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1. Introduction

Let k be a field, fi,..., f. € k[zo,...,z,] a regular sequence of homogeneous forms,
X C P the associated projective complete intersection, and R = k[zo,...,z,]|/(f1,
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.., fe) its homogeneous coordinate ring. A fundamental result of Orlov [51] exhibits
a close relationship between two categories of great interest in algebraic geometry and
commutative algebra: the bounded derived category Db(X ) of coherent Ox-modules
and the singularity category Dgi(R), i.e. the quotient of the bounded derived category
Dgr(R) of Z-graded R-modules by the subcategory Perfy, (R) of perfect complexes. An
important special case of Orlov’s Theorem is stated as follows:

Theorem 1.1 (/51]). If X is Calabi- Yau, then the categories D”(X) and Dgi(R) are equiv-

alent.

Theorem 1.1 is a surprising and powerful result, with many applications across alge-
braic geometry, commutative algebra, and mirror symmetry, e.g. [1,6,10,11,15,18,19,32,
21,22,26,34,35,54,58,59,63]. It is a mathematical incarnation of a phenomenon in physics
called the Landau-Ginzburg/Calabi-Yau correspondence [64]. Theorem 1.1 has also been
extended by Baranovsky-Pecharich to Calabi-Yau hypersurfaces in toric varieties [14] and
by Hirano to gauged Landau-Ginzburg models [31].

In this paper, we ask: does Theorem 1.1 extend to the case where X =V (f1,..., f¢)
is any projective variety, rather than a complete intersection? We show that the answer
is “yes”, provided that one replaces Dgz(R) with the singularity category of the Koszul
complex on fi,..., f., and one replaces Db(X ) with the bounded derived category of
the sheaf of dg-algebras on P" associated to the Koszul complex. In fact, Orlov realizes
Theorem 1.1 as a special case of a far more general statement about Gorenstein algebras,
and the main goal of this paper is to generalize this result to Gorenstein dg-algebras.

In order to discuss our results in detail, we begin by stating Orlov’s Theorem in
its full generality. To do so, we must introduce some notation and terminology. Let
A = @,.,A; be a graded (not necessarily commutative) Gorenstein k-algebra such
that Ag = k. The complete intersection ring R above is an example of such an algebra;
we discuss the Gorenstein condition in detail in Section 2.2. Since A is Gorenstein, we
have an isomorphism RHom 4 (k, A) = k(a) in Dgr(A) (up to a cohomological shift)
for some a € Z; see Notation 1.5 for our conventions concerning grading twists and
cohomological shifts. The integer a is called the Gorenstein parameter of A. For instance,
the Gorenstein parameter of the complete intersection ring R = k[zo, ..., x,]/(f1,..., fc)
isn+1—3"¢ , deg(f;). Let Dy (A) denote the quotient of DET(A) by the subcategory of
complexes whose cohomology is finite dimensional over k. That is, Dqg,(A) is the derived
category of the noncommutative projective scheme associated to A, in the sense of Artin-
Zhang [5]. When A is commutative and generated in degree 1, a classical theorem of Serre
implies that Dgg(A) is equivalent to the bounded derived category of the projective
scheme Proj(A).

Orlov’s Theorem, in its full form, is stated as follows:
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Theorem 1.2 ([51] Theorem 2.5). Let k, A, and a be as above, and let q: Dgr(A) —
D3z (A) and 7: DET(A) — Dger(A) denote the canonical functors. The objects TA(j) €
Dger(A) and gk(j) € Dgi(A) are exceptional for all j € Z, and we have:

(1) If a >0, then for each i € Z, there is a fully faithful functor ®;: Dg(A) — Dqg:r(A)
and a semiorthogonal decomposition Dger(A) = (TA(—i —a + 1),...,7A(—1),
3, D% (A)).

(2) If a < 0, then for each i € Z, there is a fully faithful functor ¥;: Dgg(A) —
D33 (A) and a semiorthogonal decomposition Dgz(A) = (gk(—1),...,qk(—i + a +
1), 9; Dqgr(A)>' N

(3) If a =0, then there is an equivalence Dz (A) — Dggr(A).

To realize Theorem 1.1 as a special case of Theorem 1.2, observe that when A is the
complete intersection ring R above, we have Dyg, (A) = DP(X); and if X is Calabi-Yau,
then, by definition, its canonical sheaf wy = Ox (Y ;_, d; — n — 1) is trivial, i.e. a = 0.
This general form of the theorem has influenced not only algebraic geometry and com-
mutative algebra, but representation theory as well, e.g. [12,30,36,43,44,49]. To illustrate
the strength of Theorem 1.2, let us consider two simple families of examples. If A has fi-
nite global dimension, then Dg(A) = 0; Theorem 1.2 then implies that a > 0, and taking
i = 0 gives the full exceptional collection Dyg,(A) = (TA(—a+1),...,mA). In particular,
if A =Xk[xg,...,z,], and the degree of each variable is 1, then Theorem 1.2 recovers the
Beilinson exceptional collection DP(IP™) = (O(=n), ..., 0) [9]. At the opposite extreme,
if dimg A < 0o, then Dgg,(A) vanishes. Theorem 1.2 implies in this case that a <0, and
taking i = 0 gives the full exceptional collection Dgi(A) = (¢k, ..., gk(a + 1)).

Our goal is to generalize Theorem 1.2 to the setting of dg-algebras. Let A be a dif-
ferential bigraded k-algebra, i.e. a dg-algebra with both a cohomological grading and an
“internal” grading; see Definition 2.1 for the precise definition and Notation 1.5 for an
explanation of our indexing conventions. Denote by Dgr(A) the bounded derived cate-
gory of differential bigraded A-modules. We define the quotients Dgf(A) and Dyg (A)
of DET(A) exactly as above; when A is as in Setup 3.14 below, the category Dger(A)
is equivalent to D"(A), where A is the sheaf of dg-algebras on Proj(A°) associated to
A (Theorem 3.18(2)). When A is Gorenstein (Definition 2.18), there is an isomorphism
RHom 4 (k, A) 2 k(a) in Dgr(A) (up to cohomological shift) for some a € Z, the Goren-
stein parameter of A. The following generalization of Theorem 1.2 is our main result:

Theorem 1.3. Let k be a field and A a differential bigraded k-algebra (Definition 2.1)
satisfying the conditions in Setup 2.8. Suppose A is Gorenstein (Definition 2.18) with
Gorenstein parameter a, and assume the cohomological degree zero component A° of
A is either Gorenstein or strictly commutative (i.e. vy = yx for all z,y € A°). Let
q: Dgr(A) — Dgi(A) and m: Dgr(A) — Dger(A) denote the canonical functors. The
objects TA(j) € Dqgr(A) and gk(j) € Dgi(A) are exceptional for all j € Z, and we have:
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(1) If a >0, then for each i € Z, there is a fully faithful functor ®;: Dg¥(A) — Dggr(A)
and a semiorthogonal decomposition Dgyer(A) = (TA(—i — a + 1),...,7TA(—1),
&, DEE(A)).

(2) If a < 0, then for each i € Z, there is a fully faithful functor ¥;: Dgg(A) —
D3z (A) and a semiorthogonal decomposition Dir(A) = (gk(—i),...,qk(—i + a +
1), ¥; Dqgr(A)>- N

(8) If a =0, then there is an equivalence Dgz(A) — Dggr(A).

In fact, Theorem 1.3 holds in greater generality; see Remark 4.6. Let us describe how
Theorem 1.3 gives the desired extension of Theorem 1.1 to an arbitrary projective va-
riety V(f1,...,fe) € P™. The Koszul complex on fi,..., f. is a dg-algebra satisfying
all of the conditions in Theorem 1.3, with Gorenstein parameter n + 1 — >_7_, deg(f;)
(Example 2.23). Theorem 1.3 therefore implies that, when the “Calabi-Yau” condition
n+1 =377, deg(f;) holds, we have Dyg(K) ~ DF(K). When fi,..., f. is a regular
sequence, the categories Dy, (K) and Dg¥(K) coincide with those appearing in The-
orem 1.1. In general, Dgg (K) is equivalent to the bounded derived category of the
sheafified Koszul complex over P™ (Theorem 3.18(2)).

If dimy H(A) < oo, then Dy (A) = 0. As a consequence of Theorem 1.3 (and Re-
mark 4.6), we therefore have:

Corollary 1.4. Let k be a field and A a dg-k-algebra as in Setup 2.8 that is Gorenstein
(Definition 2.18) with Gorenstein parameter a. Recall that q: Dgr(A) — Dgi(A) denotes
the canonical functor. If dimy H(A) < oo, then a <0, and, for all i € Z, the singularity
category DgE(A) is generated by the exceptional collection gk(—i),...,qk(—i+a+1).

Corollary 1.4 yields a host of examples of singularity categories of dg-algebras with
full exceptional collections; such singularity categories may also be identified with stable
categories of Cohen-Macaulay modules by (a bigraded version of) a result of Jin [37,
Theorem 0.3(4)]. For instance, if fi,...,f. € k[zg,...,x,] generate an (xq,...,zy)-
primary ideal, then, by Corollary 1.4, the singularity category of the Koszul complex on
this sequence is generated by an exceptional collection of Y ;_, deg(f;) —n — 1 objects.
(By a result of Raedschelders-Stevenson, every dg-algebra as in Corollary 1.4 is quasi-
isomorphic to a dg-algebra that is finite dimensional as a k-vector space [53, Corollary
3.12].) However, if A is as in Theorem 1.3, and Dg:(A) = 0, then it follows from a result
of Jorgensen [39] that A is concentrated in cohomological degree 0: see Remark 4.10.

As in the case of Theorem 1.2, the exceptional collection appearing in Theorem 1.3(2)
need not be strong. However, while the exceptional collection in Theorem 1.2(1) is always
strong, the exceptional collection in Theorem 1.3(1) is not necessarily strong: see Re-
mark 4.9, where we describe exactly when the exceptional collections in Theorem 1.3(1)
and (2) are strong.

As an application, we show that the Lattice Conjecture (Conjecture 5.1) in noncom-
mutative Hodge theory holds for the bounded derived and singularity categories (of
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both Z?-graded and Z-graded modules) associated to dg-algebras as in Corollary 1.4:
see Theorem 5.2 for the precise statement, and see Section 5 for background on this
conjecture.

Let us give an overview of the paper. In Section 2, we provide background on differen-
tial bigraded algebras and their derived categories. A key technical point in this section
is the construction of semi-free resolutions with certain finiteness properties: see Propo-
sition 2.16. We also discuss in this section several families of examples of Gorenstein
dg-algebras to which Theorem 1.3 applies: see Subsection 2.2. Section 3 is the technical
heart of the paper, which is devoted to generalizing several aspects of Artin-Zhang’s non-
commutative projective geometry to the context of dg-algebras. We prove Theorem 1.3
in Section 4, and we apply Corollary 1.4 to obtain new cases of the Lattice Conjecture
in Section 5.
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Notation 1.5. Throughout, k denotes a field. We will consider bigraded k-vector spaces
V= EB(Z.’ fez? V;j . The superscript will typically denote a cohomological grading, while
the subscript will refer to an “internal” grading. Given a homogeneous element v € V,
we let bideg(v) € Z? denote its bidegree, while deg(v) (resp. |v|) denotes its internal
(resp. cohomological) degree. Given an integer m, we will denote the m'" shift of V in
internal (resp. cohomological) degree by V(m) (resp. V[m]). That is, V(m)] = ‘@i_m,
and V[m]! = v/t

2. Resolutions and derived categories over dg-algebras

In this section, we recall some background on differential bigraded algebras and their
derived categories, and we establish several technical facts in this setting that we will
need along the way.

Definition 2.1. A differential bigraded k-algebra is a bigraded k-algebra A = @(i7j)ezg Ag
equipped with a degree (0, 1) k-linear map 04 that squares to 0 and satisfies the Leibniz
rule:

Oa(zy) = 0a(x)y + (—1)"204(y).

|z

We say A is graded commutative if xy = (—1)#ll¥lya for all homogeneous z,y € A. The

opposite dg-algebra of A, denoted A°P, is the same as A as a bigraded k-module and
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has the same differential as A, and its multiplication is given by x %y = (—1)1®!IWlyz. A
morphism of differential bigraded k-algebras is a degree (0,0) k-algebra homomorphism
that commutes with differentials. Such a morphism is a quasi-isomorphism if it induces
an isomorphism on cohomology.

Henceforth, we will refer to differential bigraded k-algebras as simply “dg-algebras”.
We denote by A" the underlying bigraded k-algebra of a dg-algebra A.

Definition 2.2. Let A be a dg-algebra. A right (resp. left) dg-A-module is a bigraded right
(resp. left) Af-module M = @(i7j)ezg M equipped with a degree (0,1) k-linear map
Op that squares to 0 and satisfies the Leibniz rule:

O (ma) = Oy (m)z + (—D)™mdy(z)  (vesp. dpr(xm) = da(z)m + (=1)1®lzdy (m)).

All modules are assumed to be right modules unless otherwise noted. A submodule of a
dg-module M is an A%-submodule that is also a subcomplex. A dg-module M is said to be
finitely generated if the underlying bigraded A%-module is finitely generated. A morphism
of dg-A-modules is a degree (0,0) A’-linear map that commutes with differentials. Such
a morphism is a quasi-isomorphism if it induces an isomorphism on cohomology. A
homotopy between a pair of morphisms f,g: M — N of dg- A-modules is a degree (0, —1)
AP-linear map h such that f — g = hdy; +dnh. Let Hom 4 (M, N) denote the set of dg-A-
module morphisms from M to N. Given a pair A, B of dg-algebras, an A-B-bimodule is
a right A°P ®y B-module.

Notation 2.3. Given a dg-A-module M, we set M, = ®j€Z Mf for all + € Z. Notice that
Ay is a dg-algebra (concentrated in internal degree 0), and each M; is a dg-Ap-module
(concentrated in internal degree i). Similarly, we set M7 := @, ., M; for all j € Z.

Definition 2.4. A dg-algebra A is connected if Ag = AJ = k, and Ag =0 when ¢ < 0 or
j>0.

Notice that, if A is connected, then Ay = k is a dg-A-module.

Remark 2.5. Suppose A is a dg-algebra such that Ay = AJ = k, and H7(A); = 0 for

t < 0 and 5 > 0. In this case, the dg-algebra B = eaizO,ng A’ is connected, and the

(2
canonical map B — A is a quasi-isomorphism of dg-algebras.

Remark 2.6. If A is a connected dg-algebra, then A° is a nonnegatively Z-graded ring,
and the differential on any dg-A-module is A%-linear.

Remark 2.7. Let A be a connected dg-algebra and M a dg-A-module. For i € Z, we have
truncations
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o' M = (-++—=0— M"/Im(dy") = Mt — ... ),

oS'M = (- = M = ker(dy,) > 0— ).

Since A is connected, both 02*M and o<*M are dg-A-modules. The natural map M —
oZ'M (resp. c=*M — M) induces an isomorphism on cohomology in degrees at least i
(resp. at most 7).

Throughout the paper, we will work under the following setup:

Setup 2.8. Let A be a dg-algebra (in the sense of Definition 2.1) that is connected (Def-
inition 2.4) and such that H°(A) is Noetherian and the total cohomology algebra H(A)
is finitely generated as an H°(A)-module.

Example 2.9. Let S be a commutative, nonnegatively Z-graded k-algebra such that Sy =
k. Let fi,...,f. € S be homogeneous of positive degree, and assume S/(f1,..., fc)
is Noetherian. The Koszul complex K on fi,...,f. € S is a dg-algebra with all of
the properties in Setup 2.8. In more detail: the underlying bigraded module of K is
Ng F', where F is a bigraded free S-module with basis e, ..., e. such that bideg(e;) =
(deg(fi),—1). The algebra structure is given by the exterior product, and the differential
is given by sending e;, A---Ae;; to {:1(—1)1_1]““@1 A---Nej, A---Aeg,. See Section 2.2
for several additional examples of dg-algebras as in Setup 2.8.

The following observation is elementary:

Proposition 2.10. If A is as in Setup 2.8, then dimy H(A); < oo for all i (see Nota-
tion 2.3). If the homogeneous maximal ideal of A is finitely generated, then dimy A; < oo.

Given a dg-algebra A, a right dg-A-module M, and a left dg-A-module N, the tensor
product M ®4 N is a dg-k-module with differential m ® n — dy;(m) @ n+ (—=1)I™m o
dy(n). If M (resp. N) is an A-A-bimodule, then M ® 4 N is a left (resp. right) dg-A-
module. Similarly, given right dg-A-modules M and N, we may form the internal Hom
object Hom 4 (M, N), which is a dg-k-module with underlying k-module Hom 4, (M, N)
and differential o — dyo — (—=1)1*lady;. A map in Hom 4 (M, N) of bidegree (0,0) is a
cocycle if and only if it is a morphism of dg- A-modules, and it is a coboundary if and only
if it is a null-homotopic such morphism. Notice the distinction between Hom 4 (M, V)
and Hom 4 (M, N); the latter is the set of bidegree (0,0) cocycles in the former. If M
(resp. N) is an A-A-bimodule, then Hom 4 (M, N) is a right (resp. left) dg-A-module.

2.1. Derived categories

For a dg-algebra A, let Modg,(A) denote the category of dg-A-modules, Modgr(A)
the full subcategory of Modg,(A) given by dg-A-modules M such that H (M) is finitely
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generated over H(A), and modg (A) the full subcategory of Mod'(A) given by dg-A-
modules that are finitely generated over A; the subscript “gr” indicates that we consider
dg-modules that have both a cohomological and internal grading. We form the (trian-
gulated) derived categories Dg,(A), Dgr(A), and D’(A) by inverting quasi-isomorphisms
in Modg,(A), Modgr(A), and modg, (A), respectively. For a construction of the derived

category of a dg-algebra, see [60, Tag 09K V].

Example 2.11. Let A be a dg-algebra, and assume |a| = 0 for all a € A; that is, assume
the cohomological grading on A is trivial. In particular, A has trivial differential. Let A’
denote the Z-graded algebra obtained from A by forgetting its (trivial) cohomological
grading. Notice that, for all M € Mod(A4) and j € Z, the k-vector space M7 (see
Notation 2.3) is naturally a graded A’-module. Letting Com(A’) denote the category
of complexes of Z-graded A’-modules, we therefore have an isomorphism of categories
F: Modg, (A) = Com(A’) that sends a dg-module (M, dys) to the complex F(M) with
F(M)) = M7 and differential dj;. Under this isomorphism, Mod'(A) corresponds to
complexes whose total cohomology is finitely generated over A’, and mod(A) corresponds
to bounded complexes of finitely generated graded A’-modules.

Remark 2.12. If A is as in Setup 2.8, then every object M € D;r(A) satisfies H'(M) = 0
for |i| > 0.

Definition 2.13. Let A be a dg-algebra. A dg-A-module L is K-projective (resp. K-
injective) if the dg-k-module Hom 4 (L, N) (resp. Hom 4 (N, L)) is exact for all exact right
dg-A-modules N. We say L is K-flat if L ® 4 N is exact for all exact left dg- A-modules
N. A K-projective resolution of a dg-A-module M is a quasi-isomorphism P —» M,
where P is K-projective. K-injective and K-flat resolutions are defined similarly; such
resolutions exist by [40, Section 3].

Given a pair M and N of dg-modules over a dg-algebra A, K-flat resolutions F'™ and
FN of M and N, a K-projective resolution P of M, and a K-injective resolution I of N,
the derived tensor product of M and N and derived Hom from M to N may be modeled
as follows:

MY N2FM e, N2 Mo,s FY, RHom,(M,N) = Hom 4 (P, N) = Hom ,(M,I);
where the isomorphisms are in the derived category Dg,(A). We have
Ext’,(M,N) := H'RHom ,(M,N), and Tor(M,N):= H (M ®% N).
Tor and Ext over a dg-algebra can be computed via semi-free resolutions:

Definition 2.14. A dg-A-module G is called free if it is isomorphic, as a dg-module, to
a direct sum of copies of A(4)[j] for various (i,j) € Z2. The dg-A-module G is called
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semi-free if it may be equipped with an increasing, exhaustive filtration F*G by dg-
submodules such that F'G = 0 for i < 0 and each dg-module F'G/F*~1G is free. Given
a dg-A-module M, a semi-free resolution of M is a quasi-isomorphism G —» M, where
G is semi-free. A dg-A-module M is called perfect if it admits a semi-free resolution G
that is finitely generated as an A-module. Let Perf,, (A) be the subcategory of Dgr(A)
given by perfect objects.

Remark 2.15. It is elementary to show that Perfg, (A) is the thick subcategory of Dgr(A)
generated by the objects {A(j)}cz-

Given a dg-algebra A, it is well-known that semi-free dg- A-modules are K-projective,
and K-projective dg- A-modules are K-flat. In particular, if M and N are dg- A-modules,
and F' =» M is a semi-free resolution, then

Ext’y(M,N) = H'(Hom ,(F,N)), and Tor{(M,N)= H *(F®4 N).
We will need the existence of semi-free resolutions with certain finiteness properties:

Proposition 2.16 (cf. [3] Chapter 5, Theorem 2.2). Let A be as in Setup 2.8. If M €
Modgr(A), then there exists a semi-free resolution G of M with the following properties:

(1) G; =0 fori < O.

(2) GI =0 for j > 0.

(8) If the homogeneous mazximal ideal of A is finitely generated, then dimy G; < oo for
alli € Z.

(4) Given j € Z, let G=J denote the A*-submodule @, ; G* of G; the A%-module G /G<J
is finitely generated.

(See Notation 2.3 for the definitions of G; and G7.)

Proof. We build G inductively. This is trivial if M is exact, so assume otherwise. Since
A is connected, H(M) is finitely generated over H(A), and H(A) is Noetherian; we
have H(M); = 0 for i < 0, H(M)’ = 0 for 5 > 0, and dimy H(M); < oo for all
i € Z. Let m :=min{i : H(M); # 0} and n := max{j : H(M)7 # 0}; replacing M with
M (m)[n], we may assume that m = n = 0. Consider H (M )y as a bigraded k-vector space
(concentrated in internal degree 0), and let F°G be the free dg-A-module H (M )y @ A.
Choose a homogeneous basis z1,...,x: of H(M )y and lifts x; to cocycles in M. Notice
that FUG has a basis 21 ® 1,...,2; ® 1 as a free A™-module, and bideg(z; ® 1) = (0, 5;)
for some j; < 0. Let eg: F°G — M be the morphism of dg-A-modules given by z; ®1
Z;. The map ey induces an isomorphism on cohomology in internal degrees < 0, i.e.
cone(gg) has cohomology concentrated in internal degrees > 0. Now apply this same
construction with cone(eg) playing the role of M to build a free dg-A-module F1G and
a map €1: F'G — cone(eg) that is a quasi-isomorphism in internal degrees at most 1.



10 M.K. Brown, P. Sridhar / Advances in Mathematics 460 (2025) 110035

Iterating this procedure gives a semi-free resolution G — M with the desired properties.
Indeed, (1) and (2) follow since the summands A(é,j) of G all satisfy ¢ < 0 and j > 0.
Observe that each F"(G is finitely generated over A; and if A(7,j) is a summand of
F"H1G/F"G, and A(i',j') is a summand of F"G, then i < i’ and j > j’. That is, both
components of the bidegrees of the generators of the free summands we add in each step
of the construction strictly increase in absolute value. Part (3) therefore follows from
Proposition 2.10, and (4) follows immediately as well. O

As a consequence of Proposition 2.16, we have:

Proposition 2.17. Let A be as in Setup 2.5. The canonical map Dgr(A) — Dgr(A) is an
equivalence.

Proof. Let M € Dgr(A). Since H (M) is finitely generated over H(A), we may choose
J < 0 so that H/ (M) = 0 for j < J. Choose a semi-free resolution G of M as in
Proposition 2.16. Denote by d the differential on G, and set G’ = G/ + d(G=<7), where
we adopt the notation of Proposition 2.16(4). Notice that G’ is a dg-submodule of G,
and it is exact. The map G — G/G’ is therefore a quasi-isomorphism, and G/G’ is
finitely generated over A% by Property (4) from Proposition 2.16. Thus, the canonical
map Dgr(A) — Dgr(A) is essentially surjective, and it is clear that it is fully faithful. O

2.2. Gorenstein dg-algebras

Definition 2.18. Let A be as in Setup 2.8. We say A is Gorenstein if:

(1) The functor RHom 4(—, A) maps D}g?r(A) to Dgr(AOP), and the functor RHom 4op (—,
A) maps Dgr(AOP) to Dgr(A).

(2) Given M € Dgr(A) and N € D]gor(AOP), the canonical maps

M — RHom 4., (RHom 4, (M, A),A) and N — RHom ,(RHom 4., (V,A), A)

are isomorphisms in Dg,(A) and Dg, (A°P), respectively.
(3) There is an isomorphism RHom 4 (k, A) = k(a)[n| in Dy, (A) for some a,n € Z.

The integer a in (3) is called the Gorenstein parameter of A.

Remark 2.19. There are at least two other definitions of a Gorenstein dg-algebra in the
literature: let us compare Definition 2.18 with these.

(1) By Remark 2.12 and Proposition 2.17, the category D;r(A) coincides with the cate-
gory fin(A) defined by Frankild-Jgrgensen in [25, Definition 1.9]. It follows that the
combination of Conditions (1) and (2) in Definition 2.18 coincides with (a bigraded
version of) the definition of a Gorenstein dg-algebra in [25, Definition 2.1]. On the
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other hand, Condition (3) in Definition 2.18 is (a bigraded version of) Avramov-
Foxby’s definition of a Gorenstein dg-algebra in [2, Section 3]. We will need the
features of both of these definitions throughout the paper, and so we opt for our
definition of Gorenstein to be given by combining Frankild-Jgrgensen’s and Avramov-
Foxby’s definitions.

(2) When A is graded commutative, a (bigraded version of a) theorem of Frankild-
Iyengar-Jorgensen [24, Theorem I] implies that the combination of Conditions (1)
and (2) is equivalent to Condition (3), and so Definition 2.18 is equivalent to both
Frankild-Jgrgensen’s and Avramov-Foxby’s definitions in this case. We do not know
if the combination of (1) and (2) implies (3) in general.

Remark 2.20. In [51], a Noetherian graded k-algebra A = @,., A; such that A, =
k is said to be Gorenstein if RHom ,(k, A) ~ k(a)[—n] for some a € Z, and A has
finite injective dimension n as a right A-module. These conditions imply (1) - (3) in
Definition 2.18 in this case.

Propositions 2.21 and 2.22 below give conditions under which one can easily compute
the Gorenstein parameter of a Gorenstein dg-algebra.

Proposition 2.21. Let A be as in Setup 2.5. Assume there are isomorphisms
RHom 40(k, A") 2 k(a)[n] and RHom 40 (A, A%) = A(s)[t]
in Do, (A) for some a,n,s,t € Z. We have RHom 4 (k, A) =2 k(a — s)[n —t].
Proof. There is an isomorphism in Dg,(A) between RHom 4 (k, A) and
RHom 4 (k, RHom 40 (4, A%)(~s)[~1]) = RHom 4o (k, A*(=s)[~t]) Z k(a — s)[n — t]. O

Proposition 2.22. Let A be as in Setup 2.8. Assume A is Gorenstein and graded commuta-
tive, and assume also that A° is Gorenstein. There is an isomorphism RHom 40(A, AY) =
A(s)[t] in Dg(A) for some s,t € Z. In particular, the conclusion of Proposition 2.21
holds in this case.

Proof. This follows from (bigraded versions of) [24, 2.6] and [67, Corollary 7.16]. O

Example 2.23. Let S be a nonnegatively Z-graded, strictly commutative k-algebra such
that Sop = k. Assume S is Gorenstein. Let K be the Koszul complex on a (not necessarily
regular) sequence f1,..., f. of homogeneous elements in S. The dg-algebra K satisfies
the conditions in Setup 2.8 (see Example 2.9), and a bigraded version of [25, Theorem
4.9] implies that K satisfies (1) and (2) in Definition 2.18. Since K is graded commu-
tative, Remark 2.19(2) implies that K is Gorenstein. Let n be the injective dimension
of S over itself, a the Gorenstein parameter of S, and d = Y7, deg(f;). Noting that
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RHomg (K, S) = K(d)[—c|, Proposition 2.22 implies RHom (k, K) = k(a — d)[c — n].
In particular, the Gorenstein parameter of K is a — d.

There is a more general construction of Koszul complexes, due to Shaul [56], that
yields a wider family of examples of Gorenstein dg-algebras. Let A be as in Setup 2.8.
Assume A is graded commutative and that a® = 0 for all @ € A’ with i odd (this
last condition is automatic when char(k) # 2). Let f1,..., f. € H°(A) be homogeneous
elements of positive internal degree, and choose homogeneous lifts fi,..., f. € A°. Equip
R := k[x1,...,z.] with the bigrading given by bideg(z;) = (deg(f;),0) and a trivial
differential, so that R is a dg-algebra, and A is a right dg-R-module via the action
a-x; = af;. Let T denote the Koszul complex on z1,...,x. over R. The Koszul complex
K(A; fi,..., fe) is defined to be the dg-algebra A ®x T. By a bigraded version of [56,
Theorem 4.11(a)] and Remark 2.19(2), K(A; fi1,..., f.) is Gorenstein if A is Gorenstein.

Example 2.24. Let o : R — S be a morphism of nonnegatively Z-graded, strictly com-
mutative, Noetherian k-algebras such that Ry = k and S is a field extension of k. Let
piy and pf denote the i*® Bass numbers of R and S. The map « is called Gorenstein
if S has finite flat dimension over R, and there exists d > 0 such that pi = ,ug?Ld for
all i € Z [23, Section 4]. Let T denote the minimal free R-resolution of k, which is a
dg-algebra by work of Tate and Gulliksen [62,28]. The dg-fiber of @ may be modeled by
the graded commutative dg-algebra A =T ®p S. By (a bigraded version of) [2, Theo-
rem 4.4] and Remark 2.19(2), if « is Gorenstein, then A is a Gorenstein dg-algebra. For
instance, if R is a complete intersection, and S is a Gorenstein quotient of R such that
pdp S < oo, then the canonical map R — S is Gorenstein [2, Proposition 4.3, Corollary
7.3]. In this case, T' is the Shamash resolution of k over R, and we conclude that T ®pg S
is a Gorenstein dg-algebra.

Example 2.25. Let R be a nonnegatively Z-graded, strictly commutative, Gorenstein
k-algebra of finite Krull dimension such that Ry = k. Suppose S and T are graded
commutative Gorenstein dg-algebras equipped with morphisms R — S, R — T of dg-
algebras such that (a) HY(S) and H°(T) are essentially of finite type over R, and (b)
S and T have finite flat dimension over R. Suppose A is a connected, graded commu-
tative dg-algebra that is quasi-isomorphic, as a dg-algebra, to S ®% T; when S and
T are concentrated in cohomological degree 0, such a dg-algebra A always exists [4,
Proposition 6.1.4]. By (a bigraded version of) [55, Theorem 4.4] and Remark 2.19(2),
A is a Gorenstein dg-algebra (this statement is a derived version of [65, Theorem
2(1)]). As a concrete example, take R to be the standard graded polynomial ring
k[zo, ..., 23], I the ideal (zoz3 — T179, 735 — 2173, 73 — ToT2, T2x1 — T3x3, 75 — 13) C
R, and S = T = R/I. Geometrically, R/I is the intersection inside the quadric
V(xors — 122) C P3 of the twisted cubic V(xors — z122, 27 — T0T2, 23 — 2123) and
the subvariety V(xors — x122, 2371 — 2323, 25 — 23). It follows from the Buchsbaum-
Eisenbud structure theorem for codimension 3 Gorenstein ideals that R/I is Gorenstein;
indeed, I is the ideal of 4*" order Pfaffians of the alternating matrix



M.K. Brown, P. Sridhar / Advances in Mathematics 460 (2025) 110035 13

0 3 2t m xo

—.CC% 0 0 To I1
2

—Ty 0 0 T2 I3

—xr1 —x9 —22 0 O
—To2 —I1 —I3 0 0

The minimal R-free resolution F' of R/I is a connected, graded commutative dg-algebra
[7, Proposition 1.3], and so the dg-algebra A = FQgF is Gorenstein. We observe that A is
not quasi-isomorphic to an ordinary graded algebra, since H—'(A) = Tori*(R/I,R/I) =
I/I? #0.

Example 2.26. Let R be a nonnegatively Z-graded strictly commutative k-algebra with
Ry = k. Suppose R admits a dualizing complex D. Let A := R x D denote the trivial
extension dg-algebra, as defined in [38, Definition 1.2]. Replacing D with suitable twists
and shifts, it follows from a bigraded version of [38, Theorem 2.2] and Remark 2.19(2),
that the dg-algebra A is Gorenstein.

Example 2.27. There is a version of the trivial extension dg-algebra in Example 2.26
that is built from certain (possibly noncommutative) dg-algebras. In detail: let B be
a dg-algebra as in Setup 2.8, and assume dimy H(B) < oo. For b,d > 0, the trivial
extension dg-algebra A := B ® Homy (B, k)(—b)[d] is a Gorenstein dg-algebra satisfying
dimy H(A) < oo. To see this, note that it is observed in [37, Section 6] that there is an
isomorphism Homy (A, k) = A(—a)[—n] in D(A) for some a,n € Z. By [24, Proposition
2.6], we conclude that A satisfies conditions (1) and (2) of Definition 2.18. By adjunction,
one also sees that A satisfies condition (3) in Definition 2.18, and hence A is Gorenstein.
One may start with the case where B is concentrated in cohomological degree 0 to
inductively build a large family of Gorenstein dg-algebras using this construction. See
also [57, Theorem 4.5] for a related result.

3. Noncommutative algebraic geometry over a dg-algebra

One may associate to a (strictly) commutative, nonnegatively Z-graded ring A a
projective scheme Proj(A). For instance, when A = k[zo, ..., z,], we have Proj(A) = P".
When A is noncommutative, the Proj construction no longer makes sense. However, it
follows from work of Artin-Zhang [5] that the category of coherent sheaves on Proj(A)
does generalize to the noncommutative setting, allowing one to extend many homological
aspects of projective geometry to the noncommutative world. In order to state and prove
our main result, Theorem 1.3, we must extend many of Artin-Zhang’s results to dg-
algebras: this is the goal of the present section.

Let A be as in Setup 2.8. Given n > 1, let AL, be the ideal @, A? C A°. Denote
by DrgfrorS(A) the thick subcategory of Dy, (A) given by objects M such that, for any
class m € H(M), there exists an integer n such that m - AOZn = 0. Let Dg;rs(A) =
DgTrorS(A) NDP(A). We define Dqg(A) = Dy, (A)/ DL™(A), and we let Dygr(A) denote

gr
the essential image of the fully faithful embedding Dgr(A) /D (A) — Dqg:(A).
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Lemma 3.1. The category D" (A) is the thick subcategory of Dgr(A) generated by k(i)
forie Z.

Proof. Let S denote the thick subcategory of Dgr(A) generated by k(i) for i € Z. We
clearly have S C DtorS(A). Let M € D;’YS(A). If M is exact, then it is in Dgﬁrs(A), S0
assume otherwise. Suppose M is concentrated in cohomological degree 0. In particular,
M is a finitely generated A°-module and therefore a finite dimensional k-vector space,
say of dimension d. If d = 1, then M = k(i) for some ¢ and is thus an object in S. If
d > 1, then either M is a sum of twists of k, in which case M € S, or the exact sequence
0— M-AY, — M — M/M-A%, — 0 implies that M € S by induction on d. In general,
let r denote the amplitude of M, i.c. r = max{i — j : H(M) # 0 and H/(M) # 0};
we argue by induction on r. Suppose r = 0; without loss, assume HY(M) # 0. By
Remark 2.7, we have an isomorphism M & ¢2%(c<°M) = H°(M) in D(A), and so
M € S by the above arguments. Suppose 7 > 0, and let m = min{i : H*(M) # 0}. By
Remark 2.7 and induction, the exact sequence 0 — 0=™M < M — M/oc<™M — 0
implies that M € §S. O

Given M € D(A), we let M denote the corresponding object in Dqgr(A). We have
canonical triangulated functors II: Dg,(A) = Dggr(A) and 7: Dgr (A) = Dger(A) given
by M — M. When A = A, it follows from [47, Lemma 4.4.1] that the categories DQer(A)
and Dgg, (A) coincide with the derived categories of the abelian categories Qgr(A) and
qer(A) defined in [5]. In particular, if A is concentrated in cohomological degree 0, and
A is (strictly) commutative and generated in internal degree 1, then Dgqg (A) (resp.

Dger(A)) is equivalent to the derived category of quasi-coherent (resp. coherent) sheaves
on Proj(A).

Remark 3.2. Versions of the derived “qgr”’-construction for dga’s have appeared before,
for instance in Greenlees-Stevenson’s definition of the cosingularity category [27, Defini-
tion 9.7, Remark 9.9] and in Lu-Palmieri-Wu-Zhang’s A .-version of the qgr construction
[48, Section 10].

3.1. Derived global sections

Let A be as in Setup 2.8. For n € Z, define Dgy(A)>,, € Dy (A) to be the subcategory
given by objects M such that M; = 0 for i < n. We define Dngrs(A)Zn - Dgrors(A),
Dgr(A)Zn - Dgr(A), and DtgirS(A)Zn C Dg‘;rs(A) similarly. The canonical functors

Dgr(A)2n/ D™ (A)zn = Dagr(4),  Dgi(A)2n/ D™ (A)2n — Dagr(4)

are triangulated equivalences for all n € Z. The truncation functor 7>,: Dg(A) —
Dgy(A)>p is the right adjoint to the inclusion Dgy(A)>p, < Dgr(A), and its restriction
Dgr(A) — Dgr(A)Zn, which we also denote by 7>,, is the right adjoint of the inclusion
Dgr(A)zn = Dy (A).
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We now define a “total derived global sections functor” RI',: Dqgr(A) — Dgr(A).

Proposition 3.3. Let A be as in Setup 2.5. The functor II: Dg(A) = Dqer(A) admits
a fully faithful right adjoint RI'y. Moreover, for each n € Z, the canonical functor
II,: Dgr(A)>n — Dqer(A) admits a fully faithful right adjoint given by RI'>, =
TanF*.

Proof. To show that II admits a right adjoint, we wish to apply [50, Example 8.4.5]. To
do so, we will check that the categories Dy, (A) and Dqgr(A) are locally small (meaning
that morphisms between any pair of objects in these categories form sets), Dg (A) is
N;-perfectly generated (in the sense of [50, Definition 8.1.2]) and closed under arbitrary

Tors
gr
Dg:(A) is Ny-perfectly generated, admits arbitrary coproducts, and is locally small imply

coproducts, and D,”"?(A) is a localizing subcategory of Dg,(A) (the assumptions that

that Dg,(A) satisfy the representability theorem, in the sense of [50, Definition 1.20]: see
[50, Theorem 8.3.3]). Local smallness of Dy, (A) is well-known and follows, for instance,
from (a bigraded version of) [60, Tag 09KY]. The set S = {A(3)[j] : i,j € Z} is Ny-

perfect in the sense of [50, Definition 3.3.1], and it generates D4, (A) in the sense of [50,
Definition 8.1.1]; it follows that Dg,(A) is Ny-perfectly generated. It is clear that Dg,(A)

Tors
gr
To see that Dgg,(A) is locally small, we observe the following. The triangulated category

is closed under arbitrary coproducts, and also that D, "*(A) is a localizing subcategory.
Dg,:(A) arises as the homotopy category of a pretriangulated dg-category C, and Tors(A)
is the homotopy category of a pretriangulated dg-subcategory of C. The local smallness
of Dqgr(A) thus follows from the local smallness of Dg,(A) along with [20, Proposition
4.7(iii) and (iv)].

With the above observations in hand, we may apply [50, Example 8.4.5] to obtain a
right adjoint RI',: Dqgr(A) = Dgr(A) to II. It follows from [50, Theorem 9.1.16] that
RT. is fully faithful. To see this, observe that RI', is, by definition, a Bousfield localiza-
tion functor for the inclusion DgrorS(A) < Dg (A). Letting + Dgrors(A) be as defined in

[50, Definition 9.1.11], the composition of the equivalence Dyg, (A) =t Dngrs (A) arising
from [50, Theorem 9.1.16] with the inclusion Dgrors(A) — Dy, (A) is easily seen to be the
right adjoint of IT and is clearly fully faithful; by the uniqueness of right adjoints, RI,
is fully faithful as well.

Finally, since 7>, is the right adjoint of the inclusion Dg;(A)>y < Dgr(A), the functor
RI'>, is the right adjoint of the canonical functor Dg,(A)>, — Dqer(A). Applying [50,
Theorem 9.1.6] and the above argument once again, we conclude that each functor RI'>,
is fully faithful. O

The functor RI': Dqg(A) = Dgr(A) typically does not map Dggr(A) to Dgr(A). For
instance, if A = k[zo, 2] with bideg(xzg) = bideg(z1) = (1,0), then Dqgr(A) (resp.
Dyer(A)) is the derived category of quasicoherent (resp. bounded derived category of
coherent) sheaves on P!, and RI'.(Op1) is not coherent. However, we now determine
conditions under which the functors RI'>,: Dqgr(A) = Dgr(A)>y do map Dyg(A) to
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Dtg’r(A)Zn; this is the content of Proposition 3.6. This is well-understood when A is
concentrated in cohomological degree 0, due to work of Artin-Zhang [5], and we will
build on their results to prove Proposition 3.6. We recall the following definition due to
Artin-Zhang:

Definition 3.4 (/5] Definition 3.7). Suppose A is concentrated in cohomological degree
zero, i.e. A is an ordinary connected Z-graded k-algebra. We say A satisfies condition x
if, for every finitely generated graded A-module M, we have dimy Ext’,(k, M) < oo for
all i € Z.2

The following lemma follows from results of Artin-Zhang, Yekutieli, and Yekutieli-
Zhang:

Lemma 3.5 (/5,60,69]). Let A be as in Setup 2.8, and suppose A is concentrated in
cohomological degree zero. Let M be a finitely generated graded A-module and n € 7.

(1) If A satisfies condition x, and RjI’Zn(]\Aj) =0 for 7> 0, then RFZH(M) € Dgr(A).
(2) If A is either Gorenstein or (strictly) commutative, then A satisfies condition x, and
RIT (M) = RiT>,(M) = 0 for j > 0. In particular, RT >, (M) € Dgr(A) in both

cases.

Proof. Part (1) follows from [5, Theorem 7.4]. As for (2): if A is commutative, then
condition x holds by [5, Proposition 3.11(3)], and RiT, (M) = HJ(Proj(A), M) = 0
for 7 > 0 since Proj(A) is projective over k. It follows that, given n € Z, we have
RjFZn(M ) =0 for all j > 0 as well. If A is Gorenstein, then A has a balanced dualizing
complex (in the sense of [66, Definition 4.1]) by [66, Section 4], and so the result follows

from [69, Theorem 4.2(3)]. O

Proposition 3.6. Let A be as in Setup 2.8. If A® is Gorenstein or (strictly) commutative,

b (A)>n = Dger(A) admits a fully faithful right adjoint

then the canonical functor mp: Dy,

given by RI'>,, for alln € Z.

Remark 3.7. The assumption in Proposition 3.6 that A° is Gorenstein or strictly com-
mutative is needed to apply Lemma 3.5. We note that these assumptions can be relaxed:
one only needs A° to admit a balanced dualizing complex (in the sense of [66, Definition
4.1]) for the results of Lemma 3.5 to hold. For instance, condition y follows in this case
from [69, Theorem 4.2(3)].

Proof. First, we show that the derived extension of scalars functor F': Dy, (A%) — Dg,(A)

given by M — M @Y%, A sends DgrorS(AO) to Dgfrs(A). Since every object in DgrorS(AO) isa

2 Definition 3.4 is not identical to [5, Definition 3.7], but it is equivalent: see [5, Definition 3.2 and
Proposition 3.8(1)].
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filtered colimit of objects in Dyg™(A°), F commutes with colimits, and Dgro " (A) is closed
under filtered colimits; it suffices to show that F' maps Dgﬁrs(AO) to Dgrors(A). Certainly
F(k(j)) € Dg"*(A) for all j € Z; by Lemma 3.1, it follows that F/(Di™(A%)) € D" (A).

It is clear that the restriction of scalars functor G: Dy, (A) — Dg,(A%) sends Dgl.ors(A)
to Dgrors(AO). By [51, Lemma 1.1], we conclude that the adjunction F: D, (A%) =
Dy, (A): G induces an adjunction F: Dqg (A%) 2 Dqgr(A4): G, and moreover we have a
commutative square

Dyg:(A%) — = D (A°) (3.8)

L

s

Dgr(A) ——= Dqg:(4).

Replacing the left adjoints in (3.8) with their right adjoints, we obtain the commutative
square

Dy (A%) < Dgr(A°) (3.9)

o . T

RI.
Dgr(A) -~ DQgr(A)~

Let n € Z. Concatenating (3.9) with the commutative diagram

T>n

Dyr (4%)5 < Do (A7)

I

T>n

Dgr(A)>n =—— Dg:i(4),
we arrive at the key commutative square

RT>,
Dgr(AO)Zn -~ DQgr(AO) (3.10)

Let M € Dyg(A). We have G(M) € Dggr(A°). By our assumptions on A°, Lemma 3.5(2)
implies that RT'>,,(G(M)) € Dy, (A%)>,. By the commutativity of (3.10), it follows that
0

(
G(RFZn(M)) € DEY(A )>n, and this implies RFZn(M) € Dgr(A)Zn. Thus, RI'>), is the
right adjoint of m,,. O
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We record the following observation, which follows from the proof of Proposition 3.6:

Proposition 3.11. Let A be as in Setup 2.8 and M a dg-A-module. Denote by G :
Dgr(A) — Dgr(AO) the restriction of scalars functor. There is an isomorphism

G(RI.(M)) = colim RHom 40 (A%, G(M)).

p—00

Proof. Let G: Dqg (A) — Dqgr(A°) denote the functor induced by restriction of scalars.
By the commutativity of the square (3.9), it suffices to show

RI.(G(M)) = colim RHom 40 (A2, G(M)). (3.12)

p—r00 =
Noting that, by [47, Lemma 4.4.1], Dqg (AY) coincides with the derived category of
the abelian quotient qgr(A°) of finitely generated A°-modules by torsion modules, the
isomorphism (3.12) follows from (the proof of) [69, Lemma 4.1], along with the adjunction

isomorphism RI'.(N) = D, ;cz Homegr(AO)(za, N(i)[j]) for N € Dgr(AO). O
3.2. Sheaves of dg-algebras

In certain settings, the Dqg, and D, constructions for dg-algebras may be interpreted
as derived categories of sheaves. Our next goal is to make this precise.

Definition 3.13. Let Y be a scheme. A dg-Oy -algebra is a complex B of Oy -modules such
that I'(U, B) is a differential Z-graded I'(U, Oy )-algebra for all open sets U in Y, and the
restriction maps for B are morphisms of differential Z-graded I'(Y, Oy )-algebras. Given
a dg-Oy-algebra B, a dg-B-module is a complex C of Oy-modules such that T'(U,C)
is a differential Z-graded I'(U, B)-module for all open sets U in Y, and the restriction
maps for C are morphisms of differential Z-graded I'(Y, B)-modules. A dg-B-module C is
quasi-coherent (resp. coherent) if @, ., C' is quasi-coherent (resp. coherent) as an Oy-
module. Morphisms of dg-B-modules are defined in the evident way. Let Qcoh(B) (resp.
coh(B)) denote the category of quasi-coherent (resp. coherent) dg-B-modules, and let
D(Qcoh B) and D(coh B) denote their derived categories: see [60, Tag OFT1] for details.
Given M, N € Qcoh(B), the Hom sheaf Hompg(M,N) is defined in the evident way: see
[60, Tag OFRN]. Note that Hompg(M,N) is a complex of Oy-modules but need not be
a dg-B-module. We have Homqcon(s) (M, N) = Z°T (Homp(M, N)) as k-vector spaces.

We adopt the following setup in this subsection:

Setup 3.14. Let A be as in Setup 2.8. Assume A° is (strictly) commutative, Noetherian,
and generated in degree 1; and suppose A is finitely generated as an A%-module. Let
X denote the projective k-scheme Proj(AY). We assume also that A is saturated as an
A®-module, meaning that the natural map A — @, H(X, A(i)) is an isomorphism.
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Equivalently, letting n denote the homogeneous maximal ideal of A°, we assume H?(A) =
Hl(A) =o0.

Example 3.15. Suppose R is a standard graded polynomial ring over k in at least 2
variables, and denote its homogeneous maximal ideal by n. If A is the Koszul complex
on a (not necessarily regular) sequence of homogeneous elements in R, or if A is the
dg-algebra F'®p F from Example 2.25, then A satisfies the conditions in Setup 3.14. For
instance, A is a saturated R-module since it is free over R, and H?(R) = Hl(R) = 0.

Let A be as in Setup 3.14. Recall from Remark 2.6 that the differential on every
dg-A-module is A% linear. We have a dg-Ox-algebra A given by the sheafification of the
complex A of graded A°-modules, with Ox-linear differential induced by d. There is a
functor Sh: Mod(A) — Qcoh(A), where Sh(M, dys) is the sheafification of the complex
M of graded A°-modules with Ox-linear differential induced by dj;. We also have a
global sections functor I'y: Qcoh(.A) — Mod(A) that sends an object M € Qcoh(A)
to the complex of A%-modules I',(M) = @, H°(X, M(i)) equipped with the evident
dg- A-module structure.

The functor Sh is exact and therefore induces a triangulated functor on derived cat-
egories Sh: Dg (A) — D(Qcoh.A). On the other hand, the functor I'y: Qcoh(A) —
Mod(A) induces a right derived functor RI',: D(Qcoh A) — Dg.(A) (the overlap of no-
tation between RI', in this section and the derived global sections functors on Dgye(A)
defined in the previous section should not cause confusion and is justified by Corol-
lary 3.19 below). Let us give an explicit construction of RT,, following [60, Tag OFTN]
and [60, Tag OFTP](2). A dg-A-module Z is said to be K-injective if, for every ex-
act dg-A-module M, the complex Homgcon(a)(M,T) of k-vector spaces is exact. Let
M € Qcoh(A), and choose a quasi-isomorphism M — T of dg-.A-modules such that Z
is an injective object in the category of graded A-modules (i.e. Z is graded injective, in
the sense of [60, Tag OFSP]) and also K-injective; such resolutions always exist, and the
choices can be made functorially [60, Tag 0FT0]. We define RI', (M) = TI',(Z), and we
set RI'>,, == 7>, RI".

Lemma 3.16. Let A be as in Setup 3.14.

(1) The functor I'n: Qcoh(A) — Mod(A) is the right adjoint of Sh. In fact, there is a
natural isomorphism of complexes of graded A°-modules T.(Hom 4(Sh(M),N)) =
Hom o (M, T (N)) for all dg-A-modules M and N € Qcoh(A).

(2) The functor RI', is the right adjoint of Sh: Dg (A) — D(Qcoh A). Consequently,

for all n € Z, the functor RI's,, is the right adjoint of Dg(A)>pn — Dgr(A) Sh,

D(Qcoh A).

Proof. Let M € Mod(A) and N € Qcoh(A). The first statement in (1) follows imme-
diately from the isomorphism T'x(Hom4(Sh(M),N)) = Hom 4 (M, T (N)) by passing to
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bidegree (0,0) cocycles, so, to prove (1), we need only consider the second statement.
This is well-known over A°, and so there is an isomorphism of complexes of graded
A% -modules

I'.(Homx (Sh(M),N)) = Hom 40 (M, T+ (N)). (3.17)

It is routine to check that (3.17) restricts to the desired isomorphism. For (2), choose
a quasi-isomorphism N = 7, where Z is an injective object in the category of
graded A-modules and also K-injective. Choose also a semi-free resolution F —» M.
Let K(A) (resp. K(A)) denote the homotopy category of dg-A-modules (resp. dg-.A-
modules). We note that Homp, (4)(M, L) = Homg ) (F, L) for all L € Mod(A), and
Homp(qeon 4)(G,N) = Homg(4)(G,T) for all G € D(Qcoh A); see [68, Theorem 10.1.13]
and [60, Tag OFT8]. We now compute:

Homp, (4)(M,RI(N)) = Homp_, (4)(M,T'(Z))
> Hom () (F, T (T
= H°Hom 4 (F,T'.(T
>~ T, (Hom4(Sh(F),T))o
= Hom g (4)(Sh(F'),Z)
= Homp(qeon 4) (Sh(M), N).

)
)

0

This proves the first statement of (2). The second statement follows immediately from
the first, since 7>,, is the right adjoint of the inclusion Dgy(A)>;, < Dgr(4). O

The functor Sh induces a functor Sh: Dgqge (A) — D(Qcoh.A). On the other hand,
composing RI'.: D(Qcoh A) — Dy (A) with the projection functor II : Dg (A) —
DQqgr(A), one obtains a triangulated functor T": D(Qcoh A) — Dqgr(A).

Theorem 3.18. Let A be as in Setup 3.1/.

(1) The functor Sh: Dqg (A) — D(Qcoh A) is the left adjoint of T.

(2) The functors Sh and T are inverse equivalences.

(3) We have Sh(Dqgr(A)) C D(coh A), and T(D(coh A)) C Dygr(A). Consequently, the
adjunction in (1) restricts to an adjunction Sh: Dqg (A) < D(coh A): T, and these
functors are also inverse equivalences.

Proof. (1) follows from Lemma 3.16(2) and [51, Lemma 1.1]. Let M € D(Qcoh A).
Choose a quasi-isomorphism M — Z, where Z is an injective object in the category of
graded A-modules and also K-injective. The canonical map ShT',(Z) — Z is an isomor-
phism of Ox-modules by [29, Proposition I1.5.15], and one checks that it is a morphism

of A-modules. We therefore have an isomorphism M = ShRI,(M) in D(Qcoh A);
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in particular, Sh is essentially surjective. To prove Sh is fully faithful, we show that
the unit of the adjunction Sh: Dqg(A) = D(Qcoh.A): T is an isomorphism. This
amounts to the assertion that, given M € Mod(A), the natural map M — RI, (M)
induces an isomorphism on cohomology up to torsion. This statement only concerns the
underlying structure of complexes of A% modules. Since it is well-known that RI', de-
termines an equivalence D(coh X) — D (A%), it follows from [60, Tag OFTW] that
the unit of this adjunction must be an isomorphism; this proves (2). It is clear that
Sh(Dggr(A)) € D(coh A). Going the other direction: once again by [60, Tag 0FTW], we
have a commutative diagram

RI'>

D(Qcoh A) ——— Dg(A)>0 Dqgr(4)

| |

D(QCOhX) — Dgr(AO)ZO - DQgr(AO)>

where the vertical maps are forgetful functors, and the right-most horizontal maps are
the canonical ones. Observe that composing the two maps along the top row gives the
functor T'; it therefore suffices to show that RI'>g maps D(coh A) to Dgr(A)ZO. It is well-
known that the map RI'>o: D(Qcoh X) — Dy (A%) >0 maps D"(coh X) to Dgr(AO)ZO,
and an object in Dgy(A)>0 is contained in Dgr(AO)ZO if and only if it is contained in
DP

or(A)>0. Thus, the commutativity of the diagram implies (3). O

Corollary 3.19. Let A be as in Setup 5.1/. For all i € 7, we have commutative triangles

RI, RI'>;
D(Qcoh A) —— Dg,(A) D(Qcoh A) —— Dy, (A4)>;
- o
RT. RT>;

DQgr(A)7 DQgr(A)v

That is, our versions of derived global section functors may be identified, in this setting,
via the equivalence T from Theorem 3.18(2).

Proof. This follows from Propositions 3.3 and 3.6, Lemma 3.16(2), Theorem 3.18, and
the uniqueness of right adjoints. O
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4. Proof of Theorem 1.3

The proof of our main result, Theorem 1.3, goes roughly as follows. Let A be as
in Setup 2.8, where A is Gorenstein or (strictly) commutative, and fix i € Z. Proposi-
tion 3.6 implies that the truncated derived global section functor RI'>; identifies D g, (A)
with a weak semiorthogonal summand D; of Dgr(A)Zi. Recall from Definition 2.14 that
Perfy, (A) denotes the thick subcategory of Dgr(A) given by perfect objects; let Dgt(A)
denote the quotient Dgr(A) / Perfg . (A), the singularity category of A. Assume in addi-
tion that A is Gorenstein, and let a be its Gorenstein parameter; Lemma 4.2 below
yields an embedding of D3z (A) as a semiorthogonal summand 7; of D]gor(A)Zi. Our proof
of Theorem 1.3, which mirrors Orlov’s original argument, shows that 7; is in fact a
semiorthogonal summand of D; when a > 0, and D; is a semiorthogonal summand of
7T; when a < 0; and moreover the complements in each case are given by exceptional
collections.

Let us fix some notation. For i € Z, let P.; (resp. P>;) denote the thick subcategory
of Perfy, (A) generated by the modules A(e) for e > —i (resp. A(e) for e < —i), and let
S<i (resp. S>;) denote the thick subcategory of Dgr(A) generated by the modules k(e)
for e > —i (resp. k(e) for e < —i). Define the subcategories P2Y, P of Perf,, (A°P) and

<i»
SZ, ST of DET(AOP) similarly.

We now recall some background on semiorthogonal decompositions, following [51,
Section 1]. Given a k-linear triangulated category B and a full triangulated subcategory
C of B, the right orthogonal C+ of C is the triangulated subcategory given by {B €
B : Homp(C, B) = 0 for all C € C}, and the left orthogonal +C is defined similarly. We
say C is right admissible (resp. left admissible) if the inclusion C < B admits a right
(resp. left) adjoint, and we say C is admissible if it is left and right admissible. The
subcategory C is right (resp. left) admissible if and only if for all B € B, there is an exact
triangle

B’ — B — B" — B'[1]

such that B’ € C and B” € Ct (resp. B’ € +C and B” € C). A sequence of triangu-
lated subcategories Ci,...,C, of B forms a weak semiorthogonal decomposition (resp.
semiorthogonal decomposition) of B if there are left admissible (resp. admissible) sub-
categories

Bi=CCB,C---CB,=8

such that each C; is the left orthogonal of B;_; in B;. When Cq,...,C, form a weak

semiorthogonal decomposition of B, we write B = (Cy,...,Cp).
An object B in B is called ezceptional if Homg(B,B[j]) = 0 for j # 0, and
Homp(B, B) = k. An exceptional collection in B is a sequence Ej, ..., E, of excep-

tional objects such that Homp(E;, E;[¢]) = 0 for all ¢ € Z when i > j. An exceptional
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collection F,..., F, is called full if the objects FEy,...,F, generate all of B. When
Ey, ..., E, form a full exceptional collection, the subcategories C; of B generated by the
E; form a semiorthogonal decomposition of B; in this case, we write B = (Ey, ..., E,).
An exceptional collection Ey, ..., E, is called strong if Homg(FE;, E;[¢]) = 0 for all ¢ and
j when ¢ # 0.

Lemma 4.1 (¢f. [51] Lemma 2.83). Fizi € Z. The subcategory S<; (resp. P<;) of Dgr(A)
is left (resp. right) admissible, and we have weak semiorthogonal decompositions

D,.(4) = (S<i, Di(A)zi) = (Di(A)2i, P<i), D™ (A) = (S<i, Sz,

gr

Perfgr(A) = <P21,P<l>

Proof. Given M € DET(A), we have a short exact sequence 0 - M>; = M — M/M>; —
0. The object M /M>; isin S<;, and M>; is in +S_;. It therefore follows from [51, Remark
1.3] that S; is left admissible. Moreover, Dgr(A)Zi is the left orthogonal +S.; of S.;
in DET(A), i.e. we have Dgr(A) = (S<i,D§r(A)Zi>. If M is torsion, then M>; € S>;, and
so we conclude Dyors(A) = (S<i, S>4).

Let M € Dgr(A), and choose a semi-free resolution F' of M as in Proposition 2.16.
Let F’ be the dg-submodule of F' consisting of free summands generated in internal
degree strictly less than i. We have a short exact sequence 0 — F' — F — F/F’' — 0;
observe that F//F' € Dgr(A)zi, and the properties of F' guaranteed by Proposition 2.16
imply that F” is contained in Perf,, (A) and hence in P.;. This yields the remaining two
semiorthogonal decompositions. O

Lemma 4.2 (¢f. [51] Lemma 2.4). Let A be as in Setup 2.5. Assume A is Gorenstein and
that either A° is Gorenstein or (strictly) commutative. Let a be the Gorenstein parameter
of A, and fix i € Z. The subcategory S>; (resp. P>;) is right (resp. left) admissible in
Dgr(A)zi, and there are weak semiorthogonal decompositions

Dp.(A)si = (Di, Ssi) = (P>i, Ti),

where D; is the essential image of RI'>;, and the composition T; — Dgr(A)Zi 4, Dii(A)
is an equivalence. Moreover, the right orthogonals of the subcategories D; and T; of
Dgr(A) are as follows:

7? = (S<i, P>i) and DZ-L = (P>ita,S<i)-

Proof. By Proposition 3.6, RI'>;: Dggr(A) — D; is an equivalence. Since RI'>; is the
right adjoint of the canonical functor Dgr(A)zi — Dger(A), it follows that D; is left
admissible in Dgr(A)2i7 with left orthogonal S>;. We conclude that S>; is right admissible
in DEr(A)zz‘, and there is a weak semiorthogonal decomposition Dgr(A)Zi = (D;,S>i).
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Since A is Gorenstein, the functor RHom 4., (—, A) gives an equivalence
b o = b o
D,, (A°?) — Dg, (A4)°P (4.3)

By Lemma 4.1, the subcategory P2”, ; of Dgr(AOP) is right admissible; by duality, it
follows that P>, is left admissible in D]gor(A), and hence in Dgr(A)zi as well. We thus have
a weak semiorthogonal decomposition Dgr<A)2i = (P>, Ti) for some T; C Dgr(A)zz'- By
[51, Lemma 1.4], we have T; ~ Dgr(A)Zi/Pzi- It therefore follows from [51, Lemma
1.1] that the canonical functor Dgr(A)zz’/Pzi — Dgr(A)/Perfgr(A) = Dg3(A) is fully
faithful. By Proposition 2.16, this functor is also essentially surjective and hence an
equivalence. Finally, we observe that the composite functor 7; — Dg;(A) coincides with
the composition 7; — Dgr(A)Zi 4 Dgs(A).

The equality 7,5 = (S<;,P>;) is immediate from Lemma 4.1. We now show
D} = (P>ita,S<i). Using Lemma 4.1 and the equality Dgr(A)Zi = (D;,S>;), we have
(S<i, D;) = S8;. The Gorenstein condition on A implies that S3; C Dgr(A) corresponds
to LS - DET(AOP) via the duality (4.3). The subcategory +S2° ;. C Dgr(AOP)

<—1—a-+1

coincides with (P27, ., H)l - Dgr(AOp) by Lemma 4.1. Finally, applying the dual-
ity (4.3) to (P2, ,i1)" gives T P50 C DET(A); we conclude that (S<;, D;) is equal to

J‘PZi+a, i.e. DZJ‘ = <P2i+a,8<i>- O
Lemma 4.4. Let A be as in Setup 2.8. We have full exceptional collections
Perfg (A) = (..., A(=1), A, A(1),...) and DZ™(A)= (.., k(1),kk(-1),...).

Proof. Fix j,m,p € Z. The statement concerning Perf,,(A) follows from Remark 2.15
and the evident isomorphism Homp, (a)(A(m), A(j)[p]) = H(A)}_,,. Similarly, the
statement about Dyy™(A) follows from Lemma 3.1 and the isomorphism Homp, (4 (k(m),

k(j)[p]) = H(k);_,, whenever j > m; let us prove this isomorphism. Let G =
A(m)>_m+1 be a semi-free resolution as in Proposition 2.16, and observe that, if j > m,
then Homp_ (4)(A(m)>—m+1,k(j)[p]) = Homa (G, k(j)[p]) = 0 for degree reasons. Ap-

plying RHom 4 (—, k(j)[p]) to the triangle

A(m)>—mi1 = A(m) = k(m) = A(m)>—m[1],

112

H(k)?_ ~ when

Jj—m

we conclude Hongr(A)(k(m),k(j)[p]) = Hongr(A)(A(m),k(j)[p])
j>m. O

Proof of Theorem 1.3. We will use the notation of Lemma 4.2 throughout the proof. Let
us now prove (1) and (3). Since a > 0, we have P>;1, C +S;. Thus, the components
of the decomposition Di = (P>;14,S<;) from Lemma 4.2 may be interchanged, i.e.
Di = (S<i, P>ita). In particular, if a = 0, then the right orthogonals of D; and 7; in

Dgr(A) coincide and hence we obtain an equivalence Dg(A) = Dggr(A). Noting that
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P>i = (P>ita,A(—i —a+1),...,A(—i)) when a > 0, applying Lemma 4.2 once again,
we have

D2(A) = (S<is Psi, Ti) = (S<is Poiva, A(—i — a+ 1),..., A(—i), To).

We conclude that D; = (A(—i —a + 1),...,A(—1),7;) when a > 0. Recall that D;
is the essential image of RI'>;; hence, by Proposition 3.6, m; : D; — Dgge(A) is an
equivalence. Letting ®;: Dgz(A) — Dqgr(A) denote the fully faithful embedding given
by the composition D3z (A) ~ 7; — D; =~ Dqg(A), we have the weak semi-orthogonal
decomposition Dqg(A) = (mA(=i —a + 1),...,7A(=i), ®; D (A)) when a > 0. By
Lemma 4.4, the sequence of objects mA(—i —a + 1),...,mA(—i) in Dgg (A) form an
exceptional collection. Since the left orthogonal of an admissible category is admissible,
and a subcategory generated by an exceptional collection is admissible, we see that the
above decomposition is in fact semi-orthogonal. We now prove (2). Since A is Gorenstein,
we have RHom 4 (k(s), A(t)) = k(a + t — s)[n] for some n € Z. Since a < 0, it follows
that, if M € S.; and N € P>;, then Hongr(A)(M, N) = H°(RHom 4 (M, N))g = 0.
Thus, the components of the decomposition T;% = (S<;, P>;) from Lemma 4.2 may be
interchanged, i.e. T/- = (P>;,S<i). Applying Lemma 4.2 once again, and using that
Sci—a = (S<i,k(—i),...,k(—i+a+ 1)), we have

Dy (A) = (P>i,8<i—a: Di—a) = (P>i, S<i, k(—i), ..., k(=i + a+1),Di_q).

We conclude that 7; = (k(—i),...,k(—i+a+1),D;_,). Recall from Lemma 4.2 that ¢ :
T: — Dgi(A) is an equivalence. Letting W;: D (A) — DgE(A) denote the fully faithful
embedding given by the composition Dyg,(A) ~ D; o — T; =~ DgZ(A), we have the weak
semiorthogonal decomposition D3%(A) = (gk(—i),...,qk(—i + a + 1), ¥; Dgg (A)). It
follows from Lemma 4.4(2) that the sequence gk(—i),...,qk(—i+a+1) € DiZ(A) forms
an exceptional collection. Once again, since the left orthogonal of an admissible category
is admissible, and a subcategory generated by an exceptional collection is admissible,
the above decomposition is semi-orthogonal. O

Remark 4.5. Let A be as in Theorem 1.3 and ¢ € Z. When a < 0, the embed-
ding W;: Dggr(A) — Di(A) is straightforward to describe: it sends M € Dger(A) to
qRFZi_a(M) € D3 (A), where q: D"(4) — D33 (A) denotes the canonical map. When
a > 0, the embedding ®;: Dgi(A) — Dgg (A) is given as follows; this discussion mirrors
that of Burke-Stevenson in [15, Section 5]. Let ¢(M) be an object in Dgi(A). Given a
free dg-A-module P, let P; denote the dg-submodule given by summands of the form
A(s)[t] with s > —j, and let P.; := P/P.;. Let F' be a semi-free resolution of M as in
Proposition 2.16 and G a semi-free resolution of Hom 4 (F%;, A) as in Proposition 2.16.
The object ®;(M) € Dygr(A) is m(Hom 4 (G, A)<;), where 7: D°(A) — Dyg(A) is the
canonical map. For example, if M € Perf,,(A), then F' may be chosen to be finitely gen-
erated, and Hom 4, (F;, A) is its own semi-free resolution. Thus, ®,(M) = (Fy;)<; = 0,
as expected.
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Remark 4.6. The assumption in Theorem 1.3 that A® is Gorenstein and strictly commu-
tative is needed to apply Proposition 3.6 in the proof of Lemma 4.2. But, as explained
in Remark 3.7, this hypothesis in Proposition 3.6 can be replaced with the assumption
that AY admits a balanced dualizing complex, in the sense of [66, Definition 4.1]; the
same is thus true of Theorem 1.3.

Proof of Corollary 1.4. It follows by combining [53, Corollary 3.12] and [66, Corollary
5.6] that A% admits a balanced dualizing complex. The result therefore follows from
Theorem 1.3 and Remark 4.6. O

Example 4.7. Theorem 1.3 applies to each of the families of Gorenstein dg-algebras dis-
cussed in Examples 2.23 through 2.27. For instance, suppose K is the Koszul complex
on homogeneous forms f1,..., f. € k[xg,...,z,], where deg(xz;) = 1 for all i. Let K
denote the sheaf of dg-algebras on P™ associated to K. Recall from Example 2.23 that
the Gorenstein parameter of K is a :== n+ 1 — Y ;_, deg(f;). By Theorem 3.18, we
have D (K) =~ DP(K), and so Theorem 1.3(3) yields fully faithful embeddings between
DP(K) and D3:(K). As a specific example, say n = 3, ¢ = 2, and f; and fs are given by
the (non-regular) sequence x3 —xoxs, Tox1 —ToTs. Since a = 0, we have D (K) ~ D (K).

Example 4.8. Consider the exterior algebra E = A, (eo,...,e,), considered as a dg-
algebra with trivial differential and bigrading given by bideg(e;) = (d;, 1), where
d; > 1 for all 7. The dg-algebra E satisfies the conditions in Theorem 1.3, and we
have RHom y(k, E') = Hompg(k, E) = k(—d), where d = >_""_ d;. Thus, the Gorenstein
parameter of £ is —d < 0; since Dqg,(E) = 0, we conclude that D3z (E) has a full excep-
tional collection, namely DgE(E) = (k, ..., k(—d + 1)). It is known that Koszul duality
yields an equivalence Dgs(E) =~ DP(P), where P denotes the weighted projective stack
with weights do, ..., d, [8, Proposition 6.3]; moreover, D(P) is generated by the excep-
tional collection O(—d + 1),...,0O by Theorem 1.2 and [51, Corollary 2.18]. Thus, the
full exceptional collection of Dgi(E) obtained here is a manifestation of Koszul duality.

Remark 4.9. The exceptional collections arising as the orthogonal of Dgz(A) in Dgg, (A)
in Theorem 1.3(1) and of Dgyg(A) in Dgi(A) in Theorem 1.3(2) need not be strong.

(1) Suppose the Gorenstein parameter a is positive, and let % denote the exceptional
collection mA(—i —a+1),...,mA(—%) € Dgg(A). The proof of Theorem 1.3 implies
that € is strong if and only if the exceptional collection A(—i —a+1),..., A(—1i) €
Dg:(A) is strong. It is easily seen that this latter collection is strong if and only if
H}(A) =0 for all p<0and j < a—1.In particular, it is strong if A is concentrated
in cohomological degree zero, i.e. in the context of Orlov’s Theorem (Theorem 1.2).
For an example where the collection % is not strong, let A be the Koszul complex
on %, xor1 € S = Kk[z0,...,27]. In this case, a = 4 (Example 2.23), and H~*(A) is
a non-zero cyclic S-module generated in internal degree 3 = a — 1; thus, % is not
strong.
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(2) Now suppose a < 0. As in (1), the exceptional collection € = gk(—i),...,¢k(—i+a+
1) € Dgi(A) is strong if and only if the exceptional collection k(—i), ..., k(—i+a+1)
in Dy, (A) is strong. The latter collection is strong if and only if Ext’, (k,k); = 0 for all
p > 0and j > a+1. This need not be the case, even in the context of Orlov’s Theorem
(Theorem 1.2): taking A = k[z]/(z%), we have a = —2, and Ext} (k,k)q11 = k.

(3) While the exceptional collection obtained in (2) above is not always strong, even
in the case of Theorem 1.2, Orlov constructs a “dual” exceptional collection that s
strong in his setting: see the proof of [51, Corollary 2.9]. This exceptional collection
has a natural analog in our context; however, it need not always be strong. In detail:
we define E; == A(i+a+1)/A(i+a+1)>_,, and we consider the collection of objects
¢ =Fo,...,E_4, 1 in Dgr(A); one easily checks that this collection generates the
same thick subcategory of Dgr(A) as k(—i),...,k(—i+a+ 1). Once again, this is a
(strong) exceptional collection if and only if ¢Fy, . ..,qF_,_1 is a (strong) exceptional
collection in Dgi(A). Fix p € Z and 0 < 4,j < —a — 1. We claim that there is an
isomorphism Homp,, (4)(E;, E; [p]) = HP(E;)—i—q—1. Indeed, let G be a semi-free
resolution of A(i +a+ 1)>_, as in Proposition 2.16; we have Homp, (4)(A(i + a +
1)>_a, Ej[p]) = Hom4 (G, E;[p]) = 0 for degree reasons. Applying RHom 4 (—, E; [p])
to the triangle A(i +a+1)>_, = A(i+a+1) = E; - A(i +a+ 1)>_4[1] gives
the desired isomorphism, and it follows immediately from this isomorphism that the
collection % is exceptional. To see that the collection % is not always strong, suppose
A is the Koszul complex on a2, xox1, 25 € k[rg, 71, 22]. By Example 2.23, we have
a = —4, and a direct calculation shows that Hongr(A)(Eo, E3[-1])) = H Y (E3)3 =
H~'(A)s #0.

Remark 4.10. Let A be as in Setup 2.8, and suppose Dg;(A) = 0. Since the object k is
perfect and concentrated in cohomological degree 0, a (bigraded version of a) result of
Jorgensen [39, Theorem A] implies that the cohomology of A is concentrated in cohomo-
logical degree 0. The case of Theorem 1.3 where D3(A) = 0 thus yields no new results
beyond those implied by Orlov’s Theorem (Theorem 1.2).

Remark 4.11. Let us suppose that A is as in Theorem 1.2, with Gorenstein parame-
ter a = 0, so that we have Dqg (A) >~ Dgt(A). It follows from [46, Theorem 1.1] that
Dggr(A) (resp. DgE(A)) is equivalent to the subcategory of compact objects in the homo-
topy category of complexes of injective objects (resp. the homotopy category of acyclic
complexes of injective objects) in the abelian category qgr(A) defined in [5] (resp. the
abelian category of graded A-modules). This raises the question: is the equivalence in
Theorem 1.2(3) the induced map on compact objects arising from an equivalence of these
larger homotopy categories? If so, does this equivalence extend to the differential graded

setting?
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5. Application to the Lattice Conjecture

Let C be a C-linear dg-category, K:°°(C) its topological K-theory groups [13], and
HP,(C) its periodic cyclic homology groups; see e.g. [16, Section 3] for background on
periodic cyclic homology of dg-categories. There is a topological Chern character map
ch®P: K°P(C) — HP,(C) [13, Section 4]. The Lattice Conjecture [13, Conjecture 1.7]
predicts that the complexified topological Chern character is an isomorphism when C is
smooth and proper. We recall that a dg-category is called smooth if it is perfect as a
C-C-bimodule, and it is proper if the total cohomology of each of its morphism complexes
is finite dimensional over k; for instance, if X is separated of finite type over C, then the
dg-category of perfect complexes on X is smooth and proper if and only if X is smooth
and proper over C [52, Proposition 3.31].

Conjecture 5.1 (The Lattice Conjecture). Suppose C is smooth and proper. The topological
Chern character map ch'® induces an isomorphism K°?(C) ®z C = HP, (C).

Motivation for the Lattice Conjecture comes from Katzarkov-Kontsevich-Pantev’s
work on noncommutative Hodge theory [42]. Specifically: when C is a smooth and proper
dg-category, K SOP(C ) ®z Q is believed to provide the rational lattice in the (conjectural)
noncommutative Hodge structure on H Py(C). While the Lattice Conjecture involves
smooth and proper dg-categories, it is known to hold in many cases beyond this setting.
The following is a list of families of dg-categories for which the Lattice Conjecture is
known:

(1) Perf(X), for X a derived stack of finite type over C and either Deligne-Mumford
with separated diagonal or of the form [Y/G], where Y is a quasi-separated derived
algebraic space of finite type over C, and G is an affine algebraic group with di-
agonalizable identity component [41, Theorem A] (special cases of this result had
previously been obtained in [13,33,45]);

(2) a connected, proper dg-algebra [45, Theorem 1.1];

(3) a connected dg-algebra A such that Hy(A) is a nilpotent extension of a commutative
C-algebra of finite type [45, Theorem 1.1];

(4) DP(X), where X is a quasi-separated derived algebraic space of finite type over C [41,
Theorem B] (a special case of this result had previously been obtained in [17]).

As an application of Corollary 1.4, we obtain a family of additional cases of the
Lattice Conjecture. Before we state our result, we recall that, given a dg-algebra A,
the categories Dgr(A), Perfy, (A), and Dgi(A) arise as the homotopy categories of dg-
categories. Specifically: finitely generated dg-A-modules form a dg-category, and we may
take the dg-quotient [20] of this dg-category by its subcategory of exact dg-modules to
obtain a dg-category Dgr(A)dg whose homotopy category is Dgr(A), i.e. a dg-enhancement

of Dgr(A). Define a dg-enhancement Perfy,(A)gg of Perfy, (A) in the same way, and then
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take the dg-quotient of Dtg)r(A)dg by Perfy(A)gg to form a dg-enhancement Dgf(A)qg
of Dg(A). Considering A as a differential Z-graded algebra by forgetting the internal
grading, we also form the triangulated categories D”(A), Perf(A), and D*¢(A) whose
objects are differential Z-graded A-modules with no internal grading. We define dg-
enhancements D" (A)qg, Perf(A) gy, and D*8(A) 4, of these triangulated categories just as
above.

Theorem 5.2. Let A be as in Setup 2.8. Assume that A is Gorenstein and dimy, H(A) <
oo. The Lattice Conjecture holds for the dg-categories Perfg,(A)qg, Perf(A)qg, Dgr(A)dg,
DP(A) g, D3z (A)ag, and D¥*(A)qg.

Remark 5.3. Theorem 5.2 was already known for Perf(A)q, by a theorem of Kono-
valov [45, Theorem 1.1]; see (2) in the above list of known cases of the Lattice Conjecture.
Theorem 5.2 gives an alternative proof of a special case of this result of Konovalov.
Corollary 1.4 and Lemma 4.4 state that Dg;(A) and Perfy (A) have full exceptional
collections, and the proof of Theorem 1.3 yields that Dgr(A) has a semiorthogonal
decomposition whose summands have full exceptional collections; thus, the topologi-
cal Chern character for each of these three categories is just a direct sum of copies of
ch*P: K{°°(C) — HP,(C). The main cases of interest in Theorem 5.2 are thus D”(A)q,
and D*®(A)ge. When A is graded commutative, the Lattice Conjecture was previously
proven by Khan for D"(A)q, (and consequently for D*8(A) 4, as well), via different meth-
ods [41, Theorem Bj.

Proof of Theorem 5.2. By Corollary 1.4 and Lemma 4.4, D32(A) and Perfgy, (A) have
full exceptional collections; it is therefore immediate that the Lattice Conjecture holds
for Dgs(A)ag and Perfy (A)qg. By the “2 out of 3” property for the Lattice Con-
jecture [45, Theorem 1.1], we conclude that the conjecture holds for Dgr(A)dg as
well. Let Dgr(A)dg /(=)? denote the dg-orbit category associated to the grading twist
functor (—); see e.g. [61, Page 1] for the definition of the dg-orbit category. Define
Perfg, (A)ag/(—)% and D3z (A)ag/ (—)% similarly. The Hom complex between objects M
and N in Dy, (A)ag/(—)* is given by @,z Hompy (4, (M, N(i)) =~ Hompp (1) (M, N) g,
and similarly for Perfy,(A)aq/(—)Z. Tt follows that the canonical functors

Perfgr(A)dg/(_)Z — Perf(A)qg, Dgr(A)dg/(_)Z — Db(A)dg (5.4)

induce fully faithful embeddings on homotopy categories. Observe that Perf(A) is gen-
erated by A, and DP(A) is generated by k, since dimy H(A) < oco. Thus, the dg-
functors (5.4) are essentially surjective up to summands on homotopy categories and
hence Morita equivalences. Applying [61, Theorem 1.5] and the “2 out of 3” property for
the Lattice Conjecture, the conjecture holds for Perf(A)q, and DP (A)ge. By the “2 out
of 3”7 property yet again, the conjecture also holds for D*¥(A)q,. O
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