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Abstract

Some hydrogen-rich core-collapse supernovae (SNeIIP) exhibit evidence of a sustained energy source powering
their light curves, resulting in a brighter and/or longer-lasting hydrogen recombination plateau phase. We present a
semi-analytic SNIIP light-curve model that accounts for the effects of an arbitrary internal heating source,
considering as special cases 56Ni/56Co decay, a central engine (magnetar or accreting compact object), and shock
interaction with a dense circumstellar disk. While a sustained internal power source can boost the plateau
luminosity commensurate with the magnitude of the power, the duration of the recombination plateau can typically
be increased by at most a factor of ∼2–3 compared to the zero-heating case. For a given ejecta mass and initial
kinetic energy, the longest plateau duration is achieved for a constant heating rate at the highest magnitude that
does not appreciably accelerate the ejecta. This finding has implications for the minimum ejecta mass required to
explain particularly long-lasting SNe, such as iPTF14hls, and for confidently identifying rare explosions of the
most massive hydrogen-rich (e.g., Population III) stars. We present a number of analytic estimates that elucidate
the key features of the detailed model.

Unified Astronomy Thesaurus concepts: Type II supernovae (1731)

1. Introduction

Roughly 75% of all stellar explosions are core-collapse
supernovae (SNe; e.g., F. Mannucci et al. 2007), of which≈70%
are hydrogen-rich, i.e., Type II SNe (e.g., D. A. Perley et al.
2020). Roughly three-quarters of the Type II SNe are further of
the IIP class (SNeIIP), with a plateau-shaped light-curve phase
lasting typically around 100 days (R. Barbon et al. 1979;
J. P. Anderson et al. 2014; T. Faran et al. 2014; S. Valenti et al.
2016; L. Martinez et al. 2022a). In most cases, the luminosity
during the plateau phase is supported mainly by the thermal
energy deposited by the SN shock, its evolution dictated by a
cooling and recombination wave receding inward through the
expanding envelope (E. K. Grassberg et al. 1971; E. K. Grasberg
& D. K. Nadezhin 1976; S. W. Falk & W. D. Arnett 1977;
I. I. Litvinova & D. K. Nadezhin 1983; I. Y. Litvinova &
D. K. Nadezhin 1985; N. N. Chugai 1991; D. V. Popov 1993;
T. Faran et al. 2019).

The properties of SNIIP light curves, such as the duration and
luminosity of the plateau phase, can along with spectral
information such as photospheric velocities be used to constrain
the ejecta properties (e.g., O. Pejcha & J. L. Prieto 2015; L. Mar-
tinez et al. 2022b), though with substantial degeneracies (e.g.,
L. Dessart & D. J. Hillier 2019; J. A. Goldberg et al. 2019). These
constraints frequently make use of analytic scaling relations
calibrated to numerical simulations (e.g., D. V. Popov 1993;
S. Zha et al. 2023). It is also known that the sustained heating from
the 56Ni→56Co→56Fe decay chain acts to flatten and extend the
duration of the plateau (e.g., T. R. Young 2004; D. Kasen &
S. E. Woosley 2009; M. C. Bersten et al. 2011; E. Nakar et al.

2016; T. Sukhbold et al. 2016; J. A. Goldberg et al. 2019;
A. Kozyreva et al. 2019), which can also be included in
numerically calibrated analytic estimates.
However, there is increasing evidence for the need for extra

energy sources beyond 56Ni in a growing subset of SNe, the
most extreme cases being superluminous SNe (SLSNeII;
A. Gal-Yam 2019; C. Inserra 2019). This “extra” heating
source has variously been attributed to circumstellar medium
(CSM) interaction (e.g., A. Fassia et al. 2000; N. Smith &
R. McCray 2007; A. A. Miller et al. 2009; E. Chatzopoulos
et al. 2012; C. Inserra et al. 2012; J. C. Mauerhan et al. 2013;
C. Fransson et al. 2014; N. Smith et al. 2014; K. A. Bostroem
et al. 2019; A. Nyholm et al. 2020; see also M. Fraser 2020 for
a review), the injection of rotational energy from a rapidly
spinning magnetized neutron star (D. Kasen & L. Bilds-
ten 2010; S. E. Woosley 2010; T. Sukhbold & T. A. Thomp-
son 2017; L. Dessart 2018), or accretion energy from a black
hole (J. Dexter & D. Kasen 2013; R. Perna et al. 2018) or
neutron star (B. D. Metzger et al. 2018). An extreme example is
iPTF14hls, which produced a plateau-like (optically thick)
phase lasting for ∼1000 days (I. Arcavi et al. 2017; J. Soller-
man et al. 2019), only finally to reveal the appearance of
narrow emission lines and hence the presence of CSM
interaction (J. E. Andrews & N. Smith 2018).
Extremely luminous or long-lasting SNeIIP can also result

from rare or exotic explosions of extremely massive progeni-
tors, such as pair-instability SNe (PISNe), from stars of
100Me (G. Rakavy & G. Shaviv 1967; A. Heger &
S. E. Woosley 2002; S. E. Woosley et al. 2007; K.-J. Chen
et al. 2023). However, the standard analytic expressions
commonly used to estimate the ejecta properties from
observables like plateau duration and luminosity (e.g.,
D. V. Popov 1993; T. Sukhbold et al. 2016), and hence to
identify such rare explosion classes, in general do not apply in
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the presence of additional heating sources. This motivates the
present study to explore the full landscape of theoretically
permitted SNIIP properties, allowing for an arbitrary heating
source evolution, in order to ascertain what robust constraints
can be placed by SN observations on the stellar progenitor
properties (particularly the ejecta mass). Such a framework
would help address whether exceptionally long-duration light
curves like iPTF14hls necessitate an atypically massive stellar
progenitor or whether an otherwise ordinary-mass explosion
with a powerful internal heating source (e.g., from CSM
interaction) is alone sufficient.

The Vera C. Rubin Observatory (Rubin; Ž. Ivezić et al.
2019) will monitor roughly half of the extragalactic sky over 10
yr, during which it is expected to observe millions of SNeIIP
(LSST Science Collaboration 2009). This unprecedented
sample will enable detailed studies of the distribution of
explosion properties (e.g., J. W. Murphy et al. 2019;
J. A. Goldberg & L. Bildsten 2020; L. Martinez et al. 2022a)
and how they map onto progenitor star (e.g., N. L. Strotjohann
et al. 2024) and host galaxy properties (e.g., A. Gagliano et al.
2023). In addition to the many relatively nearby SNe observed
by Rubin, rare explosions arising from the first generations of
stars (e.g., Population III) are targets for high-redshift surveys
such as Euclid (e.g., T. J. Moriya et al. 2022) and the Nancy
Grace Roman Space Telescope (e.g., B. M. Rose et al. 2021).
The analytic estimates derived in this paper will be usefully
applied to constrain the ejecta properties or energy sources for
future large samples of SNeIIP or for obtaining robust
conclusions for individual exceptional events like iPTF14hls.

This paper is organized as follows. In Section 2, we
generalize existing semi-analytic SNIIP light-curve models to
include the presence of an arbitrary internal heating source. In
Section 3, we first consider the case of a temporally constant
heating source, providing ample analytic estimates that help
interpret our numerical results. In Section 4, we expand our
considerations to the case of a broken-power-law heating rate,
which we show approximates the behavior of most physical
heating sources, ranging from radioactive 56Ni decay to a
central magnetar or accreting engine to CSM interaction. In
Section 5, we discuss the implications of our results, and in
Section 6, we summarize our findings and conclude. Readers
who are not interested in analytical derivations can go directly
to Section 5 and Figure 12, where our main findings and their
implications are discussed.

2. Generalized Popov Model

We generalize the D. V. Popov (1993) model to include a
central heating source of arbitrary magnitude, which will in
essence act to lengthen the optically thick photospheric phase,
i.e., the “plateau” phase (at least for nonextremal heating rates).
While the “plateau” should be defined by the phase over which
the light curve has a flat shape as identified in observations,
defining it in a formal way is not straightforward (see, e.g.,
T. Sukhbold et al. 2016; J. A. Goldberg et al. 2019 for several
definitions in numerical studies). Physically, there are two
important timescales: one is the diffusion time at which the
most photons diffuse out of ejecta; the other is the time when
the ejecta becomes optically thin—that is, the end (start) of the
photospheric (nebular) phase. During the nebular phase,
thermal emission is no longer necessarily produced. As we
will see below, under weak energy injection, the light curve
drops at the diffusion time and traces the injection luminosity

onward. For strong injection, the light curve never experiences
a drop and smoothly enters the nebular phase. Since our interest
is in obtaining the maximum duration of the plateau under
energy injection, we define the plateau phase as the duration
over which the ejecta shell is still opaque to electron scattering
as the “plateau,” even when the light curve is not flat. This
serves as a conservative upper limit on the plateau duration.
Prior to when the ejecta cools sufficiently for hydrogen

recombination to set in, its evolution follows the well-known
Arnett model (W. D. Arnett 1980, 1982) with an additional
heating source (e.g., D. Kasen & L. Bildsten 2010; E. Chatzo-
poulos et al. 2012; B. D. Metzger et al. 2015). The first law of
thermodynamics is applied to a one-zone model:5

( )= - - +
dE

dt
P
dV

dt
L H, 1

where E, P, = p
V R

4

3

3, R, L, and H are the internal thermal

energy, pressure, volume, radius, radiated luminosity, and

(specified) heating rate, respectively. We assume that radiation

pressure dominates over gas pressure, such that E= aT4V and

P= E/(3V ), respectively, where a is the radiation constant and

T is the internal temperature. The radiated luminosity follows

from the diffusion approximation:

 ( )
( )p
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t
4

3
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4
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diff
2

where the dynamical and diffusion timescales are, respectively,

defined by
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Here, κ= 0.34 cm2 g−1 is the Thomson opacity for fully

ionized solar composition material, c is the speed of light, and

we have introduced the shorthand notation M= 10M10Me and

v= 6000v6000 km s−1 for the ejecta mass and characteristic

velocity, respectively. Equation (1) can now be written as

( )= - - +
dE

dt

E

t

t E

t
H. 5

dyn

dyn

diff
2

The first term in Equation (1) accounts for the loss of internal
energy due to PdV work done on the ejecta by itself. This term
acts to increase the ejecta kinetic energy Ekin, according to

( )=
dE

dt
P
dV

dt
. 6

kin

For homologously expanding ejecta of assumed constant

density, ρ=M/V, and velocity ( )¢ =v v r R , we have

( )ò r p= ¢ =E v r dr Mv
1

2
4

3

10
7

R

kin
0

2 2 2⎛¿ À⎠
 ´ M v2.2 10 erg .51

10 6000
2

5
The original models of W. D. Arnett (1980, 1982) and D. V. Popov (1993)

employ a radial temperature profile corresponding to a solution to the diffusion
equation. The simpler one-zone model adopted in this paper nevertheless
reproduces the normalization and parameter scalings of these original models,
motivating our approach. We also discuss the validation of the one-zone
approximation in more detail in Appendix A.
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Note that we have neglected any contribution to Ekin from a

high-velocity tail ¢v v, which contributes to the early-time

shock cooling emission but not to the plateau. Equation (6) thus

becomes

( )
p

=M
dv

dt
R P

20

3
. 82

Equations (5) and (8) determine the time evolution of ejecta

until the hydrogen recombination phase begins.
The recombination phase starts when the effective temper-

ature of the photosphere decreases to the hydrogen recombina-
tion temperature, Ti; 6000 K. The photosphere temperature is
defined as

 ( )
ps t

ºT
L

R

T

4
1.1 , 9eff

SB
2

1 4

1 4
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¿

À
⎠

where ÃSB is the Stefan–Boltzmann constant, Ä= κRρ is the

Thompson optical depth through the ejecta (i.e., assuming it is

fully ionized), and the second equality makes use of

Equation (2).
After recombination begins at t= ti, a sharp recombination

front forms and begins to recede back through the ejecta shell.
Outside this front, the ejecta is neutral and transparent to
radiation. Therefore, we regard the photosphere radius Rph as
coinciding with the recombination front, at the dimensionless
coordinate x≡ Rph/R� 1. We retain a one-zone model similar
to that described earlier to calculate the evolution of the fully
ionized region (within the photosphere) during the recombina-
tion phase. All quantities retain the same meaning, except the
ejecta radius R is now replaced with Rph= xR. For instance, the

volume of the ionized region becomes ( )= p
V xR

4

3

3, while the

radiated luminosity becomes

 ( ) ( )p
kr

=L xR
c aT

xR

t E

x t
4

3
. 102

4
dyn

2
diff
2

Equating this to the photosphere luminosity, =L
( )p sxR T4 2

SB i
4, gives an expression analogous to Equation (9)

but with the replacements Teff→ Ti and Ä→ xÄ. Combined

with Equation (5), this gives the evolution of the recombination

depth (J. Dexter & D. Kasen 2013):

( )= - - +
dx

dt

x

t

t

t x

H

H t x

2

5 5 5

1
, 11

dyn

dyn

diff
2

cr dyn
3

where we have defined

( ) ( )p s=H vt T4 12cr diff
2

SB i
4

 ´ - M v T3.0 10 erg s43 1
1 6000 i,6000

4

and Ti= 6000Ti,6000K. This critical heating rate controls the

recombination time and will be used in the analytic estimates

below.
We have neglected the acceleration of the ejecta during the

recombination phase. This is usually justified because the

acceleration timescale at recombination (t; ti),

∣ ( )
k

= -v

dv dt

v

aT
v T1700 day , 13t 5

4 i
4

6000 i,6000
4

i

greatly exceeds the dynamical timescale,6 where we have used

Equations (8) and (9) and set Teff= Ti. Acceleration also

becomes negligible after radiation begins to diffuse out of the

ejecta (t tdiff), due to the associated loss of thermal pressure.
In the following sections, we solve the above equations for

different central heating sources H(t) and ejecta properties. The
latter include the total mass M, initial size (usually, the
progenitor star radius) R0, initial internal energy E0, and initial
kinetic energy Ekin,0.

7 Throughout, we assume solar abun-
dances and κ= 0.34 cm2 g−1

(though this could readily be
generalized to different abundances by modifying μ and κ
accordingly). We also assume that the ejecta internal and
kinetic energies are initially comparable, E0; Ekin,0 at t= 0,
with the total explosion energy equal to their sum. After just a
few dynamical times, most of the initial internal energy is
converted into kinetic energy by PdV work, causing the ejecta
to reach a terminal speed =v v2 0, where v0 is the initial
velocity calculated from Ekin,0 and M (Equation (7)). For
Ekin,0= 1051 erg and M= 10Me, this gives v0; 4100 km s−1

and v; 5800 km s−1. Except where noted (e.g., Section 3.2),
we hereafter express analytic estimates in terms of the terminal
speed, v.
Before describing our results for specific heating sources, we

review the original Popov estimates (D. V. Popov 1993;
J. Dexter & D. Kasen 2013; T. Matsumoto et al. 2016), which
are obtained by neglecting any heating or acceleration of the
ejecta after the initial explosion. As shown below (around
Equation (28)), the recombination phase begins on the
timescale

 ( )- - -t E M R v T19 day , 15i 0,51
1 2
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1 2
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1 2
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2

where E0= 1051E0,51 erg, R0= 500R0,500 Re, and we have

implicitly assumed ti= tdiff. Under these assumptions,

Equation (11) has the following analytic solution:
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The plateau duration corresponds to when the ejecta fully

recombines (x(tpl,Popov)= 0), giving
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where the second equality on the first line assumes ti= tdiff. At

the same level of approximation, the total radiated energy and

6
This may break down for low-velocity events such as SN precursors (e.g.,

N. L. Strotjohann et al. 2021; T. Matsumoto & B. D. Metzger 2022a). See
D. Tsuna et al. (2024) for an attempt to include the acceleration during the
recombination phase.
7

Radiation pressure dominates over gas pressure for large explosion energies,
obeying

( ) ( )m´ - -ùE M R1.3 10 erg 0.60 , 140
48 1

10
4 3

0,500
1

where μ is the mean molecular weight.
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average plateau luminosity are given, respectively, by
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where we have used tpl,Popov for tpl. These expressions exhibit

slightly different exponents and normalization from those

originally derived by D. V. Popov (1993), who assumed a self-

similar radial temperature profile, which is not necessarily

achieved (e.g., D. K. Khatami & D. N. Kasen 2019). These

expressions have been compared with the results of radiation

hydrodynamic simulations (D. Kasen & S. E. Woosley 2009;

T. Sukhbold et al. 2016; J. A. Goldberg et al. 2019), their

accuracy being confirmed to within a factor of a few.8

3. Constant Heating Rate

We now solve the equations presented in the previous
section to explore how the SN plateau phase is modified by a
temporally constant heating source of arbitrary magnitude.
While a constant heating rate only represents a crude
approximation to a more physical time-evolving power source,
this simple assumption enables us to obtain general physical
insights into the impact of heating and to derive useful
analytical formulae. Furthermore, we show later that the
constant-heating case bounds the light-curve behavior for more
complex, physically motivated heating curves, in particular by
defining the maximal plateau duration.

A given model is specified by the (constant) heating rate H
and the initial conditions of the explosion, as mentioned above.
At early times (t< ti), the effective temperature exceeds the
recombination value (Teff> Ti), and we solve Equations (5) and
(8) until Teff= Ti at ti. During the recombination phase, we
solve Equation (11) for x(t). The evolution is followed until the
nebular phase, which we define as when the optical depth
decreases to unity: xÄ= 1.

Figure 1 depicts the time evolution of the effective
temperature, luminosity, and dimensionless photospheric
radius for various values of the heating rate H= 1040–
1046 erg s−1, adopting ejecta properties of M= 10Me, R0=

500 Re, and E0= Ekin,0= 1051 erg (corresponding to v0;
4100 km s−1 and v; 5800 km s−1

), typical of Type II SNe
(e.g., D. Kasen & S. E. Woosley 2009). The results are
qualitatively summarized as follows. When the heating rate is
sufficiently small (H 1041 erg s−1

), its effect is negligible and
the result is indistinguishable from the zero-heating case H= 0.

As the heating rate increases, the plateau duration (equiva-
lently, in our formulation, the beginning of the nebular phase)
becomes longer but the initial onset ti of the recombination
phase remains largely unchanged up to HHcr; 3×
1043 erg s−1. The recombination time grows substantially for
HHcr. For yet larger heating rates H?Hcr, the recombina-
tion phase terminates earlier and the plateau duration shrinks,
because the ejecta is now significantly accelerated by PdV
work. The plateau duration thus achieves its maximal value for

Figure 1. Time evolution of the effective temperature, bolometric luminosity,
and location and velocity of the photosphere (from top to bottom) for different
constant heating rates as marked. The recombination phase begins when
Teff = Ti at ti (marked as squares). The ejecta enters the nebular phase when the
optical depth becomes smaller than unity at tpl (marked as circles), providing
one definition of the plateau duration. After time tdiff

rec (marked as triangles)
during the recombination phase, the luminosity starts to track the internal
heating rate, a transition that may also be observationally associated with the
end of the plateau. The adopted ejecta parameters are M = 10 Me,
R0 = 500 Re, E0 = Ekin,0 = 1051 erg (v0 ; 4100 km s−1

).

8
Numerical results in previous works can be summarized as

 ( )= - -L L E M Rerg s , 2050 50
1

SN,51
5 6

10
1 2

0,500
2 3

 ( )= -t t E M Rday , 21pl pl SN,51
1 6

10
1 2

0,500
1 6

where L50 is the bolometric luminosity at 50 days after the explosion and
=E E10 ergSN

51
SN,51 is the total explosion energy. D. Kasen & S. E. Woosley

(2009) obtained  ´L 1.3 1050
42 and t 122pl with a different dependence

of µ -t E ;pl SN,51
1 4 T. Sukhbold et al. (2016) found  ´L 1.8 1050

42 and
t 96;pl and J. A. Goldberg et al. (2019) found  ´L 1.4 1050

42 and a
slightly different scaling (see their Equation (8)).
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a given ejecta mass/explosion energy at the maximum heating
rate that does not appreciably impact the ejecta dynamics
(H; 1044 erg s−1, for the adopted parameters). In the follow-
ing, we derive analytical formulae for these timescales and the
critical heating rates that delineate these regimes.

3.1. Without Acceleration

We first consider cases in which PdV acceleration is
negligible following the initial dynamical timescale; this
greatly simplifies the analysis and is a good approximation
for small heating rates. For constant velocity, the dynamical
timescale is identical to the time since explosion, tdyn= t (or
equivalently R= vt), and Equation (5) can be integrated to
obtain

( ) ( )= + -
-

- -

E E
t

t
e

t H

t E
e1 1 , 220

0 diff
2

0 0

t t

t

t t

t

2
0
2

2
diff
2

2
0
2

2
diff
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⎡
⎣⎢

⎤
⎦⎥

where

 ( )= -t
R

v
R v0.95 day 230

0

0
0,500 6000

1

is the initial dynamical/expansion timescale and we again

relate the initial and terminal ejecta speed, =v v 20 . The

second term within square brackets in Equation (22) represents

the effect of the heating source. For typical SN ejecta

properties, the diffusion time exceeds the initial expansion

timescale, tdiff? t0; since initially the heating does not impact

the ejecta evolution, the internal energy declines adiabatically,

E∝ t−1. This evolution is modified once the deposited energy

becomes comparable to the internal energy, tH; t0E0/t. This
occurs on the timescale

 ( )= - -t
t E

H
E R v H33 day , 24h

0 0
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0,51
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1 2
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1 2
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1 2⎛¿ À⎠

where H= 10xHx erg s
−1. When this timescale is shorter than

the diffusion timescale, which is true for large heating rates,
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the time evolution of the internal energy can be summarized as
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When th> tdiff, the middle regime disappears.
The effective temperature evolves following Equation (9):
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where Hcr is the critical heating rate introduced earlier

(Equation (12)). The recombination time ti is obtained by

setting Teff= Ti with Equation (27). Noting that the effective

temperature is constant for th< t< tdiff, we obtain
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H H
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This timescale for H<Hcr is notably identical to that in the

H= 0 limit (Equation (15)). Interestingly, the recombination

time is discontinuous at H=Hcr, because of the static effective

temperature for th< t< tdiff, thus accounting for the sudden

jump in the recombination time above H;Hcr; 3×
1043 erg s−1.
For the recombination phase, while Equation (11) cannot be

solved analytically for H≠ 0, the behavior of the solution can
still be understood quantitatively. The three terms on the right-
hand side of Equation (11) correspond to adiabatic cooling,
radiative cooling (photon diffusion), and heating, respectively.
First consider the limit of weak heating H<Hcr. In such cases,
just after the recombination starts, neither heating nor radiative
losses are important, and the photosphere thus shrinks in time
as  ( )-x t ti

2 5, corresponding to adiabatic evolution
(Equation (16)). However, as x decreases, radiative cooling
and heating eventually come to compete with or balance,
respectively, the adiabatic cooling. For parameter regimes in
which radiative cooling is subdominant, adiabatic cooling
balances heating. This balance is achieved on the timescale

( )=t
H

H
t

2
29h

rec cr
5 8

i⎛¿ À⎠
 - -E M R v T H59 day .0,51
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6000
3 8
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At times >t th
rec, the photosphere stalls at  ( )x H H2 cr

1 4

until radiative cooling takes over from adiabatic cooling in

balancing heating. This occurs after, on the timescale

 ( )= - -t
H

H
t M v T H

2
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After this transition >t tdiff
rec , the photosphere continues to

shrink again, this time as  ( )x H H t tcr
1 2

diff . In summary,

for H<Hcr and ti< th< tdiff, the photosphere location evolves

as
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< <
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The superscripts “rec” in Equations (29) and (30) denote the

heating and diffusion timescales during the recombination

phase, respectively. After the diffusion timescale, the escaping

luminosity roughly tracks the heating rate L;H, as illustrated
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by the triangles in Figure 1. While we have defined the end of

the plateau as when the ejecta becomes optically thin, one

could instead define this by the change in light-curve shape

near tdiff
rec (e.g., the location of the triangles for the H= 1041 and

1042 erg s−1 cases in Figure 1). We discuss later in this section

how our results change if we instead identify tdiff
rec as the plateau

duration.
For the opposite regime, radiative cooling dominates

adiabatic cooling even before either balances heating. In these
cases, the photosphere evolution follows Equation (16) until
heating balances cooling at t; tpl,Popov, after which x decreases
following the final case in Equation (31). Such an evolutionary
sequence is realized for low heating rates, below a critical
value,

( )øH
t

t
H0.66 32

i

diff

8 7

cr⎜ ⎟⎛
¿

À
⎠

 ´ - -E M R v T2.7 10 erg s ,42 1
0,51
4 7

10
1 7

0,500
4 7

6000
3 7

i,6000
12 7

obtained by equating the plateau duration neglecting heating

(H= 0; Equation (17)) with the timescale of Equation (29). For

large heating rates H>Hcr, the first regime in Equation (31)

vanishes, because heating has already become important even

prior to the recombination phase.
In either case, as long as the heating is present, the

photosphere at late times >t tdiff
rec or tpl,Popov begins to shrink as

x∝ t−1
(following the final regime of Equation (31)) and never

reaches x= 0, as in the no-heating case H= 0. Again defining
the plateau duration as when the ejecta becomes optically thin
(or enters the nebular phase), xÄ= 1, in the presence of a
heating source we find
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k
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where
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6000
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is the time the ejecta becomes optically thin assuming full

ionization. Equating Equation (33) with Equation (17) gives the

heating rate above which the plateau duration is significantly

boosted relative to the zero-heating case:

( )=H
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v

t

t
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6000
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Note that while heating can extend the plateau duration in

accordance with Equation (33), the duration is ultimately

limited by when the ejecta becomes optically thin/nebular
(Equation (34)). The latter limit is achieved for very powerful

heating sources, which keep the ejecta fully ionized to late

times. However, as we shall discuss, sufficiently powerful

energy sources also act to accelerate the ejecta, hastening the

nebular phase (Equation (34)).

3.2. With Acceleration

We now consider the effects of ejecta acceleration, which
modifies the characteristic timescales (tdiff and tpl) that depend
on v. Because the internal energy evolution is not modified
from Equation (26) until the photon diffusion time,
Equation (8) can be rewritten using the approximation R; vt:
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<

< <
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Here, tdiff

acc is the diffusion timescale, now including the effects

of acceleration, which in general will differ from Equation (4),

as described below. Equation (36) can be integrated to obtain


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where v0 is the initial ejecta velocity. As discussed earlier, for

t< th, the velocity increases and asymptotes to =v v2 0 at the

expense of the initial internal energy, regardless of any heating

source. For t> th, the acceleration by PdV work becomes

significant on the timescale

 ( )= -t
Mv

H
M v H

3

5
22 day , 38acc

0
2

10 0,4000
2

45
1

as determined by the condition that the injected energy be

comparable to the ejecta kinetic energy (taccH; Ekin). Here,

v0= 4000v0,4000 km s−1. Therefore, the velocity evolution until

<t tdiff
acc can be summarized as
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The diffusion timescale is obtained by substituting
Equation (39) into Equation (4) and setting =t tdiff

acc:

 ( )
k
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We find that after radiative cooling becomes important for

>t tdiff
acc, the internal energy starts to decline again, following

Equation (26). The equation of motion then takes the form

dv/dt∝ 1/(vt)2 and gives a similar solution to Equation (37)

for t< th. We can thus regard acceleration as effectively

ceasing at tdiff
acc. The maximal velocity attained for < <t t th diff

acc

is given by Equations (39) and (40):

  ( )
k
p

- -v
H

cM
M H

25

3
11, 000 km s . 41max

2 1 5

1
10

1 5
45
2 5

⎜ ⎟⎛
¿

À
⎠

6

The Astrophysical Journal, 978:56 (22pp), 2025 January 01 Matsumoto, Metzger, & Goldberg



The corresponding effective temperature evolution is obtained

by substituting Equations (39) or (41) into Equation (27):
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During the acceleration phase, the effective temperature

remains almost constant and recombination starts after tdiff
acc, as

in the constant-velocity case.9 This timescale is obtained by

equating Equation (42) with Ti:

( )
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Once recombination begins at ti
acc, the following evolution is

identical to the constant-velocity case. In particular, the plateau
duration is obtained by substituting the maximal velocity,
Equation (41), into Equation (33):
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i,6000
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Contrary to the constant-velocity case, the plateau duration

now shrinks with increasing H as a result of the higher ejecta

expansion speed.
The maximal plateau duration is thus obtained by the

maximal heating rate, which does not appreciably affect the
ejecta dynamics. Since the acceleration of the ejecta ceases on
the diffusion time, we can obtain this critical heating rate by
equating tacc with tdiff

acc (Equation (40)):
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which when substituted into Equation (33) gives the corresp-

onding maximal plateau duration:
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Above, we have assumed that the acceleration terminates on
the diffusion time assuming fully ionized ejecta; however, this
transition can occur earlier if the ejecta recombines first.
Because recombination occurs when Teff= Tion, the maximal
heating rate in this case is Hcr (Equation (12)). When the
condition

( )<E H t 47kin cr diff

is satisfied, the critical heating rate obeys >H Hcr pl,max,

resulting in a maximal plateau duration:
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For very large heating rates, the ejecta bypasses the
recombination phase entirely and proceeds to become optically
thin while still fully ionized. By equating Equation (44) with
Equation (43), we obtain the critical heating rate above which
the recombination phase vanishes:

( )ks= =H
c

v
H T M3 49thin cr SB i

4⎛¿ À⎠
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10 i,6000
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The nebular phase in this case begins at
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obtained by substituting Equation (41) into Equation (34).
Figure 2 illustrates the key timescales as a function of the

heating rate. The black dotted and solid curves show the
recombination time ti and plateau duration tpl, respectively, as
obtained by solving the equations directly, as in Figure 1. Their
behavior agrees with our analytical formulae, supporting the
above arguments. A dotted curve denotes the recombination
time ti at which the effective temperature equals the
recombination temperature. For small heating rates H<Hcr;

3× 1043 erg s−1
(Equation (12)), this timescale is independent

of H and identical to the Popov formula (Equations (15) and
(28)). For heating rates approaching the critical value, H;Hcr,
the recombination time increases rapidly (representing the gap
in ti in Equation (28)), because heating begins to affect the
thermal evolution for t th (Equation (24)), which significantly
delays the recombination. Once heating starts to affect the

Figure 2. Key timescales as a function of the assumed constant ejecta heating
rate. The dotted and solid curves denote the recombination time ti and plateau
duration tpl, respectively. The light blue, orange, and gray shaded regions
represent the photospheric phase with Teff > Ti, the recombination phase
(Teff = Ti), and the nebular phase (optically thin), respectively. The dashed–
dotted curve shows tdiff

rec , after which the luminosity begins to track the input
heating rate. The dashed lines represent three characteristic timescales, on
which the heating appreciably alters the thermal (th, Equation (24)) and
dynamical (tacc, Equation (38)) evolution of the ejecta, as well as the diffusion
time for maximally accelerated ejecta (tdiff

acc, Equation (40)).

9
Recombination occurs during the acceleration phase ( < <t t tacc diff

acc) for
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Such small heating rates do not significantly impact the ejecta’s dynamics.
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dynamics of the ejecta as well for < <t t tacc diff
acc

(Equations (38) and (40)), the recombination time increases
more gradually, as µt Hi

acc 1 10 (Equation (43)).
The solid curve in Figure 2 depicts the plateau time tpl at

which the ejecta becomes optically thin and enters the nebular
phase. For heating rates  ´ -ùH H 4 10 erg smin

40 1

(Equation (35)), the plateau duration is prolonged from the
Popov formula (Equation (17)) as tpl∝H1/6

(Equation (28)),
where Hmin is smaller than the critical rate Hcr, because the
heating plays a role only during the recombination phase.
When the acceleration becomes significant for higher heating
rates, the plateau duration shrinks as µ -t Hpl

acc 7 30

(Equation (44)) upon further heating, due to the higher ejecta
velocity. The maximal allowed plateau duration for a given
ejecta mass (Equation (46)) is thus obtained for the maximal
heating rate (Equation (45)) that does not appreciably
accelerate the ejecta. For the highest heating rates H>
Hthin; 2× 1045 erg s−1

(Equation (49)), the ejecta remains
ionized throughout its entire evolution and the recombination
phase disappears. The nebular phase also begins earlier for the
largest hearing rate as µ -t Hthin

acc 2 5 (Equation (50)), because of
the higher velocity.

As discussed around Equation (40), the plateau duration can
observationally be identified as when the luminosity drops
rapidly and begins to track the ejecta heating rate (e.g.,
S. Valenti et al. 2016). In our framework, this transition
happens at tdiff

rec , as indicated by the dashed–dotted curve in
Figure 2. By definition, this transition occurs before tpl and thus
provides a conservative lower limit on the plateau duration,
while it does not change our quantitative results significantly.

Figure 3 shows the “trajectory” of plateau duration and
luminosity, achieved for different heating rates, in the
duration–luminosity phase-space diagram of optical transients
(M. M. Kasliwal 2011). As with the Popov formulae
(Equation (18)), we define the plateau luminosity by dividing
the total radiated energy up to the nebular phase by the plateau
duration (when the ejecta becomes optically thin):

( )òº =L
E

t
E Ldtand . 51

t

pl
rad

pl
rad

0

pl

For HHthin, the total radiated energy is dominated by the

recombination phase. Initially, as the heating rate increases,

only the plateau duration increases (Figure 1, Equation (33)).

This incremental change is reflected as only a modest flattening

of the light curve after the main plateau for < <t t tdiff
rec

pl,

which does not contribute to the radiated energy, causing the

plateau luminosity to remain unchanged or to slightly decrease.

As H increases further, both the luminosity and duration

increase up to the critical heating rate that gives the maximal

plateau duration. In this regime, the radiated energy is

dominated by the recombination phase:
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where the last equality makes use of  ( )x H H t tcr
1 2

diff

(Equation (31)) and assumes tpl? ti. Perhaps surprisingly, this

expression also provides a reasonable estimate of the the

plateau luminosity even for larger heating rates, because the SN

luminosity closely tracks H after the diffusion timescale (see

Figure 1). By solving Equations (33), (44), and (50) for H, we

obtain the following scaling relations:
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where we have again replaced tpl
acc in the middle and tthin

acc in the

bottom regimes with tpl, retaining the same notation. We have

also substituted v from Equation (7).
The top panel of Figure 3 depicts the Lpl− tpl trajectories of

our light-curve models from Figure 1, illustrating how our
analytic scaling relations (Equation (53)) can reasonably

Figure 3. Top: trajectory of plateau duration and luminosity for different
constant heating rates (increasing in order-of-magnitude increments from blue
to red) for a canonical explosion of ejecta mass 10Me, energy 1051 erg, and
500Re progenitor radius. The circles and triangles along the curve show the
results corresponding to the calculations in Figure 1 with the same color
scheme. Bottom: the same as the top panel, but for different ejecta properties
(total mass, initial energy, and progenitor radius), as marked.
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reproduce the results of our full numerical calculations. For the
specific ejecta properties chosen, the middle regime of
Equation (53) does not clearly appear, because the two
characteristic heating rates, ~H Hpl,max thin, are not well
separated (though this regime appears more clearly for other
parameter choices; see below). The dashed–dotted curve shows
how the trajectory changes if one were instead to take tdiff

rec (the
time at which the light curve starts to track the central heating
source) as the definition of plateau duration. This alternative
definition predicts a slightly different scaling relationship:

 ´ - -L E M T
t

2.3 10 erg s
300 day

.pl
43 1
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3 2
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5 2

i,6000
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4
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¿

À
⎠

The bottom panel of Figure 3 shows similar Lpl− tpl
trajectories, but for different ejecta and explosion properties.
While the shape of the trajectory does not change significantly
(except for the middle regime in Equation (53) appearing in
some cases), it shifts from side to side, depending on the kinetic
energy and ejecta mass. These general behaviors can be simply
understood by the longer diffusion timescale/plateau duration
that arises for more massive and/or less-energetic/slower
ejecta. Consistent with Equation (53), the trajectory depends
only weakly on the initial progenitor radius R0, except in the
weakly heated regime <H Hmin corresponding to the standard
Popov limit.

4. Physically Motivated Heating Sources

We now apply our model to several physically motivated
ejecta heating sources: radioactive 56Ni/56Co decay; rotational
or accretion power from a central compact object (neutron star
or black hole); and shock interaction with circumstellar gas.
Some of these heating sources may be spatially localized within
the ejecta, rendering our one-zone assumption questionable.
However, we believe our model still provides useful physical
insight and a reasonable approximation for the impact on the
plateau duration in these cases, particularly in light of the
uncertainties that impact the exact form of the heating in many
of these cases. Indeed, our results for magnetar-powered light
curves match well the results obtained by radiation hydro-
dynamic simulations, which make the extreme assumption of a
completely centralized heating source (see Section 4.2). We
also give a more detailed justification of the one-zone model in
Appendix A.

The evolution of the heating rate can in most of these cases
be approximately described as a constant heating rate up to
some break time tbr, followed by a power-law decay, viz.
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The normalization
~
H , break time tbr and power-law exponent

α> 0 depend on the energy source in question (see Figure 4).

In Appendix B, we rederive several of the analytic expressions

from the constant-heating case (Section 3) for this more

complex heating evolution.

4.1. Radioactive Decay Heating

It is well known that heating from radioactive decay extends
the plateau duration in SNeIIP (e.g., T. R. Young 2004;

D. Kasen & S. E. Woosley 2009; M. C. Bersten et al. 2011;
E. Nakar et al. 2016; J. A. Goldberg et al. 2019; A. Kozyreva
et al. 2019). In particular, the heating rate of the
56Ni→56Co→56Fe decay chain can be written (D. K. Nadyozhin
1994) as

( ) [( ) ] ( )e e e= - +- -H t M e e , 55t t t t
Ni Ni Co Co

Ni Co

where MNi is the nickel mass, εNi= 3.9× 1010 erg g−1 s−1,

εCo= 6.8× 109 erg g−1 s−1, tNi= 8.8 days, and tCo= 111.3 days.

The total energy released by radioactive decay,

( ) [ ( ) ]ò e e eº - +
¥

E H t dt M t t ,Ni
0

Ni Ni Ni Co Co Co




( )´
-

M

M
1.8 10 erg

10
, 5648 Ni

2
⎜ ⎟⎛
¿

À
⎠

is typically much smaller than the ejecta kinetic energy for

values MNi∼ 10−3
–0.1Me characteristic of SNeIIP (e.g.,

M. Hamuy 2003; J. P. Anderson et al. 2014; S. Valenti et al.

2016; T. Müller et al. 2017; J. P. Anderson 2019; L. Martinez

et al. 2022b). Because ejecta acceleration by radioactive decay

energy is generally negligible, it is safe to assume a constant

ejecta speed in analytic estimates.
Most of the energy released by the 56Ni decay chain is

carried by gamma rays, which at sufficiently late times leak out
of the ejecta without depositing energy. This suppression effect
on the heating rate (Equation (55)) can be included by a
multiplying deposition factor (D. J. Jeffery 1999):

( ) ( )= - t- gf t e1 , 57x
dep

where Äγ= κγρR is the gamma-ray optical depth and

κγ= 0.03 cm2 g−1 is the associated opacity (D. A. Swartz

et al. 1995). After the ejecta becomes optically thin to gamma

rays at  ( )k kg t 230 days1 2
thin , the deposition efficiency

steeply declines, fdep(t)∝ t
−2.

Figure 5 depicts the time evolution of the same quantities
(luminosity, photosphere radius, and photosphere velocity)
shown in Figure 1 for the time-dependent H(t) and fdep(t)

Figure 4. The physically motivated ejecta heating sources presented in this

paper can in most cases be approximated as a constant heating rate
~
H , followed

after a break at time tbr by a power-law decay ∝t−α of the form of
Equation (54), shown here schematically with a black solid line. The gray
dashed line denotes such a form's fit to the 56Ni→56Co→56Fe decay chain, the
latter shown as the dark (light) solid blue line in the case with (without) the
gamma-ray energy deposition factor fdep.
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described by Equations (55) and (57). As expected, the
recombination phase grows longer for larger 56Ni masses.
However, different from the case of constant heating, the ejecta
becomes optically thin prior to when the luminosity begins to
track the input heating rate (i.e., the timescale tdiff

rec is not
reached), because of the sharp drop-off in the heating rate at
t 100 days (Figure 4).

Figure 6 shows the key timescales from Figure 2 but now as a
function of 56Ni mass instead of the generic heating rate.
Although we consider nickel masses that range up to the total
ejecta mass (M= 10Me), such extreme yields of radioactive
material are obviously unphysical, except perhaps in some
PISNe. For nickel masses typical of SNeIIP, the onset time of the
recombination phase ti is essentially unaffected by radioactive
heating. Though still relatively modest, lengthening of the plateau
duration with increasing 56Ni mass is more readily apparent.

The above results obtained by employing the exact heating
rate (Equation (55)) can also be understood quantitatively
within our analytical framework, following Appendix B.
Figure 4 shows that the heating rate of the 56Ni decay chain
at t 100 days is well approximated as a broken-power-law
function of the form of Equation (54), with




e

a

= ´

=
=

~ -
-

H M
M

M

t

7.8 10 erg s
10

,

3.3 days,

0.77.

Ni Ni
41 1 Ni

2

br

⎜ ⎟⎛
¿

À
⎠

Neglecting the gamma-ray deposition factor, our analytic

estimate for the plateau duration for these parameters follows

from Equation (B8):




( )-t
M

M
E M200 day

0.1
, 58pl

Ni
0.15

0,51
0.44

10
0.74⎜ ⎟⎛

¿
À
⎠

where we have omitted the dependence on Ti and eliminated

the v-dependence using Equation (7), by equating the initial

internal and kinetic energies E0= Ekin,0. By equating

Equation (58) with Equation (17), we obtain the minimal

nickel mass to modify the plateau duration:

  ( )´ - -M M R E M8.1 10 . 59Ni,min
3

0,500
0.97

0,51
1.8

10
1.4

We now compare these results with previous works.
D. Kasen & S. E. Woosley (2009) present a heuristic argument
for how to include 56Ni heating as a correction to the analytic
plateau duration of D. V. Popov (1993), described by



( )

= ´ + - - -t t C
M

M
E M R1 ,

60

pl pl,Popov f
Ni

SN,51
1 2

10
1 2

0,500
1

1 6

⎜ ⎟⎡
⎣⎢

⎛
¿

À
⎠

⎤
⎦⎥

where ( )= +E E ESN 0 kin,0 is the total explosion energy. The

constant Cf is sensitive to the ejecta density profile and

distribution of 56Ni in the ejecta and can be calibrated by

radiation transport simulations, with D. Kasen & S. E. Woosley

(2009) finding Cf; 21, T. Sukhbold et al. (2016) finding ;50,

and J. A. Goldberg et al. (2019) finding ;87. Equation (60) is

shown as the thin solid curves in Figure 6 for different values

of Cf. Here, the nickel-free plateau duration tpl,Popov is not given

by Equation (17) but rather is taken directly from each

reference (see the footnote at the end of Section 2). Our result

(thick solid curve) is broadly consistent with these numerically

calibrated analytic expressions.
While our results and previous studies show reasonable

agreement, there are differences between them. From
Equation (60), the minimum nickel mass required to impact

Figure 5. Time evolution of the bolometric luminosity, location, and velocity
of the photosphere (similar to Figure 1) for models incorporating the exact 56Ni
decay-chain heating, for different values of the 56Ni mass, as marked.

Figure 6. The same as Figure 2 but for 56Ni decay-chain heating. The thin solid
lines show analytic estimates for the plateau duration from the literature
(D. Kasen & S. E. Woosley 2009; T. Sukhbold et al. 2016; J. A. Goldberg
et al. 2019, from top to bottom). A double-headed arrow denotes the typical
range of 56Ni masses inferred for SNeIIP, MNi ; 10−3

–0.1 Me.
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the plateau duration can be estimated by equating the second
term in the square bracket with unity:

  ( )´ -
-

M M
C

E M R4.8 10
21

. 61Ni,min
2 f

1

SN,51
1 2

10
1 2

500⎛¿ À⎠
For nickel masses larger than this value (which corresponds to

a 21/6; 12% increase in tpl versus the Ni-free case), the plateau

duration is considerably increased, now scaling with the ejecta

properties according to

 ( )µ - -t M E M M E M , 62pl Ni
1 6

SN
1 4 5 12

Ni
0.17

SN
0.25 0.42

where we use Equation (21) for tpl,Popov. The exponents on the

ejecta mass and explosion energy here differ from our analytical

expressions in Equations (58) and (59), in particular with the

dependence of MNi,min on M changing sign. This disagreement

results from the different ways that 56Ni heating is treated in our

formula versus that of D. Kasen & S. E. Woosley (2009). We

define tpl by xÄ= 1 and account for 56Ni heating during the

plateau phase, which delays the recession of the recombination

front x(t). By contrast, D. Kasen & S. E. Woosley (2009)

consider the heat from radioactive decay to boost the internal

energy such that heating effectively occurs immediately at tNi and

tCo (see their Equation (9)). Therefore, in our formulation,

increasing M slows the intrinsic evolution of x, thus allowing a

lower MNi to significantly increase tpl> tpl,Popov. In the D. Kasen

& S. E. Woosley (2009) scenario, increasing M boosts the

internal energy available at a given t (>tNi or tCo), due to the

smaller adiabatic losses experienced for lower expansion velocity

(at fixed ESN), which thus requires higherMNi to generate enough

heating to boost tpl> tpl,Popov. We remark that the exponent of M

in our MNi,min depends on α as
( )

µ
a-

M MNi,min

5 3 10

28 .

4.2. Magnetar

Another frequently invoked central energy source is the
spindown energy of a newly formed, rapidly spinning magnetized
neutron star (“magnetar”; e.g., K. Maeda et al. 2007; D. Kasen &
L. Bildsten 2010; S. E. Woosley 2010; E. Chatzopoulos et al.
2012; B. D. Metzger et al. 2015; T. Sukhbold & T. A. Thompson
2017). Assuming the Poynting luminosity of the magnetar wind,
and the high-energy radiation it generates, to be thermalized within
the ejecta (likely a good approximation at least at early times;
I. Vurm & B. D. Metzger 2021), the heating-rate evolution
will follow the standard magnetic dipole spindown rate
(e.g., A. Spitkovsky 2006). The latter can be expressed in the form

( ) ( )= +
-

H t
E

t

t

t
1 , 63

rot

sd sd

2

⎜ ⎟⎛
¿

À
⎠

where Erot and tsd are the magnetar’s initial rotational energy

and spindown timescale, respectively. These quantities are

roughly related to the initial spin period Pi and surface

magnetic field strength B by

  ( )
p -P
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E

2
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1 2
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where I and RNS are the magnetar’s moment of inertia and

radius, respectively, and we adopt I= 1045 g cm2 and

RNS= 10 km. However, we neglect this correspondence for

simplicity, instead referring directly to tsd and Erot. One hard

constraint is that a magnetar cannot spin faster than its

centrifugal breakup rate, which limits Erot 1053 erg

(B. D. Metzger et al. 2015). Additionally, different from

heating due to radioactive decay or CSM interaction, energy

input from the magnetar can appreciably accelerate the SN

ejecta (e.g., D. Kasen et al. 2016; A. Suzuki &

K. Maeda 2021).
Figure 7 shows the plateau duration and luminosity for a

range of values Erot= 1048–1053 erg and tsd= 10−3
–104 days,

corresponding to physically allowed birth spin periods and
magnetic field strengths. At a fixed spindown time, the plateau
luminosity increases monotonically with Erot, while the plateau
duration initially grows but then turns over and decreases for
Erot Ekin,0= 1051 erg, once acceleration of the ejecta becomes
significant.
The contours of fixed tsd accumulate in the two extreme

limits tsd→ 0 and ∞. For spindown times much shorter than
the initial dynamical time tsd t0∼ 1 day, the heating of the
ejecta is effectively instantaneous. This leads to the acceleration
of the ejecta at the expense of the deposited energy for tt0,
with the subsequent evolution practically described by

replacing E0→ Erot and v E M10 3rot in the Popov
formula. Because for early energy injection, the ejecta loses
memory of when energy is deposited, the contours become
independent of tsd for small tsd 10−2 days.
In the opposite limit tsd→∞ , the contours asymptote to the

constant-heating case. For heating times longer than the plateau
duration tsd tpl,Popov∼ 102 days, the magnetar provides what
is effectively a constant heating source during the plateau. The
red curve shows the constant-heating-rate limit (see Figure 3),

Figure 7. The same as Figure 3 but for heating by magnetar spindown. The
black solid (dashed) curves show the contours for a fixed spindown timescale,
tsd (fixed magnetar rotation energy, Erot). The red thick curve shows the
constant-heating case (see Figure 3), which bounds the high-tpl edge of the
parameter space.
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which bounds the allowed plateau duration in the magnetar
model.

Most previous applications of magnetar engines are to
hydrogen-poor SLSNeII; however, a few works have explored
the impact of a magnetar on hydrogen-rich SN light curves
using numerical calculations (T. Sukhbold & T. A. Thomp-
son 2017; L. Dessart & E. Audit 2018; M. Orellana et al. 2018).
While these works adopt different definitions for the plateau
duration and luminosity, precluding a quantitative comparison,
their findings are broadly compatible with the simpler analytic
estimates presented here.

4.3. Accreting Compact Object

Another potential heating source of the SN ejecta is a
relativistic jet10 or accretion disk outflow, powered by mass
accretion on the central black hole or neutron star (e.g.,
J. Dexter & D. Kasen 2013; T. J. Moriya et al. 2018; N. Kaplan
& N. Soker 2020). The rate of fallback accretion is expected to
decline at late times as  µ -M tfb

5 3 (F. C. Michel 1988;
R. A. Chevalier 1989), following an initial phase defined by the
radial structure of the progenitor star (J. Dexter &
D. Kasen 2013; R. Perna et al. 2014; T. J. Moriya et al.
2019), particularly its radius (e.g., R. Perna et al. 2018). The
manner in which the mass fallback is processed by the central
accretion disk or its outflows can also modify the accretion rate
reaching the central compact object and hence the heating rate
(e.g., B. D. Metzger et al. 2008). We encapsulate these
uncertainties by adopting a broken-power-law heating rate,
similar to the magnetar case:

( )
( )
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where the total available energy Eacc now scales with the accreted

mass Macc for some assumed efficiency η= Eacc/Maccc
2, and tfb

is the characteristic fallback time. The latter is generally expected

to scale with the fallback time of the stellar envelope:
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where   r pº M R3 4 3 is the mean density of the star of mass

M
å
and radius R

å
. We consider the post-break exponent αfb as a

free parameter. The αfb− 1 prefactor in Equation (66) follows

from the normalization ( )ò=
¥

E H t dtacc
0

.

Figure 8 depicts the plateau duration and luminosity for
different αfb, Eacc, and tfb, similar to the format of Figure 7. The
colors of each shaded region correspond to the range of tpl and
Lpl for different ranges of αfb= 4/3 to 4, as marked. The
contours follow a similar shape to that of the magnetar heating
(corresponding to αfb= 2). The black solid and dashed curves
represent the contours for fixed Eacc and tfb for the special case
αfb= 5/3 (corresponding to a canonical fallback rate). For
smaller exponents, the heating rate declines more slowly,
increasing the plateau luminosity. As in the case of magnetar
heating, the plateau duration is maximized for longer fallback

timescales, but the attainable region is bounded by the limit of a
constant heating rate.

4.4. CSM Shock Interaction

As a final heating source, we consider shock interaction
between the SN ejecta and a CSM. While most of the modeling
literature focuses on a CSM that is distributed spherically
symmetrically around the explosion site (e.g., D. K. Khatami &
D. N. Kasen 2024), this geometry confines the effects of shock
heating to the outermost layers of the ejecta. While shock heating
can in that case contribute to the early-time SN light curve by
impacting the initial thermal energy imparted to these outer
layers, it does not provide a sustained heating source embedded
behind the photosphere that would affect the duration of the
plateau and later-time SN evolution. We are thus motivated to
consider the case of an aspherical CSM, confined into a disk or
otherwise equatorially focused configuration surrounding the
progenitor (J. M. Blondin et al. 1996; A. J. Van Marle et al. 2010;
A. Vlasis et al. 2016; A. T. McDowell et al. 2018; P. Kurfürst &
J. Krtička 2019; A. Suzuki et al. 2019; P. Kurfürst et al. 2020;
T. Nagao et al. 2020), a geometry that is supported by
some observations of Type IIn or otherwise peculiar SNe
(N. N. Chugai & I. J. Danziger 1994; D. C. Leonard et al. 2000;
J. E. Andrews et al. 2017, 2019; J. E. Andrews & N. Smith 2018;
C. Bilinski et al. 2020, 2024). Indeed, the most luminous
SLSNeII show no early-time evidence for narrow lines (e.g.,
S. Gezari et al. 2009; A. A. Miller et al. 2009), supporting a
configuration in which the CSM shock is initially embedded
behind the photosphere. Additionally, a fraction of SLSNeII
show no narrow lines during the photospheric phase (C. Inserra
et al. 2018; T. Kangas et al. 2022).
Figure 9 provides a schematic depiction of the envisioned

shock interaction. The SN ejecta collides with a CSM disk,
starting at its inner edge, forming forward shocks (FSs) and
reverse shocks (RSs), sandwiched between a swept-up shell of

Figure 8. The same as Figure 3 but for heating by accretion onto a central
compact object, following Equation (66). Each shaded region corresponds to
the parameter space of plateau duration and luminosity for different values of
the post-break index αfb. The shaded regions are overlaid such that the curves
for larger αfb cover part of the smaller-αfb curves. All values of αfb are
bounded at the bottom by the constant-heating case. The region for αfb = 2
essentially follows the magnetar heating case (see Figure 7). The black solid
and dashed contours denote the cases of a fixed fallback timescale and total
accretion energy for αfb = 5/3. The red thick curve shows the case of a
constant heating rate (see Figure 3), which bounds the high-tpl edge of the
parameter space (see also Figure 3).

10
For red supergiants, their massive thick envelopes prevent a jet from

breaking out of the stellar surface and producing high-energy emission akin to
typical long gamma-ray bursts (e.g., C. D. Matzner 2003; T. Matsumoto et al.
2015; but also see E. Quataert & D. Kasen 2012 for the case of very-long-
duration events).
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shocked gas, which expands outward in time. Since the portion
of the SN ejecta directed along the polar region expands
relatively freely, without encountering significant mass, it can
envelope the slower-expanding shocked region (e.g.,
B. D. Metzger 2010; J. E. Andrews & N. Smith 2018).
Radiation generated at the equatorial shock thus diffuses
vertically into the ejecta, serving as an effective internal heating
source for a (one-dimensional) SN light-curve model (e.g.,
B. D. Metzger & O. Pejcha 2017). We assume that the shocked
CSM expands only in the radial direction, retaining its initial
solid angle. We also neglect the finite time required for
radiation to diffuse radially out of the disk and into the
surrounding SN ejecta; our model thus provides a maximal
heating luminosity and hence a conservative upper limit on the
corresponding heating-extended plateau duration.

We adopt a radial density profile for the equatorial disk
corresponding to that of a steady wind:


( )r

p
=

W

M

f v r4
, 68CSM

CSM
2

where fΩ< 1 is the fraction of the total solid angle subtended

by the disk, vCSM is the CSM radial velocity, and M is the wind

mass-loss rate. We estimate the effective heating rate due to

CSM shock interaction as follows (a more detailed description

of the shock evolution, for a generic density profile index, is

given in Appendix C). The time evolution of the shocked

region can be described by mass and momentum conservation

(e.g., B. D. Metzger & O. Pejcha 2017). We assume a

sufficiently dense CSM such that both FSs and RSs are

radiative. Since the radial width of the shocked region is small

in this case, we characterize the shell of shocked gas by a

representative radius Rsh and velocity vsh.
Initially, the shock expands outward at a roughly constant

speed close to that of the SN ejecta, the swept-up mass growing
as  M Mvt v .sh CSM Once Msh becomes comparable to the
shocked ejecta mass, fΩM, the shell of shocked gas starts to
appreciably decelerate, on a characteristic timescale
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and fΩ= 0.1fΩ,−1. From momentum conservation, the radius

and velocity of the shell evolve according to
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The kinetic luminosity of the FS dominates that of the RS, and

thus the FS dominates the ejecta heating. The FS luminosity

evolves according to


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Interestingly, then, for a wind-like CSM profile ρCSM∝ r−2, the

heating-rate evolution again follows the functional form of

Equation (54).
Our treatment of the shock as an internal heating source

requires the shocked region to remain inside the SN photo-
sphere, i.e.,

( ) ( )=R R xR . 73sh ph

After this condition becomes violated, we truncate the heating

rate in our model, i.e., H= 0 for Rsh> Rph.
Figure 10 shows light curves, as well as the evolution of the

photosphere radius and velocity, for various assumed CSM
wind mass-loss rates, obtained by calculating the shock
evolution numerically (see Appendix C for the exact
equations). The inner edge of the CSM disk is assumed to
coincide with the progenitor star radius, and we fix the other
CSM properties according to fΩ= 0.1 and vCSM= 100 km s−1

(the results depend only on the overall CSM density normal-
ization µM vCSM, provided that vCSM= vsh). As a general
rule, the ejecta cannot be appreciably accelerated as a result of
CSM interaction, because the ultimate source of the ejecta
heating is the initial kinetic energy of the ejecta that intercepts
the CSM, ∼fΩEkin,0.
While the lengthening of the plateau phase from shock

heating is typically only moderate, we identify an “optimal”
pre-explosion progenitor mass-loss rate,  ~ -M M0.1 yr 1 (for
vCSM= 100 km s−1

), which maximizes the plateau duration.
While the shock power increases for larger M , the duration of
this heating phase is correspondingly shorter, because of the
shorter deceleration time, which results in a lower shock
luminosity during the recombination phase. On the other hand,
for less massive CSM (smaller M ), the shock heating is
sustained for a longer timescale, but at a value too low to
sustain the ejecta ionization and appreciably lengthen the
plateau. The shocked region also emerges faster from the
photosphere in the freely coasting case, violating the condition
of Equation (73) and terminating the ejecta heating.
The above description of the optimal mass-loss rate is

supported by Figure 11, which again shows the key timescales,
this time as a function of M . For  

-ùM M0.1 yr 1, the

Figure 9. A schematic diagram of the envisioned scenario for shock interaction
between the SN ejecta and an equatorial CSM disk. The radiation released by
the ejecta–CSM shocks in the equatorial regions provides a source of internal
(subphotospheric) heating for the bulk of the faster, effectively freely
expanding ejecta at higher latitudes.
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deceleration of the ejecta is significant during the recombina-

tion phase (right of the dashed line), and the resulting weaker

shock power, µ -
L Msh

1 2
, causes the plateau duration to

shorten. For  
-øM M0.1 yr 1, the shock does not experience

significant deceleration during the recombination phase and

eventually overtakes the photosphere. The small rise in the

plateau duration around  ~ - -M M10 100 yr 1 is caused by

the tail of the light curve tracing the shock luminosity, as

shown in Figure 10. In summary, the optimal mass-loss rate for

lengthening the plateau duration is that for which ejecta

deceleration and recombination occur simultaneously. How-

ever, even in this optimal case, the plateau duration is extended

by only a factor of ∼2 compared to the no-heating case. In

Appendix C, we show this conclusion also holds for generic

(i.e., non-wind-like) CSM density profiles.
It is not straightforward to estimate analytically the optimal

tpl-maximizing mass-loss rate, because the effects of shock

heating on the recombination process are subtle for
 ~ -- - -M M10 10 yr2 1 1. As an alternative, we adopt the

mass-loss rate above which the resulting shock heating

appreciably slows the ejecta recombination (the analog of Hcr

from the constant-heating-rate case). Equating Equations (12)

with (72) (t< tdec), we find
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Here, we have written vsh= ζv to account for the moderate

deceleration of the ejecta even prior to the formal deceleration

time, where ζ; 0.83 is motivated by our numerical results.

This estimate slightly underestimates the true M that

maximizes tpl in our full numerical calculations (Figure 11).

5. Discussion

Figure 12 summarizes the allowed space of light-curve
properties for the wide range of heating sources considered in
this paper, for fiducial progenitor star/explosion properties.
The presence of a sustained heating source generally acts to
boost the plateau luminosity and duration above those of the
no-heating case (the latter of which describes most SNeIIP,
shown for comparison with the brown crosses). While
increases in the luminosity of up to several orders of magnitude
are possible for sufficiently powerful heating rates, the
corresponding boost to the plateau duration is more tightly
bounded, to within a factor 3 of the duration in the zero-
heating case. The attainable plateau duration is capped by the
limiting constant-heating-rate case (depicted as the thick red
curve). This maximal duration is approximately given by
Equation (46), which, expressed in terms of ejecta mass and
explosion energy, gives

 ( )- -t T M E580 day . 75pl,max i,6000
2 3

10
17 24

0,51
7 24

Figure 12 also shows for comparison a sample of Type IIn
SNe, i.e., those showing narrow hydrogen lines indicative of
CSM interaction, including the outlier event SN 2016aps. We
also show two other “extreme” explosions: iPTF14hls
(I. Arcavi et al. 2017) and AT 2021lwx (B. M. Subrayan
et al. 2023; P. Wiseman et al. 2023), though the latter has been
interpreted as a tidal disruption event by some authors.

Figure 10. The same as Figure 5 but for energy injection due to the shock
interaction between the SN ejecta and a disk-like CSM. For the CSM velocity
and solid angle covering fraction, we adopt vCSM = 100 km s−1 and fΩ = 0.1,
respectively. In the middle panel, the dashed curves show the shock radius in
units of the ejecta radius, Rsh/R. Once the shocks emerge from the photosphere
such that Rsh > Rph (the intersection of the solid and dashed curves), the shock
can no longer supply a source of internal heating to the ejecta and internal
heating is truncated. This truncation can best be seen with the yellow

line (  =M M10 yr−1
).

Figure 11. The same as Figure 2 but for shock interaction heating for different
normalizations of the wind-like CSM density profile. The dashed diagonal lines
denote the deceleration timescale before which the shock expands freely and
the shock luminosity is approximately constant. The dashed–dotted line shows
the time at which the shock radius becomes larger than the retreating SN
photosphere.
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5.1. Minimum Ejecta Mass of Long-plateau Transients

The existence of a maximal plateau duration implies that a
minimum ejecta mass is required to realize the plateau duration
of a given observed event. Since the duration–luminosity
trajectory for the limiting constant-heating-rate case depends on
the ejecta properties (bottom panel of Figure 3), we show in the
top panel of Figure 13 these curves for an expanded parameter
range of initial explosion energies 1050 erg to 1053 erg (the thin
to thick curves) and ejecta masses from 1 to 103Me in steps of
0.2 dex.11 As expected from Section 3, the maximal plateau
duration increases with ejecta mass and decreases with higher
explosion energy.

The bottom panel of Figure 13 depicts the minimum ejecta
mass, Mmin, needed to produce a given plateau duration. Based
on the Lpl− tpl trajectory (Equation (53), for the <H Hpl,max

case), we estimate

 
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in rough agreement with the full calculation. If the ejecta

velocity can be measured observationally, the explosion energy

and hence Mmin can be more robustly constrained. Along each

curve, a small circle denotes the minimum explosion energy in

shock-powered scenarios, E0 tplLpl/fΩ, which is consistent

with generating the radiated energy.
As expected from the Lpl− tpl trajectories, the curves of Mmin

terminate at high energies (e.g., at E0; 1052 erg for

Lpl= 1043 erg s−1 and tpl= 300 days) and flatten for lower

energy (e.g., E0 1051 erg for Lpl= 1043 erg s−1 and tpl=

1000 days). The former behavior occurs because the Lpl− tpl
trajectory rises with increasing E0 until it no longer touches the

given Lpl. The flattening at low E0 occurs because at high

heating rates ùH Hpl,max, the Lpl− tpl trajectory loses

sensitivity to the initial explosion energy (Equation (53) for

the >H Hpl,max cases). This flattening occurs once the ejecta

experiences significant acceleration, leading to a breakdown of

the relations E0= 3Mv2/20, Ekin,0= E0, and =v v2 0

(Equations (7)). The contours of constant ejecta velocity are

denoted by the gray dashed diagonal lines in the bottom panel

of Figure 13.
As an example, we show the Mmin trajectory for iPTF14hls

(tpl∼ 103 days; Lpl; 3× 1042 erg s−1
) as a red dashed line in

the bottom panel of Figure 13 (along this line, acceleration of

Figure 12. The allowed space of plateau duration and luminosity for different heating sources. The colored shaded regions correspond to an accreting compact object
(see Figures 3 and 8), bounded by a solid red curve corresponding to the constant-heating-rate case. The gray dashed and colored solid curves denote, respectively,
radioactive 56Ni heating and CSM shock interaction (for a range of different radial density profiles). The ranges of nickel masses and CSM density normalizations
follow those in Figures 6 and 15, respectively. The brown crosses, magenta circles, and orange squares show the parameters for SNeIIP, Type IIn SNe, and LRNe
(data are taken from A. Nyholm et al. 2020, L. Martinez et al. 2022a, and T. Matsumoto & B. D. Metzger 2022b). Three stars represent peculiar events: iPTF14hls
(I. Arcavi et al. 2017; J. E. Andrews & N. Smith 2018), SN 2016aps (M. Nicholl et al. 2020), and AT 2021lwx (B. M. Subrayan et al. 2023; P. Wiseman et al. 2023).
For Type IIn SNe, SN 2016aps, and AT 2021lwx, we use peak luminosities and show durations corresponding to the timescale over which the light curve remains
within 1 mag of the peak.

11
We remove models satisfying E0 = 1050 erg and M  400 Me, because gas

pressure dominates over radiation pressure in the ejecta for these parameters,
violating our assumption (Equation (14)).
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the ejecta is negligible). If the velocity obtained from the Fe-

line absorption minimum, v; 4000 km s−1
(I. Arcavi et al.

2017), is representative of the unshocked ejecta, then we find

the initial explosion energy and ejecta mass are constrained to

be E0; 1052 erg and  ùM M M200ej min , respectively.

Such a large ejecta mass would obviously require a very

massive progenitor star, possibly supporting a pulsational PI

explanation for this event (e.g., S. E. Woosley et al. 2007;

S. E. Woosley 2018; L.-J. Wang et al. 2022; S. E. Woosley &

N. Smith 2022; K.-J. Chen et al. 2023).
The minimum ejecta mass (Equation (76)) can be expressed

in terms of v instead of E0:
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where again acceleration of the ejecta is neglected. The bottom

panel of Figure 14 shows Mmin as a function of the plateau

duration for different values of Lpl and v. Each Mmin curve

terminates at both short and long plateau durations, the latter

corresponding to the regime of appreciable acceleration of the

ejecta ( ùH Hpl,max). This is illustrated in the top panel of

Figure 14, which is similar to Figure 13 but shows Lpl− tpl
trajectories for different assumed mean ejecta velocities.
The above demonstrates a methodology for placing lower

limits on the ejecta mass for given SNe. This can help identify

the explosions of very massive stars, including PISNe caused

by pair-production-induced collapse leading to explosive

oxygen burning for progenitors with ;140–260Me (Z. Barkat

et al. 1967; G. Rakavy & G. Shaviv 1967; A. Heger &

S. E. Woosley 2002; A. Heger et al. 2003; D. Kasen et al. 2011;

L. Dessart et al. 2013; K.-J. Chen et al. 2014a; A. Kozyreva

et al. 2014a, 2014b; M. S. Gilmer et al. 2017) and general-

relativistic instability SNe (GRSNe) for supermassive Popula-

tion III stars ∼104−5Me (S. Chandrasekhar 1964; G. M. Fuller

et al. 1986; P. J. Montero et al. 2012; K.-J. Chen et al. 2014b;

T. Matsumoto et al. 2016; H. Uchida et al. 2017; C. Nagele

et al. 2020, 2022; T. J. Moriya et al. 2021a). These explosions

should be rare and current observations only weakly constrain

their rates. For instance, T. J. Moriya et al. (2021b) constrain

the rate of long-lasting H-rich SNe observationally, finding

Figure 13. Top: trajectories of plateau duration and luminosity for the
bounding constant-heating-rate case (H = const), similar to Figure 3 but now
for a range of energies E0 = 1050– 1053 erg and ejecta masses M = 1–103 Me,
as labeled. The range of heating-rate values H along each trajectory is set to
cover Hmin (Equation (35)), so that the heating-free solutions are present for
each parameter set. On each trajectory, a segment violating the one-zone
condition (Equation (A1)) is shown by a transparent line. Bottom: minimal
ejecta mass Mmin for producing a given plateau duration (different colored
lines) and luminosity (different line styles) as a function of the initial explosion
energies E0. The gray dashed lines show the corresponding mean ejecta
velocity. Along each curve, a circle denotes the minimum energy in shock
interaction scenarios, E0  tplLpl/fΩ. A star represents the location of
iPTF14hls with tpl ; 103 days, Lpl ; 3 × 1042 erg s−1, and v ; 4000 km s−1.

Figure 14. Top: the same as the top panel of Figure 13 but for fixed v. The
trajectories terminate at high luminosity (roughly corresponding to Hpl,max,

where the ejecta accelerates). Bottom: minimal ejecta mass Mmin for producing
a given plateau duration tpl for different luminosity and velocity.
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∼40% of Type IIn exhibit light curves lasting longer than a
year, while the rate of PISNe is constrained to 0.01%−0.1%
of the total core-collapse SNe rate. More recently, using JWST
observations, T. J. Moriya et al. (2023) constrain the rate of
GRSNe to 800 Gpc−3 yr−1. With current and upcoming
facilities such as JWST, Rubin, Euclid, and Roman in an
excellent position to discover additional candidate explosions
in the near future, our framework may prove useful in helping
to identify these events and constraining the ejecta properties.

5.2. Application to Luminous Red Novae

Luminous red novae (LRNe) are weeks- to months-long
transients with luminosities between those of classical novae
and SNe (e.g., H. E. Bond et al. 2003; R. Tylenda et al. 2011;
N. Blagorodnova et al. 2017), which are believed to arise from
stellar mergers (R. Tylenda & N. Soker 2006; N. Ivanova et al.
2013). While dimmer members of the LRN class with
1040 erg s−1 can be powered exclusively by hydrogen
recombination energy, the brightest and longest events
may require an additional energy source (T. Matsumoto &
B. D. Metzger 2022b), most likely shock interaction between
the merger ejecta and stellar material unbound from the binary
prior to the dynamical merger (e.g., O. Pejcha et al. 2016a,
2016b; B. D. Metzger & O. Pejcha 2017; M. MacLeod &
A. Loeb 2020a).

Our results illustrate that shock interaction can increase the
plateau duration and luminosity by at most a factor of ∼2 and
∼10, respectively, boosting the radiated energy by a factor 20
compared to the zero-heating case. Scaling to properties typical
of stellar mergers, the duration, luminosity, and radiated energy
in the zero-heating case are estimated by Equations (17), (19),
and (18):12
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While these estimates fall short of explaining the most

luminous LRNe by an order of magnitude for reasonable

ejecta masses (T. Matsumoto & B. D. Metzger 2022b), the

presence of CSM interaction could alleviate these tensions by

boosting the plateau luminosity and duration for optimally

chosen values of the (pre-merger) binary mass-loss rate,
 ~M Mcr (Section 4.4). In particular, from Equation (74) we

find
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where here we take ζ≡ vsh/v; 0.56, appropriate for LRN

parameters. Since mass loss prior to the merger (e.g., from the

binary L2 Lagrange point) typically amounts to at most tens of

percent of the donor star’s mass (M. MacLeod et al. 2017;

O. Pejcha et al. 2017; M. MacLeod & A. Loeb 2020b), this

optimal mass-loss rate could be realized in a massive ∼10Me

binary that loses ∼Me over the year preceding the dynamical

merger event.

6. Summary and Conclusions

The basic observables of SNeIIP contain information on the
properties of the exploding star, which must be understood to
take advantage of the growing samples of SNe to be
discovered, e.g., by Rubin, JWST, and Roman. One such
readily measured property is the duration of the optically thick
plateau phase, which canonically depends (for a given
explosion energy and progenitor radius) on the ejecta mass.
All else being equal, a longer plateau requires a higher ejecta
mass and hence a more massive progenitor star. However, the
plateau duration can also be prolonged by the presence of a
sustained internal heating source, which keeps the ejecta
ionized—and hence optically thick—longer than in a passively
cooling case. Indeed, growing evidence points to additional
heating sources being required to power a large number of
peculiar SNe and related optical transients.
To understand the interplay between these processes, and

how to break the degeneracies to better constrain the ejecta
properties of individual events, we have studied the effects of
an internal heating source on the light curves of hydrogen-rich
explosions by generalizing the analytical SNIIP light-curve
model of D. V. Popov (1993). Our findings are summarized as
follows:

1. While sufficiently large internal heating rates can boost
the plateau luminosity by several orders of magnitude, the
plateau duration can be prolonged by at most a factor of
∼2–3 times compared to the zero-heating case. For a
temporally constant heating source, the maximal plateau
duration is realized for the maximal heating rate that does
not appreciably alter the ejecta dynamics. Above this
critical heating rate, the ejecta experiences significant
acceleration, reducing the photon diffusion timescale and
hence shortening the plateau.

2. Heating from 56Ni decay is found to boost the plateau
duration by at most a few tens of percent for the nickel
masses typical of SNeIIP, consistent with previous
findings in the literature. This agreement with more
sophisticated radiation transport calculations supports our
model capturing at least semi-quantitatively the effects of
an internal heating source on SN light curves.

12
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is close to the limit below which gas pressure is comparable to radiation
pressure (Equation (14)).
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3. Insofar that sustained energy injection from a central
engine, such as a millisecond magnetar or accreting
compact object, can be described as heating with a
characteristic duration and total deposited energy, as in
Equations (63) or (66), the resulting SN plateau phase can
exhibit a wide range of luminosities and durations
depending on these parameters. While a longer engine-
heating timescale (e.g., the magnetar spindown time tsd or
the mass fallback timescale tfb) results in a longer plateau
duration, the latter is again capped at a few times the
duration in the zero-heating case in the limit of
temporally constant heating (tsd, tfb→∞).

4. Shock interaction between the fast SN ejecta and slower
equatorially confined (“disk-like”) CSM can provide an
additional source of subphotospheric heating for sustain-
ing a longer plateau (Figure 9). However, for typical
parameters, shock heating can boost the plateau duration
by at most a factor of ∼2 for an optimal mass-loss rate
(Equation (74)). While a very massive CSM results in a
high shock luminosity, the concomitant strong decelera-
tion of the ejecta limits this phase to early times. By
contrast, while the ejecta deceleration is weaker for low
CSM masses, in that case the shocks quickly expand
beyond the retreating photosphere radius, therefore no
longer serving as a sustained internal heating source
capable of keeping the ejecta ionized.

Our results are conveniently summarized in the space of
plateau duration and luminosity, as shown in Figure 12 and
compared to observed hydrogen-rich SNe.

1. Motivated by our finding that the temporally constant
heating case defines an absolute boundary on the
attainable duration and luminosity, we developed a
framework to constrain the minimal mass for observed
events, as captured in Equation (77) in Section 5.1. As a
proof of principle, we used the observed duration,
luminosity, and ejecta velocity to constrain the ejecta
mass in iPTF14hls to 200Me, supporting an explosion
of a very massive star, such as a PISN.

2. Our results can also be applied to shock interaction
heating in LRNe from stellar mergers. We confirmed that
the shock interaction between the LRN ejecta and
circumbinary material ejected prior to the merger can
indeed explain the otherwise puzzling properties of the
most luminous events, for an assumed pre-dynamical
binary mass-loss rate of ∼Me yr−1.
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Appendix A
Validation of the One-zone Model

Here, we discuss the validity of the one-zone model
employed in our study. As briefly discussed in Section 2, the
original works by W. D. Arnett (1980) and D. V. Popov (1993)
did not take the one-zone approach but derived the radial

distribution of temperature by solving the diffusion equation.
We nevertheless found their light-curve predictions to be
reasonably reproduced by the one-zone model. This may partly
result from the fact that the W. D. Arnett (1980) temperature
profile is relatively flat, being described by a Bessel-type
function, ( )µT r rsin4 .
We first reconsider the original model by W. D. Arnett

(1980) and D. V. Popov (1993). One of the key assumptions of
their solution is that the temperature profile exhibits a self-
similar profile, which is not always a good approximation,
particularly at early times. A self-similar profile is established
not instantaneously but instead gradually, over a timescale of
∼tdiff, as can be seen in simulations by, e.g., D. K. Khatami &
D. N. Kasen (2019). However, in the case of SNeIIP, the
(initial) temperature profile is set not by radiative diffusion
from the inner region, but by heating from the SN shock. As
shown in previous studies (e.g., M. C. Bersten et al. 2011;
J. A. Goldberg et al. 2019), the resulting radial profile exhibits
a relatively flat shape, due to the nature of the shock heating,
which could be nicely approximated by the self-similar solution
of W. D. Arnett (1980) and the one-zone model. Furthermore,
this flat temperature profile does not evolve significantly with
time, its normalization just being reduced by adiabatic cooling,
until a diffusion wave or recombination front reaches each
layer.
The situation becomes more complex when a heating source

is present within the ejecta. As discussed in Section 4, this
heating may be spatially concentrated, which challenges the
one-zone approach. An ultimate validation will require detailed
radiation hydrodynamical simulations, but there are several
reasons why the one-zone model employed in this study could
still be justified to first order. In SNeIIP, the diffusion timescale
is already comparable to the plateau duration without heating
(see Equations (4) and (17)) for typical parameter values. Since
our main focus is on quantifying how the plateau duration can
be extended by a heating source, the diffusion timescale is thus
almost always shorter than the (lengthened) plateau duration.
Thus, the effects of radiative diffusion are likely to already
begin during the recombination phase, bringing most of the
ejecta into causal contact and thus justifying a single-zone
approach. In cases where the external energy source is strong
enough to affect the ejecta dynamics, the one-zone description
becomes more applicable. This is because, while in our model
we treat the ejecta acceleration as being driven exclusively by
internal pressure (see Equation (6)), a portion of this
acceleration will occur as the result of a shock for dynamically
relevant heating rates. In particular, if radiative diffusion cannot
transport the energy being deposited by the external source, it
will accumulate around the location where it is deposited,
eventually driving a shock wave, which propagates outward,
both heating and accelerating the ejecta. Similar to the above
argument regarding normal SNeIIP (heated by the initial SN
shock), such an external-heating-induced shock will also
establish a relatively flat temperature profile, which again can
be described reasonably well by the one-zone model. The
shock-driven acceleration may furthermore trigger the Ray-
leigh–Taylor instability (see, e.g., A. Suzuki & K. Maeda
2021), which mixes and homogenizes the ejecta.
The above arguments hold only for SNeIIP and less massive

transients, such as LRNe. However, for explosions with more
massive ejecta, the diffusion timescale can be longer than the
plateau duration obtained by our model, invalidating the one-
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zone approach. For a given heating luminosity, the critical mass
above which the diffusion time becomes longer than the
plateau duration is given by comparing Equations (4) and (33):

  ( )´
- -M M v T H8300 . A16000
3

i,6000
4

43

While large compared to typical stellar masses, this limit

should be kept in mind when carrying out broad parameter

studies. In fact, for our calculations presented in Section 5, this

condition is violated for the highest-ejecta-mass cases, which

we therefore mark with transparent lines in Figures 13 and 14.

Appendix B
Analytic Estimates for Broken-power-law Heating Profile

We now extend our analytic estimates from Section 3 for a
constant heating rate to the broken-power-law heating rate of
the form of Equation (54). We first consider cases in which the
heating affects only the thermal evolution of ejecta, as in
Section 3.1. A quantitatively different evolution from the
H= const case occurs for tbr< t< ti. In this regime, as long as
α< 2, the internal energy grows as E; tH∝ t1−α after the
deposited energy has become comparable to the internal energy
at the time
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respectively. For sufficiently high heating rates, >
~
H Hcr,

recombination begins at the time
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When α� 2, the evolution until recombination completes is

identical to the zero-heating case.
From Equation (B1) we find that for heating rates smaller

than a critical rate, <
~
H t E t0 0 br

2 , the thermal evolution of the
ejecta is affected only after the heating rate has begun to
decline ( >t th br). For higher heating rates, the evolution is
modified before the heating breaks (th< tbr), and for α< 2 it is
identical to the H= const case until t< tbr. The evolution at
t> tbr is identical to that given in Equations (B2) and (B3). For
α� 2, the internal energy is effectively reset by the injected

heat at the time tbr, such that  ( )
~ -E Ht t tbr br

1. And the
effective temperature and recombination time follow the same
expressions as in Equations (27) and (28) for the regimes of
tdiff< t and Hcr<H, respectively, but making the replacements

tdiff→ tbr and 
~

H H .
The photosphere evolution during the recombination phase

can be derived following similar arguments as in the constant-
heating case. In particular, when the heating rate declines
before recombination begins (tbr< ti), the photosphere location

follows
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Depending on the parameters, some regimes disappear; for

instance, when the break in the heating rate occurs after

recombination completes (tbr> ti), the evolution follows

Equation (31) until the break. However, for any set of

parameters, the final regime of evolution always exists, with

the condition xÄ= 1 again giving the plateau duration:
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As expected, all of the expressions given here except for

Equation (B4) reduce to the H= const case in the limit α→ 0.
We now discuss cases in which the heating impacts the

ejecta dynamics, as considered in Section 3.2. For such large
heating rates, the ejecta experiences appreciable acceleration at
times t> tacc, where tacc is again defined by Equation (38) but

for
~
H instead of H. While in the H= const case, the

acceleration was found to terminate when recombination
occurs or photon diffusion becomes important, we find that
acceleration can also terminate after the break in the heating
rate. This is because the internal energy falls as E∝ t1−α

(α< 2) or ∝t−1
(α� 2), which results in an equation of

motion: dv/dt∝ 1/(tαv) or ∝1/(t2v), respectively. Therefore,
as long as α> 1, as obeyed by the physically motivated heating
rates we consider, the ejecta is no longer accelerated
significantly after the break. This simplifies the analysis by
allowing us to treat the acceleration in the same way as in the
constant-heating case. In particular, we need only consider two
cases, in which the ejecta acceleration terminates due to the
break at tbr or photon diffusion at tdiff. In the former case, the
terminal velocity is given by

 ( )

~
v

H t

M

10

3
, B9max

br

1 2

⎜ ⎟⎛
¿
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and the corresponding photon diffusion timescale is given by
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Therefore, the condition <t tbr diff
acc is satisfied for

( )
k
p

<~H
M

c t

27

160
. B11

2 3

2 2
br
5

The plateau duration is obtained in the same way as the

H= const case—namely, by following Equation (B8)/(34),
with vmax replacing vmax when recombination occurs after/
before tbr. In cases of yet stronger heating, acceleration

terminates only once photon diffusion becomes important.

The corresponding velocity and plateau duration in this case

again follow Equations (41) and (44), respectively.

Appendix C
Details of the Ejecta–CSM Shock Dynamics

We describe our treatment of the dynamics of the shock
interaction between the SN ejecta and equatorially concentrated
(disk-like) CSM for the case of a generic power-law density
profile (see also T. J. Moriya et al. 2013; B. D. Metzger &
O. Pejcha 2017; D. Hiramatsu et al. 2024). We assume that
both the FS and RS are radiative and hence both share a single
representative radius Rsh and (lab-frame) velocity vsh. The
unshocked CSM is characterized by its solid angle 4πfΩ,
velocity vCSM= vsh, and a radial density profile

( )r = -Ar , C1q
CSM

respectively. The mass Msh and momentum Mshvsh of the

shocked gas increase as the FS and RS sweep up the CSM and

SN ejecta, respectively, their evolution obeying

( )

( ) ( )

p r

p

= -

+ -

W

W
-

dM

dt
f R v v

f R A v v

4
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sh
2
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2
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d M v

dt
f R v v v

f R Av v v

4

4 , C3q

sh sh
sh
2

SN SN SN sh

sh
2

CSM sh CSM

where ( )r p= M R4 3SN
2 is the ejecta density (taken to be a

homogeneous sphere of radius R) and ( )=v v R RSN sh its

velocity (assuming homologous expansion). Momentum con-

servation (Equation (C3)) can be rewritten as

( )

( ) ( )

p r

p

= -

- -

W

W
-

M
dv

dt
f R v v

f R A v v

4

4 . C4q

sh
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2

SN SN sh
2

sh
2

sh CSM
2

The dynamics of the swept-up shell is thus determined by

solving Equations (C2) and (C4) with initial conditions

Rsh= R0, vsh= 0, and Msh=M for assumed values of A, q,

vCSM, and fΩ.
Once the shock dynamics are determined, we estimate the

total shock luminosity (ejecta heating rate) as the sum of the
kinetic luminosities of the FS and RS shocks, given,
respectively, by

( )

( ) ( )

p
p
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where the internal energy density of the post-FS (post-RS)

region is given by

( )

( )( )
( )( )

( ) ( )r

g g
=

-

+ -
e

v v2

1 1
. C7FS RS

CSM SN sh CSM SN
2

Here, γ is the adiabatic index and we adopt γ= 5/3. In a more

detailed calculation, the dynamics of the shocks would be

coupled to that of the SN ejecta via heating, such that their

evolution should be calculated self-consistently.
Figure 15 shows the key timescales' plot (see Figure 11) as a

function of the CSM density normalization at r= 1015 cm for
different values of the CSM power-law slope q, as marked. The
qualitative features in all cases follow those in the standard q= 2
wind-like profile. The impacts on the recombination time (thick
dashed curves) and the plateau duration (thick solid curves) are
slightly larger for smaller q. This may be because for q< 2, the
shock luminosity increases with time, peaking on the decelera-
tion time.13 Furthermore, the fact that deceleration starts earlier
helps to satisfy the condition of Equation (73) for a longer time.
Nonetheless, the plateau duration is not extended more than a
few times the zero-heating case (ρCSM→ 0), even for q≠ 2.

Appendix D
Glossary of Symbols and Notations

Table 1 summarizes the symbols and notations of character-
istic quantities.

Figure 15. The same as Figure 11 but for different slopes of the CSM radial
density profile, ρCSM ∝ r

− q
(indicated by the different colors). The thick solid

lines denote the plateau duration and the dotted lines denote the time at which
Teff = Ti. The dashed diagonal lines denote the shock deceleration timescale.
The horizontal axis denotes the CSM density at 1015 cm.

13
An increasing heating rate potentially pushes the photosphere outward

during the recombination phase, dx/dt > 0. This occurs when the dimension-
less photosphere becomes smaller than

( )= - + +x
t
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while we confirm that the photosphere always shrinks in our calculations.
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