values of gr; and gry,.) Then

CFK(Y,K) ~ CFK(Y, K).

The knot Floer complex behaves nicely with respect to connected sums. Indeed, we
have that

CFK((Y1, K1)# (Y2, K2)) ~ CFK (Y1, K1) ®pjy,v) CFK (Y2K32).

We also have that
CFK(—(Y,K)) ~ CFK(Y,K)",
where CFK (Y, K)" = Homgyy,)(CFK (Y, K),F[U, V]).

In the literature, there is a more common version of the knot Floer complex
which takes the form of a filtered chain complex CFK>(Y, K) over F[U, U~!]. This
is generated over F by tuples [x, 4, j] with x an intersection point, and i, j integers
so that A(x) — j +1i = 0, where A is the Alexander grading. In the setting of
CFK (Y, K), the element [x,i,j] € CFK* (Y, K) corresponds to U~V ~Ix. With
our present notation, there is thus an identification

CFK*®(Y,K) = (U, V) 'CFK (Y, K))o

where the righthand side denotes the F[U/]-submodule of (U, V) 'CFK(Y,K) in
Alexander grading 0, where U=U V'; note that multiplication by U preserves the
Alexander grading. On (U, V) !CFK (Y, K), by construction gr;; = gry,, and so the
complex has a natural “Maslov grading” given by either of gry; or gry, .

We also consider how CFK (Y, K) relates to other standard versions of knot Floer
homology. First consider the F-vector space HFK (Y, K), which is defined by not
allowing holomorphic disks in the definition of 0 to cross either the w or the z
basepoint. In our context, this is isomorphic to H.(CFK(Y,K)/(U,V)), where
(U, V) denotes the ideal generated by U and V. The Alexander grading on HF'K is
given as before by A = (gry; — gry)/2 and the Maslov grading is given by M = gry;.

Next, consider the F[U]-module HFK~ (Y, K), which is defined by taking the
homology of the associated graded complex of CFK ™ (Y, K) with respect to the
Alexander filtration. This is equivalent to allowing holomorphic disks to cross the
w but not the z basepoint. In our context, this yields H.(CFK (Y, K)/V), where
the Alexander and Maslov gradings are as before. It is a standard fact that for
knots in S3, the F[U]-module HFK~(S3 K) = H.(CFK (S K)/V) has a single
U-nontorsion tower.?

It will also be convenient to have a description of knot Floer homology once
some of the variables are inverted. Indeed, CFK (Y, K) ®g(y,y) F[U,V, V~1, where
F[U,V,V~1] is an F[U, V]-module in the natural way, is bigraded homotopy equiv-
alent over F[U,V,V~!] to CF~(Y) ®p F[V,V~!], where CF~(Y) is regarded as a

2By this, we mean that H.(CFK (5% K)/V)/U-torsion = F[U]. Note, however, that this copy
of F[U] is not required to be generated by an element with gr,, = 0.
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F[U]-module concentrated in gry-grading zero, and CF~ (Y)®@pF[V, V1] is regarded
as a F[U, V]-complex by letting V act on the F[V, V1] factor. By symmetry, we sim-
ilarly have a description of CFK (Y, K) ®gjy,v) F[U,U ~1,V] as bigraded homotopy
equivalent to CF~(Y) ®@p F[U, U1].

If Y is an integer homology sphere, then CF~(Y) is a Z-graded F[U]-chain com-
plex, with

CF~(Y) ®ppy FIU, U™ ~F[U, U],

where ~ denotes homotopy equivalence. In particular, if K C Y is a knot in an
integer homology sphere, then there is an F[U, V]-equivariant homotopy equivalence

CFK(Y,K) ®pu FIU, UL, V, VT ~FU, U, V,V .

The following definition is particularly useful in applications of knot Floer homol-
ogy to homology concordance:

Definition 2.1. Let K; and K5 be knots in integer homology three-spheres Y7 and
Y5 respectively. We say that CFK (Yy, K1) and CFK (Y3, Ks) are locally equivalent
if there exist absolutely U-graded, absolutely V-graded F[U, V]-equivariant chain
maps

f: CFK(Y1,K,) — CFK(Y3,K9) and g¢: CFK(Ys,K3) — CFK(Y1, K1)
such that f and g induce homotopy-equivalences

f®id: CFK(Y1, K1) @ F[U, U, V,V™1 = CFK (Ys, K2) @ F[U, UL, V, V]
and

g®id: CFK (Y, K») @ FlU, U Y, V,V™Y] - CFK (Y1, K,) @ FlU, U, V, V1.

In previous work [5], the authors studied knot Floer homology over the ring
R =F[U,V]/(UV) and defined an appropriate notion of local equivalence for such
complexes.

Theorem 2.2 ([24, Theorem 1.5], cf. [8, Theorem 2|). If K7 and Ky are two knots
in S which are concordant, then CFK (K1) and CFK(K3) are locally equivalent.

Theorem 2.2 follows from [24, Theorem 1.5] by forgetting the involutive component
and quotienting by UV, or from [8, Theorem 2| by translating from e-equivalence
and bifiltered chain complexes to local equivalence and R-modules.

Remark 2.3. Note that CFK(Y, K) is locally equivalent to CFKx(O), where O
denotes the unknot, if and only if CFK(Y,K) ~ CFK(O) @ A, where A is a
chain complex over R with U 'H,(A) = V-'H,(A) = 0. It is straightforward
to verify that local equivalence over R and e-equivalence (see [9, Section 2]) are

the same (after translating between R-modules and bifiltered chain complexes over
F[U,U1)).

3. OVERVIEW AND PRELIMINARY NOTIONS

3.1. Preliminary discussion of X-complexes. In [5], the authors defined the
notion of a knotlike complex over R = F[U,V]/(UV) and gave a classification of
such complexes up to local equivalence. The present paper should be thought of
as extending this classification to complexes defined over other rings. Our primary
example will be the ring X mentioned in Section 1, since this will have applications
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to studying knots in homology spheres other than S3. We spend a little time famil-
iarizing the reader with the properties of X, before moving on to consider a general
class of rings in the next section. It will be helpful for the reader to have a broad
recollection of the ideas of [5].

We begin by imprecisely recalling some salient features of the case of complexes
over R. Although obvious, these should be kept in mind, as they will generalize to
properties of complexes over X.

(1)

First note that R contains two subrings F[U] and F[V], which have preferred
maximal ideals (U) and (V), respectively. (The sense in which these are
preferred will soon be made explicit.) The product of these ideals is zero
in R. The reader familiar with the results of [5] will broadly recall the
importance of this point: arrows in the standard complexes of [5, Section
4.1] are labeled by homogenous elements of (U) and (V'), with the labels of
successive arrows being drawn first from one ideal and then the other. For
the manipulations in [5], it is important that the product of (U) and (V) is
Z€ero.

There is an obvious ordering on the set of homogenous elements of F[U],
where z is larger than y if(f) x divides y. A similar statement holds for
F[V]. The ordering on the set of standard complexes (see [5, Section 4.3]) is
(roughly speaking) induced from the ordering on the homogenous elements
of F[U] and F[V].

Let K be a knot in S® and let CFK®(S3, K) be the knot Floer complex of
K over R. Inverting U and taking the homology of the resulting complex
yields a single bi-infinite tower F[U, U~!]. The notion of a local map in [5,
Definition 3.3] is dependent on the fact that the localization of the homology
at U takes this particularly simple form. A similar statement holds for
localizing at V.

As we will see, appropriately formalizing each of these properties will suffice to
establish a general classification result. To give the reader some intuition, we first
draw some parallels between X and R. Recall:

Definition 3.1. Let X be the F-algebra given by

F(UB,{W,i}icz, Vr, {Wr,i }icz]
(UsVr, UsWgi — Waiv1, ViWr; — Writ1)’

with a bigrading gr = (gr;, gry) € Z x Z given by

and

gr(UB) = (_270) and gr(WB,i) = (_2i7 _2)

gr(Vp) = (0,-2) and gr(Wr,) = (=2, —2i).

Note that X has two particular subrings, which we denote by Ry and Ry . These

are

and

Ry = F[Up, {Wh,i}icz]/{UsWB,i = Wa it1})

Ry = F[Vr, {Wr,i}icz]/{(VeWri = Wrig1})-

There is an obvious skew-graded isomorphism between Ry and Ry, sending Up to
VT and WBJ' to WTJ'.



HOMOLOGY CONCORDANCE 9

The algebraic structure of Ry and Ry is displayed in Figure 1. Once again, Ry
has a preferred maximal ideal (Ug) and Ry has a preferred maximal ideal (Vr);
the product of these is zero in X. Note that every nontrivial (that is, non-identity)
homogeneous element of Ry is a multiple of Up (and similarly for Ry), and that
the intersection of Ry and Ry in X is a copy of the field F. As in the case of F[U],
the homogenous elements of Ry are totally ordered by divisibility. Visually, this
total order can be seen on the left of Figure 1 as follows: moving along a red arrow
goes from one homogenous element to the next-largest homogenous element, with
the caveat that all of the elements in the (n+ 1)st row are less than (or equivalently,
divisible by) any element in the nth row. A similar statement holds for homogenous
elements of Ry .

Wr,_sW3, Wr,_oWro Wr,—2
L] L] L]

gr2
U? gri
B Up 1
L] . L] N L]
Wr, W2,y Wr,_qWr Wr_1
Wgo Wg.o Wp,—2 gr1
L] L] L] L] ;
We Wg,—1 W3, Wi, Wr,0 1
Wg2Wgo WEW Wg,—2Wgo
L] L] L] L] L] L] L] Vi
Wi1Ws,0 Wg,-1Wgo Wr W2, WrWro Wr T
Wpa2WE o Wio We, 2 W
L] L] L] L] L] L] L] V2
WpaW3, Wp, W3, Wr W2, WreWro Wr.2 T

FI1GurRE 1. The homogenous generators (over F) of Ry (left) and
Ry (right), displayed in the (gr;, gry)-plane. Red arrows are drawn
as a visual aid to represent the action of Up (left) and Vr (right),
but may also be interpreted as helping describe the total order on
the set of homogenous elements. Note (for example) that in Ry, the
first row dominates the second row; that is, any Wp; is divisible by
J
any Ug.

Definition 3.2. We may also write the elements of Ry uniquely as UfBWé s Where
(3.1) (i,7) € (Z x Z=°) — (Z=9 x {0}).

Note that ¢ is required to be non-negative if j = 0, but we otherwise allow negative
powers of Up. The element U}IBI/VJ]B’0 is the unique nonzero element of Ry in bigrad-
ing (—2i,—27). We thus identify elements of Ry as points (7, ) in the subregion
(3.1); this is (up to a factor of two) just the set of lattice points on the left of Fig-
ure 1, rotated 180 degrees. For elements of Ry, we write (7, j) to represent V%W%O,
where (7, j) similarly lies in (3.1). In this case, (¢,7) is the unique nonzero element
of Ry in bigrading (—2j, —2¢). The obvious skew-graded isomorphism between R
and Ry sends (i,7) in Ry to (i,5) in Ry.® Note that (3.1) is (excluding the origin)
exactly the same as the index domain on which the ¢; ; in Theorem 1.1 are defined.

3We could instead use the convention that (¢,7) in Ry represents V%W}’O. However, it will be
notationally convenient for the elements of Ry and Ry to both correspond to points in the same
subregion of Z x Z.
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We also need to consider the field of homogenous fractions of Ry and Ry, which
is obtained by inverting all (nonzero) homogenous elements. We denote these by
L(Ry) and L(Ry), respectively. It is straightforward to check that

L(Ry) =FUp,Uz", Wg0, Wg ]
L(Ry) =F[Vp, Vi, Wro, Wr).

As in Definition 3.2, we may think of the elements of L(Ry) or L(Ry) as points in
ZxZ, where (i, j) represents U}'BWAO or V%W:]no, respectively. It will be helpful for us
to extend the total order of Figure 1 to the non-unit elements of £L(Ry) and L(Ry),
and translate this into the setting of Definition 3.2. We give a general explanation
of how to extend the total order to the field of fractions in Definition 4.10; for now
we simply record the result:

Definition 3.3. Define a total order on Z x Z — {(0,0)} as follows. To compare
(i,7) and (k,£), there are two cases. First suppose that j and ¢ are distinct. Then
(i,7) <' (k,€) if(f) 1/§ < 1/¢, with the interpretation

0L .
1/j = +OO?¢7. O,z.>0 and  1/0—= —i—oo?ﬂ 0,k>0
—x0if j=0,i<0 —o0if £ =0,k <0.

If j = ¢, then (i,7) <' (k,£) under the following circumstances:

(1) If j # 0, we require i < k.

(2) If j =0, we require 1/k < 1/i.
Note that 1/k < 1/i is not always equivalent to ¢ < k, as ¢ and k may not be
positive.

Definition 3.3 is graphically depicted in Figure 2. Moving along the red arrows
in Figure 2 enumerates the points of Z x Z — {0,0} in descending order, with (1,0)
being the greatest element and (—1,0) being the least. The solid red arrows go from
one lattice point to the next-largest, which always lies immediately to the right. The
dashed arrows schematically represent further inequalities between different parts
of the diagram. For example, the points on a given horizontal line generally all
dominate all the points on the line immediately above it. There are three excep-
tions/additions to this rule: only the positive z-axis dominates the line above it,
only the negative x-axis is dominated by the line below it, and all horizontal lines
above the z-axis dominate all horizontal lines below the z-axis. Figure 2 should be
compared with Figure 1.

Finally, note the existence of a (unital, bigraded) morphism from F[U, V] to X,
given by
U~ UB + WT70
V= Vr+ WB70.

This will be of importance in the sequel.

(3.2)

3.2. Homology spheres other than S3: an example. We now discuss how to
extend the results of [5] to knots in homology spheres other than S3. As stated
in Section 2, if K C Y is a knot in an integer homology sphere, then there is a
F[U, V]-equivariant homotopy equivalence

CFK(Y,K) ®@puy FIU, UV, VT ~FlU, UV, V.
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FIGURE 2. The total order <' on Z x Z — {(0,0)}. Following arrows
in the diagram corresponds to decreasing in the total order. Note
that (1,0) is the greatest element and (—1,0) is the least.

This leads to Definition 2.1. However, for the definition of local equivalence in [5,
Definition 3.3], a slightly different localization result is needed. Observe that since
UV =0in R, inverting U in R sets V = 0. It follows from this that

H, (U 'CFKR(Y,K)) = F[U,U | ® HF(Y).

If Y = 53, then we obtain a single tower F[U, U~!], which leads to a clear notion
of local equivalence for such complexes over R. However, if Y is not S2, then in
general we will have multiple towers. Explicitly, if Y is not S®, then CFK (Y, K)
is not always a knot-like complex in the sense of [5, Definition 3.3].

We illustrate this with a simple example. Let My denote +1-surgery on the torus
knot T57 and let Yo = Ma# — Ms. Let K5 denote the connected sum of the core
of surgery in My and the unknot in —Ms. (This notation will become clear in
Section 11, where this example is generalized.) According to [26], the knot Floer
complex CFK (Y3, K») is locally equivalent (over F[U,V]) to a complex generated
by xg, 1, and y, with bigradings

gr(zo) = (2,0)
gr(z1) = (0,2)
gr(y) = (3,3)
and differential
dxg = UV?y and oz, = U?Vy.

We focus on what happens to this subcomplex after passing to the quotient ring R.
The important point is that modulo (UV'), the above differential is trivial. Hence
localizing with respect to U and taking the homology clearly yields three copies of
F[U,U~1], rather than one. (Equivalently, modding out by the ideal (V) and taking
the homology gives three nontorsion towers.)

Instead of passing to the quotient ring R, our strategy will instead be to consider
what happens when we perform the substitution of the previous subsection. This
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should be thought of as changing the base ring from F[U, V] to X using the morphism
(3.2). Keeping in mind the relations in X, the differential in the above (sub)complex
becomes

Oxg = (UBW%’O + WT,Ong)y and oxr1 = (U%WBD + W%OVT)y.
We can then perform a (bigraded) change-of-basis and set
ag = xo + Wp, 121,
ar = o1 + Wr _1x0,
b=y.
This turns the differential into
dag = WroVFEb  and  day = U Wgb.

This (sub)complex should be thought of as having two arrows, one decorated with a
homogenous element of the ideal (Up), and the other decorated with a homogenous
element of the ideal (V). Moreover, suppose that we now invert all homogeneous
elements of Ry. (This is the analogue of localizing at U in the case of complexes
over R.) Since the product of (Up) and (Vr) is zero in X, this sets all elements
of (V) to zero. It is easily checked that the resulting localization has homology
consisting of a single copy of L(Ry), generated by ag.

The analogy with complexes over R should now be clear. In order to study
knots in general homology spheres, we first perform the change of base ring given
by (3.2) to obtain the knot Floer complex over X. In Section 9 we verify that X-
complexes obtained in this way have the appropriate tower behavior after inverting
homogenous elements of Ry (similarly for Ry ), and that homology concordances
induce the obvious notion of local maps.

Our subsequent analysis then proceeds almost exactly as in [5]: we show that
every such X-complex decomposes into the sum of a part whose homology is acyclic
upon inverting Ry or Ry, and a summand supporting the single tower. Up to a
change of basis, this latter piece takes the form of a standard complex as in [5,
Section 4.1], except that now arrows are decorated by homogenous elements of (Up)
or (Vr), rather than powers of U or V. We can thus parameterize this via a sequence
of lattice points, as in Definition 3.2. In the above example, we have the standard
complex

C(_(2v 1)’ (2’ 1))

obtained by considering the sequence of generators aj,b, and ag. (This ordering
is explained in Definition 5.1.) The first entry —(2,1) corresponds to the arrow
decorated with U3Wp which goes from a1 to b; the negative sign a convention
due the direction of the arrow. The second entry (2,1) corresponds to the arrow
decorated with V2Wr o going from as to b. See Definition 5.1 for a precise description
of this procedure and its conventions.

The analysis of the total order on the set of standard complexes proceeds the
same as before, except that we use the ordering of Definition 3.3. Given a standard
complex and a choice of decoration, we may then form the (signed) count of arrows in
that complex with that decoration. These define the homomorphisms ¢; ; described
in Theorem 1.1. Because of the symmetry of the parameter sequence, by convention
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we only count odd-index parameters. Hence in the above example, we obtain
p2,1(K) = -1

and all other ¢; ;(K) = 0. See Section 8 for further discussion and Section 11 for
more examples.

In fact, all of our results will hold for complexes over a much more general class
of rings. Defining these will take up the bulk of the next section.

4. GRID RINGS AND THEIR PROPERTIES

In this section, we define a general class of rings with many of the same properties
as R and X. We then extend the notion of a knotlike complex (as defined in [5,
Definition 3.3]) to complexes over such rings. Our overarching goal will be to show
that the set of knotlike complexes modulo an appropriate notion of local equivalence
forms a totally ordered abelian group.

4.1. Graded valuation rings. We begin by generalizing some properties of the
rings F[U] and Ry. Chief among these is the existence of a total order on the set
of homogenous elements. We first introduce some preliminary notions:

Definition 4.1. Throughout this paper, a graded domain R will be a Z x Z-graded
integral domain. We denote the two components of the grading by gr = (gr;, gry)
and denote the degree-(i,j) summand of R by R(3) . We furthermore impose the
following conditions on gr. Firstly, we require that gr,(x) = gry(z) mod 2 for any
homogenous x € R. Secondly, we require that either:

(1) gr takes values in 27Z x 27 (in which case the previous condition is of course

trivial); or,
(2) =1=11in R.

By convention, every integral domain is assumed to be unital and commutative.

Remark 4.2. The grading conditions on R may seem rather opaque, but will be
necessary in order to form tensor products and duals of complexes over R. Roughly
speaking, the above conventions allow us to view R as being simultaneously com-
mutative and grading-commutative. See Section 4.4.

Definition 4.3. A graded field is a graded domain for which every nonzero homo-
geneous element has a homogeneous inverse.

Note that in general a graded field is not a field, although the degree-(0,0) piece
of a graded field is indeed a field.

Definition 4.4. Given a graded domain R and a multiplicative subset S of homo-
geneous elements in R, we define the homogeneous localization S™'R of R at S to
be the set of pairs

(z,y) € R x S,

with y homogeneous, subject to the equivalence relation:
(x,y) ~ (z,w) if zw — zy = 0.

The product and sum of pairs is defined in the usual way. Moreover, S~'R admits a
Z x Z-grading, where homogeneous elements are given by pairs (x,y) with x,y both
homogeneous, and with grading given by gr(x) — gr(y). In the special case that S
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consists of all nonzero homogenous elements of R, this construction yields the field
of homogenous fractions of R, which we denote by L(R). Note that £(R) is not in
general a field, but rather a graded field in the sense of Definition 4.3.

Ezample 4.5. The field of homogenous fractions of F[U] is given by F[U,U~!]. The
field of homogenous fractions of Ry is given by

L(Ry) =FUp,Ugz", Wg 0, Wggl.

We now formalize the analogue of the total ordering property discussed in Figure 1
and surrounding discussion:

Definition 4.6. Let R be a graded domain. We say that R is a graded valuation
ring if any one of the following three equivalent conditions hold:

(1) For any nonzero homogenous z in £(R), either z € R or x~ € R (or both).

(2) The set of homogenous ideals in R is totally ordered by inclusion.

(3) The set of homogenous elements in R, modulo homogenous units in R, is
totally ordered by divisibility.

For the equivalence of the three conditions for (ungraded) valuation rings, see
[23] (also [2, Lemma 15.119.2]). For more details on graded valuation rings, see [18,
Lemma 1.3.2].

Remark 4.7. Using the divisibility condition, it is easily checked that every finitely-
generated homogenous ideal in a graded valuation ring is principal. (Note that X is
neither a PID nor Noetherian.) It turns out that much of the intuition for modules
over a principal ideal domain thus carries over to modules over graded valuation
rings. In particular, we will need the following structure theorem: suppose that M
is a finitely-generated (graded) module over a graded valuation ring R. Then M is

isomorphic to
M=~R"q (@ R/(yi)>
i=1

for some homogenous elements v; € R, just as in the the case of a module over a
principal ideal domain. More generally, if (C, ) is any free, finitely-generated chain
complex over a graded valuation ring R, then it is possible to do a homogenous
change-of-basis to obtain a basis {z;}2; U {y;, 2 }j_; such that

al’j = 0,
0y; = v;z;, and
aZi =0

for some homogenous v; € R. We refer to such a basis as a paired basis (see also
Definition 4.32). The existence of paired bases can be shown via the standard
algorithm for putting presentation matrices into Smith normal form.

Definition 4.8. Let R be a graded valuation ring. Let
I'(R) = (homogenous elements of £(R)™*)/(homogenous units in R)
be the set of nonzero homogenous elements in £(R), modulo homogenous units in

R.* This forms an abelian group (under multiplication), which we refer to as the

4Actually, it is possible to show that in a graded domain, every unit is necessarily homogenous.



HOMOLOGY CONCORDANCE 15

valuation group of R. Throughout this paper, we sometimes abuse notation slightly
and identify elements of £(R)* with their classes in I'(R), suppressing the quotient.
Write I'>1 (R) for the classes in I'(R) coming from homogenous elements of R, and
<1 (R) for classes coming from = € £(R) such that 27! € R. We write

I (R) = Tx1(R) — {[1]}
and

I'_(R) =T<i(R) - {[1]}-
Definition 4.9. For z in the value group I'(R), define

|SU‘— x ifQTGFZl(R),
)zt ifzeTo(R).

For x # [1], we say that z is positive or negative if x is in I'y (R) or I'_(R), respec-
tively. For such z, define

wn(y {1 ETL(R)
BTN itz eT_(R).

Note that T\ (R) is totally ordered. We use this to put a total order <' on the

set 't (R)UT_(R):
Definition 4.10. Let z,y € ' (R) UT_(R). We define:

(1) If 2,y € T (R), then x <' y if(f) 2y~ ' € R; that is, y divides z in R.

(2) If 2,y € T_(R), then x <' y if(f) 2y~ ' € R; that is, |2| divides |y| in R.

(3) Ifz € T_(R) and y € T4 (R), then = <' y.5
This defines a total order on the set I'y (R) UT'_(R). By convention, we place [1]
in between these two submonoids in the total order, so that <! defines a total order

on all of I'(R). Note that this means when one of z and y is the identity element of
I'(R), the order <' coincides with the symbol < in Definition 4.8.

Remark 4.11. Note that Definition 4.10 is not the total order on I'(R) which is
usually presented in the literature. This latter order is defined as follows: for x,y €
I'(R), we set x < y if(f) 7'y € R. (Contrast with Definition 4.10.) This turns I'(R)
into a totally ordered abelian group, and is usually what is meant in the literature by
the valuation group. However, this is not the total order which we will consider in
this paper. Instead, the total order of Definition 4.10 may be obtained by reversing
the total order on I'y (R) and I'_ (R) described above, and then declaring any element
of I'_(R) to be less than any element of I'y (R). We stress that in contrast to the
usual total order, Definition 4.10 does not always interact naturally with the group
structure when x and y are not in the same submonoid. Thus, although we refer to
I'(R) as the valuation group, in our context this is slightly misleading.

The reason we need a total order on I'y (R)UT'_(R) is the follows: in our ordering
of standard complexes, we must take into account the direction of arrows, as well as
their decoration. (See [5, Definition 4.3].) It will thus be convenient for us to think
of a decoration x on an arrow in the “negative” direction instead as the decoration
z L,

"Note that if we were to simply define z <' y if(f) zy~' € R, then I'_(R) would dominate
I (R).
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Ezample 4.12. The ring F[U] is a graded valuation ring. We have:
Iy (FU)) = {1,U, U3 U3, ...},
LFU) ={...,.u3Uu 20U 1,0 U%U3,. . .}

The total order is displayed in Figure 3; compare with [5, Section 4.2]. The ring Ry
is also a graded valuation ring. We have:

FZI(RU) = {UJiB}ieZZO U {WB,iWé,O}iEZ,jeZZO>
I'(Ry) = {U;awfg,o}i,jez-

The total order is displayed in Figure 3. This is precisely the same as Figure 2 under
the identification of UpW3 , with the lattice point (i, j).

v
—2
Wgho
e d— 04— 04— 04 04— 04— 0"
\
*********** ST T T T T T T T T T =<
WB,O \
e 04— 04— 04 04— oa——o- -7
\
O R e UETUR T Us 1 U U U3
e d—0ea—eo . ed— 00y fred—0ea—e . e o<—o.. ¥

<!
5

e T
Wiso

o404 04 04— 04— 0a—o0o Y

FI1cureE 3. Left: total order on I'(F[U]), with largest element U.
Successively smaller elements are obtained by following the red ar-
rows; the dashed red arrow schematically represents the fact that
't (F[U]) dominates I'_(F[U]). Although 1 is not drawn within the
total ordering, we may place it in the middle of the dashed arrow.
Right: total order on I'(Ry), with largest element Up. Again, 1 may
be placed in the middle of the long dashed arrow running from the
bottom to the top of the diagram. For brevity, we have only labeled
elements along the primary axes.

In this paper, we will consider a particular type of graded valuation ring, which
we call type-zero.

Definition 4.13. Let R be a graded valuation ring. We say that R is type-zero if
either of the following two equivalent conditions hold:
(1) The degree-(0,0) piece of R consists precisely of the invertible elements of
R, together with the zero element.
(2) The unique maximal homogenous ideal m of R consists of everything outside
the degree-(0,0) piece of R; that is,

m= @ R(),

(4,5)#(0,0)
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Note that this means the degree-(0,0) piece of R is a field. We denote this field by K
and refer to it as the residue field of R. If R is type-zero, then R is an algebra over
K, and the quotient map from R to R/m = K is just projection onto the degree-(0,0)
piece of R.

To make sense of the second condition, note that any graded valuation ring R
has a unique maximal homogenous ideal m. (That is, the set of homogenous ideals
has a unique maximal element. To see this, consider the union of all nontrivial
homogenous ideals in R.) We leave the equivalency of the above two conditions as
an exercise for the reader. The central point is to show that (in general) if = is a
homogenous element of R, then « € m if and only if x is not invertible.

Ezample 4.14. Both F[U] and Ry are type-zero graded valuation rings with residue
field IF.

Although the condition of being type-zero might seem rather restrictive, in prac-
tice many graded valuation rings fall into this category. For instance, one may
consider adjoining (non-invertible) variables to a field in degrees other than (0,0).
We close this subsection with a simple fact which will useful in later sections:

Lemma 4.15. Let R be a type-zero graded valuation ring. Then R is a one-
dimenstonal K-vector space in each bigrading.

Proof. Let  and y be any two elements in R(*/). Since R is a graded valuation ring,
we have that x = cy for some ¢ € R. Since x and y lie in the same bigrading, c lies
in grading (0,0); hence ¢ € K. O

4.2. Grid rings. We now introduce the notion of a grid ring. As we will see, these
should be thought of as being built from two graded valuation rings, in analogy to
the way that X is built from Ry and Ry. Roughly speaking, the idea will be to
take two type-zero graded valuation rings which share the same residue field and
glue them together.

Definition 4.16. Let Ry and Ry be two type-zero graded valuation rings with
maximal homogenous ideals my and my.% Suppose that the residue fields Ry Jmy
and Ry /my are isomorphic. For clarity, we assume both of these admit fixed
isomorphisms to some field K, so that we have bigraded quotient maps

f:Ru—=K and g: Ry — K,
where K is concentrated in degree (0,0). (Note that ker f = my and kerg = my.)
We define the grid ring S = S(Ry, Ry) to be the pullback
Ru xx Rv ={(ru,rv): f(rv) = g(rv)} C Ry X Ry.
This inherits a Z x Z grading, where gr(ry,ry) = (gr(rv), gr(ry)).

Definition 4.17. We say that S(Ry, Ry) is grading-nontrivial if there exists some
w € Ry with gri(p) # 0 and v € Ry with gry(v) # 0. This (mild) restriction will
be useful in Section 8.

6We will often abuse notation and use Ry and Ry to denote two general type-zero graded
valuation rings, rather than the specific graded valuation rings Ry and Ry used in the construction
of X. In practice, this will cause little confusion.
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It may not be immediately obvious that our previous examples R and X are grid
rings; we give a more concrete construction that will make this clear presently.

Definition 4.18. Consider the ideals

{(M,O) VNS mU} C S(Ru,Rv)
and

{(0, l/) S mv} C S(RU,Rv).
Viewed as subrings of S, these are obviously isomorphic to my; and my; by abuse
of notation, we denote these by my and my also.

Remark 4.19. We make little distinction between the ideals my C Ry and my C
S, relying on context to distinguish these when needed. In particular, given two
homogenous elements z,y € my, the reader may verify that the question of whether
x divides y (or, indeed, whether z is a unit multiple of y) is independent of whether
x and y are considered as elements of Ry or elements of S. We thus freely use
the fact that homogenous elements of my (modulo units) are totally ordered by
divisibility, without regard to the setting.

An alternative definition of S(Ry7, Ry) can be given as follows. Keeping in mind
that Ry and Ry are K-algebras, consider

Ry @k Ry /(my @k my ).

We claim that this is isomorphic to the grid ring S(Ry, Ry ). Indeed, any element
(ru,rv) € S(Ry,Ry) can be written uniquely as (k + pu, k + v) with £ € K and
€ my,v €my. Here, we are using that K appears as a summand of Ry and Ry .
The desired isomorphism sends (k + u, k + ) to the element

Ell)+pel+1l@v

in the quotient of the above tensor product. The reader may verify that this is
a ring isomorphism. While the tensor product construction is rather easier to get
a handle on, we have presented Definition 4.16 in the hope that the categorically-
minded reader will find the class of grid rings to be a more natural construction
and/or indicate possible avenues for generalization outside of the type-zero case.

Remark 4.20. It is clear from the tensor product point of view that & contains
subrings isomorphic to Ry and Ry, as well as the field K. Note that in general, the
pullback of two rings need not contain a copy of either ring. (This is one reason we
have imposed the type-zero condition.) Instead, projection onto either coordinate
gives quotient maps

pu: S(Ru,Ryv) - Ry and py: S(Ry,Rv) — Ry
whose kernels are my and my;, respectively. We will thus sometimes write
S(Ry,Rv)/my 2Ry and S(Ry,Rv)/my = Ry.
Similarly, we have a map
T S(RU,Rv) — K
given by sending (ry, rv) to f(ry) = g(ry). The kernel of this is (my, my); we thus

write

SRy, Rv)/(my,my) =K.
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Note that Ry, Ry, and K are thus all S-modules. (The action of s € S on ry € Ry
is given by py(s) - 1y, and so on.) Clearly, my C S acts on Ry as zero, with similar
statements holding for Ry and K.

Ezxample 4.21. The discussion of this subsection shows that R and X are both
grading-nontrivial grid rings. The former is built from the graded valuation rings
F[U] and F[V]; the latter is built from the graded valuation rings Ry and Ry of
Definiton 3.1. In both cases the field K is given by F.

4.3. Complexes over grid rings. We now translate the machinery of local equiva-
lence into the setting of complexes over grid rings. For the remainder of this section,
fix a grid ring S = S(Ry, Rv).

Definition 4.22. Let S be a grid ring. Throughout this paper, an S-complezx (C,0)
will mean a free, finitely-generated, Z x Z-graded chain complex over S. We denote
the two components of the grading by gr = (gry, gry). The differential 0 is required
to have degree (—1,—1). We also impose the condition that gr;(z) = gry(z) mod 2
for each homogenous x € C; this will be necessary when we construct products
and duals of complexes in Section 4.4. Note that due to the grading condition of
Definition 4.1, this parity condition is preserved by the action of S.

Given an S-complex C, we may form the tensor product C ®s Ry, where Ry is
given the action of S discussed in Remark 4.20. This may alternatively be thought
of as setting my to be zero inside C'. We thus sometimes write

C®$ RU = C/mv

The resulting complex is an Ry-module and thus satisfies the structure theorem of
Remark 4.7. This procedure is of course analogous to setting V = 0 for a complex
over R. We similarly have

C®sRy =C/my
and
CRsK= C’/(mU,mv).

Definition 4.23. A left knotlike complex C is an S-complex for which
H,(C ®s Ry)/Ry-torsion = Ry

by an isomorphism which is absolutely gry-graded and relatively gri-graded. We
refer to this as the U-tower condition. We say that « € C is a U-tower class if the
image of x in H,(C®sRy)/Ru-torsion generates Ry under the above isomorphism.
This means that the image of  in C'®s Ry is necessarily a cycle; we will sometimes
be imprecise with distinguishing between z and its image in C ®s Ry, H.(C®sRy),
or H,(C ®s Ry)/Ru-torsion. Note that any U-tower class has gry = 0. A right
knotlike complex is defined analogously, replacing U with V and gr, with gr;; we
similarly define the V -tower condition and the notion of a V-tower class. A totally
knotlike complex is a S-complex which is both left and right knotlike

Remark 4.24. To motivate the grading condition in Definition 4.23, suppose that C'
is an S-complex such that H,(C' ®s Ry )/Ry-torsion and H,(C ®s Ry )/Ry-torsion
are isomorphic to Ry and Ry, respectively, but via maps which are only relatively
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graded. Then there exists a unique grading shift on C that makes the first isomor-
phism gry-preserving (and gr;-homogenous), and simultaneously makes the second
isomorphism gr;-preserving (and gry-homogenous).

Remark 4.25. The extremely observant reader may wonder whether it is necessary
to remember the data of the actual map constituting the isomorphism in Defini-
tion 4.23. This turns out not to be important due to the fact that any Ry-module
isomorphism from Ry to itself is multiplication by a unit, which necessarily lies in
degree (0,0). To see this, observe that any Ry-module map h from Ry to itself is
just multiplication by the element hA(1). If h has an inverse, it is clear that h(1) is
invertible.

If we have a morphism f: C; — Cy of S-complexes, then we obtain a morphism
f®id: C1 ®s Ry — Cy ®s Ry
which we often also denote by f. Similar statements hold with Ry in place of Ry.

Definition 4.26. A left local map of (left) knotlike complexes C; — Cq is an S-
equivariant chain map

f: Cl—>02

such that f is gry-preserving and gr;-homogenous, and f induces an isomorphism
on H,(C ®s Ry )/Ry-torsion. A right local map is defined analogously, replacing U
with V' and gr, with gr;. For C; and Cs (totally) knotlike complexes, we say that
f is totally local if it is a local map of both left and right knotlike complexes.

Definition 4.27. We say that two (left) knotlike complexes C; and Cy are left
locally equivalent if there exist (left) local maps C; — Co and Cy — C;. The set
of left local equivalence classes of (left) knotlike complexes admits a partial order <
by declaring C; < C if there exists a (left) local map C7 — Cy. Similar definitions
hold for right knotlike complexes.

The reader familiar with the definitions of [5, Section 3] will have no trouble
checking that the above notions generalize the case of knotlike complexes over R.
Note that with our conventions, [5, Definition 3.3] corresponds to the definition of a
right local map. We will generally work with right local maps throughout this paper,
and we thus often refer to a right local map simply as a “local map”. Here there
may be some confusion, in that we may consider a right local map between two right
knotlike complexes, or a right local map between two totally knotlike complexes. In
the latter case, however, it turns out that a left or right local equivalence between
two totally knotlike complexes is in fact totally local; see Lemma 7.7.

Given any free, finitely-generated S-complex C'; we may consider the image of
the action of (my, my) on C. Since C is a free module and my Nmy = {0} in S,
every element z in (my, my) - C' can be uniquely expressed as a sum zy + zy for
zy € my - C and xy € my - C. Usually we will write (my, my ) to mean the image
(my, my ) - C (and so on), as this will rarely cause confusion.

Definition 4.28. We say an S-complex is reduced if 9 = 0 mod (my, my). Let
Oy = 0 mod my and dy = d mod my . In a reduced complex, we may write

0 =0y + oy.



HOMOLOGY CONCORDANCE 21

Note that 8(2] = 8‘2/ = 0. We refer to dy the U-differential and elements with
Juzx = 0 as U-cycles, and similarly for dy .

Remark 4.29. Note that writing = Jy + Jy is basis-independent, since C' is a
reduced complex over a grid ring S, i.e., d = 0 mod (my, my ) and every element x
in (my,my) - C can be uniquely expressed as a sum xy + zy for xy € my - C and
zy €my - C

Lemma 4.30. Every free, finitely-generated S-complex is homotopy equivalent to a
reduced S-complez.

Proof. Suppose that C' is not reduced. Let {eq, ..., e, } be a homogenous basis for
C. Without loss of generality, we claim that we may assume Je; = es. Indeed,
since C' is not reduced, there is some 4 such that de; is not in (my, my); let ¢ =
1. Then Oe; is some S-linear combination of the e; with at least one coefficient
not contained in (my, my). Moreover, it cannot be the case that de; = ce; mod
(my,my) (where ¢ € K), as this would contradict 8> = 0. Hence we can choose
the coefficient in question to correspond to some i # 1; let this be es. Then Oe; is
equal to ces (where ¢ € K) plus some S-linear combination of the other e;. It is then
clear that {e1,es,e3,...,en} and {e1,de1,e3,..., ey} are related to each other by
a homogenous change-of-basis. This establishes the claim.

We now perform a further change-of-basis, as follows. For each ¢ > 2, write Oe;
as a linear combination of ey, Oei, and the other basis elements e;. By adding
multiples of e; to each such e;, we may assume that de; does not appear in any Oe;
with ¢ > 2. This also shows that e; does not appear in any Oe;, since this would
contradict 9%e; = 0. Denoting this new basis by {e1, de1, €}, ..., el }, it is clear that
{e1,0e1} and {€f,. .., e}, } span subcomplexes of C. The former is clearly acyclic,
and the inclusion and projection maps onto the latter give a homotopy equivalence.
Since C is finitely generated, we may iterate this procedure to arrive at a reduced
complex. O

Remark 4.31. From now on, we will assume that all of our knotlike complexes are
reduced.

We now establish some convenient formalism that will be useful in the sequel.
Let C be a knotlike complex and fix any S-basis B = {e1,...,en} for C. Then we
may identify

C = Spang{e1,...,em} ®k S.
We likewise identify
C/my = Spang{ey,...,en}t @k Ry
C/my = Spang{er,...,em} @k Ry
as well as
C/(my,my) = Spang{e,...,en}

Using these isomorphisms, we have obvious inclusion maps from C/(my,my) to
C/my and C/my, and from C/my and C/my to C.7 These are sections of the

7Here, we are using in the first case that there is an inclusion map from K into Ry and Ry, and
in the second that there are inclusion maps from Ry and Ry to S. Tensoring these maps with the
identity map on Spang{ei,...,en} gives the desired maps.
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usual quotient maps between these complexes. At risk of overloading the reader
with notation, we have labeled each of these maps in the diagram below. Although
the quotient maps are canonical, we stress that the maps iy and jy (and so on)
are not: they depend our choice of B. Note that iy o py = id mod my,, although
this congruence is an equality on any Ry-linear combination of the elements of B.
Similar statements hold for the other pairs of maps in the diagram.

> Cf(my, my)

" /

Note that (for example) pyy is an S-linear chain map, while i;; is only Ry-linear.
Moreover, i is not a chain map, but instead intertwines the differential dyy on C'/my,
with the operator 0y on C. Similarly, gy is Ry-linear, while jy is only K-linear.
In this latter case, we consider C'/(my, my) as a bigraded vector space with trivial
differential. Similar statements hold for the other pairs of maps in the diagram.

C/mv

s
L

S

Definition 4.32. If C is a (reduced) right knotlike complex, then we say that an
S-basis B = {z, y;, z; }I_, for C is a V-paired basis if

Oyzx =0,
Ovyi = vz, and
8\/2’1' =0

for some v; € my. Similarly, if C' is a (reduced) left knotlike complex, then we say
that B = {z,y;, zi}]", is a U-paired basis if

Oyx =0,
Ouyi = pizi, and
Jdyz; = 0.

for some u; € my.

The fact that V- and U-paired bases exist is a straightforward consequence of the
structure theorem for modules over graded valuation rings:

Lemma 4.33. Let C be a right knotlike complex which is reduced. Then there exists
a V-paired basis for C'. Similarly, if C is a left knotlike complex which is reduced,
then there exists a U-paired basis for C.

Proof. Consider the quotient C'//my. Since Ry is a graded valuation ring, we can find
an Ry-basis B’ = {2/, y}, z[}, of C/my which is paired in the sense of Remark 4.7.
Set B = iy (B'), where iy is the map constructed using any arbitrary S-basis {e; }1",
for C. It is straightforward to check that B is an S-basis for C'. Explicitly, each
py(e;) is an Ry -linear combination of the elements of B’; applying iy to both sides
then shows that each e; is a linear combination of the elements of B. Since iy
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intertwines the differential 0y on C/my with the operator dy on C, this completes
the proof. The claim for Jy is similar. O

Note that if C is a totally knotlike complex, then there is both a U-paired basis
for C' and a V-paired basis for C', but in general these will not be the same. Finally,
we also record the following straightforward fact:

Lemma 4.34. Let C be an S-complex with an S-basis {e;}_; of length n. Then C
is a K-vector space of dimension at most 2n in each bigrading.

Proof. Let e; be any basis element and fix any bigrading. It is clear from Lemma 4.15
that up to multiplication by K, there is at most one Ry-multiple of e; and at most
one Ry-multiple of e; which can lie in this bigrading. O

4.4. The local equivalence group of knotlike complexes. In this subsection
(and throughout the rest of the paper) we will refer to totally knotlike complexes
simply as knotlike complexes. However, for the moment it will be convenient for us
to consider right local maps and right local equivalences between such complexes;
we thus refer to these simply as local maps and local equivalences. This apparent
asymmetry will be resolved in Section 7, where we show that a right local equivalence
between two totally knotlike complexes is necessarily left local.

Our goal will be to show that knotlike complexes modulo local equivalence form
an abelian group, with the group operation induced by tensor product. Moreover,
we will show that the partial order < on knotlike complexes is, in fact, a total order.
We begin with some routine formalism:

Definition 4.35. Let C7 and (5 be knotlike complexes. The product of C; and Co
is the usual tensor product complex C; ®s Co. We suppress the subscript on the
tensor product when no confusion is possible. We remind the reader (who may be
used to working over F = Z/27) that the differential on this complex is given by

Aa®b)=0da®b+ (—1)lax ab

where |a| is either component of gr(a). Here, we use the condition that gr; =
gry mod 2 for any S-complex, as discussed in Definition 4.22. Note that in order to
make the tensor product differential an S-module map, we utilize the second grading
requirement in Definition 4.1.

Lemma 4.36. The product of two knotlike complexes is a knotlike complex and the
product of two local maps is a local map.

Proof. Let C7 and Cy be knotlike complexes. Then Ci ®gs Cs is free and finitely-
generated. To check the V-tower condition, note that

(C1 ®s C2) ®s Ry = (C1 ®s Ry) ®s (C2 @s Ru).

Choose V-paired bases By = {z!,y}, 2]}, and By = {22, y?, 22}, for Cy and Cs.
Then it is easily checked that [z ® 2%] generates H,((C; ®s Co) ® Ry)/Ruy-torsion.
Moreover, gry (2! ®@2?) = gry(2!) +gr;(2?) = 0. A similar computation holds for the
U-tower condition. Hence C7 ®s Cs is a knotlike complex. The claim about local
maps is standard. ]
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Definition 4.37. Let (' and C5 be two S-complexes. The complex of graded maps
from C7 to Cs is the graded chain complex whose underlying module is given by

Homg(C1, C) = @ Homj(C1, Ca),
NELXL

where Homg(C1, C3) is the set of S-module maps from C; to Cy of bidegree 7i. This
has a Z x Z-grading given by the degree shift 7i. The differential is defined to be

Ottom = 0f — (~1)V1f0
where |f| is either component of gr(f). Here, we use the condition that gr; =
gro mod 2 for any S-complex, as discussed in Definition 4.22. Note that in order to
make the dual differential an S-module map, we utilize the second grading require-
ment in Definition 4.1.

Definition 4.38. Let C be a S-complex. The dual of C' is the complex
CY = Homgs(C,S)

where S is considered as a complex with trivial differential. For an explicit con-
struction of CV, fix any S-basis {ei,...,en} for C. Then CV is free with basis
{eY,...,ex}, where gr(e/) = —gr(e;). The differential on C"V is given by

VAV Vv
Gei—gcjej
J

where e}/ appears in the above sum if and only if e; appears in de;. The above
coefficient ¢; is —(—1)%! times the coefficient of e; in de;.

Lemma 4.39. The dual of a knotlike complex is a knotlike complex and the dual of
a local map is a local map. Moreover, if C is a knotlike complex, then C ®s CV is
locally equivalent to the trivial complex S.

Proof. Let C be a knotlike complex. The fact that C' satisfies the V-tower condition
is clear from choosing a V-paired basis for C' and applying the explicit construction
in Definition 4.38; the U-tower condition is similar. The claim regarding local maps
is standard. We thus show that C ®s CV is locally trivial. We first produce a local
map from S to C ®s CV. Fix any basis {ey,..., ey} for C and consider the element

m

\Y%

xro = g e e, .
i=1

We claim that this element is a cycle in C ®s CV.

Indeed, for any j and k, consider the coefficient of e; ® ¢}/ in dz¢. A consideration
of the tensor product rule for 0 immediately shows that any contribution to this
coefficient can only come from the two terms d(e; ® ef) and (e, ® €)) in Juxy.
Moreover, this only happens when e; appears in dej. Thus, suppose that e; appears
in dey, with coefficient ¢. Then (keeping track of all signs) the first term contributes
a coefficient of (—1)l¢l(—=1)(=1)l¢lc = —¢, while the second term just contributes a
coefficient of c¢. These cancel, so g is a cycle in C ®s CV. We can easily guarantee
that xg is a V-tower generator by choosing {e;}!"; to be a V-paired basis. Since xg
has degree (0, 0), we obtain a local map from S to C' ®sC"V by sending the generator
of S to zg. Dualizing this construction yields a local map from (C ®s CV)Y =
CV@sC=C®sCYtoS=S. O
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Remark 4.40. Lemma 4.39 may also be proved in a basis-free manner, using the
contraction map; see, for example, [4, Proof of Lemma 3.14] for the analogous basis-
free proof in the involutive setting.

Since tensor products preserve local equivalence, we are finally ready to make the
following definition:

Definition 4.41. Let £ denote the set of (right) local equivalence classes of (totally)
knotlike complexes over S, with the operation induced by ®.

Proposition 4.42. The pair (R, ®) forms an abelian group.
Proof. This follows immediately from Lemma 4.36 and Lemma 4.309. t

In later sections, it will also be helpful to have the following subclass of knotlike
complexes.

Definition 4.43. Suppose there exists a skew-graded isomorphism of K-algebras
£: Ry — Ry. Define a skew-graded involution on § by sending t ® y € Ry @ Ry
to ¢ H(y) ® £(x) € S; by abuse of notation we denote this by £ : S — S. Note that
¢ interchanges Ry € S and Ry C S. We define the pullback complex £*(C) (of
C along &) as follows. The F-chain complex of £*(C) is exactly C, but where the
(4,7)-graded component £*(C'); ; is now Cj;, and where z € S acts on ¢ € £*(C) by
c— &(2) - ¢, in terms of the action of S on C'. It is clear that if C' is right knotlike,
then £*(C) is left knotlike, and so on.

The pullback of C' should be thought of as reflecting C across the line gr; = gr,
and then turning all of the Ry-decorations into Ry -decorations (and vice-versa) via
£. In the usual knot Floer setting, this corresponds to reflection across the diagonal,
combined with the map interchanging U and V.

Definition 4.44. We say that a totally knotlike complex C is symmetric (with
respect to &) if £*(C) is isomorphic to C' via an S-equivariant, grading-preserving
isomorphism. Note that £*(C) is tautologically isomorphic to C' via a S-skew-
equivariant (via &), skew-graded isomorphism.

Unfortunately, the property of being symmetric is not preserved under local equiv-
alence, as one can always add an asymmetric summand that does not change the
local equivalence class. Thus it is helpful to introduce the following weaker notion:

Definition 4.45. We say that a totally knotlike complex C' is locally symmetric
(with respect to &) if £*(C) is locally equivalent to C. It is easily checked that the
set of locally symmetric complexes is a subgroup of R, which we denote by Rgym.
Here, we use the fact (to be shown in Lemma 7.7) that a right-local equivalence
between totally knotlike complexes is in fact also left-local.

4.5. A total order on £. We now establish the central result of this section, which
is that K is a totally ordered abelian group. This depends on the following sequence
of technical lemmas, regarding a special choice of lift from C'/(my, my) to C.

Let B and B’ be two bases for B. Recall that a choice of lift from, say, C'/(my, my)
to C'/my depends on a choice of a basis. In what follows, we will consider lifts
between C/(my,my), C/my, C/my, and C defined using both B and B’. The
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quotient and section maps we will consider are recorded below, specifying which
bases we are using in each lift:

% Clm (\\)
% jU,B,
C 3

=

U
= » Cf(myy, my)
1%

C/mU /

Here, we define the lift ¢ to be the composition i 50 ji 5, which we show below is
equal to the composition iy s o jy, 5. Roughly speaking, the reader should think that
in order to specify a lift ¢: C'/(my, my) — C, we must pin down the my and my
indeterminancy. We use the basis B to pin down the my indeterminancy and use the
basis B’ to pin down the my indeterminancy; the equality iy g o Jup = 1ivB ©Jv,B
is the claim that these indeterminacies can be pinned down in either order. The
following lemma makes this precise:

Lemma 4.46. Let B and B’ be two bases for C. Then iyg o jup = iy © jv.B-
Furthermore, . = iy o jur = ivs © jv,B i uniquely characterized by the property
that for any v € C/(my, my ), when t(v) is expressed in terms of B the coefficients
are all in Ry, and that when 1(v) is expressed in terms of B’ the coefficients are all
m Rv.

Note that naively, one would expect to need coefficients in all of S, rather than
just Ry, in order to express ((v) in terms of B, and similarly for B'.

Proof. The proof consists of two main steps:

(1) We first show that iy 5o jy s (v) is an Ry-linear combination of elements in
B and that it is also an Ry -linear combination of elements in B'.

(2) We then show that any lift ¢ satisfying ¢(v) is an Ry-linear combination of
elements in B and an Ry -linear combination of elements in B’ must be equal
to iV,B’ o.jV,B'

Let B = {e;} and B’ = {€}}.
To show (1), first express v as a K-linear combination of elements in 7(B'):

v= Z bim(el).
jup (v) = Z bipu (€;)

Then

by the definition of ji; 5/, and

ivs o jups(v) =Y bie+py -

for some py € my and ¢ € C, since iy gopy = ide mod my. (Note that a priori one
may expect the right-hand side to be Y biel + > pyic; with py; € my and ¢; € C.
Since Ry is a graded valuation ring, the py,; are totally ordered by divisibility
and we may take py to the minimum of the py; with respect to divisibility and
c=>Y, ,u‘_/luvﬂ'ci.) Writing ¢ as an S-linear combination ) d;e} of elements in B’
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and using the fact that my - my = 0, it follows that iy o ju s (v) is an Ry-linear
combination of elements in B'.
We now consider v in terms of 7(B), i.e., v =Y a;m(e;), where a; € K. We have

Jup (0) = aipu(e;) + po - ¢

for some py € my and ¢ € C/my, since jyp o qu = idc/m, mod my. Writing ¢
as an Ry-linear combination Y d;py(e;) of elements in py(B), we have that

iv,B° jup (v) = Z ai€; + pu - Z diei,

since iy o py is the identity on each e;. Thus, iyg o jus (v) is an Ry-linear
combination of elements in B. This completes the proof of (1).

To show (2), suppose that ¢(v) is an Ry -linear combination of elements in B’ and
an Ry-linear combination of elements in B, in which case we can write

(4.1) t(v) = Z bieh + py - Z die;, = Z ae; + [y - Z die;,

where a;,b; € K, d; € Ry and d; € Ry. We have that

(4.2) pvou(v) =Y apy(e) = jvs(v)

where the first equality follows from quotienting by my and the second equality
follows from the definition of jy. 5. We then have

ivp o jvs(v) =iy opy oL(v)
=iv,3 °pv ( D biei vy die;)
ST

the first equality follows from applying iy, to (4.2), the second equality from (4.1),
and the third equality from the fact that iy, o py is the identity on each e}. Hence
1,5 © Jv,B = L, as desired. O

Next, we prove that a basis always lifts to a basis.

Lemma 4.47. Let By be a basis for C/(my,my). Any graded lift of By to C is a
basis for C.

Proof. Let By = {f;} be a lift of By to C and B = {e;} a basis for C. Note that
both 7(By) and 7(B) are bases for C'/(my, my ). Since B is a basis for C, there is
a matrix A with coefficients in S taking {e;} to {fi}. We wish to show that A is
invertible.

We first observe that det A # 0. Indeed, m(A) is a matrix taking {m(e;)} to
{m(f:)}, and det(m(A)) # 0 since w(By) and 7(B) are bases for C/(my, my).

We now show that gr(det A) = (0,0). The following is a straightforward linear al-
gebra argument. By possibly reordering, we may assume that gr(w(e;)) = gr(7(f;)),
and hence gr(e;) = gr(fi;). Now, we consider the grading of the entry a;; in A: it
is clear that gr(a;;) = gr(e;) — gr(f;), or equivalently, gr(a;;) = gr(e;) — gr(e;). We
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recall that det A =5 (sgn(o)) I, @io(i), and observe that

oESy
gr (H aia(i)) = Z gr(aia(i))
= D _(er(es) — grleo):

Since o is a permutation, it follows that the last sum is zero, as desired. It follows
that A is invertible, since our rings are type-zero. O

The next lemma shows that if we choose B to be a V-paired basis and we project
and then lift B, it remains a V-paired basis. (The proof similarly works for a U-
paired basis B’, but we do not need that fact.)

Lemma 4.48. Let B be a V-paired basis for C. Let ¢ be as in Lemma 4.46, defined
with respect to B and some other basis B'. Then v o m(B) is still a V-paired basis.

Proof. By Lemma 4.47, we have that ¢ o w(B) is still a basis for C. We must show
that it is still V-paired.

Let e; € B. Then by Lemma 4.46, we have tom(e;) = e; + uyc for some py € my
and ¢ € C. Suppose dye; = pye; for some py € my and e; € B. (We allow py to
be zero.) Then

Oy (tom(e;)) = Ov(e; + puc)
= v (e:)
= HveEj
= pv - Lom(ej)
where the second equality follows from the fact that C' is reduced and my - my = 0,

and the last equality follows from the fact that ¢ o w(e;) = e; mod my and that
my - -my = 0. OJ

Armed with these lemmas, we are now ready to prove the following technical
result:

Lemma 4.49. Let C' be a knotlike complex. Suppose there does not exist a local
map f: S — C. Then there exists a local map g: C' — S.

In the lemma statement and proof, when we refer to a local map, we mean a right
local map.

Proof. We begin by applying Lemma 4.33 to obtain a V-paired basis

B ={z,yi,zi}iy
and a U-paired basis
B = {.T/, yév Zz,'}?:l
for C'. A rough roadmap of the proof will be as follows:
e begin by building a special basis for Z = Spany{7(z;), 7(2})},
e use the hypothesis (i.e., the lack of a local map f: S — C) to show that
7(x) is not in Z and adjoin 7(z) to this basis,
e use these facts to build a special basis By for C'/(my, my),
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e lift By to a basis for C, using the lift from Lemma 4.46 with respect to BB
and B’ above, and
o use ((Bp) to define a local map C' — S.

We now proceed to implement this strategy.

Step 1: Working in C/(my,my). We begin by building a basis for the K-vector
space Z = Spang{n(z;),(z})}. Since B = {x,y;, 7} is a basis for C, it follows that
m(B) is a basis for C'//(my, my ). Take the linearly independent set {m(z;)}?_;, and
adjoin elements of the form 7(z}) to obtain a basis {m(2;),7(z}, )} for Z. Here, the
{m(z;,)} form a subset of {m(2})}, where s =1,...,r, for some r < n.

Relation with m(z): We now show that 7(x) does not lie in Z. Indeed, suppose
to the contrary that m(x) = > a;m(2;) +>_bsm(2] ). Apply ¢ to both sides. (Here, ¢
may be taken to be any lift to C; if the reader prefers, they may take ¢ as in Lemma
4.46.) Then

T — Z aizi + pywr = Z bz, + pryws
for some py € my,w; € C,uy € my, and we € C. Now, the left-hand side is a
dy-cycle, since (a) z and z; are dy-cycles, and (b) Oy (uywi) = pydywr = 0 using
the fact that C is reduced and my - my = 0. The right-hand side is a Jy-cycle, since
(a) the 27 are dy-cycles, and (b) Ju(pvws) = pyOy(wz) = 0 using the fact that
C' is reduced and my - my = 0. Hence z — > a;2; + pyws is a cycle in C' which is
easily checked to be non-Ry-torsion. We may then construct a (right) local map
f+ 8 — C by mapping a generator of S to x — Y a;2; + pywi, a contradiction.
Extend the linearly independent set {r(z), 7(2;), 7(2} )} to a basis

By = {n(x),n(z),7(},), tx}

for C/(mU, mv).

Step 2: Working in C. Let B and B’ be the V- and U-paired bases, respectively, for
C. Let ¢: C/(my,my) — C be the lift specified by Lemma 4.46 with respect to B
and B’. Now Lemma 4.47 implies that ¢(By) is a basis for C.

We claim that im @ is contained in the S-span of

By = {tom(z),Lom(zj,)}.

Indeed, im Oy is contained in the span of {¢ o 7(z;)} since (a) Lemma 4.46 implies
that ¢ o 7(2;) = z; + ppw for some py € my and w € C, (b) the z; span im dy, and
(c¢) C is reduced and my - my = 0.
Similarly, we claim that im dy is contained in the span of {v o m(z;), 0 m(2] )}
By construction,
Spang {7 ()} C Spang{m(z),7(2],)},
SO

m(z)) = Z a;m(z;) + Z bsm(25,),

for some a;, by € K. Then

Z ajtom(z) + Z bseom(z)) = vom(z) =z + pyw
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for some py € my and w € C, where the first equality follows from the K-linearity
of ¢ and the second equality from Lemma 4.46. The proof now follows as in the
im dy case; namely, the 2] span im dy/, the complex C'is reduced, and my - my = 0.
Hence im 0 € Spang B;.

To complete the proof, we finally let

C" = Spang{t o m(2), 10 m(2},), L(tr)}.

We have seen that imd C Spang B; C C’ and that ¢ o 7(z) is not contained in C".
By Lemma 4.48, the element ¢ o w(x) is a V-tower class. It is then clear that up to
grading shift, C/C" =2 S (with the class of ¢ o m(x) generating the copy of S) and
that the quotient map from C to C/C’ is the desired local map. g

Proposition 4.50. The relation < defines a total order on R compatible with the
group structure.

Proof of Proposition 4.50. We need to show totality of <. Let C7 and C5 be two
knotlike complexes. Consider C; ® Cy. By Lemma 4.49, we have that either C; ®
Cy > S or C; ®Cy < 8. By tensoring with Cy, this shows that either C; > Cj or
C1 < (O, as desired. Since the product of local maps is local, we have that if C7 <
Cy, then C7] ® C3 < Cy ® Cs; hence < is compatible with the group structure. [

5. STANDARD COMPLEXES AND THEIR PROPERTIES

In this section, we define an important family of knotlike complexes called stan-
dard complexes. The reader should compare this section with [5, Section 4], which
carries out a special case of this construction.

5.1. Standard complexes. Throughout, fix a grid ring S = S(Ry, Rv).

Definition 5.1. Let n € N be even. Let (b1, ...,b,) be a sequence such that
(1) b e T (Ry) UT_(Ry) for ¢ odd; and,
(2) b e T (Ry)UT'_(Ry) for i even.
The standard complex of type (b1,...,by,), denoted by C(by,...,by,), is the knotlike
complex freely generated over S by
{iL'o, Llge-wy xn}

We call n the length of the standard complex and {z;}?_, the preferred basis, or
sometimes the preferred generators. The differential on C' = C(by, ..., b,) is defined
as follows. Each b; is an equivalence class in either I'(Ry) or I'(Ry ); choose explicit
representatives for the b; in either L(Ry) or L(Ry ), as appropriate. By abuse of
notation, we denote these also by b;. For each ¢ > 0 odd, define

dumi_y = |bilz;  if b <'1

Ouxi =bixiq  if by >'1,
while for ¢ > 0 even, define

Qi = |bile;  if by <'1

Oy =biwi_y  if by > 1.

All other differentials are zero. Note that each |b;| lies in (mg, my ), so C is reduced.
It is easily checked that the isomorphism type of C does not depend on the choice of
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representative for each b;, since any two representatives differ by multiplication by an
element of K*. We will often think of the b; as elements of L(R(7) or L(Ry ), defined
up to multiplication by K*. Note that xy generates H,(C ®x Ry )/Ry-torsion, and
similarly z,, generates H,(C ®x Ry)/Ry-torsion. Following Remark 4.24, there is
a unique grading on C' which makes it into a totally knotlike complex; this has
gri(zg) = 0 and gry(z,) = 0. Explicitly, the definition of 9 implies

(5.1) gry(zn)—gry(wo) = > _sgn(b;) + > gry(b)
=1 =1

and
n

(5.2) gra(zn) — gra(zo) = > _sgn(bi) + Y _ gra(by).

i=1 i=1
Hence the grading shift in question is such that gr,(z,) is the right-hand side of
(5.1), while gry(x0) is the negative of the right-hand side of (5.2).

The reader should think of the generators of C(by,...,b,) as being connected
by arrows recording the action of the differential. Each pair of generators x; and
241 are connected by |b;y1|-arrows. The direction of each arrow is determined by
whether b,y € 't (Ry) or I'_(Ry) (for i even) or bjy1 € Tt (Ry) or I'_(Ry) (for ¢
odd). If b4 is positive, then the arrow goes from ;41 to x;, and if b;11 is negative,
then the arrow goes from z; to x;41.

Definition 5.2. We define the trivial standard complex C'(0) = S to be the complex
generated over S by a single element x in grading (0, 0).

Lemma 5.3. The dual of C(by,...,by) is the standard complex C(by',... b)),

r'n

Proof. This is a straightforward consequence of the explicit procedure of Defini-
tion 4.38, keeping in mind that standard complex parameters are defined up to
multiplication by elements of K*. O

Note that the negative signs —b; in [5, Lemma 4.9] correspond to inverses b;l in
Lemma 5.3, as we use multiplicative rather than additive notation.

Lemma 5.4. Let £ be a skew-graded involution of S, as in Definition 4.43. Then
C(by,...,by) is symmetric with respect to & if and only if b; = f(b;}rl_i) for each 1.
Moreover, C(by,...,by) is symmetric if and only if it is locally symmetric.

Proof. Tt is straightforward to check that the pullback complex of C(by,...,by) is the
standard complex C(£(b,, 1), ..., &(by")). Hence the equality b; = f(b;}rl_i) certainly
implies that our complex is symmetric. The converse (as well as the second claim)
follows immediately from the fact that the b; completely parameterize standard

complexes up to local equivalence; this is established in the next subsection. O

5.2. Ordering standard complexes. We now show that the total order on the
set of standard complexes can be understood explicitly in terms of the parameters
b;. To do this, we consider the lexicographic order on the set of parameter sequences
induced by <'. We take the convention that in order to compare two sequences of
different lengths, we append sufficiently many trailing copies of 1 to the shorter
sequence so that the sequences have the same length.
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Explicitly, given two (distinct) sequences (ai,...,ay) and (b1,...,b,), we first
locate the first index i such that the parameters a; and b; differ. Again, to be
pedantic: we may either interpret a; and b; as equivalence classes in the same
valuation group, or we may consider them as actual elements of S. In the latter
case, the notion a; = b; should be interpreted as up to multiplication by an element
of K*. If one sequence appears as a prefix of the other, then one of a; and b; will
be equal to 1. We then declare (ai,...,amn) <' (b1,...,b,) if and only if a; <' b;.

The central claim of this subsection is that the lexicographic order on the set of
standard complexes coincides with the total order of Proposition 4.50. Note that
implicitly, this means two standard complexes are locally equivalent if and only if
they have the same parameter sequence.

Proposition 5.5. Standard complexes are ordered lexicographically as sequences
with respect to the total order on R.

Proof of Proposition 5.5. The proof of Proposition 5.5 is very similar to the proof of
[5, Proposition 4.10]; we will not reproduce all of the details here, but we list some
constituent lemmas from which the proof follows. Use Lemma 5.6 and Lemma 5.8
below. g

Lemma 5.6. Let (ai,...,amn) <' (b1,...,b,) in the lexicographic order. Then
Caty...,am) < C(by,...,by) in R.

Proof. Assume that (ai,...,am) <' (b1,...,b,). Let k be such that a; = b; for
1 <i<kand ay < by; we assume for simplicity that k& < min{m,n}. For {z;}7,
and {y;}7_, the preferred basis elements of C(a1,...,an) and C(b1,...,by,), define

f:C(aty...,am) = C(by, ..., by)
by

f(‘m_{o ifi > k.

In order to define f(xy), there is some casework:

(1) If ap <' b <' 1, define f(z) = akblzlyk.

(2) If ap, <' 1 <' by, define f(zy) = 0.

(3) If 1 <' ay <' by, (again) define f(zy) = apb, 'y
The reader may verify that this makes f into a chain map which is evidently local.
The case k > min{m,n} follows via similar casework. O

Lemma 5.7. Let C(ay,...,an) and C(b1,...,by,) be standard complexes with pre-
ferred bases {x;}1" and {y;}7_, respectively. Suppose that a; = b; for all1 <i <k
and that f: C(a,...,am) — C(b1,...,by) is a local map. Then f(x;) is supported
by y; for all 0 < i < k.

Proof. Omitted; see [5, Lemma 4.2]. O

Lemma 5.8. Let (a1,...,am) > (b,...,by) in the lexicographic order. Then there
is mo local map from C(ay,...,am) to C(b1,...,by).

Proof. Omitted; see [5, Lemma 4.3]. Use Lemma 5.7. O
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5.3. Semistandard complexes. We will also find it useful to have the following
generalization of standard complexes:

Definition 5.9. Let n € N be odd. Let (by,...,b,) be a sequence such that:

(1) b e T4 (Ry) UT_(Ry) for i odd; and,

(2) b e T (Ry)UT_(Ry) for i even.
The semistandard complex of type (b, ..., by), denoted by C’(by,...,by), is defined
using the obvious generalization of Definition 5.1. We may also (somewhat arti-
ficially) define this as the subcomplex of the standard complex C(by, ..., by, bpt1)
generated by {zg,z1,...,2,}, for any choice of b,y1 >' 1. (Up to grading shift,
the choice of b, 41 clearly does not affect the definition.) We again call n the length
of the semistandard complex and {z;}?_, the preferred basis. For concreteness, we
normalize gradings so that gr(z¢) = (0,0).

We usually use the symbol ’ to distinguish semistandard complexes from standard
complexes, but may omit it in situations where our arguments apply equally well to
semistandard complexes as standard complexes. Note, however, that a semistandard
complex C’ is not a knotlike complex of any kind. Indeed it is easily checked that
H,(C" ®s Ry)/Ry-torsion is isomorphic to two copies of Ry. Hence we cannot
use Remark 4.24 to normalize gradings on semistandard complexes, in contrast to
Definition 5.1.

Definition 5.10. Let C’ be a semistandard complex and C be a standard complex.
Let f be a grq-preserving, gro-homogenous, S-equivariant chain map

f: "' —=cC.
We say f is local if the class of f(xzg) generates H,(C' ®s Ry )/Ry-torsion.

5.4. Short maps. In this subsection, we introduce several technical results that
will be useful later in the paper. These deal with maps from standard or semistan-
dard complexes which satisfy the chain map condition on all generators except for
(possibly) the last:

Definition 5.11. Let Cy = C(by,...,by,) be a standard or semistandard complex
and C'y be a knotlike complex. Let f: C1 — C3 be a gry-preserving, gry-homogeneous
S-module map. We call f a short map if:
(1) fO(zi) = Of (x;) for 0 < i <n —1; and,
(2) fov(zn) =0y f(xy) in the case that C is standard, or
fou(zn) = Ou f(xy) in the case that C; is semistandard.
Note that condition (2) is strictly weaker than fo(z,) = 0f(z,), and indeed
a short map f will fail to be a chain map if fOy(z,) # Ovf(x,) in the case C
is standard, or foy(z,) # Oy f(zy) in the case that C is semistandard. More
informally, a short map f can fail to be a chain map at x, in the direction away
from zg.
We indicate the presence of a short map by the notation

f:Cp~ Co.
Moreover, we say that f is a short local map if the homology class of f(x() generates

H,(Cy ®s Ry )/Ry-torsion. In the case where C is standard, this is the same as
saying f induces an isomorphism on H,(C; ®s Ry )/Ry-torsion.
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We now come to two important technical lemmas. For the proof of the first, it will
be useful to have a construction reminiscent of the pullback of a standard complex:

Definition 5.12. Let C' = C(by,...,b,) be a standard or semistandard complex.
We define the reverse of C' to be the standard or semistandard complex

r(C) = C(b7L,... b7 Y.

Here, there is a slight discrepancy in that if C'is a standard complex over S(Ry, Ry ),
then the first parameter in the reversed complex lies in my/, rather than my. Hence
technically we must modify Definition 5.1 in the obvious way; alternatively, we may
formally consider r(C) to be over the grid ring S(Rv, Ry ).

To understand the reversed complex, observe that the basis {x;}!" , of C is enu-
merated in a preferred order, from xy to x,. If we traverse the arrows of C' in the
reverse order, from x, to o, then we obtain the sequence (b,,", ..., bfl). Hence we
may equally well view C' as being constructed from the sequence (b1, ..., bfl) as in
Definition 5.1 or Definition 5.9, except with the grading convention that the initial
generator of the new construction has fixed grading gr(z,). Thus, up to grading
shift, C and r(C) are actually exactly the same complex; we write the latter when
we wish to think of the generators of C' as being enumerated in the reverse order.
Note that a homogenous chain map from C] to Cs thus gives a homogenous chain
map from r(C1) to r(C2) (and vice-versa), simply by shifting the grading.

The next lemma is a technical result; see e.g. the discussion preceding [4, Lemma
5.11] for motivation.

Lemma 5.13 (Merge Lemma). Let C; = C(aq,...,am) and Cy = C(by,...,b,) be
two standard complezes or two semistandard complexes with preferred bases {z;}7"
and {y;}I-y. Let C be any knotlike complex, and suppose we have two short maps

f:Ci~C and g:Cy~C.

Assume that gr f(xm) = grg(yn), and suppose we have the inequality r(Cy) > r(C2).
Then for any c1 and co in K, there is a short map

h: Cy ~ C
with the property that

h(yn) = c1f (zm) + c29(yn)-
Moreover, if g is local and c2 # 0, then h is local.

Proof. The proof of this lemma is essentially equivalent to the proof of Lemma [5,
Lemma 6.8], but with some notational improvements to make it more transparent.
The map h will be defined as a composition

h=(c1f ®cag)oj
where

j: Cy — C1 @ Ch.
We define the map j itself as the direct sum of two maps j = j; & j2. The second
summand jg is just the identity map on Cy. For the first summand, consider the
reversed complexes r(Cy) and r(C3). By Lemma 5.6 and its analog for semistandard
complexes, the inequality r(C3) < r(C1) gives a homogenous chain map from r(C5)
to r(C1). (This map is in fact local, but this will not be relevant here.) By the
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discussion preceding the lemma, we thus obtain a homogenous chain map j;: Cy —
C1 by shifting the grading.

An examination of the proof of Lemma 5.6 shows that ji(y,) = z,,. More gen-
erally, if k is the least index for which a,,_; # b,_g, then the proof of Lemma 5.6
(combined with some careful tracking of indices) shows that

sy = fEmei HOSi<E4
NWn=) =19 Wi k41,

It is easy to check that h is a short map, using the fact that j is a chain map and
f and g are short. Note that j; and jo are homogenous maps which in general will
not have the same grading shift. However, the compositions f o j; and gojo do have
the same grading shift, as can be seen by evaluating them both on %, and using the
fact that gr(f(zm)) = gr(g(yn)). In particular, h is relatively graded with the same
grading shift as g o jo = g, so h is gry-preserving and gryo-homogenous. It remains
to show that if ¢ is local, then h satisfies the V-tower condition. This will require
some casework depending on the value of k.

If kK <n—1, then j(yo) = 0@ yo by the above. Composing with ¢; f & cag shows
that h(yo) is a V-tower class. If K =n — 1, then a further examination of the proof
of Lemma 5.6 (again combined with careful tracking of indices) shows that ji(yo) is
either zero or equal to bl_lam,nﬂxm,n, where bl_lam,nﬂ is an element of my. It
follows that

h(yo) = c1f(j1(yo)) + c29(yo) = c29(yo) mod my;.

The fact that g is local thus implies that h is local. Finally, suppose kK = n. Then
m > n and a,,_, <' 1. In this case we have j(yo) = Zm_n. Noting that m =
n mod 2, the fact that a,,_, <' 1 means that some my-multiple of ,,,_, lies in the
image of dy. It follows from this that

h(yo) = c1f(J1(w0)) + c29(y0) = c1f(Tm—n) + c29(y0)
is a V-tower class, being the sum of a V-tower class with a V-torsion class. This

completes the proof. O

The next lemma is a generalization of [5, Lemma 4.19] to complexes over S. Note
that there is an error in the grading argument used in the proof in [5]; fortunately, the
proof below does not rely on this grading argument, and thus provides a corrected
proof of [5, Lemma 4.19].

Lemma 5.14 (Extension Lemma). Let C(by,...,b,) be a standard or semistandard
complex, and let C' be any knotlike complex. Suppose we have a short map

f:C(by,...,by) ~ C.

Then there exists some complex of the form C(by, ..., by, b1, ..., by) which admits
a genuine chain map

g: C(bl,...,bn,bn+1,...,bm)—)C.

This complex can be chosen to be either standard or semistandard. Moreover, if f
1s local, then g is local.
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Proof. We consider the case when C(by,...,by,) is a standard complex; the proof
for semistandards is similar. Consider f(x,). If Oy f(xz,) = 0, then f is already a
chain map. If desired, we may extend the domain of f to the semistandard complex
C(b1,...,bp,1/u) for any p € my by setting f(x,4+1) = 0. We thus suppose that
Ovu f(xy) = pus for some s € C' and p € my. We consider several cases. Suppose (i
is not maximal in my; i.e., there exists some p/ € my with 4/ >'  >' 1. Then we
define a short map

F1iC' by, .. by, 1)) ~ C

by setting f'(z;) = f(x;) for 0 < i <mnand f'(zp41) = (u/p')s. It is straightforward
to check that this is in fact already a chain map from a semistandard complex using
the fact that p/u’ € my; if desired, we may extend the domain of f’ to the standard
complex C(by,..., by, 1/u',1/v) for any v € my by setting f'(zy4+2) = 0. Then f’
then provides the chain map in question.

We thus suppose that p is maximal in my. In this case, we extend the domain of
fto C'(b1,...,bn,1/p) by defining f/(z,4+1) = s. We now have the following cases:

(1) Suppose dy's = 0. Then f’ is in fact already a chain map from a semistandard
complex. If desired, we can further extend the domain of f’ to the standard
complex C(by,...,bn,1/p,1/v) for any v € my by setting f/'(zn42) = 0.
Then f’ then provides the chain map in question.

(2) Suppose Oys = vt for some ¢t € C' and v which is not maximal in my. Then
we proceed as in the beginning of the proof, replacing the role of my with
my . This produces the desired chain map.

(3) Suppose dys = vt for some ¢t € C' and v which is maximal in my. Then we
extend the domain of f’ to obtain a short map

f//: C(bla"wbnal/#vl/y) ~ C
by defining f”(x,42) = t.

Note that in the final case, f” is not in general a chain map. We thus proceed as in
the beginning of the proof again, except replacing f with f”. This either produces
the desired chain map, or once again leads to the final possibility above. In the latter
case, we iterate this procedure. If this continues indefinitely, we obtain a sequence
of short maps

fi: Ci=C(b1,y...,bn, 1/, /v, .. 1/, 1/v) ~ C.

Here, p is the maximal element of my, and similarly for v; note that up to multi-
plication by K*, u and v are unique (if they exist). The pair (1/u,1/v) appears i
times at the end of the parameter sequence for C;.

Consider the sequence of elements t; = f;j(zp42;) € C. This is formed by taking
the image under f; of the final generator of each C;. We claim that there must exist
a nontrival K-linear relation among the ;. To see this, fix an S-basis {e;} of C.
Now, the only condition on ¢; is that vt; = Odys;, where s; = fi(rp4+2i—1). Hence
without loss of generality, we may assume that at each stage we have chosen t; to lie
in the Ry-span of {ey}, as any coefficients in my may be discarded without changing
this condition. Moreover, ¢; cannot be in the image of my,, as this would imply the
second alternative in the casework above. Thus, each t; is a linear combination of
the {ex}, with at least one nonzero coefficient being drawn from K; this means that
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each t; must have the same grading as some e;. By Lemma 4.34, C is a finite-
dimensional K-vector space in each grading. Since the set of ey is finite, all the ¢;
lie in a single finite-dimensional K-vector space, which gives the claim.

Now select any subset of indices {i1,i2,...,ir}, i1 < ig < --+ < i, for which the
t; have a K-linear relation c¢;,t;, + -+ - + ¢;,.t;, = 0 with ¢;; nonzero. Note that

r(C1) < 7r(Co) <r(C3) < ---

due to the fact that p and v are maximal. Then we may repeatedly apply the merge
lemma to obtain a short map g: C;, ~» C whose final generator maps to

r
g(xn+2’i1) = Z Cijti]‘ = 0
i=1

This is clearly a genuine chain map. If desired, we may truncate C;, by deleting the
last parameter; the restriction of g is a chain map from a semistandard complex.
Finally, note that if f is local, then each f; is local. By the merge lemma we then
have that g is local. This completes the proof. ]

6. NUMERICAL INVARIANTS a;

In this section, we define a sequence of invariants a;(C), lying in the valuation
groups associated to our grid rings, for any knotlike complex C'. These are analogous
(up to a sign) to the invariants defined in [9, Section 3]; the construction here is
almost identical to [5, Section 5]. In the following section, we will observe that the
a; are equivalent to describing a standard complex representative of C'. However,
the proofs in [5, Section 5], as well as their analogs in [4], do not directly translate
to this setting as they utilize specific grading properties of the rings used therein.

Definition 6.1. Let C' be a knotlike complex. Define
a1(C) = max{by € I'(Ry) | C(b1,...,b,) < C}.

Here, the maximum is taken using the total order on I'(Ry). We define a(C') for
k > 2 inductively, as follows. Suppose that we have already defined a; = a;(C) for
1 <i<k. If a(C) =1, define ag4+1(C) = 1. Otherwise, define

ak+1(0) = max{karl S F(R*) | C(al, ey Ak, bk+1, Ce bn) < C},
where * is either of U or V, according to the parity of k + 1.

We stress that the complexes appearing in Definition 6.1 are required to be stan-
dard (rather than semistandard), and that we take the convention of appending trail-
ing copies of 1. This means that if k is even, then a1 (C) =1 if C(ay,...,a;) < C
and no larger standard complex of the form C(ay,...,ak, bgt1,...by) is less than or
equal to C. In such a situation, note that all further invariants of C' are also equal
to 1. For k odd, we cannot have agy1(C) = 1 unless ax(C) = 1.

In general, it is not clear that a;(C) is well-defined, since a priori we may have
to consider (infinite) subsets of I'(Ry) or I'(Ry) that may not achieve a maximum.
Our goal for this subsection will be to show that this does not occur. We begin with
the following lemma:
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Lemma 6.2. Let C be any knotlike complex. Let C(by,...,b,) be any standard or
semistandard complex which admits a short local map to C':

F1 Oy, ... by) ~ C.

Suppose f(x;) € (my,my) for some i. Then there exists a complex of the form
C(b1,...,bj—1,¢j), where 1 < j < i and c; >! b;j, which also admits a short local
map to C

g: C(bl,...,bj_l,Cj) ~ C.
Here, the complex C(by,...,bj—_1,¢;) is standard or semistandard depending on the
parity of j.8

Proof. Assume there is some i for which f(z;) € (my, my). Let j be the minimal
index with this property. Since f is local, it is easily checked that f(z¢) cannot lie
in (my, my ), so j > 0. We assume j is even; the proof for j odd is analogous. There
are two cases. First suppose b; <'1. Let

s= f(xzj—1) and t= f(x;).

These satisfy the relations Oys = |b;|t and Oyt = 0. Fix any basis B for C. By the
hypotheses of the lemma, we may write ¢t as ty + ty, where ty is in the my-span
of B and ty is in the my-span of B. Let v € my be the greatest common divisor of
the coefficients appearing in ty. Set ¢’ = ty /7, with the understanding that ¢ = 0
if tyy = 0. Then we may define the desired map

g: C(bl, e ,bjfl,bj/’)/) ~ C
by altering f on x; such that g(z;) = t’. The fact that dys = |b;|t implies
dvs = |bj|(tu +tv) = [bjltv = (v]bs])t'

so that g is a short local map. Note that since b; <"1 and v € my, we have
bj <! bj / .

Now suppose b; >' 1. Define s and t as before; now dy's = 0 and dyt = bjs. We
again write t = ty + ty and let v be the greatest common divisor of the coefficients
appearing in ty. Let +' further be the greatest common divisor of b; and . Set
t' =ty /4, with the understanding that ¢’ = 0 if ¢,y = 0. Then we may define

g: C(bl,...,bj_l,bj/’y/) ~ C

by altering f on x; such that g(z;) = t'. Suppose b;/+" € my. Then we may divide
both sides of

avtv = th = bjs

by 4 to obtain dyt’ = (bj/+')s. If instead b;/4' is an element of K*, we require a
slightly different argument. In this case, let s = sy + sy, where sy is in the my-span
of B and sy is in the Ry -span of B; note that we make all K-coefficient terms appear
in sy. Then the fact that Oyt = b;s implies dyt’ = (bj/+")sy. However, because C
is reduced, this means that sy is actually in the image of my. Hence s € (my, my),
contradicting the minimality of j. This completes the proof. O

8We cannot in general specify which of these alternatives hold; however, due to the extension
lemma, this will not really be important for the usage of Lemma 6.2 in this paper.
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The import of Lemma 6.2 is the following. In the definition of aj41(C), when we
consider the collection of standard complexes used to define

ak+1(C’) = max{ka € F(R*) | C’(al, ce, Qg bk+1, ce bn) < C},

we may as well require that the inequality C'(aq, ..., ak, bgi1, - .- bn) < C be realized
by a local map f such that f(z;) ¢ (my, my) for all i < k+ 1. Indeed, suppose f is
a local map which does not satisfy this condition. Truncate f to C(aq,...,ag,bg+1),

apply Lemma 6.2, and then apply the extension lemma to the result to obtain a
local map from another standard complex. This either gives a contradiction to
the maximality of a,...,ag, or shows that the parameter by in question can be
replaced by a larger parameter coming from this new standard complex.

In order to leverage this, we introduce the following notion:

Definition 6.3. Let C be a knotlike complex. We say that a homogenous element
v € my is a Oy -extant coefficient for C if there exist homogenous s and ¢ in C such
that:

(1) s and t do not lie in (my, my); and,
(2) Oys = vt.

We say that a homogenous element u € my; is a dy-extant coefficient for C' if there
exist similar s and ¢ with dys = ut.

Lemma 6.4. Let C' be a knotlike complex. Up to multiplication by K*, there are
only finitely many Oy -extant and Oy -extant coefficients for C.

Proof. Assume v is Jy-extant; the Jy-extant case is similar. Let 0y s = vt for some
homogenous s and t in C not lying in (my, my ). First observe that there are only
finitely many possibilities for gr(s); this follows from the fact that C'/(my,my) is
supported in a finite set of gradings. We thus fix a particular bigrading and consider
the dy-extant coefficients arising from s within this bigrading.

Fix a V-paired basis {z,y;, 2;}}_, for C. For each ¢, consider whether there exists
a nonzero ¢ € Ry such that gr(cy;) = gr(s). If such a c exists, define ¢; to be equal
to ¢; this is unique up to multiplication by K*. Otherwise set ¢; = 0. We stress that
¢; does not depend on s, but only on gr(s). For any s in our fixed bigrading, write

n n
s =sy +bx + Z kiciyi + Zdizi
i=1 i=1

where sg; is in the image of my, the coefficients b and d; are in Ry, and the k; are
in K. This is just the usual expansion of s in terms of our paired basis, but we have
taken care to indicate that the Ry -coefficients of the y; only have freedom up to
multiplication by K. This is of course true for all of the other coefficients as well,
but these will not be important for this proof. We thus obtain

n

8‘/8 = Z(Vikici)zi.

i=1

We know that dys = vt and that t does not lie in (my, my ). Attempting to solve for
t shows that v must in fact be the greatest common divisor of the set {v;k;c;}l 4,
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and that ¢ must be of the form
t=1ty + Z((Vzkzcl)/u)zz
i=1

for some ty; in the image of my. However, up to multiplication by K*, the greatest
common divisor of {v;k;c;}I* ; only depends on the k; inasmuch as each k; is zero or
nonzero. Indeed, up to multiplication by K*, the possible greatest common divisors
are simply the nonzero elements of {v;¢;}7" ;. Hence there are only finitely many 0y -
extant coefficients associated to each possible bigrading of s, and thus only finitely
many Jy-extant coefficients overall. O

We thus finally obtain:

Lemma 6.5. Without loss of generality, the definition of the a;(C) may be altered
so that the mazimum is taken over a finite set. Hence the a;(C) are well-defined.

Proof. As discussed previously, by Lemma 6.2 we may restrict the definition of
ax+1(C) to only involve complexes C(aq,...,ak,bkyi1,...b,) which admit a local
map
f:Clat,...,ak,bgs1,...bp) = C

with f(z;) ¢ (my,my) for all i < k + 1. Setting s = f(x) and t = f(xg4q), it is
clear that for such complexes, |by1| is either a Jy-extant or a dy-extant coefficient
for C, depending on the parity of £ + 1. By Lemma 6.4, up to multiplication by
K* there are only finitely many such coefficients. Hence ay11(C) can be defined
by taking the maximum over a finite set. With only minor notational changes, the
same argument shows a1(C) is well-defined. O

7. CHARACTERIZATION OF KNOTLIKE COMPLEXES UP TO LOCAL EQUIVALENCE

We now sketch the proof that every knotlike complex is locally equivalent to a
standard complex. In fact, it turns out that the numerical invariants a;(C) from
Section 6 are none other than the desired standard complex parameters. Many of
the claims in this section have proofs which are almost exactly the same as those in
[5, Section 6]. In such cases, we simply indicate the logical dependence of the proofs
and refer the reader to the analogous statements in [5, Section 6].

Theorem 7.1. FEvery knotlike complex is locally equivalent to a unique standard
complez.

Proof. Omitted; see [5, Theorem 6.1]. Use Lemma 7.2 below. O

Lemma 7.2. Let C be a knotlike complex. Then a,(C) = 1 for all n sufficiently
large.

Proof. We proceed by contradiction. Suppose that a,(C) # 1 for all n. For each n,
there exists a local map f,, from some standard complex C'(ay, ..., an, bpt1,.-.,0m)
to C. Truncating this gives a local short map

fn: Clal,...,an) ~ C.

By the discussion of the previous section, we may assume that the original map
fn (and thus its truncation) has f,(x;) ¢ (my,my) for all i < n. In particular,
consider the nonzero sequence formed by f,(z,) mod (my, my ). As in the proof of



HOMOLOGY CONCORDANCE 41

the extension lemma, since C'/(m7, my ) is a finite-dimensional K-vector space, there
exists a nontrivial linear relation among some finite subset

k1 fiy (w5,) + - + Ky fi, (25,) = 0 mod (my, my)

with each k; € K*. Note that implicitly, all of the above f;, (z;;) lie in the same
bigrading. Consider the index ; from the above set for which the reversed sequence
r(C(a1,...,a;)) is minimized in the lexicographic order; let this be i;. As in the
proof of the extension lemma, by iterated use of Lemma 5.13 we obtain a short local
map

f:C(a1,...,a;) ~C

such that
fai) = ki, fi;(zi;) = 0mod (my, my).
j=1
Applying Lemma 6.2 and extending to a standard complex contradicts the maxi-
mality of the a,(C). O

We also have a slightly stronger version of Theorem 7.1:

Corollary 7.3. Let C be a knotlike complex, and assume C is locally equivalent
to C(ay,...,an). Then C is homotopy equivalent to C(aq,...,a,) ® A, for some
S-compler A such that Hy(Ry'A) = H.(R'A) = 0.

Proof. Omitted; see [5, Corollary 6.2]. Use Lemma 7.6 below. O

For a discussion of this corollary, see [5, Section 6]. The statements necessary for
the proof of Corollary 7.3 are recorded below:

Lemma 7.4. Let f be a local map from a standard complex to itself
f:C(b1,...,by) = C(by,...,by)

such that f(z;) is supported by x; for some i # j. If i = j mod 2, then the following
hold:

(1) (bis1,--,bn) < (bjy1,...,by) and
(2) (b7, 00 < (b b,
If i # j mod 2, then the following hold:
(1) (bit1,---,bn) <" (b1, ,07") and
2) (b7 .07 < (bjg, ., ba).
In both cases, we mean that (byi1,...,bn) = (1) if k =n.
Proof. Omitted; see [5, Lemma 6.4]. O

Lemma 7.5. Any local map from a standard complex to itself is injective.

Proof. Let C = C(b1,...,by) be a standard complex with preferred basis {x;}",,.
Let f: C' — C be a local self-map. Suppose there exists some S-linear combination
>, ciwi such that f(3°. ¢iz;) = 0. Since f is graded, we may assume that ), ¢;z;
is homogenous, and that each ¢; is homogeneous. Impose a partial order on the
homogeneous elements of S by declaring « >' y if(f) z divides y. Among the
nonzero coefficients ¢;, choose any maximal element ¢;, with respect to this partial
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order. Let I = {j | ¢; = ¢;,}. Choose an arbitrary element jo € I. Consider the
suffix sequence

Kjo — (b]0+]-’ ey bn).
For each other j; € I, define
b1, ba) i i = o mod 2
I (b ..., b0 ") if i # jo mod 2.

Note that in the first case, the length of K, has the same parity as the length of
Kj,, while in the second case the parities are opposite. It follows from this that
K;, # Kj, if ji # j2, since the lengths of the two sequences are not the same. We
may thus re-index the elements of {ji, ..., jn} such that
! ! !
Kj1 < Kj2 < .o < ij.

Consider f(z;,). By Lemma 5.7, f(x;,) is supported by ;. By Lemma 7.4, f(x;,)
for 2 <4 < m cannot be supported by x;,. But then the maximality of ¢;, implies
that there is no term in f(}_,,; c;%;) that can cancel ¢;, f(2;,), contradicting the
fact that f(>, c;z;) = 0. Hence f must be injective. O

Lemma 7.6. Any local map from a standard complex to itself is an isomorphism.

Proof. Omitted; see [5, Lemma 6.6]. Use Lemma 7.5. O

Finally, we formally re-state the claim that a right local equivalence between two
totally knotlike complexes is left local.

Lemma 7.7. Let C and Cy be knotlike complexes which are locally equivalent via
f and g. Then f and g induce isomorphisms on H,(C; ® Ry )/Ruy-torsion.

Proof. Omitted; see [5, Lemma 6.9]. Use Theorem 7.1 and Lemma 7.6. O

Lemma 7.7 easily implies that a knotlike complex which is locally symmetric in
the sense of Definition 4.45 has a symmetric standard complex representative:

Lemma 7.8. Let £: S — S be an involution on S as in Definition 4.43. Let C be
a knotlike complex which is locally symmetric with respect to €. Then the standard
complex representative of C' guaranteed by Theorem 7.1 is symmetric.

Proof. By Theorem 7.1, we know that C' is locally equivalent to a unique standard
complex C(by,...,b,). Thus

Clby,...,by) ~ C ~ E(C) ~ E(C(by, ..., by)).

Here, we are using Lemma 7.7, together with the fact that if C7 and Cy are right
locally equivalent, then £*(C1) and £*(Cy) are left locally equivalent (and vice-versa).
Hence C(by,...,by) is locally symmetric. By Lemma 5.4, it is then symmetric. O

8. HOMOMORPHISMS

In this section, we construct the family of linearly independent homomorphisms
from K to Z described in Section 1.
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8.1. Some Z-valued homomorphisms. We begin with the central definition:

Definition 8.1. Let C' = C(ay,...,ay,) be a standard complex. For p € I'y (Ry),
define w,l{(C) to be the signed count of odd-index parameters equal to p:

gog(C) = #{a; | a; = p,i odd} — #{a; | a; = ', odd}.
For C' an arbitrary knotlike complex, define gog(C) by passing to the standard
complex representative of C. For v € I', (Ry), we analogously define ¢Y (C) by
taking the signed count of even-index parameters of C. In the case that C is a
locally symmetric complex, it is clear that gog (as p is allowed to vary) records the
same information as @Z. In this situation, we simply write ¢, = cpg.

The main theorem of this section is:

Theorem 8.2. Let S = S(Ry,Rv) be a grid ring which is grading-nontrivial in
the sense of Definition 4.17. Then for each p € T4 (Ry), the function
apg: R—=Z
is a homomorphism. Similarly, for each v € T (Ry), the function
go,‘j/: R—Z
is a homomorphism.
We prove Theorem 8.2 by expressing the cpg and ) as linear combinations of other

auxiliary homomorphisms. The construction of these will take up the next several
subsections.

8.2. Shift maps and paired bases. We begin by constructing an auxiliary family
of endomorphisms of &, which we call the shift homomorphisms. Our first goal will
be to establish Theorem 8.5, which verifies that these are in fact homomorphisms.
The proof of Theorem 8.5 will involve a detailed analysis of the tensor product of
two standard complexes. This is done in the latter half of the subsection, before
proceeding with the rest of the proof in the sequel.

Definition 8.3. A shift map is any injective, order-preserving function
my: ' (Ry) = T+ (Ro).

We extend my to a function on I'_ (Ry) by requiring my to commute with inversion;
for convenience, we also set my;([1]) = [1]. This defines an injective, order-preserving
function on all of I'(Rr), which we also denote by my. As usual, we will sometimes
be imprecise about whether the domain of my is I'(Ry) or L(Ry). When we have
two shift maps my: I'(Ry) — I'(Ry) and my : I'(Ry ) — I'(Ry ), we will often treat
them together and refer to

m=myUmy: (Ry)UT'(Ry) = T'(Ry) UT'(Ry)
as a shift map also.
Definition 8.4. Let m be a shift map. Define the associated shift homomorphism
sh,: R = R

as follows. For C = C(aq,...,a,) a standard complex, let sh,,(C) be the standard
complex given by
sh,,,(C) = C(m(a1),...,m(ay)).
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More generally, we define sh,,(C) by first passing to the standard complex repre-
sentative of C'. It will also be helpful to consider shifting only the parameters in Ry
or only the parameters in Ry . For a standard complex C' as above, we thus define

shym(C) = Cla, ..., al,)

r'n

where

a; if 7 even,

i if ¢ odd,
a;:{m(a) ifio

and similarly
shy,m(C) = C(a, ..., a))

rn

where
, m(a;) if 7 even,
a, =
! a; if 4 odd,
extending to all of £ as before. Clearly, sh,,, = shy,;, o shy .

Our central claim is the following:

Theorem 8.5. Let C1 and Cy be knotlike complexes. For any shift map m,
Shyjm(cl (= CQ) ~ ShUym(Cl) & ShUym(CQ)

and
ShV,m(Cl ® CZ) ~ ShV,m(Cl) & ShV,m(CQ)-

That s, the functions shyy,,: &8 = & and shy,,: 8 = & are homomorphisms. Since

shy, = shy, o shym, it follows that shy, is a homomorphism also.

The proof of this will be completed in the next subsection. It will also be helpful
for us to observe:

Lemma 8.6. If C is any standard complex, then shy,(CY) = shy,(C)Y. Simi-
larly, shy,,(CY) = shy,,(C)Y

Proof. This follows immediately from Lemma 5.3, together with the fact that m
commutes with inversion. O

We now establish a particularly simple basis for the tensor product of two standard
complexes. Observe that if C' is a standard complex, then up to relabeling, its
preferred basis is already U-paired; and, up to a (generally) different relabeling, this
same basis is also already V-paired. Explicitly:

Definition 8.7. Let C = C(ay,...,a,) be a standard complex with preferred basis
{xi}iy. We define a U-paired basis {w, y;, z,}?:/ ? for C' by setting

W= Tp,
and for each 1 <i <n/2,

(yir 2) = (z9i—2,m2i—1) if agi_1 <'1

o (z2i1,@9i2) if agi1 >'1.

Note that in this basis, Oyy; = |agi—1|zi. Define a V-paired basis for C' similarly by
setting w = xg and using the even-index parameters of C.
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Now consider the tensor product of two standard complexes. It is clear that the
obvious tensor product basis is not U- or V-paired. We thus instead define:

Definition 8.8. Let ¢y = C(ai,...,an,) and Cy = C(by,...,by,) be standard
complexes. Abusing notation slightly, let {w,y;, z;} denote the U-paired bases for
both (' and Cs; it will be clear from context which generators lie in Cy and Cs. We
define a U-paired basis for C; ® Cy as follows. For 1 <i < ngy/2, let

Qp =W K Y;
Bi = (—1)F Wy @ 2,
and for 1 <i <mnj/2, let
Vi =Yi Qw
0 = z; @ w.
For 1 <i<mnj/2and 1 <j < ng/2, define
€ij = Yi @Yj
Cis = {|b2j1‘|02i1_1zi Dyt (—1)gr<zii>yi ®2 i |ag; 1| z: b2 1]
2 @ yj + (= 1)FW|agi 1 |lboja| My @z if |azia| <" [byj-1]
and

- yi @z if |agi—1| > |baj_1]
J Zi ® Yj if ‘CLQ,'_ﬂ <! ’bgj_1|

P L if |agi—1| >' [boj1]
(1)) @ 24 if Jagi 1| <' [bg; 1]

Finally, let
w=w R w.
Note that the following basis elements are U-paired:
{ag, B}, A6}, A€y Ggt, {mig,0i5)

For notational convenience, we relabel the basis elements

{re} = {oi} Uit U{ei} Ufmi;}

{Ad = {8} u{o:} U{G,;}u{bi;}
so that {w, ke, \¢} is a U-paired basis and dyky = egAy for some e;. The reader
should check that if x; is one of € ; or 7; ;, then

eq = max(|agi—1|, |b2j—1]).

If Ky is an «;, then e; = |bg;—1], while if x; is a 7;, then e, = |ag;—1]|. We construct a
V-paired basis for C; ® Cy similarly.

The importance of paired bases is that they help us define certain (ungraded)
S-module morphisms between standard complexes and their images under shy
and shy,,. For a single standard complex this is straightforward:
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Definition 8.9. Let C' = C(ay,...,a,) and let {w,y;, 2} and {w',y}, 2/} be the
U-paired bases for C' and shy,(C) respectively. Define an (ungraded) S-module
morphism
SUm - C— ShUym(C)
by sending
sum(r) =1
for each r € {w, y;, 2}, and extending S-linearly. Then sy, induces an isomorphism

of (ungraded) S-modules. Moreover, the reader may check that sy ,,0v = Ovsym.
On the other hand,

sum(Ouyi) = sum(lazi-1lz) = |azi-1]2;
O (sumyi) = O (y;) = lad;_1 %
s0 sSumOu # Ousum. We define sy, : C — shy,,(C) analogously.
Defining a S-module morphism from C; ® Cy to shy,, (C1) ® shym, (C2) is slightly

more subtle. There are two possibilities for producing such a map. The first is to
take the tensor product of the S-module morphisms in Definition 8.9:

SUm @ Sum: C1 @ Cy = shy,, (C1) & shym (C2)
The second is to use the U-paired bases of Definition 8.8. For this, let
{042'7 /8;7 7;7 5;7 6;'7j7 CZ{J? 771/'7‘7'7 97/;,]'7 wl}
be the basis for shy,,(C1) ® shy,,(C2) constructed in Definition 8.8. Here, we
consider the factors shy,(C1) and shy,,(C2) as standard complexes in their own

right, so that o = w’ ® ¥, (and so on). We re-label this basis {w’, k), \}} as before,
so that xj, and A, are U-paired. As above, we have dykj, = e,\), where

ey = max(|ag; 4|, ‘5/2]'—1‘)
whenever &y is one of €; ; or 7] ; (and similarly for the other cases). Note that
ey = miey).
We then define:

Definition 8.10. Let C7 and C5 be standard complexes and let m be a shift map.
Define an S-module morphism

OUm* CiCy — ShU,m(Cl) & ShU,m(Cg)

by sending

oum(§) = ¢
for ¢ € {w, ks, A}, and extending S-linearly. As in Definition 8.9, oy, induces
an isomorphism of ungraded S-modules. Furthermore, we claim that oy,,,0y =
Ovoy,m- To see this, observe that

OUm = SUm @ SUum mod my.

Indeed, this congruence is clearly an equality for all basis elements not of the form
Gi,j or ;5. For n; j, we again have equality using the fact that [ag;—1| <! |baj—1] if and
only if |ab; | <' |by;_1]. For basis elements of the form ¢ ;, a straightforward case-
work check, together with the fact that m is injective and order-preserving, estab-
lishes the congruence. Since sy, commutes with dy, this shows oy ,,0v = Ov oy m.
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Again, however, note that oy, does not commute with d;7. Define oy, : C1®Cy —
shy,m (C1) ® shy,, (C2) similarly.

We stress that the maps sy, and oy, are ungraded S-module maps which do
not commute with 0, although they do commute with 0y. Nevertheless, these will
be useful auxiliary tools in the next subsection, as we shall see.

8.3. Verification of the shift homomorphisms. We now prove Theorem 8.5.
Let C; and C9 be two standard complexes, and suppose that Cj is a standard
complex admitting a local equivalence to C1 ® Cs. In order to prove that shy,, is a
homomorphism, we need to construct a local map from shys,,(Cs3) into shys,,(Ch) ®
shyym (C2). This will be done with the help of the S-module map oy, of the previous
subsection. However, it will actually be more convenient for us to proceed in two
stages: we define an “approximate” chain map from shy,,(C3) into shy,,(Ch) ®
shym (C2), and then show that any such map can be upgraded into a genuine local
map. This is the content of the definition and lemma below:

Definition 8.11. Let C(ay,...,a,) be a standard complex with preferred basis
{x;}1 and let C be any knotlike complex. An almost chain map f: C(a1,...,an) =
C is an ungraded S-module map such that for 1 <¢ < n odd:

(1) if a; <' 1, that is, Opxi_1 = la;|x;, we have

v f(@i-1) = lai| f(x;) mod |a;|my,
(2) if a; >' 1, that is, Oyx; = |as|zi_1, we have

v f(zi) = la;| f(zi-1) mod |a;|my.

We impose a similar set of condition for ¢ even, replacing U with V above. Note
that an almost chain map is not in general a chain map, and may not even be
grading-homogeneous.

In what follows, let [z], ) denote the homogeneous part of = in bigrading (u,v).

Lemma 8.12. Let f: C(ai,...,an) = C be an almost chain map. Let (u;,v;) be

the grading of z; in C(ax,...,an). Suppose that [f(x0)](uywy) Tepresents a V-tower

class in C and Oy[f(2n)](u,,v,) = 0- Then there exists a genuine local map
g: Clay,...,an) = C

such that g(w;) = [f(%i)](u;0;) mod (my,my) for all 0 < i < n.

Proof. For each 0 < i < n, consider the ansatz:

9(xi) = [f (@) (us05) + Pi + @

where p; and ¢; are undetermined elements with grading (u;, v;) in the images of my;
and my, respectively. In order to determine p; and ¢;, we substitute our ansatz into
the chain map condition for g. For simplicity, assume ¢ is odd and a; <' 1. Then
Jyzwi—1 = |a;|x; and Oyx; = 0. Using Definition 8.11, write

v f(xi—1) = |ai| f () + |ai|pm;
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for some (possibly non-homogeneous) element 7; € C' and p € my. Note that since
8[2] = 0, we have Oy f(x;) + pdyn; = 0. We now compute:

9(Oumi-1) = |ai|g(z:)
= lai|([f (%)) (us o) + Pi + @)
= lail[f (@) u; 00) T lailps
Ovg(zi—1) = O ([f(xi- 1)](u, 1wim1) T Pi—1 1+ qi— 1)
= |ai|[f ()] (s v5) + @il 00 (us o) —gr(u) + OUPi-1-

We likewise compute

9(9yxi) = g(0) =0
aUg(mi) = aU([f(xl)] (ui,v;) +pi + QZ)
U[f(lil)] (ui,vi) + 8Upz

I
)

Examining the desired equality ¢(dpzi—1) = dyg(x;—1), we see that it suffices to
set pio1 = 0 and p; = p[0i)(u;,0,)—gr(n)- Note that indeed p;—; and p; are in the
image of my. The equality g(dyx;) = Oyg(z;) then follows from the fact that
Ou f(x;) + pdyn; = 0. Doing this for each i odd shows that we may choose the p;
such that g commutes with dy; the condition on f(x;) is used to show we may set
pn = 0. The analogous argument when ¢ is even allows us to choose g; such that
g commutes with dy. (Here we use the fact that the p; are in my, so that they
do not enter into the equations used to determine the ¢;.) The condition on f(xg)
corresponds to checking locality of g. O

In order to construct a local map from shys,,(C3) into shy, (C1) & shym(Ca), it
thus suffices to instead construct an almost chain map satisfying the conditions of
Lemma 8.12. We do this below:

Definition 8.13. Let f be a local map from the standard complex C5 to C1 ® Co,
where C7 and C5 are each standard complexes. Let m be a shift map. Define

fU,m3 ShUym(Cg) — ShU,m(Cﬁ) & ShU7m(CQ)

as follows. Let {w, i zi} and {w', y}, 2} be the U-paired bases for C3 and shy,,, (C3),
respectively. For r' € {w’, 2/}, let

fum (') = oumf(r),

where 7 € {w, z;} is the corresponding basis element in C3. To define [y, (y}), first
write f(y;) in terms of the U-paired basis {w, xj, A;} for C1 ® Co. We separate the
coefficients for the x; into summands coming from K, my, and my, so that

(8.1) Zkﬁ]—i—Zp]nj—i—Zq]ﬁ]—i—ZP)\ + Quw

jEN JEJ2 Jj€J3
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For some index sets Ji,J2, and J3. Here, k; € K, p; € my, and ¢; € my, while
P;,Q € §. We define:

(8.2) fUm yZ UUm( Z k. iRk + Z pjej ej)_l,t-gj + Z qjkji+

Jj€N Jj€J2 JE€J3
Z Pj)\j + Qw) .
J

Here, e; is as in Definition 8.10; that is, dyr; = ejA;. Note that e; > pje;, so the
fact that m is order-preserving shows that m(e;) divides m(pje;) in my.

For convenience, we formally record the following identities:

Lemma 8.14. Let f and C3 = C(cq,...,c,) be as above. Then
(8.3) |cai—1]|ovumf(2i) Z k; e]UUm j) + ijerU,m()‘j)
JjEN Jj€J2

for each z;, and

(8.4) oumf(r) = fumsum(r) mod my.

for all v € {w,y;, z}.

Proof. To establish the first claim, apply oy, to both sides of
f(‘CQi—l‘zz’) = faU(yz) 8Uf yz Z k; 6])\ + Z p]e]

JjeN JjEJ2

For the second claim, note that the right-hand side is just fy,(r"). Thus, defini-
tion 8.13 immediately gives equality if r = w or z;. If r = y;, then we obtain the
left-hand side of (8.4) by applying oy, to (8.1). Comparing this with (8.2) gives the
congruence, keeping in mind the fact that p; and m(pje;)m(e;) ! are both elements
of mgy. ]

We now turn to the central technical lemma of this section:
Lemma 8.15. Let C1, Cy, and C35 be standard complexes, let
[0 = C1e0
be a local map, and let m be a shift map. Then
Jum: shum(C3) = shym,(C1) @ shym,(Cs)
18 an almost chain map.

Proof. Let {w,y;, 7} and {w,y,, 2.} be the U-paired bases for C3 = C(c,...,cp)
and shy,, (C3), respectively. We show that

(8.5) O fum(yi) = m(|e2i—1])oumf(z) mod m(|egi—1])my,
and that
(8.6) N fum(r') = fumdv(r’)



50 1. DAI J. HOM, M. STOFFREGEN, AND L. TRUONG

for all " € {w',y,, z}. To prove (8.5), we apply Jy to (8.2). This gives:

anUm yz aU( Z k iOU,m "f] JF Z pjej ) 1O'U,m("{j))
jeJ1 JEJ2

(8.7) = Z kjm(e;)N; + Z m(pje;j)A

JEN JjeJ2

On the other hand, according to (8.3), we have

lcai1lovmf (%) Z ki ej)\ + Z pje])\'

JjeS1 jEJ2

Note that |cg;—1| divides each coefficient e; and p;e; appearing in this sum, since
the )\; generators are not in the image of my. We consider two possibilities:

(1) Suppose that m(|coi—1]) <! |coi—1|. Write m(|coi—1]) = 7|c2i—1| for some
v € Ry. Multiplying both sides of (8.3) by «y, we obtain

(8.8) m(|c2i—1])ovm f(2i) Z kj(ve;) >\ + Z (pjve;)A

jeN jEJ2

We show this is congruent to (8.7) modulo m(|cg;i—1|)my. Fix j € J;. We
know e; <' |cgi—1|. If ej = |egi—1], then tautologically m(e;) = ~e; and
the two terms in (8.7) and (8.8) corresponding to j are exactly the same.
If e; <! |c2i—1|, then using the fact that m is order-preserving, we see that
m(e;) is in m(|cai—1|)my. Since ve; <' y|eai—1] = m(|c2i—1]), this holds for
ve; also, so the two terms in (8.7) and (8.8) corresponding to j are both
congruent to zero modulo m(|co;—1|)my. A similar argument holds for the
terms coming from j € Js.

(2) Suppose that m(|cai_1|) >' |eai_1]. Write ym(|e2i—1|) = |c2i—1| for some
v € my. Note that v must divide each coefficient e; and pje;, since
divides |cg;—1|. Write

(8.9) m(|eai1)ovmf(z) = Y kile /NN, + Y (pies) 3\

j€N JjEJ2

Fix j € Ji. If ej = |coi—1|, then tautologically m(e;) = e;/7v. If e; <' |c2i-1],
then m(e;) is in m(|coi—1|)my as before; moreover, e;/y <' |eai—1]/y =
m(|e2i—1]), so this holds for e;/v also. Hence the two terms in (8.7) and
(8.8) corresponding to j are both congruent to zero modulo m(|ce;—1|)my
A similar argument holds for j € Js.

We now consider (8.6). We have

Ov fum(r') = Oyoumf(r) mod my
= oymfOv(r) mod my
= fumsumOyv(r) mod my
= fumOv(sum(r)) mod my

= fU’mav(T/) mod my;
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for any v’ € {w’,y}, z[}, where the first equivalence is Definition 8.9, the second holds
since Oy commutes with oy, and f, the third holds by (8.4), and the fourth is due
to the fact that dy and sy, commute. ]

Having completed the bulk of the work, we leave the verification of the remaining
hypotheses of Lemma 8.12 to the reader. The proofs of these are exactly the same
as those of [5, Lemma 8.19] and [5, Lemma 8.20]. The result is summarized in the
following;:

Lemma 8.16. Let Cy, Cy, and C5 be standard complezes, let f: C3 — C1 ® Co be
a local map, and let m be a shift map. There exists a local map

gu = shym(Cs) = shy, (Ch) & shy;m(Ca).
Similarly, there exists a local map
gv : shy,;m(Cs) = shy,m, (C1) ® shy,m, (Ca).
Proof. Omitted; see [5, Lemma 7.21] and [5, Lemma 7.25]. O
We now finally turn to the proof of Theorem 8.5:

Proof of Theorem 8.5. Let Cs be a standard knotlike complex with a local equiva-
lence C3 ~ C7 ® C9 which is realized by a local map f: C3 — C7 ® Co. Without
loss of generality, assume C and Cy are standard complexes. By Lemma 8.16, there
exists a local map gy : shy,(Cs) = shym(C1) ® shy ., (C2). Hence

(8.10) ShUm-L(Cg) < ShU7m(Cl) & ShU7m<CQ).

Dually, there exists a local equivalence Cy ~ CY ® Cy, and the same reasoning
shows

(8.11) shym(CF) < shym(CY) @ shym(CY).
Dualizing (8.11), applying Lemma 8.6, and combining with (8.10), we conclude that
shym(C1) ® shym(C2) < shym(Cs) < shym,(Cr) ® shy ., (Ca).
Thus we obtain a local equivalence
shyym (C3) ~ shym (C1) @ shym (Cy).
A similar argument holds for shy,,,,. Since sh,,, = shy;,,0shy;,,, the desired statement

for the composition holds also. ([l

8.4. Proof of Theorem 8.2. We now finally prove Theorem 8.2 by writing the gog
in terms of the shift homomorphisms discussed above. These are tied together via
the following auxiliary homomorphism:

Definition 8.17. Let C be a knotlike complex. Recall from Definition 4.23 that
H,.(C ®s Ry)/(Ry-torsion) = Ry

via an absolutely gro-graded, relatively gri-graded isomorphism. Define Py (C) €
Z to be the gri-grading of the element 1 € Ry under the above isomorphism.
Similarly, define Py (C) € Z to be the gry-grading of the element 1 € Ry under the
isomorphism

H,(C ®s Ry)/(Ry-torsion) = Ry.
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It is clear that Py and Py are invariants of the local equivalence class of C. The
fact that these are homomorphisms follows from proof of Lemma 4.36: if C; and Cs
are knotlike complexes, then C7 ® Cs is a knotlike complex, and the isomorphism
H,.((Cy ® C2) ®s Ry )/(Ruy-torsion) = Ry has gr-grading shift given by the sum
of the gr;-grading shifts for C] and Cs.

By Corollary 7.3, any knotlike complex C' is homotopy equivalent to a direct sum
C(a,...,an) ® A such that

H,(A®s Ry)/(Ry-torsion) = H,(A ®s Ry)/(Ry-torsion) = 0.

It follows that for the purposes of computing Py and Py, we may replace C' with its
standard complex representative C'(ai,...,a,). A direct analysis in this case then
shows that Py(C) = gri(zy), where z,, is the final standard complex generator.
Similarly, Py (C) = gry(zp). Thus we have:

Lemma 8.18. Let C be a knotlike complex with standard complex representative
C(ay,...,an). Then

812)  Pu(C)= Y en(we,(C)+ D en +ZSgnaz

rel4(Ru) vel'y (Rv)

and

(8.13) —Py(C)= > gnwel(C)+ > g +ZSgnaz

pel+(Ru) vel'y(Rv)

Proof. This follows immediately from (5.1) and (5.2), together with the fact that
the (pg and cp,‘// count parameters in the standard complex representative of C. [

Proof of Theorem 8.2. We consider gpg; the proof for ¢V is similar. Let C; =
C(ai,...,an,) and Cy = C(by,...,by,) be two arbitrary but fixed standard com-
plexes. Let the tensor product of C7 ® Cy be locally equivalent to the standard
complex C3 = C(ci,...,¢pny). Clearly, for p outside of the finite set S consist-
1ng of the odd parameters of these complexes, we have that ¢, Ucy) + © Uiy =
¢ (C1 ® Cy) = 0. We thus need to show that

(8.14) 0 (C1) + ¢l (Ca) = ¢} (C1 ® Co)

for i € S. Proceed by strong induction on the elements of S. Let M € .S and assume
that we have shown (8.14) for all 4 <' M. Fix any element pg € my such that
gry(po) # 0, as guaranteed by Definition 4.17. Define a shift map my: I'y (Ry) —

I't(Ru) by

(1) 7 if p>' M
m e
U Voo itp< M

and extend this to a shift map m = my U my by defining my to be the identity.
The trick will be to consider the quantity P(sh,,(C ® Cz)) — P(Cy ® Cz). On one
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hand, using (8.12) and the fact that U m(u )(ShUm(C)) = gog(C), we have

P(shym(Ch ® C3)) — P(Cy @ Cs)

= Y (elmw) —nw)e (@ @)
prel'+(Ry)

= Z gry (p goﬂ (Ch ® Cy),

p<tM

where in the last line we have used the equality gr;(m(u)) = grq (1o - p) = gry(po) +
gry(p) for 4 <' M. On the other hand, using the fact that P and shy,, are both
homomorphisms, a similar argument shows that the above quantity is equal to

P(ShUm(Cl)) + P(ShUm(Cz)) — P(Cl) — P(CQ)

= Y gy (no)el (C1) + Y gri(mo)ell (Ca)

u<!M p<'M
=) gr(uo) (90,7(01) + 905(02))'
p<'M

Equating these and using the inductive hypothesis, we see that

811 (o)1 (C1 @ Ca) = gy (o) (5 (C1) + 8 (C2)).

Since gry(uo) # 0, this establishes the inductive step and completes the proof. [

9. AN ALGEBRA FOR KNOT FLOER HOMOLOGY

We now specialize to the ring X discussed in Section 3. For the convenience of
the reader, we review some aspects of Section 3 here. Recall that X = S(Ry, Ry ),
where

Ru = F[UB, {Ws,i}ticzl/{UBWnB: = Whit1}icz)
and
Rv = F[Vr, {Wr,i}iezl/ {VrWri = Wriy1 }iez)-

Abusing notation slightly, the homogeneous elements of Ry can also be written as
UpWi o, where

(9.1) (4,9) € (Z x Z2%) — (Z<° x {0}).

Note that ¢ > 0 if j = 0, but otherwise we allow the exponent of Ug to be negative.
We parameterize the elements of Ry simply as points (¢, j) in the region (9.1). For
homogeneous elements of Ry, we similarly write (i,j) to represent VTZ;W%,O7 where
(,7) again lies in (9.1). See Section 3 and Figure 1 for a review of X.

Our goal for this section will be to establish that the (grading-shifted) knot Floer
complex of a knot in a homology sphere gives us a symmetric knotlike complex
over X. Following Section 8, we then obtain a homomorphism for each element of
't (Ry). We denote these by

Pi,j- é\Z — 7

where (i, 7) lies in (9.1) (minus the origin) and represents U}éWé 0-
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Remark 9.1. Importantly, there is a morphism of bigraded F-algebras F[U, V] — X
sending

(9.2) U—Up+ WT70 and V — Vp+ WB,O-

The substitution (9.2) will be helpful for understanding the relationship between
complexes over F[U, V] and complexes over X. For any complex C over F[U, V],
write Cx = C ®p(py,y) X, where the action of F[U, V] on X is defined using (9.2).

Now set Ug = 1 in Cx. Since Ug - my = 0, this sets my to zero. The result is a
complex over the ring F[Wp o] with a single grading gr,; note that setting Up =1
collapses the gr;-grading. Composing the morphism (9.2) with this quotient sends
UtolandV to Wpgo. Hence it is easily checked that we have a graded isomorphism
of chain complexes

(9.3) C/(U —1) = Cx /(U — 1).

Here, the former complex is a module over F[V] and the latter complex is a module
over F[Wpg ], and the isomorphism (9.3) identifies V' with Wp .

Now consider the homology of Cx/(Up — 1). Since inverting Up sets my to zero,
we may as well replace Cx with Cx ®x Ry. According to the structure theorem of
Remark 4.7, the homology of C'x ®x Ry is isomorphic to some number of copies of
Ry plus some number of torsion summands Ry /(Ug WJ]3’B ). Thus, up to grading
shifting individual summands,

(9.4) H.(Cx/(Up — 1)) 2 F[Wg,]" & (@F[WBO]/(WgB)> :
k

Note that if C = CFK(Y, K) is a knot Floer complex, then
(9.5) H.(C/(U-1)) 2 HF (Y),

where both sides are viewed as modules over F[V]. Thus if C is the knot Floer
complex of a knot, then (9.3) and (9.5) show that H,(Cx/(Up — 1)) is determined.

In what follows, we use C[(a,b)] to denote the complex C' shifted by bigrading
(a,b), so that an element x € C which previously had bigrading (a,b) now has
bigrading (0,0) in C[(a,b)].

Lemma 9.2. Let K be a knot in an integer homology sphere Y. Then the grading-
shifted complex CFKx(Y, K)[(d(Y),d(Y))] is a knotlike complex over X.

Proof. Let C = CFK(Y,K) and Cx = CFKx(Y,K). Our first claim is that
H,(Cx ®x Ry)/Ry-torsion = Ry. Due to the structure theorem, this is equiv-
alent to showing that m = 1 in (9.4), which follows immediately from (9.3) and
(9.5) (together with the fact that Y is a homology sphere). Since (9.3) and (9.5) are
absolutely gry-graded, the single tower F[Wg ] in (9.4) is generated by an element in
gro-grading d(Y'). Thus the generator of the Ry-tower in H,(Cx®x Ry )/Ry-torsion
has gry-grading d(Y). An analogous argument replacing U with V' shows that
H,.(C®xRy)/Ry-torsion = Ry, with the generator of this tower having gr;-grading
d(Y'). Shifting gradings to satisfy the normalization convention of Definition 5.1
gives the claim. O

Moreover, a local equivalence between CFK (Y1, K1) and CFK (Y3, K3) gives a
local equivalence between CFKx (Y1, K1) and CFKx (Y2, Ko):
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Lemma 9.3. If K; € Y; fori= 1,2 are homology concordant, then we have a local
equivalence

CFKx(Y1, K1)[d(Y1),d(Y1)] ~ CFKx(Y2, K2)[d(Y2), d(Y2)].

Proof. If K; is homology concordant to K3, then we have absolutely chain graded
maps f and g which induce isomorphisms between

H.(CFK (Y;, K;) @y FIU, U, V, V)
for i = 1,2. A similar argument as in Remark 9.1 shows these are isomorphic to
H.(CFKx(Y;, K;) ®x L(Rv))

for i = 1,2. Hence f and g induce isomorphisms on CFKx after inverting Ry. It
follows that f and g map Ry-nontorsion elements of H,(CFKx(Y;, K;) ®x Ry) to
Ry-nontorsion elements. Because f and g are absolutely graded, this implies f and
g must induce isomorphisms on H,(CFKx(Y;, K;) ®x Ry )/Ry-torsion. A similar
argument holds with V' in place of U. Since Y7 is homology cobordant to Ya, we
moreover have d(Y1) = d(Y2), so the claim holds after shifting gradings as well. [

The well-known fact that CFK (Y, K) is symmetric also translates into the fact
that the associated complexes over X are symmetric, in the sense of Definition 4.44:

Lemma 9.4. Let K be a knot in an integer homology sphere Y. Then the knotlike
complex CFKx(Y, K)[d(Y),d(Y)] is symmetric with respect to the involution on X
sending

§(Us) = Vr, §Wny) = Wry, §(Vr) = Us, EWry;) = Why.

Proof. Recall that (as in the construction of involutive knot Floer homology; see [7])
there is a skew-graded homotopy equivalence t: CFK (Y, K) — CFK(Y, K) so that
(Ux) = Vi(z) and «(Vz) = Uw(x). Let &: F[U, V] — F[U, V] be the skew-graded
isomorphism given by {(U) = V and {(V) = U; then the map (9.2) intertwines
this with the involution £ given in the statement of the lemma. We can view ¢
as a F[U, V]-equivariant, absolutely graded homotopy equivalence from CFK (Y, K)
to £*CFK (Y, K). Tensoring with X we obtain an X-equivariant, absolutely graded
homotopy equivalence from CFKx(Y, K) to £*CFKx(Y, K). O

We thus finally obtain:

Proof of Theorem 1.3: This follows directly from the properties of X described above
along with Theorem 7.1. O

10. APPLICATIONS

In this section, we prove some of the applications listed in the introduction. We
begin by establishing vanishing conditions for the homomorphisms ¢; ; in the case
that K is a knot in an integer homology sphere L-space. First consider a standard
complex C(by,...,by,) with |bop_1] = UJZB’“WJJB’fO. As in (9.4), we have a gry-graded
isomorphism

(101)  HAC(hr,...,b)/ (U — 1)) = F[Wp,] & (@ F[WBMWJ@@)[@]) .
k
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The generator of the nontorsion tower is [x,], which lies in gry-grading zero. The
generator of the kth torsion tower is [ror_2]| or [zor—1], according as bog_1 >
or byp_1 <' 1, respectively. As in (5.1) and (5.2), each grading shift oy, is easily
calculated to be:

> sen(b)+ Y gra(by) if bop_y >'1

>2h—2 j>2%k—2
Z sgn(bj) + Z gI‘Q(bj) if bogp—1 <M1
521 j>2%—1

Theorem 10.1. Let K be a knot in an integer homology sphere L-space Y. Then
for any j > 0, the homomorphism ¢; ;(K) vanishes. Thus the homomorphisms p; ;
for 5 > 0 descend to homomorphisms

é\z/CZ — 7.

Proof. Let CFKx(Y, K)[d(Y),d(Y)] be locally equivalent to C'(by,...,b,). Since Y
is an integer homology sphere L-space, the isomorphism (9.3) implies that there are
no torsion summands on the right-hand side of (9.4). By Corollary 7.3, the right-
hand side of (10.1) appears as a summand of the right-hand side of (9.4). Hence we
must have ji = 0 for each standard complex parameter |byx_1]. O

We now show that the remaining homomorphisms ¢; o(K) coincide with the ho-
momorphisms defined in [5] in the case that K lies in $3. (With a slight modification,
it is possible to generalize the results of [5] to knots in integer homology sphere L-
spaces; then the previous statement holds replacing S® with any such space.) For
this, we first show that in such a situation, local equivalence over X coincides with
local equivalence over R = F[U,V]/(UV). Note that we have maps R — X and
X — R. The first is induced from (9.2) by sending U +— Up and V + Vp, while the
second simply maps Ug +— U and Vy — V (and is zero on Wg o and Wry).

Proposition 10.2. Let K be a knot in an integer homology sphere L-space Y. Let
CFKx(Y, K) be X-locally equivalent to C(by,...,by)[d(Y),d(Y)]. Then all b; lie in
R and CFKR(Y, K) is R-locally equivalent to C(by,...,by)[d(Y),d(Y)].

Here, when we say that the b; are in R = F[U,V]/(UV), we mean that they lie in

the image of the map R — X. In this situation, we may consider C(b1,...,b,,) as a
standard complex over X or as a standard complex over R; we write C(by,...,b,)x
and C(by,...,b,)R to distinguish these when necessary.

Proof. We assume d(Y) = 0 for ease of notation. The fact that the b; lie in R is
simply the proof of Theorem 10.1 (replacing U with V' in the case of the even-index
parameters). It is easily checked that

CFKR(Y,K) = CFKx(Y,K) ®x R

where the action of X on R is as defined above. Moreover, the reader may verify
that X-local maps descend to R-local maps, so

CFKR(Y,K) ~R C(bl, .. .,bn)x ®x R.

Finally, the fact that all the b; lie in R implies C'(b1,...,b,)x®@xR = C(b1,...,bp)R-
This completes the proof. ]
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Proposition 10.3. Let K be a knot in an integer homology sphere L-space Y. For
any © > 0, we have that p;o(K) = ¢i(K) from [5].

Proof. Follows immediately from Proposition 10.2. ([l

A slightly more refined analysis of (10.1) constrains the behavior of the ¢; ; for
knots in Seifert fibered homology spheres:

Proof of Proposition 1.6: Consider each grading shift o4 from (10.1). Since every
gry(b;) is even and n is even, it is clear that oy is even if and only if by >l
Note that the kth torsion tower has grading supported in the same parity as o,
with the caveat that if jr = 0 then the corresponding torsion tower is empty. As in
the proof of Theorem 10.1, we have that the right-hand side of (10.1) appears as a
summand of HF~(Y) up to a grading shift of d(Y"). Now, any negative Seifert space
has (minus-flavor) reduced Heegaard Floer homology concentrated in odd degrees
[20]. Hence if Y is a positive Seifert space, then for each k, we must either have
bok—1 > 1 or j,, = 0. The argument for positive Seifert spaces is analogous. O

We now relate our homomorphisms to the knot invariants 7(Y, K) and (Y, K).
First, we recall the definition of 7(Y, K) from [19] (see also [12]). Let C' = CFK*(Y, K)
which, after choosing a filtered basis, decomposes as a direct sum C' = @; jezC(4, j).
For any set X C Z?, let CX = ©i,j)exC(i,7). Let

Ls: C{i=0,7 <s} — C{i=0}
denote the inclusion map, and let p: 6’?(}/) — CF*(Y) be the natural inclusion
map CF(Y) ~ C{i =0} — C{i > 0} =~ CFT(Y).
Definition 10.4. [12] Let K be a knot in an integer homology sphere Y. Define
7(Y,K) = min{s | im(ps 0 1s.) N"UNHFT(Y) #0 VN > 0}.

We give an equivalent definition of 7(Y, K). Let p': CF<%(Y) — 6’?(1’) be the
natural projection map, where CF=%(Y) = C{i < 0}.

Lemma 10.5. The definition of (Y, K) above agrees with:
7(Y,K)=min{s | Iy € HFSS (Y), UNy#0 VN >0, and 0 # p.(y) € im(1s.)},

a(y)
where HFgg/) Y) = Hd(y)(CFSO(Y)), where the subscript d(Y') denotes the sum-
mand in grading equal to the Ozsvdth-Szabd d-invariant d(Y).

A class (or underlying chain representing) y € HF;g/)(Y) such that UNy # 0 for

all integers N > 0 will be called a tower generator.

Proof. For now, let the expression 7(Y, K) as in the lemma be called 7/(Y, K). We
have the following diagram of exact sequences:

CF~(Y) —— CF®(Y) ——— CFH(Y)
{ l {

(10.2) CFO(Y) ——— CF>®(Y) —— CF>°(Y)

The left vertical arrow is inclusion, the middle is the identity, and the right is
projection. There is an associated diagram of exact triangles:
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HF~(Y) ——— HF®(Y) ——— HFH(Y) —— -+
L ! I

HFSO(Y) —= HF®(Y) —=" HFO(Y) —— -

It is straightforward to check that for a class [y] € ﬁ(Y) to satisfy 0 # p.([y]) €
UNHF*(Y) for all N >> 0 is equivalent to p.([y]) € im(my) (Similarly, for y €
HF~(Y) to have UNy # 0 for all N is equivalent to ¢_(y) # 0). We also note
that the diagram (10.2) defines a map CF=°(Y) — CF*(Y), by using that the
middle vertical arrow is an isomorphism. At the chain level, this map is p o p/, as
can be checked from the definitions. Putting this all together, if p/ ([y]) satisfies the
condition in the definition of 7/(Y, K) then 7/(Y, K) > 7(Y, K), since (pp')«([y]) is a
class as in Definition 10.4.

On the other hand, the following exact triangle has a morphism to the top exact
triangle in the figure above:

HF~ — HF< _ HF

Using the connecting maps, we get the following convenient diagram::

HF<0 HF HF~

| ! Lid

HF*® —— HFt* —— HF~

In particular, a class [y] with p.[y] as in Definition 10.4 gives rise to a class [¢/] in
HF=<% with nontrivial image in HF>. It remains to show that this class [¢/] is in
degree d(Y). Indeed, this follows since the image of [¢/] in HF® is not in the image
of HF~ — HF*®™°; the latter image is given by the span of all nontrivial homogeneous
classes of degree at most d(Y') — 2. This completes the proof. O

We will reinterpret 7(Y, K) in the language of the F[U, V]-module CFK (Y, K).
First we recall some useful facts that translate between CFK (Y, K) and the filtered
chain complex C' = CFK*(Y, K). The filtration of CFK (Y, K) satisfies:

C{i <0, < jo} = G(—ig,—jo) N (U, V) ' CFK (Y, K))o,

the latter being defined as the span over F[U, V] of generators U vi'x with 7/ > —ig
and j’ > —jo. The subscript of (U, V) ! CFK (Y, K))g signifies the Alexander grad-
ing zero summand of (U, V) 'CFK(Y, K)). Some consequences of this are as fol-
lows. Recall that we write U for the action of UV on CFK (Y, K) (which corresponds
to the action of U on the flavors of HF(Y')). First, C{i = 0} is spanned, over F,
by generators VIx so that A(x) = —j, and is identified with (V"1CFK(Y,K)/U)o
(we reserve boldface variables to come from intersection points, rather than combi-
nations thereof). The complex C{i > 0} is the quotient of ((U,V) 'CFK (Y, K))o
by terms U‘VJx, for i > 0. Similarly, C{i < 0} is identified with (V- CFK (Y, K))o
and U(VLCFK(Y,K))y = C{i < 0}. The complex C{i = 0,j < s} is identified
with the F-span of terms V7'x with j’ > —s and A(x) = —j.

Proposition 10.6. Let K be a knot in an integer homology sphere Y. Then 7(Y, K)
is the minimal Alexander grading s of a cycle « € CFK (Y, K)/U, such that V"« €
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(V-ICFK (Y, K)/U)g is the image of a tower-generator of (V"1 CFK (Y, K))o. Here,
tower-generator of (V"CFK(Y,K))o means a UV -nontorsion element of Maslov
grading d(Y).

Proof. Let y € HFC?(%(Y) be a class that realizes 7(Y, K), as in Lemma 10.5,
satisfying UNy #£0 VN >0 and 0 # p/,(y) € im(¢s.). Note that p': CF<O(Y) —
CF(Y) is surjective, so if p/(y) € im(¢s+), then we can find a tower-generator chain

y € CFi%,) so that p'(y') € im(cs). Under the identification of CF;g/) with the

d(Y)-graded part of (V"'CFK(Y,K))o, the map p': CF<O(Y) — ﬁ(Y) is the
natural quotient map

(VICFK(Y,K))o — (V"'CFK(Y,K)/U)o.

We can represent y' € (V- 'CFK(Y,K))o as a nontrivial sum of the form ¢’ =
S V-A®x + U for some ¢ € V-ICFK(Y, K), where each of the x has A(x) < s
since /(i) = S V-A®x € im(is). Moreover, ' generates UV-nontorsion element
in grading d(Y) of H,((V-'CFK (Y, K))o) = HF~(Y).

We define an Alexander grading on V-'CFK (Y, K)/U by defining the homo-
geneous classes to be the classes in V"'CFK (Y, K)/U with homogeneous lift in
V-LCFK (Y, K), with grading given by the lift. It is straightforward to check that
the grading of a homogeneous lift of a nonzero class in V"1 CFK (Y, K)/U is inde-
pendent of the choice of lift.

Given the element ', we have that V*(y’ mod U) is an element of CFK (Y, K)/U
with Alexander grading s. The class [y mod U] € H,((V~1CFK(Y,K)/U)p) is the
image of a tower-generator of H,((V 'CFK(Y,K))o). In fact, (' mod U) is the
image of the tower-generator v/ € (V"1CFK (Y, K))o.

Conversely, suppose that the cycle § € (CFK (Y, K)/U)s satisfies the condition
that the cycle V=°8 € (V-ICFK(Y,K)/U)g is the image of a tower generator
V5B e (V-ICFK (Y, K))o. We can express 8 = 5. V5 A®x where s — A(x) > 0
for all x appearing in the nontrivial sum, and V_SB =5 V—AMx + U(. Letting
y = V53, we have that p/(y/) = 3. V-4®x is in the image im(z,) and that 3’ is
U-nontorsion. Thus, 7(Y, K) < s. O

Next we prove Proposition 1.4, showing that the homomorphisms recover the
7(Y, K) invariant. The proof uses the reinterpretation of 7(Y, K') in Proposition 10.6
in terms of the F[U, V]-module knot Floer chain complex CFK (Y, K).

Proof of Proposition 1.4. A similar argument as in the previous section shows that
we have a bigraded isomorphism

VTICFK(Y,K) = Vi L CFKx(Y, K).

Using Lemma 7.3, CFKx(Y, K) has a summand given by some grading-shifted stan-
dard complex C(by,...,b,)[d(Y),d(Y)]. Under the above isomorphism, any = which
realizes 7(Y, K) must be supported by the grading-shifted generator z(,, where we
write z{, to denote the grading-shifted version of the usual standard complex gener-
ator zg in C(by,...,b,). Thus 7(Y, K) is equal to half of

gry (2p) — gra(ap) = (gr1(z0) — d(Y)) — (gra(xo) — d(Y)) = — gra(xo).
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Since our standard complex is symmetric, we have that sgn(b,4+1-;) = —sgn(b;) and
that gro(bp+1-i) = —gry(b;). Applying (5.2) thus yields

— gry(z0) = Z (gr2(bi) — gry(bs)).
1 odd
Recall that in Definition 3.2, the pair (7, j) represents an element of Ry of grading
(—2i,—2j). The claim follows. O

Proof of Corollary 1.5. The condition (Y, K) = 0 is equivalent to the assertion that
CFKx(Y, K) is locally equivalent to a complex C(by,...,by,), where |by] is not of
the form (7,0), unless CFKx(Y, K) is locally equivalent to X = C'(0). However, the
condition on 7(Y, K) guarantees that CFKx(Y, K) is not locally equivalent to C(0)
by Proposition 1.4. The corollary follows from Proposition 10.2. U

We next prove the results on homology concordance genus and homology concor-
dance unknotting number from the introduction. The homology concordance genus
is

g (Y, K) = min g3(Y’,K'),
(v’,K") homology concordant to (Y,K)
where ¢3(Y, K) denotes the minimum genus of a compact orientable surface S em-
bedded in Y with boundary 95 = K. The homology concordance unknotting num-
ber is
up (Y, K) = min w(Y', K,
(v',K") homology concordant to (V,K)
where u(Y, K) is the minimum number of crossing changes to change K to the
unknot in Y, taken over all possible diagrams for K. Let
NY,K) = sup li — 7jl.
(4,9) 1,5 (Y, K)7#0
We claim that gy (Y, K) > N(Y,K)/2 and uy (Y, K) > N(Y, K).

Proof of Proposition 1.8 (1). Let K be a knot in an integer homology sphere Y. Fix
any (i,7) and suppose that ¢; ;(K) # 0. Then there exist generators x and y in
CFKx(Y, K) such that

Oy = UpWh oy.
Moreover, we may take x and y to be standard complex generators, so = and y do
not lie in (mg, my ). Since we may assume our complex is reduced, both = and y
survive to be nontrival cycles in CFKx (Y, K)/(my, my ). Note that

gr(z) —gr(y) = (=20 +1,-25 + 1),

so the difference in Alexander gradings is |A(z) — A(y)| = |i — j|. Now, it is clear
that we have a bigraded isomorphism of F-vector spaces

CFK(Y,K) = CFK(Y,K)/(U, V)~ CFKx(Y, K)/(my, my).

Hence if ¢; j(K) # 0, then HFK (Y, K) has two nonzero elements which differ in
Alexander grading by |i — j|. But it is well-known that HFK (Y, K,s) = 0 for all
Alexander gradings |s| > g3(Y, K); hence g3(Y, K) > |i — j|/2. Since ¢; ; (and thus
the property of ¢; ; being nonzero) is a homology concordance invariant, this bound
holds replacing (Y, K) with any homology concordant pair (Y, K’). Taking the
maximum of |i — j| over all such (i, j) gives the claim. O



HOMOLOGY CONCORDANCE 61

Remark 10.7. The result on the homology concordance 3-genus admits a natural
generalization by considering the Alexander gradings of the entire standard complex
summand; this is left to the reader.

Proof of Proposition 1.8 (2). Let U denote the unknot in Y. Let v/(K) be the small-
est integer ¢ so that there exist F[U, V]-complex morphisms

fi CFK(Y,K) = CFK(Y,U)  and  g: CFK(Y,U) = CFK(Y, K)

such that fog and go f are both homotopic to multiplication by U*¢. By [1], /(K is
a lower bound for the unknotting number of K inside Y. Changing our ground ring
to X using (9.2) and modding out by my, we obtain induced maps of Ry-modules

fi H.(CFKx(Y,K)/my) — H.(CFKx(Y,U)/my)

and
g: H.(CFKx(Y,U)/my) —» H.(CFKx(Y, K)/my),

such that f og and g o f are both equal to multiplication by Uf;. Both of these
Ry-modules are isomorphic to a single copy of Ry plus some torsion summands.
Our goal will be to use the existence of f and g to place restrictions on the lengths
of these torsion summands, which will force various ¢; ;(K) to be zero.

We begin by understanding H.(CFKx(Y,U)/my ). Note that CFK(Y,U) is iso-
morphic to F[U, V] &gy HF~(Y'), where the action of U on F[U,V] is given by
U — UV. As usual, CF™(Y) consists of a single U-nontorsion generator, to-
gether with some paired generators corresponding to U-torsion towers. Changing
our base ring to X, each U'-arrow in CF~(Y) turns into an arrow decorated by
(U + Wr0)(Vr + Wgp)' = U};WEO + VTiW%’O. Modding out by my and taking
homology, we see that the torsion towers in H,(CFKx(Y,U)/my ) are all of the form
Ru /(U Why).

Now fix any (4, j), and suppose ¢; j(K) # 0. Then H,(CFKx(Y, K)/my) has at
least one torsion tower of length U%Wé’o. Let  be a generator of such a tower.
If j = 0 and ¢ > i, then we tautologically have ¢ > |i — j|. Otherwise, we have
g(f(z)) = Ugr # 0, so in particular f(z) # 0. Write f(z) as a multiple of a
primitive element y in H,(CFKx(Y,U)/my). It is easily checked that f(x) is not in
the image of Wp o; that is,

f(z) =Ugy
for some m > 0. Indeed, otherwise we would have that g(f(z)) = U4x was in the
image of Wp , which it is not. A similar argument shows that m < /.

We now claim that the torsion order of y is U fBWéyo, where j is the exponent of
Wpg, in the torsion order of x. Note that this implicitly forces j > 0, since y is
nonzero. Since y is primitive, the structure of H,(CFKx(Y,U)/my ) shows that the
torsion order of y is of the form U EWEO, where k = oo if y is nontorsion. Suppose
j < k. Then for x sufficiently large,

Us W of(9()) = U™ Wi o f(g(f(x)) = U5 W o f(@),

which is zero due to the torsion order of . On the other hand, this is also equal
to UEMWéoy, which is nonzero. Similarly, suppose j > k. Then for x sufficiently
large,

UpWhog(f(x)) = U™ WE 09(y)
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which is zero due to the torsion order of y. On the other hand, this is also equal to
U;“ZWEOQU, which is nonzero.
We now finally show ¢ > |i — j|. We divide into two cases. If i < j, consider
ULWE, o f(z) = US™W oy,
The left-hand side is zero due to the torsion order of z; the right-hand side then
shows that ¢ +m > j. Thus in this case, £ > m > j—1. If i > j, we instead consider
o o . e
UWho9(y) = U "W og(f(x)) = U "W gz

Note that Uy "W is well-defined since j > 0. The left-hand side is zero due to
the torsion order of y; the right-hand side then shows that j —m + £ > ¢. Thus in
this case, £ >0 —m >1i—j.

We thus see that the unknotting number of K inside Y is bounded below by |i—j.
Since ¢; ; (and thus the property of ¢; ; being nonzero) is a homology concordance
invariant, this bound holds replacing (Y, K) with any homology concordant pair
(Y, K'). Taking the maximum of |i — j| over all such (4, j) gives the claim. O

11. COMPUTATIONS

In this section, we give some computations of the ¢; ; for knots in various homol-
ogy spheres. Our first set of examples are based on computations from [26]. For any
n > 1, let M,, denote +1-surgery on the torus knot 75 4,—1. Let Y, = M,# — M,,
and let K, denote the connected sum of the core of surgery in M,, and the unknot
in —M,,. In [26], Zhou computes the knot complexes associated to (Y;,, K,) working
over the ring F[U, V].

Proposition 11.1 ([26, Proposition 7.1]). The knot complex CFK(Y,, K,) is lo-
cally equivalent (over F[U,V]) to a complex generated over by xq, x1, and y, with
bigradings

gr(zo) = (2,0)
gr(xl) = (07 2)
gr(y) =(2n—1,2n—1)

and differential
dxg = U tVny and Oxy = UV 1y,
Changing our base ring to X gives:

Proposition 11.2. The knot complex CFKx(Yy, K,,) is locally equivalent (over X)
to a complex generated by ag, a1, and b, with bigradings

gr(ao) = (2,0)
gr(a1) = (0,2)
gr(b)=(2n—1,2n—1)

with differential
dag = VW' and  day = UBWE 'b.
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Proof. Recall that to translate from complexes over F[U, V] to complexes over X,
we map U — Up + Wro and V +— Vp + Wpo. Performing this substitution in
Proposition 11.1 and using the relations in X gives

Oxy = (UgﬂWE’O + WﬁalV{w‘)y
and
dx1 = (UpWpo' +WioVi .
We perform the change of basis
ap = xo + Wp 171,
a1 = x1 + Wr _120,
b=y.
The result follows. U
Lemma 11.3. For each n > 1, we have that ¢y n—1(Ky) = —1, while ¢; j(Ky,) =0
for (i,7) # (n,n —1).

Proof. The complex of Proposition 11.2 is in fact a standard complex with preferred
generators (listed in order) a1,b, and ag. The result immediately follows. O

This completes the final step in the proof of Theorem 1.1:

Proof of Theorem 1.1. The homomorphisms ¢; ; and their properties have been con-
structed and verified over the last several sections. Lemma 11.3 shows that the
¢n,n—1 are linearly independent and that they give a surjection

@ Pnn—1: é\Z — 7.

n>1
By Theorem 10.1, we thus in fact have a surjection

P enin-1: Cz/Cz — 2,

n>1

as desired. 0

We also look at the examples from [12]. Let J = T5 3:23 denote the (2, 3)-cable
of the left-handed trefoil, and M be +1-surgery on J. Let J C M denote the knot
obtained as the core of the surgery.

Proposition 11.4. The complex CFKx(M,J) is locally equivalent to
C(—(1,1),(1,0),—(1,0),(1,1)).
Proof. From [12, Figure 12], we obtain that CFK (M, .J) is locally equivalent (over
F[U,V]) to the complex on generators E, F,G, J, K with gradings:
gr(E) = (1,-1),  gr(F)=(0,-2),  gr(G)=(0,0),

gr(J) = (_1’ 1)7 gr(K) = (_2’ 0)7
and with differential given by:

OF =UVE, OF =0, 0G=UFE+VJ, aJ =0, 0K =UVJ.
Performing the usual substitution yields:
OF = (UpWgo + WroVr)E, 0K = (UpWpg,o + WroVr)J.
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OE =0, 0G=Up+Wro)E+ (Vr+Wpo)J,  0J=0.

Consider the change-of-basis

F' =F + WgoG + Wpg 1K, K =K+ WT70G + Wr 1 F,
E/:E—G—WB,_lJ, G' =G, J = J+Wr _1E.

This gives the differential

OF = WroVrE, 0K =UWgoJ'
OE =0, OG =UpE +VgJ',  8J =0.

This exhibits CFKx (M, J) as a standard complex, with preferred generators (listed
in order) K’', J',G', F', and E’. This gives the standard complex parameters

by = (UsWgo)™', ba=(Vr), b3=(Up)"', by=WroVr),

as desired. 0
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