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Abstract

Piezoelectricity in biological soft tissues is a controversial issue with differing opinions. While
there is compelling experimental evidence to suggest a piezoelectric-like response in tissues such as
the aortic wall (among others), there are equally compelling experiments that argue against this
notion. In addition, the lack of a polar structure in the underlying components of most soft bio-
logical tissues supports the latter. In this paper, we address the collective behavior of cells within
a two-dimensional cell aggregate from the viewpoint of statistical mechanics. Our starting point is
the simplest form of energy for cell behavior that only includes known observable facts e.g. the elec-
trical Maxwell stress or electrostriction, resting potential across cell membranes, elasticity, and we
explicitly exclude any possibility of electromechanical coupling reminiscent of piezoelectricity at the
cellular level. We coarse-grain our cellular aggregate to obtain its emergent mechanical, physical,
and electromechanical properties. Our findings indicate that the fluctuation of cellular strain (E)
plays a similar role as the absolute temperature in a conventional atomistic-level statistical model.
The coarse-grained effective free energy reveals several intriguing features of the collective behavior
of cell aggregates, such as solid-fluid phase transitions and a distinct piezoelectric-like coupling,
even though it is completely absent at the microscale. Closed-form formulas are obtained for key
electromechanical properties, including stiffness, effective resting potential, critical E2-temperature
(or fluctuation) for solid-fluid phase transitions, and apparent piezoelectric coupling in terms of
fluctuation and electric potential regulated by active cellular processes.

Keywords: statistical mechanics, cell aggregate, fluctuations, solid-to-fluid phase transition,
electro-mechanical coupling
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1 Introduction

Cell aggregates or tissues are composed of individual cells, intricately organized with notable vari-
ability in their shapes, sizes, and spatial arrangements. Each constituent cell is structurally com-
plex, featuring a bilipid membrane interspersed with ion channels and molecular pumps. Enclosed
within this membrane are cytoskeleton, cytoplasm, and various organelles. The hierarchical struc-
tures and complex interplay of biophysical processes within cells give rise to intriguing electrome-
chanical properties of single cells and cell aggregates. In particular, the bilipid membrane and
cytoskeleton provide shear resistance and maintain the structural integrity of a cell [1]; the com-
bined activities of numerous ion channels and molecular pumps induce a long-term, steady-state
electric potential difference across the cell membrane [2]. The propagation of changes in transmem-
brane potentials mediates cellular signaling and regulates critical biophysical processes [3]. Con-
versely, mechanical deformations can regulate ion channels and pumps, inducing cellular bioelec-
tricity within cell aggregates. These electromechanical couplings provide the fundamental physical
mechanism underlying biological functions, including cellular adhesion, migration, differentiation,
and mechanosensing [4–9].

Cells in an aggregate interact with each other both mechanically and electrically. The resulting
electromechanical properties of cell aggregates or tissues are derived from the collective behavior
of individual cells, leading to properties and functionalities that are significantly richer than those
of a single cell. For example, cell aggregates reversibly transition between a rigid solid-like phase
and a floppy fluid-like phase referred to as a solid-fluid phase transition, which plays a critical role
in the biological function of living tissues [10–17]. This phase transition can be actively regulated
by transmembrane potential [18–21].

Currently, several mechanisms have been proposed to explain the solid-fluid phase transition
in cell aggregates. These include a topological transition which promotes tissue fluidization by
relaxing elastic stresses over longer time scales [10, 22, 23]; the sliding of coherent cells within
the aggregate, where external forces induce gradual rearrangements of cell conformations [21]; and
transitions driven by the density of multicellular vertices (rosettes) and intracellular tensions [11].
Within a tissue, cellular deformation and electric potential exhibit considerable fluctuation and
variability. The fluctuation in cellular shape and size can be readily quantified, providing valuable
insight into the physiological stage of the tissue [24].

The true nature of the electromechanical behavior of soft biological tissues has attracted re-
peated controversy. Claims have been made regarding the piezoelectricity of these tissues c.f.
Fukada and reference therein [25] and even the presence of ferroelectricity [26]. Convincing counter-
arguments have been made against this by Lenz et. al. [27], who argue that the observable
electromechanical coupling is due to Maxwell stress or electrostriction. In an interesting turn of
events, in a more recent work, we turn full circle where Ikushima et. al. [28] highlight ultrasound
experiments that do appear to indicate the presence of piezoelectricity in aortic wall tissue.

Existing approaches to modeling cells and their aggregates can be broadly divided into three
categories: agent-based models, continuum models, and statistical models. The agent-based ap-
proach treats a single cell as a homogeneous, isotropic, elastic, and spherical body [29–32]. While
this approach is valuable for studying the interaction of individual cells with each other and with
their environment [33–35], its applicability to the macroscopic behavior of cell aggregates remains
limited. Continuum models for cell aggregates [36–41], by contrast, are well-suited for modeling
large-scale phenomena where aggregate properties vary smoothly over length scales spanning sev-
eral cell diameters. These models effectively capture the macroscopic response of cell aggregates
and can be extended to incorporate additional physical phenomena such as intercellular interac-
tions and formation of cell aggregates [42]. For instance, a continuum description of cell motility,
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driven by cell-cell and cell-ECM (extracellular matrix) interactions, was developed using a non-
local interaction term to account for adhesion between cells and between cells and the ECM [43–
45]. Despite these successes, continuum approaches fall short in capturing the inherent variabil-
ity in cellular deformation and electric potential within tissues. In contrast, statistical models
provide a robust framework for addressing these limitations [46–49]. By applying the framework
of statistical mechanics to cell aggregates, we can effectively describe the mechanical and electri-
cal fluctuations observed in tissues, bridging the gap between microscopic cellular properties and
macroscopic tissue behavior. As discussed below, this approach also allows for a quantitative anal-
ysis of deformation and electric potential fluctuation, offering deeper insights into the emergent
electromechanical properties of cell aggregates.

The method of statistical mechanics has been employed in a number of studies on cells and
their aggregates. A recently developed theory [50, 51] addressed the active processes in cells to
provide insights into cell size distribution. They extended that work to include electrical fields
to establish the threshold electrical fields that can be sensed by a cell [52]. The work [10] based
on non-equilibrium statistical mechanics and a 2D vertex model was able to capture mechanical
instabilities in cell aggregates. The study in [53] for active matter (living cells) focused on steric and
aligning interactions and interactions driven by shape changes. The impact of thermal fluctuations
in polarization on the renormalization of the flexoelectric coupling coefficient of cell membranes has
also been studied using statistical mechanics [54]. However, none of the existing models incorporate
both the mechanical and electrical fluctuations and inter-cellular interactions for cell aggregates.

In this work, we propose an electromechanical model to describe both single cells and cell ag-
gregates based on structural symmetries and derive its macroscopic continuum limit. Notably, our
starting point for the microscopic model (at the cell level) does not include any piezoelectric behav-
ior and simply takes cognizance of the fact that there is a resting potential across the cell and the
presence of electrostriction (which is exhibited by all materials). Fluctuations in geometric param-
eters, such as cell area and aspect ratio, can be effectively quantified through the analysis of tissue
micrographs. Notably, the fluctuation in strain — later referred to as the E2-temperature due to its
analogous role to absolute temperature in classical thermal physics — serves as a quantitative mea-
sure of the inherent system variability [55]. Our resulting coarse-grained electromechanical model
for cell aggregates is particularly well-suited for applications to epithelial tissues, which consist of
flattened, tightly packed cell layers. However, our insights are broader and transferrable to other
tissue configurations. Based on the coarse-grained model, we investigate the macroscopic elec-
tromechanical behavior of cell aggregates, demonstrating that effective electromechanical coupling
and solid-fluid phase transitions arise from the collective cellular interactions. These resolve the
existing paradox in the literature. The emergent properties depend on the E2-temperature. The
quantitative dependence of effective resting potential, tissue stiffness, T1-transition rate, viscosity,
and critical point for solid-fluid phase transition on the E2-temperature could be validated by ex-
perimental observations. Such comparisons open the door to understanding how fluctuation and
variability contribute to tissue behavior in different biological contexts, making the E2-temperature
an experimentally testable concept for linking microscopic fluctuations with macroscopic emergent
properties.

Central premise

Following the paradigm of statistical mechanics, we treat a cell aggregate as a canonical ensemble
of many cells. We borrow the terminologies and methodology from statistical mechanics with the
caveat that the fluctuation or variability of the system mainly arise from biological active pro-
cesses (e.g. growing, diffusion, etc), defects, inhomogeneities, among others, instead of the actual
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Figure 1: Cell aggregate and single cell. (a) A typical cell aggregate (plated Madin-Darby Canine
Kidney cells, Courtesy of K. Irvine). (b) Geometrically, a cell aggregate is regarded as a tessellation
of a plane by polygons. (c) Schematic of a single cell occupying a regular hexagonal domain (n = 6)
and (d) a deformed hexagon, where c, xj , yj is the position of the centroid of the cell, the jth vertex
of the cell in undeformed and deformed configuration, respectively.

thermal agitations. Therefore, the benchmark energy scale (k̃BT = 1/β) used in this work is a phe-
nomenological constant; the fluctuation or variability in cellular states arises not only from thermal
agitations but also from many other passive and active processes that entail “equilibrium” of the
system at the observation time-scale. The collection of cellular strains and electric potentials in a
cell aggregate are assumed to describe the microstates of the system. For their collective properties
in a cell aggregates, we first propose a single-cell Hamiltonian based on the underlying structural
symmetries and experimental observations of their electromechanical responses. We employ the
mean-field approximation, which allows for an analytical solution of the model and yields a closed-
form expression for the effective free energy of cell aggregates. Based on this effective free energy,
we present several experimentally testable predictions, including the macroscopic electromechanical
properties, the solid-fluid phase transitions observed in cell aggregates, and their dependence on
the E2-temperature and average electric potential regulated by active processes.

2 An electromechanical model for cell aggregates

We are interested in the macroscopic electromechanical response of a cell aggregate as illustrated
in Fig. 1(a). We first introduce independent state variables for describing physical and geometrical
configurations of cells and their aggregates. Figure 1(a) shows a schematic of a typical amorphous
cell aggregate. We idealize the cell aggregate as a tessellation of a plane by equal-area polygons as
illustrated in Fig. 1(b). Denote by Ci ⊂ R2 the polygon/domain occupied by the ith cell, A the area
of the polygon Ci, and ci the spatial positions of the centroids of cells. For simplicity, we assume
that each cell precisely occupies the Voronoi cell associated with {ci : i = 1, · · · , N} [56]. Though it
is tempting to employ the centroids of cells as the fundamental state variables, a reasonable physical
model or Hamiltonian for the tessellation in terms of {ci : i = 1, · · · , N} must be interacting and
permutation invariant, and hence not amenable to systematic perturbation methods. On the other
hand, for cell aggregates illustrated in Fig. 1(a), we see that the shapes of cells and statistical
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properties of aspect ratios are good indicator of different physiological stages of cell aggregates (or
tissues) which, presumably, dictate the physical properties of cell aggregates as well [55, 57, 58].
Therefore, we choose the deformation or strain as one of the independent state variables for the
cell aggregate.

Unlike crystalline solids for which there exists a natural reference configuration (i.e., crystalline
lattice), at least locally, for defining the deformation and strain, a cell aggregate is amorphous
whose deformation or strain, strictly speaking, cannot be defined for a single current configuration.
Nevertheless, neglecting the compatibility requirement for neighboring cells, “strain” could be de-
fined for each individual cell by a few alternative procedures. The essence of these procedures is
such that the introduced strain tensor E ∈ R2×2

sym is a measure of orientation and aspect ratio of
individual cells and the underlying arrangement of cells. In particular, we require that the strain
tensor E ∈ R2×2

sym satisfy the following.

(R1) The strain E = 0 if the cell is a regular polygon.

(R2) For small strains with |E| ≪ 1, the ratio of eigenvalues of strain tensor E ∈ R2×2
sym measures

the “aspect ratio” of the cell.

(R3) For small strains with |E| ≪ 1, the eigenvectors of strain tensor E ∈ R2×2
sym defines the

“orientation” of the cell.

As a tessellation of a plane, cells in aggregates occupy polygonal domain C with n vertices yj (j =
1, · · · , n). As illustrated in Fig. 1(a), typically n = 4, 5, 6, 7 from experiments. Suppose a cell
occupies an irregular hexagon as in Fig. 1(d). We choose the regular hexagon of the same area in
Fig. 1(c) as the reference undeformed configuration.

Below we introduce two procedures to identify the strain tensor E associated with a single cell
in the regime of small strain (|E| ≪ 1).
(i) Let xj (j = 1, · · · , n) be vertices of the regular n-gon centered at the origin:

xj = r0mj , mj = [cos
j2π

n
, sin

j2π

n
], (1)

where r0 ( A0 = 1
2nr

2
0 sin(2π/n)) is such that the area of the regular n-gon equals the area of the

cell. By the method of least square, we can in general define a deformation gradient F ∈ R2×2 and
a translational vector u0 ∈ R2 for the cell:

min{L(F,u0) =
n∑︂

j=1

|yj − Fxj − u0|2 : F ∈ R2×2,u0 ∈ R2}.

Let uj = yi − xi be the displacement of the ith vertex and H = F − I the unsymmetrized strain
(I ∈ R2×2 is the identity matrix). We write L(F,u0) as

L(H,u0) =

n∑︂
i=1

[︂
|ui − u0|2 − 2(ui − u0) ·Hxi + xi ·HTHxi

]︂
.

By the first-order necessary conditions we have

0 =
∂L

2∂u0
=

n∑︂
i=1

(−ui +Hxi) + nu0,

0 =
∂L

2∂H
= −

n∑︂
i=1

(ui − u0)⊗ xi +H
n∑︂

i=1

xi ⊗ xi,
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which imply that

u0 =
1

n

n∑︂
j=1

uj , F = I+
1

r0

n∑︂
j=1

ui ⊗mj .

From classical continuum mechanics, the linearized symmetric strain for the cell can be written as

E =
1

2
(F+ FT )− I =

1

2r0

n∑︂
j=1

(uj ⊗mj +mj ⊗ uj). (2)

(ii) A second procedure to determine the strain tensor is through the normalized second moment
of the current position vector. For a polygon C illustrated in Fig. 1(d), without loss of generality we
assume the centroid is at the origin: c =

∫︁
C yda = 0. Then the normalized second moment tensor

is given by

B =
1

Jn

∫︂
C
y ⊗ yda, (3)

where Jn =
nr40
48 (4 sin(2π/n) + sin(2π/n)) is the second moment tensor of a regular n-gon of the

same area (Cf. Fig. 1(c)). Suppose that the current shape C is obtained by deforming the regular
n-gon C0 with vertices given by xj in (1), i.e., yj = Fxj . The second normalized moment tensor is
given by

B =
1

Jn

∫︂
C0
(Fx)⊗ (Fx)da = FF⊤.

Then the strain tensor may be defined as

E = (B)1/2 − I, (4)

which clearly fulfills the previously mentioned requirements (R1)-(R3).
We remark that strains defined by (2) and (4) coincide to the leading order for small strains

with |E| ≪ 1 and both of them have been used to quantify experimental and numerical results [55,
57]. Also, for hexagons the shape index [57] or perimeter (p)-to-sqrt of area (

√
A) ratio can be

expressed as a function of strain E:

p̂ =
p√
A

≈
√
2(6 + 9

16 |E|2)
33/4

≈ 3.72 + 0.35|E|2. (5)

Strain from rearrangement of cells. As for crystalline solids, significant strain can be
generated by structural rearrangement of cells from the viewpoint of centroid positions. Such a
transformation strain cannot be characterized by the two definitions ((2) and (4)) of strain tensor.
As illustrated in Fig. 2, in a rearrangement process called T1-transition commonly observed in the
development of epithelial tissues, neighboring cells exchange their positions through a reorganization
of intercellular junctions without significant changes in the shape of individual cells. Though the
final configuration in Fig. 2(c) in T1-transition is a deformed configuration relative to the initial
configuration in Fig. 2(a), the strain calculated by either (2) or (4) vanishes for every cell. To
remedy this issue, we observe that, as a cluster of cells, the final configuration in Fig. 2(c) can be
obtained by compressing (and stretching) the initial configuration in Fig. 2(a) in y-direction (in
x-direction). The strain associated with this deformation process may be identified as

ET1 =
γ∗√
2

[︃
1 0
0 −1

]︃
. (6)
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Figure 2: T1-transition in cell aggregates. Cell aggregates undergo rearrangement in which neigh-
boring cells exchange their positions through a reorganization of intercellular junctions without
significant changes in the shape of individual cells and transition from (a) initial configuration to
(b) intermediate configuration to (c) final configuration.

where the T1-transition strain γ∗ ∼ 1 is beyond the regime of small strains and will be determined
later from empirical data.

To summarize, we note that both definitions of the strain tensor, (2) and (4), encounter diffi-
culty in consistently capturing the local structural rearrangements of cells. This limitation arises
from the inherent complexity of cellular configurations. In this work, we take a pragmatic ap-
proach and treat the strain tensor E as an “order parameter” as in the framework of Landau’s
phenomenological theory [59, 60]. In this context, the precise mathematical definition of strain
tensor E beyond the regime of small strain is secondary, as long as it qualitatively reflects the
key geometric characteristics —— namely, the shape changes and structural arrangement of the
underlying cells. By adopting this perspective, the strain tensor serves as a convenient and effective
state variable for quantifying the geometry and arrangement of cells in a cell aggregate and can be
confidently computed by either (2) or (4) in the regime of small strain.

In addition to elasticity, we will consider electric interactions between cells. Cell aggregates, in
spite of adhesion between them, in general, are immersed in an extracellular matrix (ECM) whose
electric potential may be assigned as the ground potential. Ionic channels, i.e., specialized protein
structures embedded in the cell membrane, allow selective passage of ions (e.g., Na+, K+, Ca2+,
Cl−, etc) across the membrane. This selective transport ensures and maintains a resting membrane
potential ξ∗, which is essential for numerous biological functions [2]. For simplicity, we assume the
interior of each cell is of equipotential. The actual potential of the ith-cell, denoted by ξi, could
be significantly different from the resting potential ξ∗ due to electromechanical coupling and other
passive or active transport processes in cell aggregates.

In summary, for a phenomenological model of cell aggregates we assume that the state of the
cell aggregates are completely described by the strain tensor and electric potential of cells:

(Ei, ξi) ∈ D := {(E, ξ) : (E, ξ) ∈ R2×2
sym × R, TrE = 0} (i = 1, · · · , N), (7)

where the constraint TrE = 0 arises from the incompressibility of cells. For brevity and future
convenience, denote by s, s̄, s′ the collection of state variables of N -cells, the average, and their
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deviations:

s = {Ei, ξi}Ni=1 ∈ DN ,

s̄ = (Ē, ξ̄) =
1

N

N∑︂
i=1

(Ei, ξi) ∈ D,

s′ = s− s̄ ∈ DN .

(8)

Energetics. In line with standard practices in physical modeling, we formulate the electrome-
chanical model for cell aggregates via an energy function. As illustrated in Fig. 1 (d), we consider a
single cell from the aggregate with strain-electric potential (E, ξ) ∈ D and propose that the cellular
energy is given by

Ψ(E, ξ) =
(︂ µ

γ∗2
|E|2(|E|2 − γ∗)2 +

ϵ

2λ2
(ξ − ξ∗)2 +K(ξ − ξ∗)|E|2

)︂
A, (9)

where A is the area of the cell, and µ, γ∗(∼ 1), ϵ, λ > 0 and ξ∗,K are constant model parame-
ters. Physically, the energy terms in (9) are motivated from the following consideration. The first
term characterizes the strain energy; the specific expression is the minimal form that is isotropic,
thermodynamically stable, and admits the regular hexagonal tessellation (Cf. Fig. 2(a)) and its
equivalent configuration after T1-transition (Cf. Fig. 2(c)) as the strain-energy minimizing states.
In particular, the constant µ may be recognized as the shear modulus (for small strain). The
second term ϵ

2λ2 (ξ − ξ∗)2 is the electric field energy with ξ∗ being the resting potential (at the
absence of electromechanical coupling, i.e., K = 0), ϵ the dielectric constant, and λ a length scale
comparable to the thickness of cell membrane. The electric field energy penalizes the deviation
of interior cellular potential from the resting potential. The last term K(ξ − ξ∗)|E|2 is for cap-
turing the coupling between electrical field and mechanical strain. We remark that the proposed
single-cell energy (9) represents the minimal isotropic electromechanical model that achieves the
following: (i) it effectively reproduces the observed T1-transitions in cell aggregates, featuring with
the characteristic rearrangements during tissue remodeling, and (ii) it incorporates nontrivial elec-
tromechanical coupling, allowing for a meaningful interplay between mechanical deformations and
electrical responses. This balance of simplicity and functionality makes the proposed model (9) a
robust foundation for exploring the electromechanical properties of tissues.

We next consider cell aggregates that are nonuniformly deformed or charged. Let Ii be the index
set that contains all neighboring cells in contact with the ith cell. In account of nonuniformity, we
postulate that the interaction energy for the ith cell is:

Hint(s) =
1

2

A

l2
Jelast

∑︂
j∈Ii

|Ei −Ej |2 +
1

2

A

l2
Jelect

∑︂
j∈Ii

|ξi − ξj |2, (10)

where the length scale l is comparable to the overall size of a cell, and constant Jelast > 0 (resp.
Jelect > 0)measures the increase of energy when the strain (resp. electric potential) of a cell is
different from that of neighboring cells. In the context of the Ising model, Jelast and Jelect are
referred to as the exchange constants. Combining (9) with (10), we identify the Hamiltonian of an
N -cell system as

H(s) =

N∑︂
i=1

Ψ(Ei, ξi) +

N∑︂
i=1

Hint(Ei, ξi), (11)

which serves as the foundation for our statistical mechanics model.
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We will follow the standard procedure of statistical mechanics to analyze the cell aggregate. In
the classical statistical and thermal physics, the critical concept of (absolute) temperature reflects
the fluctuation of energy associated with microstates of the system, whereas entropy measures the
number of accessible microstates of the system. In thermal equilibrium, the probability distribution
over all admissible microstates of the system is dictated by the Second Law, which can then be
used to determine macroscopic properties and thermodynamic relations of the system. To apply
this approach to the electromechanical model (11) of a cell aggregate, we start from the following
hypotheses [61].

(H1) The variability or fluctuations in state variables (E, ξ) are macroscopically homogeneous
within the system (a cell aggregate) and can still be characterized by a single benchmark
energy scale k̃BT = 1/β.

We remark that unlike the classical systems such as ideal gases, the stochasticity in cell aggregates
has many contributions including but not limited to thermal agitations, passive and active biological
processes (e.g., growing, diffusion, etc.), among others. Therefore, the benchmark energy scale
k̃BT = 1/β should be understood as a phenomenological parameter instead of the actual thermal
energy scale that originates from the oscillations of constituent molecules or atoms. Nevertheless,
for physiological relevance we can still interpret T as the absolute temperature of the system.
Meanwhile, k̃B should be regarded as an empirical constant in parallel to the classical Boltzmann’s
constant. Similar ideas have been used in the literature to describe novel phenomena in a range of
physical systems, including granular media [62] and plasticity in polycrystalline materials [61].

(H2) In quasi-static processes, the cell aggregate may exchange energy with the environment and
stay in instantaneous equilibrium with a constant and uniform temperature T , and hence
follows the Boltzmann distribution:

p(s) ∝ e−βH(s), (12)

where s = {Ei, ξi}Ni=1 ∈ DN represents an admissible microstate of the cell aggregate and p(s)
is the probability of the aggregate in the microstate s.

Based on these hypotheses, we consider a canonical ensemble of the system at a constant tempera-
ture T and upscale from the microscopic model described by the Hamiltonian (11) to a macroscopic
coarse-grained model. Denote the collection of all microstates with prescribed average (Ē, ξ̄) by

DN
(Ē,ξ̄)

= {s ∈ DN :
1

N

N∑︂
i=1

(Ei, ξi) = (Ē, ξ̄)}. (13)

For a coarse-grained macroscopic model, we aim to calculate the effective free energy (per cell) with
a prescribed average:

F eff(Ē, ξ̄;β) = − 1

Nβ
logZ(Ē, ξ̄;β), (14)

where, by (12), the partition function with prescribed average is identified as

Z(Ē, ξ̄;β) =

∫︂
DN

(Ē,ξ̄)

exp (−βH(s))ds. (15)

9



We remark that the effective free energy defined in (14) is such that the partition function without
prescribed average is given by

Z :=

∫︂
DN

e−βH(s)ds =

∫︂
D

[︂ ∫︂
DN

(Ē,ξ̄)

e−βH(s)ds
]︂
ds̄ =

∫︂
D
Z(Ē, ξ̄;β)ds̄

=

∫︂
D
e−NβF eff(Ē,ξ̄;β)ds̄,

(16)

where the last equality justifies the terminology of “effective” free energy that governs the macro-
scopic coarse-grained properties of cell aggregates.

3 Effective free energy by mean-field approximation

For an N -cell aggregate in equilibrium, presumably cells would stay at the resting potential ξ∗ and
tessellate the plane by regular hexagons to minimize the total energy. However, the presence of
passive and active noises, size dispersion, topological defects, and thermal agitations give rise to
variability and randomness in cell aggregates. From the postulated Boltzmann distribution (12),
we can (i) identify the temperature or energy scale 1/β = k̃BT from the fluctuations of states of cell
aggregates, and (ii) predict the macroscopic measurable effective material properties (e.g., shear
modulus and electromechanical coupling coefficients) and how they depend on the fluctuations
or, equivalently, the energy scale k̃BT . For these purposes, we need to evaluate the partition
function (15) and the effective free energy (14) for some prescribed average/macroscopic strain and
potential (Ē, ξ̄).

3.1 Mean-field approximation

As for a standard Ising model, an exact solution to (15) is still an open problem for nontrivial
interactions (encoded by the index set Ii). A widely accepted approximation method is the so-called
the mean-field theory, which simplifies the problem by neglecting the contribution of interaction
energy from fluctuations. More precisely, we rewrite the interaction energy of cell aggregates in (11)
as

N∑︂
i=1

Hint(Ei, ξi) =

N∑︂
i=1

[︄
1

2

A

l2
Jelast

∑︂
j∈Ii

|Ei −Ej |2 +
1

2

A

l2
Jelect

∑︂
j∈Ii

|ξi − ξj |2
]︄

=
N∑︂
i=1

[︄
1

2

A

l2
Jelast

∑︂
j∈Ii

|(Ei − Ē)− (Ej − Ē)|2 + 1

2

A

l2
Jelect

∑︂
j∈Ii

|(ξi − ξ̄)− (ξj − ξ̄)|2
]︄

≈ q
A

l2
Jelast

N∑︂
i=1

|Ei − Ē|2 + q
A

l2
Jelect

N∑︂
i=1

|ξi − ξ̄|2,

(17)

where q is the number of neighboring cells (i.e. the size of the index set Ii) which is assumed to be
independent of i. Denote by

E′
i = Ei − Ē and ξ′i = ξi − ξ̄

the deviation from the average strain and average electric potential, respectively. In general, a
Hamiltonian can be decomposed into three parts: the first depends only on the averaged or
coarse-grained state variables, the second only on the deviations or high-frequency microscopic
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fluctuations, and the third on both. For instance, within the mean-field approximation (17) the
Hamiltonian (11) of the cell aggregate can be written as

H (s) = H0(s̄) +H1

(︁
s′
)︁
+H2

(︁
s′; s̄

)︁
, (18)

where, by direct calculation, we find that

H0(s̄) = NΨ(Ē, ξ̄), H1(s
′) =

N∑︂
i=1

(︃
Ψ(E′

i, ξ
′
i) +

qJelastA

l2
|E′

i|2 ++
qJelecA

l2
|ξ′i|2

)︃
,

H2(s
′; s̄) =

N∑︂
i=1

(︁
Ψ(E′

i + Ē, ξ′i + ξ̄)−Ψ(E′
i, ξ

′
i)−Ψ(Ē, ξ̄)

)︁
.

(19)

We remark that the Hamiltonian (18), albeit anharmonic, is non-interacting because of the mean-
field approximation. The associated partition function (15) and free energy (14) can be approx-
imately evaluated by perturbation methods. To this end, we insert (18) and (19) into (14) and
obtain

F eff(Ē, ξ̄;β) = Ψ(Ē, ξ̄)− 1

Nβ
log

[︄∫︂
DN

(0,0)

e−βH2(s′;s̄)e−βH1(s′)ds′

]︄
=: Ψ(Ē, ξ̄) + F̃(Ē, ξ̄;β).

(20)

Further, upon neglecting the constraint in the integration domain, i.e., replacing DN
(0,0) by DN , we

can write F̃ defined above as

F̃ (Ē, ξ̄;β) = − 1

β
log

[︄∫︂
D
e−βΨ̃(E′,ξ′;Ē,ξ̄)d(E′, ξ′)

]︄
,

Ψ̃(E′, ξ′; Ē, ξ̄) = Ψ(E′ + Ē, ξ′ + ξ̄)−Ψ(Ē, ξ̄) +
qJelastA

l2
|E′|2 + qJelecA

l2
|ξ′|2.

(21)

Two remarks are worth noting here. First, the replacement of DN
(0,0) by DN can be justified

a posteriori. As will be shown shortly, the expected value of the deviations in our subsequent
calculations does satisfy ⟨E′⟩ = ⟨ξ′⟩ = 0. Second, the reduction of the integral over the high-
dimensional space DN to D is possible due to the mean-field approximation (18), which accounts
for interactions between neighboring cells by mean-fields.

3.2 Variational perturbation method

We now evaluate the effective free energy (F eff), i.e., the integral (21), using the variational pertur-
bation method. However, the presence of anharmonic terms like |E′|4 and |E′|6 in Ψ (Cf. (9)) defies
an exact closed-form solution to (21). One approach to making progress is through the standard
perturbation method. To this end, we choose a comparison energy function Ψc = Ψc(E

′, ξ′) and
denote by

ρc(E
′, ξ′) =

1

Zc
e−βΨc(E′,ξ′)

(︂
Zc =

∫︂
D
e−βΨc(E′,ξ′)dE′dξ′

)︂
, (22)

the probability distribution function (PDF) associated with the comparison energy function Ψc.
The statistical average using PDF (22) is defined as

⟨ · ⟩c :=
∫︂
D
(·)ρc(E′, ξ′)dE′dξ′. (23)
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Then the Bogoliubov inequality [63] asserts that for any energy function of E′ and ξ′, e.g., the
function Ψ̃(E′, ξ′; Ē, ξ̄) defined in (21), we have

F̃ (Ē, ξ̄;β) ≲ F̃
U
(Ē, ξ̄;β) = Fc + ⟨Ψ̃(E′, ξ′; Ē, ξ̄)−Ψc(E

′, ξ′)⟩c, (24)

where Fc = − 1
β logZc is a constant independent of coarse-grained state variables (Ē, ξ̄).

We now analytically evaluate the right-hand-side of (24) by choosing a quadratic comparison
energy function:

Ψc(E
′, ξ′) = A

(︂
µc|E′|2 + ηcξ

′2 + κcξ
′ (︁E′

11 + E′
12

)︁ )︂
, (25)

where µc, ηc > 0 and κc ∈ R are some constants that guarantee positivity of (25) and will be fixed
later. For the best upper-bound estimate of F eff , by (20) we may set

F eff(Ē, ξ̄;β) = Ψ(Ē, ξ̄) + min{F̃U
(Ē, ξ̄;β) : µc, ηc > 0, κc ∈ R}, (26)

where the minimization problem is over all reasonable Gaussian distribution (22) or positive har-
monic comparison energy function Ψc(E

′, ξ′).
In this work, we consider a planar model in which the fluctuating strain E′, average strain Ē

can be written as

E′ =

[︃
E′

11 E′
12

E′
12 −E′

11

]︃
, Ē =

[︃
Ē11 Ē12

Ē12 −Ē11

]︃
. (27)

The quadratic nature of the comparison energy turns integrals in (23) into Gaussian-type integrals
which can be analytically evaluated. In particular, we are interested in evaluating the (Ē, ξ̄)-
dependent terms on the right-hand side of (24), i.e., ⟨Ψ̃(E′, ξ′; Ē, ξ̄)⟩c. From (9) and (21)2, we find
that

1

A
Ψ̃(E′, ξ′; Ē, ξ̄) = (µ+

qJelast

l2
+K(ξ̄ − ξ∗))|E′|2 + (

ϵ

2λ2
+

qJelec

l2
)|ξ′|2 + 2Kξ′(Ē ·E′)

− 4µ

γ∗
|Ē|2|E′|2 − 2µ

γ∗
|E′|4 + µ

γ∗2
|E′|6 − 8µ

γ∗
(Ē ·E′)2 +

3µ

γ∗2
|Ē|2|E′|4

+
12µ

γ∗2
(Ē ·E′)2(|E′|2 + |Ē|2) + 3µ

γ∗2
|Ē|4|E′|2 +OT(E′, ξ′; Ē, ξ̄),

(28)

where OT(E′, ξ′; Ē, ξ̄) represents terms that are odd in (E′, ξ′), and hence will not contribute to
⟨Ψ̃⟩c. By tedious but straightforward calculations, we find that

1

A
⟨Ψ̃(E′, ξ′; Ē, ξ̄)⟩c = µ0 + 2K⟨ξ′E′⟩c · Ē+K⟨|E′|2⟩c(ξ̄ − ξ∗)

+ µ2|Ē|2 + Ē · CĒ+ µ4|Ē|4 + 12µ|Ē|2

γ∗2
Ē · ĈĒ,

(29)

where µ0 includes all terms that are independent of (Ē, ξ̄), and

µ2 = −4µ

γ∗
⟨|E′|2⟩c +

3µ

γ∗2
⟨|E′|4⟩c,

C =
⟨︁
− 8µ

γ∗
E′ ⊗E′ +

12µ|E′|2

γ∗2
E′ ⊗E′⟩︁

c
,

Ĉ = ⟨E′ ⊗E′⟩c, µ4 =
3µ

γ∗2
⟨|E′|2⟩c,

(30)
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and

⟨|ξ′|2⟩c =
4µc

k0
, k0 := 2βA

(︁
4ηcµc − κ2c

)︁
,

⟨ξ′E′⟩c = −κc
k0

[︃
1 1
1 −1

]︃
,

⟨|E′|2⟩c = 2
[︁
⟨E′2

11⟩c + ⟨E′2
12⟩c

]︁
=

8ηcµc − κ2c
µck0

.

(31)

Further, we find that the fourth-order tensor Ĉ satisfies that

⟨QE′Q⊤ ⊗QE′Q⊤⟩c =
∫︂
D
E′ ⊗E′ρc(E

′, ξ′)dE′dξ′ = ⟨E′ ⊗E′⟩c ∀ Q ∈ SO(2),

meaning that the fourth-order tensor Ĉ is isotropic and such that

Ē · ĈĒ =
1

2
⟨|E′|2⟩c|Ē|2. (32)

Inserting (30)-(32) into (29), we obtain the closed-form upper bound estimate for the effective free
energy F eff(Ē, ξ̄;β) defined in (26) as

1

A
F eff(Ē, ξ̄) ≈ µ0 +Ψ(Ē, ξ̄) +

1

A
⟨Ψ̃(E′, ξ′; Ē, ξ̄)⟩c

≈ µeff
2 |Ē|2 + µeff

4 |Ē|4 + µ

γ∗2
|Ē|6 +Qeff(ξ̄ − ξ∗) +

ϵ

2λ2
(ξ̄ − ξ∗)2 +K(ξ̄ − ξ∗)|Ē|2,

(33)

where higher-order terms beyond O(|Ē|6, (ξ̄− ξ∗)2, 1β ) and immaterial constants are neglected, and
the relevant effective properties are given by

µeff
2 = µ(1− 8

γ∗
⟨|E′|2⟩c), Qeff = K⟨|E′|2⟩c ,

µeff
4 =

2µ

γ∗
(−1 +

9

2γ∗
⟨|E′|2⟩c).

(34)

We remark that the effective free energy function, as defined in (33), governs the macroscopic
electromechanical properties of cell aggregates.

4 Results and discussion

In this section, we explore biophysical implications of the coarse-grained model (33), with a partic-
ular focus on understanding how fluctuations impact the electromechanical behavior of cell aggre-
gates. To facilitate meaningful comparisons with experimental results and numerical simulations,
we select relevant model parameters in (9) such that their values lie within the physiological range.
Specifically, the resting potential is chosen as ξ∗ = −60 mV [12, 64], the range of change in electric
potential of a single cell as (ξ̄ − ξ∗) ∈ [−200 mV, 200 mV ] [13, 16, 17, 64], the thickness of cell
membrane as λ = 5nm [65], shear modulus as µ = 200 Pa [66–69], the relative permittivity of a
single cell as ϵr = 20 [65], and the electromechanical coupling constant for a single cell is chosen as
K ∼ 0.1 µ

|ξ∗| . For simplicity, we focus on scenarios of simple shear with

Ē =

[︃
0 γ
γ 0

]︃
and |Ē|2 = 2γ2.
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Upon neglecting an (Ē, ξ̄)-independent constant, we rewrite the effective free energy function (33)
as

1

A
F eff(γ, ξ̄) = (µeff

2 +K(ξ̄ − ξ∗))2γ2 + 4µeff
4 γ4 +

8µ

γ∗2
γ6 +

ϵ

2λ2
(ξ̄ − ξ∗ +

Qeffλ2

ϵ
)2. (35)

Characterization of relevant energy scale. As demonstrated in [55, 57], the fluctuation
⟨|E′|2⟩c can be directly obtained from experimental and numerical images of tissues. By (31), we
see that the relevant energy scale

k̃BT =
1

β
∝ ⟨|E′|2⟩c. (36)

Aside from a proportionality constant, the fluctuation ⟨|E′|2⟩c plays exactly the same role as the
temperature in the classical statistical mechanics and is referred to as the E2-temperature in [55].
E2-temperature characterizes stochasticity (or fluctuations) in cellular strains contributed by com-
plex active and passive biological processes. Therefore, E2-temperature should be understood as
some kind of empirical parameter or effective temperature [61, 70–72] instead of the actual thermal
temperature that originates from the vibration of atoms in classical thermodynamics. Subsequently,
we study how macroscopic electromechanical properties of the cell aggregate depend on the E2-
temperature (or fluctuation).
Renormalized resting potential. At the absence of external mechanical loading, the equilib-
rium state of the cell aggregate is determined by the principle of minimum free energy:

min
(γ,ξ̄)

F eff(γ, ξ̄) ⇒

∂

∂γ
F eff(γ, ξ̄) = 0 and

∂

∂ξ̄
F eff(γ, ξ̄) = 0.

(37)

It is easy to see that a local small-strain minimizer is given by

(γ, ξ̄) = (0, ξ∗eff) and ξ∗eff = ξ∗ − Qeffλ2

ϵ
= ξ∗ − Kλ2

ϵ
⟨|E′|2⟩c. (38)

Depending on the sign ofK in the single-cell Hamiltonian (9), the E2-temperature ⟨|E′|2⟩c effectively
lowers (if K > 0) or increases (if K < 0) the resting potential. We remark that this effective resting
potential ξ∗eff does not account for active processes of living cells. Biological processes, including
ionic transport through channels and pumps, metabolic activities, and other cellular interactions,
can significantly alter the electrical state of the cell.

Solid-to-fluid phase transition. It has been widely shown that cell aggregates may undergo a
phase transition from a rigid solid-like phase to a floppy fluid-like phase, depending on the degree
of “deviations” from the regular hexagonal tessellation [16, 17, 55, 57]. In the current setting, we
interpret this transition as the critical point such that the small strain local minimizer (38) loses
its stability, meaning that

∂2

∂γ2
F eff(γ, ξ̄)

⃓⃓⃓⃓
(0,ξ∗eff)

= 0 ⇒ µeff
2 +K(ξ∗eff − ξ∗) = 0. (39)

By (34) and (38), we find the critical E2-temperature to be the one at which the cell aggregate at
resting condition (i.e., no external shear stress), transits from a solid-like phase to a fluid-like phase
as

⟨|E′|2⟩c,cr =
γ∗

8

(︃
1 +

K2λ2γ∗

8µϵ

)︃−1

. (40)
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Figure 3: Phase diagram for solid-to-fluid phase transition in cell aggregates. For chosen numerical
values in this work, the range of non-dimensional x-axis corresponds to the range of change in
electric potential as (ξ̄ − ξ∗) ∈ [−200mV, 200mV] consistent with the physiological range; the
y-axis represents the E2-temperature ⟨|E′|2⟩c.

Bi et al. (2016 [73]) show that the solid-fluid phase transition occurs at the critical shape index
p̂cr = 3.81 at the absence of electromechanical coupling. By (5) we may fix γ∗ ≈ 2.0 for consistency.

Moreover, living cells are capable of regulating their transmembrane potentials. At the presence
of electromechanical coupling, tissues can actively regulate their stiffness and solid-to-fluid transi-
tion by manipulating their electric potentials. This capability allows them to adaptively respond
to varying environmental conditions and physiological demands. Suppose that the average electric
potential of a cell aggregate is fixed at ξ̄ via certain active biophysical process. By (35) we find
that the apparent shear modulus as

µapparent =
1

4A

∂2

∂γ2
F eff(γ, ξ̄)

⃓⃓⃓⃓
γ=0

= µ(1− 8

γ∗
⟨|E′|2⟩c) +K(ξ̄ − ξ∗). (41)

The critical E2-temperature (or fluctuation) for solid-fluid phase transition at this prescribed po-
tential ξ̄ is identified as that at which the apparent shear modulus µapparent of the cell aggregate
vanishes:

⟨|E′|2⟩c =
γ∗

8

(︃
1 +

K

µ
(ξ̄ − ξ∗)

)︃
. (42)

Figure 3 shows the phase diagram for solid-to-fluid phase transition governed by the coarse-grained
model (35). The black solid line shows the phase boundary. The region below and above the phase
boundary corresponds to the rigid solid-like phase and floppy fluid-like phase, respectively. At a
fixed applied electric potential ξ̄, an increase in E2-temperature ⟨|E′|2⟩c would transform the cell
aggregate from a rigid solid-like phase to a floppy fluid-like phase. Similarly, at a prescribed E2-
temperature, an increase in electric potential ξ̄ would transform the cell aggregate from a fluid-like
phase to a solid-like phase.
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Energy barrier. The effective free energy function (35) is anharmonic and admits multiple
critical points in γ for a prescribed average potential ξ̄. Graphically, as γ increases from 0, we
observe that the first critical point (γ = 0) and the third critical point (γT1) are locally stable while
the second critical point is unstable, reflecting the T1-transition illustrated in Fig. 2. To find the
energy barrier between the two stable equilibria, we consider the equations for critical points:

∂

∂γ
F eff(γ, ξ̄) = 0 ⇒ γ = 0, γunstable, γT1.

By (35) we find that the unstable small-strain solution to the above equation is approximately
given by

γunstable ≈

√︄
(µeff

2 +K(ξ̄ − ξ∗))

−4µeff
4

.

Therefore, by (35) the energy barrier between the stable equilibria γ = 0 and γ = γT1 is given by

Ubarrier = F eff(γ, ξ̄)

⃓⃓⃓⃓
γ=γunstable

− F eff(γ, ξ̄)

⃓⃓⃓⃓
γ=0

≈ A
(µeff

2 +K(ξ̄ − ξ∗))2

−4µeff
4

=
µγ∗A

8
·

(︂
1− 8

γ∗ ⟨|E′|2⟩c + K
µ (ξ̄ − ξ∗)

)︂2

1− 9
2γ∗ ⟨|E′|2⟩c

.

The energy barrier can be used to quantitatively assess the rate of T1-transition. Following the
classical Kramer’s model [74], we may postulate the rate k of T1-transition per unit volume as

k ∝ exp(−βUbarrier) = exp
(︂
− θ

(︁
µapparent/µ

)︁2
⟨|E′|2⟩c(1− 9

2γ∗ ⟨|E′|2⟩c)

)︂
, (43)

where the positive dimensionless constant θ = µγ∗(8ηcµc−κ2
c)

16µc(4ηcµc−κ2
c)

> 0 follows from the last equality

in (31). We remark that (43) is consistent with the physical interpretation of solid-to-fluid phase
transitions determined by (41). In particular, the transition rate k ≪ 1 if the fluctuation ⟨|E′|2⟩c ≪
1 whereas k ∼ 1 if µapparent = 0. Moreover, the rate of transition may be identified as the self-
diffusivity which, by the Stokes-Einstein’s relation, implies that the viscosity η of the cell aggregates
should satisfy

η ∝ 1

k
∝ exp(βUbarrier).

Electromechanical responses. Finally, we consider the electromechanical properties of the cell
aggregate in the solid phase. Suppose that the cell aggregate is under the application of external
shear stress σe. By (35), we observe that the external shear stress can alter the average cross-
membrane potential ξ̄. Conversely, changes of the average transmembrane potential ξ̄ can influence
the overall shear strain of the cell aggregate. These interactions highlight a two-way coupling
between mechanical and electrical responses within the system. Furthermore, both responses are
significantly modulated by E2-temperature (or fluctuations) of the system. For a fixed applied
shear stress σe, average potential ξ̄, and E2-temperature, we obtain the equilibrium shear strain
γeq by the principle of minimum free energy:

γeq = argminγ

(︃
1

A
F eff(γ, ξ̄)− 2σeγ

)︃
. (44)
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That is, γeq is the solution of the following nonlinear algebraic equation (Cf. (35)):(︃(︂
µeff
2 +K(ξ̄ − ξ∗)

)︂
4γ + 16µeff

4 γ3 +
48µ

γ∗2
γ5 − 2σe

)︃
= 0. (45)

In general, the above nonlinear equation admits multiple solutions. We are only interested in the
“small-strain” solution, which we numerically compute using MATLAB.

Figure 4: Macroscopic non-linear elastic response of cell aggregate for known fluctuation and applied
electric potential ξ̄ = ξ∗eff .

We first consider the dependence of strain on the external stress under different E2-temperature
⟨|E′|2⟩c. As an example, we set the average electric potential the same as the effective resting
potential ξ∗eff in (38): ξ̄ = ξ∗eff . Figure 4 shows the stress-strain relation of cell aggregate at different
E2-temperatures (or fluctuations) below the critical E2-temperature in (40). We observe that the
macroscopic elastic response of the cell aggregate is generally nonlinear and matches the typical
range for cell aggregates [68]. We also notice that an increase in E2-temperature (or fluctuation)
softens the macroscopic elastic response, consistent with the effect of thermal temperature for
classical crystalline solids.

Next, we consider the dependence of strain on the average cellular potential. Figure 5 shows

the equilibrium shear strain γeq plotted against normalized applied electric potential K(ξ̄−ξ∗)
µ for

σe = 0.02µ and different E2-temperatures ⟨|E′|2⟩c. We observe that as the average electric poten-
tial increases, the equilibrium shear strain decreases nonlinearly, showing a nonlinear piezoelectric
response for cell aggregates. For a given average electric potential, the equilibrium shear strain is
higher for higher E2-temperature. We also observe that the changes in equilibrium shear strain
due to changes in average electric potential are more significant at higher E2-temperature. Phys-
ically, this implies that a softer cell aggregate possesses an enhanced electro-mechanical response,
making its shape changes more significant and more sensitive to the changes in transmembrane
electric potential. This observation is consistent with the solid-to-fluid phase transition for cell
aggregate (Cf. Fig. 3) that for a given average electric potential, an increase in E2-temperature (or
fluctuation) brings a solid cell aggregate closer to the solid-to-fluid phase transition point.
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Figure 5: Macroscopic inverse piezoelectric-like response of cell aggregate. Equilibrium shear strain
γeq is plotted against normalized applied electric potential along x-axis. For chosen numerical
values in this work, the range of non-dimensional x-axis in the plot corresponds to the range of
change in electric potential as (ξ̄−ξ∗) ∈ [−200mV, 200mV] consistent with the physiological range.

5 Concluding remarks

In this work we first established the concept of strain tensor that characterizes the shape and orien-
tation of individual cells and local arrangement of cells in amorphous cell aggregates. Based on the
underlying structural symmetry and T1-transition experimentally observed in tissues, we proposed
an electromechanical model for single cells and their interactions. For collective behavior of cell
aggregates, we employed the approach of statistical mechanics and achieved a coarse-grained model
for macroscopic electromechanical properties of cell aggregates. Fluctuation in cellular strains can
be precisely quantified, which is referred as the E2-temperature for its analogous role as the absolute
temperature in a conventional statistical model. The closed-form expression of the effective free
energy enabled us to predict the macroscopic electromechanical properties of the cell aggregate. In
particular, we derived the renormalized mechanical and electromechanical coupling coefficients and
highlight how the average electric potential and E2-temperature can independently regulate the
electromechanical properties and solid-fluid phase transitions in cell aggregates. Our work resolves
the controversy of whether soft biological tissues are piezoelectric. The answer is simple. They
are not intrinsically piezoelectric since they lack an underlying polar structure however, due to the
electrostriction (or Maxwell stress) behavior of a single cell, and the resting potential, the aggregate
or collective behavior of cells can mimic piezoelectric-like behavior.

There are several possible future directions: (i) The developed theory for living cell aggregates
could be extended to explicitly account for the active processes (e.g., effects of active protein forces)
by using the principles of non-equilibrium statistical mechanics [50, 75, 76]. (ii) The derived effective
free-energy may be used to explore the rich instability and bifurcation behavior in soft tissues c.f.
[77, 78]. (iii) We have ignored the electromechanical coupling mechanism of flexoelectricity [6] or
rather its possible emergence at the tissue scale. Prior work appears to indicate that flexoelectricity,
at least at the cellular level, is implicated in a variety of biophysical phenomena such as the hearing
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mechanism c.f. [79–81], and may also have consequences for energy extraction at the coarser level
c.f. [82]. An approach similar to outlined in this work may be used to address this mechanism. (iv)
The developed theory can be augmented to include the non-local inter-cellular interactions [83–87]
by going beyond the nearest-neighbor interaction assumption used in this work.
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