1diosnuely Joyiny 1duosnuely Joyiny 1diiosnuely Joyiny

1duosnuely Joyiny

WEALTH 4
of P
e

o

-, HHS Public Access
A

Author manuscript

j Nat Methods. Author manuscript; available in PMC 2025 May 19.

Published in final edited form as:
Nat Methods. 2024 July ; 21(7): 1316-1328. doi:10.1038/s41592-024-02319-1.

Lightning Pose: improved animal pose estimation via semi-
supervised learning, Bayesian ensembling and cloud-native
open-source tools

Dan Biderman'2%=, Matthew R. Whiteway'2°= Cole Hurwitz', Nicholas Greenspan',
Robert S. Lee2, Ankit Vishnubhotla®!, Richard Warren', Federico Pedraja’, Dillon Noone',
Michael M. Schartner?, Julia M. Huntenburg?, Anup Khanal®, Guido T. Meijer3, Jean-Paul
Noel®, Alejandro Pan-Vazquez’, Karolina Z. Socha®, Anne E. Urai® The International Brain
Laboratory

John P. Cunningham', Nathaniel B. Sawtell!, Liam Paninski'

TColumbia University, New York, NY, USA.
2Lightning.ai, New York, NY, USA.

3Champalimaud Centre for the Unknown, Lisbon, Portugal.

Reprints and permissions information is available at www.nature.com/reprints.

“Correspondence and requests for materials should be addressed to Dan Biderman or Matthew R. Whiteway.,
883236@cumc.columbia.edu; m.whiteway@columbia.edu.

These authors contributed equally: Dan Biderman, Matthew R. Whiteway.
Author contributions
Conceptualization: D.B., M.R.W. and L.P.; software package—core development: D.B., M.R.W. and N.R.G.; software package—
contribution: C.H. and A.V; cloud application—development: M.R.W., D.B., R.L. and A.V,; first draft—writing: D.B., M.R.W. and
L.P.; first draft—editing: D.B., M.R.W., C.H. and L.P,; data collection: D.B., M.S., JM.H., AK., G.TM., JPN, APV, K.ZS.,
A.E.U,R.W., D.N. and F.P,; Funding—J.P.C., N.S. and L.P.; semi-supervised learning algorithms: D.B., M.R.W., N.R.G. and L.P.;
deep ensembling: D.B., M.R.W., C.H. and L.P.; EKS: C.H. and L.P.; TCN: C.H., D.B., M.R.W. and L.P.; diagnostic tools and
visualization: D.B., M.R.W. and A.V.; neural network experiments and analysis: D.B. and M.R.W.

Code availability

The code for Lightning Pose is available at https:/github.com/danbider/lightning-pose/ under the MIT license. The repository also
contains a Google Colab tutorial notebook that trains a model, forms predictions on videos and visualizes the results. From the
command-line interface, running pip install lightning-pose will install the latest release of Lightning Pose via the
Python Package Index (PyPI).

The code for the EKS is available at https://github.com/paninski-lab/eks/ under the MIT license. The repository contains the core EKS
code as well as scripts demonstrating how to use the code on several example datasets.

The code for the cloud-hosted application is available at https://github.com/Lightning-Universe/Pose-app/ under the Apache-2.0
license. This code enables launching our app locally or on cloud resources by creating a Lightning.ai account.

Code for reproducing the figures in the main text is available at https://github.com/themattinthehatt/lightning-pose-2024-nat-methods/
under the MIT license. This repository also includes a script for downloading all required data from the proper repositories.

The hardware and software used for IBL video collection is described elsewhere?!. The protocols used in the mirror-mouse and
mirror-fish datasets (both have the same video acquisition pipeline) are also described elsewhere!4.

We used the following packages in our data analysis: CUDA toolkit (12.1.0), cuDNN (8.5.0.96), deeplabcut (2.3.5 for runtime
benchmarking, 2.2.3 for everything else), ffmpeg (3.4.11), fiftyone (0.23.4), h5py (3.9.0), hydra-core (1.3.2), ibllib (2.32.3), imgaug
(0.4.0), kaleido (0.2.1), kornia (0.6.12), lightning (2.1.0), lightning-pose (1.0.0), matplotlib (3.7.5), moviepy (1.0.3), numpy (1.24.4),
nvidia-dali-cuda120 (1.28.0), opencv-python (4.9.0.80), pandas (2.0.3), pillow (9.5.0), plotly (5.15.0), scikit-learn (1.3.0), scipy
(1.10.1), seaborn (0.12.2), streamlit (1.31.1), tensorboard (2.13.0) and torchvision (0.15.2).

Competing interests
R.S.L. assisted in the initial development of the cloud application as a solution architect at Lightning Al in Spring/Summer 2022.
R.S.L. left the company in August 2022 and continues to hold shares. The remaining authors declare no competing interests.

Extended data is available for this paper at https://doi.org/10.1038/s41592-024-02319-1.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
$41592-024-02319-1.

http://www.nature.com/reprints
https://github.com/danbider/lightning-pose/
https://github.com/paninski-lab/eks
https://github.com/Lightning-Universe/Pose-app/
http://lightning.ai/
https://github.com/themattinthehatt/lightning-pose-2024-nat-methods/
https://doi.org/10.1038/s41592-024-02319-1
https://doi.org/10.1038/s41592-024-02319-1
https://doi.org/10.1038/s41592-024-02319-1

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al. Page 2

4Max Planck Institute for Biological Cybernetics, Tlbingen, Germany.
SUniversity of California, Los Angeles, Los Angeles, CA, USA.

6New York University, New York, NY, USA.

"Princeton University, Princeton, NJ, USA.

8University College London, London, UK.

Leiden University, Leiden, the Netherlands.

Abstract

Contemporary pose estimation methods enable precise measurements of behavior via supervised
deep learning with hand-labeled video frames. Although effective in many cases, the supervised
approach requires extensive labeling and often produces outputs that are unreliable for
downstream analyses. Here, we introduce ‘Lightning Pose’, an efficient pose estimation package
with three algorithmic contributions. First, in addition to training on a few labeled video frames,
we use many unlabeled videos and penalize the network whenever its predictions violate motion
continuity, multiple-view geometry and posture plausibility (semi-supervised learning). Second,
we introduce a network architecture that resolves occlusions by predicting pose on any given
frame using surrounding unlabeled frames. Third, we refine the pose predictions post hoc

by combining ensembling and Kalman smoothing. Together, these components render pose
trajectories more accurate and scientifically usable. We released a cloud application that allows
users to label data, train networks and process new videos directly from the browser.

Behavior is a window into the processes that underlie animal intelligence, ranging

from early sensory processing to complex social interaction!. Methods for automatically
quantifying behavior from video?* have opened the door to high-throughput experiments
that compare animal behavior across pharmacological’ and disease® conditions.

Pose estimation methods based on fully supervised deep learning have emerged as a
workhorse for behavioral quantification’ !, This technology reduces high-dimensional
videos of behaving animals to low-dimensional time series of their poses, defined in terms
of a small number of user-selected keypoints per video frame. Three steps are required

to accomplish this feat. Users first create a training dataset by manually labeling poses

on a subset of video frames; typically, hundreds or thousands of frames are labeled to
obtain reliable pose estimates. A neural network is then trained to predict poses that
match user labels. Finally, the network processes a new video to predict a pose for each
frame separately. Each predicted keypoint is accompanied by a confidence score, and low-
confidence predictions are typically dropped. This process of labeling—training—prediction
can be iterated until performance is satisfactory. The tracked poses are used in downstream
analyses including quantifying predefined behavioral features (for example, gait features
such as stride length, or social features such as distance between subjects), estimation of
neural encoding and decoding models, classification of behaviors into discrete ‘syllables’

and closed-loop experiments!'>~17.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Results

Page 3

Although the supervised paradigm is effective in many cases, a number of roadblocks
remain. To start, image labeling can be laborious, especially when handling complicated
skeletons across multiple views. Even with large, labeled datasets, trained networks

often produce ‘glitchy’ predictions that require further manipulation before downstream
analyses!8:19, and struggle to generalize to subjects and sessions outside their training data.
Even networks that achieve low error rates on labeled test frames can still produce error
frames that hinder downstream scientific tasks. Manually identifying these error frames is
like finding a needle in a haystack2?: errors persist for a few frames at a time, whereas
behavioral videos can be hours long. Automatic approaches—currently limited to filtering
low-confidence predictions and temporal discontinuities—can miss scientifically critical
eITOTS.

To improve the robustness and usability of animal pose estimation, we present Lightning
Pose, a solution at three levels: modeling, software and a cloud-based application.

First, we leverage semi-supervised learning, which involves training networks on both
labeled frames and unlabeled videos, and is known to improve generalization and data
efficiency?!. On unlabeled videos, the networks are trained to minimize a number of
unsupervised losses that encode our prior beliefs about moving bodies: poses should evolve
smoothly in time, be physically plausible, and be localized consistently when seen from
multiple views. In addition, we leverage unlabeled frames in a temporal context network
(TCN) architecture, which instead of processing a single frame at a time, processes each
frame with its neighboring (unlabeled) frames. Our resulting models outperform their purely
supervised counterparts across datasets, providing more reliable predictions for downstream
analyses. We further improve our networks’ predictions using a general Bayesian post-
processing approach, which we coin the ensemble Kalman smoother (EKS): we aggregate
(‘ensemble’) the predictions of multiple networks—which is known to improve their

22,23

accuracy and robustness and model those aggregated predictions with a spatially

constrained Kalman smoother that takes their collective uncertainty into account.

We implemented these tools in a deep learning software package that capitalizes on recent
advances in the deep learning ecosystem. We name our package Lightning Pose, as it is
based on the PyTorch Lightning deep learning library2*. Unlike most existing packages,
Lightning Pose is video centric and built for manipulating large videos directly on the
graphics processing unit (GPU), to support our semi-supervised training.

Finally, we developed a no-install cloud application that is accessed from the browser and
enables users to annotate data, train networks and diagnose performance without requiring
programming skills or specialized hardware.

Supervised pose estimation and its limitations

The leading packages for animal pose estimation—DeepLabCut’, SLEAPS, DeepPoseKit”
and others—differ in architectures and implementation but all perform supervised heat
map regression on a frame-by-frame basis (Fig. 1a). A standard model is composed of a

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 4

‘backbone’ that extracts features for each frame (for example, a ResNet-50 network) and a
‘head’ that uses these features to predict body part location heat maps. Networks are trained
to match their outputs to manual labels.

Even when trained with many labeled frames, pose estimation network outputs may still

be erroneous. We highlight this point using the ‘mirror-mouse’ dataset, which features

a head-fixed mouse running on a treadmill and performing a sensory-guided locomotion
task!4. Using a camera and a bottom mirror, the mouse’s side and underside are observed
simultaneously, recorded at 250 frames per second. Seventeen body parts are tracked,
including all four paws in both views. We trained five DeepLabCut networks on 631 labeled
frames (for each network, we used a different random seed to split the labeled frames into
train and test sets).

We analyzed the time series of the estimated left hind paw position during 1 s of running
behavior for each of the five networks (Fig. 1b). Each time series exhibited the expected
periodic pattern (due to the running gait), but included numerous ‘glitches’, some of
which are undetected by the networks’ confidence. This collection of five networks—also

known as a ‘deep ensemble’22

—outputs variable predictions on many frames, especially in
challenging moments of ambiguity or occlusion (Supplementary Video 1). We will later use

this ensemble variance as a proxy for keypoint ‘difficulty’.

Supervised networks need more labeled data to generalize

It is standard to train a pose estimator using a representative sample of subjects, evaluate
performance on held-out examples from that sample (‘in-distribution’ test set, henceforth
InD), then deploy the network for incoming data. The incoming data may include new
subjects, seen from slightly different angles or lighting conditions (‘out-of-distribution’ test
set, henceforth OOD). Differences between the InD and OOD test sets are termed ‘OOD
shifts*25-26,

We analyzed five datasets: ‘mirror-mouse’!4, a freely swimming mormyrid fish imaged with
a single camera and two mirrors (for three views in total; ‘mirror-fish,” Supplementary Fig.
1), a resident-intruder assay?”-28 (‘CRIM13;” top-down view), paw tracking in a head-fixed
mouse?? (‘IBL-paw;’ side view), and a crop of the pupil area in IBL-paw (‘IBL-pupil’). We
split each labeled dataset into two cohorts of subjects, InD and OOD (Supplementary Table
1).

We trained supervised networks that use a pretrained ResNet-50 backbone, similar to
DeepLabCut, on InD data with an increasing number of labeled frames. Ten networks
were trained per condition, each on a different random subset of InD data. We evaluated
the networks’ performance on held-out InD and OOD labeled examples. We first replicated
the observation that InD test-set error plateaus starting from ~200 labeled frames!® (Fig.
1c). From looking at this curve in isolation, it could be inferred that additional manual
annotation is unnecessary. However, the OOD error curve keeps steeply declining as more
labels are added. This larger label requirement is consistent with recent work showing

that ~50,000 labeled frames are needed to robustly track ape poses3Y, and that mouse face

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 5

tracking networks need to be explicitly fine-tuned on labeled OOD data to achieve good

performance?!.

To address these limitations, we developed the Lightning Pose framework, comprising two
components: semi-supervised learning and a TCN architecture.

Semi-supervised learning via spatiotemporal constraints

Most animal pose estimation algorithms treat body parts as independent in time and space.
Moreover, they do not train on the vast amounts of available unlabeled videos. These two
observations offer an opportunity for semi-supervised learning?!. We thus train a network

on both labeled frames (supervised) and large volumes of unlabeled videos (unsupervised;
Fig. 2a). For unlabeled videos, the network outputs a time series of pose predictions. These
predictions are subjected to a set of spatiotemporal constraints, and severe violations of these
constraints incur penalties (with a controllable threshold parameter ¢). The unsupervised
losses are applied only during training and hence do not affect video prediction speeds.

Temporal difference loss

The first spatiotemporal constraint we introduce is also one held by 4-month-old infants:
objects should move continuously32 and not jump too far between video frames. We

define the temporal difference loss for each body part as the Euclidean distance between
consecutive predictions in pixels. Similar losses have been used to detect outlier predictions

14,31

post hoc , whereas our goal is to incorporate these losses directly into network

training3.

The threshold e indicates the maximum allowed jump, forming a ball of zero-loss values
around the previous prediction; it should be set depending on the frame rate, frame size, the
camera’s distance from the subject, and how quickly or jerkily the subject moves (Fig. 2b).

If our losses are indeed viable proxies for pose prediction errors, they should be correlated
with pixel errors in labeled test frames. We analyzed the predictions of a supervised model
trained with 75 labeled frames, and found a mild correlation between the temporal difference
loss and pixel errors (log-linear regression: Pearson r = 0.26, 95% confidence interval (CI)
=[0.20, 0.32]; Fig. 2b). The mild correlation here is expected: errors that persist across
multiple frames will exhibit a low temporal difference loss; in periods of fast motion, the
temporal difference loss will be high even when keypoint predictions are accurate. As a
comparison, confidence is a more reliable predictor of pixel error Pearson r = — 0.54, 95%
CI=[-0.59, -0.49]).

Multi-view PCA loss

The common pipeline for three-dimensional (3D) tracking in neuroscience includes three
steps: (1) calibrating multiple cameras using a physical calibration board, (2) training a
network to estimate a 2D pose independently in each camera, and (3) triangulating the
2D poses into a 3D pose using standard computer vision techniques!8-34. The common
pipeline has two limitations. First, camera calibration is brittle (especially for small

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 6

experimental setups) and adds experimental complexity. Second, network training is blind to
the dependencies between the views.

The ‘multi-view PCA’ loss constrains the predictions for unlabeled videos to be consistent
across views>>-36, while bypassing the need for camera calibration. Each multi-view
prediction contains width—height pixel coordinates for a single keypoint across all views.
We use principal component analysis (PCA)—a linear method—to compress each multi-
view prediction into three dimensions, and then expand it back into the original pixel
coordinates (henceforth, ‘PCA reconstruction’). We define the multi-view PCA loss as the
pixel error between the original versus the PCA-reconstructed prediction, averaged across
keypoints and views. The multi-view PCA loss should approach zero when the predictions
are consistent across views and when nonlinear camera distortions are negligible (Fig. 2¢).
Substantial distortions may be introduced by the lens or a water medium; this simple linear
approach will not be robust in these cases. Practically, however, in both the mirror-mouse
(two views) and mirror-fish (three views) datasets, distortions were minimized by placing
the camera far from the subject (~1.1 m and ~1.7 m, respectively). In both cases, three PCA
dimensions explained >99.9% of the multi-view ground truth label variance (Fig. 2c).

For a single frame of the mirror-mouse dataset, we computed the loss landscape for the
left front paw on the top view, given its position in the bottom view. According to multiple-
view geometry, a point identified in one camera constrains the corresponding point in a

second camera to a specific line, known as the “epipolar line’3’

. Indeed, the loss landscape
exhibits a line of low loss values that intersects with the paw’s true location (Fig. 2c). The
multi-view loss is strongly correlated with pixel error in a test set of labeled OOD frames
(Pearson r = 0.88, 95% CI = [0.87, 0.90]), much more so than the temporal difference loss
or confidence, motivating its use both as a post hoc quality metric and as a penalty during

training.

Pose PCA loss

Not all body configurations are feasible, and of those that are feasible, many are unlikely.
Even diligent yoga practitioners will find their head next to their foot only on rare occasions
(Fig. 2d). The Pose PCA loss constrains the predicted pose to lie on a low-dimensional
subspace of feasible and likely body configurations. It is defined as the pixel error between
an original pose prediction and its reconstruction after low-dimensional compression.

This loss is inspired by the success of low-dimensional models in capturing biological
movement3®, ranging from worm locomotion3® to human hand grasping*?. We similarly
find that across four of our datasets, 99% of the pose variance can be explained with far
fewer dimensions than the number of pose coordinates (Fig. 2d)—mirror-mouse: 14/28
components; mirror-fish: 8/40; CRIM13: 8/28; IBL-pupil 3/8 (IBL-paw only contains four
dimensions). The effective pose dimensionality depends on the complexity of behavior, the
keypoints selected for labeling and the quality of the labeling. Pose dimensionality will be
lower for sets of spatially correlated keypoints, and higher in the presence of labeling errors
that reduce these correlations.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

TCN

Page 7

Using an example from the mirror-mouse dataset, we computed the PCA loss landscape for
the left hind paw given the location of all the other body parts, finding that the loss strongly
favors predictions in the vicinity of the true paw location (Fig. 2d). Across all labeled OOD
frames, Pose PCA loss closely tracks ground truth pixel error (Fig. 2d; Pearson r = 0.91,
95% CI=10.90, 0.92]). The Pose PCA loss might erroneously penalize valid postures that
are not represented in the labeled dataset. To test the prevalence of this issue, we took
DeepLabCut models trained with abundant labels and computed the Pose PCA loss on held-
out videos. We collected 100 frames with the largest Pose PCA loss per dataset. Manual
labeling revealed that 85/100 (mirror-mouse; Supplementary Video 2), 87/100 (mirror-fish;
Supplementary Video 3) and 100/100 (CRIM13; Supplementary Video 4) of the frames
include true errors, indicating that in most cases, large Pose PCA losses correspond to pose
estimation errors, rather than unseen rare poses.

When labeling frames that contain occlusions or ambiguities, practitioners often scroll the
video to help “fill in the gaps’. This useful temporal context is not provided to standard
architectures that process one frame at a time.

Therefore, we developed a TCN (Fig. 2e), which uses a 2J + 1 frame sequence to predict the
location heat maps for the middle (that is, J + 1) frame. As in the standard architecture, the
TCN starts by pushing each image through a backbone that extracts useful features. Then,
instead of predicting the pose directly from each of these individual features, a bidirectional
convolutional recurrent neural network (CRNN) is applied to the time series of features; the
CRNN outputs a prediction only for the middle frame. The CRNN is lightweight compared
to the backbone, and we only apply the backbone once per frame; therefore, the TCN
runtime scales linearly with the number of total context frames. We have found that a
context window of five frames (that is, J = 2) provides an effective balance between speed
and accuracy and have used this value throughout the paper. The outputs of the TCN and
the single-frame model tend to match on fully visible keypoints, and differ on occluded or
ambiguous keypoints.

Spatiotemporal losses enhance outlier detection

Practitioners often detect outliers using a combination of low-confidence and large temporal
difference loss'#183141 Here we show the multi-view and Pose PCA losses complement
this standard approach by capturing additional unique outliers in video predictions, going
beyond small, labeled test sets (Fig. 2b—d).

We start with an example from the mirror-mouse dataset, focusing on the left hind paw

on the bottom view (Fig. 3a,b). We analyzed the predictions from a DeepLabCut model
(trained as in Fig. 1b). One common mistake involves switching back and forth between
similar looking body parts, in this case the front and hind paws (Fig. 3a). These ‘paw
switches’ are not flagged by low confidence. They are also partially missed by the temporal
difference loss, which only flags jumps to and from a wrong location, but not consecutive
predictions at the wrong location. In contrast, the multi-view PCA loss flags the errors due
to inconsistency with the top-view prediction.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 8

We generalized this example by quantifying the overlaps and unique contributions of the
different outlier detection methods on 20 unlabeled videos. We investigate two data regimes:
‘scarce labels’ (75), which mimics prototyping a new tracking pipeline, and ‘abundant
labels’ (631 for the mirror-mouse dataset), that is, a ‘production’ setting with a fully trained
network.

First, when moving from the scarce to the abundant labels regime, we found a 66%
reduction in the outlier rate—the union of keypoints flagged by confidence, temporal
difference and multi-view PCA losses—going from 116,000/800,000 to 39,000/800,000
keypoints. This indicates that the networks become better and more confident. Multi-view
PCA captures a large number of unique outliers, which are missed by confidence and the
temporal difference loss (Fig. 3c). The Pose PCA includes both views and thus is largely
overlapping with multi-view PCA.

The overlap analysis above does not indicate which outliers are true versus false positives.
To analyze this at a large scale, we restricted ourselves to a meaningful subset of the ‘true
outliers’ that can be detected automatically, namely predictions that are impossible given

the mirrored geometry. We defined this subset of outliers as frames for which the horizontal
displacement between the top and bottom view predictions for a paw exceeds 20 pixels'4;
the networks output 72,000/800,000 such errors with scarce labels, and 16,000/800,000 with
abundant labels. These spatial outliers should violate the PCA losses, but it is unknown
whether they are associated with low confidence and large temporal differences. Instead

of setting custom thresholds on our metrics as in Fig. 3b, we now estimate each metric’s
sensitivity via a ‘receiver operating characteristic’ (ROC) curve, which plots the true positive
rate against the false positive rate across all possible thresholds. Area under the receiver
operating characteristic curve (AUROC) equals 1 for a perfect outlier detector, 0.5 for
random guessing, and values below 0.5 indicate systematic errors. All metrics are above
chance in detecting ‘true outliers’ (Fig. 3d); for this class of spatial errors, the PCA losses
are more sensitive outlier detectors than network confidence, and certainly more than the
temporal difference loss (due to the pathologies described above). In summary, the PCA
losses identify additional outliers that would have been otherwise missed by standard
confidence and temporal difference thresholding (Extended Data Figs. 1 and 2).

Both unsupervised losses and TCN boost tracking performance

We now evaluate the tracking accuracy of four Lightning Pose model variants: networks
trained with semi-supervised learning (‘SS’, including all applicable unsupervised losses),
TCN architecture (‘TCN”), a combination of the two (‘SS—-TCN”), and neither (‘baseline’).
The ‘baseline’ model enables a clean comparison to supervised pose estimation by
eliminating implementation-level artifacts. It differs from DeepLabCut in implementation
(Supplementary Information) although it matches it in performance across datasets. We
compared the networks’ raw predictions, without any post-processing, to focally assess the
implications of the proposed methods.

First, we examined the mouse’s right hind paw position (top view) during 2 s of running
(Fig. 4a and Supplementary Video 5). We compared the predictions from SS—TCN versus
the baseline model, both trained on 75 labeled frames. The SS—TCN predictions are

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 9

smoother and more confident, exhibiting a clearer periodic pattern expected for running
on a stationary wheel. Akin to Fig. 3a, we find confident ‘paw switches’ for the baseline
model, but not for SS-TCN (Fig. 4b).

Next, for each model variant we trained five networks with different random subsets of InD
data, and calculated pixel errors on 253 labeled OOD test frames. As noted elsewhere20:42,
average pixel error is an incomplete summary of network performance, since error averages
may be dominated by a majority of ‘easy’ keypoints, obscuring differences on the minority
of “difficult’ keypoints. Instead, we quantified the pixel error as a function of keypoint
‘difficulty’, operationally defined as the variance in the predictions across all model variants
and random seeds. When this variance is large, at least one network in the ensemble must be

in error (Fig. 1 and Supplementary Video 1).

As expected, for both label regimes (Fig. 4c), OOD pixel error increased as a function of
ensemble standard deviation. With scarce labels, models struggled to resolve even ‘easy’
keypoints, and SS—-TCN outperformed baseline and DeepLabCut models across all levels
of difficulty. By training semi-supervised models with a single loss at a time, we found

the PCA losses underlie most improvements (Extended Data Fig. 3). The TCN architecture
contributes only marginally to this dataset. With abundant labels, all models accurately
localized ‘easy’ keypoints, and the trends observed in the scarce labels regime become
pronounced only for more ‘difficult’ keypoints.

Next, we assessed performance on a much larger unlabeled dataset of 20 OOD videos.

We computed each of our losses for every predicted keypoint on every video frame, and
we observed similar trends (Fig. 4d): the SS—-TCN model improved sample efficiency with
scarce labels, and reduced rare errors with abundant labels (consistent with expectations,
given that the semi-supervised models are explicitly trained to minimize these losses).

We found similar patterns for the mirror-fish (Extended Data Fig. 4 and Supplementary
Video 6) and CRIM13 (Extended Data Fig. 5 and Supplementary Video 7) datasets.

The EKS enhances accuracy post hoc

The spatiotemporal constraints are enforced during training but not at prediction time.

We now present a post-processing algorithm which uses the spatiotemporal constraints to
further refine the final predictions. Successful post-processing requires identifying which
predictions need fixing; that is, properly quantifying uncertainty for each keypoint on each
frame. As emphasized above, low network confidence captures some, but not all, errors;
conversely, constraint violations indicate the presence of errors within a set of keypoints but
do not identify which specific keypoint is in fact an error.

We have shown that when using an ensemble of networks, the ensemble variance—which
varies for each keypoint on every frame— is a useful signal of model uncertainty*3:44

(Fig. 4c). We developed a post-processing framework that integrates this uncertainty signal
with our spatiotemporal constraints using a probabilistic ‘state-space’ model approach
(Fig. 5a,b). This framework contains a prior and a likelihood. The prior consists of a

latent state that evolves smoothly in time. The likelihood model contains the spatial

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 10

constraints, and crucially, the per-keypoint per-frame likelihood noise estimated by the
ensemble variance. For example, we enforce multi-view constraints by projecting the 3D
true position of the body part (the ‘latent state”) through two-dimensional (2D) linear
projections to obtain the keypoints in each camera view. We performed inference in this
model using the Kalman filter-smoother recursions*> and, therefore, name our approach
the Ensemble Kalman Smoother (EKS). When a keypoint’s uncertainty is high (that is,
disagreement among ensemble members), EKS will upweight the prediction from the
spatiotemporal constraints relative to the uncertain observation (ensemble mean or median).
When a keypoint’s uncertainty is low then EKS will upweight this observation relative to
the spatiotemporal constraints. Unlike previous approac hes!#18.2031.41 'EKS requires no
manual selection of confidence thresholds or (suboptimal) temporal linear interpolation for
dropped keypoints. Moreover, EKS is agnostic to the type of networks used to generate the
ensemble predictions.

We benchmarked EKS on DeepLabCut models fit to the mirror-mouse dataset. EKS
compared favorably to other standard post-processors, including median filters and ARIMA
models (which are fit on the outputs of single networks), and the ensemble mean and median
(computed using an ensemble of multiple networks; Fig. 5¢,d). EKS provides substantial
improvements in OOD pixel errors with as few as m = 2 networks; we found m = 5 networks
is a reasonable choice given the computation-accuracy tradeoff (Fig. 5e,f), and used this
ensemble size throughout.

When applied to Lightning Pose semi-supervised TCN models, EKS provides additional
improvements across multiple datasets, particularly on ‘difficult’ keypoints where the
ensemble variance is higher (Extended Data Fig. 6). EKS achieves smooth and accurate
tracking even when the models make errors due to occlusion and paw confusion (Extended
Data Fig. 6, Supplementary Videos 812 and Supplementary Figs. 2—4).

Improved tracking on IBL datasets

Next, we analyzed two large-scale public datasets from the International Brain Laboratory
(IBL)%. In each experimental session, a mouse was observed by three cameras while
performing a visually guided decision-making task. The ‘IBL-pupil’ dataset contains
zoomed-in videos of the pupil, where we tracked the top, bottom, left and right edges of
the pupil. In ‘IBL-paw’, we tracked the left and right paws.

Despite efforts at standardization, the data exhibited considerable visual variability between
sessions and labs, which presents serious challenges to existing pose estimation methods.
The IBL’s preliminary data release used DeepLabCut, followed by custom post-processing.
As detailed elsewhere??, the signal-to-noise ratio of the estimated pupil diameter is too low
for reliable downstream use in a majority of the sessions, largely due to occlusions caused
by whisking and infrared

light reflections. Paw tracking tends to be more accurate, but is contaminated by
discontinuities, especially when a paw is retracted behind the torso.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 11

We evaluated three pose estimators for the IBL-pupil dataset (Fig. 6a,b): DeepLabCut with
custom post-processing (‘DLC’), Lightning Pose’s SS—TCN with the same post-processing
(‘LP’; using temporal difference and Pose PCA losses), and a pupil-specific EKS variant
applied to an ensemble of m =5 LP models (‘LP + EKS”). The pupil-specific EKS uses a
3D latent state: pupil centroid (width and height coordinates) and a diameter. The latent state
is then projected linearly onto the eight-dimensional tracked pixel coordinates. To directly
compare our methods to the publicly released IBL DeepLabCut traces, we trained on all
available data and evaluated on held-out unlabeled videos. We defined several pupil-specific
metrics to quantify the accuracy of the different models and their utility for downstream
analyses (Supplementary Table 2).

The first metric compares the ‘vertical’ and ‘horizontal” diameters, that is, top(y) — bottom(y)
and right(x) — left(x), respectively (Fig. 6¢,d). These diameters should be equal (or at

least highly correlated) and, therefore, low correlations between these two values signal
poor tracking. The LP model (Pearson’s r = 0.88 + 0.01, mean + s.e.m.) improves over
DeepLabCut (r = 0.36 + 0.03). Because the pupil-specific EKS uses a single value for both
vertical and horizontal diameters, it enforces a correlation of 1.0 by construction.

We are interested in how behaviorally relevant events (such as reward) impact pupil
dynamics. To investigate this, we aligned diameter estimates to the time of reward delivery
for each successful trial. We defined a second quality metric—trial consistency—by taking
the variance of the mean pupil diameter trace and dividing by the variance of the mean-
subtracted traces across all trials. This metric is zero if there are no reproducible dynamics
across trials; it is infinity if the pupil dynamics are identical and non-constant across trials
(constant outputs result in an undefined metric because both numerator and denominator are
zero). Although we expect some amount of real trial-to-trial variability in pupil dynamics,
any noise introduced during pose estimation will decrease this metric. The LP and LP +
EKS estimates show greater trial-to-trial consistency compared to the DeepLabCut estimates
(Fig. 6e,f; DLC 0.35+0.06; LP 0.62 £ 0.07; LP + EKS 0.74 + 0.08). The increased
trial-to-trial consistency of LP + EKS does not compromise the model’s ability to track the
pupil well within individual trials (Supplementary Video 13).

Finally, we examine the extent to which we can decode pupil diameter from neural data
using a simple ridge regression model. This analysis also serves to verify that the LP + EKS
approach is not merely suppressing pupil diameter fluctuations, but rather better capturing
pupil dynamics that can be predicted from an independent measurement of neural activity.
Across sessions, LP and LP + EKS enhance decoding accuracy compared to DeepLabCut

(DLC R® =027 +0.02 ; LP 0.33 + 0.02; LP + EKS 0.35 + 0.02; Fig. 6g,h).

The IBL-paw results appear in Extended Data Fig. 7, Supplementary Video 14 and the
Supplementary Information.

The Lightning Pose software package and a cloud application

We released an open-source software package—Lightning Pose—and a separate cloud
application.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 12

We built the Lightning Pose package to be (1) simple to use and easy to maintain: we

aim to minimize ‘boilerplate’ code (such as graphical user interfaces (GUIs) or training
loggers) by outsourcing to industry-grade packages; (2) video centric: the networks operate
on video clips, rather than on a single image at a time; (3) modular and extensible: our
goal is to facilitate prototyping of new losses and models; (4) scalable: we support efficient
semi-supervised training and evaluation; (5) interactive: we offer a variety of tracking
performance metrics and visualizations during and after training, enabling easy model
comparison and outlier detection (Extended Data Fig. 8a).

The scientific adoption of deep learning packages like ours presents an infrastructure
challenge. Laboratories need access to GPU-accelerated hardware with a set of preinstalled
drivers and packages; therefore, we developed a cloud application that supports the full

life cycle of animal pose estimation (Extended Data Fig. 8b) and is suitable for users with
minimal coding expertise and only requires internet access.

Discussion

We presented Lightning Pose, a semi-supervised deep learning system for animal pose
estimation. Lightning Pose uses a set of spatiotemporal constraints on postural dynamics to
improve network reliability and efficiency. We further refined the pose estimates post hoc,
with the EKS that uses reliable predictions and spatiotemporal constraints to interpolate over
unreliable ones.

Our work builds on previous semi-supervised animal pose estimation algorithms that use
spatiotemporal losses on unlabeled videos33-33-33, Semi-supervised learning is not the only
technique that enables improvements over standard supervised learning protocols. First, it
has been suggested that supervised pose estimation networks can be improved by pretraining
them on large, labeled datasets for image classification’ or pose estimation*®, to an extent
that might eliminate dataset-specific training®’. Other work avoids pretraining altogether by
using lighter architectures®. These ideas are complementary to ours: any robust backbone
obtained through these procedures could be easily integrated into Lightning Pose, and
further refined via semi-supervised learning.

Human pose estimation, like animal pose estimation, is commonly approached using
supervised frame-by-frame heat map regression*s. Human models are trained on much
larger labeled datasets containing either annotated images*® or 3D motion capture>?.
Moreover, human models track a standardized set of keypoints, and some operate on a
standard skinned human body model’!. In contrast, animal pose estimation often contends
with relatively few labels and bespoke sets of keypoints to track. Although human pose
estimation models can impressively track crowds of moving humans, doing downstream
science using the keypoints still presents several challenges*® similar to those discussed in
the Results. Lightning Pose can be applied to single-human pose estimation by fine-tuning
a human pose estimation backbone to specific experimental setups (such as patients in a
clinic), while enforcing our spatiotemporal constraints. Future work could also apply EKS to
the outputs of off-the-shelf human trackers.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 13

Roughly speaking, two camps coexist in multi-view pose estimation2: those who use 3D
information during training!%-3533-34 and those who train 2D networks and perform 3D
reconstruction post hoc!8-3 Either approach involves camera calibration, whose limitations
we discussed above. Lightning Pose can be seen as an intermediate approach: we train with
3D constraints without an explicit camera calibration step. Lightning Pose does not provide
an exact 3D reconstruction of the animal, but rather a scaled, rotated and shifted version
thereof. Our improved predictions can be used as inputs to existing 3D reconstruction
pipelines. Concurrent work*? uses a temporal difference loss for semi-supervised training of
3D multi-view convolutional networks.

A number of directions remain for future work. One is to improve the efficiency of the EKS
method. The advantages of ensembling come at a cost: we need to train and run inference
with multiple networks (post-processing the networks’ output with EKS is relatively
computationally cheap). One natural approach would be ‘knowledge distillation’>: train

a single network to emulate the full EKS output.

Finally, while the methods proposed here can currently track multiple distinguishable
animals (for example, a black mouse and a white mouse), they cannot track multiple similar
animals'®7 because to compute our unsupervised losses we need to know which keypoint
belongs to which animal. Thus, adapting our approaches to the general multi-animal setting
remains an important open avenue for future work.

Online content

Methods

Datasets

Any methods, additional references, Nature Portfolio reporting summaries, source data,
extended data, supplementary information, acknowledgements, peer review information;
details of author contributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41592-024-02319-1.

All datasets used for the experiment were collected in compliance with the relevant
ethical regulations. See the following published papers for each dataset: mirror-mouse!,
CRIM13 (ref. 27) and IBL datasets?®. All mirror-fish experiments adhered to the American
Physiological Society’s Guiding Principles in the Care and Use of Animals and were
approved by the Institutional Animal Care and Use Committee of Columbia University,

under protocol number AABNO0557.

We considered diverse datasets collected via different experimental paradigms for mice and
fish. For each dataset, we collected a large number of videos including different animals and
experimental sessions, and labeled a subset of frames from each video. We then split this
data into two nonoverlapping subsets (that is, a given animal and/or session would appear
only in one subset). The first subset is the InD data that we use for model training. The
second subset is the OOD data that we use for model evaluation. This setup mimics the
common scenario in which a network is thoroughly trained on one cohort of subjects, and is

Nat Methods. Author manuscript; available in PMC 2025 May 19.

https://doi.org/10.1038/s41592-024-02319-1

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 14

then used to predict new subjects. Supplementary Table 1 details the number of frames for
each subset per dataset, as well as the number of unique animals and videos those frames
came from.

Mirror-mouse. Head-fixed mice ran on a circular treadmill while avoiding a moving
obstacle!?. The treadmill had a transparent floor and a mirror mounted inside at 45°,
allowing a single camera to capture two roughly orthogonal views (side view and bottom
view via the mirror) at 250 Hz. The camera was positioned at a large distance from the
subject (~1.1 m) to minimize perspective distortion. Frame sizes were 406 x 396 pixels and
reshaped during training to 256 x 256 pixels. Seventeen keypoints were labeled across the
two views including seven keypoints on the mouse’s body per view, plus three keypoints on
the moving obstacle.

Mirror-fish. Nineteen wild-caught (age unknown) adult male and female mormyrid fish
(15-22 cm in length) of the species Gnathonemus petersii were used in the experiment.
Fish were housed in 60-gallon tanks in groups of 5-20. Water conductivity was maintained
between 60 xS and 100 xS both in the fish’s home tanks and during experiments.

The fish swam freely in and out of an experimental tank, capturing worms from a well. The
tank had a side mirror and a top mirror, both at 45°, providing three different views seen
from a single camera at 300 Hz (Supplementary Fig. 1). Here too. the camera was placed
~1.7 m away from the center of the fish tank to reduce distortions. Frame sizes were 384 x
512 pixels and reshaped during training to 256 x 384 pixels.

Seventeen body parts were tracked across all three views for a total of 51 keypoints.

We preprocessed the labeled dataset as follows. First, we identified labeling errors by
flagging large values of the multi-view PCA loss. We then fixed the wrong labels manually.
Next, in the InD data only, we used a probabilistic variant of multi-view PCA (PPCA)

to infer keypoints that were occluded in one of the three views, effectively similar to

the triangulation-reprojection protocols used for multi-view tracking by refs. 10,58. This
resulted in a 30% increase in the number of keypoints usable for training, with more
occluded keypoints included in the augmented label set.

CRIM13. The Caltech Resident-Intruder Mouse dataset (CRIM13)27 consists of two mice
interacting in an enclosed arena, captured by top and side-view cameras at 30 Hz. We only
used the top view. Frame sizes were 480 x 640 pixels and reshaped during training to 256 x
256 pixels. Seven keypoints were labeled on each mouse for a total of 14 keypointsZ8.

Unlike the other datasets, the InD/OOD splits do not contain completely nonoverlapping sets
of animals, as we used the train/test split provided in the dataset. The four resident mice
were present in both InD and OOD splits; however, the intruder mouse was different for
each session. Each keypoint in the CRIM13 dataset was labeled by five different annotators.
To create the final set of labels for network training, we took the median across all labels for
each keypoint.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 15

IBL-paw. This dataset? is from the IBL and consists of head-fixed mice performing

a decision-making task®%-60. Two cameras—'left’ (60 Hz) and ‘right’ (150 Hz)—capture
roughly orthogonal side views of the mouse’s face and upper trunk during each session. The
original dataset does not contain synchronized labeled frames for both cameras, preventing
the direct use of multi-view PCA losses during training. Instead, we treated the frames

as coming from a single camera by flipping the right camera video. Frames were initially
downsampled to 102 x 128 pixels for labeling and video storage; frames were reshaped
during training to 128 x 128 pixels. We tracked two keypoints per view, one for each paw.
More information on the IBL video processing pipeline can be found elsewhere*!. For the
large-scale analysis in Extended Data Fig. 7, we selected 44 additional test sessions that
were not represented in the InD or OOD sessions listed in Supplementary Table 1; these
could be considered additional OOD data.

IBL-pupil. The pupil dataset is also from the IBL. Frames from the right camera were
spatially upsampled and flipped to match the left camera. Then, a 100 x 100-pixel region of
interest was cropped around the pupil. The frames were reshaped in training to 128 x 128
pixels. Four keypoints were tracked on the top. bottom, left and right edges of the pupil,
forming a diamond shape. For the large-scale analysis in Fig. 6, we selected left videos
from 65 additional sessions that were not represented in the InD or OOD sessions listed in
Supplementary Table 1.

Problem formulation

Let K denote the number of keypoints to be tracked, and N the number of labeled frames.
After manual labeling, we are given a dataset as in equation (1):

Y
9,= [xOyO)" <O erW>XH 07| cp2K
Yk
m

where x() is the i-th image and y its associated label vector. stacking the annotated width—
height pixel coordinates for each of the K tracked keypoints.

It is standard practice to represent each annotated keypoint y,, k = 1,...K as a heat map

h? € RY-*H: with width W, and height H.. thus converting y(to a set of K heat maps
{h}’_ . This is done by defining a bivariate Gaussian centered at each annotated keypoint
with variance o2 (a controllable parameter). and evaluating it at 2D grid pointsS. If y® lacks

an annotation (for example, if it is occluded), we do not form a heat map for it.

We normalize the heat maps }; ,, A’(I, m) = 1, Vi, k, which allows us to both evenly scale the

outputs during training and use losses that operate on heat maps as valid probability mass
functions. Then, the dataset for training supervised networks is just frames and heat maps

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 16

2 = {xO, (v} l]N - To accelerate training, the heat maps are made four or eight times

smaller than the original frames.

Model architectures

Baseline. Our baseline model performs heat map regression on a frame-by-frame basis,
akin to DeepLabCut’, SLEAP16, DeepPoseKit® and others. It has roughly the same
architecture: a ‘backbone’ network that extracts a feature vector per frame, and a ‘head’

that transforms these into K predicted heat maps. In the results reported here, we used a
ResNet-50 backbone network pretrained on the AnimalPose10K dataset*® (10,015 annotated
frames from 54 different animal species). For the mirror-fish dataset, we relied on ImageNet
pretraining (except for the sample efficiency experiments in Fig. 1). However, our package,
like others, is largely agnostic to backbone choices. Let B denote batch size, C = 3 the

RGB color channels, and r an ‘upscaling factor’ by which we increase the size of our
representations. The head includes a fixed PixelShuffle(2) layer that reshapes the features
tensor output by the backbone from (B,C x r2, H, W) to (B, C, H x r, W x r) and a series of
identical ConvTranspose2D layers that further double it in size (kernel size 3 x 3, stride

2 x 2, input padding 1 x 1, output padding 1 x 1)61. The number of ConvTranspose2D
layers is determined by the desired shape of the output heat maps, and most commonly

two such layers are used. Each heat map is normalized with a 2D spatial softmax with a
temperature parameter r = 1. The supervised loss is a divergence between predicted heat
maps and labeled heat maps. Here, we use squared error for each batch element b and
keypoint k: &Z, = E;,m(ﬁf’(:,m) - hf’(l,m))z.

Once heat maps have been predicted for each keypoint, we must transform these 2D
arrays into estimates of the width—height coordinates in the original image space. We first

e R H: o 1, € R" X H ysing bicubic interpolation. We then

upsample each heat map h{’
compute a subpixel maximum akin to DeepPoseKit. A 2D spatial softmax renormalizes the
heat map to sum to 1, and we apply a high temperature parameter (r = 1,000) to suppress
non-global maxima. A 2D spatial expectation then produces a subpixel estimate of the
location of the heat map’s maximum value. These two operations—spatial softmax followed
by spatial expectation—are together known as a soft argmax>>. Importantly, this soft argmax
operation is differentiable (unlike the location refinement strategy used in DeepLabCut’),
and allows the estimated coordinates to be used in downstream losses. To compute the
confidence value associated with the pixel coordinates, we sum the values of the normalized
heat map within a configurable radius of the soft argmax.

TCN. Many detection ambiguities and occlusions in a given frame can be resolved by
considering some video frames before and after it. The TCN uses a sequence of 2J + 1
frames to predict the labeled heat maps for the middle frame, according to equation (2):

9; = [{XE}}:: —2j {hgj}i: 1]:\; 1

@

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 17
where x{ is the labeled frame and, for example, x¥, is the preceding (unlabeled) frame in the
video.

During training, batches of 2J + 1 frame sequences are passed through the backbone to
obtain 2J + 1 feature vectors. The TCN has two upsampling heads, one ‘static’ and one
‘context-aware,’ each identical to the baseline model’s head. The static head takes the
features of only the central frame and predicts location heat maps for that frame. The
context-aware head generates predicted location heat maps for each of the 2J + 1 frames
(note that these are the same shape as the location heat maps, but we do not explicitly
enforce them to match labeled heat maps). Those heat maps are passed as inputs to a
bidirectional CRNN whose output is the context-aware predicted heat map for the middle
frame. We then apply our supervised loss to both predicted heat maps, forcing the network
to learn the standard static mapping from an image to heat maps, while independently
learning to take advantage of temporal context when needed. (Recall Fig. 2e, which provides
an overview of this architecture).

The network described above outputs two predicted heat maps per keypoint, one from

each head, and applies the computations described above to obtain two sets of keypoint
predictions with confidences. For each keypoint, the more confident prediction of the two is
selected for downstream analysis.

Semi-supervised learning

We perform semi-supervised learning by jointly training on labeled dataset 9, (constructed

as described above) and an unlabeled dataset 9,, according to equation (3):

D =D, UD,,
©)

where 9, is constructed as follows.

Assume we have access to one or more unlabeled videos; we splice these into a set of U
disjoint T-frame clips (discarding the very last clip if it has fewer than T frames), according
to equation (4):

D, = {x,...x"}"

u=1

“

where, typically, T = 32/64/96/128/256 with with smaller frame sizes freeing up memory for

longer sequences.

Now, assume we selected a mechanism (baseline model or TCN) for predicting keypoint
heat maps for a given frame. At each training step, in addition to a batch of labeled frames
drawn from 9,, we present the network with a short unlabeled video clip randomly drawn
from 9,. The network outputs a time series of keypoint predictions (one pose for each of the
T frames in the clip), which is then subjected to one or more of our unsupervised losses.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 18

All unsupervised losses are expressed as pixel distance between a keypoint prediction and
the constraint. Because our constraints are merely useful approximate models of reality,
we do not require the network to perfectly satisfy them. We are particularly interested

in preventing, and having the network learn from, severe violations of these constraints.
Therefore, we enforce our losses only when they exceed a tolerance threshold e, rendering

them e-insensitive, according to equation (5):

#(e) = max(0,F — €).
®)

The ¢ threshold could be chosen using prior knowledge. or estimated empirically from

the labeled data, as we will demonstrate below. Z(¢) is computed separately for each
keypoint on each frame, and averaged to obtain a scalar loss to be minimized. Multiple
losses can be jointly minimized via a weighted sum, with weights determined by a parallel
hyperparameter search, which is supported in Lightning Pose with no code changes.

Temporal difference loss. Keypoints should not jump too far between consecutive
frames. We measure the jump in pixels and ignore jumps smaller than e, the maximum jump

allowed by user, according to equation (6):

L mporai(€) = Max(0, |yi(t) = it = Dl — €).

©)

where e could be determined based on image size, frame rate and rough viewing distance
from the subject. We compute this loss for a pair of successive predictions only when both
have confidence greater than a configurable threshold (for example, 0.9) to avoid artificially
enforcing smoothness in stretches where the keypoint is unseen. We average the loss across
keypoints and unlabeled frames, according to equation (7):

1 T K
gnr.mpural = ﬁle kzl gtr‘;'wﬂ{e)’

Q)

and minimize %, . during training. Lightning Pose also offers the option to apply the
temporal difference loss on predicted heat maps instead of the keypoints. We have found
both methods comparable and focus on the latter for clarity.

Multi-view PCA loss.

Background. Lety, € R> be an unknown 3D keypoint of interest. Assume that we have

V cameras and that each v = 1, ..., V camera sees a single 2D perspective projection of
¥, denoted as y,(v) € R2, in pixel coordinates. (It is standard to express ¥ and y(v) in

‘homogeneous coordinates’, that is, appending another element to each vector, yet we omit

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 19

this for simplicity and for a clearer connection with our PCA approach.) Thus, we have a

2V -dimensional measurement (yk(l)T-—-yk(V)T] of our 3D keypoint ¥,.

The multi-view geometry approach. It is standard to model each view as a pinhole

camera3’: such a camera has intrinsic parameters (focal length and distortion) and extrinsic
parameters (its 3D location and orientation, also known as ‘camera pose”), that together
specify where a 3D keypoint will land on its imaging plane, that is, the transformation from
¥ to y(v). This transformation involves a linear projection (scaling, rotation and translation)
followed by a nonlinear distortion. While one might know a camera’s focal length and
distortion, in general, both the intrinsic and extrinsic parameters are not exactly known and
have to be estimated. A standard way to estimate these involves ‘calibrating” the camera;
filming objects with ground truth 3D coordinates, and measuring their 2D pixel coordinates
on the camera’s imaging plane. Physical checkerboards are typically used for this purpose.
They have known patterns that can be presented to the camera and detected using traditional
computer vision techniques. Now with a sufficient set of 3D inputs and 2D outputs, the
intrinsic and exfrinsic parameters can be estimated via (nonlinear) optimization.

Multi-view PCA on the labels (our approach). We take a simpler approach, which does
not require camera calibration or, in the mirrored datasets considered in this paper, explicit
information about the location of the mirrors. Our first insight is that the multi-view (2 V-
dimensional) labeled keypoints could be used as keypoint correspondences to learn the

geometric relationship between the views. We approximate the pinhole camera as a linear
projection (with zero distortion), and estimate the parameters of this linear projection by
fitting PCA on the labels (details below), and keeping the first three PCs, because all we
are measuring from our different cameras is a single 3D object. Figure 2¢ (bottom right)
confirms that our PCA model can explain >99% of the variance with the first three PCs in
several multi-view experimental setups, indicating that our linear approximation is suitable
at least for the mirror-mouse and mirror-fish datasets, in which the camera is relatively

far from the subject. We do anticipate cases where our linear approximation will not be
sufficiently accurate (for example, strongly distorted lenses, or highly zoomed in); the more
general epipolar geometry approach?3-52 could be applicable here. Note that our 3D PCA
coordinates do not exactly match the 3D width—height—depth physical coordinates of the
keypoints in space: instead, these two sets of 3D coordinates are related via an affine
transformation.

Before training: fitting multi-view PCA on the labels. Our goal is to estimate a projection
from 2V dimensions (width—height pixel coordinates for ¥ views) to three dimensions,
which we could use to relate the different views to each other. Given the indices of matching

keypoints across views, we form a tall and thin design matrix by vertically stacking all the
2V -dimensional multi-view labeled keypoints. We denote this matrix as Y, € RNKX2V

according to equation (8):

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 20

vl - yionT

T T
Yy = yé(.l) yé(l.’) i

oyl ot

®

where y(v) € R? represents the width-height coordinates on frame » for keypoint k in
camera v. To reiterate, each row contains the labeled coordinates for a single body part
seen from V' views. The rows of this matrix contain examples from all available labeled
keypoints, which are all used for learning the 3D projection. We exclude rows in which a
body part is missing from one or more views. The number of examples used to estimate
PCA is, as desired, always much larger than the label dimension (NK > 2V). We perform
PCA on Y, and keep the first three PCs, which we denote as P = (P,P,P;) € RZ * 3 and
the data mean u € R?V. The three PCs form three orthogonal axes in 2V dimensions,

and projecting the 2V-dimensional labels on them will provide width—height—depth-like
coordinates. These 3D coordinates are related to the ‘real-world’ 3D coordinates (relative to
some arbitrary ’origin’ point) by an affine transformation (they need to be rotated, stretched
and translated), but critically, we do not need these ‘real-world’ coordinates to apply the
multi-view constraints during network training, as described below.

During training: penalizing the unlabeled data for PCA reconstruction errors. Let
¥, = (ﬁ(l)T---ﬁ(V)T) € R?" be the network’s prediction for the k-th body part on the ¢-th

unlabeled video frame, on all ¥ views (as before, this requires specifying the indices of
corresponding keypoints across views). The prediction’s multi-view PCA reconstruction
is given by projecting it down to three dimensions and then back up to 2V dimensions,

according to equation (9):

V.= (F - m)PP +p.
©)

‘When the prediction ¥} is consistent across views, that is, on the 3D hyperplane specified
by P, we will get ¥, = ¥, a perfect reconstruction. The loss is defined as the average pixel
distance between each 2D predicted keypoint y,(v) and its multi-view PCA reconstruction

¥,(v)., according to equation (10):

Lriireale) = max(0, [|3(v) - Fu@)ll. - €).

(10)

The loss encourages the predictions to stay within the fixed 3D hyperplane estimated by
PCA, and thus be consistent across views. In training, we minimize its average across views,
body parts, and frames, according to equation (11):

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 21

1 v
Prvrca = Wf kZU%I\?-R:A(e) -

(11

We choose ¢ by computing the PCA reconstruction errors (in pixels) for each of the labeled

keypoints, and taking the maximum. This represents the maximal multi-view inconsistency
observed in the labeled data.

We note that the multi-view PCA loss does not require any modifications to network
architectures. Each view is processed independently by the network. As mentioned above,
all that is required is specification of which keypoints from which views correspond to
the same body part. The mirrored datasets considered in this paper are handled similarly:
the single frame containing all available views is processed by the network, and different
keypoints are linked to the same body part via an entry in the model configuration file.

Pose PCA loss. There are certain things that bodies cannot do. We might track 2K

pose coordinates, but it does not mean that they can all move independently and freely.
Indeed, there is a long history of using low-dimensional models to describe animal
movement38:#0:63_ Here, we extend the PCA approach to full pose vectors, and constrain
the 2K-dimensional poses to lie on a low-dimensional hyperplane of plausible poses, which
we estimate from the labels.

Before training: fitting Pose PCA on the labels. This approach is identical to multi-view
PCA, with the following exceptions. First, our observations are full pose vectors and not

single keypoints seen from multiple views. The design matrix of labels is, therefore, shorter

RN X 2K it has as many rows as labeled frames, and each row contains

and wider Yppc, €
the entire pose vector. Rows (poses) with missing body parts are discarded from this matrix.
The number of examples available for PCA estimation is now simply the number of non-
discarded labeled frames. N,,. which is not allowed to be smaller than the number of pose
coordinates, that is, N, > 2K. A second exception is that instead of keeping three PCs,

we keep as many PCs needed to explain 99% of the pose variance, denoted as R <« 2K.

We collect the kept PCs as columns of a (2K x R) matrix P = (P,---P). Each of the PCs
represents an axis of plausible whole-body movement. akin to previous approaches?%:64,
Figure 2d shows that the number of kept PCs is usually less than half of the observation
dimensions. We now keep P and u € R%X to be used in training. For multi-view setups, it is
possible to form an even wider (N x 2KV design matrix, appending all V' views, to jointly
enforce the multi-view PCA loss. We have done so in the mirror-mouse and mirror-fish

datasets.
During training: penalizing for implausible poses. As in equation (9), we project the full

predicted poses down to the low-dimensional hyperplane, then back up to 2K dimensions,
to form their Pose PCA reconstructions. Then, for each 2D keypoint on each unlabeled

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Training

Page 22

video frame, we define the loss as the pixel error between the raw prediction y, and its

reconstruction y,, according to equation (12):

Frbeale) = max(O, ”3\’;{ - yjc”Z - 5) .

(12)

This loss tells us how many pixels are needed to move the predicted keypoint onto
the hyperplane of plausible poses. During training, we minimize the average loss across
keypoints and frames, according to equation (13):

1 t
ZLropea = TK Z ‘EZ,;—PCA(G) .
t,k

(13)

Here too, € is chosen by reconstructing the labeled pose vectors, computing the pixel error
between each 2D labeled keypoint and its PCA reconstruction, and taking the maximum
value.

Batch sizes are determined based on image size and GPU memory constraints (see
Supplementary Table 3 for the batch sizes of the experiments reported in this paper). In
general, denote a labeled batch size of B frames, a context window of 2J + 1 frames and a
short unlabeled clip of T frames (typically tens to hundreds) randomly drawn from a much
longer video. The batch sizes will be B for a supervised model, B + T for a semi-supervised
model, (2J + 1)B for a TCN model and (2J + 1)B + T for a semi-supervised TCN model. In
our TCN experiments, we use J = 2. To efficiently use unlabeled clips for TCN models, we
push the full clip through the backbone once, then discard predictions from the first and
last J frames, which do not have sufficient context. To make our experiments controlled
and reproducible across GPU types, we explicitly chose small, labeled batch sizes, such that
each of our model variants trains with an equal number of labeled frames per batch (the
semi-supervised and TCN models see many more unlabeled frames per batch, which can
become memory-prohibitive).

We use an Adam optimizer® with an initial learning rate of 0.001, halving it at epochs 150,
200 and 250. In the experiments reported here, the ResNet-50 backbone was kept frozen for
the first 20 epochs. We trained our models for a minimum number of 300 training epochs
and a maximum number of 750 epochs. During training we split the InD data into training
(80%), validation (10%) and test (10%) sets. We performed early stopping by checking the
heat map loss on validation data every five epochs and exiting training if it does not improve
for three consecutive checks.

During training, we apply standard image augmentations to labeled frames including
geometric transforms (for example, rotations and crops), color space manipulations (for
example, histogram equalization) and kernel filters (for example, motion blur), following

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Diagnostics

Page 23

DeepLabCut’ A different random combination of augmentations is used for each frame

in a batch. For the TCN architecture, the same augmentation combination is used for a
labeled frame and its associated context frames. For the semi-supervised models, we apply
augmentations to unlabeled video frames using DALI. A single random combination of
augmentations is used for all video frames in a batch. Because the PCA losses are sensitive
to geometric transforms, once the width—height coordinates have been inferred using the
soft argmax described above, we apply the inverse geometric transform before computing
unsupervised losses.

While our package includes well-tested default hyperparameters for the unsupervised losses
described in this paper, users implementing a new ‘bespoke’ loss are advised to perform
hyperparameter searches for this loss’s weight, which of course multiplies the amount
computed by the number of tested weights. However, hyperparameter searches can be run in
parallel, and our Hydra scripts enable users to launch and log these jobs without additional
custom scripts.

and model selection

Constraint violations as diagnostic metrics. After training, we evaluate the network
on the labeled frames and on unlabeled videos. We then compute our individual loss terms
(defined in equations (6). (10) and (12)) for each predicted keypoint, on each frame. and on
each view for a multi-view setup, and use them as diagnostic metrics. For labeled frames,
we compute the Euclidean pixel error. All metrics are measured as pixel distances on the
full-sized image.

Model selection based on pixel errors and constraint violations. Our loss factory
requires users to select among different applicable losses. and for each loss, determine

its weight (note that we offer robust default values in our package). We start by fitting

a baseline model to the data (typically with three random seeds). Then, for each of the
applicable losses, we search over 4—8 possible weights (between values of 3.0 and 7.0). We
then compare the diagnostic metrics specified above on a held-out validation set (ignoring
errors below a tolerance threshold). We pick the weight that exhibits the minimal loss across
the majority of our diagnostics. Supplementary Table 4 displays the optimal weight chosen
for each loss in each dataset using non-TCN models. We used the same weights for the TCN
networks.

Sample efficiency experiments

The sample efficiency experiments in Fig. 1¢ demonstrate model performance on InD and
OO0D data as a function of training frames. For a given network trained with N frames, we
actually need to select N* = ceiling (1.25N) frames to account for additional validation
frames used for early stopping, as well as InD test frames (the train/val/test split was
80%/10%/10%, respectively). To mimic a realistic labeling scenario, we randomly selected
a video from all the InD data. If the number of frames in this first video (call this M) was
greater than or equal to N*, then we stopped here. If M, < N*, we continued to randomly
select a video and add all labeled frames from that video to the labeled data pool. Once

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 24

Y¥_ 1M, > = N*, we randomly selected 10% of the frames in the pool for validation, 10%

for testing and, of the remaining 80%, we chose exactly N frames for training. Training was
performed with supervised Lightning Pose models as described above. After training, we
computed InD pixel error on the 10% of test frames, and OOD pixel error on held-out videos
that were never considered for the labeled data pool. We repeated this procedure ten times
for each value of N.

Ablation study showing the effects of individual losses

The goal of this analysis is to quantify the relative contribution of the individual
unsupervised losses in the mirror-mouse, mirror-fish and CRIM13 datasets. We focus on

the scarce label regime (75 train frames), where the semi-supervised improvements are
most pronounced. We train semi-supervised models with temporal, multi-view PCA or Pose
PCA losses, and compare these to a supervised baseline and a semi-supervised model that
combines all loss types. For each condition, we train three networks with different random
seeds controlling the data presentation order. To simplify this analysis, we analyze pixel
error averages. The results indicate that across datasets, most pixel error savings were driven
by the multi-view and Pose PCA losses (Extended Data Fig. 3). A combination of all losses
always performs the best.

DeepLabCut Training

Ensembling

For DeepLabCut experiments (version 2.2.3), we use their default parameters: an ImageNet-
pretrained backbone, training for 50,000 ‘iterations’ (batches) independent of the labeled
dataset size, using the Adam optimizer®S with a learning rate schedule that starts from 1 x
10~ and is reduced to 5 x 107> at iteration 7,500 then to 1 x 1072 at iteration 12,000. We
select the training frames to exactly match those used for the Lightning Pose models in all
analyses with the mirror-mouse, mirror-fish and CRIM13 datasets. For the IBL datasets, we
use the same number of training frames but do not try to match them exactly. For differences
between the baseline and DeepLabCut models, see the Supplementary Information.

To perform ensembling, we need a collection of models that output a diverse set of
predictions. This can be achieved through various means. For the EKS analyses in Extended
Data Fig. 6, we chose to study a single split of the data, and achieved diversity by randomly
initializing the head of each model, as well as the order in which the data were sent to the
model during training. Despite these seemingly minor differences, the ensemble of models
produced a variety of outputs (Extended Data Fig. 6b,d,f). For the other figures and videos
related to ensembling (Figs. 5 and 6, Extended Data Fig. 7, Supplementary Videos 8—14 and
Supplementary Figs. 2—4), we achieved diversity by training each model with a different
subset of training data (in line with the analyses performed in, for example, Fig. 4).

Post-processor comparison

For the post-processor comparisons in Fig. 5, we used the following baselines:

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

EKS

Page 25

Median filter. We used the medfilt function from the SciPy package®® using the default
settings from the DeepLabCut package (kernel size = 5).

ARIMA. We used a seasonal autoregressive integrated moving-average with exogenous
regressors (SARIMAX) model using the default settings from the DeepLabCut package
(pcutoff = 0.001,alpha = 0.01, ARdegree = 3,MAdegree = 1).

Ensemble mean/median. We computed the mean/median over the ensemble members,
independently for the x and y coordinates. We did not apply confidence thresholding.

The EKS begins with the output of the ensemble of pose estimation networks. an

m X 2KV x T tensor, for m ensemble members (here, m ~ 5), K keypoints, V views and T
video frames. EKS performs probabilistic inference to denoise the ensemble predictions to
obtain more accurate and robust pose estimates. To be more specific, we compute the mean
and variance for each keypoint across the ensemble to obtain the 2KV x T ensemble mean M
and variance C matrices.

We first define the general state-space model, then discuss its useful special cases in the
following sections. We specify a latent state variable g, a linear Gaussian Markov dynamics

model for this state variable of the form, according to equation (14):

4= Ag_,+e, e,--N(O, E.r),

(14

and a linear Gaussian observation model describing the relationship between the latent state
variable ¢ and the observed data O,, according to equation (15):

O, = Bg, +n, “r""N(Fs Q.r)s

(15)

for some appropriate (potentially time-varying) system parameters A,, B, E,.Q,, u.

Single-keypoint, single-camera case. This is the simplest case to consider: imagine
that we want to denoise each keypoint individually, and we only have observations from a
single camera. Here the latent state g, is the true 2D position of the keypoint on the camera.

Now our model is, according to equations (16) and (17):

g =¢q_,+e,e~N(0,sI)

(16)

0,= g+ n.n~N(0,(1/m)D,).

an

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 26

Comparing these equations to the general dynamics and observations equations above, we
see that A, = B, = I here.

In the observation equation, O, is the 2 x 1 keypoint vector, and D, is a 2 * 2 diagonal matrix
specifying the ensemble confidence about each observation. We use the ¢-th column of the
ensemble mean M to fill in the observation O,, and the covariance from the ¢-th frame of

the ensemble covariance C to fill in the observation variance D, (note that larger values of
D, correspond to lower confidence in the corresponding observation 0,). The factor of 1/m
in the observation variance follows from the fact that O, is defined as a sample mean over m

ensemble members.

Finally, s is an adjustable smoothing parameter: larger s leads to less smoothing. This
smoothness parameter could be selected by maximum likelihood (for example, using
the standard expectation—maximization algorithm for the Kalman model) but can be set
manually for simplicity.

Now, given the specified dynamics and observation model, we can run the standard Kalman
forward—backward smoother to obtain the posterior mean state Q given the observations

O (that is, all the states g, given all the observations 0,). The smoother will ‘upweight’
high-confidence observations O, (that is, small D), and ‘downweight” low-confidence

observations (large D,), for example, from occlusion frames.

Note that this Kalman approach is the Bayesian optimal estimator under the assumption
that the model in equations (16) and (17) is accurate. In reality, this model holds only
approximately: in general, neither the observation noise nor the state dynamics are exactly
Gaussian. Therefore, the EKS should be interpreted as an approximation to the optimal
Bayesian estimator here. Generalizations (to handle multimodal observation densities, or
switching or stochastic volatility dynamics models) are left for future work.

Single-keypoint, multi-camera, synchronized cameras case. Given multiple
cameras, we can estimate the true 3D position of each keypoint. So, letting the state vector g,

be the 3D vector ¢, = (x,, ¥, z), we have the model according to equations (18) and (19):

g=g_,+e.e~N(0, E)

(18)

O, = Bg, + n,n~N(0, (1/m)D,).

(19)

B is 2V x 3 where V is the number of camera views; this maps the 3D state vector g onto
the ¥ camera coordinates (assuming linear observations here; this can be generalized but
was not necessary for the data analyzed here). O, is 2V x 1 and D, is block diagonal with 2
x 2 blocks. As above, observations O, with high D, (low confidence) will be downweighted
by the resulting EKS: in practice, this means that cameras with an unobstructed view on

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 27

a given frame (small D,) can help to correct frames that are occluded in other camera

views (resulting in larger ensemble variance D,). We remark that in poorly trained models,
the opposite can also (on rarer occasions) be true: the ensemble in one camera view can
make ‘confident mistakes’ on some frames, in which all ensemble members output the
same wrong estimate (with corresponding small D,, that is, high ensemble confidence) and
induce errors in the other camera views after running the EKS. These errors can be detected
as deviations between the Kalman smoother output and the original ensemble outputs; the
training label set can then be augmented to correct these confident mistakes, followed by
network ensemble retraining.

We initialize our estimates by restricting to confident frames and computing PCA to estimate
B: then we take temporal differences of the resulting PCA projections and compute their
covariance to initialize E.

Finally, note that this simple Kalman model does not output the true 3D location here,
because the model is non-identifiable; instead, we learn g, up to a fixed invertible affine

transformation.

Pupil EKS. For the IBL-pupil dataset, we track K = 4 keypoints arranged in a diamond
shape around the perimeter of the pupil. Therefore, at each frame we have 2K = 8
observations that are constrained to lie in a 3D subspace defined by the pupil center (denoted
as (x, y,)) and diameter 4,. Given the state variable g = (d. x.,). we can (linearly) predict the

location of each of the four diamond corners.

In addition, we have strong prior information about the dynamics of the state variable: we
know that the diameter 4, is a smooth function of time ¢, while the pupil center (x,, y,) can

change more abruptly. due to saccades and rapid face movements that move the eye as well.

Together, these assumptions lead to the model given by equations (20) and (21):

g=Ag_,+e, e.r“"N(O, E)s

(20)

O, = Bg, + n, n~N ({44, 0.0), (1/m)D) .

1)

In the observation equation above, u, denotes the mean diameter, O, is the 8 = 1 keypoint
vector, B is a fixed 8 x 3 matrix that translates the state variable ¢, into the keypoints and
D, is a diagonal matrix whose diagonal entries include the ensemble confidence about each

observation.

In the dynamics model above, A and E are both diagonal. This means that we model the
priors for d,, x,. and y, using independent autoregressive (AR(1)) processes. (The posteriors

for these variables will not be independent, due to the non-separable structure of the

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Biderman et al.

Page 28

observation model in equation (21)). We want to choose the diagonal values diag(A) and
diag(E) so that these processes have the desired variance and time constant. The variance in
a stationary AR(1) model with noise variance e and autoregressive parameter a is e/ (l - az).
We can crudely estimate the marginal mean and variance of x,, y;,, and 4, from the ensembled
mean M, and match the AR(1) marginal mean and variance accordingly. This leaves us

with just two autoregressive parameters to choose: A(1,1) and A(2,2) (with A(3,3) set equal

to A(2,2)). The time constant corresponding to A(1,1) should be meaningfully larger than the
time constant corresponding to A(2,2), since as noted above the diameter d, varies much more
smoothly than the center (x,, y,).

Single-keypoint, multi-camera, asynchronous cameras case. In some datasets
(for example, the IBL-paw dataset), frames from different cameras may be acquired
asynchronously, perhaps with different frame rates. The Kalman model can be easily
adapted to handle this case. Define the sampling times and camera ID for the i-th frame
as: {t,v,}, where ¢, denotes the time the frame was acquired, and v, denotes the camera
that took the i-th frame. Again, the state vector g, is the true 3D location of the keypoint,
¢ = (%, ¥ z,). We have the model according to equations (22) and (23):

4;=4q;_,té e~N(0, E(t;— t,_,))

(22)

O, = Byg, + n, n~N(0,(1/m)D,),

(23)

where now B, is 2 x 3; this tells us how the latent 3D coordinates are mapped into the v,’th
camera. O, is a 2 x 1 vector, and D, is a 2 x 2 matrix. Here the Kalman smoother is run only
at frame acquisition times {z,}, but if desired we can perform predictions/interpolation at any
desired time .

Pose PCA case. Let g represent the ‘compressed pose.’ the R x 1 vector obtained by
projecting the true pose into the R-dimensional Pose PCA subspace. Here we have the
model according to equations (24) and (25):

G=a_ +e.r!e.r"'N(0!E)

249

0, = Bg,+ n.n~N(0,(1/m)D,).

(25)

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

CCA

Page 29

B is 2K x R; this maps the R-dimensional state vector g, onto the 2K camera coordinates. O,
is 2K x 1 and D, is block diagonal with 2 % 2 blocks. As in the synchronous multi-camera
setting, we initialize our estimates by restricting to confident frames and computing PCA to
estimate B; then, we take temporal differences of the resulting PCA projections and compute

their covariance to initialize E.

The output of this smoother is useful for diagnostic purposes, but we do not recommend
using this model to generate the final tracking output, because rare (but real) poses may lie
outside the Pose PCA subspace, while the output of this smoother is restricted to lie within
this subspace (the span of B) by construction.

In Supplementary Figs. 2 and 4, we use canonical correlation analysis (CCA) to compute
the directions of motion that should match in the left and right cameras and top and bottom
cameras, respectively. (These canonical correlations directions are orthogonal to the epipolar
lines familiar from multiple-view geometry3’.) In this subsection, we provide details of this
computation.

Let O, = B, be the output of the multi-camera EKS at time step 1, projected back onto

the camera planes. We can further decompose 0,as 0, = {6::], 6:‘2}, where O,UI is the 2D

prediction for the first camera, and 0, is the 2D prediction for the second camera. Now, we
compute CCA ((5” , (5”2) to find the one-dimensional linear projection of the outputs for each
camera that maximizes their correlation. Since O, is generated from a lower-dimensional

set of latents ¢, the projection of 0" and 0" onto the first canonical component will be
perfectly correlated. We can then project the original model predictions for each camera
onto the first canonical component for each camera. Any frames where the two camera
views do not have the same projected value will most likely be outliers. This can be seen in
Supplementary Figs. 2 and 4, where outlier frames due to paw switching and paw occlusions
cause the model predictions for the two camera views to have different CCA projections.

Neural decoding

We performed neural decoding using cross-validated linear regression with L2
regularization®’ (the Ridge module in scikit-learn®®). The decoding targets—pupil diameter
or paw speed—are binned into nonoverlapping 20-ms bins. For each successful trial, we
select an alignment event—reward delivery for pupil diameter and wheel movement onset
for paw speed—and decode the target starting 200 ms before and ending at 1,000 ms after
the alignment event. We bin spike counts similarly using all recorded neurons in each
session. The target value for a given bin (ending at time ¢) is decoded from spikes in a
preceding (causal)window spanning R bins (ending at times ¢, ...,# — R + 1). Therefore, if
decoding from N neurons, there are RN predictors of the target variable in a given bin. In
practice, we use R = 10.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 30

To improve decoding performance, we smoothed the target variables. For pupil diameter,
both the DeepLabCut (DLC) and Lightning Pose (LP) predictions of pupil diameter were
smoothed using a Savitzky—Golay filter that linearly interpolates over low-confidence time
points (confidence < 0.9). The filter window is set to 31 frames (500 ms) for the left video
(we did not decode pupil diameter from the lower-spatial-resolution right video). More
details of this method can be found elsewhere?®. We did not apply additional smoothing to
the output of the EKS (LP + EKS) model. For paw speed, small errors in the paw position
will be magnified when taking the derivative. To compensate for this, we lightly smoothed
the paw position estimates using a Savitzky—Golay filter after linearly interpolating over
low-confidence time points (confidence < 0.9), and then computed paw speed. The right
video filter window is set to 13 frames (87 ms) and the left window is set to 7 frames (117
ms). This smoothing was applied to the outputs of all three models (DLC, LP, LP + EKS).

All decoding results use nested cross-validation. Each of the five cross-validation folds is
based on a training/validation set comprising 80% of the trials and a test set of the remaining
20% of trials. Trials are selected at random (in an ‘interleaved’ manner). The training/
validation set of a fold is itself split into five sub-folds using an interleaved 80%/20%
partition. A model is trained on the 80% training set using various regularization coefficients
({107, 1074,1073, 1072, 1071, 109, 101}, denoted as input parameter a by scikit-learn), and
evaluated on the held-out validation set. This procedure is repeated for all five sub-folds.
The coefficient that achieves the highest R? value, averaged across all five validation sets,

is selected as the ‘best’ coefficient and used to train a new model across all trials in the

80% training/validation set. The model is then used to produce predictions for each trial in
the 20% test set. This train/validate/test procedure is repeated five times, each time holding
out a different 20% of test trials such that, after the five repetitions, 100% of trials have a
held-out decoding prediction. The final reported decoding score is the R? computed across
all held-out predictions. Code for performing this decoding analysis can be found at https://
github.com/int-brain-lab/paper-brain-wide-map/.

Lightning Pose software package

We built Lightning Pose with the following philosophy. To begin with, computer vision is
a vast field, of which animal pose estimation is a small part. The thriving deep learning
software ecosystem offers well-engineered and well-tested solutions for every stage of the
pose estimation pipeline. We can, therefore, outsource code to these frameworks to a large
degree, leaving us with a smaller code base to maintain.

We start with Lightning Pose’s core components, which are depicted in the innermost purple
box in Extended Data Fig. 8a.

First, an algorithmic signature of Lightning Pose is training with two data streams, labeled
images and unlabeled videos (as depicted in Fig. 2a), which have to be loaded and
‘augmented’ in tandem. This requirement led us to develop a generic class of so-called
‘data modules’ supporting flexible semi-supervised training.

Most computer vision systems are built to ingest images, not videos; raw videos are
rarely used during training. The standard approach converts raw videos into formatted

Nat Methods. Author manuscript; available in PMC 2025 May 19.

https://github.com/int-brain-lab/paper-brain-wide-map/
https://github.com/int-brain-lab/paper-brain-wide-map/

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 31

(‘augmented’) images using CPUs. The CPU approach is inefficient and may cause

the network to spend most of its time idly waiting for data instead of predicting or
training® (‘data bottleneck’). Therefore, we built high-performance video readers using
NVIDIA’s data loading library (DALI; https://github.com/NVIDIA/DALI/; leftmost box
inside innermost purple box in Extended Data Fig. 8a). DALI uses the native capabilities of
GPUs) to both read (‘decode’) and augment videos (resize, crop, scale) to greatly accelerate
video handling at training and prediction time.

Moreover, Lightning Pose decouples network architectures from datasets and training losses
(center and right boxes, respectively; inside innermost purple box in Extended Data Fig. 8a).
As part of our own experiments, we realized that users need flexibility to compose a set of
supervised and unsupervised losses without making any code changes. We, therefore, built a
‘loss factory’ that enables developers to experiment with existing losses easily and quickly
prototype new losses. Losses can be applied at any level of representation in the network,
ranging from the time series of predicted keypoints, through heat maps, to hidden network
features. New losses require minimal extra code, are automatically logged during training,
and can contain their own trainable parameters and even trainable sub-networks.

Having established how we handle data, design networks and select losses, we still need a
procedure for training networks. We offload this task to PyTorch Lightning?* (middle box
in Extended Data Fig. 8a), which is an increasingly popular wrapper around the PyTorch
deep learning framework®!. This enables us to use the latest strategies for training models,
logging the results and distributing computation across multiple GPUs, without having to
modify any of our core modules described above as new training techniques emerge.

In addition, we use Hydra’® to configure, launch and log network training jobs (Extended
Data Fig. 8a, outermost purple box). This eliminates a substantial amount of ‘boilerplate’
code while increasing the reproducibility of training, which often depends on choices of
random number generator, batch sizes, and so on.

Finally, we developed a suite of interactive training diagnostics and model comparison tools,
facilitating hyperparameter sensitivity analyses (Extended Data Fig. 8a, right gray box).
During training, we provide online access to TensorBoard (https://www.tensorflow.org/
tensorboard/) to monitor the individual losses. After training, we use a Streamlit (https://
streamlit.io/) user interface to visualize per-keypoint diagnostics for both labeled frames and
unlabeled videos. We also use a FiftyOne user interface (https://voxel51.com/) for viewing
images and videos along with multiple models’ predictions, enabling users to filter body
parts and models, and browse moments of interest in predicted videos.

A cloud-hosted application for pose estimation as a service

More and more laboratories have access to the accelerated computers needed for running
deep learning pipelines. But unfortunately, installing, executing and maintaining deep
learning pipelines on them remains a hurdle even for experienced software developers.

We built a browser application that uses cloud computers and allows users with no coding
expertise to estimate animal pose using any computer with access to internet. Our app

Nat Methods. Author manuscript; available in PMC 2025 May 19.

https://github.com/NVIDIA/DALI
https://www.tensorflow.org/tensorboard/
https://www.tensorflow.org/tensorboard/
https://streamlit.io
https://streamlit.io
https://voxel51.com

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 32

(Extended Data Fig. 8b) supports the full life cycle of animal pose estimation, from data
annotation via LabelStudio (https://labelstud.io/) to model training to video prediction and
diagnostic visualization (via the open-source ecosystem introduced above). When launched
by a user, the app starts a number of cloud machines equipped with the necessary hardware
and software, which will turn off when idle. Our app is built on Lightning.ai‘s (https://
lightning.ai/) infrastructure for cloud-hosted deep learning applications, removing technical
obstacles related to resource provisioning, secure remote access and software dependency
management.

To conclude, the cloud-centric approach we take serves to democratize analysis tools,
improving scalability, code maintenance requirements and computation time and cost?3.
Our app enables developers who have created new losses or network architectures within
the Lightning Pose software package to easily make these advances available to the broader
audience through the cloud-based app. This ability substantially accelerates the process of
moving model development from the prototyping to production stage.

For up-to-date installation instructions and a walk-through of the app, we refer the reader to
the app’s documentation website (https://pose-app.readthedocs.io).

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting
Summary linked to this article.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

https://labelstud.io/
http://lightning.ai/
https://lightning.ai/
https://lightning.ai/
https://pose-app.readthedocs.io

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuey Joyiny

Biderman et al.

Extended Data

Page 33

A
Frame 120008 . | Frame12saNs .. Frame 123408 . Frame 123008, . Frame 1RG0 ..
s Standard outlier detectors @ Metric-defined inlier D
s Proposed outlier detectors ® Metric-defined outlier Kty perfomencsaeoviior dolsoii
B caudal_d_right 75 train frames " 354 train frames
450 g
: g .
x-coord 400 <
06
350
1.0
3]
325 =9 -
ES
y-coord S00 < o
275
= w0
’ i3
Confidence g 75) é o
4 m~
08
Temporal
difference 100 K p J
loss (pix) «eé‘ ¥ ,{@“
«»
Multi-view
PCA
loss (pix)
0 500 1000 1500 2000
Frame number
C

Unsupervised losses complement confidence for outlier detection

75 train frames 354 train frames
Qutliers: 28k / 329k keypoints Outliers: 14k / 329k keypoints

Outliers selected by

Confidence
each metric —

Confidence

Temporal

difference Tomporal

difference

Pose PCA

Multi-view

Multi-view PCA
PCA Multi-view PCA PCA

Extended Data Fig. 1|. Unsupervised losses complement model confidence for outlier detection on
mirror-fish dataset.

Example traces, unsupervised metrics, and predictions from a DeepLabCut model (trained
on 354 frames) on held-out videos. Conventions for panels A-D as in Fig. 3. A: Example
frame sequence. B: Example traces from the same video. C: Total number of keypoints
flagged as outliers by each metric, and their overlap. D: Area under the receiver operating
characteristic curve for several body parts. We define a ‘true outlier’ to be frames where

the horizontal displacement between top and bottom predictions or the vertical displacement
between top and right predictions exceeds 20 pixels. AUROC values are only shown for

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duuosnuey Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 34

the three body parts that have corresponding keypoints across all three views included in

the Pose PCA computation (many keypoints are excluded from the Pose PCA subspace due

to many missing hand labels). AUROC values are computed across frames from 10 test

videos; boxplot variability is over n=5 random subsets of training data. The same subset

of keypoints is used for panel C. Boxes in panel D use 25th/50th/75th percentiles for min/

center/max; whiskers extend to 1.5 * IQR.

A © Ganfidencs: 095

& Temporal diff: 2,88
@ Pose PCA18.71
Frame 1007
L=
53
g\ oI
58
£8
& Sompora i 1670
empors
& Poss FCA:
%8
)
E‘ s
% 2
8 2
5%

Standard outlier detectors

@ Confidence: 0.64 Confidence: 0.98 @ Confidence; 0.95
(@ Temporal diff: 187,19 @ Temporal diff: 196.93 @ Temporal diff: 4,74
@ Pose PCA127.96 Pose PCA: 20.48 © Pose PCA!18.65

Frame 1008

s (e g
X Temporal diff: . X 1 dad. S
& Posk PCA. 235,08 ose PCA! 436 Fost e

Propased outller detactors

black_mouse_base_of_tail

video: 031309_A29_Block14_BCfe1_t

600

400

© Posz PCA: 4367 ® Pose PCA: 272.55

© Metric-defined inlier & Metric-defined outlier

black_mouse_left_rear_knee
video; 110508_A24_Block4_castBCmal_t

B
00
500
x-coord
400
400
Y- d 300
200 - A
Confidence
Temporal
difference
loss (pix)
Pose PCA i
loss (pix) 100
o LAt j
950 1000
[

Unsupervised losses
complement confidence
for outlier detection

o
1050 1100 1150 1800
Frame number
Temporal
difference

75 train frames
Outliers:
1.096M / 2.52M
keypoints

Confidence N\

1850 1800 1850 2000
Frame number

Temporal

. difference

800 train frames
Outligrs:

598k f 2.52M
keypoints

Extended Data Fig. 2 |. Unsupervised losses complement model confidence for outlier detection

on CRIM13 dataset.

Example traces, unsupervised metrics, and predictions from a DeepLabCut model (trained

on 800 frames) on held-out videos. Conventions for panels A-C as in Fig. 3. A: Example

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duuosnuey Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Pixel error

Page 35

frame sequence. B: Example traces from the same video. Because the size of CRIM13
frames are larger than those of the mirror-mouse and mirror-fish datasets, we use a threshold
of 50 pixels instead of 20 to define outliers through the unsupervised losses. C: Total number
of keypoints flagged as outliers by each metric, and their overlap. Outliers are collected
from predictions across frames from 18 test videos and across predictions from five different
networks trained on random subsets of labeled data.

mirror-mouse mirror-fish CRIM13
100% 20% 100% 15% 100% 15%
30 4 50% | 9 5'0% ' dbA 50% / Unsupervised losses
20 20 :] / == None (supervised)
/ —— Temporal
D | e Multi-view PCA
10 4 i 40 4
i : : w—— Pose PCA
o & i i == Combined
i - % labels |
H i in error 10 7 i
{ | compulation i
H ; Iy ; 20 i
0 2 4 0 5 10 0 10 20
Ensemble std dev Ensemble std dev Ensemble std dev

“harder" keypoints —»

Extended Data Fig. 3|. PCA-derived losses drive most improvements in semi-supervised models.
For each model type we train three networks with different random seeds controlling the

data presentation order. The models train on 75 labeled frames and unlabeled videos. We
plot the mean pixel error and 95% CI across keypoints and OOD frames, as a function of
ensemble standard deviation, as in Fig. 4. At the 100% vertical line, n=17150 keypoints for
mirror-mouse, n=18180 for mirror-fish, and n=89180 for CRIM13.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Biderman et al. Page 36
" C 75 train frames
Traces for fork_main
450 ' 100% 50% 20%
k) 18180 |
§ 400 Lr 30 Jkeymoints
L 350 _./-L. -
= _———‘J 5 20-
5 i
5 300 ~— Baseline g
g = Semi-super TCN g 10 1 = DeeplabCut
(i)> (e} H . Baseline
250 o ! = TCN
: - SS
e 10 "“"W e % labels - » = SS-TCN
3 09 in error !
o - ;
computation
g . 354 train frames
35 " | 100% 5%
% o 30 4 50% “
2 0 I e e e e e e 0 H
1800 1900 2000 2100 2200 ! ;
Frame number E 204 !
@
o
>
o 104
8
. ; 0 5 10
Frame 1871 Frame 1872 Frame 1873 Ensemble-sid dev
"harder” keypoints—»
Unlabeled data metrics
75 train frames B POA y
Temporal difference loss (pix) Multi-view PCA loss (pix) o8 053 (plx)
100% =109.5 frames QIO% 100% 20% 190% 2_0%
o H 9,
304 5:0 % H P 30 50 Yo g
! 20 i
£ 2 i
©
>
g : 101 101
1 i
4 104 H i
% frames i !
in loss H i
compulation i 3
354 train frames
Temporal difference loss (pix) Multi-view PCA loss (pix) Pose PCA loss (pix)
100% 5% 100% 5% 100% 5%
-5 I ' o] ;.:_—__; o] Joo% i
204 == t
g 204 -—-——-—-
T H
2 ! 10
W | 104 i
§ 104 {
|
0 5 10 0 5 10 0 E 10

Ensemble std dev Ensemble std dev Ensemble std dev

Extended Data Fig. 4 |. Unlabeled frames improve pose estimation in mirror-fish dataset.
Conventions as in Fig. 4. A. Example traces from the baseline model and the semi-

supervised TCN model (trained with 75 labeled frames) for a single keypoint on a held-out
video (Supplementary Video 6). B. A sequence of frames corresponding to the grey shaded
region in panel (A). C. Pixel error as a function of ensemble standard devation for scarce
(top) and abundant (bottom) labeling regimes. D. Individual unsupervised loss terms plotted
as a function of ensemble standard deviation for the scarce (top) and abundant (bottom) label
regimes.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Biderman et al. Page 37

A ; c 75 train frames
Traces for white_mouse_right_ear
100% 50% 20%
B 4 8or0 | |
8 500 &0 o kevpotnts
Q 4
> =
o
250 g 40 4
B 400 g)
} I DeeplabCut
§, 300 8 20 4 H B Baseline
(o] H | TCN
- 100 = = . | .S
E v 1 % Jal = { EEEESS-TCN
in error 10 - H
O ors FEnL
100 | = Baseline 800 train frames
% § e Semi-super TCN i 100% 5%
o L= b 60 4 H
800 00 1000 1100 1200 T
Frame number g 404
@
B 9 g
o
8 20
(@]
N— e i 10 20
151 1
Frame 115 Frame 1152 Frame 1153 s i age
D "harder" keypoints —»
Unlabeled data metrics
75 train frames
Temporal difference loss (pix) Pose PCA loss (pix)
100% 50% 20% a0 100% 50% 20%

180k frames

w
o
n

"\

H s

304

~
o
1

% frames
in loss
computation

800 train frames
Temporal difference loss (pix) Pose PCA loss (pix)

1q0% 5]% 0 100% 5'%

50%

304
304

204
20

Loss value
=
1

Ensemble std dev Ensemble std dev

Extended Data Fig. 5 |. Unlabeled frames improve pose estimation in CRIM13 dataset.
Conventions as in Fig. 4.A. Example traces from the baseline model and the semi-supervised

TCN model (trained with 800 labeled frames) for a single keypoint on a held-out video
(Supplementary Video 7). B. A sequence of frames corresponding to the grey shaded region
in panel (A). C. Pixel error as a function of ensemble standard deviation for scarce (top)
and abundant (bottom) labeling regimes. D. Individual unsupervised loss terms plotted as a
function of ensemble standard deviation for the scarce (top) and abundant (bottom) labeling
regimes.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Biderman et al.

6x10'

4x10'

N
®

=
S

Pixel error

100%

Mirror-mouse dataset
Labeled data (253 OOD frames)
75 train frames

1100% 5%
50%

50%

== Semi-super context

(different seeds)
we Ensemble mean
wm EKS (temporal)
wun EKS (MV PCA)

631 train frames

6x10'

4x10'

2x10’

Pixel error

1x10'

% labals
in eor
computation

0

T 2 3 7 5 0 1 2
Ensemble std dev

“harder" keypoints ——p

100% 10%

Mirror-fish dataset
Labeled data (94 OOD frames)
75 train frames

50% ! 50%

== Semi-super context

(different seeds)
== Ensemble mean
wm EKS (temporal)
e EKS (MV PCA)

3

1 5

Ensemble std dev

354 train frames
100% 5%

10*

Pixel error

10

% fabals - |

it error
computation

100% 10%,
| 50% :

»

Z 4 6 8 0 2z 4
Ensemble std dev

CRIM13 dataset

Labeled data (1274 OOD frames)
75 train frames

100% 5%
50% |

| mem Semi-super context
i (different seeds)
{mm Ensemble mean

; mm EKS (temporal)

] 8
Ensemble std dev

800 train framas

0

10 20 0 0
Ensemble std dev

20

Ensemble std dev

Page 38

Mirror-mouse dataset

Example 1
paw2LF (top view)

=l
111 1
1@)
|

Example 2
pawdRH (top view)

— Individual models
- EKS
® Ground truth

0 10 20 30 40 50

Time (frames) Time (frames)

Mirror-fish dataset

Example 2
chin_tip (right view)

Example 1
caudal_d (right view)

Time (frames) Time (frames)

CRIM13 dataset

Example 1
white_mouse_top_of neck

Example 2
white_mouse_left_rear_knee

— Individual models 260
KS

® Ground truth

i

0 10 20 30 40 50
Time (frames)

Time (frames)

Extended Data Fig. 6 |. The Ensemble Kalman Smoother improves pose estimation across

datasets.

We trained an ensemble of five semi-supervised TCN models on the same training data. The

networks differed in the order of data presentation and in the random weight initializations

for their ‘head’. This figure complements Fig. 5 which uses an ensemble of DeepLabCut

models as input to EKS. A. Mean OOD pixel error over frames and keypoints as a function

of ensemble standard deviation (as in Fig. 4). B. Time series of predictions (x and y

coordinates on top and bottom, respectively) from the five individual semi-supervised TCN

models (75 labeled training frames; blue lines) and EKS-temporal (brown lines). Ground

truth labels are shown as green dots. C,D. Identical to A,B but for the mirror-fish dataset.
E.F. Identical to A,B but for the CRIM13 dataset.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Example session

A LP+EKS
« Right
paw
= Left
paw
c Right paw
— Pearson r=0.39 Pearson r=0.97 Pearson r=1.00
%)
5 2) /
<
(&}
0 >
f /
> 5 /
=
2 .2
o
2 0 2 -2 [2 2 0 2
Left video CCA proj Left video CCA proj Left video CCA proj

m

Trial consistency = 0.00 Trial consistency = 0.03

[N
=]
=]

]
1
]
} Movement onset
1
1
1
I
I
]
]
1

Paw speed (pix/s)
8

F
Trial consistency = 0.08 06

Page 39
44 sessions
B
Right paw Left paw
D p=5.76-14
1.0

=

g 08

{

°

T

2 06

e

(=9

<

S o4 L

DLC LP LP+EKS DLC LP LP+EKS

. p=57eta —p=lde?
B=57e-14 _p=13e5
p=0.43 04 :

=,
'S

Trial consistency
nN

05 00 0.5 1.0 1.5 05 00 0.5 1.0 1.5 05 00 0.5 1.0

G Time (s) Time (s) Time (s)

Neural decoding of right paw speed

I 100 pixels/s
v U
1s

LP+KS

15 DLC LP LP+EKS pLC LP LP+EKS
H
p=2.1e-6 p=87e-11
=g Pob3e12 s p=t3e5
p=0.55 p=6ted

06

04

Decoding R”

| 0.0
DLC LP LP+EKS DLC LP LP+EKS

Extended Data Fig. 7 |. Lightning Pose models and ensemble smoothing improve pose estimation

on IBL paw data.

A. Sample frames from each camera view overlaid with a subset of paw markers estimated

from DeepLabCut (left), Lightning Pose using a semi-supervised TCN model (center),

and a 5-member ensemble using semi-supervised TCN models (right). B. Example left

view frames from a subset of 44 IBL sessions. C. The empirical distribution of the right

paw position from each view projected onto the 1D subspace of maximal correlation in a

canonical correlation analysis (CCA). Column arrangement as in A. D. Correlation in the

CCA subspace is computed across n=44 sessions for each model and paw. The LP+EKS

model has a correlation of 1.0 by construction. E. Median right paw speed plotted across

correct trials aligned to first movement onset of the wheel; error bars show 95% confidence

interval across n=273 trials. The same trial consistency metric from Fig. 6 is computed. F.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al. Page 40

Trial consistency computed across n=44 sessions. G. Example traces of Kalman smoothed
right paw speed (blue) and predictions from neural activity (orange) for several trials using
cross-validated, regularized linear regression. H. Neural decoding performance across n=44
sessions. Panels D, F, and H use a one-sided Wilcoxon signed-rank test; boxes use 25th/
50th/75th percentiles for min/center/max; whiskers extend to 1.5 * IQR. See Supplementary
Table 2 for further quantification of boxes.

A " 1
& LIGHTNING POSE
Modularization 2: configure experiments and run hyperparameter sweeps with no code changes Diagnostics and
model comparison
Modularization 1: isolate model design from auxiliary engineering \isualize:
« images
Modularization 0: decouple data, architectures and losses + videos
+ time-series of
GPU-accelerated Modular network Extendible loss predictions
video loaders design factory + summary statistics
(errors, loss viclations)
easy to extend by user
B fis i i !
Cloud application: user-friendly, reproducible, avoids local installs
Model evaluation
Initialization > Data curation = Model training > and comparison » Video prediction
Create new or load existing . : :
pose estimation project drag-and-drop videos select models fo frain image & video GUI drag-and-drop new vidoes
automatic frame ss:leciiorlv launch training jobs interactive diagnostics predict new videos
! iabeled & unlabeled
\J v e
label frames online monitoring download predictions and
corresponding diagnostics
LabelStudio frame labeling TensorFlow monitoring FiftyOne GUI Streamlit timeseries diagnostics

"

Extended Data Fig. 8 |. Lightning Pose enables easy model development, fast training, and is
accessible via a cloud application.

A. Our software package outsources many tasks to existing tools within the deep learning
ecosystem, resulting in a lighter, modular package that is easy to maintain and extend.
The innermost purple box indicates the core components: accelerated video reading (via
NVIDIA DALI), modular network design, and our general-purpose loss factory. The
middle purple box denotes the training and logging operations which we outsource to
PyTorch Lightning, and the outermost purple box denotes our use of the Hydra job
manager. The right box depicts a rich set of interactive diagnostic metrics which are
served via Streamlit and FiftyOne GUIs. B. A diagram of our cloud application. The
application’s critical components are dataset curation, parallel model training, interactive
performance diagnostics, and parallel prediction of new videos. C. Screenshots from our

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 41

cloud application. From left to right: LabelStudio GUI for frame labeling, TensorFlow
monitoring of training performance overlaying two different networks, FiftyOne GUI for
comparing these two networks’ predictions on a video, and a Streamlit application that
shows these two networks’ time series of predictions, confidences, and spatiotemporal
constraint violations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank P. Dayan and N. Steinmetz for serving on our IBL-paper board, as well as two anonymous reviewers
whose detailed comments considerably strengthened our paper. We are grateful to N. Biderman for productive
discussions and help with visualization. We thank M. Carandini and J. Portes for helpful comments; T. Abe,

K. Buchanan and G. Pleiss for helpful discussions on ensembling; and H. Xiang for conversations on active
learning and outlier detection. We thank W. Falcon, L. Antiga, T. Chaton and A. Wilchi (Lightning Al) for their
technical support and advice on implementing our package and the cloud application. This work was supported

by the following grants: Gatsby Charitable Foundation GAT3708 (to D.B.,, M.R.W., CH.,N.R.G., A.V,, J.P.C.

and L.P.), German National Academy of Sciences Leopoldina (to A.E.U.), Irma T Hirschl Trust (to N.B.S.),
Netherlands Organisation for Scientific Research (VI.Veni.212.184; to A.E.U.), NSF 10S-2115007 (to N.B.S.),
National Institutes of Health (NIH) K99NS128075 (to J.P.N.), NIH NS075023 (to N.B.S.), NIH NS118448 (to
N.B.S.), NIH DK131086-02 (to N.B.S.), NIH U19NS123716 (to M.R.W.) and NSF 1707398 (to D.B., M.R.W.,
C.H.,N.R.G.,, A.V,, J.P.C. and L.P.), funds provided by the National Science Foundation and by DoD OUSD (R&E)
under Cooperative Agreement PHY-2229929, The NSF Al Institute for Artificial and Natural Intelligence (to D.B.,
M.R.W,, C.H., A.V,, J.P.C. and L.P.), Simons Foundation (to M.R.W., M.M.S., JM.H., AK., G.T.M., J.PN., AP.V.
and K.Z.S.) and the Wellcome Trust 216324 (M.M.S., JM.H., AK., G.T.M., J.P.N., A.P.V. and K.Z.S.). The funders
had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Data availability

All labeled data used in this paper are publicly available.

mirror-mouse https://doi.org/10.6084/m9.figshare.24993315.v1 (ref. 71)
mirror-fish https://doi.org/10.6084/m9.figshare.24993363.v1 (ref.72)
CRIM13 https://doi.org/10.6084/m9.figshare.24993384.v1 (ref. 73)

IBL-paw https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/
Tags/2023 Q1 Biderman Whiteway et al/ ibl videoTracking.trainingDataPaw.7e79e865-
2£c-4709-b203-77dbdac6461f.zip

IBL-pupil https://ibl-brain-wide-
map-public.s3.amazonaws.com/aggregates/Tags/2023 Q1 Biderman Whiteway et al/
_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip

All of the model predictions on labeled frames and unlabeled videos are available via
Figshare at https://doi.org/10.6084/m9.figshare.25412248.v2 (ref. 74). These results, along
with the labeled data, can be used to reproduce the main figures of the paper.

To access the IBL data analyzed in Fig. 6 and Extended Data Fig. 7, see the documentation
at https://int-brain-lab.github.io/ONE/FAQ.html#how-do-i-download-the-datasets-cache-for-

Nat Methods. Author manuscript; available in PMC 2025 May 19.

https://doi.org/10.6084/m9.figshare.24993315.v1
https://doi.org/10.6084/m9.figshare.24993363.v1
https://doi.org/10.6084/m9.figshare.24993384.v1
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
https://doi.org/10.6084/m9.figshare
https://int-brain-lab.github.io/ONE/FAQ.html#how-do-i-download-the-datasets-cache-for-a-specific-ibl-paper-release

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al. Page 42

a-specific-ibl-paper-release and use the tag 2023 Q1 Biderman Whiteway et al. This
will provide access to spike-sorted neural activity, trial timing variables (stimulus onset,
feedback delivery and so on), the original IBL DeepLabCut traces and the raw videos.

The International Brain Laboratory

Larry Abbot!?, Luigi Acerbi!!, Valeria Aguillon-Rodriguez!?, Mandana Ahmadi'3, Jaweria
Amjad!3, Dora Angelaki!4, Jaime Arlandis?, Zoe C. Ashwood!3, Kush Banga!®, Hailey
Barrell!7, Hannah M. Bayerlo, Brandon Benson!8, Julius Benson!4, Jai Bhagat16, Dan
Birman!7, Niccold Bonacchi’, Kcenia Bougrova3, Julien Boussard!?, Sebastian A. Bruijns®,
E. Kelly Buchanan!?, Robert Campbell'®, Matteo Carandini2®, Joana A. Catarino®, Fanny
Cazettes3, Gaelle A. Chapuis1 I Anne K. Churchland?!, Yang Dan?2, Felicia Davatolhaghzl,
Peter Dayan®, Sophie Denéve?3, Eric E. J. DeWitt3, Ling Liang Dong?*, Tatiana Engel !>,
Michele Fabbri!®, Mayo Faulkner!®, Robert Fetcho!3, Ila Fiete?*, Charles Findling!!, Laura
Freitas-Silval®, Surya Gangulilg, Berk Gercek!!, Naureen Ghanil?, Ivan Gordeliy23, Laura
M. Haetzel?*, Kenneth D. Harris', Michael Hausser?>, Naoki Hiratani!3, Sonja Hofer!?, Fei
Hu?2, Felix Huber!!, Julia M. Huntenburg®, Cole Hurwitz!?, Anup Khanal?!, Christopher
S. Krasniak!2, Sanjukta Krishnagopal'3, Michael Krumin!®, Debottam Kundu®, Agnés
Landemard?, Christopher Langdon!?, Christopher Langfield!?, Inés Laranjeira’, Peter
Latham!3, Petrina Lau?>, Hyun Dong Lee!?, Ari Liu?4, Zachary F. Mainen, Amalia Makri-
Cottingtonzs, Hernando Martinez—Vergaralg, Brenna McMannon!>, Isaiah McRoberts!4,
Guido T. Meijer?, Maxwell Melin?!, Leenoy Meshulam2%, Kim Miller!’, Nathaniel J.
Miska!®, Catalin Mitelut'%, Zeinab Mohammadi'®, Thomas Mrsic-Flogel!?, Masayoshi
Murakami?’, Jean-Paul Noel!4, Kai Nylund!?, Farideh Oloomi*, Alejandro Pan-Vazquez!,
Liam Paninski!®, Alberto Pezzotta!3, Samuel Picard!®, Jonathan W. Pillow!?, Alexandre
Pouget!!, Florian Rau3, Cyrille Rossant!®, Noam Roth!7, Nicholas A. Roy!3, Kamron
Saniee!Y, Rylan Schaeffer?*, Michael M. Schartner3, Yanliang Shil!>, Carolina Soares!?,
Karolina Z. Socha2?, Cristian Soitu!2, Nicholas A. Steinmetz!7, Karel Svoboda?8, Marsa
Taheri2!, Charline Tessereau?, Anne E. Urai!2, Erdem Varol!?, Miles J. Wells!, Steven

J. West!9, Matthew R. Whitewaylo, Charles Windolf!?, Olivier Winter3, [lana Witten!5,
Lauren E. Wool!®, Zekai Xu!3, Han Yul9, Anthony M. Zador!2 & Yizi Zhang!?

10Zuckerman Institute, Columbia University, New York, NY, USA. 'Department of
Basic Neuroscience, University of Geneva, Geneva, Switzerland. 12Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY, USA. 3Gatsby Computational Neuroscience Unit,
University College London, London, UK. #Center for Neural Science, New York
University, New York, NY, USA. 5Princeton Neuroscience Institute, Princeton University,
Princeton, NJ, USA. ®Institute of Neurology, University College London, London, UK.
1"Department of Biological Structure, University of Washington, Seattle, WA, USA.
18Department of Applied Physics, Stanford University, Stanford, CA, USA. °Sainsbury-
Wellcome Centre, University College London, London, UK. 2%Institute of Opthalmology,
University College London, London, UK. 2! Department of Neurobiology, University of
California, Los Angeles, Los Angeles, CA, USA. 22Department of Molecular and Cell
Biology, University of California, Los Angeles, Berkeley, CA, USA. 22Département
D’études Cognitives, école Normale Supérieure, Paris, France. 24Department of Brain
and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

https://int-brain-lab.github.io/ONE/FAQ.html#how-do-i-download-the-datasets-cache-for-a-specific-ibl-paper-release

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 43

23Wolfson Institute of Biomedical Research, University College London, London, UK.
26Center for Computational Neuroscience, University of Washington, Seattle, WA, USA.
2TDepartment of Physiology, University of Yamanashi, Kofu, Yamanashi, Japan. 28The

Allen Institute for Neural Dynamics, Seattle, Washington, WA, USA.

References
1.

10

20.

21.
22.

Krakauer JW, Ghazanfar AA, Gomez-Marin A, Maclver MA & Poeppel D Neuroscience needs
behavior: correcting a reductionist bias. Neuron 93, 480—490 (2017). [PubMed: 28182904]

. Branson K, Robie AA, Bender J, Perona P & Dickinson MH High-throughput ethomics in large

groups of Drosophila. Nat. Methods 6, 451-457 (2009). [PubMed: 19412169]

. Berman GJ, Choi DM, Bialek W & Shaevitz JW Mapping the stereotyped behaviour of freely

moving fruit flies. J. Royal Soc. Interface 11, 20140672 (2014).

. Wiltschko AB et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121-1135

(2015). [PubMed: 26687221]

. Wiltschko AB et al. Revealing the structure of pharmacobehavioral space through motion

sequencing. Nat. Neurosci 23, 1433—-1443 (2020). [PubMed: 32958923]

. Luxem K et al. Identifying behavioral structure from deep variational embeddings of animal motion.

Commun. Biol 5, 1267 (2022). [PubMed: 36400882]

. Mathis A et al. Deeplabcut: markerless pose estimation of user-defined body parts with deep

learning. Nat. Neurosci 21, 1281-1289 (2018). [PubMed: 30127430]

. Pereira TD et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117—

125 (2019). [PubMed: 30573820]

. Graving JM et al. Deepposekit, a software toolkit for fast and robust animal pose estimation using

deep learning. Elife 8, €47994 (2019). [PubMed: 31570119]

. Dunn TW et al. Geometric deep learning enables 3D kinematic profiling across species and
environments. Nat. Methods 18, 564—573 (2021). [PubMed: 33875887]

. Chen Z et al. Alphatracker: a multi-animal tracking and behavioral analysis tool. Front. Behav.
Neurosci 17, 1111908 (2023). [PubMed: 37324523]

. Jones JM et al. A machine-vision approach for automated pain measurement at millisecond
timescales. Elife 9, €57258 (2020). [PubMed: 32758355]

. Padilla-Coreano N et al. Cortical ensembles orchestrate social competition through hypothalamic
outputs. Nature 603, 667—671 (2022). [PubMed: 35296862]

. Warren RA et al. A rapid whisker-based decision underlying skilled locomotion in mice. Elife 10,
€63596 (2021). [PubMed: 33428566]

. Hsu AI & Yttri EA B-SOIiD, an open-source unsupervised algorithm for identification and fast
prediction of behaviors. Nat. Commun 12, 5188 (2021). [PubMed: 34465784]

. Pereira TD et al. Sleap: a deep learning system for multi-animal pose tracking. Nat. Methods 19,
486-495 (2022). [PubMed: 35379947]

. Weinreb C et al. Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics.
Preprint at bioRxiv 10.1101/2023.03.16.532307 (2023).

. Karashchuk P et al. Anipose: a toolkit for robust markerless 3D pose estimation. Cell Rep 36,
109730 (2021). [PubMed: 34592148]

. Monsees A et al. Estimation of skeletal kinematics in freely moving rodents. Nat. Methods 19,
1500-1509 (2022). [PubMed: 36253644]

Rodgers CC A detailed behavioral, videographic, and neural dataset on object recognition in mice.
Sci. Data 9, 620 (2022). [PubMed: 36229608]

Chapelle O, Scholkopf B & Zien A (eds) Semi-Supervised Learning (The MIT Press, 2006).

Lakshminarayanan B, Pritzel A & Blundell C Simple and scalable predictive uncertainty
estimation using deep ensembles. in Advances in Neural Information Processing Systems vol.
30 (eds Guyon I et al.) (Curran Associates, 2017).

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

48.

Page 44

Abe T et al. Neuroscience cloud analysis as a service: An open-source platform for scalable,
reproducible data analysis. Neuron 110, 2771-2789 (2022). [PubMed: 35870448]

Falcon W et al. Pytorchlightning/pytorch-lightning: 0.7.6 release Zenodo 10.5281/zenodo.3828935
(2020).

Recht B, Roelofs R, Schmidt L & Shankar V Do imagenet classifiers generalize to imagenet? In
International Conference on Machine Learning, 5389-5400 (PMLR, 2019).

Tran D et al. Plex: Towards reliability using pretrained large model extensions. Preprint at https://
arxiv.org/abs/2207.07411 (2022).

Burgos-Artizzu XP, Dollar P, Lin D, Anderson DJ & Perona P Social behavior recognition in
continuous video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, 1322—
1329 (IEEE, 2012).

Segalin C et al. The mouse action recognition system (mars) software pipeline for automated
analysis of social behaviors in mice. Elife 10, 63720 (2021). [PubMed: 34846301]

IBL. Data release - Brainwide map - Q4 2022 (2023). Figshare 10.6084/m9.figshare.21400815.v6
(2022).

Desai N et al. Openapepose, a database of annotated ape photographs for pose estimation. Elife 12,
RP86873 (2023). [PubMed: 38078902]

Syeda A et al. Facemap: a framework for modeling neural activity based on orofacial tracking. Nat.
Neurosci 27, 187-195 (2024). [PubMed: 37985801]

Spelke ES Principles of object perception. Cogn. Sci 14, 29-56 (1990).

Wau A et al. Deep graph pose: a semi-supervised deep graphical model for improved animal pose

tracking. in Advances in Neural Information Processing Systems (eds Larochelle H et al.) 6040—
6052 (2020).

Nath T et al. Using deeplabcut for 3D markerless pose estimation across species and behaviors.
Nat. Protoc 14, 2152-2176 (2019). [PubMed: 31227823]

Zhang Y & Park HS Multiview supervision by registration. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 420-428 (2020).

He Y, Yan R, Fragkiadaki K & Yu S-I Epipolar transformers. In Proceedings of the [IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 7779-7788 (2020).

Hartley R & Zisserman A Multiple View Geometry in Computer Vision (Cambridge University
Press, 2003).

Bialek W On the dimensionality of behavior. Proc. Natl Acad. Sci. uSA 119, 2021860119 (2022).
[PubMed: 35486689]

Stephens GJ, Johnson-Kerner B, Bialek W & Ryu WS From modes to movement in the behavior of
caenorhabditis elegans. PloS ONE 5, €13914 (2010). [PubMed: 21103370]

Yan Y, Goodman JM, Moore DD, Solla SA & Bensmaia SJ Unexpected complexity of everyday
manual behaviors. Nat. Commun 11, 3564 (2020). [PubMed: 32678102]

IBL. Video hardware and software for the international brain laboratory. Figshare 10.6084/
m9.figshare.19694452.v1 (2022).

Li T, Severson KS, Wang F & Dunn TW Improved 3Dd markerless mouse pose estimation using
temporal semi-supervision. Int. J. Comput. Vis 131, 13891405 (2023). [PubMed: 38273902]

Beluch WH, Genewein T, Niirnberger A & Kohler JM The power of ensembles for active learning
in image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 9368-9377 (2018).

Abe T, Buchanan EK, Pleiss G, Zemel R & Cunningham JP Deep ensembles work, but are they
necessary? in Advances in Neural Information Processing Systems 35, 33646-33660 (2022).

Bishop CM & Nasrabadi NM Pattern Recognition and Machine Learning, vol. 4 (Springer, 2006).

Yu H et al. AP-10K: a benchmark for animal pose estimation in the wild. Preprint at https://
arxiv.org/abs/2108.12617 (2021).

Ye S et al. SuperAnimal models pretrained for plug-and-play analysis of animal behavior. Preprint
at https://arxiv.org/abs/2203.07436 (2022).

Zheng C et al. Deep learning-based human pose estimation: a survey. ACM Computing Surveys
56, 1-37 (2023).

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Page 45

Lin T-Y et al. Microsoft coco: common objects in context. In Computer Vision-ECCV 2014:

13th European Conference, Zurich, Switzerland, September 6—12, 2014, Proceedings. Vol. 8693,
740-755 (Springer, 2014).

Ionescu C, Papava D, Olaru V & Sminchisescu C Human3. 6M: large scale datasets and predictive
methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell
36, 1325-1339 (2013).

Loper M, Mahmood N, Romero J, Pons-Moll G & Black MJ SMPL.: a skinned multi-person linear
model. In Seminal Graphics Papers: Pushing the Boundaries. Vol. 2, 851-866 (2023).

Marshall JD, Li T, Wu JH & Dunn TW Leaving flatland: advances in 3D behavioral measurement.
Curr. Opin. Neurobiol 73, 102522 (2022). [PubMed: 35453000]

Giinel S et al. DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in
tethered, adult Drosophila. Elife 8, e48571 (2019). [PubMed: 31584428]

Sun JJ et al. BKinD-3D: self-supervised 3D keypoint discovery from multi-view videos. In
Proceedings of the [IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9001—
9010 (2023).

Bala PC et al. Automated markerless pose estimation in freely moving macaques with
openmonkeystudio. Nat. Commun 11, 4560 (2020). [PubMed: 32917899]

Hinton G, Vinyals O & Dean J Distilling the knowledge in a neural network. Preprint at https://
arxiv.org/abs/1503.02531 (2015).

Lauer J et al. Multi-animal pose estimation, identification and tracking with deeplabcut. Nat. Meth
19, 496-504 (2022).

Chettih SN, Mackevicius EL, Hale S & Aronov D Barcoding of episodic memories in the
hippocampus of a food-caching bird. Cell 187, 19221935 (2024). [PubMed: 38554707]

IBL et al. Standardized and reproducible measurement of decision-making in mice. Elife 10,
€63711 (2021). [PubMed: 34011433]

IBL et al. Reproducibility of in vivo electrophysiological measurements in mice. Preprint at
bioRxiv 10.1101/2022.05.09.491042 (2022).

Paszke A et al. Pytorch: An imperative style, high-performance deep learning library. in Advances
in Neural Information Processing Systems 32, 8024-8035 (2019).

Jafarian Y, Yao Y & Park HS MONET: multiview semi-supervised keypoint via epipolar
divergence. Preprint at https://arxiv.org/abs/1806.00104 (2018).

Tresch MC & Jarc A The case for and against muscle synergies. Curr. Opin. Neurobiol 19, 601—
607 (2009). [PubMed: 19828310]

Stephens GJ, Johnson-Kerner B, Bialek W & Ryu WS Dimensionality and dynamics in the
behavior of C. elegans. PLoS Comput. Biol 4, e1000028 (2008). [PubMed: 18389066]

Kingma DP & Ba J Adam: A method for stochastic optimization. Preprint at https://arxiv.org/abs/
1412.6980 (2014).

Virtanen P et al. Scipy 1.0: fundamental algorithms for scientific computing in Python. Nat.
Methods 17, 261-272 (2020). [PubMed: 32015543]

IBL et al. A brain-wide map of neural activity during complex behaviour. Preprint at bioRxiv
10.1101/2023.07.04.547681 (2023).

Pedregosa F et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res 12, 2825-2830
(2011).

Zolnouri M, Li X & Nia VP Importance of data loading pipeline in training deep neural networks.
Preprint at https://arxiv.org/abs/2005.02130 (2020).

Yadan O Hydra - a framework for elegantly configuring complex applications. Github https://
github.com/facebookresearch/hydra (2019).

Whiteway M, Biderman D, Warren R, Zhang Q & Sawtell NB Lightning Pose dataset: mirror-
mouse. Figshare 10.6084/m9.figshare.24993315.v1 (2024).

Whiteway M et al. Lightning Pose dataset: mirror-fish. Figshare 10.6084/m9.figshare.24993363.v1
(2024).

Whiteway M & Biderman D Lightning Pose dataset: CRIM13. Figshare 10.6084/
m9.figshare.24993384.v1 (2024).

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duuosnuey Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 46

74. Whiteway M & Biderman D Lightning Pose results: Nature Methods 2024. Figshare 10.6084/
m9.figshare.25412248.v2 (2024).

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al. Page 47

o

Unstable predictions in supervised models

y v

Supervised pose estimation architecure

Labeled frames Backbone Head Predicted keypoints Labeled keypoints

Supervised
loss
—

150 seeds

100

0 . Different I& V TT f ! t

o

Confidence y coord x coord

(0]
102.0 102.5 103.0
Time (s)

c Generalization in supervised models

— In-distribution — Out-of-distribution

Mouse locomotion Freely swimming mormyrid fish Resident-intruder assay Mouse pupil tracking Mouse perceptual decision-making
(Warren et al., 2021) (Pedraja et al.) (Burgos-Artizzu et al., 2012) (IBL 2023) (IBL 2023)
17 keypoints (2 views) 51 keypoints (3 views) 14 keypoints (2 animals) 4 keypoints 2 keypoints
e 100 pixels... -
80 pixels s
2
20 pixels
¥ 'g
60 6
15
= 5 Improves with more
g 10 labeled frames
[} 4 10
°
s
& 20 3 Plateaus at
5 = 200 frames
2 | O —— __~__
o
® & rLoo u°° @00 P & 'LOQ r\j‘-'o e r»00 bQo %oo \‘%>00r§.‘f°° ® & r190 “00 %00 \@00 S & r‘/00 @0 %00\%,0 R (}00
Training frames Training frames Training frames Training frames Training frames

Fig. 1|. Fully supervised pose estimation often outputs unstable predictions and requires many
labels to generalize to new animals.

a, Diagram of a typical pose estimation model trained with supervised learning, illustrated
using the mirror-mouse dataset. A dataset is created by labeling keypoints on a subset of
video frames. A convolutional neural network, consisting of a ‘backbone’ and a prediction
‘head’, takes in a batch of frames as inputs, and predicts a set of keypoints for each

frame. It is trained to minimize the distance from the labeled keypoints. b, Predictions

from five supervised DeepLabCut networks (trained with 631 labeled frames on the mirror-
mouse dataset), for the left front paw position (top view) during 1 s of running behavior
(Supplementary Video 1). Top, x-coordinate; middle, y-coordinate; bottom, confidence,
applying a standard 0.9 threshold indicated by the dashed line. Black arrows indicate
example time points where there is disagreement among the network predictions. ¢, Top
row shows five example datasets. Each blue image is an example taken from the InD test set,
which contains new images of animals that were seen in the training set. The orange images
are test examples from unseen animals altogether, which we call the OOD test set. Bottom
row shows data efficiency curves, measuring test-set pixel error as a function of the training
set size. InD pixel error is shown in blue and OOD in orange. Line plots show the mean

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duuosnuey Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 48

pixel error across all keypoints and frames + s.e. over n = 10 random subsets of InD training
data.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Biderman et al.

Temporal difference

loss (pixels)

Few labeled
frames
(expensive)

Many videos
(cheap)

Temporal difference loss
Loss landscape

Conceptual illustration

pawl (x)
3

r=0.26 [0.20, 0.32]

3 10 30
OOD pixel error

Image with
context frames

Backbone Head

=

Backbone

Page 49

Lightning pose architecture

Labeled keypoints

Predicted keypoints

Supervised -
loss < Existing paradigm
B (e.g., DeepLab_Cut,
DeepPoseKit,
SLEAP)

Time series of

predicted keypoints

Unsupervised

losses No
L <«——— ground
truth
pawl (x) A~~~
pawl (y) Ne~A~AA~r
taill (x) —~NN
c Multi-view PCA loss d Pose PCA loss
<
2 Implausible
configuration
[}
173
o
-l
2
S
« 30 r=0.91[0.90, 0.92] 10 = 099
O @ / ws= Mirror-mouse
<5 S 08 (28D)
2 X x X 10 " X
oa P === Mirror-fish
e - 2% 06 (40D)
£8 ==} Mirrormouse g 3 == CRIMI3 (28D)
- ws= Mirror-fish = 0.4 ;
6 «s= |BL-pupil (8D)
3 10 30 1234568 3 10 30 0 05 10
OOD pixel error Number of PCs kept OOD pixel error Fraction of PCs kept
TCN architecture
|
I Position heatmaps (implicit) I
t-2 -1 t t+1 42 Bidirdirectional
Context head ° ®
. . - Predicted t
Paw1 /-\ (context)
—
| | | | | Paw2 .
. . L
Predicted t (static)
» U
Static head

Fig. 2 |. Lightning Pose exploits unlabeled data in pose estimation model training.
a, Diagram of the semi-supervised model that contains supervised (top row) and

unsupervised (bottom row) components. b, Temporal difference loss. Top left: illustration

of a jump discontinuity. Top right: loss landscape for frame ¢ given the prediction at ¢ — 1

(white diamond), for the left front paw (top view). The dark blue circle corresponds to

the maximum allowed jump, below which the loss is set to zero. Bottom left: correlation

between temporal difference loss and pixel error on labeled test frames. ¢, Multi-view PCA

loss. Top left: illustration of a 3D keypoint detected on the imaging plane of two cameras.

Top right: loss landscape for the left front paw (top view; white diamond) given its predicted

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 50

location on the bottom view. The blue band of low loss values is an ‘epipolar line’ on
which the top-view paw could be located. Bottom left: correlation between multi-view
PCA loss and pixel error. Bottom right: cumulative variance explained for single body part
labels across all views versus the fraction of principal components (PCs) kept on multi-view
datasets. d, Pose PCA loss. Top left: illustration of plausible and implausible poses. Top
right: loss landscape for the left front paw (top view; white diamond) given all other
keypoints, which is minimized around the paw’s actual position. Bottom left: correlation
between Pose PCA loss and pixel error. Bottom right: cumulative variance explained for
pose labels versus fraction of PCs kept. e, The TCN processes each labeled frame with its
adjacent unlabeled frames, using a bidirectional CRNN. It forms two sets of location heat
map predictions, one using single-frame information and another using temporal context.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 51
a Top/bot horizontal Top/bot horizontal Top/bot horizontal Top/bot horizontal Top/bot horizontal
displacement: 0.41 displacement: 145.55 displacement: 3.33 displacement: 144.71 displacement: 147.90
@ Confidence: 0.99 @ Confidence: 0.98 2 Confidence: 0.99 @ Confidence: 1.00 & Confidence: 1.00
& Temporal diff: 2.18 Temporal diff: 143.77 @ Temporal diff: 141.50 (Temporal diff: 140.35 & Temporal diff: 0.60
& Multi-view PCA: 1.28 & Multi-view PCA: 79.12 & Multi-view PCA: 2.95 (Multi-view PCA: 78.66) Multi-view PCA: 80.23
Corresponding paw
. ~
it
A . A x A A
Frame 290 { 28 Frame 291 Frame 292 Frame 293 Frame 294
Standard outlier detectors @ Metric-defined inlier d
Proposed outlier detectors & Metric-defined outlier Metric performance as outlier detector
b pawlLH_bot 75 train frames 631 train frames
1.0 @+ 10 ——
300 o o =
20 08| m 09
HE 0
x-coord 200 &< 06 é 0.8 E
100 i
X & + 101y +
L5Q 09 '@ 0.9 +
38 os
225 = 0.8
y-coord 8= 07 i
200 T 07 +
1.0 = 10 +
= -
10 v Lo 090 oo|
. © O 08| ¢
Confidence 0.9 i =& M 08
] .
' a <t 07
08 06 @ 07 é
200
oreees ol 1
% g 0.9
loss (pix) 20mets -] | . z 8 0o | ¥
9 35 08 08
100 8= oy ¢
Multi-view g o P
rea L & & X ox s & %
i 20 pixels 3 ol
loss (pix) . = Ooo ?}b‘ eqo $QQ OOQ (b\b\ Q,QQ §Q
200 250 300 350 400 S S &Qé Q@
X X
Frame number & @&' 2& @0\\'
[

Unsupervised losses complement confidence for outlier detection

631 train frames
Outliers: 39,000/800,000 keypoints

75 train frames
Outliers: 116,000/800,000 keypoints

Outliers selected by s Temporal .
each metric Confidence difference Cenfidence Temporal
difference
14,081 43,994 913 4,262 8,438 193
Multi-view Multi-view
PCA PCA
Pose PCA Pose PCA

Multi-view PCA Multi-view PCA

Fig. 3 |. Unsupervised losses complement model confidence for outlier detection.
a, Example frame sequence from the mirror-mouse dataset. Predictions from a DeepLabCut

model (trained on 631 frames) are overlaid (magenta X), along with the ground truth (green
+). Open white circles denote the location of the same body part (left hind paw) in the other
(top) view; given the geometry of this setup, a large horizontal displacement between the top
and bottom predictions indicates an error. Each frame is accompanied with ‘standard outlier
detectors’, including confidence, temporal difference loss (shaded in blue) and ‘proposed
outlier detectors’, including multi-view PCA loss (shaded in red; Pose PCA excluded

for simplicity), indicates an inlier as defined by each metric, and indicates an outlier. b,
Example traces from the same video. Blue background denotes times where standard outlier
detection methods flag frames: confidence falls below a threshold (0.9) and/or the temporal

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 52

difference loss exceeds a threshold (20 pixels). Red background indicates times where the
multi-view PCA error exceeds a threshold (20 pixels). Purple background indicates both
conditions are met. ¢, The total number of keypoints flagged as outliers by each metric,
and their overlap. d, AUROC for each paw, for DeepLabCut models trained with 75 and
631 labeled frames (left and right columns, respectively). AUROC = 1 indicates the metric
perfectly identifies all nominal outliers in the video data; 0.5 indicates random guessing.
AUROC values are computed across all frames from 20 test videos; box plot variability is
over n = 5 random subsets of training data. Boxes use the 25th, 50th and 75th percentiles
for minimum, center and maximum values, respectively; whiskers extend to 1.5 times the
interquartile range (IQR).

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Multi-view

-3

d

y-coord x-coord

Conf

PCA

Loss value

Loss value

Traces for paw4RH_top c
200 40 i
100 g 20 1
[0}
100 %
‘a 10
a
(0]
50 (®]
1 M =y % labels - - - |-
in error
0o computation
50 — Baseline
— Semi-super TCN l l
~ L JJ_ 5]
1,500 1,600 1,700 1,800 1,900 2,000 o}
Frame number 2 20 -
[0)
Ko
X
a 10 A
a
(0]
@)
8 Baseline "
o Semi-super TCN
Frame 1,548 Frame 1,549 Frame 1,550 Frame 1,551
) Unlabeled data metrics
75 train frames
Temporal difference loss (pix) Multi-view PCA loss (pix)
100% 50% 20% 100% 50% 20%
200,000 frames 1
L~ 10 : —
6 ; —
/ 6 - ; 10 -
f —
4+ // 4 : 6
_//
_—'// :
3+ ——— 2 é 4 4
631 train frames
Temporal difference loss (pix) Multi-view PCA loss (pix)
100% 5% 100% 5.%
% frames o
i€ - - in loss 10 5:0/°
6 - computation !
4+ — 41 : 6 |
L
31 5 4 4
(o] 2 4 0 2 4

Ensemble s.d.

Ensemble s.d.

Page 53

75 train frames
100% 50% 20%
17,150 i
keypoints

i M DeeplabCut
M Baseline
| TCN
M ss
M SS-TCN

A

631 train frames
100% 5%
50%

Ensemble s.d.
"Harder" keypoints ——>

Pose PCA loss (pix)
100% 50% 20%

Ve

=

A\

Pose PCA loss (pix)
100% 5%

=
_—

50%

Ensemble s.d.

Fig. 4 |. Unlabeled frames improve pose estimation (raw network predictions).
a, Example traces from the baseline model and the semi-supervised TCN model (trained

with 75 labeled frames) for a single keypoint (right hind paw; top view) on a held-out

video (Supplementary Video 5). One erroneous paw switch is shaded in gray. b, A sequence

of frames (1,548-1,551) corresponding to the gray shaded region in a in which a paw

switch occurs. ¢, We computed the standard deviation of each keypoint prediction in each

frame in the OOD labeled data across all model types and seeds (five random shuffles

of training data). We then took the mean pixel error over all keypoints with a standard

deviation larger than a threshold value, for each model type. Smaller standard deviation
thresholds include more of the data (n = 17,150 keypoints total, indicated by the ‘100%’
vertical line; (253 frames) x (5 seeds) x (14 keypoints) — missing labels), while larger

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 54

standard deviation thresholds highlight more ‘difficult’ keypoints. Error bands represent the
s.e.m. over all included keypoints and frames for a given standard deviation threshold. d,
Individual unsupervised loss terms are plotted as a function of ensemble standard deviation
for the scarce (top) and abundant (bottom) label regimes. Error bands as in ¢, except we first
computed the average loss over all keypoints in the frame (200,000 frames total; (40,000
frames) x (5 seeds)).

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duuosnuey Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Ensemble of pose estimation networks
(any network type)

Individual models

Network 1— Ensemble means

Test video

} > .
{ | Ensemble variances

pawlLH_top (x)

Network m

Post-processor comparison

Page 55
b EKS
Dynamics model
t=1 t=2 Temporal =7

constraints

| 1 pawlLH_top (x) \/\f\/\,\ Latent e s
Network 2 pawlLH_top (y) W’/\/

state

Observation model
Spatial/multi-view
constraints
Ensemble
means

pawlLH_top (y) . 1 A /

Ensemble
variances

EKS (temporal) ensemble size analysis

c Mirror mouse labeled data (253 OOD frames) e Mirror mouse labeled data (253 OOD frames)
75 train frames 631 train frames 75 train frames 631 train frames
_100% 50% 5% _100% 5% _100% 50% 5% _100% 5%
10 4 H 1 i 50% 40 - L | 50%
30 4 , i T 30] e
S 20 1 S 20 g
° o / Raw (DLC)
— = — == Raw
2 - Il\aﬂaev:ii(aal_f?l)ter g 4 -—=
& 10 — ARIMA e 10 =m=3 1
== Ensemble mean / - fg
== Ensemble median % labels - -/ - i » 6 % labels - >
== EKS (temporal) i inerror - = in error
== EKS (MV PCA) i computation =-m=8 i computation
(0] 2 4 2 4 0] 2 4 (0] 2 4
Ensemble s.d. Ensemble s.d. Ensemble s.d. Ensemble s.d.
‘Harder’ keypoints ——» ‘Harder’ keypoints ——>
d f

pawlLH_top x position

pawl1LH_top x velocity

pawlLH_top x position

pawl1LH_top x velocity

Medlan filter

Ensemb e median

EKS (temporal
& \ m mz/G\/\/\/\W\}\ “ } “

|50 pix/ms

EKS (M\/ PCA)

S— J 100 pix
250 ms

Fig. 5 |. The EKS post-processor.
Results are based on DeepLabCut models trained with different subsets of InD data and

different random initializations of the head. a, Deep ensembling combines the predictions of
multiple networks. b, The EKS leverages the spatiotemporal constraints of the unsupervised
losses as well as uncertainty measures from the ensemble variance in a probabilistic state-
space model. Ensemble means of the keypoints are modeled with a latent linear dynamical
system; temporal smoothness constraints are enforced through the linear dynamics (orange
arrows) and spatial constraints (Pose PCA or multi-view PCA) are enforced through a fixed
observation model that maps the latent state to the observations (green arrows). Instead of
learning the observation noise, we use the time-varying ensemble variance (red arrows).
EKS uses a Bayesian approach to weight the relative contributions from the prior and

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 56

the observations. ¢, Post-processor comparison on OOD frames from the mirror-mouse
dataset. We plotted pixel error as a function of ensemble standard deviation (as in Fig. 4)
for several methods. The median filter and ARIMA models act on the outputs of single
networks; the ensemble means, ensemble medians and EKS variants act on an ensemble
of five networks. EKS (temporal) only utilizes temporal smoothness, and is applied one
keypoint at a time. EKS (MV PCA) utilizes multi-view information as well as temporal
smoothness, and is applied one body part at a time (tracked by one keypoint in each of two
views). Error bands as in Fig. 4 (n = 17,150 keypoints at 100% line). d, Trace comparisons
for different methods (75 train frames). Gray lines show the raw traces used as input to the
method; colored lines show the post-processed trace. e, Pixel error comparison for the EKS
(temporal) post-processor as a function of ensemble members (m). Error bands as in ¢. f,
Trace comparisons for varying numbers of ensemble members (75 train frames).

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Biderman et al. Page 57

Example session 65 sessions
a LP + EKS b
£ 5 < o FE.
. 5
o e
¢ Bottom e " -
Left v |
« Right @ " Pk
D
.
P=12x10"
&
c d i ,P=12x10
30 " 100 P=12x10" —
5 g o715
T 99 €
@
g 5 0.50
B N
T'g / E 0.25
= 10
o 2 0
= £
(0]
0 Pearson r =0.15 Pearson r=0.81 Pearson r =1.00 > -025
0 10 20 30 (0] 10 20 30 [0} 10 20 30 DLC LP LP+EKS
Horizontal diameter Horizontal diameter Horizontal diameter
f P=1.0x10"
e Trial consistency = 0.02 Trial consistency = 0.26 Trial consistency = 0.32
4

i Reward delivery

Normalized diam (pix)
(=]

0.5 1.0 1.5 DLC LP LP+EKS
Time (s) Time (s) Time (s)

0.5 1.0 15 -0.5

h P=5.4x10"

5

g Neural decoding of pupil diameter

I 1 pixel /f\
LP + EKS
1s

Decoding R?

Neural prediction

DLC LP LP+EKS

Fig. 6 |. Lightning Pose models and EKS improve pose estimation on IBL-pupil data.
a, Sample frame overlaid with a subset of pupil markers estimated from DeepLabCut (DLC;

left), Lightning Pose using a semi-supervised TCN model (LP; center) and a five-member
ensemble using semi-supervised TCN models (LP + EKS; right). b, Example frames from a
subset of 65 IBL sessions. ¢, Empirical distribution of vertical diameter measured from top
and bottom markers scattered against horizontal pupil diameter measured from left and right
markers. Column arrangement as in a. d, Vertical versus horizontal diameter correlation was
computed across n = 65 sessions for each model. The LP + EKS model has a correlation of
1.0 by construction. e, Pupil diameter was plotted for correct trials aligned to feedback

Nat Methods. Author manuscript; available in PMC 2025 May 19.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Biderman et al.

Page 58

onset; each trial was mean subtracted. DeepLabCut and LP diameters were smoothed

using IBL’s default post-processing, compared to LP + EKS outputs. We compute a trial
consistency metric (the variance explained by the mean over trials; see text) as indicated in
the titles. f, The trial consistency metric computed across n = 65 sessions. g, Example traces
of LP + EKS pupil diameters (blue) and predictions from neural activity (orange) for several
trials using cross-validated, regularized linear regression. h, Neural decoding performance
across n = 65 sessions. In d, f and h, a one-sided Wilcoxon signed-rank test was used;

boxes display the 25th, 50th and 75th percentiles for minimum, center and maximum values,
respectivley; and whiskers extend to 1.5 times the IQR.

Nat Methods. Author manuscript; available in PMC 2025 May 19.

	Abstract
	Results
	Supervised pose estimation and its limitations
	Supervised networks need more labeled data to generalize
	Semi-supervised learning via spatiotemporal constraints
	Temporal difference loss
	Multi-view PCA loss
	Pose PCA loss
	TCN
	Spatiotemporal losses enhance outlier detection
	Both unsupervised losses and TCN boost tracking performance
	The EKS enhances accuracy post hoc
	Improved tracking on IBL datasets
	The Lightning Pose software package and a cloud application

	Discussion
	Online content
	Methods
	Datasets
	Mirror-mouse.
	Mirror-fish.
	CRIM13.
	IBL-paw.
	IBL-pupil.

	Problem formulation
	Model architectures
	Baseline.
	TCN.

	Semi-supervised learning
	Temporal difference loss.
	Multi-view PCA loss.
	Background.
	The multi-view geometry approach.
	Multi-view PCA on the labels (our approach).
	Before training: fitting multi-view PCA on the labels.
	During training: penalizing the unlabeled data for PCA reconstruction errors.

	Pose PCA loss.
	Before training: fitting Pose PCA on the labels.
	During training: penalizing for implausible poses.

	Training
	Diagnostics and model selection
	Constraint violations as diagnostic metrics.
	Model selection based on pixel errors and constraint violations.

	Sample efficiency experiments
	Ablation study showing the effects of individual losses
	DeepLabCut Training
	Ensembling
	Post-processor comparison
	Median filter.
	ARIMA.
	Ensemble mean/median.

	EKS
	Single-keypoint, single-camera case.
	Single-keypoint, multi-camera, synchronized cameras case.
	Pupil EKS.
	Single-keypoint, multi-camera, asynchronous cameras case.
	Pose PCA case.

	CCA
	Neural decoding
	Lightning Pose software package
	A cloud-hosted application for pose estimation as a service
	Reporting summary

	Extended Data
	Extended Data Fig. 1|
	Extended Data Fig. 2 |
	Extended Data Fig. 3|
	Extended Data Fig. 4 |
	Extended Data Fig. 5 |
	Extended Data Fig. 6 ∣
	Extended Data Fig. 7 |
	Extended Data Fig. 8 |
	The International Brain Laboratory
	References
	Fig. 1|
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |

