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ABSTRACT

We present a variant of the immersed boundary (IB) method that implements acoustic perturbation theory to model acoustically levitated
fluid droplets. Instead of resolving sound waves numerically, our hybrid method solves acoustic scattering semi-analytically to obtain the cor-
responding time-averaged acoustic forces on the droplet. This framework allows the droplet to be simulated on inertial timescales of interest,
and therefore works with much larger time steps than traditional compressible flow solvers. To benchmark this technique and demonstrate
its utility, we implement the hybrid IB method for a single droplet in a standing wave. Simulated droplet shape deformations and streaming
profiles agree with available theoretical predictions. Our simulations also yield insights into the streaming profiles for elliptical droplets, for
which a comprehensive analytic solution does not yet exist.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0223790

NOMENCLATURE x;  Location on computational grid
. on(x; —X;)  Interpolation kernel between grid and markers, Eq. (A5)
Droplet properties n  Fluid’s dynamic viscosity

¢ Fluid’s volume viscosity
p(x;)  Fluid density, Eq. (1)
po  Fluid’s equilibrium density

F; Force on boundary marker
Kp  Spring constant between mass marker and tracer
{;  Separation between markers iand i + 1

M  Mass of mass marker . .
R Undeformed droplet radius Acoustic wave properties
r({)}) Eelfor'medfdgop leg radius, l];: q(32) aj’  Scattered beam shape coefficients, Eq. (18)
Xi p ¢ F),[C.lty Of boun dary marker b]'  Interior beam shape coefficients, Eq. (18)
i osition of boundary marker kW b
X" Position of massless (fluid) tracer marker k, Vi:s:ll:;la\:number, Eq. (16)

Xem Deff)rmatlon coefficients, Eq. (33) s Scattered beam shape coefficients, Eq. (18)
Y”  Position of mass marker i

i 7 Acoustic damping coefficient, Eq. (15)
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Pp })ropflet.s ldensiFy d(w)  Viscous boundary layer thickness, Eq. (17)
o Interfacial tension ¢(x;)  Flow field scalar potential, Eq. (13)
. . Y(x;)  Flow field vector potential, Eq. (13)
Medium properties @  Frequency
¢ Speed of sound
f(xj) Force on fluid, Eq. (1) . INTRODUCTION
h Gri.d spacing Acoustic manipulation uses the forces exerted by sound waves to
p(xj)  Fluid pressure, Eq. (1) lift objects against gravity and to move them along planned trajectories
u(x;)  Fluid velocity, Eq. (1) in three dimensions. > The theory of acoustic manipulation is
Phys. Fluids 36, 092108 (2024); doi: 10.1063/5.0223790 36, 092108-1
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Physics of Fluids

well-developed for solid objects in inviscid fluids.” The behavior of
deformable objects, however, poses more of a challenge. Acoustic
scattering and sound-mediated shape changes occur on dramatically
different time scales, making their interplay difficult to model self-con-
sistently.”” The standard formulation of sound-mediated forces and
flows is based on second-order perturbation theory. The first-order
pressure and velocity fields, p; (r, t) and u; (r, t), respectively, describe
incident sound waves together with waves scattered by particles. These
first-order fields oscillate harmonically at the acoustic frequency, w,
and vanish on average. Their interference, however, gives rise to steady
acoustic radiation forces (ARF)’ and streaming flows'** at second
order in the amplitude of the sound wave. This wave-matter
interaction has been formulated analytically for highly symmetric scat-
terers”'*"” and semi-analytically for scatterers of fixed arbitrary
shape.'® Even numerical solutions are challenging, however, for scat-
terers whose shape can change.

Here, we introduce an efficient computational framework based
on the immersed boundary (IB) method'”*’ that accurately predicts
the dynamics and shape evolution of fluid droplets in acoustic force
landscapes, as well as the streaming flows around them. The IB
method naturally accommodates the moving boundary of a deform-
able droplet and couples it to flows in the fluid medium. We then cou-
ple this dynamical system semi-analytically to an acoustic pressure
wave by projecting the time-averaged acoustic force at the deformed
droplet’s surface onto the incompressible flow around an equivalent
sphere. This framework models acoustic levitation substantially more
efficiently than existing compressible-flow solvers by inherently
accommodating both fast and slow processes. We validate this hybrid
numerical framework by studying shape deformations and flow fields
around fluid droplets in an acoustic levitator. This study identifies a
dynamical transition between dipolar and quadrupolar streaming
flows that may explain anomalous collective phenomena in experi-
mental studies of acoustically levitated droplets” and can be useful for
designing microfluidic devices.”’

Section II reviews the standard IB method™ along with exten-
sions that incorporate the mass and surface tension of a fluid droplet.
Acoustic forces and streaming flows are derived in Sec. III from acous-
tic perturbation theory. Section IV presents a hybrid IB method that
models the acoustic forces on a droplet in a standing sound wave. The
results compare well with the best available multiscale computational
studies and are obtained at a fraction of the computational cost.

Il. IMMERSED BOUNDARY METHOD

The immersed boundary method was first introduced in 1972 to
study blood flow in the heart,"” and has since evolved into a general
method for solving fluid-structure interaction problems.”’ Modeling
fluid droplets involves a variant of this technique called the penalty
immersed boundary method that incorporates the droplets’ mass and
surface tension.”””” The present work further extends the penalty IB
method by incorporating the forces exerted by an acoustic wave propa-
gating through the fluid medium.

A. The standard IB method

The standard formulation of the IB method™” applies to a droplet
embedded in a homogeneous incompressible fluid of density p and
dynamic viscosity 7. The droplet’s surface, X(q), is parameterized by
curvilinear coordinates, q, and is discretized into a set of markers,
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{X;}, at fixed material points along the boundary, as shown schemati-
cally in Fig. 1.

The fluid flow, u(x;), and pressure, p(x;), are defined on a
Cartesian grid, x;, with uniform spacing 4, and are governed by the vis-
cous, incompressible Navier-Stokes equations,

p (0 +u-V)u=—Vp+yViu+f, (1a)
V.u=0. (1b)

By Newton’s third law, the force on the fluid element at x;,

ﬂ%w:—ﬁmn@@—x@ww% @

is equal and opposite to the local force on the boundary, F(q, ), due
to surface tension and the influence of external fields. The kernel,
on (xj — X;), interpolates over the markers, X;, in the neighborhood of
a discrete gridpoint, x;. A suitable interpolation kernel is presented in
Appendix A. Likewise, each massless boundary marker is advected by
the fluid at a velocity,

U= [ulx. ) 3,05 - X,) . )

that is interpolated from the computational grid.

The IB method defined by Eqs. (1)-(3) generally proceeds in a
cycle, as depicted in Fig. 2. Given an initial droplet shape, {X;}, the
forces, {F;}, on the boundary markers are calculated from the com-
bined influences of surface tension and external forces. The comple-
mentary force field acting on the fluid, f(x;, t), is then computed with
Eq. (2). The Navier-Stokes equations, Eq. (1), then are solved numeri-
cally'””” to obtain the updated fluid velocity, u(x;, t). Finally, Eq. (3) is
used to determine the no-slip motion of the boundary, 9,X = U, and
the procedure is repeated for the updated boundary configuration,

{X;}-

boundary marker

T T
1T ]
I

A~

liq

fluid marker
K p

mass marker

FIG. 1. Schematic overview of the immersed boundary method applied to a fluid
droplet driven by an acoustic pressure field. Boundary markers are located at posi-
tions, X;(q), around the droplet's interface. Each marker interacts with its neighbors
to model the interfacial restoring force, F7. Each marker also interacts with flows in
the fluid medium that are calculated on the computational grid. The droplet's density
is modified through the addition of mass markers that are coupled to the flow field
by fluid markers.
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FIG. 2. Immersed Boundary method for acoustic manipulation of deformable
objects. The computational cycle begins by specifying an initial shape for the droplet
and the incident sound field.

In this work, we implement the same numerical scheme first
introduced by Peskin,"” using the spatial and temporal discretizations
and four-point discrete delta function described in Secs. 4-7 of Ref. 20.
To improve volume conservation, we calculate the fluid fields on a
staggered, marker-and-cell grid.”* The expressions used for spatiotem-
poral discretization are reproduced in Appendix A.

B. Penalty IB method for massive droplets

The standard IB method cannot account for multiphase flows
where properties of the droplet, such as density and viscoelasticity,
differ from those of the surrounding medium.”* For simplicity, we
focus on the droplet’s density contrast relative to the medium. To
incorporate the droplet’s excess mass, we implement an extension of
the IB method based on the penalty immersed boundary
method.”**

The penalty IB method models the density of the droplet interior
by introducing a set of massless tracer particles at locations {X!"}
whose trajectories trivially satisfy Eqs. (1)-(3). As shown in Fig. 1, each
of these fluid markers is coupled to a corresponding mass marker at
position Y}" by a spring of stiffness Kp. The ith fluid marker experien-
ces a force,

B = Kp(Y]" = X["), “)
that accelerates it according to Newton’s second law,
MOY]' = —F' - Mgz, 5)

where M is the marker’s mass and g is the acceleration due to gravity.

In isolation, the mass markers obeys rigid body dynamics, and
the IB markers constitutes tracer particles in the fluid. The trajectory of
each mass marker is related to its respective IB marker only through
the penalty force between them. The spring force in Eq. (5) introduces
inertial fluid forces into the mass markers’ rigid body dynamics.
Likewise, the same spring force on the IB markers from Eq. (4) is
spread to the fluid via Eq. (2), thereby ensuring body forces on the
mass markers are translated to the fluid.

In theory, the fluid markers and mass markers ought to coincide
in the limit of large Kp. In practice, however, numerical instability
arises when Kp is too large. Consequently, Kp is chosen
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phenomenologically to maintain pair separations smaller than the
computational grid size, typically at i1/10.

C. Surface tension

The internal boundary stress on a marker at X; is often formu-
lated as a restoring force, F; = —VxE, that minimizes the interfacial
energy, E[{X;}]. When this approach is used to model surface tension,
the interfacial energy is proportional to the droplet’s total surface area.
In two dimensions, it is proportional to the length of the interface,

Njp—1

E{Xj}| =0A=0 Z (141, (6)

where /; = X — X, and ¢ is the interfacial tension. The force of
surface tension acting on the marker is then

Ff = —0'(2,‘ — @,-,1). (7)

Equation (7) correctly models surface tension if the boundary markers
are uniformly distributed around the droplet’s boundary. To this end,
the markers are redistributed tangentially along the boundary at each
time step.

Surface tension exerts a normal force on the droplet surface to
minimize local curvature. Consequently, Eq. (7) also defines the sur-
face normal, n; = F7 /||F7||.

D. Benchmark: Sedimenting droplet

To demonstrate and benchmark our implementation of the IB
method, we model the sedimentation of a droplet in an unbounded
fluid.” Figure 3 presents a cross-section of the flow around and
within a droplet of radius R=4um and buoyant density

IV - Veoul| [pm/s]
Analytic 20.0

Computational

17.5

15.0

12.5

Z—2Zcom [pum)]

10.0
-25 NalyA [/ 7.5
-5.0 | 5.0

—=71.5 \ 2.5

A
-25 . . . . L 0.0
X - Xcom [pm]

FIG. 3. Streamlines within and around an 8 um-diameter droplet falling through an
unbounded fluid at its terminal velocity, ~20 um s~ . We compare (a) simulations
using a penalty Immersed Boundary method for the droplet's excess mass to (b)
the analytic stream function from Happel and Brenner.””
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pp— po=0.18g cm 3, which corresponds to silicone oil sedimenting
in water.” For simplicity, we assume the fluid droplet has the same vis-
cosity as the surrounding medium. The plot shows streamlines of the
flow in the co-moving frame and is colored by the local flow speed.
The data in Fig. 3(a) are computed with the IB method in a
20 x 20 um? periodic domain. They are compared side-by-side with
the analytic result for a spherical droplet™ in Fig. 3(b). This solution
for the two-phase flow is reproduced in Appendix B. Slight differences
between the two flow fields can be attributed to the influence of peri-
odic boundary conditions on the simulations and to the implicit
assumption of infinite surface tension in the analytic model.

11l. ACOUSTICS

The standard IB method relies on the incompressible Navier—
Stokes equations, Eq. (1), and therefore does not accommodate sound
waves. Describing the fields within an acoustic levitator requires the
compressible Navier-Stokes equations,

Op = -V - (pu), (8a)
p (0 +u-V)u=-Vp+nViu+pyV(V-u), (8b)

where B = £/5 4 1/3 incorporates the fluid’s volume viscosity, &.'**’

In the absence of sound waves, the fluid medium is quiescent,
u =0, and has uniform pressure py, and uniform density, p,. An
acoustic levitator projects a time-harmonic pressure wave, pinc (X, t)
= pinc(x) exp(—iwt), into the fluid. The droplet scatters a portion of
Pinc to create a scattered wave, pscar(X, t) = pscat(X, {X;}) exp(—ict),
that depends on the position and shape of the droplet. The incident
and scattered waves together cause small pressure fluctuations,
P1(X) = pinc(X) + pscat(X), about po. This first-order pressure wave is
associated with a first-order density wave, p;(x), and a first-order
velocity field, u;(x), that are obtained by expanding Eq. (8) to first
order in the fields.

Acoustic levitators typically operate at such high frequencies that
the period of p;(x,t) is much shorter than the viscous and inertial
time scales that govern droplet dynamics and streaming flows. Those
comparatively slow processes emerge as averages over multiple acous-
tic cycles. Because the first-order fields are harmonic and therefore
vanish on average, standard acoustic perturbation theory” expands the
density, pressure, and velocity fields to second order,

P =po+p1+ P2 (9a)
P =po+p1+p2 (9b)
u=u; +u,. (9¢)

The second-order fields, p,, p2, and u,, do not vanish on average and
therefore describe steady dynamics that persist on hydrodynamic time-
scales and therefore account for the droplet’s macroscopic behavior.

We extend the IB method to incorporate sound waves by identi-
fying the time-averaged acoustic radiation force (ARF) on each ele-
ment of the droplet surface,”” %%

ERE () = —(pa)h — po((uy - A) wy), (10)

where the continuous fields are evaluated at x = X; and angle brackets
represent an average over one acoustic cycle. The first term on the
right-hand side of Eq. (10) describes the acoustic radiation pressure,
and the second term arises from advection of the fluid by the droplet’s
oscillating boundary.”**

pubs.aip.org/aip/pof

The net force on the boundary marker at X;,
Fi(t) = B¥T(t) + FARE (1), 11

is the sum of the surface tension from Eq. (7) and the time-averaged
acoustic radiation force from Eq. (10). The interfacial force drives
streaming flows, (u(x;,t)) = uy(x,t), and shape deformations,
0/ X; = U, through the cycle depicted in Fig. 2. This extension to the
incompressible IB method is one of the principal contributions of the
present work. Its implementation requires expressions for the first-
and second-order fields.

A. First-order equations for the acoustic wave

The first-order Navier—Stokes equations,

Opy = —poy V- uy, (12a)
o0y = =Vp +n(f+1)V(V-u;) —nV xVxu, (12b)

can be simplified to a pair of wave equations,

2
Vi = - b, (13a)
V x V x ¢ =KXy, (13b)

by introducing the Helmholtz decomposition,
u(r) =Vop+Vx, (14a)
pi() =72 (r), (14b)

and noting that p;(r) = ¢ p,(r) in an isentropic fluid with speed of
sound ¢. Equation (13a) describes a scalar pressure wave that propa-
gates with the acoustic wavenumber, k = w/cy. Likewise, Eq. (13b)
describes vortical waves that carry away the acoustic energy lost to vis-
cous damping. The acoustic damping coefficient,

o\ 2
=1 () 13
and the viscous wave number,
1+
k= ——o, 16
5 (16)

are both characterized by the thickness of the viscous boundary

layer,27
o) = [ (17)
Po @

Following conventional acoustic radiation theory,”” we neglect
viscosity in the first-order fields, so that y ~ 1 and ¥ ~ 0. The solution
to Eq. (13) can then be found by a multipole expansion of ¢(r) both
inside and outside the droplet,’ﬂ’”

00 L
$i(r) = oy > b} julkar) P (cos 0) (18a)
(=0 m=—/{
and
00 !
$o(r) = do > > ay'[je(kr) + 57 hy(kr)] P} (cos 0),  (18b)
(=0 m=—/{

Phys. Fluids 36, 092108 (2024); doi: 10.1063/5.0223790
Published under an exclusive license by AIP Publishing

36, 092108-4

12°€0:€l G20z dunr Lo


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE

respectively, where j; and hy are the spherical Bessel and Hankel func-
tions, respectively, and P} is the associated Legendre polynomial.
Distances in Eq. (18a) are scaled by the wavenumber inside the drop-
let, kI = w/cl.

The beam-shape coefficients, a}', depend on the structure of the
incident sound wave, which typically is known a priori. The scattering
coefficients, sj' and b}}', are obtained by satisfying boundary conditions
at the droplet surface,

P1=po (19a)
and
w - fi =up-A. (19b)

For a spherical droplet of radius R, which is the simplest case, the scat-
tering coefficients reduce to

m_ = m|Jt(kR)  , he(kR)
bj' = pay L/(kIR) + s (k) (20a)
and
g PERR AR i kRGRR)

PE e (kR)J,(kR) — jo(kiR) Ky (k)

where p = po/p; and ¢ = k;/k = co/c1, and primes denote deriva-
tives with respect to the argument. In the special case ¢ = 1, the scat-
tering coefficients simplify further to

- he(kR
by' = pay’ [1 + s ];((7»)] (21a)
and
m _ Z) -1
=T R R (21b)

P5kR) ~ J,(kR)

Equations (20) and (21) serve as a point of departure for describing
scattering by aspherical droplets.

B. Second-order equations for time-averaged
dynamics

The first-order incident and scattered sound waves together give
rise to steady forces and flows at second order. The steady, time-
averaged second-order Navier-Stokes equations,

=V {pim) = po(V - wp), (222)
(101 + po(ur - V)w) = =V{p2) +nV*(uz) + fnV(V - w),
(22b)
reduce to
7V<p2> + V[V X <V X 112> = fR (23)

in the limit that that the fluid is incompressible,31 for which
(V - up) = 0. The Reynolds stress that drives the flow,

fr(r) = pV - (), (24)

is obtained from the first-order solution.

pubs.aip.org/aip/pof

The acoustic radiation pressure, (p,), and vortical acoustic
streaming, (V X u,), are given by the irrotational and solenoidal com-
ponents of fg, respectively. The latter term vanishes because we neglect
viscosity in the first-order fields, which means that u;(r) = V¢ and
therefore that the Reynolds stress is irrotational. Consequently, the vis-
cous flows described by the second term on the left-hand side of Eq.
(23) vanish. From this, we conclude that the time-averaged radiation
pressure is”'®
) 1

1
po(ui) —=— (p1)- (25)

1
P2) =5 2p0}
The second-order pressure wave depends on the squares of the first-
order fields and therefore does not vanish on average over the acoustic
period. It nevertheless can vary on inertial time scales.

When the boundary layer is thin, 6(w) < R, Eq. (25) is a good
approximation for (p,) evaluated at the time-averaged position of the
droplet surface, and therefore completes the description of the sound
wave required to model the acoustic force acting on the droplet
through Eq. (10). While we have neglected viscous streaming due to
the Reynolds stress, fz(r), in Eq. (24), our simulations still have acous-
tic streaming flows that are driven by the momentum flux advected by
the boundary, which is described by the tangential component of Eq.
(10). The distinction between these mechanisms is discussed further in
Sec. IV D.

C. Acoustic radiation force on a spheroid

Together, Eqgs. (10) and (25) express the second-order acoustic
radiation force on the droplet in terms of first-order acoustic fields.
Analytic solutions for these first-order fields are known for certain
geometries with high symmetry. More generally, the scattering coeffi-
cients in Eq. (18) may be obtained via a variety of semi-analytic techni-
ques. These include the T-matrix method, which has been extended to
acoustics by Waterman,'® the discrete dipole approximation,”” and
modal-matching methods.”*® Here, we introduce an alternative
approximation scheme that leverages the exact spherical solution and
consequently is more efficient when deformations are small.

To leading order, the fields scattered by a slightly aspherical drop-
let are approximated by the fields scattered by the minimally enclosing
sphere. The simple spherical approximation, however, does not satisfy
the appropriate boundary conditions for the fluid velocity at the drop-
let’s surface,

[uo(rs) — ur(ry)] - a(rs) =0, (26a)
[puo(xs) — ur(rs)] - t(xs) =0, (26b)

where t is the surface tangent unit vector, and t x i = 0. The discon-
tinuity in the first-order tangential follows from the assumption that
the first-order acoustic fields are inviscid, and accounts for the influ-
ence of vortical waves within the viscous boundary layer surrounding
the droplet. At second order, these vortical waves exert Reynolds stress
on the fluid within the boundary layer, thereby driving viscous stream-
ing in Eq. (23). When the boundary layer is thin, however, this
Reynolds stress can be treated as a viscous stress on the droplet’s sur-
face that is balanced by tangential radiation stress.'>'” In this way, the
boundary condition in Eq. (26b) preserves the effect of vortical waves
on the droplet’s time-averaged dynamics while avoiding the need to
simulate compressible flows.
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Taking U(r) to be the flow field that would be created by the
enclosing sphere, the actual flow field at position r, on the surface of
the distorted sphere can be approximated by

u;(rs) = Up(ry), (27a)
uo(r) = Up(r) + 6(rs). (27b)
This flow field satisfies the boundary conditions in Eq. (26) if
5(x,) - & = mo(x.) (1 - %) Uln) in), (%)
and
o(x;) - 0 = np(x,) (1 - %) U(r) - A(ry), (28b)

where # and () are the radial and polar unit vectors in spherical coordi-
nates, respectively, and ny = fi(r,) - 0

The velocity field obtained with Eq. (28) does not necessarily sat-
isfy the Helmholtz equation, nor is it necessarily curl-free. Both of
these conditions are approximately satisfied, however, so long as the
droplet’s distortions are small, np < 1. Moreover, u(r) satisfies the
boundary conditions from Eq. (19), and therefore should accurately
represent the induced flow near the droplet’s surface. The efficacy of
this approximation scheme is demonstrated in Sec. IV.

Streaming flows generated by a droplet’s response to acoustic
radiation forces are typically several orders of magnitude slower than
the speed of sound in the medium. We therefore ignore any influence
of streaming flows on the sound waves that drive them.

D. Computational cost analysis and range
of applicability

Numerically resolving a sound wave’s propagation requires time
steps that are substantially smaller than the acoustic period. Our
approach eliminates the need to resolve such short-time processes by
relying instead on analytic expressions for first-order scattering. We
therefore can resolve time-averaged droplet dynamics and streaming
flows with time steps that span multiple acoustic periods. The differ-
ence between dynamical and acoustic time scales therefore represents
the computational cost savings of the hybrid IB method. When applied
to a micrometer-scale droplet moving through water under the influ-
ence of megahertz-scale ultrasound, the number of flow-field evalua-
tions is reduced at least 1000-fold. This estimate is discussed in detail
in Appendix D.

Comparison with existing high-order acoustic IB schemes show
that these savings are realized in practice. The acoustic IB method pre-
sented in Ref. 8, for example, computes the influence of acoustic forces
on a micrometer-sized red blood cell by directly solving the compress-
ible Navier-Stokes equations using a 5th-order Weighted Essentially
Non Oscillatory (WENO) scheme. The WENO scheme numerically
resolves acoustic wave propagation with time step df ~ R/c =~ 1.33 ns.
By treating acoustic-scale processes semi-analytically, the hybrid IB
method can model time-averaged acoustic stresses on a micrometer-
scale droplet with time steps of 15 us, which represents a ten-thousand-
fold improvement in efficiency.

Realizing these cost savings, however, requires analytic expres-
sions for the first-order acoustic fields scattered by the surface of the
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droplet. The scattering approximation used in our simulation frame-
work is exact for spherical droplets and also accommodates moderately
deformed droplets close to the nodal plane. Large deformations or
large displacements from the node require more costly semi-analytical
techniques.'”'***** In this case, a more detailed cost analysis is
required to determine whether the hybrid IB method is a suitable alter-
native to traditional compressible flow solvers.

IV. RESULTS: DROPLET IN A STANDING PLANE WAVE

Section II introduces an IB method that models the dynamics of
a droplet suspended in a fluid under the general influence of external
forces. Section III explains how sound propagating through the fluid
generates such forces. Purely analytic solutions to the sound-driven
moving-boundary problem are not yet available. Any purely numerical
description of the sound wave’*”> would have to iterate through an
enormous range of time scales to capture the moving droplet’s steady
dynamics. Our hybrid implementation describes the sound wave semi-
analytically and handles the moving-boundary problem numerically.
The result is an accurate and exceptionally efficient implementation.

We demonstrate the efficacy of the hybrid IB method with an
illustrative model system: a single droplet levitated in a planar acoustic
standing wave, as shown schematically in Fig. 4. To set up the IB
method for this system, we specify the standing wave’s scalar potential,

¢i(r) = ¢ sin(kz), (29)

with amplitude ¢, and a nodal plane at z = 0. The associated beam-
shape coefficients,’

aj' = (20+ 1) cos (kz + %T) . (30)

yield a compact expression for the net ARF on the droplet:

Ny

1 . N
Z F;“RF = Epoqﬁg Q sin(2kz) z, (31)

i=0

l<
-

X

FIG. 4. A spheroidal droplet in a plane standing wave. Antinodes of the pressure
wave are separated by half the acoustic wavelength in the medium, A. The droplet's
shape, r(0), is specified in polar coordinates relative to its center. Boundary condi-
tions are applied in the normal, fi (), and tangential, (0), directions relative to the
droplet’s surface.
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where the radiation force efficiency, Q, is a dimensionless scattering
coefficient that depends on droplet geometry and boundary condi-
tions.” For a rigid sphere in a standing wave, Q = k*V,,/5, where V,,
is the volume of the particle.(’ The scale of the acoustic force, %poqbg, is
set by the driving voltage in experimental realizations.”

The simulations described in this section are all performed on a
50 x 50 um® periodic domain that is discretized on a 256 pixel
x 256 pixel grid. The droplet’s boundary is modeled with 100 bound-
ary markers, and its excess density is modeled by 150 mass-marker
pairs. Iterations are performed with a time step of 15 us until a final
time of about 6s.

Each simulation starts with a spherical droplet of radius R =2 um
and density p; = 1.18 gcm ™2, dispersed in water. The droplet is subject
to a buoyant force, F, = (p; — py) Vpg ~ 60 pN, that is balanced by
acoustic forces. To model practical acoustic levitators for water-borne
samples,” the driving frequency is set to 2 MHz. The dimensionless size
parameter, kR = 0.034, is well within the Rayleigh limit, kR < 1. The
droplet initially is released at the nodal plane and then relaxes to its equi-
librium position, zy, and to its equilibrium shape.

A. Comparison to analytic solution for a spheroid

We test the approximation scheme from Sec. I1I C by considering
the special case of spheroidal droplets, whose scattering coefficients
can be expressed analytically in spheroidal coordinates.”” The associ-
ated spheroidal wave functions are much more costly to evaluate than
spherical harmonics, which limits the utility of the analytic solution for
time-resolved simulations. Analytic solutions for spheroids are useful,
nonetheless, for validating our computationally efficient approxima-
tion scheme.

ARTICLE pubs.aip.org/aip/pof

Figure 5 compares analytic and approximate force profiles com-
puted for spheroids of various eccentricities. Each spheroid is taken to
be displaced by zp = —0.15um from the node of a standing wave,
characterized by the beam-shape coefficients. Equation (30). The
“spherical” approximation, plotted in blue, is obtained by plugging
u; = up(r,) =~ Up(r;) into Eq. (10). Likewise, the “corrected” approx-
imation, plotted in orange, is obtained by plugging u; = up(rs)
~ Ug(r;) + 6(r;) from Egs. (27) and (28) into Eq. (10). Both are com-
pared to the exact solution resulting from solving the scattering prob-
lem analytically in spheroidal coordinates, which is plotted in green.

The spherical approximation has qualitatively different behavior
from the exact solution even at small deformations. By contrast, the
corrected approximation agrees with the exact solution for moderate
deformations. The normal component of the computed force tracks
the functional form of the exact solution up to a reasonably small mul-
tiplicative factor. This discrepancy should not significantly affect the
shape or dynamics of the droplet, which is assumed to be incompress-
ible. Agreement with the analytic solution is much better for the tan-
gential forces, which are responsible for driving acoustic streaming
flows in our simulations. The hybrid IB method therefore should pre-
dict the structure of streaming flows far more accurately than the sim-
ple spherical approximation, and far more efficiently than the analytic
solution. A further discussion of limitations of Eq. (28) is provided in
Appendix C.

B. Parameters of interest

In the long wavelength limit, kR < 1, the first-order fields are
dominated by the monopole (¢ = 0) and dipole (¢ = 1) terms of Eq.
(18), which describe pulsation and translation modes, respectively. The
acoustic radiation force from Eq. (10), being quadratic in the
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FIG. 5. Normal and tangential components of the acoustic radiation force at the surface of a droplet that is displaced from the nodal plane of a standing plane wave by
7y = —0.15 um. Exact results for spheroidal droplets® are plotted in green and are compared with predictions of Eq. (21) for the equivalent sphere (blue) and with the pro-
jected forces from Eq. (26) (orange). Deviations from the exact interfacial force increase as the droplet's ellipticity increases from ¢ = 0.37 to 0.84. The tangential component
of the projected force, however, closely tracks the exact profile even at the largest ellipticity, which means that the hybrid 1B method should reliably predict the droplet's shape
and streaming flows when displacements from the node are not too large.
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first-order fields, is dominated by monopole-monopole (00), mono-
pole-dipole (01), and dipole-dipole (11) products of the first-order
fields. The (00) mode has no angular dependence and therefore consti-
tutes an acoustic correction to hydrostatic pressure. The acoustic force
on the droplet, therefore, is dominated by a superposition of (01) and
(11) modes.

The (01) and (11) modes are linear and quadratic in cos 6 and its
derivatives, respectively. As a direct consequence of this angular
dependence, the normal component of the (01) mode exerts a net radi-
ation force that affects the droplet’s position, whereas the normal com-
ponent of the (11) mode affects the droplet’s shape. Likewise, the
tangential component of the (01) mode drives dipole streaming flows
around the droplet, whereas the (11) mode drives quadrupole stream-
ing flows.

To investigate this behavior, we perform hybrid IB method simu-
lations over a range of values of trap strength, (b(z), and surface tension,
. The trap strength controls the droplet’s equilibrium position, which
affects the relative strength of pulsational and translational modes
according to the beam-shape coefficients from Eq. (30). Consequently,
varying trap strength alone is sufficient to probe the entire range of
accessible acoustic forces between (01)-dominated and (11)-dominated
modes. Surface tension controls the droplet’s shape, allowing us to
study droplet deformation and shape-dependent acoustic driving.

C. Equilibrium shape of a levitated droplet

The equilibrium shape of a droplet in an acoustic field is typically
found analytically by relating the surface curvature to acoustic stresses
with the Young-Laplace formula.”**” Working in two dimensions, the
equilibrium shape of a slightly deformed droplet of radius R may be

expanded in associated Legendre polynomials,"”

s L
r(0) =R+ Z Z Xem PJ'(cos 0). (32)

(=0 m=—{

When the droplet has the same viscosity as the medium, the normal
force, F,(0) = FAR . fi, determines the static shape deformation,'”*

RZ
((+2)l—1)o

In a standing wave, the primary deformation mode is described
by x50, which flattens the droplet into a roughly elliptical shape.
Figure 6 compares the value of x,y observed in IB method simulations
of a droplet of R=2 um with predictions of Eq. (33) over a range of
values of surface tension, ¢, and trap strength, qbg The computed
deformation agrees well for droplets close to the trapping plane, and
deviates at larger displacements from the node. This is because our
approximation for scattering, Sec. I1I C, begins to break down at larger
displacements from the node.

Xtm =

1
J F,(0) P)'(cos @) dcosO.  (33)
-1

D. Acoustic streaming

Acoustic forces not only translate and deform the droplet, but
also generate interior and exterior streaming flows. The streaming pro-
files for an acoustically levitated fluid droplet are characterized by a
transition from dipolar flow to quadrupolar flow depending on the rel-
ative magnitude of acoustically driven pulsation and translation
modes, respectively.* The streaming behavior depends on scattering
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FIG. 6. Dependence of a droplet's degree of deformation on the relative strength of
the acoustic driving. Outliers represent droplets that were not stably trapped.

properties of the droplet, as well as the local structure of the incident
acoustic wave.

1. Spherical droplets

The streaming profiles around a spherical fluid droplet in an
acoustic levitator have been computed analytically by Baasch et al."”*
Their solution should be comparable to results of the hybrid IB
method under conditions where shape deformations are small, ie.,
GR > py¢a. The results in Fig. 7 are obtained by fixing the surface
tension at a fairly large value, ¢ = 3.3nN um ™', and varying the trap
strength, d)g. Because the droplet is more dense than its medium, it
sinks below the nodal plane by a distance that is inversely proportional
to the traps’ strength and therefore samples different regions of the
acoustic force landscape. This has consequences for the nature of the
induced streaming flow.

Figure 7(a) shows the quadrupolar streaming flow that is induced
when the droplet is far below the nodal plane in a comparatively weak
acoustic trap. Increasing ¢, by a factor of 3 in Fig. 7(b) lifts the droplet
toward the nodal plane and qualitatively transforms the streaming
flow into a principally dipolar motif. This transition from quadrupolar
to dipolar flow with increasing trap stiffness has been predicted analyt-
ically and is reported in Fig. 7 of Ref. 14. The computed streamlines in
Figs. 7(a) and 7(b) agree well with the analytic results from Ref. 14.
Further increasing the trap stiffness in Fig. 7(c) lifts the particle still
closer to the nodal plane and induces a second transition back to quad-
rupolar streaming. This second transition appears not to have been
reported previously.

2. Mechanisms for spherical streaming

The streaming flows in our simulations are driven entirely by the
tangential component of the acoustic radiation force at the droplet’s
surface. By contrast, the streaming observed in Ref. 14 arises entirely
from first-order vorticity, which we neglect. Our results suggest that
these two distinct mechanisms drive the same type of streaming near
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FIG. 7. Streaming profiles for a droplet levitated in water with ¢ = 3.3nN um~" and R = 2 um at various trap strengths. (a) Gravity displaces the droplet downward from the
nodal plane, favoring quadrupolar streaming in the weakest levitator. (b) Increasing trap strength induces a crossover to dipolar streaming. (c) Increasing trap strength further

induces a second crossover to quadrupolar flow. The flow’s vorticity is indicated by color.

the surface of a fluid droplet. Qualitatively, this occurs because tangen-
tial radiation stresses are balanced by tangential viscous stresses at the
fluid-fluid interface."” When viewed in this light, agreement between
our simulations and Ref. 14 is expected because streaming profiles in
both frameworks are governed by the relative strength of (01) and (11)
modes. "

Figure 8 illustrates the relationship between the tangential ARF,
Fy(0) = FARF(0) - 0, and the vortex structure of the resulting stream-
ing flows. Figure 8(a) presents the normalized tangential ARF,

~ Fy(0)
Fo(0) = —————~ (34)
max{|Fo(9)\}
as a function of position, 0, on the droplet’s surface. Normalizing in
this way emphasizes the relative strengths with which the upper and
lower vortices are driven. The maximum of this quantity,

2 = max{Fy(0)} (35)

is a convenient metric for the degree of quadrupolar vs dipolar flow.
When 2 = 1, the upper and lower vortices are driven with equal

vigor, leading to quadrupolar flow. By contrast, £ = 0 describes dipo-
lar flow.

Figure 8(b) tracks the reentrant transition between quadrupolar
and dipolar flow as a function of trap strength, as monitored by the
droplet’s equilibrium position, zy. Scaling z, by the droplet radius, R,
effectively collapses 2(z;) onto a master curve. In all cases, the flow is
observed to be purely dipolar when zy = z; ~ 0.92R. Figure 8(c) illus-
trates the dependence of z; on the density of the droplet.

The analysis from Fig. 8 uses the exact analytic form of the acous-
tic radiation force on a sphere to predict the dependence of acoustic
driving on a variety of parameters. In Sec. IV D 3, we consider the case
of an aspherical droplet. Because the expression for the acoustic radia-
tion force on an ellipse is difficult to manipulate analytically, our simu-
lations offer insights into the relationship between droplet shape and
acoustic streaming that would be difficult to obtain by other means.

3. Deformable droplets

Both dynamical transitions reported in Fig. 7 occur for droplets
that are stiff enough to remain substantially spherical while trapped.
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FIG. 8. (a) Variation of the normalized tangential ARF, F(0), as a function of position, 6, on the droplet's surface for different values of the droplet's equilibrium position, zy.
The four extrema drive four vortexes in the streaming flow. Suppressing the two maxima favors dipolar streaming. (b) Dependence of the maxima, Q = max{F,(6)}, on trap
strength, as monitored by displacement z;. Results for different droplet radii, R, collapse onto a master curve when z; is scaled by R. Quadrupolar flows are favored at both
high and low trap strength. Dipolar flows are favored when zy = o+ = 0.92R. (c) Dependence of z; /R on the droplet's density, p, relative to that of the medium, p, through
p = po/p;. A density-matched droplet, p ~ 1, has z; ~ R.
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FIG. 9. Streamlines of the streaming flow for a droplet of radius R=2 um in a strong levitator, zy ~ —0.15 um, simulated under the conditions considered in Fig. 5.
(a) Reducing the surface tension, a, by half relative to Fig. 7 allows the droplet to deform while retaining quadrupolar flows. (b) Further reducing surface tension increases the
droplet’s distortion while significantly decreasing the vorticity in the streaming flow. (c) A highly deformable droplet induces dipolar streaming flows.

This is consistent with the assumption of sphericity that underlies the
analysis in Ref. 14. Figure 9 reveals yet another dynamical transition
that occurs when a strongly trapped droplet is soft enough to deform,
a scenario that has not been considered in previous studies. The drop-
let in Fig. 9(a) is comparable to the droplet in Fig. 7(c), except that its
surface tension is smaller by a factor of two. The droplet consequently
deforms into a spheroid under the uniaxial stress of the acoustic levita-
tor and settles at a slightly different height relative to the nodal plane.
The induced streaming flow nevertheless retains its quadrupolar
nature.

Reducing the surface tension, in Fig. 9(b), increases the distortion
and moves both the interior and exterior circulation closer to the drop-
let surface. Reducing the surface tension still further, in Fig. 9(c), sup-
presses the vortex structure entirely. The streaming flow around the
spheroidal droplet is primarily dipolar. This deformation-induced
dynamical transition also appears not to have been observed in prior
studies. These observations illustrate the value of the hybrid IB method
for probing the dynamical properties of insonated droplets.

V. DISCUSSION

We have introduced a hybrid immersed boundary method that
efficiently models the stresses on acoustically levitated droplets and the
surrounding fluid. We have validated our method by simulating a sin-
gle droplet in a plane standing wave, and comparing the results with
the best available analytical and numerical solutions. Even in this mini-
mal system, the hybrid IB method reveals transitions between dipolar
and quadrupolar streaming under strong-driving conditions that have
not been reported in previous studies. These observations offer insights
into the response of deformable droplets to the forces and torques cre-
ated by acoustic landscapes.

Compared to traditional compressible flow simulations, our
hybrid method cuts computational cost by utilizing semi-analytic tech-
niques to incorporate acoustic scattering in to hydrodynamic simula-
tions. The benefits are greatest when stress-induced deformations are
small enough that analytic scattering calculations can be carried out
rapidly. When the droplet shape is highly irregular and unpredictable,
most known semi-analytic techniques converge slowly and may be
prohibitively expensive. However, for droplets with small to moderate
deformations, the hybrid IB method may be up to four orders of mag-
nitude faster than compressible flow simulations. For the

implementation presented here, the hybrid method efficiently and
effectively models spheroidal shape deformations and streaming pro-
files around a single droplet, and can easily be scaled up to study
acoustohydrodynamic interactions among multiple particles.

Our hybrid IB method employs a two-dimensional model to
study the dynamics of acoustically trapped droplets in real three-
dimensional experiments. This simplification trades generality for
computational efficiency and consistency with analytic formulations of
similar systems. For single droplet levitation, which is generally charac-
terized by axial symmetry,*"** our two-dimensional simulation is
both more efficient and offers more direct comparison to two-
dimensional expressions in the literature. However, there are many
cases for which these symmetries might be broken in a fully three-
dimensional treatment,”’ including asymmetric acoustic fields, asym-
metric droplet deformations, or certain multiple-particle systems.’
Fortunately, the hybrid IB method may be readily to three-dimension
by replacing the associated Legendre polynomials in Eq. (18) with
spherical harmonics, and reformulating surface tension for a three-
dimensional surface. Generalizing the hybrid IB method to three
dimensions"" still would offer substantial benefits relative to fully com-
putational methods.

The streaming flows generated by acoustic wave-matter interac-
tions are fundamentally different from those due to external flows
around an obstacle because the former are driven by local stresses at
the droplet’s boundary. These acoustic stresses follow directly from the
momentum transferred to the droplet by acoustic scattering. Because
first-order sound waves vanish from time-averaged dynamics, their
action on the droplet is analogous to that of active particles on their
surroundings by internal energy consumption. The resulting streaming
flows, in turn, may lead to acoustically driven hydrodynamic coupling
in multi-particle systems, which might mediate anomalous collective
phenomena observed in experimental studies of acoustically levitated
droplets.”

The framework presented here is extremely flexible. The hybrid
IB method can be extended to accommodate large shape deformations
by incorporating more advanced formulations of acoustic scattering. It
can account for viscous streaming in the boundary layer around a
droplet by incorporating viscous waves from Eq. (13b). Pairwise forces,
like the Bjerknes force,’ may also be incorporated in Eq. (11). Or, as in
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this work, inexpensive approximations can be used throughout to effi-
ciently model qualitative behaviors.
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APPENDIX A: SPATIOTEMPORAL DISCRETIZATION OF
THE IB METHOD

Our implementation of the IB method uses a staggered
marker-and-cell (MAC) spatial discretization scheme described in
Refs. 24 and 42. In this implementation, the components o of the
flow field, u,(x; + &h) are discretized on a grid that is staggered
with respect to the scalar fields, p(x;) and p(x;), as illustrated by Fig.
2.1 of Ref. 24. Finite difference, averaging, skew, and Laplacian
operators are discretized as”*

¢(x + ah) — ¢(x — ah)

(sz(p)(x) = h 5 (A1)
B ¢(x + ah) + ¢(x — ah)
S(u)v, = %Z [Ap((Asttp) (Dpvy)) + D ((Asup)(Apva)) ], (A3)
7
(L), = 3 Dpluls)Dais + Dyt a
7

respectively.

Reference 24 uses a seven-point discrete delta function and
predictor-corrector temporal scheme to accommodate variable den-
sity and viscosity. However, the staggered MAC scheme is itself suf-
ficient to dramatically improve the volume conservation properties
of the standard IB method. With this in mind, we opt to use the

pubs.aip.org/aip/pof

four-point delta function and temporal discretization scheme
described in Sec. 6 and 7 of Ref. 20. The discrete delta function is

) =5 (7)o (3): (a50)

where
0, r<2,
542r—v—=7—12r—4r2, —-2<r<-1,
1| 3+2r+ V1 —4r—4r2 -1<r<o,
o(r) == (A5b)
8 3 —2r+V1+4r—4r2, 0<r<1,
5-2r—v—=7+12r—4r?, 1<r<2,
0, 2<r

The temporal discretization is a second-order accurate Runge-
Kutta method based on the midpoint rule, identical to Sec. 7 of Ref.
20 except with differential operators replaced by those from the
MAC scheme.

APPENDIX B: FLOWS AROUND A SEDIMENTING
SPHERICAL DROPLET

Analytic solutions are available for the viscous flow fields
inside and around a spherical fluid droplet as it moves with velocity
v = vz through an immiscible fluid.”® Assuming that the two fluids
have the same viscosity, the stream functions inside and outside the
droplet are

(i) I 5, r )
Y (r) = _vrt| = — 1] sin0, (B1)
8 a;
and
3 2
o 1 aP r 102
Y (r) =3V (1—561—}2)) sin“0), (B2)
respectively. The associated flow field is
u(r) =V x (yz2). (B3)

APPENDIX C: APPLICABILITY OF THE SCATTERING
APPROXIMATION FROM SEC. lI C

The approximation in Sec. III C is derived by assuming that
the acoustic fields at the droplet surface, r = S(0), are similar to
that at a minimally enclosing sphere, r = R = max[S(6)]. The inte-
rior potential from Eq. (18a) can be rewritten by Taylor expanding
the radial function to first order in S — R,

je(kS) = je(kiR) + (S — R)kjy(kiR) + €{(S — R)*}.

In the long-wavelength limit, kR < 1, we can use the small-
argument asymptotic form j,(z) oc x, which yields
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jo(kS) = {1 4 z(}—i _ 1>}j,;(k1R) +o{(S—R?)

so that ¢;(R) =~ ¢,;(S) as long as

(s 1)<<1
R /

for all non-negligible modes. Likewise, repeating this procedure
for the scattered field reveals that ¢((R) ~ ¢,(S) when (§—1)
< 1/(t+1).

Because the error in the radial function is proportional to ¢,
higher modes are approximated more accurately than lower modes.
Consequently, the applicability of this method also depends on the

pubs.aip.org/aip/pof

local structure of the acoustic field. In this work, we have shown in
Fig. 5 that our approximation performs well when the droplet is
close to the node, even at moderately large deformations. However,
as illustrated by Fig. 10, the range of validity is restricted to smaller
deformations when the droplet is further from the node.

APPENDIX D: ACOUSTIC AND INERTIAL TIMESCALES

The system considered in this study consists of micrometer-
scale fluid droplets levitated in water by a megahertz-range sound
wave. Resolving the fields in each cycle of the acoustic wave would
require a computational time step much smaller than 1 us:
dt ~ 1078 s for 100-fold sampling. By contrast, the droplet deforms
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FIG. 10. Normal and tangential components of the acoustic radiation force as a function of position, 0, on the droplet surface for spheroids of various eccentricities: (a) moder-
ate displacement: zo = —3.5 um and (b) larger displacement: zy = —10.6 um. The ARF at the surface is calculated using the spherical fields from Eq. (21) (blue), the projec-
tion correction described in Eq. (26) (orange), and the exact analytic solution in spheroidal coordinates (green).
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on a timescale set by external forces, which are all roughly commen-
surate with gravity. The droplet’s terminal free fall velocity through
the medium therefore gives a reasonable upper limit for the time-
scale at which time-averaged deformations occur. Equating the force
of gravity, F, ~ 60 pN, to the Stokes drag on a sphere, F; = 6nRnu,
yields a terminal velocity of u ~2 um s~ '. To properly sample the
translation and deformation of the boundary, we impose the condi-
tion that the boundary not moves a distance larger than R/100 in a
single time step. The time step required to resolve the droplet’s
motion is therefore (0.02 um)/(2 um s~ ') ~ 10 ms.

The 15 ps time step used in our simulation is much finer than
needed to resolve the droplet’s dynamics and is chosen to ensure
stability of the penalty IB method described in Sec. II B. In practice,
this requirement might be addressed by relaxing the tolerance of the
penalty IB method or by employing other multiphase flow
schemes.”* Such an enhancement could realize a few more orders of
magnitude in cost savings.
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