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Abstract
Contemporary pose estimation methods enable precise measurements of behavior via supervised 
deep learning with hand-labeled video frames. Although effective in many cases, the supervised 
approach requires extensive labeling and often produces outputs that are unreliable for 
downstream analyses. Here, we introduce ‘Lightning Pose’, an efficient pose estimation package 
with three algorithmic contributions. First, in addition to training on a few labeled video frames, 
we use many unlabeled videos and penalize the network whenever its predictions violate motion 
continuity, multiple-view geometry and posture plausibility (semi-supervised learning). Second, 
we introduce a network architecture that resolves occlusions by predicting pose on any given 
frame using surrounding unlabeled frames. Third, we refine the pose predictions post hoc 
by combining ensembling and Kalman smoothing. Together, these components render pose 
trajectories more accurate and scientifically usable. We released a cloud application that allows 
users to label data, train networks and process new videos directly from the browser.

Behavior is a window into the processes that underlie animal intelligence, ranging 
from early sensory processing to complex social interaction1. Methods for automatically 
quantifying behavior from video2–4 have opened the door to high-throughput experiments 
that compare animal behavior across pharmacological5 and disease6 conditions.

Pose estimation methods based on fully supervised deep learning have emerged as a 
workhorse for behavioral quantification7–11. This technology reduces high-dimensional 
videos of behaving animals to low-dimensional time series of their poses, defined in terms 
of a small number of user-selected keypoints per video frame. Three steps are required 
to accomplish this feat. Users first create a training dataset by manually labeling poses 
on a subset of video frames; typically, hundreds or thousands of frames are labeled to 
obtain reliable pose estimates. A neural network is then trained to predict poses that 
match user labels. Finally, the network processes a new video to predict a pose for each 
frame separately. Each predicted keypoint is accompanied by a confidence score, and low-
confidence predictions are typically dropped. This process of labeling–training–prediction 
can be iterated until performance is satisfactory. The tracked poses are used in downstream 
analyses including quantifying predefined behavioral features (for example, gait features 
such as stride length, or social features such as distance between subjects), estimation of 
neural encoding and decoding models, classification of behaviors into discrete ‘syllables’ 
and closed-loop experiments12–17.
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Although the supervised paradigm is effective in many cases, a number of roadblocks 
remain. To start, image labeling can be laborious, especially when handling complicated 
skeletons across multiple views. Even with large, labeled datasets, trained networks 
often produce ‘glitchy’ predictions that require further manipulation before downstream 
analyses18,19, and struggle to generalize to subjects and sessions outside their training data. 
Even networks that achieve low error rates on labeled test frames can still produce error 
frames that hinder downstream scientific tasks. Manually identifying these error frames is 
like finding a needle in a haystack20: errors persist for a few frames at a time, whereas 
behavioral videos can be hours long. Automatic approaches—currently limited to filtering 
low-confidence predictions and temporal discontinuities—can miss scientifically critical 
errors.

To improve the robustness and usability of animal pose estimation, we present Lightning 
Pose, a solution at three levels: modeling, software and a cloud-based application.

First, we leverage semi-supervised learning, which involves training networks on both 
labeled frames and unlabeled videos, and is known to improve generalization and data 
efficiency21. On unlabeled videos, the networks are trained to minimize a number of 
unsupervised losses that encode our prior beliefs about moving bodies: poses should evolve 
smoothly in time, be physically plausible, and be localized consistently when seen from 
multiple views. In addition, we leverage unlabeled frames in a temporal context network 
(TCN) architecture, which instead of processing a single frame at a time, processes each 
frame with its neighboring (unlabeled) frames. Our resulting models outperform their purely 
supervised counterparts across datasets, providing more reliable predictions for downstream 
analyses. We further improve our networks’ predictions using a general Bayesian post-
processing approach, which we coin the ensemble Kalman smoother (EKS): we aggregate 
(‘ensemble’) the predictions of multiple networks—which is known to improve their 
accuracy and robustness22,23—and model those aggregated predictions with a spatially 
constrained Kalman smoother that takes their collective uncertainty into account.

We implemented these tools in a deep learning software package that capitalizes on recent 
advances in the deep learning ecosystem. We name our package Lightning Pose, as it is 
based on the PyTorch Lightning deep learning library24. Unlike most existing packages, 
Lightning Pose is video centric and built for manipulating large videos directly on the 
graphics processing unit (GPU), to support our semi-supervised training.

Finally, we developed a no-install cloud application that is accessed from the browser and 
enables users to annotate data, train networks and diagnose performance without requiring 
programming skills or specialized hardware.

Results
Supervised pose estimation and its limitations

The leading packages for animal pose estimation—DeepLabCut7, SLEAP8, DeepPoseKit9 

and others—differ in architectures and implementation but all perform supervised heat 
map regression on a frame-by-frame basis (Fig. 1a). A standard model is composed of a 
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‘backbone’ that extracts features for each frame (for example, a ResNet-50 network) and a 
‘head’ that uses these features to predict body part location heat maps. Networks are trained 
to match their outputs to manual labels.

Even when trained with many labeled frames, pose estimation network outputs may still 
be erroneous. We highlight this point using the ‘mirror-mouse’ dataset, which features 
a head-fixed mouse running on a treadmill and performing a sensory-guided locomotion 
task14. Using a camera and a bottom mirror, the mouse’s side and underside are observed 
simultaneously, recorded at 250 frames per second. Seventeen body parts are tracked, 
including all four paws in both views. We trained five DeepLabCut networks on 631 labeled 
frames (for each network, we used a different random seed to split the labeled frames into 
train and test sets).

We analyzed the time series of the estimated left hind paw position during 1 s of running 
behavior for each of the five networks (Fig. 1b). Each time series exhibited the expected 
periodic pattern (due to the running gait), but included numerous ‘glitches’, some of 
which are undetected by the networks’ confidence. This collection of five networks—also 
known as a ‘deep ensemble’22—outputs variable predictions on many frames, especially in 
challenging moments of ambiguity or occlusion (Supplementary Video 1). We will later use 
this ensemble variance as a proxy for keypoint ‘difficulty’.

Supervised networks need more labeled data to generalize
It is standard to train a pose estimator using a representative sample of subjects, evaluate 
performance on held-out examples from that sample (‘in-distribution’ test set, henceforth 
InD), then deploy the network for incoming data. The incoming data may include new 
subjects, seen from slightly different angles or lighting conditions (‘out-of-distribution’ test 
set, henceforth OOD). Differences between the InD and OOD test sets are termed ‘OOD 
shifts’25,26.

We analyzed five datasets: ‘mirror-mouse’14, a freely swimming mormyrid fish imaged with 
a single camera and two mirrors (for three views in total; ‘mirror-fish,’ Supplementary Fig. 
1), a resident-intruder assay27,28 (‘CRIM13;’ top-down view), paw tracking in a head-fixed 
mouse29 (‘IBL-paw;’ side view), and a crop of the pupil area in IBL-paw (‘IBL-pupil’). We 
split each labeled dataset into two cohorts of subjects, InD and OOD (Supplementary Table 
1).

We trained supervised networks that use a pretrained ResNet-50 backbone, similar to 
DeepLabCut, on InD data with an increasing number of labeled frames. Ten networks 
were trained per condition, each on a different random subset of InD data. We evaluated 
the networks’ performance on held-out InD and OOD labeled examples. We first replicated 
the observation that InD test-set error plateaus starting from ~200 labeled frames16 (Fig. 
1c). From looking at this curve in isolation, it could be inferred that additional manual 
annotation is unnecessary. However, the OOD error curve keeps steeply declining as more 
labels are added. This larger label requirement is consistent with recent work showing 
that ~50,000 labeled frames are needed to robustly track ape poses30, and that mouse face 
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tracking networks need to be explicitly fine-tuned on labeled OOD data to achieve good 
performance31.

To address these limitations, we developed the Lightning Pose framework, comprising two 
components: semi-supervised learning and a TCN architecture.

Semi-supervised learning via spatiotemporal constraints
Most animal pose estimation algorithms treat body parts as independent in time and space. 
Moreover, they do not train on the vast amounts of available unlabeled videos. These two 
observations offer an opportunity for semi-supervised learning21. We thus train a network 
on both labeled frames (supervised) and large volumes of unlabeled videos (unsupervised; 
Fig. 2a). For unlabeled videos, the network outputs a time series of pose predictions. These 
predictions are subjected to a set of spatiotemporal constraints, and severe violations of these 
constraints incur penalties (with a controllable threshold parameter �). The unsupervised 
losses are applied only during training and hence do not affect video prediction speeds.

Temporal difference loss
The first spatiotemporal constraint we introduce is also one held by 4-month-old infants: 
objects should move continuously32 and not jump too far between video frames. We 
define the temporal difference loss for each body part as the Euclidean distance between 
consecutive predictions in pixels. Similar losses have been used to detect outlier predictions 
post hoc14,31, whereas our goal is to incorporate these losses directly into network 
training33.

The threshold ϵ indicates the maximum allowed jump, forming a ball of zero-loss values 
around the previous prediction; it should be set depending on the frame rate, frame size, the 
camera’s distance from the subject, and how quickly or jerkily the subject moves (Fig. 2b).

If our losses are indeed viable proxies for pose prediction errors, they should be correlated 
with pixel errors in labeled test frames. We analyzed the predictions of a supervised model 
trained with 75 labeled frames, and found a mild correlation between the temporal difference 
loss and pixel errors (log-linear regression: Pearson � = 0.26, 95% confidence interval (CI) 
= [0.20, 0.32]; Fig. 2b). The mild correlation here is expected: errors that persist across 
multiple frames will exhibit a low temporal difference loss; in periods of fast motion, the 
temporal difference loss will be high even when keypoint predictions are accurate. As a 
comparison, confidence is a more reliable predictor of pixel error Pearson � = − 0.54, 95% 
CI = [−0.59, −0.49]).

Multi-view PCA loss
The common pipeline for three-dimensional (3D) tracking in neuroscience includes three 
steps: (1) calibrating multiple cameras using a physical calibration board, (2) training a 
network to estimate a 2D pose independently in each camera, and (3) triangulating the 
2D poses into a 3D pose using standard computer vision techniques18,34. The common 
pipeline has two limitations. First, camera calibration is brittle (especially for small 

Biderman et al. Page 5

Nat Methods. Author manuscript; available in PMC 2025 May 19.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



experimental setups) and adds experimental complexity. Second, network training is blind to 
the dependencies between the views.

The ‘multi-view PCA’ loss constrains the predictions for unlabeled videos to be consistent 
across views35,36, while bypassing the need for camera calibration. Each multi-view 
prediction contains width–height pixel coordinates for a single keypoint across all views. 
We use principal component analysis (PCA)—a linear method—to compress each multi-
view prediction into three dimensions, and then expand it back into the original pixel 
coordinates (henceforth, ‘PCA reconstruction’). We define the multi-view PCA loss as the 
pixel error between the original versus the PCA-reconstructed prediction, averaged across 
keypoints and views. The multi-view PCA loss should approach zero when the predictions 
are consistent across views and when nonlinear camera distortions are negligible (Fig. 2c). 
Substantial distortions may be introduced by the lens or a water medium; this simple linear 
approach will not be robust in these cases. Practically, however, in both the mirror-mouse 
(two views) and mirror-fish (three views) datasets, distortions were minimized by placing 
the camera far from the subject (~1.1 m and ~1.7 m, respectively). In both cases, three PCA 
dimensions explained >99.9% of the multi-view ground truth label variance (Fig. 2c).

For a single frame of the mirror-mouse dataset, we computed the loss landscape for the 
left front paw on the top view, given its position in the bottom view. According to multiple-
view geometry, a point identified in one camera constrains the corresponding point in a 
second camera to a specific line, known as the ‘epipolar line’37. Indeed, the loss landscape 
exhibits a line of low loss values that intersects with the paw’s true location (Fig. 2c). The 
multi-view loss is strongly correlated with pixel error in a test set of labeled OOD frames 
(Pearson � = 0.88, 95% CI = [0.87, 0.90]), much more so than the temporal difference loss 
or confidence, motivating its use both as a post hoc quality metric and as a penalty during 
training.

Pose PCA loss
Not all body configurations are feasible, and of those that are feasible, many are unlikely. 
Even diligent yoga practitioners will find their head next to their foot only on rare occasions 
(Fig. 2d). The Pose PCA loss constrains the predicted pose to lie on a low-dimensional 
subspace of feasible and likely body configurations. It is defined as the pixel error between 
an original pose prediction and its reconstruction after low-dimensional compression.

This loss is inspired by the success of low-dimensional models in capturing biological 
movement38, ranging from worm locomotion39 to human hand grasping40. We similarly 
find that across four of our datasets, 99% of the pose variance can be explained with far 
fewer dimensions than the number of pose coordinates (Fig. 2d)—mirror-mouse: 14/28 
components; mirror-fish: 8/40; CRIM13: 8/28; IBL-pupil 3/8 (IBL-paw only contains four 
dimensions). The effective pose dimensionality depends on the complexity of behavior, the 
keypoints selected for labeling and the quality of the labeling. Pose dimensionality will be 
lower for sets of spatially correlated keypoints, and higher in the presence of labeling errors 
that reduce these correlations.
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Using an example from the mirror-mouse dataset, we computed the PCA loss landscape for 
the left hind paw given the location of all the other body parts, finding that the loss strongly 
favors predictions in the vicinity of the true paw location (Fig. 2d). Across all labeled OOD 
frames, Pose PCA loss closely tracks ground truth pixel error (Fig. 2d; Pearson � = 0.91, 
95% CI = [0.90, 0.92]). The Pose PCA loss might erroneously penalize valid postures that 
are not represented in the labeled dataset. To test the prevalence of this issue, we took 
DeepLabCut models trained with abundant labels and computed the Pose PCA loss on held-
out videos. We collected 100 frames with the largest Pose PCA loss per dataset. Manual 
labeling revealed that 85/100 (mirror-mouse; Supplementary Video 2), 87/100 (mirror-fish; 
Supplementary Video 3) and 100/100 (CRIM13; Supplementary Video 4) of the frames 
include true errors, indicating that in most cases, large Pose PCA losses correspond to pose 
estimation errors, rather than unseen rare poses.

TCN
When labeling frames that contain occlusions or ambiguities, practitioners often scroll the 
video to help ‘fill in the gaps’. This useful temporal context is not provided to standard 
architectures that process one frame at a time.

Therefore, we developed a TCN (Fig. 2e), which uses a 2� + 1 frame sequence to predict the 
location heat maps for the middle (that is, � + 1) frame. As in the standard architecture, the 
TCN starts by pushing each image through a backbone that extracts useful features. Then, 
instead of predicting the pose directly from each of these individual features, a bidirectional 
convolutional recurrent neural network (CRNN) is applied to the time series of features; the 
CRNN outputs a prediction only for the middle frame. The CRNN is lightweight compared 
to the backbone, and we only apply the backbone once per frame; therefore, the TCN 
runtime scales linearly with the number of total context frames. We have found that a 
context window of five frames (that is, � = 2) provides an effective balance between speed 
and accuracy and have used this value throughout the paper. The outputs of the TCN and 
the single-frame model tend to match on fully visible keypoints, and differ on occluded or 
ambiguous keypoints.

Spatiotemporal losses enhance outlier detection
Practitioners often detect outliers using a combination of low-confidence and large temporal 
difference loss14,18,31,41. Here we show the multi-view and Pose PCA losses complement 
this standard approach by capturing additional unique outliers in video predictions, going 
beyond small, labeled test sets (Fig. 2b–d).

We start with an example from the mirror-mouse dataset, focusing on the left hind paw 
on the bottom view (Fig. 3a,b). We analyzed the predictions from a DeepLabCut model 
(trained as in Fig. 1b). One common mistake involves switching back and forth between 
similar looking body parts, in this case the front and hind paws (Fig. 3a). These ‘paw 
switches’ are not flagged by low confidence. They are also partially missed by the temporal 
difference loss, which only flags jumps to and from a wrong location, but not consecutive 
predictions at the wrong location. In contrast, the multi-view PCA loss flags the errors due 
to inconsistency with the top-view prediction.
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We generalized this example by quantifying the overlaps and unique contributions of the 
different outlier detection methods on 20 unlabeled videos. We investigate two data regimes: 
‘scarce labels’ (75), which mimics prototyping a new tracking pipeline, and ‘abundant 
labels’ (631 for the mirror-mouse dataset), that is, a ‘production’ setting with a fully trained 
network.

First, when moving from the scarce to the abundant labels regime, we found a 66% 
reduction in the outlier rate—the union of keypoints flagged by confidence, temporal 
difference and multi-view PCA losses—going from 116,000/800,000 to 39,000/800,000 
keypoints. This indicates that the networks become better and more confident. Multi-view 
PCA captures a large number of unique outliers, which are missed by confidence and the 
temporal difference loss (Fig. 3c). The Pose PCA includes both views and thus is largely 
overlapping with multi-view PCA.

The overlap analysis above does not indicate which outliers are true versus false positives. 
To analyze this at a large scale, we restricted ourselves to a meaningful subset of the ‘true 
outliers’ that can be detected automatically, namely predictions that are impossible given 
the mirrored geometry. We defined this subset of outliers as frames for which the horizontal 
displacement between the top and bottom view predictions for a paw exceeds 20 pixels14; 
the networks output 72,000/800,000 such errors with scarce labels, and 16,000/800,000 with 
abundant labels. These spatial outliers should violate the PCA losses, but it is unknown 
whether they are associated with low confidence and large temporal differences. Instead 
of setting custom thresholds on our metrics as in Fig. 3b, we now estimate each metric’s 
sensitivity via a ‘receiver operating characteristic’ (ROC) curve, which plots the true positive 
rate against the false positive rate across all possible thresholds. Area under the receiver 
operating characteristic curve (AUROC) equals 1 for a perfect outlier detector, 0.5 for 
random guessing, and values below 0.5 indicate systematic errors. All metrics are above 
chance in detecting ‘true outliers’ (Fig. 3d); for this class of spatial errors, the PCA losses 
are more sensitive outlier detectors than network confidence, and certainly more than the 
temporal difference loss (due to the pathologies described above). In summary, the PCA 
losses identify additional outliers that would have been otherwise missed by standard 
confidence and temporal difference thresholding (Extended Data Figs. 1 and 2).

Both unsupervised losses and TCN boost tracking performance
We now evaluate the tracking accuracy of four Lightning Pose model variants: networks 
trained with semi-supervised learning (‘SS’, including all applicable unsupervised losses), 
TCN architecture (‘TCN’), a combination of the two (‘SS–TCN’), and neither (‘baseline’). 
The ‘baseline’ model enables a clean comparison to supervised pose estimation by 
eliminating implementation-level artifacts. It differs from DeepLabCut in implementation 
(Supplementary Information) although it matches it in performance across datasets. We 
compared the networks’ raw predictions, without any post-processing, to focally assess the 
implications of the proposed methods.

First, we examined the mouse’s right hind paw position (top view) during 2 s of running 
(Fig. 4a and Supplementary Video 5). We compared the predictions from SS–TCN versus 
the baseline model, both trained on 75 labeled frames. The SS–TCN predictions are 
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smoother and more confident, exhibiting a clearer periodic pattern expected for running 
on a stationary wheel. Akin to Fig. 3a, we find confident ‘paw switches’ for the baseline 
model, but not for SS–TCN (Fig. 4b).

Next, for each model variant we trained five networks with different random subsets of InD 
data, and calculated pixel errors on 253 labeled OOD test frames. As noted elsewhere20,42, 
average pixel error is an incomplete summary of network performance, since error averages 
may be dominated by a majority of ‘easy’ keypoints, obscuring differences on the minority 
of ‘difficult’ keypoints. Instead, we quantified the pixel error as a function of keypoint 
‘difficulty’, operationally defined as the variance in the predictions across all model variants 
and random seeds. When this variance is large, at least one network in the ensemble must be 
in error (Fig. 1 and Supplementary Video 1).

As expected, for both label regimes (Fig. 4c), OOD pixel error increased as a function of 
ensemble standard deviation. With scarce labels, models struggled to resolve even ‘easy’ 
keypoints, and SS–TCN outperformed baseline and DeepLabCut models across all levels 
of difficulty. By training semi-supervised models with a single loss at a time, we found 
the PCA losses underlie most improvements (Extended Data Fig. 3). The TCN architecture 
contributes only marginally to this dataset. With abundant labels, all models accurately 
localized ‘easy’ keypoints, and the trends observed in the scarce labels regime become 
pronounced only for more ‘difficult’ keypoints.

Next, we assessed performance on a much larger unlabeled dataset of 20 OOD videos. 
We computed each of our losses for every predicted keypoint on every video frame, and 
we observed similar trends (Fig. 4d): the SS–TCN model improved sample efficiency with 
scarce labels, and reduced rare errors with abundant labels (consistent with expectations, 
given that the semi-supervised models are explicitly trained to minimize these losses).

We found similar patterns for the mirror-fish (Extended Data Fig. 4 and Supplementary 
Video 6) and CRIM13 (Extended Data Fig. 5 and Supplementary Video 7) datasets.

The EKS enhances accuracy post hoc
The spatiotemporal constraints are enforced during training but not at prediction time. 
We now present a post-processing algorithm which uses the spatiotemporal constraints to 
further refine the final predictions. Successful post-processing requires identifying which 
predictions need fixing; that is, properly quantifying uncertainty for each keypoint on each 
frame. As emphasized above, low network confidence captures some, but not all, errors; 
conversely, constraint violations indicate the presence of errors within a set of keypoints but 
do not identify which specific keypoint is in fact an error.

We have shown that when using an ensemble of networks, the ensemble variance—which 
varies for each keypoint on every frame— is a useful signal of model uncertainty43,44 

(Fig. 4c). We developed a post-processing framework that integrates this uncertainty signal 
with our spatiotemporal constraints using a probabilistic ‘state-space’ model approach 
(Fig. 5a,b). This framework contains a prior and a likelihood. The prior consists of a 
latent state that evolves smoothly in time. The likelihood model contains the spatial 
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constraints, and crucially, the per-keypoint per-frame likelihood noise estimated by the 
ensemble variance. For example, we enforce multi-view constraints by projecting the 3D 
true position of the body part (the ‘latent state’) through two-dimensional (2D) linear 
projections to obtain the keypoints in each camera view. We performed inference in this 
model using the Kalman filter-smoother recursions45 and, therefore, name our approach 
the Ensemble Kalman Smoother (EKS). When a keypoint’s uncertainty is high (that is, 
disagreement among ensemble members), EKS will upweight the prediction from the 
spatiotemporal constraints relative to the uncertain observation (ensemble mean or median). 
When a keypoint’s uncertainty is low then EKS will upweight this observation relative to 
the spatiotemporal constraints. Unlike previous approac hes14,18,20,31,41, EKS requires no 
manual selection of confidence thresholds or (suboptimal) temporal linear interpolation for 
dropped keypoints. Moreover, EKS is agnostic to the type of networks used to generate the 
ensemble predictions.

We benchmarked EKS on DeepLabCut models fit to the mirror-mouse dataset. EKS 
compared favorably to other standard post-processors, including median filters and ARIMA 
models (which are fit on the outputs of single networks), and the ensemble mean and median 
(computed using an ensemble of multiple networks; Fig. 5c,d). EKS provides substantial 
improvements in OOD pixel errors with as few as � = 2 networks; we found � = 5 networks 
is a reasonable choice given the computation-accuracy tradeoff (Fig. 5e,f), and used this 
ensemble size throughout.

When applied to Lightning Pose semi-supervised TCN models, EKS provides additional 
improvements across multiple datasets, particularly on ‘difficult’ keypoints where the 
ensemble variance is higher (Extended Data Fig. 6). EKS achieves smooth and accurate 
tracking even when the models make errors due to occlusion and paw confusion (Extended 
Data Fig. 6, Supplementary Videos 8–12 and Supplementary Figs. 2–4).

Improved tracking on IBL datasets
Next, we analyzed two large-scale public datasets from the International Brain Laboratory 
(IBL)29. In each experimental session, a mouse was observed by three cameras while 
performing a visually guided decision-making task. The ‘IBL-pupil’ dataset contains 
zoomed-in videos of the pupil, where we tracked the top, bottom, left and right edges of 
the pupil. In ‘IBL-paw’, we tracked the left and right paws.

Despite efforts at standardization, the data exhibited considerable visual variability between 
sessions and labs, which presents serious challenges to existing pose estimation methods. 
The IBL’s preliminary data release used DeepLabCut, followed by custom post-processing. 
As detailed elsewhere29, the signal-to-noise ratio of the estimated pupil diameter is too low 
for reliable downstream use in a majority of the sessions, largely due to occlusions caused 
by whisking and infrared

light reflections. Paw tracking tends to be more accurate, but is contaminated by 
discontinuities, especially when a paw is retracted behind the torso.
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We evaluated three pose estimators for the IBL-pupil dataset (Fig. 6a,b): DeepLabCut with 
custom post-processing (‘DLC’), Lightning Pose’s SS–TCN with the same post-processing 
(‘LP’; using temporal difference and Pose PCA losses), and a pupil-specific EKS variant 
applied to an ensemble of � = 5 LP models (‘LP + EKS’). The pupil-specific EKS uses a 
3D latent state: pupil centroid (width and height coordinates) and a diameter. The latent state 
is then projected linearly onto the eight-dimensional tracked pixel coordinates. To directly 
compare our methods to the publicly released IBL DeepLabCut traces, we trained on all 
available data and evaluated on held-out unlabeled videos. We defined several pupil-specific 
metrics to quantify the accuracy of the different models and their utility for downstream 
analyses (Supplementary Table 2).

The first metric compares the ‘vertical’ and ‘horizontal’ diameters, that is, top(�) − bottom(�)
and right(�) – left(�), respectively (Fig. 6c,d). These diameters should be equal (or at 
least highly correlated) and, therefore, low correlations between these two values signal 
poor tracking. The LP model (Pearson’s � = 0.88 ± 0.01, mean ± s.e.m.) improves over 
DeepLabCut (� = 0.36 ± 0.03). Because the pupil-specific EKS uses a single value for both 
vertical and horizontal diameters, it enforces a correlation of 1.0 by construction.

We are interested in how behaviorally relevant events (such as reward) impact pupil 
dynamics. To investigate this, we aligned diameter estimates to the time of reward delivery 
for each successful trial. We defined a second quality metric—trial consistency—by taking 
the variance of the mean pupil diameter trace and dividing by the variance of the mean-
subtracted traces across all trials. This metric is zero if there are no reproducible dynamics 
across trials; it is infinity if the pupil dynamics are identical and non-constant across trials 
(constant outputs result in an undefined metric because both numerator and denominator are 
zero). Although we expect some amount of real trial-to-trial variability in pupil dynamics, 
any noise introduced during pose estimation will decrease this metric. The LP and LP + 
EKS estimates show greater trial-to-trial consistency compared to the DeepLabCut estimates 
(Fig. 6e,f; DLC 0.35 ± 0.06; LP 0.62 ± 0.07; LP + EKS 0.74 ± 0.08). The increased 
trial-to-trial consistency of LP + EKS does not compromise the model’s ability to track the 
pupil well within individual trials (Supplementary Video 13).

Finally, we examine the extent to which we can decode pupil diameter from neural data 
using a simple ridge regression model. This analysis also serves to verify that the LP + EKS 
approach is not merely suppressing pupil diameter fluctuations, but rather better capturing 
pupil dynamics that can be predicted from an independent measurement of neural activity. 
Across sessions, LP and LP + EKS enhance decoding accuracy compared to DeepLabCut 
(DLC �2 = 0.27 ± 0.02 ; LP 0.33 ± 0.02; LP + EKS 0.35 ± 0.02; Fig. 6g,h).

The IBL-paw results appear in Extended Data Fig. 7, Supplementary Video 14 and the 
Supplementary Information.

The Lightning Pose software package and a cloud application
We released an open-source software package—Lightning Pose—and a separate cloud 
application.
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We built the Lightning Pose package to be (1) simple to use and easy to maintain: we 
aim to minimize ‘boilerplate’ code (such as graphical user interfaces (GUIs) or training 
loggers) by outsourcing to industry-grade packages; (2) video centric: the networks operate 
on video clips, rather than on a single image at a time; (3) modular and extensible: our 
goal is to facilitate prototyping of new losses and models; (4) scalable: we support efficient 
semi-supervised training and evaluation; (5) interactive: we offer a variety of tracking 
performance metrics and visualizations during and after training, enabling easy model 
comparison and outlier detection (Extended Data Fig. 8a).

The scientific adoption of deep learning packages like ours presents an infrastructure 
challenge. Laboratories need access to GPU-accelerated hardware with a set of preinstalled 
drivers and packages; therefore, we developed a cloud application that supports the full 
life cycle of animal pose estimation (Extended Data Fig. 8b) and is suitable for users with 
minimal coding expertise and only requires internet access.

Discussion
We presented Lightning Pose, a semi-supervised deep learning system for animal pose 
estimation. Lightning Pose uses a set of spatiotemporal constraints on postural dynamics to 
improve network reliability and efficiency. We further refined the pose estimates post hoc, 
with the EKS that uses reliable predictions and spatiotemporal constraints to interpolate over 
unreliable ones.

Our work builds on previous semi-supervised animal pose estimation algorithms that use 
spatiotemporal losses on unlabeled videos33,35,35. Semi-supervised learning is not the only 
technique that enables improvements over standard supervised learning protocols. First, it 
has been suggested that supervised pose estimation networks can be improved by pretraining 
them on large, labeled datasets for image classification7 or pose estimation46, to an extent 
that might eliminate dataset-specific training47. Other work avoids pretraining altogether by 
using lighter architectures8. These ideas are complementary to ours: any robust backbone 
obtained through these procedures could be easily integrated into Lightning Pose, and 
further refined via semi-supervised learning.

Human pose estimation, like animal pose estimation, is commonly approached using 
supervised frame-by-frame heat map regression48. Human models are trained on much 
larger labeled datasets containing either annotated images49 or 3D motion capture50. 
Moreover, human models track a standardized set of keypoints, and some operate on a 
standard skinned human body model51. In contrast, animal pose estimation often contends 
with relatively few labels and bespoke sets of keypoints to track. Although human pose 
estimation models can impressively track crowds of moving humans, doing downstream 
science using the keypoints still presents several challenges48 similar to those discussed in 
the Results. Lightning Pose can be applied to single-human pose estimation by fine-tuning 
a human pose estimation backbone to specific experimental setups (such as patients in a 
clinic), while enforcing our spatiotemporal constraints. Future work could also apply EKS to 
the outputs of off-the-shelf human trackers.
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Roughly speaking, two camps coexist in multi-view pose estimation52: those who use 3D 
information during training10,35,53,54 and those who train 2D networks and perform 3D 
reconstruction post hoc18,55. Either approach involves camera calibration, whose limitations 
we discussed above. Lightning Pose can be seen as an intermediate approach: we train with 
3D constraints without an explicit camera calibration step. Lightning Pose does not provide 
an exact 3D reconstruction of the animal, but rather a scaled, rotated and shifted version 
thereof. Our improved predictions can be used as inputs to existing 3D reconstruction 
pipelines. Concurrent work42 uses a temporal difference loss for semi-supervised training of 
3D multi-view convolutional networks.

A number of directions remain for future work. One is to improve the efficiency of the EKS 
method. The advantages of ensembling come at a cost: we need to train and run inference 
with multiple networks (post-processing the networks’ output with EKS is relatively 
computationally cheap). One natural approach would be ‘knowledge distillation’56: train 
a single network to emulate the full EKS output.

Finally, while the methods proposed here can currently track multiple distinguishable 
animals (for example, a black mouse and a white mouse), they cannot track multiple similar 
animals16,57, because to compute our unsupervised losses we need to know which keypoint 
belongs to which animal. Thus, adapting our approaches to the general multi-animal setting 
remains an important open avenue for future work.

Online content
Any methods, additional references, Nature Portfolio reporting summaries, source data, 
extended data, supplementary information, acknowledgements, peer review information; 
details of author contributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41592-024-02319-1.

Methods
All datasets used for the experiment were collected in compliance with the relevant 
ethical regulations. See the following published papers for each dataset: mirror-mouse14, 
CRIM13 (ref. 27) and IBL datasets29. All mirror-fish experiments adhered to the American 
Physiological Society’s Guiding Principles in the Care and Use of Animals and were 
approved by the Institutional Animal Care and Use Committee of Columbia University, 
under protocol number AABN0557.

Datasets
We considered diverse datasets collected via different experimental paradigms for mice and 
fish. For each dataset, we collected a large number of videos including different animals and 
experimental sessions, and labeled a subset of frames from each video. We then split this 
data into two nonoverlapping subsets (that is, a given animal and/or session would appear 
only in one subset). The first subset is the InD data that we use for model training. The 
second subset is the OOD data that we use for model evaluation. This setup mimics the 
common scenario in which a network is thoroughly trained on one cohort of subjects, and is 
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t h e n us e d t o pr e di ct n e w s u bj e cts. S u p pl e m e nt ar y Ta bl e 1 d et ails t h e n u m b er of fr a m es f or 

e a c h s u bs et p er d at as et, as w ell as t h e n u m b er of u ni q u e a ni m als a n d vi d e os t h os e fr a m es 

c a m e fr o m.

Mirr or- m o u s e . H e a d-fi x e d mi c e r a n o n a cir c ul ar tr e a d mill w hil e a v oi di n g a m o vi n g 

o bst a cl e 1 4 . T h e tr e a d mill h a d a tr a ns p ar e nt fl o or a n d a mirr or m o u nt e d i nsi d e at 4 5 °, 

all o wi n g a si n gl e c a m er a t o c a pt ur e t w o r o u g hl y ort h o g o n al vi e ws (si d e vi e w a n d b ott o m 

vi e w vi a t h e mirr or) at 2 5 0 H z. T h e c a m er a w as p ositi o n e d at a l ar g e dist a n c e fr o m t h e 

s u bj e ct ( ~ 1. 1 m) t o mi ni mi z e p ers p e cti v e dist orti o n. Fr a m e si z es w er e 4 0 6 × 3 9 6 pi x els a n d 

r es h a p e d d uri n g tr ai ni n g t o 2 5 6 × 2 5 6 pi x els. S e v e nt e e n k e y p oi nts w er e l a b el e d a cr oss t h e 

t w o vi e ws i n cl u di n g s e v e n k e y p oi nts o n t h e m o us e’s b o d y p er vi e w, pl us t hr e e k e y p oi nts o n 

t h e m o vi n g o bst a cl e.

Mirr or -fi s h. Ni n et e e n wil d- c a u g ht ( a g e u n k n o w n) a d ult m al e a n d f e m al e m or m yri d fis h 

( 1 5 – 2 2 c m i n l e n gt h) of t h e s p e ci es G n at h o n e m us p et ersii  w er e us e d i n t h e e x p eri m e nt. 

Fis h w er e h o us e d i n 6 0- g all o n t a n ks i n gr o u ps of 5 – 2 0. Wat er c o n d u cti vit y w as m ai nt ai n e d 

b et w e e n 6 0 μ S  a n d 1 0 0 μ S  b ot h i n t h e fis h’s h o m e t a n ks a n d d uri n g e x p eri m e nts.

T h e fis h s w a m fr e el y i n a n d o ut of a n e x p eri m e nt al t a n k, c a pt uri n g w or ms fr o m a w ell. T h e 

t a n k h a d a si d e mirr or a n d a t o p mirr or, b ot h at 4 5 °, pr o vi di n g t hr e e diff er e nt vi e ws s e e n 

fr o m a si n gl e c a m er a at 3 0 0 H z ( S u p pl e m e nt ar y Fi g. 1). H er e t o o, t h e c a m er a was pl a c e d 

~ 1. 7 m a w a y fr o m t h e c e nt er of t h e fis h t a n k t o r e d u c e dist orti o ns. Fr a m e si z es w er e 3 8 4 × 

5 1 2 pi x els a n d r es h a p e d d uri n g tr ai ni n g t o 2 5 6 × 3 8 4 pi x els.

S e v e nt e e n b o d y p arts w er e tr a c k e d a cr oss all t hr e e vi e ws f or a t ot al of 5 1 k e y p oi nts. 

We pr e pr o c ess e d t h e l a b el e d d at as et as f oll o ws. First, w e i d e ntif i e d l a b eli n g err ors b y 

fl a g gi n g l ar g e v al u es of t h e m ulti- vi e w P C A l oss. We t h e n fi x e d t h e wr o n g l a b els m a n u all y. 

N e xt, i n t h e I n D d at a o nl y, w e us e d a pr o b a bilisti c v ari a nt of m ulti- vi e w P C A ( P P C A) 

t o i nf er k e y p oi nts t h at w er e o c cl u d e d i n o n e of t h e t hr e e vi e ws, eff e cti v el y si mil ar t o 

t h e tri a n g ul ati o n-r e pr oj e cti o n pr ot o c ols us e d f or m ulti- vi e w tr a c ki n g b y r efs. 1 0 ,5 8 . T his 

r es ult e d i n a 3 0 % i n cr e as e i n t h e n u m b er of k e y p oi nts us a bl e f or tr ai ni n g, wit h m or e 

o c cl u d e d k e y p oi nts i n cl u d e d i n t h e a u g m e nt e d l a b el s et.

C RI M 1 3.  T h e C alt e c h R esi d e nt-I ntr u d er M o us e d at as et ( C RI M 1 3) 2 7  c o nsists of t wo mi c e 

i nt er a cti n g i n a n e n cl os e d ar e n a, c a pt ur e d b y t o p a n d si d e- vi e w c a m er as at 3 0 H z. We o nl y 

us e d t h e t o p vi e w. Fr a m e si z es w er e 4 8 0 × 6 4 0 pi x els a n d r es h a p e d d uri n g tr ai ni n g t o 2 5 6 × 

2 5 6 pi x els. S e v e n k e y p oi nts w er e l a b el e d o n e a c h m o us e f or a t ot al of 1 4 k e y p oi nts 2 8 .

U nli k e t h e ot h er d at as ets, t h e I n D/ O O D s plits d o n ot c o nt ai n c o m pl et el y n o n o v erl a p pi n g s ets 

of a ni m als, as w e us e d t h e tr ai n/t est s plit pr o vi d e d i n t h e d at as et. T h e f o ur r esi d e nt mi c e 

w er e pr es e nt i n b ot h I n D a n d O O D s plits; h o w e v er, t h e i ntr u d er m o us e w as diff er e nt f or 

e a c h s essi o n. E a c h k e y p oi nt i n t h e C RI M 1 3 d at as et w as l a b el e d b y fi v e diff er e nt a n n ot at ors. 

T o cr e at e t h e fi n al s et of l a b els f or n et w or k tr ai ni n g, w e t o o k t h e m e di a n a cr oss all l a b els f or 

e a c h k e y p oi nt.
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I B L- p a w. T his d at as et 2 9  is fr o m t h e I B L a n d c o nsists of h e a d-fi x e d mi c e p erf or mi n g 

a d e cisi o n- m a ki n g t as k 5 9 ,6 0 . Tw o c a m er as —’l eft’ ( 6 0 H z) a n d ‘ri g ht’ ( 1 5 0 H z) — c a pt ur e 

r o u g hl y ort h o g o n al si d e vi e ws of t h e m o us e’s fa c e a n d u p p er tr u n k d uri n g e a c h s essi o n. T h e 

ori gi n al d at as et d o es n ot c o nt ai n s y n c hr o ni z e d l a b el e d fr a m es f or b ot h c a m er as, pr e v e nti n g 

t h e dir e ct us e of m ulti- vi e w P C A l oss es d uri n g tr ai ni n g. I nst e a d, w e tr e at e d t h e fr a m es 

as c o mi n g fr o m a si n gl e c a m er a b y fli p pi n g t h e ri g ht c a m er a vi d e o. Fr a m es w er e i niti all y 

d o w ns a m pl e d t o 1 0 2 × 1 2 8 pi x els f or l a b eli n g a n d vi d e o st or a g e; fr a m es w er e r es h a p e d 

d uri n g tr ai ni n g t o 1 2 8 × 1 2 8 pi x els. We tr a c k e d t w o k e y p oi nts p er vi e w, o n e f or e a c h p a w. 

M or e i nf or m ati o n o n t h e I B L vi d e o pr o c essi n g pi p eli n e c a n b e f o u n d els e w h er e 4 1 . F or t h e 

l ar g e-s c al e a n al ysis i n E xt e n d e d D at a Fi g. 7, w e s el e ct e d 4 4 a d diti o n al t est s essi o ns t h at 

w er e n ot r e pr es e nt e d i n t h e I n D or O O D s essi o ns list e d i n S u p pl e m e nt ar y T a bl e 1; t h es e 

c o ul d b e c o nsi d er e d a d diti o n al O O D d at a.

I B L- p u pil. T h e p u pil d at as et is als o fr o m t h e I B L. Fr a m es fr o m t h e ri g ht c a m er a w er e 

s p ati all y u ps a m pl e d a n d fli p p e d t o m at c h t h e l eft c a m er a. T h e n, a 1 0 0 × 1 0 0- pi x el r e gi o n of 

i nt er est w as cr o p p e d ar o u n d t h e p u pil. T h e fr a m es w er e r es h a p e d i n tr ai ni n g t o 1 2 8 × 1 2 8 

pi x els. F o ur k e y p oi nts w er e tr a c k e d o n t h e t o p, b ott o m, l eft a n d ri g ht e d g es of t h e p u pil, 

f or mi n g a di a m o n d s h a p e. F or t h e l ar g e-s c al e a n al ysis i n Fi g. 6, w e s el e ct e d l eft vi d e os 

fr o m 6 5 a d diti o n al s essi o ns t h at w er e n ot r e pr es e nt e d i n t h e I n D or O O D s essi o ns list e d i n 

S u p pl e m e nt ar y Ta bl e 1.

Pr o bl e m f or m ul ati o n

L et K  d e n ot e t h e n u m b er of k e y p oi nts t o b e tr a c k e d, a n d N  t h e n u m b er of l a b el e d fr a m es. 

Aft er m a n u al l a b eli n g, w e ar e gi v e n a d at as et as i n e q u ati o n ( 1):

D s = x (i), y (i)
i = 1

N

, x (i) ∈ ℝ W × H , y (i) =

y 1

y 2

⋮

y K

∈ ℝ 2 K ,

( 1)

w h er e x (i) is t h e i-t h i m a g e a n d y (i) its ass o ci at e d l a b el v e ct or, st a c ki n g t h e a n n ot at e d wi dt h –

h ei g ht pi x el c o or di n at es f or e a c h of t h e K  tr a c k e d k e y p oi nts.

It is st a n d ar d pr a cti c e t o r e pr es e nt e a c h a n n ot at e d k e y p oi nt y k , k = 1, … K  as a h e at m a p 

h k
(i) ∈ ℝ W s × H s wit h wi dt h W s a n d h ei g ht H s, t h us c o n v erti n g y (i) t o a s et of K  h e at m a ps 

h k
(i)

k = 1

K
. T his is d o n e b y d efi ni n g a bi v ari at e G a ussi a n c e nt er e d at e a c h a n n ot at e d k e y p oi nt 

wit h v ari a n c e σ 2  ( a c o ntr oll a bl e p ar a m et er), a n d e v al u ati n g it at 2 D gri d p oi nts1 6 . If y k
(i) l a c ks 

a n a n n ot ati o n (f or e x a m pl e, if it is o c cl u d e d), w e d o n ot f or m a h e at m a p f or it.

We n or m ali z e t h e h e at m a ps ∑ l, m ℎ k
(i)(l, m ) = 1, ∀ i, k , w hi c h all o ws us t o b ot h e v e nl y s c al e t h e 

o ut p uts d uri n g tr ai ni n g a n d us e l oss es t h at o p er at e o n h e at m a ps as v ali d pr o b a bilit y m ass 

f u n cti o ns. T h e n, t h e d at as et f or tr ai ni n g s u p er vis e d n et w or ks is j ust fr a m es a n d h e at m a ps 
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D = x (i), h k
(i)

k = 1

K

i = 1

N

. T o a c c el er at e tr ai ni n g, t h e h e at m a ps ar e m a d e f o ur or ei g ht ti m es 

s m all er t h a n t h e ori gi n al fr a m es.

M o d el ar c hit e ct ur e s

B a s eli n e . O ur b as eli n e m o d el p erf or ms h e at m a p r e gr essi o n o n a fr a m e- b y-fr a m e b asis, 

a ki n t o D e e p L a b C ut 7 , S L E A P1 6 , D e e p P os e Kit9  a n d ot h ers. It h as r o u g hl y t h e s a m e 

ar c hit e ct ur e: a ‘ b a c k b o n e’ n et w or k t h at e xtr a cts a f e at ur e v e ct or p er fr a m e, a n d a ‘ h e a d’ 

t h at tr a nsf or ms t h es e i nt o K  pr e di ct e d h e at m a ps. I n t h e r es ults r e p ort e d h er e, w e us e d a 

R es N et- 5 0 b a c k b o n e n et w or k pr etr ai n e d o n t h e A ni m al P os e 1 0 K d at as et 4 6  ( 1 0, 0 1 5 a n n ot at e d 

fr a m es fr o m 5 4 diff er e nt a ni m al s p e ci es). F or t h e mirr or-fis h d at as et, w e r eli e d o n I m a g e N et 

pr etr ai ni n g ( e x c e pt f or t h e s a m pl e effi ci e n c y e x p eri m e nts i n Fi g. 1). H o w e v er, o ur p a c k a g e, 

li k e ot h ers, is l ar g el y a g n osti c t o b a c k b o n e c h oi c es. L et B  d e n ot e b at c h si z e, C = 3  t h e 

R G B c ol or c h a n n els, a n d r  a n ‘ u ps c ali n g f a ct or’ b y w hi c h w e i n cr e as e t h e si z e of o ur 

r e pr es e nt ati o ns. T h e h e a d i n cl u d es a fi x e d Pi x el S h uffl e( 2) l a y er t h at r es h a p es t h e f e at ur es 

t e ns or o ut p ut b y t h e b a c k b o n e fr o m (B , C × r 2 , H , W ) t o (B , C , H × r , W × r ) a n d a s eri es of 

i d e nti c al C o nv T r a ns p os e 2 D l a y ers t h at f urt h er d o u bl e it i n si z e ( ker n el si z e 3 × 3, stri d e 

2 × 2, i n p ut p a d di n g 1 × 1, o ut p ut p a d di n g 1 × 1) 6 1 . T h e n u m b er of C o n v Tr a ns p os e 2 D 

l a y ers is d et er mi n e d b y t h e d esir e d s h a p e of t h e o ut p ut h e at m a ps, a n d m ost c o m m o nl y 

t w o s u c h l a y ers ar e us e d. E a c h h e at m a p is n or m ali z e d wit h a 2 D s p ati al s oft m a x wit h a 

t e m p er at ur e p ar a m et er τ = 1 . T h e s u p er vis e d l oss is a di v er g e n c e b et w e e n pr e di ct e d h e at 

m a ps a n d l a b el e d h e at m a ps. H er e, w e us e s q u ar e d err or f or e a c h b at c h el e m e nt b  a n d 

k e y p oi nt k :ℒ s = ∑ l, m ℎ̂ k

(b )

(l, m ) − ℎ k
(b )(l, m )

2
.

O n c e h e at m a ps h a v e b e e n pr e di ct e d f or e a c h k e y p oi nt, w e m ust tr a nsf or m t h es e 2 D 

arr a ys i nt o esti m at es of t h e wi dt h – h ei g ht c o or di n at es i n t h e ori gi n al i m a g e s p a c e. W e f irst 

u ps a m pl e e a c h h e at m a p h k
(i) ∈ ℝ W s × H s t o h k

(i)
∈ ℝ W × H  usi n g bi c u bi c i nt er p ol ati o n. We t h e n 

c o m p ut e a s u b pi x el m a xi m u m a ki n t o D e e p P os e Kit 9 . A 2 D s p ati al s oft m a x r e n or m ali z es t h e 

h e at m a p t o s u m t o 1, a n d w e a p pl y a hi g h t e m p er at ur e p ar a m et er ( τ = 1, 0 0 0 ) t o s u p pr ess 

n o n- gl o b al m a xi m a. A 2 D s p ati al e x p e ct ati o n t h e n pr o d u c es a s u b pi x el esti m at e of t h e 

l o c ati o n of t h e h e at m a p’s m a xi m u m val u e. T h es e t w o o p er ati o ns —s p ati al s oft m a x f oll o w e d 

b y s p ati al e x p e ct ati o n — ar e t o g et h er k n o w n as a s oft ar g m a x 3 3 . I m p ort a ntl y, t his s oft ar g m a x 

o p er ati o n is diff er e nti a bl e ( u nli k e t h e l o c ati o n r ef i n e m e nt str at e g y us e d i n D e e p L a b C ut7 ), 

a n d all o ws t h e esti m at e d c o or di n at es t o b e us e d i n d o w nstr e a m l oss es. T o c o m p ut e t h e 

c o nfi d e n c e v al u e ass o ci at e d wit h t h e pi x el c o or di n at es, w e s u m t h e v al u es of t h e n or m ali z e d 

h e at m a p wit hi n a c o nfi g ur a bl e r a di us of t h e s oft ar g m a x.

T C N.  M a n y d et e cti o n a m bi g uiti es a n d o c cl usi o ns i n a gi v e n fr a m e c a n b e r es ol v e d b y 

c o nsi d eri n g s o m e vi d e o fr a m es b ef or e a n d aft er it. T h e T C N us es a s e q u e n c e of 2 J + 1

fr a m es t o pr e di ct t h e l a b el e d h e at m a ps f or t h e mi d dl e fr a m e, a c c or di n g t o e q u ati o n ( 2):

D s = x m
(i)

m = − 2 j

2 J
, h k

(i)

k = 1

K

i = 1

N
,

( 2)
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where �0
(�) is the labeled frame and, for example, �−1

(�)  is the preceding (unlabeled) frame in the 
video.

During training, batches of 2� + 1 frame sequences are passed through the backbone to 
obtain 2� + 1 feature vectors. The TCN has two upsampling heads, one ‘static’ and one 
‘context-aware,’ each identical to the baseline model’s head. The static head takes the 
features of only the central frame and predicts location heat maps for that frame. The 
context-aware head generates predicted location heat maps for each of the 2� + 1 frames 
(note that these are the same shape as the location heat maps, but we do not explicitly 
enforce them to match labeled heat maps). Those heat maps are passed as inputs to a 
bidirectional CRNN whose output is the context-aware predicted heat map for the middle 
frame. We then apply our supervised loss to both predicted heat maps, forcing the network 
to learn the standard static mapping from an image to heat maps, while independently 
learning to take advantage of temporal context when needed. (Recall Fig. 2e, which provides 
an overview of this architecture).

The network described above outputs two predicted heat maps per keypoint, one from 
each head, and applies the computations described above to obtain two sets of keypoint 
predictions with confidences. For each keypoint, the more confident prediction of the two is 
selected for downstream analysis.

Semi-supervised learning
We perform semi-supervised learning by jointly training on labeled dataset �� (constructed 
as described above) and an unlabeled dataset �Ñ, according to equation (3):

��� ≡ �� ∪�Ñ,

(3)

where �Ñ is constructed as follows.

Assume we have access to one or more unlabeled videos; we splice these into a set of Ô
disjoint Õ -frame clips (discarding the very last clip if it has fewer than Õ  frames), according 
to equation (4):

ÖÑ = �Ñ(1),…, �Ñ(Õ ) Ñ = 1
Ô ,

(4)

where, typically, Õ = 32/64/96/128/256 with with smaller frame sizes freeing up memory for 
longer sequences.

Now, assume we selected a mechanism (baseline model or TCN) for predicting keypoint 
heat maps for a given frame. At each training step, in addition to a batch of labeled frames 
drawn from ��, we present the network with a short unlabeled video clip randomly drawn 
from �Ñ. The network outputs a time series of keypoint predictions (one pose for each of the 
Õ  frames in the clip), which is then subjected to one or more of our unsupervised losses.
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All u ns u p er vis e d l oss es ar e e x pr ess e d as pi x el dist a n c e b et w e e n a k e y p oi nt pr e di cti o n a n d 

t h e c o nstr ai nt. B e c a us e o ur c o nstr ai nts ar e m er el y us ef ul a p pr o xi m at e m o d els of r e alit y, 

w e d o n ot r e q uir e t h e n et w or k t o p erf e ctl y s atisf y t h e m. W e ar e p arti c ul arl y i nt er est e d 

i n pr e v e nti n g, a n d h a vi n g t h e n et w or k l e ar n fr o m, s e v er e vi ol ati o ns of t h es e c o nstr ai nts. 

T h er ef or e, w e e nf or c e o ur l oss es o nl y w h e n t h e y e x c e e d a t ol er a n c e t hr es h ol d ϵ , r e n d eri n g 

t h e m ϵ -i ns e nsiti v e, a c c or di n g t o e q u ati o n ( 5):

ℒ ϵ = m a x 0, ℒ − ϵ .

( 5)

T h e ϵ  t hr es h ol d c o ul d b e c h os e n usi n g pri or k n o wl e d g e, or esti m at e d e m piri c all y fr o m 

t h e l a b el e d d at a, as w e will d e m o nstr at e b el o w. ℒ( ϵ ) is c o m p ut e d s e p ar at el y f or e a c h 

k e y p oi nt o n e a c h fr a m e, a n d a v er a g e d t o o bt ai n a s c al ar l oss t o b e mi ni mi z e d. M ulti pl e 

l oss es c a n b e j oi ntl y mi ni mi z e d vi a a w ei g ht e d s u m, wit h w ei g hts d et er mi n e d b y a p ar all el 

h y p er p ar a m et er s e ar c h, w hi c h is s u p p ort e d i n Li g ht ni n g P os e wit h n o c o d e c h a n g es.

T e m p or al diff er e n c e l o s s.  K e y p oi nts s h o ul d n ot j u m p t o o f ar b et w e e n c o ns e c uti v e 

fr a m es. We m e as ur e t h e j u m p i n pi x els a n d i g n or e j u m ps s m all er t h a n ϵ , t h e m a xi m u m j u m p 

all o w e d b y us er, a c c or di n g t o e q u ati o n ( 6):

ℒ t e m p or al
k , t ϵ = m a x 0, y k t − y k t − 1 2 − ϵ ,

( 6)

w h er e ϵ  c o ul d b e d et er mi n e d b as e d o n i m a g e si z e, fr a m e r at e a n d r o u g h vi ewi n g dist a n c e 

fr o m t h e s u bj e ct. We c o m p ut e t his l oss f or a p air of s u c c essi v e pr e di cti o ns o nl y w h e n b ot h 

h a v e c o nfi d e n c e gr e at er t h a n a c o nfi g ur a bl e t hr es h ol d (f or e x a m pl e, 0. 9) t o a v oi d artifi ci all y 

e nf or ci n g s m o ot h n ess i n str et c h es w h er e t h e k e y p oi nt is u ns e e n. We a v er a g e t h e l oss a cr oss 

k e y p oi nts a n d u nl a b el e d fr a m es, a c c or di n g t o e q u ati o n ( 7):

ℒ t e m p or al =
1

T K ∑
t = 1

T

∑
k = 1

K
ℒ t e m p or al

k , t ϵ ,

( 7)

a n d mi ni mi z e ℒ t e m p or al d uri n g tr ai ni n g. Li g ht ni n g P os e als o off ers t h e o pti o n t o a p pl y t h e 

t e m p or al diff er e n c e l oss o n pr e di ct e d h e at m a ps i nst e a d of t h e k e y p oi nts. We h a v e f o u n d 

b ot h m et h o ds c o m p ar a bl e a n d f o c us o n t h e l att er f or cl arit y.

M ulti- vi e w P C A l o s s.

B a c k g r o u n d.  L et y k ∈ ℝ 3  b e a n u n k n o w n 3 D k e y p oi nt of i nt er est. Ass u m e t h at w e h a v e 

V  c a m er as a n d t h at e a c h v = 1, …, V  c a m er a s e es a si n gl e 2 D p ers p e cti v e pr oj e cti o n of 

y k  d e n ot e d as y k (v ) ∈ ℝ2 , i n pi xel c o or di n at es. (It is st a n d ar d t o e x pr ess y  a n d y (v ) i n 

‘ h o m o g e n e o us c o or di n at es’, t h at is, a p p e n di n g a n ot h er el e m e nt t o e a c h ve ct or, y et w e o mit 
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t his f or si m pli cit y a n d f or a cl e ar er c o n n e cti o n wit h o ur P C A a p pr o a c h.) T h us, w e h av e a 

2 V - di m e nsi o n al m e as ur e m e nt y k ( 1)T ⋯ y k (V )T  of o ur 3 D k e y p oi nt y k .

T h e m ulti- vi e w g e o m et r y a p p r o a c h.  It is st a n d ar d t o m o d el e a c h vi e w as a pi n h ol e 

c a m er a 3 7 : s u c h a c a m er a h as i ntri nsi c p ar a m et ers (f o c al l e n gt h a n d dist orti o n) a n d extri nsi c 

p ar a m et ers (its 3 D l o c ati o n a n d ori e nt ati o n, als o k n o w n as ‘ c a m er a p os e’), t h at t o g et h er 

s p e cif y w h er e a 3 D k ey p oi nt will l a n d o n its i m a gi n g pl a n e, t h at is, t h e tr a nsf or m ati o n fr o m 

y  t o y (v ). T his tr a nsf or m ati o n i n v ol v es a li n e ar pr oj e cti o n (s c ali n g, r ot ati o n a n d tr a nsl ati o n) 

f oll o w e d b y a n o nli n e ar dist orti o n. W hil e o n e mi g ht k n o w a c a m er a’s f o c al l e n gt h a n d 

dist orti o n, i n g e n er al, b ot h t h e i ntri nsi c a n d e xtri nsi c p ar a m et ers ar e n ot e x a ctl y k n o w n a n d 

h a v e t o b e esti m at e d. A st a n d ar d w a y t o esti m at e t h es e i n v ol v es ‘ c ali br ati n g’ t h e c a m er a; 

fil mi n g o bj e cts wit h gr o u n d tr ut h 3 D c o or di n at es, a n d m e as uri n g t h eir 2 D pi x el c o or di n at es 

o n t h e c a m er a’s i m a gi n g pl a n e. P h ysi c al c h e c k er b o ar ds ar e t y pi c all y us e d f or t his p ur p os e. 

T h e y h a v e k n o w n p att er ns t h at c a n b e pr es e nt e d t o t h e c a m er a a n d d et e ct e d usi n g tr a diti o n al 

c o m p ut er visi o n t e c h ni q u es. N o w wit h a s uffi ci e nt s et of 3 D i n p uts a n d 2 D o ut p uts, t h e 

i ntri nsi c a n d e xtri nsi c p ar a m et ers c a n b e esti m at e d vi a ( n o nli n e ar) o pti mi z ati o n.

M ulti- vi e w P C A o n t h e l a b els ( o u r a p p r o a c h).  We t a k e a si m pl er a p pr o a c h, w hi c h d o es 

n ot r e q uir e c a m er a c ali br ati o n or, i n t h e mirr or e d d at as ets c o nsi d er e d i n t his p a p er, e x pli cit 

i nf or m ati o n a b o ut t h e l o c ati o n of t h e mirr ors. O ur first i nsi g ht is t h at t h e m ulti- vi e w ( 2V -

di m e nsi o n al) l a b el e d k e y p oi nts c o ul d b e us e d as k e y p oi nt c orr es p o n d e n c es t o l e ar n t h e 

g e o m etri c r el ati o ns hi p b et w e e n t h e vi e ws. We a p pr o xi m at e t h e pi n h ol e c a m er a as a li n e ar 

pr oj e cti o n ( wit h z er o dist orti o n), a n d esti m at e t h e p ar a m et ers of t his li n e ar pr oj e cti o n b y 

fitti n g P C A o n t h e l a b els ( d et ails b el o w), a n d k e e pi n g t h e first t hr e e P Cs, b e c a us e all w e 

ar e m e as uri n g fr o m o ur diff er e nt c a m er as is a si n gl e 3 D o bj e ct. Fi g ur e 2 c ( b ott o m ri g ht) 

c o nfir ms t h at o ur P C A m o d el c a n e x pl ai n > 9 9 % of t h e v ari a n c e wit h t h e first t hr e e P Cs i n 

s e v er al m ulti- vi e w e x p eri m e nt al s et u ps, i n di c ati n g t h at o ur li n e ar a p pr o xi m ati o n is s uit a bl e 

at l e ast f or t h e mirr or- m o us e a n d mirr or-fis h d at as ets, i n w hi c h t h e c a m er a is r el ati v el y 

f ar fr o m t h e s u bj e ct. We d o a nti ci p at e c as es w h er e o ur li n e ar a p pr o xi m ati o n will n ot b e 

s uffi ci e ntl y a c c ur at e (f or e x a m pl e, str o n gl y dist ort e d l e ns es, or hi g hl y z o o m e d i n); t h e m or e 

g e n er al e pi p ol ar g e o m etr y a p pr o a c h 3 5 ,6 2  c o ul d b e a p pli c a bl e h er e. N ot e t h at o ur 3 D P C A 

c o or di n at es d o n ot e x a ctl y m at c h t h e 3 D wi dt h – h ei g ht – d e pt h p h ysi c al c o or di n at es of t h e 

k e y p oi nts i n s p a c e; i nst e a d, t h es e t w o s ets of 3 D c o or di n at es ar e r el at e d vi a a n affi n e 

tr a nsf or m ati o n.

B ef o r e t r ai ni n g: f itti n g m ulti- vi e w P C A o n t h e l a b els. O ur g o al is t o esti m at e a pr oj e cti o n 

fr o m 2 V  di m e nsi o ns ( wi dt h – h ei g ht pi x el c o or di n at es f or V  vi e ws) t o t hr e e di m e nsi o ns, 

w hi c h w e c o ul d us e t o r el at e t h e diff er e nt vi e ws t o e a c h ot h er. Gi v e n t h e i n di c es of m at c hi n g 

k e y p oi nts a cr oss vi e ws, w e f or m a t all a n d t hi n d esi g n m atri x b y v erti c all y st a c ki n g all t h e 

2 V - di m e nsi o n al m ulti- vi e w l a b el e d k e y p oi nts. We d e n ot e t his m atri x as Y M V ∈ ℝ N K × 2 V , 

a c c or di n g t o e q u ati o n ( 8):
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Y M V =

y 1
1 ( 1)T ⋯ y 1

1 (V )T

y 2
1 ( 1)T ⋯ y 2

1 (V )T

⋮ ⋮ ⋮

y K
N ( 1)T ⋯ y K

N (V )T

,

( 8)

w h er e y k
n (v ) ∈ ℝ2  r e pr es e nts t h e wi dt h – h ei g ht c o or di n at es o n fr a m e n  f or k e y p oi nt k  i n 

c a m er a v . T o r eit er at e, e a c h r o w c o nt ai ns t h e l a b el e d c o or di n at es f or a si n gl e b o d y p art 

s e e n fr o m V  vi e ws. T h e r o ws of t his m atri x c o nt ai n e x a m pl es fr o m all a v ail a bl e l a b el e d 

k e y p oi nts, w hi c h ar e all us e d f or l e ar ni n g t h e 3 D pr oj e cti o n. We e x cl u d e r o ws i n w hi c h a 

b o d y p art is missi n g fr o m o n e or m or e vi e ws. T h e n u m b er of e x a m pl es us e d t o esti m at e 

P C A is, as d esir e d, al w a ys m u c h l ar g er t h a n t h e l a b el di m e nsi o n ( N K ≫ 2 V ). We p erf or m 

P C A o n Y M V  a n d k e e p t h e first t hr e e P Cs, w hi c h w e d e n ot e as P = P 1 P 2 P 3 ∈ ℝ 2 V × 3  a n d 

t h e d at a m e a n μ ∈ ℝ 2 V . T h e t hr e e P Cs f or m t hr e e ort h o g o n al a xes i n 2 V  di m e nsi o ns, 

a n d pr oj e cti n g t h e 2 V - di m e nsi o n al l a b els o n t h e m will pr o vi d e wi dt h – h ei g ht – d e pt h-li k e 

c o or di n at es. T h es e 3 D c o or di n at es ar e r el at e d t o t h e ‘r e al- w orl d’ 3 D c o or di n at es (r el ati v e t o 

s o m e ar bitr ar y ’ ori gi n’ p oi nt) b y a n affi n e tr a nsf or m ati o n (t h e y n e e d t o b e r ot at e d, str et c h e d 

a n d tr a nsl at e d), b ut criti c all y, w e d o n ot n e e d t h es e ‘r e al- w orl d’ c o or di n at es t o a p pl y t h e 

m ulti- vi e w c o nstr ai nts d uri n g n et w or k tr ai ni n g, as d es cri b e d b el o w.

D u ri n g t r ai ni n g: p e n ali zi n g t h e u nl a b el e d d at a f o r P C A r e c o nst r u cti o n e r r o rs.  L et 

ŷ k

t
= ŷ k

t
( 1)T ⋯ ŷ k

t
(V )T ∈ ℝ 2 V  b e t h e n et w or k’s pr e di cti o n f or t h e k -t h b o d y p art o n t h e t-t h 

u nl a b el e d vi d e o fr a m e, o n all V  vi e ws ( as b ef or e, t his r e q uir es s p e cif yi n g t h e i n di c es of 

c orr es p o n di n g k e y p oi nts a cr oss vi e ws). T h e pr e di cti o n’s m ulti- vi e w P C A r e c o nstr u cti o n 

is gi v e n b y pr oj e cti n g it d o w n t o t hr e e di m e nsi o ns a n d t h e n b a c k u p t o 2 V  di m e nsi o ns, 

a c c or di n g t o e q u ati o n ( 9):

y k
t = ŷ k

t
− μ P P ⊤ + μ .

( 9)

W h e n t h e pr e di cti o n ŷ k

t  is c o nsist e nt a cr oss vi e ws, t h at is, o n t h e 3 D h y p er pl a n e s p e cifi e d 

b y P , w e will g et y k
t = ŷ k ′

t  a p erf e ct r e c o nstr u cti o n. T h e l oss is d efi n e d as t h e a v er a g e pi x el 

dist a n c e b et w e e n e a c h 2 D pr e di ct e d k e y p oi nt ŷ k

t
(v ) a n d its m ulti- vi e w P C A r e c o nstr u cti o n 

y k
t (v ), a c c or di n g t o e q u ati o n ( 1 0):

ℒ M V‐ P C A
k , t, v (ε ) = m a x 0, ŷ k

t
(v ) − y k

t (v ) 2 − ϵ .

( 1 0)

T h e l oss e n c o ur a g es t h e pr e di cti o ns t o st a y wit hi n t h e fi x e d 3 D h y p er pl a n e esti m at e d b y 

P C A, a n d t h us b e c o nsist e nt a cr oss vi e ws. I n tr ai ni n g, w e mi ni mi z e its a v er a g e a cr oss vi e ws, 

b o d y p arts, a n d fr a m es, a c c or di n g t o e q u ati o n ( 1 1):
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ℒ M V‐ P C A =
1

T K V ∑
t, k , v

ℒ M V‐ P C A
k , t, v (ϵ ) .

( 1 1)

We c h o os e ϵ  b y c o m p uti n g t h e P C A r e c o nstr u cti o n err ors (i n pi x els) f or e a c h of t h e l a b el e d 

k e y p oi nts, a n d t a ki n g t h e m a xi m u m. T his r e pr es e nts t h e m a xi m al m ulti- vi e w i n c o nsist e n c y 

o bs er v e d i n t h e l a b el e d d at a.

We n ot e t h at t h e m ulti- vi e w P C A l oss d o es n ot r e q uir e a n y m o difi c ati o ns t o n et w or k 

ar c hit e ct ur es. E a c h vi e w is pr o c ess e d i n d e p e n d e ntl y b y t h e n et w or k. As m e nti o n e d a b o v e, 

all t h at is r e q uir e d is s p e cifi c ati o n of w hi c h k e y p oi nts fr o m w hi c h vi e ws c orr es p o n d t o 

t h e s a m e b o d y p art. T h e mirr or e d d at as ets c o nsi d er e d i n t his p a p er ar e h a n dl e d si mil arl y: 

t h e si n gl e fr a m e c o nt ai ni n g all a v ail a bl e vi e ws is pr o c ess e d b y t h e n et w or k, a n d diff er e nt 

k e y p oi nts ar e li n k e d t o t h e s a m e b o d y p art vi a a n e ntr y i n t h e m o d el c o nfi g ur ati o n fil e.

P o s e P C A l o s s.  T h er e ar e c ert ai n t hi n gs t h at b o di es c a n n ot d o. We mi g ht tr a c k 2 K

p os e c o or di n at es, b ut it d o es n ot m e a n t h at t h e y c a n all m o v e i n d e p e n d e ntl y a n d fr e el y. 

I n d e e d, t h er e is a l o n g hist or y of usi n g l o w- di m e nsi o n al m o d els t o d es cri b e a ni m al 

m o v e m e nt 3 8 ,4 0 ,6 3 . H er e, w e e xt e n d t h e P C A a p pr o a c h t o f ull p os e v e ct ors, a n d c o nstr ai n 

t h e 2 K - di m e nsi o n al p os es t o li e o n a l o w- di m e nsi o n al h y p er pl a n e of pl a usi bl e p os es, w hi c h 

w e esti m at e fr o m t h e l a b els.

B ef o r e t r ai ni n g: fitti n g P os e P C A o n t h e l a b els.  T his a p pr o a c h is i d e nti c al t o m ulti- vi e w 

P C A, wit h t h e f oll o wi n g e x c e pti o ns. First, o ur o bs er v ati o ns ar e f ull p os e v e ct ors a n d n ot 

si n gl e k e y p oi nts s e e n fr o m m ulti pl e vi e ws. T h e d esi g n m atri x of l a b els is, t h er ef or e, s h ort er 

a n d wi d er Y P‐ P C A ∈ ℝ N × 2 K ; it h as as m a n y r o ws as l a b el e d fr a m es, a n d e a c h r o w c o nt ai ns 

t h e e ntir e p os e v e ct or. R ows ( p os es) wit h missi n g b o d y p arts ar e dis c ar d e d fr o m t his m atri x. 

T h e n u m b er of e x a m pl es a v ail a bl e f or P C A esti m ati o n is n o w si m pl y t h e n u m b er of n o n-

dis c ar d e d l a b el e d fr a m es, N tr ai n, w hi c h is n ot all o w e d t o b e s m all er t h a n t h e n u m b er of p os e 

c o or di n at es, t h at is, N tr ai n ≥ 2 K . A s e c o n d e x c e pti o n is t h at i nst e a d of k e e pi n g t hr e e P Cs, 

w e k e e p as m a n y P Cs n e e d e d t o e x pl ai n 9 9 % of t h e p os e v ari a n c e, d e n ot e d as R ≪ 2 K . 

We c oll e ct t h e k e pt P Cs as c ol u m ns of a ( 2 K × R ) m atri x P = P 1 ⋯ P R . E a c h of t h e P Cs 

r e pr es e nts a n a xis of pl a usi bl e w h ol e- b o d y m ov e m e nt, a ki n t o pr e vi o us a p pr o a c h es 4 0 ,6 4 . 

Fi g ur e 2 d s h o ws t h at t h e n u m b er of k e pt P Cs is us u all y l ess t h a n h alf of t h e o bs er v ati o n 

di m e nsi o ns. We n o w k e e p P  a n d μ ∈ ℝ 2 K  t o b e us e d i n tr ai ni n g. For m ulti- vi e w s et u ps, it is 

p ossi bl e t o f or m a n e v e n wi d er ( N × 2 K V ) d esi g n m atri x, a p p e n di n g all V  vi e ws, t o j oi ntl y 

e nf or c e t h e m ulti- vi e w P C A l oss. We h a v e d o n e s o i n t h e mirr or- m o us e a n d mirr or-fis h 

d at as ets.

D u ri n g t r ai ni n g: p e n ali zi n g f o r i m pl a usi bl e p os es.  As i n e q u ati o n ( 9), w e pr oj e ct t h e f ull 

pr e di ct e d p os es d o w n t o t h e l o w- di m e nsi o n al h y p er pl a n e, t h e n b a c k u p t o 2 K  di m e nsi o ns, 

t o f or m t h eir P os e P C A r e c o nstr u cti o ns. T h e n, f or e a c h 2 D k e y p oi nt o n e a c h u nl a b el e d 
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video frame, we define the loss as the pixel error between the raw prediction í̂�
×  and its 

reconstruction ��
× , according to equation (12):

ℒP‐PCA
�, × (�) = max 0, �̂�× − ��× 2 − � .

(12)

This loss tells us how many pixels are needed to move the predicted keypoint onto 
the hyperplane of plausible poses. During training, we minimize the average loss across 
keypoints and frames, according to equation (13):

ℒP‐PCA = 1
Õ�∑×, �

ℒP‐PCA
�, × � .

(13)

Here too, � is chosen by reconstructing the labeled pose vectors, computing the pixel error 
between each 2D labeled keypoint and its PCA reconstruction, and taking the maximum 
value.

Training
Batch sizes are determined based on image size and GPU memory constraints (see 
Supplementary Table 3 for the batch sizes of the experiments reported in this paper). In 
general, denote a labeled batch size of   frames, a context window of 2� + 1 frames and a 
short unlabeled clip of Õ  frames (typically tens to hundreds) randomly drawn from a much 
longer video. The batch sizes will be   for a supervised model,   + Õ  for a semi-supervised 
model, (2� + 1)  for a TCN model and (2� + 1)  + Õ  for a semi-supervised TCN model. In 
our TCN experiments, we use � = 2. To efficiently use unlabeled clips for TCN models, we 
push the full clip through the backbone once, then discard predictions from the first and 
last � frames, which do not have sufficient context. To make our experiments controlled 
and reproducible across GPU types, we explicitly chose small, labeled batch sizes, such that 
each of our model variants trains with an equal number of labeled frames per batch (the 
semi-supervised and TCN models see many more unlabeled frames per batch, which can 
become memory-prohibitive).

We use an Adam optimizer65 with an initial learning rate of 0.001, halving it at epochs 150, 
200 and 250. In the experiments reported here, the ResNet-50 backbone was kept frozen for 
the first 20 epochs. We trained our models for a minimum number of 300 training epochs 
and a maximum number of 750 epochs. During training we split the InD data into training 
(80%), validation (10%) and test (10%) sets. We performed early stopping by checking the 
heat map loss on validation data every five epochs and exiting training if it does not improve 
for three consecutive checks.

During training, we apply standard image augmentations to labeled frames including 
geometric transforms (for example, rotations and crops), color space manipulations (for 
example, histogram equalization) and kernel filters (for example, motion blur), following 
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D e e p L a b C ut 7 . A diff er e nt r a n d o m c o m bi n ati o n of a u g m e nt ati o ns is us e d f or e a c h fr a m e 

i n a b at c h. F or t h e T C N ar c hit e ct ur e, t h e s a m e a u g m e nt ati o n c o m bi n ati o n is us e d f or a 

l a b el e d fr a m e a n d its ass o ci at e d c o nt e xt fr a m es. For t h e s e mi-s u p er vis e d m o d els, w e a p pl y 

a u g m e nt ati o ns t o u nl a b el e d vi d e o fr a m es usi n g D A LI. A si n gl e r a n d o m c o m bi n ati o n of 

a u g m e nt ati o ns is us e d f or all vi d e o fr a m es i n a b at c h. B e c a us e t h e P C A l oss es ar e s e nsiti v e 

t o g e o m etri c tr a nsf or ms, o n c e t h e wi dt h – h ei g ht c o or di n at es h a v e b e e n i nf err e d usi n g t h e 

s oft ar g m a x d es cri b e d a b o v e, w e a p pl y t h e i n v ers e g e o m etri c tr a nsf or m b ef or e c o m p uti n g 

u ns u p er vis e d l oss es.

W hil e o ur p a c k a g e i n cl u d es w ell-t est e d d ef a ult h y p er p ar a m et ers f or t h e u ns u p er vis e d l oss es 

d es cri b e d i n t his p a p er, us ers i m pl e m e nti n g a n e w ‘ b es p o k e’ l oss ar e a d vis e d t o p erf or m 

h y p er p ar a m et er s e ar c h es f or t his l oss’s w ei g ht, w hi c h of c o urs e m ulti pli es t h e a m o u nt 

c o m p ut e d b y t h e n u m b er of t est e d w ei g hts. H o w e v er, h y p er p ar a m et er s e ar c h es c a n b e r u n i n 

p ar all el, a n d o ur H y dr a s cri pts e n a bl e us ers t o l a u n c h a n d l o g t h es e j o bs wit h o ut a d diti o n al 

c ust o m s cri pts.

Di a g n o sti c s a n d m o d el s el e cti o n

C o n str ai nt vi ol ati o n s a s di a g n o sti c m etri c s.  Aft er tr ai ni n g, w e e v al u at e t h e n et w or k 

o n t h e l a b el e d fr a m es a n d o n u nl a b el e d vi d e os. We t h e n c o m p ut e o ur i n di vi d u al l oss t er ms 

( d efi n e d i n e q u ati o ns ( 6), ( 1 0) a n d ( 1 2)) f or e a c h pr e di ct e d k e y p oi nt, o n e a c h fr a m e, a n d o n 

e a c h vi e w f or a m ulti- vi e w s et u p, a n d us e t h e m as di a g n osti c m etri cs. F or l a b el e d fr a m es, 

w e c o m p ut e t h e E u cli d e a n pi x el err or. All m etri cs ar e m e as ur e d as pi x el dist a n c es o n t h e 

f ull-si z e d i m a g e.

M o d el s el e cti o n b a s e d o n pi x el err or s a n d c o n str ai nt vi ol ati o n s.  O ur l oss f a ct or y 

r e q uir es us ers t o s el e ct a m o n g diff er e nt a p pli c a bl e l oss es, a n d f or e a c h l oss, d et er mi n e 

its w ei g ht ( n ot e t h at w e off er r o bust d ef a ult v al u es i n o ur p a c k a g e). We st art b y fitti n g 

a b as eli n e m o d el t o t h e d at a (t y pi c all y wit h t hr e e r a n d o m s e e ds). T h e n, f or e a c h of t h e 

a p pli c a bl e l oss es, w e s e ar c h o v er 4 – 8 p ossi bl e w ei g hts ( b et w e e n v al u es of 3. 0 a n d 7. 0). We 

t h e n c o m p ar e t h e di a g n osti c m etri cs s p e cifi e d a b o v e o n a h el d- o ut v ali d ati o n s et (i g n ori n g 

err ors b el o w a t ol er a n c e t hr es h ol d). We pi c k t h e w ei g ht t h at e x hi bits t h e mi ni m al l oss a cr oss 

t h e m aj orit y of o ur di a g n osti cs. S u p pl e m e nt ar y Ta bl e 4 dis pl a ys t h e o pti m al w ei g ht c h os e n 

f or e a c h l oss i n e a c h d at as et usi n g n o n- T C N m o d els. We us e d t h e s a m e w ei g hts f or t h e T C N 

n et w or ks.

S a m pl e effi ci e n c y e x p eri m e nt s

T h e s a m pl e effi ci e n c y e x p eri m e nts i n Fi g. 1 c d e m o nstr at e m o d el p erf or m a n c e o n I n D a n d 

O O D d at a as a f u n cti o n of tr ai ni n g fr a m es. F or a gi v e n n et w or k tr ai n e d wit h N  fr a m es, w e 

a ct u all y n e e d t o s el e ct N * = c e i l i n g  ( 1. 2 5N ) fr a m es t o a c c o u nt f or a d diti o n al v ali d ati o n 

fr a m es us e d f or e arl y st o p pi n g, as w ell as I n D t est fr a m es (t h e tr ai n/ val/t est s plit w as 

8 0 %/ 1 0 %/ 1 0 %, r es p e cti v el y). T o mi mi c a r e alisti c l a b eli n g s c e n ari o, w e r a n d o ml y s el e ct e d 

a vi d e o fr o m all t h e I n D d at a. If t h e n u m b er of fr a m es i n t his f irst vi d e o ( c all t his M 1 ) w as 

gr e at er t h a n or e q u al t o N * , t h e n w e st o p p e d h er e. If M 1 < N * , w e c o nti n u e d t o r a n d o ml y 

s el e ct a vi d e o a n d a d d all l a b el e d fr a m es fr o m t h at vi d e o t o t h e l a b el e d d at a p o ol. O n c e 
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∑� = 1
� Ü� > = �*, we randomly selected 10% of the frames in the pool for validation, 10% 

for testing and, of the remaining 80%, we chose exactly � frames for training. Training was 
performed with supervised Lightning Pose models as described above. After training, we 
computed InD pixel error on the 10% of test frames, and OOD pixel error on held-out videos 
that were never considered for the labeled data pool. We repeated this procedure ten times 
for each value of �.

Ablation study showing the effects of individual losses
The goal of this analysis is to quantify the relative contribution of the individual 
unsupervised losses in the mirror-mouse, mirror-fish and CRIM13 datasets. We focus on 
the scarce label regime (75 train frames), where the semi-supervised improvements are 
most pronounced. We train semi-supervised models with temporal, multi-view PCA or Pose 
PCA losses, and compare these to a supervised baseline and a semi-supervised model that 
combines all loss types. For each condition, we train three networks with different random 
seeds controlling the data presentation order. To simplify this analysis, we analyze pixel 
error averages. The results indicate that across datasets, most pixel error savings were driven 
by the multi-view and Pose PCA losses (Extended Data Fig. 3). A combination of all losses 
always performs the best.

DeepLabCut Training
For DeepLabCut experiments (version 2.2.3), we use their default parameters: an ImageNet-
pretrained backbone, training for 50,000 ‘iterations’ (batches) independent of the labeled 
dataset size, using the Adam optimizer65 with a learning rate schedule that starts from 1 × 
10−4 and is reduced to 5 × 10−5 at iteration 7,500 then to 1 × 10−5 at iteration 12,000. We 
select the training frames to exactly match those used for the Lightning Pose models in all 
analyses with the mirror-mouse, mirror-fish and CRIM13 datasets. For the IBL datasets, we 
use the same number of training frames but do not try to match them exactly. For differences 
between the baseline and DeepLabCut models, see the Supplementary Information.

Ensembling
To perform ensembling, we need a collection of models that output a diverse set of 
predictions. This can be achieved through various means. For the EKS analyses in Extended 
Data Fig. 6, we chose to study a single split of the data, and achieved diversity by randomly 
initializing the head of each model, as well as the order in which the data were sent to the 
model during training. Despite these seemingly minor differences, the ensemble of models 
produced a variety of outputs (Extended Data Fig. 6b,d,f). For the other figures and videos 
related to ensembling (Figs. 5 and 6, Extended Data Fig. 7, Supplementary Videos 8–14 and 
Supplementary Figs. 2–4), we achieved diversity by training each model with a different 
subset of training data (in line with the analyses performed in, for example, Fig. 4).

Post-processor comparison
For the post-processor comparisons in Fig. 5, we used the following baselines:
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M e di a n filt er . We us e d t h e m e d f i l t  f u n cti o n fr o m t h e S ci P y p a c k a g e6 6  usi n g t h e d ef a ult 

s etti n gs fr o m t h e D e e p L a b C ut p a c k a g e ( k e r n e l _ s i z e  =  5 ).

A RI M A.  We us e d a s e as o n al a ut or e gr essi v e i nt e gr at e d m o vi n g- a v er a g e wit h e x o g e n o us 

r e gr ess ors ( S A RI M A X) m o d el usi n g t h e d ef a ult s etti n gs fr o m t h e D e e p L a b C ut p a c k a g e 

(p c u t o f f  =  0 . 0 0 1 , a l p h a  =  0 . 0 1 , A R d e g r e e  =  3 , M A d e g r e e  =  1 ).

E n s e m b l e m e a n/ m e di a n. We c o m p ut e d t h e m e a n/ m e di a n o v er t h e e ns e m bl e m e m b ers, 

i n d e p e n d e ntl y f or t h e x  a n d y  c o or di n at es. We di d n ot a p pl y c o nfi d e n c e t hr es h ol di n g.

E K S

T h e E K S b e gi ns wit h t h e o ut p ut of t h e e ns e m bl e of p os e esti m ati o n n et w or ks, a n 

m × 2 K V × T  t e ns or, f or m  e ns e m bl e m e m b ers ( h er e, m ≈ 5), K  k e y p oi nts, V  vi e ws a n d T

vi d e o fr a m es. E K S p erf or ms pr o b a bilisti c i nf er e n c e t o d e n ois e t h e e ns e m bl e pr e di cti o ns t o 

o bt ai n m or e a c c ur at e a n d r o b ust p os e esti m at es. T o b e m or e s p e cifi c, w e c o m p ut e t h e m e a n 

a n d v ari a n c e f or e a c h k e y p oi nt a cr oss t h e e ns e m bl e t o o bt ai n t h e 2 K V × T  e ns e m bl e m e a n M

a n d v ari a n c e C  m atri c es.

We first d efi n e t h e g e n er al st at e-s p a c e m o d el, t h e n dis c uss its us ef ul s p e ci al c as es i n t h e 

f oll o wi n g s e cti o ns. We s p e cif y a l at e nt st at e vari a bl e q t, a li n e ar G a ussi a n M ar k o v d y n a mi cs 

m o d el f or t his st at e v ari a bl e of t h e f or m, a c c or di n g t o e q u ati o n ( 1 4):

q t = A tq t − 1 + e t, e t N 0, E t ,

( 1 4)

a n d a li n e ar G a ussi a n o bs er v ati o n  m o d el d es cri bi n g t h e r el ati o ns hi p b et w e e n t h e l at e nt st at e 

v ari a bl e q t a n d t h e o bs er v e d d at a O t, a c c or di n g t o e q u ati o n ( 1 5):

O t = B tq t + n t, n t N μ , Q t ,

( 1 5)

f or s o m e a p pr o pri at e ( p ot e nti all y ti m e- v ar yi n g) s yst e m p ar a m et ers A t, B t, E t, Q t, μ .

Si n gl e- k e y p oi nt, si n gl e- c a m er a c a s e . T his is t h e si m pl est c as e t o c o nsi d er: i m a gi n e 

t h at w e wa nt t o d e n ois e e a c h k e y p oi nt i n di vi d u all y, a n d w e o nl y h a v e o bs er v ati o ns fr o m a 

si n gl e c a m er a. H er e t h e l at e nt st at e q t is t h e tr u e 2 D p ositi o n of t h e k e y p oi nt o n t h e c a m er a. 

N o w o ur m o d el is, a c c or di n g t o e q u ati o ns ( 1 6) a n d ( 1 7):

q t = q t − 1 + e t, e t N ( 0, s I )

( 1 6)

O t = q t + n t, n t N 0, ( 1/ m )D t .

( 1 7)
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C o m p ari n g t h es e e q u ati o ns t o t h e g e n er al d y n a mi cs a n d o bs er v ati o ns e q u ati o ns a b o v e, w e 

s e e t h at A t = B t = I  h er e.

I n t h e o bs er v ati o n e q u ati o n, O t is t h e 2 × 1 k e y p oi nt v e ct or, a n d D t is a 2 × 2 di a g o n al m atri x 

s p e cif yi n g t h e e ns e m bl e c o nfi d e n c e a b o ut e a c h o bs er v ati o n. We us e t h e t-t h c ol u m n of t h e 

e ns e m bl e m e a n M  t o fill i n t h e o bs er v ati o n O t, a n d t h e c o v ari a n c e fr o m t h e t-t h fr a m e of 

t h e e ns e m bl e c o v ari a n c e C  t o fill i n t h e o bs er v ati o n v ari a n c e D t ( n ot e t h at l ar g er v al u es of 

D t c orr es p o n d t o l o w er c o nfi d e n c e i n t h e c orr es p o n di n g o bs er v ati o n O t). T h e f a ct or of 1/ m

i n t h e o bs er v ati o n v ari a n c e f oll o ws fr o m t h e f a ct t h at O t is d efi n e d as a s a m pl e m e a n o v er m

e ns e m bl e m e m b ers.

Fi n all y, s  is a n a dj ust a bl e s m o ot hi n g p ar a m et er: l ar g er s  l e a ds t o l ess s m o ot hi n g. T his 

s m o ot h n ess p ar a m et er c o ul d b e s el e ct e d b y m a xi m u m li k eli h o o d (f or e x a m pl e, usi n g 

t h e st a n d ar d e x p e ct ati o n – m a xi mi z ati o n al g orit h m f or t h e K al m a n m o d el) b ut c a n b e s et 

m a n u all y f or si m pli cit y.

N o w, gi v e n t h e s p e cifi e d d y n a mi cs a n d o bs er v ati o n m o d el, w e c a n r u n t h e st a n d ar d K al m a n 

f or w ar d – b a c k w ar d s m o ot h er t o o bt ai n t h e p ost eri or m e a n st at e Q  gi v e n t h e o bs er v ati o ns 

O  (t h at is, all t h e st at es q t gi v e n all t h e o bs er v ati o ns O t). T h e s m o ot h er will ‘ u p w ei g ht’ 

hi g h- c o nfi d e n c e o bs er v ati o ns O t (t h at is, s m all D t), a n d ‘ d o w n w ei g ht’ l o w- c o nfi d e n c e 

o bs er v ati o ns (l ar g e D t), f or e x a m pl e, fr o m o c cl usi o n fr a m es.

N ot e t h at t his K al m a n a p pr o a c h is t h e B a y esi a n o pti m al esti m at or u n d er t h e ass u m pti o n 

t h at t h e m o d el i n e q u ati o ns ( 1 6) a n d ( 1 7) is a c c ur at e. I n r e alit y, t his m o d el h ol ds o nl y 

a p pr o xi m at el y: i n g e n er al, n eit h er t h e o bs er v ati o n n ois e n or t h e st at e d y n a mi cs ar e e x a ctl y 

G a ussi a n. T h er ef or e, t h e E K S s h o ul d b e i nt er pr et e d as a n a p pr o xi m ati o n t o t h e o pti m al 

B a y esi a n esti m at or h er e. G e n er ali z ati o ns (t o h a n dl e m ulti m o d al o bs er v ati o n d e nsiti es, or 

s wit c hi n g or st o c h asti c v ol atilit y d y n a mi cs m o d els) ar e l eft f or f ut ur e w or k.

Si n gl e- k e y p oi nt, m ulti- c a m er a, s y n c hr o ni z e d c a m er a s c a s e . Gi v e n m ulti pl e 

c a m er as, w e c a n esti m at e t h e tr u e 3 D p ositi o n of e a c h k e y p oi nt. S o, l etti n g t h e st at e v e ct or q t

b e t h e 3 D v e ct or q t = x t, y t, z t , w e h a v e t h e m o d el a c c or di n g t o e q u ati o ns ( 1 8) a n d ( 1 9):

q t = q t − 1 + e t, e t N ( 0, E )

( 1 8)

O t = B q t + n t, n t N 0, ( 1/ m )D t .

( 1 9)

B  is 2 V × 3  w h er e V  is t h e n u m b er of c a m er a vi e ws; t his m a ps t h e 3 D st at e v e ct or q t o nt o 

t h e V  c a m er a c o or di n at es ( ass u mi n g li n e ar o bs er v ati o ns h er e; t his c a n b e g e n er ali z e d b ut 

w as n ot n e c ess ar y f or t h e d at a a n al y z e d h er e). O t is 2 V × 1  a n d D t is bl o c k di a g o n al wit h 2 

× 2 bl o c ks. As a b o v e, o bs er v ati o ns O t wit h hi g h D t (l o w c o nfi d e n c e) will b e d o w n w ei g ht e d 

b y t h e r es ulti n g E K S: i n pr a cti c e, t his m e a ns t h at c a m er as wit h a n u n o bstr u ct e d vi e w o n 
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a gi v e n fr a m e (s m all D t) c a n h el p t o c orr e ct fr a m es t h at ar e o c cl u d e d i n ot h er c a m er a 

vi e ws (r es ulti n g i n l ar g er e ns e m bl e v ari a n c e D t). We r e m ar k t h at i n p o orl y tr ai n e d m o d els, 

t h e o p p osit e c a n als o ( o n r ar er o c c asi o ns) b e tr u e: t h e e ns e m bl e i n o n e c a m er a vi ew c a n 

m a k e ‘ c o nfi d e nt mist a k es’ o n s o m e fr a m es, i n w hi c h all e ns e m bl e m e m b ers o ut p ut t h e 

s a m e wr o n g esti m at e ( wit h c orr es p o n di n g s m all D t, t h at is, hi g h e ns e m bl e c o nfi d e n c e) a n d 

i n d u c e err ors i n t h e ot h er c a m er a vi e ws aft er r u n ni n g t h e E K S. T h es e err ors c a n b e d et e ct e d 

as d e vi ati o ns b et w e e n t h e K al m a n s m o ot h er o ut p ut a n d t h e ori gi n al e ns e m bl e o ut p uts; t h e 

tr ai ni n g l a b el s et c a n t h e n b e a u g m e nt e d t o c orr e ct t h es e c o nfi d e nt mist a k es, f oll o w e d b y 

n et w or k e ns e m bl e r etr ai ni n g.

We i niti ali z e o ur esti m at es b y r estri cti n g t o c o nfi d e nt fr a m es a n d c o m p uti n g P C A t o esti m at e 

B ; t h e n w e t a k e t e m p or al diff er e n c es of t h e r es ulti n g P C A pr oj e cti o ns a n d c o m p ut e t h eir 

c o v ari a n c e t o i niti ali z e E .

Fi n all y, n ot e t h at t his si m pl e K al m a n m o d el d o es n ot o ut p ut t h e tr u e 3 D l o c ati o n h er e, 

b e c a us e t h e m o d el is n o n-i d e ntifi a bl e; i nst e a d, w e l e ar n q t u p t o a fi x e d i n v erti bl e affi n e 

tr a nsf or m ati o n.

P u pil E K S.  F or t h e I B L- p u pil d at as et, w e tr a c k K = 4  k e y p oi nts arr a n g e d i n a di a m o n d 

s h a p e ar o u n d t h e p eri m et er of t h e p u pil. T h er ef or e, at e a c h fr a m e w e h a v e 2 K = 8

o bs er v ati o ns t h at ar e c o nstr ai n e d t o li e i n a 3 D s u bs p a c e d efi n e d b y t h e p u pil c e nt er ( d e n ot e d 

as x t, y t ) a n d di a m et er d t. Gi v e n t h e st at e v ari a bl e q t = d t, x t, y t , w e c a n (li n e arl y) pr e di ct t h e 

l o c ati o n of e a c h of t h e f o ur di a m o n d c or n ers.

I n a d diti o n, w e h a v e str o n g pri or i nf or m ati o n a b o ut t h e d y n a mi cs of t h e st at e v ari a bl e: w e 

k n o w t h at t h e di a m et er d t is a s m o ot h f u n cti o n of ti m e t, w hil e t h e p u pil c e nt er (x t, y t) c a n 

c h a n g e m or e a br u ptl y, d u e t o s a c c a d es a n d r a pi d f a c e m o v e m e nts t h at m o v e t h e e y e as w ell.

T o g et h er, t h es e ass u m pti o ns l e a d t o t h e m o d el gi v e n b y e q u ati o ns ( 2 0) a n d ( 2 1):

q t = A q t − 1 + e t, e t N 0, E ,

( 2 0)

O t = B q t + n t, n t N μ d , 0, 0 , ( 1/m )D t .

( 2 1)

I n t h e o bs er v ati o n e q u ati o n a b o v e, μ d  d e n ot es t h e m e a n di a m et er, O t is t h e 8 × 1 k e y p oi nt 

v e ct or, B  is a fi x e d 8 × 3 m atri x t h at tr a nsl at es t h e st at e v ari a bl e q t i nt o t h e k e y p oi nts a n d 

D t is a di a g o n al m atri x w h os e di a g o n al e ntri es i n cl u d e t h e e ns e m bl e c o nfi d e n c e a b o ut e a c h 

o bs er v ati o n.

I n t h e d y n a mi cs m o d el a b o v e, A  a n d E  ar e b ot h di a g o n al. T his m e a ns t h at w e m o d el t h e 

pri ors f or d t, x t, a n d y t usi n g i n d e p e n d e nt a ut or e gr essi v e ( A R( 1)) pr o c ess es. ( T h e p ost eri ors 

f or t h es e v ari a bl es will n ot b e i n d e p e n d e nt, d u e t o t h e n o n-s e p ar a bl e str u ct ur e of t h e 
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o bs er v ati o n m o d el i n e q u ati o n ( 2 1)). We w a nt t o c h o os e t h e di a g o n al v al u es di a g( A ) a n d 

di a g( E ) s o t h at t h es e pr o c ess es h a v e t h e d esir e d v ari a n c e a n d ti m e c o nst a nt. T h e v ari a n c e i n 

a st ati o n ar y A R( 1) m o d el wit h n ois e v ari a n c e e  a n d a ut or e gr essi v e p ar a m et er a  is e / 1 − a 2 . 

W e c a n cr u d el y esti m at e t h e m ar gi n al m e a n a n d v ari a n c e of x t, y t, a n d d t fr o m t h e e ns e m bl e d 

m e a n M , a n d m at c h t h e A R( 1) m ar gi n al m e a n a n d v ari a n c e a c c or di n gl y. T his l e a v es us 

wit h j ust t w o a ut or e gr essi v e p ar a m et ers t o c h o os e: A ( 1, 1) a n d A ( 2, 2) ( wit h A ( 3, 3) s et e q u al 

t o A ( 2, 2)). T h e ti m e c o nst a nt c orr es p o n di n g t o A ( 1, 1) s h o ul d b e m e a ni n gf ull y l ar g er t h a n t h e 

ti m e c o nst a nt c orr es p o n di n g t o A ( 2, 2), si n c e as n ot e d a b o v e t h e di a m et er d t v ari es m u c h m or e 

s m o ot hl y t h a n t h e c e nt er x t, y t .

Si n gl e- k e y p oi nt, m ulti- c a m er a, a s y n c hr o n o u s c a m er a s c a s e . I n s o m e d at as ets 

(f or e x a m pl e, t h e I B L- p a w d at as et), fr a m es fr o m diff er e nt c a m er as m a y b e a c q uir e d 

as y n c hr o n o usl y, p er h a ps wit h diff er e nt fr a m e r at es. T h e K al m a n m o d el c a n b e e asil y 

a d a pt e d t o h a n dl e t his c as e. D efi n e t h e s a m pli n g ti m es a n d c a m er a I D f or t h e i-t h fr a m e 

as: ti, v i , w h er e ti d e n ot es t h e ti m e t h e fr a m e w as a c q uir e d, a n d v i d e n ot es t h e c a m er a 

t h at t o o k t h e i-t h fr a m e. A g ai n, t h e st at e v e ct or q t is t h e tr u e 3 D l o c ati o n of t h e k e y p oi nt, 

q t = x t, y t, z t . We h a v e t h e m o d el a c c or di n g t o e q u ati o ns ( 2 2) a n d ( 2 3):

q ti = q ti − 1 + e i, e i N 0, E ti − ti − 1

( 2 2)

O i = B v iq ti + n i, n i N 0, ( 1/ m )D i ,

( 2 3)

w h er e n o w B v i is 2 × 3; t his t ells us h o w t h e l at e nt 3 D c o or di n at es ar e m a p p e d i nt o t h e v i’t h 

c a m er a. O i is a 2 × 1 v e ct or, a n d D i is a 2 × 2 m atri x. H er e t h e K al m a n s m o ot h er is r u n o nl y 

at fr a m e a c q uisiti o n ti m es ti , b ut if d esir e d w e c a n p erf or m pr e di cti o ns/i nt er p ol ati o n at a n y 

d esir e d ti m e t.

P o s e P C A c a s e . L et q t r e pr es e nt t h e ‘ c o m pr ess e d p os e,’ t h e R × 1  v e ct or o bt ai n e d b y 

pr oj e cti n g t h e tr u e p os e i nt o t h e R - di m e nsi o n al P os e P C A s u bs p a c e. H er e w e h a v e t h e 

m o d el a c c or di n g t o e q u ati o ns ( 2 4) a n d ( 2 5):

q t = q t − 1 + e t, e t N ( 0, E )

( 2 4)

O t = B q t + n t, n t N 0, ( 1/ m )D t .

( 2 5)
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  is 2� ×�; this maps the �-dimensional state vector ÷× onto the 2� camera coordinates. O×

is 2� × 1 and Ö× is block diagonal with 2 × 2 blocks. As in the synchronous multi-camera 
setting, we initialize our estimates by restricting to confident frames and computing PCA to 
estimate  ; then, we take temporal differences of the resulting PCA projections and compute 
their covariance to initialize E.

The output of this smoother is useful for diagnostic purposes, but we do not recommend 
using this model to generate the final tracking output, because rare (but real) poses may lie 
outside the Pose PCA subspace, while the output of this smoother is restricted to lie within 
this subspace (the span of  ) by construction.

CCA
In Supplementary Figs. 2 and 4, we use canonical correlation analysis (CCA) to compute 
the directions of motion that should match in the left and right cameras and top and bottom 
cameras, respectively. (These canonical correlations directions are orthogonal to the epipolar 
lines familiar from multiple-view geometry37.) In this subsection, we provide details of this 
computation.

Let Ô× =  ÷̂× be the output of the multi-camera EKS at time step ×, projected back onto 

the camera planes. We can further decompose Ô× as Ô× = Ô×
Ù1, Ô×

Ù2 , where Ô×
Ù1 is the 2D 

prediction for the first camera, and Ô×
Ù2 is the 2D prediction for the second camera. Now, we 

compute CCA ÔÙ1, ÔÙ2  to find the one-dimensional linear projection of the outputs for each 

camera that maximizes their correlation. Since Ô× is generated from a lower-dimensional 

set of latents ÷×, the projection of ÔÙ1 and ÔÙ2 onto the first canonical component will be 
perfectly correlated. We can then project the original model predictions for each camera 
onto the first canonical component for each camera. Any frames where the two camera 
views do not have the same projected value will most likely be outliers. This can be seen in 
Supplementary Figs. 2 and 4, where outlier frames due to paw switching and paw occlusions 
cause the model predictions for the two camera views to have different CCA projections.

Neural decoding
We performed neural decoding using cross-validated linear regression with L2 
regularization67 (the Ridge module in scikit-learn68). The decoding targets—pupil diameter 
or paw speed—are binned into nonoverlapping 20-ms bins. For each successful trial, we 
select an alignment event—reward delivery for pupil diameter and wheel movement onset 
for paw speed—and decode the target starting 200 ms before and ending at 1,000 ms after 
the alignment event. We bin spike counts similarly using all recorded neurons in each 
session. The target value for a given bin (ending at time ×) is decoded from spikes in a 
preceding (causal)window spanning � bins (ending at times ×,…, × −� + 1). Therefore, if 
decoding from � neurons, there are �� predictors of the target variable in a given bin. In 
practice, we use � = 10.
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To improve decoding performance, we smoothed the target variables. For pupil diameter, 
both the DeepLabCut (DLC) and Lightning Pose (LP) predictions of pupil diameter were 
smoothed using a Savitzky–Golay filter that linearly interpolates over low-confidence time 
points (confidence < 0.9). The filter window is set to 31 frames (500 ms) for the left video 
(we did not decode pupil diameter from the lower-spatial-resolution right video). More 
details of this method can be found elsewhere29. We did not apply additional smoothing to 
the output of the EKS (LP + EKS) model. For paw speed, small errors in the paw position 
will be magnified when taking the derivative. To compensate for this, we lightly smoothed 
the paw position estimates using a Savitzky–Golay filter after linearly interpolating over 
low-confidence time points (confidence < 0.9), and then computed paw speed. The right 
video filter window is set to 13 frames (87 ms) and the left window is set to 7 frames (117 
ms). This smoothing was applied to the outputs of all three models (DLC, LP, LP + EKS).

All decoding results use nested cross-validation. Each of the five cross-validation folds is 
based on a training/validation set comprising 80% of the trials and a test set of the remaining 
20% of trials. Trials are selected at random (in an ‘interleaved’ manner). The training/
validation set of a fold is itself split into five sub-folds using an interleaved 80%/20% 
partition. A model is trained on the 80% training set using various regularization coefficients 
({10−5, 10−4, 10−3, 10−2, 10−1, 100, 101}, denoted as input parameter α by scikit-learn), and 
evaluated on the held-out validation set. This procedure is repeated for all five sub-folds. 
The coefficient that achieves the highest �2 value, averaged across all five validation sets, 
is selected as the ‘best’ coefficient and used to train a new model across all trials in the 
80% training/validation set. The model is then used to produce predictions for each trial in 
the 20% test set. This train/validate/test procedure is repeated five times, each time holding 
out a different 20% of test trials such that, after the five repetitions, 100% of trials have a 
held-out decoding prediction. The final reported decoding score is the �2 computed across 
all held-out predictions. Code for performing this decoding analysis can be found at https://
github.com/int-brain-lab/paper-brain-wide-map/.

Lightning Pose software package
We built Lightning Pose with the following philosophy. To begin with, computer vision is 
a vast field, of which animal pose estimation is a small part. The thriving deep learning 
software ecosystem offers well-engineered and well-tested solutions for every stage of the 
pose estimation pipeline. We can, therefore, outsource code to these frameworks to a large 
degree, leaving us with a smaller code base to maintain.

We start with Lightning Pose’s core components, which are depicted in the innermost purple 
box in Extended Data Fig. 8a.

First, an algorithmic signature of Lightning Pose is training with two data streams, labeled 
images and unlabeled videos (as depicted in Fig. 2a), which have to be loaded and 
‘augmented’ in tandem. This requirement led us to develop a generic class of so-called 
‘data modules’ supporting flexible semi-supervised training.

Most computer vision systems are built to ingest images, not videos; raw videos are 
rarely used during training. The standard approach converts raw videos into formatted 
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(‘augmented’) images using CPUs. The CPU approach is inefficient and may cause 
the network to spend most of its time idly waiting for data instead of predicting or 
training69 (‘data bottleneck’). Therefore, we built high-performance video readers using 
NVIDIA’s data loading library (DALI; https://github.com/NVIDIA/DALI/; leftmost box 
inside innermost purple box in Extended Data Fig. 8a). DALI uses the native capabilities of 
GPUs) to both read (‘decode’) and augment videos (resize, crop, scale) to greatly accelerate 
video handling at training and prediction time.

Moreover, Lightning Pose decouples network architectures from datasets and training losses 
(center and right boxes, respectively; inside innermost purple box in Extended Data Fig. 8a). 
As part of our own experiments, we realized that users need flexibility to compose a set of 
supervised and unsupervised losses without making any code changes. We, therefore, built a 
‘loss factory’ that enables developers to experiment with existing losses easily and quickly 
prototype new losses. Losses can be applied at any level of representation in the network, 
ranging from the time series of predicted keypoints, through heat maps, to hidden network 
features. New losses require minimal extra code, are automatically logged during training, 
and can contain their own trainable parameters and even trainable sub-networks.

Having established how we handle data, design networks and select losses, we still need a 
procedure for training networks. We offload this task to PyTorch Lightning24 (middle box 
in Extended Data Fig. 8a), which is an increasingly popular wrapper around the PyTorch 
deep learning framework61. This enables us to use the latest strategies for training models, 
logging the results and distributing computation across multiple GPUs, without having to 
modify any of our core modules described above as new training techniques emerge.

In addition, we use Hydra70 to configure, launch and log network training jobs (Extended 
Data Fig. 8a, outermost purple box). This eliminates a substantial amount of ‘boilerplate’ 
code while increasing the reproducibility of training, which often depends on choices of 
random number generator, batch sizes, and so on.

Finally, we developed a suite of interactive training diagnostics and model comparison tools, 
facilitating hyperparameter sensitivity analyses (Extended Data Fig. 8a, right gray box). 
During training, we provide online access to TensorBoard (https://www.tensorflow.org/
tensorboard/) to monitor the individual losses. After training, we use a Streamlit (https://
streamlit.io/) user interface to visualize per-keypoint diagnostics for both labeled frames and 
unlabeled videos. We also use a FiftyOne user interface (https://voxel51.com/) for viewing 
images and videos along with multiple models’ predictions, enabling users to filter body 
parts and models, and browse moments of interest in predicted videos.

A cloud-hosted application for pose estimation as a service
More and more laboratories have access to the accelerated computers needed for running 
deep learning pipelines. But unfortunately, installing, executing and maintaining deep 
learning pipelines on them remains a hurdle even for experienced software developers.

We built a browser application that uses cloud computers and allows users with no coding 
expertise to estimate animal pose using any computer with access to internet. Our app 
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(Extended Data Fig. 8b) supports the full life cycle of animal pose estimation, from data 
annotation via LabelStudio (https://labelstud.io/) to model training to video prediction and 
diagnostic visualization (via the open-source ecosystem introduced above). When launched 
by a user, the app starts a number of cloud machines equipped with the necessary hardware 
and software, which will turn off when idle. Our app is built on Lightning.ai‘s (https://
lightning.ai/) infrastructure for cloud-hosted deep learning applications, removing technical 
obstacles related to resource provisioning, secure remote access and software dependency 
management.

To conclude, the cloud-centric approach we take serves to democratize analysis tools, 
improving scalability, code maintenance requirements and computation time and cost23. 
Our app enables developers who have created new losses or network architectures within 
the Lightning Pose software package to easily make these advances available to the broader 
audience through the cloud-based app. This ability substantially accelerates the process of 
moving model development from the prototyping to production stage.

For up-to-date installation instructions and a walk-through of the app, we refer the reader to 
the app’s documentation website (https://pose-app.readthedocs.io).

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting 
Summary linked to this article.
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Extended Data

Extended Data Fig. 1|. Unsupervised losses complement model confidence for outlier detection on 
mirror-fish dataset.
Example traces, unsupervised metrics, and predictions from a DeepLabCut model (trained 
on 354 frames) on held-out videos. Conventions for panels A-D as in Fig. 3. A: Example 
frame sequence. B: Example traces from the same video. C: Total number of keypoints 
flagged as outliers by each metric, and their overlap. D: Area under the receiver operating 
characteristic curve for several body parts. We define a ‘true outlier’ to be frames where 
the horizontal displacement between top and bottom predictions or the vertical displacement 
between top and right predictions exceeds 20 pixels. AUROC values are only shown for 
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the three body parts that have corresponding keypoints across all three views included in 
the Pose PCA computation (many keypoints are excluded from the Pose PCA subspace due 
to many missing hand labels). AUROC values are computed across frames from 10 test 
videos; boxplot variability is over n=5 random subsets of training data. The same subset 
of keypoints is used for panel C. Boxes in panel D use 25th/50th/75th percentiles for min/
center/max; whiskers extend to 1.5 * IQR.

Extended Data Fig. 2 |. Unsupervised losses complement model confidence for outlier detection 
on CRIM13 dataset.
Example traces, unsupervised metrics, and predictions from a DeepLabCut model (trained 
on 800 frames) on held-out videos. Conventions for panels A-C as in Fig. 3. A: Example 
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frame sequence. B: Example traces from the same video. Because the size of CRIM13 
frames are larger than those of the mirror-mouse and mirror-fish datasets, we use a threshold 
of 50 pixels instead of 20 to define outliers through the unsupervised losses. C: Total number 
of keypoints flagged as outliers by each metric, and their overlap. Outliers are collected 
from predictions across frames from 18 test videos and across predictions from five different 
networks trained on random subsets of labeled data.

Extended Data Fig. 3|. PCA-derived losses drive most improvements in semi-supervised models.
For each model type we train three networks with different random seeds controlling the 
data presentation order. The models train on 75 labeled frames and unlabeled videos. We 
plot the mean pixel error and 95% CI across keypoints and OOD frames, as a function of 
ensemble standard deviation, as in Fig. 4. At the 100% vertical line, n=17150 keypoints for 
mirror-mouse, n=18180 for mirror-fish, and n=89180 for CRIM13.
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Extended Data Fig. 4 |. Unlabeled frames improve pose estimation in mirror-fish dataset.
Conventions as in Fig. 4. A. Example traces from the baseline model and the semi-
supervised TCN model (trained with 75 labeled frames) for a single keypoint on a held-out 
video (Supplementary Video 6). B. A sequence of frames corresponding to the grey shaded 
region in panel (A). C. Pixel error as a function of ensemble standard devation for scarce 
(top) and abundant (bottom) labeling regimes. D. Individual unsupervised loss terms plotted 
as a function of ensemble standard deviation for the scarce (top) and abundant (bottom) label 
regimes.
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Extended Data Fig. 5 |. Unlabeled frames improve pose estimation in CRIM13 dataset.
Conventions as in Fig. 4.A. Example traces from the baseline model and the semi-supervised 
TCN model (trained with 800 labeled frames) for a single keypoint on a held-out video 
(Supplementary Video 7). B. A sequence of frames corresponding to the grey shaded region 
in panel (A). C. Pixel error as a function of ensemble standard deviation for scarce (top) 
and abundant (bottom) labeling regimes. D. Individual unsupervised loss terms plotted as a 
function of ensemble standard deviation for the scarce (top) and abundant (bottom) labeling 
regimes.
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Extended Data Fig. 6 ∣. The Ensemble Kalman Smoother improves pose estimation across 
datasets.
We trained an ensemble of five semi-supervised TCN models on the same training data. The 
networks differed in the order of data presentation and in the random weight initializations 
for their ‘head’. This figure complements Fig. 5 which uses an ensemble of DeepLabCut 
models as input to EKS. A. Mean OOD pixel error over frames and keypoints as a function 
of ensemble standard deviation (as in Fig. 4). B. Time series of predictions (x and y 
coordinates on top and bottom, respectively) from the five individual semi-supervised TCN 
models (75 labeled training frames; blue lines) and EKS-temporal (brown lines). Ground 
truth labels are shown as green dots. C,D. Identical to A,B but for the mirror-fish dataset. 
E,F. Identical to A,B but for the CRIM13 dataset.
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Extended Data Fig. 7 |. Lightning Pose models and ensemble smoothing improve pose estimation 
on IBL paw data.
A. Sample frames from each camera view overlaid with a subset of paw markers estimated 
from DeepLabCut (left), Lightning Pose using a semi-supervised TCN model (center), 
and a 5-member ensemble using semi-supervised TCN models (right). B. Example left 
view frames from a subset of 44 IBL sessions. C. The empirical distribution of the right 
paw position from each view projected onto the 1D subspace of maximal correlation in a 
canonical correlation analysis (CCA). Column arrangement as in A. D. Correlation in the 
CCA subspace is computed across n=44 sessions for each model and paw. The LP+EKS 
model has a correlation of 1.0 by construction. E. Median right paw speed plotted across 
correct trials aligned to first movement onset of the wheel; error bars show 95% confidence 
interval across n=273 trials. The same trial consistency metric from Fig. 6 is computed. F. 
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Trial consistency computed across n=44 sessions. G. Example traces of Kalman smoothed 
right paw speed (blue) and predictions from neural activity (orange) for several trials using 
cross-validated, regularized linear regression. H. Neural decoding performance across n=44 
sessions. Panels D, F, and H use a one-sided Wilcoxon signed-rank test; boxes use 25th/
50th/75th percentiles for min/center/max; whiskers extend to 1.5 * IQR. See Supplementary 
Table 2 for further quantification of boxes.

Extended Data Fig. 8 |. Lightning Pose enables easy model development, fast training, and is 
accessible via a cloud application.
A. Our software package outsources many tasks to existing tools within the deep learning 
ecosystem, resulting in a lighter, modular package that is easy to maintain and extend. 
The innermost purple box indicates the core components: accelerated video reading (via 
NVIDIA DALI), modular network design, and our general-purpose loss factory. The 
middle purple box denotes the training and logging operations which we outsource to 
PyTorch Lightning, and the outermost purple box denotes our use of the Hydra job 
manager. The right box depicts a rich set of interactive diagnostic metrics which are 
served via Streamlit and FiftyOne GUIs. B. A diagram of our cloud application. The 
application’s critical components are dataset curation, parallel model training, interactive 
performance diagnostics, and parallel prediction of new videos. C. Screenshots from our 
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cloud application. From left to right: LabelStudio GUI for frame labeling, TensorFlow 
monitoring of training performance overlaying two different networks, FiftyOne GUI for 
comparing these two networks’ predictions on a video, and a Streamlit application that 
shows these two networks’ time series of predictions, confidences, and spatiotemporal 
constraint violations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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IBL-paw https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/
Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-
f2fc-4709-b203-77dbdac6461f.zip

IBL-pupil https://ibl-brain-wide-
map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/
_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip

All of the model predictions on labeled frames and unlabeled videos are available via 
Figshare at https://doi.org/10.6084/m9.figshare.25412248.v2 (ref. 74). These results, along 
with the labeled data, can be used to reproduce the main figures of the paper.

To access the IBL data analyzed in Fig. 6 and Extended Data Fig. 7, see the documentation 
at https://int-brain-lab.github.io/ONE/FAQ.html#how-do-i-download-the-datasets-cache-for-
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a-specific-ibl-paper-release and use the tag 2023_Q1_Biderman_Whiteway_et_al. This 
will provide access to spike-sorted neural activity, trial timing variables (stimulus onset, 
feedback delivery and so on), the original IBL DeepLabCut traces and the raw videos.
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Fig. 1|. Fully supervised pose estimation often outputs unstable predictions and requires many 
labels to generalize to new animals.
a, Diagram of a typical pose estimation model trained with supervised learning, illustrated 
using the mirror-mouse dataset. A dataset is created by labeling keypoints on a subset of 
video frames. A convolutional neural network, consisting of a ‘backbone’ and a prediction 
‘head’, takes in a batch of frames as inputs, and predicts a set of keypoints for each 
frame. It is trained to minimize the distance from the labeled keypoints. b, Predictions 
from five supervised DeepLabCut networks (trained with 631 labeled frames on the mirror-
mouse dataset), for the left front paw position (top view) during 1 s of running behavior 
(Supplementary Video 1). Top, �-coordinate; middle, �-coordinate; bottom, confidence, 
applying a standard 0.9 threshold indicated by the dashed line. Black arrows indicate 
example time points where there is disagreement among the network predictions. c, Top 
row shows five example datasets. Each blue image is an example taken from the InD test set, 
which contains new images of animals that were seen in the training set. The orange images 
are test examples from unseen animals altogether, which we call the OOD test set. Bottom 
row shows data efficiency curves, measuring test-set pixel error as a function of the training 
set size. InD pixel error is shown in blue and OOD in orange. Line plots show the mean 
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pixel error across all keypoints and frames ± s.e. over Ý = 10 random subsets of InD training 
data.
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Fig. 2 |. Lightning Pose exploits unlabeled data in pose estimation model training.
a, Diagram of the semi-supervised model that contains supervised (top row) and 
unsupervised (bottom row) components. b, Temporal difference loss. Top left: illustration 
of a jump discontinuity. Top right: loss landscape for frame t given the prediction at × − 1
(white diamond), for the left front paw (top view). The dark blue circle corresponds to 
the maximum allowed jump, below which the loss is set to zero. Bottom left: correlation 
between temporal difference loss and pixel error on labeled test frames. c, Multi-view PCA 
loss. Top left: illustration of a 3D keypoint detected on the imaging plane of two cameras. 
Top right: loss landscape for the left front paw (top view; white diamond) given its predicted 
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location on the bottom view. The blue band of low loss values is an ‘epipolar line’ on 
which the top-view paw could be located. Bottom left: correlation between multi-view 
PCA loss and pixel error. Bottom right: cumulative variance explained for single body part 
labels across all views versus the fraction of principal components (PCs) kept on multi-view 
datasets. d, Pose PCA loss. Top left: illustration of plausible and implausible poses. Top 
right: loss landscape for the left front paw (top view; white diamond) given all other 
keypoints, which is minimized around the paw’s actual position. Bottom left: correlation 
between Pose PCA loss and pixel error. Bottom right: cumulative variance explained for 
pose labels versus fraction of PCs kept. e, The TCN processes each labeled frame with its 
adjacent unlabeled frames, using a bidirectional CRNN. It forms two sets of location heat 
map predictions, one using single-frame information and another using temporal context.
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Fig. 3 |. Unsupervised losses complement model confidence for outlier detection.
a, Example frame sequence from the mirror-mouse dataset. Predictions from a DeepLabCut 
model (trained on 631 frames) are overlaid (magenta ×), along with the ground truth (green 
+). Open white circles denote the location of the same body part (left hind paw) in the other 
(top) view; given the geometry of this setup, a large horizontal displacement between the top 
and bottom predictions indicates an error. Each frame is accompanied with ‘standard outlier 
detectors’, including confidence, temporal difference loss (shaded in blue) and ‘proposed 
outlier detectors’, including multi-view PCA loss (shaded in red; Pose PCA excluded 
for simplicity), indicates an inlier as defined by each metric, and indicates an outlier. b, 
Example traces from the same video. Blue background denotes times where standard outlier 
detection methods flag frames: confidence falls below a threshold (0.9) and/or the temporal 
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difference loss exceeds a threshold (20 pixels). Red background indicates times where the 
multi-view PCA error exceeds a threshold (20 pixels). Purple background indicates both 
conditions are met. c, The total number of keypoints flagged as outliers by each metric, 
and their overlap. d, AUROC for each paw, for DeepLabCut models trained with 75 and 
631 labeled frames (left and right columns, respectively). AUROC = 1 indicates the metric 
perfectly identifies all nominal outliers in the video data; 0.5 indicates random guessing. 
AUROC values are computed across all frames from 20 test videos; box plot variability is 
over Ý = 5 random subsets of training data. Boxes use the 25th, 50th and 75th percentiles 
for minimum, center and maximum values, respectively; whiskers extend to 1.5 times the 
interquartile range (IQR).
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Fig. 4 |. Unlabeled frames improve pose estimation (raw network predictions).
a, Example traces from the baseline model and the semi-supervised TCN model (trained 
with 75 labeled frames) for a single keypoint (right hind paw; top view) on a held-out 
video (Supplementary Video 5). One erroneous paw switch is shaded in gray. b, A sequence 
of frames (1,548–1,551) corresponding to the gray shaded region in a in which a paw 
switch occurs. c, We computed the standard deviation of each keypoint prediction in each 
frame in the OOD labeled data across all model types and seeds (five random shuffles 
of training data). We then took the mean pixel error over all keypoints with a standard 
deviation larger than a threshold value, for each model type. Smaller standard deviation 
thresholds include more of the data (Ý = 17,150 keypoints total, indicated by the ‘100%’ 
vertical line; (253 frames) × (5 seeds) × (14 keypoints) − missing labels), while larger 
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standard deviation thresholds highlight more ‘difficult’ keypoints. Error bands represent the 
s.e.m. over all included keypoints and frames for a given standard deviation threshold. d, 
Individual unsupervised loss terms are plotted as a function of ensemble standard deviation 
for the scarce (top) and abundant (bottom) label regimes. Error bands as in c, except we first 
computed the average loss over all keypoints in the frame (200,000 frames total; (40,000 
frames) × (5 seeds)).
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Fig. 5 |. The EKS post-processor.
Results are based on DeepLabCut models trained with different subsets of InD data and 
different random initializations of the head. a, Deep ensembling combines the predictions of 
multiple networks. b, The EKS leverages the spatiotemporal constraints of the unsupervised 
losses as well as uncertainty measures from the ensemble variance in a probabilistic state-
space model. Ensemble means of the keypoints are modeled with a latent linear dynamical 
system; temporal smoothness constraints are enforced through the linear dynamics (orange 
arrows) and spatial constraints (Pose PCA or multi-view PCA) are enforced through a fixed 
observation model that maps the latent state to the observations (green arrows). Instead of 
learning the observation noise, we use the time-varying ensemble variance (red arrows). 
EKS uses a Bayesian approach to weight the relative contributions from the prior and 
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the observations. c, Post-processor comparison on OOD frames from the mirror-mouse 
dataset. We plotted pixel error as a function of ensemble standard deviation (as in Fig. 4) 
for several methods. The median filter and ARIMA models act on the outputs of single 
networks; the ensemble means, ensemble medians and EKS variants act on an ensemble 
of five networks. EKS (temporal) only utilizes temporal smoothness, and is applied one 
keypoint at a time. EKS (MV PCA) utilizes multi-view information as well as temporal 
smoothness, and is applied one body part at a time (tracked by one keypoint in each of two 
views). Error bands as in Fig. 4 (Ý = 17,150 keypoints at 100% line). d, Trace comparisons 
for different methods (75 train frames). Gray lines show the raw traces used as input to the 
method; colored lines show the post-processed trace. e, Pixel error comparison for the EKS 
(temporal) post-processor as a function of ensemble members (�). Error bands as in c. f, 
Trace comparisons for varying numbers of ensemble members (75 train frames).
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Fig. 6 |. Lightning Pose models and EKS improve pose estimation on IBL-pupil data.
a, Sample frame overlaid with a subset of pupil markers estimated from DeepLabCut (DLC; 
left), Lightning Pose using a semi-supervised TCN model (LP; center) and a five-member 
ensemble using semi-supervised TCN models (LP + EKS; right). b, Example frames from a 
subset of 65 IBL sessions. c, Empirical distribution of vertical diameter measured from top 
and bottom markers scattered against horizontal pupil diameter measured from left and right 
markers. Column arrangement as in a. d, Vertical versus horizontal diameter correlation was 
computed across Ý = 65 sessions for each model. The LP + EKS model has a correlation of 
1.0 by construction. e, Pupil diameter was plotted for correct trials aligned to feedback 
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onset; each trial was mean subtracted. DeepLabCut and LP diameters were smoothed 
using IBL’s default post-processing, compared to LP + EKS outputs. We compute a trial 
consistency metric (the variance explained by the mean over trials; see text) as indicated in 
the titles. f, The trial consistency metric computed across Ý = 65 sessions. g, Example traces 
of LP + EKS pupil diameters (blue) and predictions from neural activity (orange) for several 
trials using cross-validated, regularized linear regression. h, Neural decoding performance 
across Ý = 65 sessions. In d, f and h, a one-sided Wilcoxon signed-rank test was used; 
boxes display the 25th, 50th and 75th percentiles for minimum, center and maximum values, 
respectivley; and whiskers extend to 1.5 times the IQR.
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