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A landmark theorem of Orlov relates the singularity category 
of a graded Gorenstein algebra to the derived category of the 
associated noncommutative projective scheme. We generalize 
this theorem to the setting of differential graded algebras. As 
an application, we obtain new cases of the Lattice Conjecture 
in noncommutative Hodge theory.
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1. Introduction

Let k be a field, f1, . . . , fc ∈ k[x0, . . . , xn] a regular sequence of homogeneous forms, 
X ⊆ Pn the associated projective complete intersection, and R = k[x0, . . . , xn]/(f1,
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. . . , fc) its homogeneous coordinate ring. A fundamental result of Orlov [51] exhibits 
a close relationship between two categories of great interest in algebraic geometry and 
commutative algebra: the bounded derived category Db(X) of coherent OX -modules 
and the singularity category Dsg

gr(R), i.e. the quotient of the bounded derived category 
Db

gr(R) of Z-graded R-modules by the subcategory Perfgr(R) of perfect complexes. An 
important special case of Orlov’s Theorem is stated as follows:

Theorem 1.1 ([51]). If X is Calabi-Yau, then the categories Db(X) and Dsg
gr(R) are equiv-

alent.

Theorem 1.1 is a surprising and powerful result, with many applications across alge-
braic geometry, commutative algebra, and mirror symmetry, e.g. [1,6,10,11,15,18,19,32,
21,22,26,34,35,54,58,59,63]. It is a mathematical incarnation of a phenomenon in physics 
called the Landau-Ginzburg/Calabi-Yau correspondence [64]. Theorem 1.1 has also been 
extended by Baranovsky-Pecharich to Calabi-Yau hypersurfaces in toric varieties [14] and 
by Hirano to gauged Landau-Ginzburg models [31].

In this paper, we ask: does Theorem 1.1 extend to the case where X = V (f1, . . . , fc)
is any projective variety, rather than a complete intersection? We show that the answer 
is “yes”, provided that one replaces Dsg

gr(R) with the singularity category of the Koszul 
complex on f1, . . . , fc, and one replaces Db(X) with the bounded derived category of 
the sheaf of dg-algebras on Pn associated to the Koszul complex. In fact, Orlov realizes 
Theorem 1.1 as a special case of a far more general statement about Gorenstein algebras, 
and the main goal of this paper is to generalize this result to Gorenstein dg-algebras.

In order to discuss our results in detail, we begin by stating Orlov’s Theorem in 
its full generality. To do so, we must introduce some notation and terminology. Let 
A =

⊕
i≥0 Ai be a graded (not necessarily commutative) Gorenstein k-algebra such 

that A0 = k. The complete intersection ring R above is an example of such an algebra; 
we discuss the Gorenstein condition in detail in Section 2.2. Since A is Gorenstein, we 
have an isomorphism RHomA(k, A) ∼= k(a) in Db

gr(A) (up to a cohomological shift) 
for some a ∈ Z; see Notation 1.5 for our conventions concerning grading twists and 
cohomological shifts. The integer a is called the Gorenstein parameter of A. For instance, 
the Gorenstein parameter of the complete intersection ring R = k[x0, . . . , xn]/(f1, . . . , fc)
is n +1 −

∑c
i=1 deg(fi). Let Dqgr(A) denote the quotient of Db

gr(A) by the subcategory of 
complexes whose cohomology is finite dimensional over k. That is, Dqgr(A) is the derived 
category of the noncommutative projective scheme associated to A, in the sense of Artin-
Zhang [5]. When A is commutative and generated in degree 1, a classical theorem of Serre 
implies that Dqgr(A) is equivalent to the bounded derived category of the projective 
scheme Proj(A).

Orlov’s Theorem, in its full form, is stated as follows:
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Theorem 1.2 ([51] Theorem 2.5). Let k, A, and a be as above, and let q : Db
gr(A) →

Dsg
gr(A) and π : Db

gr(A) → Dqgr(A) denote the canonical functors. The objects πA(j) ∈
Dqgr(A) and qk(j) ∈ Dsg

gr(A) are exceptional for all j ∈ Z, and we have:

(1) If a > 0, then for each i ∈ Z, there is a fully faithful functor Φi : Dsg
gr(A) → Dqgr(A)

and a semiorthogonal decomposition Dqgr(A) = 〈πA(−i − a + 1), . . . , πA(−i),
Φi Dsg

gr(A)〉.
(2) If a < 0, then for each i ∈ Z, there is a fully faithful functor Ψi : Dqgr(A) →

Dsg
gr(A) and a semiorthogonal decomposition Dsg

gr(A) = 〈qk(−i), . . . , qk(−i + a +
1), Ψi Dqgr(A)〉.

(3) If a = 0, then there is an equivalence Dsg
gr(A) "−→ Dqgr(A).

To realize Theorem 1.1 as a special case of Theorem 1.2, observe that when A is the 
complete intersection ring R above, we have Dqgr(A) = Db(X); and if X is Calabi-Yau, 
then, by definition, its canonical sheaf ωX = OX(

∑c
i=1 di − n − 1) is trivial, i.e. a = 0. 

This general form of the theorem has influenced not only algebraic geometry and com-
mutative algebra, but representation theory as well, e.g. [12,30,36,43,44,49]. To illustrate 
the strength of Theorem 1.2, let us consider two simple families of examples. If A has fi-
nite global dimension, then Dsg

gr(A) = 0; Theorem 1.2 then implies that a ≥ 0, and taking 
i = 0 gives the full exceptional collection Dqgr(A) = 〈πA(−a +1), . . . , πA〉. In particular, 
if A = k[x0, . . . , xn], and the degree of each variable is 1, then Theorem 1.2 recovers the 
Beilinson exceptional collection Db(Pn) = 〈O(−n), . . . , O〉 [9]. At the opposite extreme, 
if dimk A < ∞, then Dqgr(A) vanishes. Theorem 1.2 implies in this case that a ≤ 0, and 
taking i = 0 gives the full exceptional collection Dsg

gr(A) = 〈qk, . . . , qk(a + 1)〉.

Our goal is to generalize Theorem 1.2 to the setting of dg-algebras. Let A be a dif-
ferential bigraded k-algebra, i.e. a dg-algebra with both a cohomological grading and an 
“internal” grading; see Definition 2.1 for the precise definition and Notation 1.5 for an 
explanation of our indexing conventions. Denote by Db

gr(A) the bounded derived cate-
gory of differential bigraded A-modules. We define the quotients Dsg

gr(A) and Dqgr(A)
of Db

gr(A) exactly as above; when A is as in Setup 3.14 below, the category Dqgr(A)
is equivalent to Db(A), where A is the sheaf of dg-algebras on Proj(A0) associated to 
A (Theorem 3.18(2)). When A is Gorenstein (Definition 2.18), there is an isomorphism 
RHomA(k, A) ∼= k(a) in Db

gr(A) (up to cohomological shift) for some a ∈ Z, the Goren-
stein parameter of A. The following generalization of Theorem 1.2 is our main result:

Theorem 1.3. Let k be a field and A a differential bigraded k-algebra (Definition 2.1) 
satisfying the conditions in Setup 2.8. Suppose A is Gorenstein (Definition 2.18) with 
Gorenstein parameter a, and assume the cohomological degree zero component A0 of 
A is either Gorenstein or strictly commutative (i.e. xy = yx for all x, y ∈ A0). Let 
q : Db

gr(A) → Dsg
gr(A) and π : Db

gr(A) → Dqgr(A) denote the canonical functors. The 
objects πA(j) ∈ Dqgr(A) and qk(j) ∈ Dsg

gr(A) are exceptional for all j ∈ Z, and we have:
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(1) If a > 0, then for each i ∈ Z, there is a fully faithful functor Φi : Dsg
gr(A) → Dqgr(A)

and a semiorthogonal decomposition Dqgr(A) = 〈πA(−i − a + 1), . . . , πA(−i),
Φi Dsg

gr(A)〉.
(2) If a < 0, then for each i ∈ Z, there is a fully faithful functor Ψi : Dqgr(A) →

Dsg
gr(A) and a semiorthogonal decomposition Dsg

gr(A) = 〈qk(−i), . . . , qk(−i + a +
1), Ψi Dqgr(A)〉.

(3) If a = 0, then there is an equivalence Dsg
gr(A) "−→ Dqgr(A).

In fact, Theorem 1.3 holds in greater generality; see Remark 4.6. Let us describe how 
Theorem 1.3 gives the desired extension of Theorem 1.1 to an arbitrary projective va-
riety V (f1, . . . , fc) ⊆ Pn. The Koszul complex on f1, . . . , fc is a dg-algebra satisfying 
all of the conditions in Theorem 1.3, with Gorenstein parameter n + 1 −

∑c
i=1 deg(fi)

(Example 2.23). Theorem 1.3 therefore implies that, when the “Calabi-Yau” condition 
n + 1 =

∑c
i=1 deg(fi) holds, we have Dqgr(K) + Dsg

gr(K). When f1, . . . , fc is a regular 
sequence, the categories Dqgr(K) and Dsg

gr(K) coincide with those appearing in The-
orem 1.1. In general, Dqgr(K) is equivalent to the bounded derived category of the 
sheafified Koszul complex over Pn (Theorem 3.18(2)).

If dimk H(A) < ∞, then Dqgr(A) = 0. As a consequence of Theorem 1.3 (and Re-
mark 4.6), we therefore have:

Corollary 1.4. Let k be a field and A a dg-k-algebra as in Setup 2.8 that is Gorenstein 
(Definition 2.18) with Gorenstein parameter a. Recall that q : Db

gr(A) → Dsg
gr(A) denotes 

the canonical functor. If dimk H(A) < ∞, then a ≤ 0, and, for all i ∈ Z, the singularity 
category Dsg

gr(A) is generated by the exceptional collection qk(−i), . . . , qk(−i + a + 1).

Corollary 1.4 yields a host of examples of singularity categories of dg-algebras with 
full exceptional collections; such singularity categories may also be identified with stable 
categories of Cohen-Macaulay modules by (a bigraded version of) a result of Jin [37, 
Theorem 0.3(4)]. For instance, if f1, . . . , fc ∈ k[x0, . . . , xn] generate an (x0, . . . , xn)-
primary ideal, then, by Corollary 1.4, the singularity category of the Koszul complex on 
this sequence is generated by an exceptional collection of 

∑c
i=1 deg(fi) − n − 1 objects. 

(By a result of Raedschelders-Stevenson, every dg-algebra as in Corollary 1.4 is quasi-
isomorphic to a dg-algebra that is finite dimensional as a k-vector space [53, Corollary 
3.12].) However, if A is as in Theorem 1.3, and Dsg

gr(A) = 0, then it follows from a result 
of Jørgensen [39] that A is concentrated in cohomological degree 0: see Remark 4.10.

As in the case of Theorem 1.2, the exceptional collection appearing in Theorem 1.3(2) 
need not be strong. However, while the exceptional collection in Theorem 1.2(1) is always 
strong, the exceptional collection in Theorem 1.3(1) is not necessarily strong: see Re-
mark 4.9, where we describe exactly when the exceptional collections in Theorem 1.3(1) 
and (2) are strong.

As an application, we show that the Lattice Conjecture (Conjecture 5.1) in noncom-
mutative Hodge theory holds for the bounded derived and singularity categories (of 
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both Z2-graded and Z-graded modules) associated to dg-algebras as in Corollary 1.4: 
see Theorem 5.2 for the precise statement, and see Section 5 for background on this 
conjecture.

Let us give an overview of the paper. In Section 2, we provide background on differen-
tial bigraded algebras and their derived categories. A key technical point in this section 
is the construction of semi-free resolutions with certain finiteness properties: see Propo-
sition 2.16. We also discuss in this section several families of examples of Gorenstein 
dg-algebras to which Theorem 1.3 applies: see Subsection 2.2. Section 3 is the technical 
heart of the paper, which is devoted to generalizing several aspects of Artin-Zhang’s non-
commutative projective geometry to the context of dg-algebras. We prove Theorem 1.3
in Section 4, and we apply Corollary 1.4 to obtain new cases of the Lattice Conjecture 
in Section 5.
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for many suggestions that improved the paper, in particular for observing that Propo-
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Remark 4.11.

Notation 1.5. Throughout, k denotes a field. We will consider bigraded k-vector spaces 
V =

⊕
(i,j)∈Z2 V

j
i . The superscript will typically denote a cohomological grading, while 

the subscript will refer to an “internal” grading. Given a homogeneous element v ∈ V , 
we let bideg(v) ∈ Z2 denote its bidegree, while deg(v) (resp. |v|) denotes its internal 
(resp. cohomological) degree. Given an integer m, we will denote the mth shift of V in 
internal (resp. cohomological) degree by V (m) (resp. V [m]). That is, V (m)ji = V j

i+m, 
and V [m]ji = V j+m

i .

2. Resolutions and derived categories over dg-algebras

In this section, we recall some background on differential bigraded algebras and their 
derived categories, and we establish several technical facts in this setting that we will 
need along the way.

Definition 2.1. A differential bigraded k-algebra is a bigraded k-algebra A =
⊕

(i,j)∈Z2 A
j
i

equipped with a degree (0, 1) k-linear map ∂A that squares to 0 and satisfies the Leibniz 
rule:

∂A(xy) = ∂A(x)y + (−1)|x|x∂A(y).

We say A is graded commutative if xy = (−1)|x||y|yx for all homogeneous x, y ∈ A. The 
opposite dg-algebra of A, denoted Aop, is the same as A as a bigraded k-module and 
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has the same differential as A, and its multiplication is given by x ∗ y := (−1)|x||y|yx. A 
morphism of differential bigraded k-algebras is a degree (0,0) k-algebra homomorphism 
that commutes with differentials. Such a morphism is a quasi-isomorphism if it induces 
an isomorphism on cohomology.

Henceforth, we will refer to differential bigraded k-algebras as simply “dg-algebras”. 
We denote by A! the underlying bigraded k-algebra of a dg-algebra A.

Definition 2.2. Let A be a dg-algebra. A right (resp. left) dg-A-module is a bigraded right 
(resp. left) A!-module M =

⊕
(i,j)∈Z2 M

j
i equipped with a degree (0, 1) k-linear map 

∂M that squares to 0 and satisfies the Leibniz rule:

∂M (mx) = ∂M (m)x+ (−1)|m|m∂A(x) (resp. ∂M (xm) = ∂A(x)m+ (−1)|x|x∂M (m)).

All modules are assumed to be right modules unless otherwise noted. A submodule of a 
dg-module M is an A!-submodule that is also a subcomplex. A dg-module M is said to be 
finitely generated if the underlying bigraded A!-module is finitely generated. A morphism
of dg-A-modules is a degree (0, 0) A!-linear map that commutes with differentials. Such 
a morphism is a quasi-isomorphism if it induces an isomorphism on cohomology. A 
homotopy between a pair of morphisms f, g : M → N of dg-A-modules is a degree (0, −1)
A!-linear map h such that f −g = hdM +dNh. Let HomA(M, N) denote the set of dg-A-
module morphisms from M to N . Given a pair A, B of dg-algebras, an A-B-bimodule is 
a right Aop ⊗k B-module.

Notation 2.3. Given a dg-A-module M , we set Mi :=
⊕

j∈Z M j
i for all i ∈ Z. Notice that 

A0 is a dg-algebra (concentrated in internal degree 0), and each Mi is a dg-A0-module 
(concentrated in internal degree i). Similarly, we set M j :=

⊕
i∈Z M j

i for all j ∈ Z.

Definition 2.4. A dg-algebra A is connected if A0 = A0
0 = k, and Aj

i = 0 when i < 0 or 
j > 0.

Notice that, if A is connected, then A0 = k is a dg-A-module.

Remark 2.5. Suppose A is a dg-algebra such that A0 = A0
0 = k, and Hj(A)i = 0 for 

i < 0 and j > 0. In this case, the dg-algebra B :=
⊕

i≥0,j≤0 A
j
i is connected, and the 

canonical map B ↪→ A is a quasi-isomorphism of dg-algebras.

Remark 2.6. If A is a connected dg-algebra, then A0 is a nonnegatively Z-graded ring, 
and the differential on any dg-A-module is A0-linear.

Remark 2.7. Let A be a connected dg-algebra and M a dg-A-module. For i ∈ Z, we have 
truncations
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σ≥iM :=
(
· · · → 0 → M i/ Im(di−1

M ) → M i+1 → · · ·
)
,

σ≤iM :=
(
· · · → M i−1 → ker(diM ) → 0 → · · ·

)
.

Since A is connected, both σ≥iM and σ≤iM are dg-A-modules. The natural map M →
σ≥iM (resp. σ≤iM → M) induces an isomorphism on cohomology in degrees at least i
(resp. at most i).

Throughout the paper, we will work under the following setup:

Setup 2.8. Let A be a dg-algebra (in the sense of Definition 2.1) that is connected (Def-
inition 2.4) and such that H0(A) is Noetherian and the total cohomology algebra H(A)
is finitely generated as an H0(A)-module.

Example 2.9. Let S be a commutative, nonnegatively Z-graded k-algebra such that S0 =
k. Let f1, . . . , fc ∈ S be homogeneous of positive degree, and assume S/(f1, . . . , fc)
is Noetherian. The Koszul complex K on f1, . . . , fc ∈ S is a dg-algebra with all of 
the properties in Setup 2.8. In more detail: the underlying bigraded module of K is ∧

S F , where F is a bigraded free S-module with basis e1, . . . , ec such that bideg(ei) =
(deg(fi), −1). The algebra structure is given by the exterior product, and the differential 
is given by sending ei1 ∧ · · ·∧eij to 

∑j
l=1(−1)l−1filei1 ∧ · · ·∧ êil ∧ · · ·∧eij . See Section 2.2

for several additional examples of dg-algebras as in Setup 2.8.

The following observation is elementary:

Proposition 2.10. If A is as in Setup 2.8, then dimk H(A)i < ∞ for all i (see Nota-
tion 2.3). If the homogeneous maximal ideal of A is finitely generated, then dimk Ai < ∞.

Given a dg-algebra A, a right dg-A-module M , and a left dg-A-module N , the tensor 
product M ⊗A N is a dg-k-module with differential m ⊗ n /→ dM (m) ⊗ n + (−1)|m|m ⊗
dN (n). If M (resp. N) is an A-A-bimodule, then M ⊗A N is a left (resp. right) dg-A-
module. Similarly, given right dg-A-modules M and N , we may form the internal Hom 
object HomA(M, N), which is a dg-k-module with underlying k-module HomA!(M, N)
and differential α /→ dNα − (−1)|α|αdM . A map in HomA(M, N) of bidegree (0, 0) is a 
cocycle if and only if it is a morphism of dg-A-modules, and it is a coboundary if and only 
if it is a null-homotopic such morphism. Notice the distinction between HomA(M, N)
and HomA(M, N); the latter is the set of bidegree (0, 0) cocycles in the former. If M
(resp. N) is an A-A-bimodule, then HomA(M, N) is a right (resp. left) dg-A-module.

2.1. Derived categories

For a dg-algebra A, let Modgr(A) denote the category of dg-A-modules, Modfgr(A)
the full subcategory of Modgr(A) given by dg-A-modules M such that H(M) is finitely 
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generated over H(A), and modgr(A) the full subcategory of Modf(A) given by dg-A-
modules that are finitely generated over A; the subscript “gr” indicates that we consider 
dg-modules that have both a cohomological and internal grading. We form the (trian-
gulated) derived categories Dgr(A), Df

gr(A), and Db(A) by inverting quasi-isomorphisms 
in Modgr(A), Modfgr(A), and modgr(A), respectively. For a construction of the derived 
category of a dg-algebra, see [60, Tag 09KV].

Example 2.11. Let A be a dg-algebra, and assume |a| = 0 for all a ∈ A; that is, assume 
the cohomological grading on A is trivial. In particular, A has trivial differential. Let A′

denote the Z-graded algebra obtained from A by forgetting its (trivial) cohomological 
grading. Notice that, for all M ∈ Mod(A) and j ∈ Z, the k-vector space M j (see 
Notation 2.3) is naturally a graded A′-module. Letting Com(A′) denote the category 
of complexes of Z-graded A′-modules, we therefore have an isomorphism of categories 
F : Modgr(A) 

∼=−→ Com(A′) that sends a dg-module (M, dM ) to the complex F (M) with 
F (M)j = M j and differential dM . Under this isomorphism, Modf(A) corresponds to 
complexes whose total cohomology is finitely generated over A′, and mod(A) corresponds 
to bounded complexes of finitely generated graded A′-modules.

Remark 2.12. If A is as in Setup 2.8, then every object M ∈ Df
gr(A) satisfies Hi(M) = 0

for |i| 0 0.

Definition 2.13. Let A be a dg-algebra. A dg-A-module L is K-projective (resp. K-
injective) if the dg-k-module HomA(L, N) (resp. HomA(N, L)) is exact for all exact right 
dg-A-modules N . We say L is K-flat if L ⊗A N is exact for all exact left dg-A-modules 
N . A K-projective resolution of a dg-A-module M is a quasi-isomorphism P "−→ M , 
where P is K-projective. K-injective and K-flat resolutions are defined similarly; such 
resolutions exist by [40, Section 3].

Given a pair M and N of dg-modules over a dg-algebra A, K-flat resolutions FM and 
FN of M and N , a K-projective resolution P of M , and a K-injective resolution I of N , 
the derived tensor product of M and N and derived Hom from M to N may be modeled 
as follows:

M ⊗L
A N ∼= FM ⊗A N ∼= M ⊗A FN , RHomA(M,N) ∼= HomA(P,N) ∼= HomA(M, I);

where the isomorphisms are in the derived category Dgr(A). We have

ExtiA(M,N) := HiRHomA(M,N), and TorAi (M,N) := H−i(M ⊗L
A N).

Tor and Ext over a dg-algebra can be computed via semi-free resolutions:

Definition 2.14. A dg-A-module G is called free if it is isomorphic, as a dg-module, to 
a direct sum of copies of A(i)[j] for various (i, j) ∈ Z2. The dg-A-module G is called 
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semi-free if it may be equipped with an increasing, exhaustive filtration F •G by dg-
submodules such that F iG = 0 for i < 0 and each dg-module F iG/F i−1G is free. Given 
a dg-A-module M , a semi-free resolution of M is a quasi-isomorphism G "−→ M , where 
G is semi-free. A dg-A-module M is called perfect if it admits a semi-free resolution G
that is finitely generated as an A!-module. Let Perfgr(A) be the subcategory of Db

gr(A)
given by perfect objects.

Remark 2.15. It is elementary to show that Perfgr(A) is the thick subcategory of Db
gr(A)

generated by the objects {A(j)}j∈Z.

Given a dg-algebra A, it is well-known that semi-free dg-A-modules are K-projective, 
and K-projective dg-A-modules are K-flat. In particular, if M and N are dg-A-modules, 
and F "−→ M is a semi-free resolution, then

ExtiA(M,N) ∼= Hi(HomA(F,N)), and TorAi (M,N) ∼= H−i(F ⊗A N).

We will need the existence of semi-free resolutions with certain finiteness properties:

Proposition 2.16 (cf. [3] Chapter 5, Theorem 2.2). Let A be as in Setup 2.8. If M ∈
Modfgr(A), then there exists a semi-free resolution G of M with the following properties:

(1) Gi = 0 for i 1 0.
(2) Gj = 0 for j 0 0.
(3) If the homogeneous maximal ideal of A is finitely generated, then dimk Gi < ∞ for 

all i ∈ Z.
(4) Given j ∈ Z, let G≤j denote the A!-submodule 

⊕
#≤j G

# of G; the A!-module G/G≤j

is finitely generated.

(See Notation 2.3 for the definitions of Gi and Gj.)

Proof. We build G inductively. This is trivial if M is exact, so assume otherwise. Since 
A is connected, H(M) is finitely generated over H(A), and H(A) is Noetherian; we 
have H(M)i = 0 for i 1 0, H(M)j = 0 for j 0 0, and dimk H(M)i < ∞ for all 
i ∈ Z. Let m := min{i : H(M)i 2= 0} and n := max{j : H(M)j 2= 0}; replacing M with 
M(m)[n], we may assume that m = n = 0. Consider H(M)0 as a bigraded k-vector space 
(concentrated in internal degree 0), and let F 0G be the free dg-A-module H(M)0 ⊗k A. 
Choose a homogeneous basis x1, . . . , xt of H(M)0 and lifts x̃i to cocycles in M . Notice 
that F 0G has a basis x1 ⊗ 1, . . . , xt ⊗ 1 as a free A!-module, and bideg(xi ⊗ 1) = (0, ji)
for some ji ≤ 0. Let ε0 : F 0G → M be the morphism of dg-A-modules given by xi ⊗1 /→
x̃i. The map ε0 induces an isomorphism on cohomology in internal degrees ≤ 0, i.e. 
cone(ε0) has cohomology concentrated in internal degrees > 0. Now apply this same 
construction with cone(ε0) playing the role of M to build a free dg-A-module F 1G and 
a map ε1 : F 1G → cone(ε0) that is a quasi-isomorphism in internal degrees at most 1. 
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Iterating this procedure gives a semi-free resolution G "−→ M with the desired properties. 
Indeed, (1) and (2) follow since the summands A(i, j) of G all satisfy i ≤ 0 and j ≥ 0. 
Observe that each FnG is finitely generated over A; and if A(i, j) is a summand of 
Fn+1G/FnG, and A(i′, j′) is a summand of FnG, then i < i′ and j > j′. That is, both 
components of the bidegrees of the generators of the free summands we add in each step 
of the construction strictly increase in absolute value. Part (3) therefore follows from 
Proposition 2.10, and (4) follows immediately as well. !

As a consequence of Proposition 2.16, we have:

Proposition 2.17. Let A be as in Setup 2.8. The canonical map Db
gr(A) → Df

gr(A) is an 
equivalence.

Proof. Let M ∈ Df
gr(A). Since H(M) is finitely generated over H(A), we may choose 

J 1 0 so that Hj(M) = 0 for j ≤ J . Choose a semi-free resolution G of M as in 
Proposition 2.16. Denote by d the differential on G, and set G′ = G≤J + d(G≤J), where 
we adopt the notation of Proposition 2.16(4). Notice that G′ is a dg-submodule of G, 
and it is exact. The map G → G/G′ is therefore a quasi-isomorphism, and G/G′ is 
finitely generated over A! by Property (4) from Proposition 2.16. Thus, the canonical 
map Db

gr(A) → Df
gr(A) is essentially surjective, and it is clear that it is fully faithful. !

2.2. Gorenstein dg-algebras

Definition 2.18. Let A be as in Setup 2.8. We say A is Gorenstein if:

(1) The functor RHomA(−, A) maps Db
gr(A) to Db

gr(Aop), and the functor RHomAop(−,

A) maps Db
gr(Aop) to Db

gr(A).
(2) Given M ∈ Db

gr(A) and N ∈ Db
gr(Aop), the canonical maps

M → RHomAop(RHomA(M,A), A) and N → RHomA(RHomAop(N,A), A)

are isomorphisms in Dgr(A) and Dgr(Aop), respectively.
(3) There is an isomorphism RHomA(k, A) ∼= k(a)[n] in Dgr(A) for some a, n ∈ Z.

The integer a in (3) is called the Gorenstein parameter of A.

Remark 2.19. There are at least two other definitions of a Gorenstein dg-algebra in the 
literature: let us compare Definition 2.18 with these.

(1) By Remark 2.12 and Proposition 2.17, the category Df
gr(A) coincides with the cate-

gory fin(A) defined by Frankild-Jørgensen in [25, Definition 1.9]. It follows that the 
combination of Conditions (1) and (2) in Definition 2.18 coincides with (a bigraded 
version of) the definition of a Gorenstein dg-algebra in [25, Definition 2.1]. On the 
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other hand, Condition (3) in Definition 2.18 is (a bigraded version of) Avramov-
Foxby’s definition of a Gorenstein dg-algebra in [2, Section 3]. We will need the 
features of both of these definitions throughout the paper, and so we opt for our 
definition of Gorenstein to be given by combining Frankild-Jørgensen’s and Avramov-
Foxby’s definitions.

(2) When A is graded commutative, a (bigraded version of a) theorem of Frankild-
Iyengar-Jørgensen [24, Theorem I] implies that the combination of Conditions (1) 
and (2) is equivalent to Condition (3), and so Definition 2.18 is equivalent to both 
Frankild-Jørgensen’s and Avramov-Foxby’s definitions in this case. We do not know 
if the combination of (1) and (2) implies (3) in general.

Remark 2.20. In [51], a Noetherian graded k-algebra A =
⊕

i≥0 Ai such that A0 =
k is said to be Gorenstein if RHomA(k, A) + k(a)[−n] for some a ∈ Z, and A has 
finite injective dimension n as a right A-module. These conditions imply (1) - (3) in 
Definition 2.18 in this case.

Propositions 2.21 and 2.22 below give conditions under which one can easily compute 
the Gorenstein parameter of a Gorenstein dg-algebra.

Proposition 2.21. Let A be as in Setup 2.8. Assume there are isomorphisms

RHomA0(k, A0) ∼= k(a)[n] and RHomA0(A,A0) ∼= A(s)[t]

in Dgr(A) for some a, n, s, t ∈ Z. We have RHomA(k, A) ∼= k(a − s)[n − t].

Proof. There is an isomorphism in Dgr(A) between RHomA(k, A) and

RHomA(k,RHomA0(A,A0)(−s)[−t]) ∼= RHomA0(k, A0(−s)[−t]) ∼= k(a − s)[n − t]. !

Proposition 2.22. Let A be as in Setup 2.8. Assume A is Gorenstein and graded commuta-
tive, and assume also that A0 is Gorenstein. There is an isomorphism RHomA0(A, A0) ∼=
A(s)[t] in Dgr(A) for some s, t ∈ Z. In particular, the conclusion of Proposition 2.21
holds in this case.

Proof. This follows from (bigraded versions of) [24, 2.6] and [67, Corollary 7.16]. !

Example 2.23. Let S be a nonnegatively Z-graded, strictly commutative k-algebra such 
that S0 = k. Assume S is Gorenstein. Let K be the Koszul complex on a (not necessarily 
regular) sequence f1, . . . , fc of homogeneous elements in S. The dg-algebra K satisfies 
the conditions in Setup 2.8 (see Example 2.9), and a bigraded version of [25, Theorem 
4.9] implies that K satisfies (1) and (2) in Definition 2.18. Since K is graded commu-
tative, Remark 2.19(2) implies that K is Gorenstein. Let n be the injective dimension 
of S over itself, a the Gorenstein parameter of S, and d =

∑c
i=1 deg(fi). Noting that 
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RHomS(K, S) ∼= K(d)[−c], Proposition 2.22 implies RHomK(k, K) ∼= k(a − d)[c − n]. 
In particular, the Gorenstein parameter of K is a − d.

There is a more general construction of Koszul complexes, due to Shaul [56], that 
yields a wider family of examples of Gorenstein dg-algebras. Let A be as in Setup 2.8. 
Assume A is graded commutative and that a2 = 0 for all a ∈ Ai with i odd (this 
last condition is automatic when char(k) 2= 2). Let f1, . . . , fc ∈ H0(A) be homogeneous 
elements of positive internal degree, and choose homogeneous lifts f1, . . . , fc ∈ A0. Equip 
R := k[x1, . . . , xc] with the bigrading given by bideg(xi) = (deg(fi), 0) and a trivial 
differential, so that R is a dg-algebra, and A is a right dg-R-module via the action 
a ·xi := afi. Let T denote the Koszul complex on x1, . . . , xc over R. The Koszul complex
K(A; f1, . . . , fc) is defined to be the dg-algebra A ⊗R T . By a bigraded version of [56, 
Theorem 4.11(a)] and Remark 2.19(2), K(A; f1, . . . , fc) is Gorenstein if A is Gorenstein.

Example 2.24. Let α : R → S be a morphism of nonnegatively Z-graded, strictly com-
mutative, Noetherian k-algebras such that R0 = k and S0 is a field extension of k. Let 
µi
R and µi

S denote the ith Bass numbers of R and S. The map α is called Gorenstein
if S has finite flat dimension over R, and there exists d ≥ 0 such that µi

R = µi+d
S for 

all i ∈ Z [23, Section 4]. Let T denote the minimal free R-resolution of k, which is a 
dg-algebra by work of Tate and Gulliksen [62,28]. The dg-fiber of α may be modeled by 
the graded commutative dg-algebra A := T ⊗R S. By (a bigraded version of) [2, Theo-
rem 4.4] and Remark 2.19(2), if α is Gorenstein, then A is a Gorenstein dg-algebra. For 
instance, if R is a complete intersection, and S is a Gorenstein quotient of R such that 
pdR S < ∞, then the canonical map R → S is Gorenstein [2, Proposition 4.3, Corollary 
7.3]. In this case, T is the Shamash resolution of k over R, and we conclude that T ⊗R S

is a Gorenstein dg-algebra.

Example 2.25. Let R be a nonnegatively Z-graded, strictly commutative, Gorenstein 
k-algebra of finite Krull dimension such that R0 = k. Suppose S and T are graded 
commutative Gorenstein dg-algebras equipped with morphisms R → S, R → T of dg-
algebras such that (a) H0(S) and H0(T ) are essentially of finite type over R, and (b) 
S and T have finite flat dimension over R. Suppose A is a connected, graded commu-
tative dg-algebra that is quasi-isomorphic, as a dg-algebra, to S ⊗L

R T ; when S and 
T are concentrated in cohomological degree 0, such a dg-algebra A always exists [4, 
Proposition 6.1.4]. By (a bigraded version of) [55, Theorem 4.4] and Remark 2.19(2), 
A is a Gorenstein dg-algebra (this statement is a derived version of [65, Theorem 
2(1)]). As a concrete example, take R to be the standard graded polynomial ring 
k[x0, . . . , x3], I the ideal (x0x3 − x1x2, x2

2 − x1x3, x2
1 − x0x2, x2

0x1 − x2
2x3, x3

0 − x3
2) ⊆

R, and S = T = R/I. Geometrically, R/I is the intersection inside the quadric 
V (x0x3 − x1x2) ⊆ P 3 of the twisted cubic V (x0x3 − x1x2, x2

1 − x0x2, x2
2 − x1x3) and 

the subvariety V (x0x3 − x1x2, x2
0x1 − x2

2x3, x3
0 − x3

2). It follows from the Buchsbaum-
Eisenbud structure theorem for codimension 3 Gorenstein ideals that R/I is Gorenstein; 
indeed, I is the ideal of 4th order Pfaffians of the alternating matrix
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



0 x2
2 x2

0 x1 x2
−x2

2 0 0 x0 x1
−x2

0 0 0 x2 x3
−x1 −x0 −x2 0 0
−x2 −x1 −x3 0 0




.

The minimal R-free resolution F of R/I is a connected, graded commutative dg-algebra 
[7, Proposition 1.3], and so the dg-algebra A = F⊗RF is Gorenstein. We observe that A is 
not quasi-isomorphic to an ordinary graded algebra, since H−1(A) = TorR1 (R/I, R/I) =
I/I2 2= 0.

Example 2.26. Let R be a nonnegatively Z-graded strictly commutative k-algebra with 
R0 = k. Suppose R admits a dualizing complex D. Let A := R ! D denote the trivial 
extension dg-algebra, as defined in [38, Definition 1.2]. Replacing D with suitable twists 
and shifts, it follows from a bigraded version of [38, Theorem 2.2] and Remark 2.19(2), 
that the dg-algebra A is Gorenstein.

Example 2.27. There is a version of the trivial extension dg-algebra in Example 2.26
that is built from certain (possibly noncommutative) dg-algebras. In detail: let B be 
a dg-algebra as in Setup 2.8, and assume dimk H(B) < ∞. For b, d 0 0, the trivial 
extension dg-algebra A := B ⊕ Homk(B, k)(−b)[d] is a Gorenstein dg-algebra satisfying 
dimk H(A) < ∞. To see this, note that it is observed in [37, Section 6] that there is an 
isomorphism Homk(A, k) ∼= A(−a)[−n] in D(A) for some a, n ∈ Z. By [24, Proposition 
2.6], we conclude that A satisfies conditions (1) and (2) of Definition 2.18. By adjunction, 
one also sees that A satisfies condition (3) in Definition 2.18, and hence A is Gorenstein. 
One may start with the case where B is concentrated in cohomological degree 0 to 
inductively build a large family of Gorenstein dg-algebras using this construction. See 
also [57, Theorem 4.5] for a related result.

3. Noncommutative algebraic geometry over a dg-algebra

One may associate to a (strictly) commutative, nonnegatively Z-graded ring A a 
projective scheme Proj(A). For instance, when A = k[x0, . . . , xn], we have Proj(A) = Pn. 
When A is noncommutative, the Proj construction no longer makes sense. However, it 
follows from work of Artin-Zhang [5] that the category of coherent sheaves on Proj(A)
does generalize to the noncommutative setting, allowing one to extend many homological 
aspects of projective geometry to the noncommutative world. In order to state and prove 
our main result, Theorem 1.3, we must extend many of Artin-Zhang’s results to dg-
algebras: this is the goal of the present section.

Let A be as in Setup 2.8. Given n ≥ 1, let A0
≥n be the ideal 

⊕
i≥n A

0
i ⊆ A0. Denote 

by DTors
gr (A) the thick subcategory of Dgr(A) given by objects M such that, for any 

class m ∈ H(M), there exists an integer n such that m · A0
≥n = 0. Let Dtors

gr (A) :=
DTors

gr (A) ∩ Db(A). We define DQgr(A) := Dgr(A)/ DTors
gr (A), and we let Dqgr(A) denote 

the essential image of the fully faithful embedding Db
gr(A)/ Dtors

gr (A) ↪→ DQgr(A).
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Lemma 3.1. The category Dtors
gr (A) is the thick subcategory of Db

gr(A) generated by k(i)
for i ∈ Z.

Proof. Let S denote the thick subcategory of Db
gr(A) generated by k(i) for i ∈ Z. We 

clearly have S ⊆ Dtors
gr (A). Let M ∈ Dtors

gr (A). If M is exact, then it is in Dtors
gr (A), so 

assume otherwise. Suppose M is concentrated in cohomological degree 0. In particular, 
M is a finitely generated A0-module and therefore a finite dimensional k-vector space, 
say of dimension d. If d = 1, then M ∼= k(i) for some i and is thus an object in S. If 
d > 1, then either M is a sum of twists of k, in which case M ∈ S, or the exact sequence 
0 → M ·A0

≥1 ↪→ M ! M/M ·A0
≥1 → 0 implies that M ∈ S by induction on d. In general, 

let r denote the amplitude of M , i.e. r = max{i − j : Hi(M) 2= 0 and Hj(M) 2= 0}; 
we argue by induction on r. Suppose r = 0; without loss, assume H0(M) 2= 0. By 
Remark 2.7, we have an isomorphism M ∼= σ≥0(σ≤0M) = H0(M) in D(A), and so 
M ∈ S by the above arguments. Suppose r > 0, and let m = min{i : Hi(M) 2= 0}. By 
Remark 2.7 and induction, the exact sequence 0 → σ≤mM ↪→ M → M/σ≤mM → 0
implies that M ∈ S. !

Given M ∈ D(A), we let M̃ denote the corresponding object in DQgr(A). We have 
canonical triangulated functors Π : Dgr(A) → DQgr(A) and π : Db

gr(A) → Dqgr(A) given 
by M /→ M̃ . When A = A0, it follows from [47, Lemma 4.4.1] that the categories DQgr(A)
and Dqgr(A) coincide with the derived categories of the abelian categories Qgr(A) and 
qgr(A) defined in [5]. In particular, if A is concentrated in cohomological degree 0, and 
A is (strictly) commutative and generated in internal degree 1, then DQgr(A) (resp. 
Dqgr(A)) is equivalent to the derived category of quasi-coherent (resp. coherent) sheaves 
on Proj(A).

Remark 3.2. Versions of the derived “qgr”-construction for dga’s have appeared before, 
for instance in Greenlees-Stevenson’s definition of the cosingularity category [27, Defini-
tion 9.7, Remark 9.9] and in Lu-Palmieri-Wu-Zhang’s A∞-version of the qgr construction 
[48, Section 10].

3.1. Derived global sections

Let A be as in Setup 2.8. For n ∈ Z, define Dgr(A)≥n ⊆ Dgr(A) to be the subcategory 
given by objects M such that Mi = 0 for i < n. We define DTors

gr (A)≥n ⊆ DTors
gr (A), 

Db
gr(A)≥n ⊆ Db

gr(A), and Dtors
gr (A)≥n ⊆ Dtors

gr (A) similarly. The canonical functors

Dgr(A)≥n/DTors
gr (A)≥n → DQgr(A), Db

gr(A)≥n/Dtors
gr (A)≥n → DQgr(A)

are triangulated equivalences for all n ∈ Z. The truncation functor τ≥n : Dgr(A) →
Dgr(A)≥n is the right adjoint to the inclusion Dgr(A)≥n ↪→ Dgr(A), and its restriction 
Db

gr(A) → Db
gr(A)≥n, which we also denote by τ≥n, is the right adjoint of the inclusion 

Db
gr(A)≥n ↪→ Db

gr(A).
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We now define a “total derived global sections functor” RΓ∗ : DQgr(A) → Dgr(A).

Proposition 3.3. Let A be as in Setup 2.8. The functor Π : Dgr(A) → DQgr(A) admits 
a fully faithful right adjoint RΓ∗. Moreover, for each n ∈ Z, the canonical functor 
Πn : Dgr(A)≥n → DQgr(A) admits a fully faithful right adjoint given by RΓ≥n :=
τ≥nRΓ∗.

Proof. To show that Π admits a right adjoint, we wish to apply [50, Example 8.4.5]. To 
do so, we will check that the categories Dgr(A) and DQgr(A) are locally small (meaning 
that morphisms between any pair of objects in these categories form sets), Dgr(A) is 
ℵ1-perfectly generated (in the sense of [50, Definition 8.1.2]) and closed under arbitrary 
coproducts, and DTors

gr (A) is a localizing subcategory of Dgr(A) (the assumptions that 
Dgr(A) is ℵ1-perfectly generated, admits arbitrary coproducts, and is locally small imply 
that Dgr(A) satisfy the representability theorem, in the sense of [50, Definition 1.20]: see 
[50, Theorem 8.3.3]). Local smallness of Dgr(A) is well-known and follows, for instance, 
from (a bigraded version of) [60, Tag 09KY]. The set S = {A(i)[j] : i, j ∈ Z} is ℵ1-
perfect in the sense of [50, Definition 3.3.1], and it generates Dgr(A) in the sense of [50, 
Definition 8.1.1]; it follows that Dgr(A) is ℵ1-perfectly generated. It is clear that Dgr(A)
is closed under arbitrary coproducts, and also that DTors

gr (A) is a localizing subcategory. 
To see that DQgr(A) is locally small, we observe the following. The triangulated category 
Dgr(A) arises as the homotopy category of a pretriangulated dg-category C, and Tors(A)
is the homotopy category of a pretriangulated dg-subcategory of C. The local smallness 
of DQgr(A) thus follows from the local smallness of Dgr(A) along with [20, Proposition 
4.7(iii) and (iv)].

With the above observations in hand, we may apply [50, Example 8.4.5] to obtain a 
right adjoint RΓ∗ : DQgr(A) → Dgr(A) to Π. It follows from [50, Theorem 9.1.16] that 
RΓ∗ is fully faithful. To see this, observe that RΓ∗ is, by definition, a Bousfield localiza-
tion functor for the inclusion DTors

gr (A) ↪→ Dgr(A). Letting ⊥ DTors
gr (A) be as defined in 

[50, Definition 9.1.11], the composition of the equivalence Dqgr(A) "−→
⊥
DTors

gr (A) arising 
from [50, Theorem 9.1.16] with the inclusion DTors

gr (A) ↪→ Dgr(A) is easily seen to be the 
right adjoint of Π and is clearly fully faithful; by the uniqueness of right adjoints, RΓ∗
is fully faithful as well.

Finally, since τ≥n is the right adjoint of the inclusion Dgr(A)≥n ↪→ Dgr(A), the functor 
RΓ≥n is the right adjoint of the canonical functor Dgr(A)≥n → DQgr(A). Applying [50, 
Theorem 9.1.6] and the above argument once again, we conclude that each functor RΓ≥n

is fully faithful. !

The functor RΓ : DQgr(A) → Dgr(A) typically does not map Dqgr(A) to Db
gr(A). For 

instance, if A = k[x0, x1] with bideg(x0) = bideg(x1) = (1, 0), then DQgr(A) (resp. 
Dqgr(A)) is the derived category of quasicoherent (resp. bounded derived category of 
coherent) sheaves on P 1, and RΓ∗(OP1) is not coherent. However, we now determine 
conditions under which the functors RΓ≥n : DQgr(A) → Dgr(A)≥n do map Dqgr(A) to 
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Db
gr(A)≥n; this is the content of Proposition 3.6. This is well-understood when A is 

concentrated in cohomological degree 0, due to work of Artin-Zhang [5], and we will 
build on their results to prove Proposition 3.6. We recall the following definition due to 
Artin-Zhang:

Definition 3.4 ([5] Definition 3.7). Suppose A is concentrated in cohomological degree 
zero, i.e. A is an ordinary connected Z-graded k-algebra. We say A satisfies condition χ
if, for every finitely generated graded A-module M , we have dimk ExtiA(k, M) < ∞ for 
all i ∈ Z.2

The following lemma follows from results of Artin-Zhang, Yekutieli, and Yekutieli-
Zhang:

Lemma 3.5 ([5,66,69]). Let A be as in Setup 2.8, and suppose A is concentrated in 
cohomological degree zero. Let M be a finitely generated graded A-module and n ∈ Z.

(1) If A satisfies condition χ, and RjΓ≥n(M̃) = 0 for j 0 0, then RΓ≥n(M̃) ∈ Db
gr(A).

(2) If A is either Gorenstein or (strictly) commutative, then A satisfies condition χ, and 
RjΓ∗(M̃) = RjΓ≥n(M̃) = 0 for j 0 0. In particular, RΓ≥n(M̃) ∈ Db

gr(A) in both 
cases.

Proof. Part (1) follows from [5, Theorem 7.4]. As for (2): if A is commutative, then 
condition χ holds by [5, Proposition 3.11(3)], and RjΓ∗(M̃) = Hj(Proj(A), M̃) = 0
for j 0 0 since Proj(A) is projective over k. It follows that, given n ∈ Z, we have 
RjΓ≥n(M̃) = 0 for all j 0 0 as well. If A is Gorenstein, then A has a balanced dualizing 
complex (in the sense of [66, Definition 4.1]) by [66, Section 4], and so the result follows 
from [69, Theorem 4.2(3)]. !

Proposition 3.6. Let A be as in Setup 2.8. If A0 is Gorenstein or (strictly) commutative, 
then the canonical functor πn : Db

gr(A)≥n → Dqgr(A) admits a fully faithful right adjoint 
given by RΓ≥n for all n ∈ Z.

Remark 3.7. The assumption in Proposition 3.6 that A0 is Gorenstein or strictly com-
mutative is needed to apply Lemma 3.5. We note that these assumptions can be relaxed: 
one only needs A0 to admit a balanced dualizing complex (in the sense of [66, Definition 
4.1]) for the results of Lemma 3.5 to hold. For instance, condition χ follows in this case 
from [69, Theorem 4.2(3)].

Proof. First, we show that the derived extension of scalars functor F : Dgr(A0) → Dgr(A)
given by M /→ M⊗L

A0A sends DTors
gr (A0) to DTors

gr (A). Since every object in DTors
gr (A0) is a 

2 Definition 3.4 is not identical to [5, Definition 3.7], but it is equivalent: see [5, Definition 3.2 and 
Proposition 3.8(1)].
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filtered colimit of objects in Dtors
gr (A0), F commutes with colimits, and DTors

gr (A) is closed 
under filtered colimits; it suffices to show that F maps Dtors

gr (A0) to DTors
gr (A). Certainly 

F (k(j)) ∈ DTors
gr (A) for all j ∈ Z; by Lemma 3.1, it follows that F (Dtors

gr (A0)) ⊆ DTors
gr (A).

It is clear that the restriction of scalars functor G : Dgr(A) → Dgr(A0) sends DTors
gr (A)

to DTors
gr (A0). By [51, Lemma 1.1], we conclude that the adjunction F : Dgr(A0) "

Dgr(A) : G induces an adjunction F : DQgr(A0) " DQgr(A) : G, and moreover we have a 
commutative square

Dgr(A0)

F

π DQgr(A0)

F

Dgr(A) π DQgr(A).

(3.8)

Replacing the left adjoints in (3.8) with their right adjoints, we obtain the commutative 
square

Dgr(A0) DQgr(A0)
RΓ∗

Dgr(A)

G

DQgr(A).
RΓ∗

G

(3.9)

Let n ∈ Z. Concatenating (3.9) with the commutative diagram

Dgr(A0)≥n Dgr(A0)
τ≥n

Dgr(A)≥n

G

Dgr(A),
τ≥n

G

we arrive at the key commutative square

Dgr(A0)≥n DQgr(A0)
RΓ≥n

Dgr(A)≥n

G

DQgr(A).
RΓ≥n

G

(3.10)

Let M̃ ∈ Dqgr(A). We have G(M̃) ∈ Dqgr(A0). By our assumptions on A0, Lemma 3.5(2) 
implies that RΓ≥n(G(M̃)) ∈ Db

gr(A0)≥n. By the commutativity of (3.10), it follows that 
G(RΓ≥n(M̃)) ∈ Db

gr(A0)≥n, and this implies RΓ≥n(M̃) ∈ Db
gr(A)≥n. Thus, RΓ≥n is the 

right adjoint of πn. !
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We record the following observation, which follows from the proof of Proposition 3.6:

Proposition 3.11. Let A be as in Setup 2.8 and M a dg-A-module. Denote by G :
Db

gr(A) → Db
gr(A0) the restriction of scalars functor. There is an isomorphism

G(RΓ∗(M̃)) ∼= colim
p→∞

RHomA0(A0
≥p, G(M)).

Proof. Let G : DQgr(A) → DQgr(A0) denote the functor induced by restriction of scalars. 
By the commutativity of the square (3.9), it suffices to show

RΓ∗(G(M̃)) ∼= colim
p→∞

RHomA0(A0
≥p, G(M)). (3.12)

Noting that, by [47, Lemma 4.4.1], Dqgr(A0) coincides with the derived category of 
the abelian quotient qgr(A0) of finitely generated A0-modules by torsion modules, the 
isomorphism (3.12) follows from (the proof of) [69, Lemma 4.1], along with the adjunction 

isomorphism RΓ∗(Ñ) ∼=
⊕

i,j∈Z HomDqgr(A0)(Ã0, Ñ(i)[j]) for N ∈ Db
gr(A0). !

3.2. Sheaves of dg-algebras

In certain settings, the DQgr and Dqgr constructions for dg-algebras may be interpreted 
as derived categories of sheaves. Our next goal is to make this precise.

Definition 3.13. Let Y be a scheme. A dg-OY -algebra is a complex B of OY -modules such 
that Γ(U, B) is a differential Z-graded Γ(U, OY )-algebra for all open sets U in Y , and the 
restriction maps for B are morphisms of differential Z-graded Γ(Y, OY )-algebras. Given 
a dg-OY -algebra B, a dg-B-module is a complex C of OY -modules such that Γ(U, C)
is a differential Z-graded Γ(U, B)-module for all open sets U in Y , and the restriction 
maps for C are morphisms of differential Z-graded Γ(Y, B)-modules. A dg-B-module C is 
quasi-coherent (resp. coherent) if 

⊕
i∈Z Ci is quasi-coherent (resp. coherent) as an OY -

module. Morphisms of dg-B-modules are defined in the evident way. Let Qcoh(B) (resp. 
coh(B)) denote the category of quasi-coherent (resp. coherent) dg-B-modules, and let 
D(QcohB) and D(cohB) denote their derived categories: see [60, Tag 0FT1] for details. 
Given M, N ∈ Qcoh(B), the Hom sheaf HomB(M, N ) is defined in the evident way: see 
[60, Tag 0FRN]. Note that HomB(M, N ) is a complex of OY -modules but need not be 
a dg-B-module. We have HomQcoh(B)(M, N ) ∼= Z0Γ(HomB(M, N )) as k-vector spaces.

We adopt the following setup in this subsection:

Setup 3.14. Let A be as in Setup 2.8. Assume A0 is (strictly) commutative, Noetherian, 
and generated in degree 1; and suppose A is finitely generated as an A0-module. Let 
X denote the projective k-scheme Proj(A0). We assume also that A is saturated as an 
A0-module, meaning that the natural map A →

⊕
i∈Z H0(X, Ã(i)) is an isomorphism. 
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Equivalently, letting n denote the homogeneous maximal ideal of A0, we assume H0
n(A) =

H1
n(A) = 0.

Example 3.15. Suppose R is a standard graded polynomial ring over k in at least 2 
variables, and denote its homogeneous maximal ideal by n. If A is the Koszul complex 
on a (not necessarily regular) sequence of homogeneous elements in R, or if A is the 
dg-algebra F ⊗RF from Example 2.25, then A satisfies the conditions in Setup 3.14. For 
instance, A is a saturated R-module since it is free over R, and H0

n(R) = H1
n(R) = 0.

Let A be as in Setup 3.14. Recall from Remark 2.6 that the differential on every 
dg-A-module is A0-linear. We have a dg-OX-algebra A given by the sheafification of the 
complex A of graded A0-modules, with OX -linear differential induced by d. There is a 
functor Sh: Mod(A) → Qcoh(A), where Sh(M, dM ) is the sheafification of the complex 
M of graded A0-modules with OX -linear differential induced by dM . We also have a 
global sections functor Γ∗ : Qcoh(A) → Mod(A) that sends an object M ∈ Qcoh(A)
to the complex of A0-modules Γ∗(M) =

⊕
i∈Z H0(X, M(i)) equipped with the evident 

dg-A-module structure.
The functor Sh is exact and therefore induces a triangulated functor on derived cat-

egories Sh: Dgr(A) → D(QcohA). On the other hand, the functor Γ∗ : Qcoh(A) →
Mod(A) induces a right derived functor RΓ∗ : D(QcohA) → Dgr(A) (the overlap of no-
tation between RΓ∗ in this section and the derived global sections functors on Dqgr(A)
defined in the previous section should not cause confusion and is justified by Corol-
lary 3.19 below). Let us give an explicit construction of RΓ∗, following [60, Tag 0FTN] 
and [60, Tag 0FTP](2). A dg-A-module I is said to be K-injective if, for every ex-
act dg-A-module M, the complex HomQcoh(A)(M, I) of k-vector spaces is exact. Let 
M ∈ Qcoh(A), and choose a quasi-isomorphism M "−→ I of dg-A-modules such that I
is an injective object in the category of graded A-modules (i.e. I is graded injective, in 
the sense of [60, Tag 0FSP]) and also K-injective; such resolutions always exist, and the 
choices can be made functorially [60, Tag 0FT0]. We define RΓ∗(M) := Γ∗(I), and we 
set RΓ≥n := τ≥nRΓ.

Lemma 3.16. Let A be as in Setup 3.14.

(1) The functor Γ∗ : Qcoh(A) → Mod(A) is the right adjoint of Sh. In fact, there is a 
natural isomorphism of complexes of graded A0-modules Γ∗(HomA(Sh(M), N )) ∼=
HomA(M, Γ∗(N )) for all dg-A-modules M and N ∈ Qcoh(A).

(2) The functor RΓ∗ is the right adjoint of Sh: Dgr(A) → D(QcohA). Consequently, 
for all n ∈ Z, the functor RΓ≥n is the right adjoint of Dgr(A)≥n ↪→ Dgr(A) Sh−→
D(QcohA).

Proof. Let M ∈ Mod(A) and N ∈ Qcoh(A). The first statement in (1) follows imme-
diately from the isomorphism Γ∗(HomA(Sh(M), N )) ∼= HomA(M, Γ∗(N )) by passing to 
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bidegree (0,0) cocycles, so, to prove (1), we need only consider the second statement. 
This is well-known over A0, and so there is an isomorphism of complexes of graded 
A0-modules

Γ∗(HomX(Sh(M),N )) ∼= HomA0(M,Γ∗(N )). (3.17)

It is routine to check that (3.17) restricts to the desired isomorphism. For (2), choose 
a quasi-isomorphism N "−→ I, where I is an injective object in the category of 
graded A-modules and also K-injective. Choose also a semi-free resolution F "−→ M . 
Let K(A) (resp. K(A)) denote the homotopy category of dg-A-modules (resp. dg-A-
modules). We note that HomDgr(A)(M, L) = HomK(A)(F, L) for all L ∈ Mod(A), and 
HomD(QcohA)(G, N ) = HomK(A)(G, I) for all G ∈ D(QcohA); see [68, Theorem 10.1.13]
and [60, Tag 0FT8]. We now compute:

HomDgr(A)(M,RΓ∗(N )) = HomDgr(A)(M,Γ∗(I))
∼= HomK(A)(F,Γ∗(I))
= H0HomA(F,Γ∗(I))0
∼= H0Γ∗(HomA(Sh(F ), I))0
= HomK(A)(Sh(F ), I)
∼= HomD(QcohA)(Sh(M),N ).

This proves the first statement of (2). The second statement follows immediately from 
the first, since τ≥n is the right adjoint of the inclusion Dgr(A)≥n ↪→ Dgr(A). !

The functor Sh induces a functor Sh: DQgr(A) → D(QcohA). On the other hand, 
composing RΓ∗ : D(QcohA) → Dgr(A) with the projection functor Π : Dgr(A) →
DQgr(A), one obtains a triangulated functor T : D(QcohA) → DQgr(A).

Theorem 3.18. Let A be as in Setup 3.14.

(1) The functor Sh: DQgr(A) → D(QcohA) is the left adjoint of T .
(2) The functors Sh and T are inverse equivalences.
(3) We have Sh(Dqgr(A)) ⊆ D(cohA), and T (D(cohA)) ⊆ Dqgr(A). Consequently, the 

adjunction in (1) restricts to an adjunction Sh: Dqgr(A) # D(cohA) : T , and these 
functors are also inverse equivalences.

Proof. (1) follows from Lemma 3.16(2) and [51, Lemma 1.1]. Let M ∈ D(QcohA). 
Choose a quasi-isomorphism M "−→ I, where I is an injective object in the category of 
graded A-modules and also K-injective. The canonical map ShΓ∗(I) → I is an isomor-
phism of OX -modules by [29, Proposition II.5.15], and one checks that it is a morphism 
of A-modules. We therefore have an isomorphism M ∼= ShRΓ∗(M) in D(QcohA); 
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in particular, Sh is essentially surjective. To prove Sh is fully faithful, we show that 
the unit of the adjunction Sh: DQgr(A) " D(QcohA) : T is an isomorphism. This 
amounts to the assertion that, given M ∈ Mod(A), the natural map M → RΓ∗(M̃)
induces an isomorphism on cohomology up to torsion. This statement only concerns the 
underlying structure of complexes of A0-modules. Since it is well-known that RΓ∗ de-
termines an equivalence D(cohX) "−→ Dqgr(A0), it follows from [60, Tag 0FTW] that 
the unit of this adjunction must be an isomorphism; this proves (2). It is clear that 
Sh(Dqgr(A)) ⊆ D(cohA). Going the other direction: once again by [60, Tag 0FTW], we 
have a commutative diagram

D(QcohA)
RΓ≥0

Dgr(A)≥0 DQgr(A)

D(QcohX)
RΓ≥0

Dgr(A0)≥0 DQgr(A0),

where the vertical maps are forgetful functors, and the right-most horizontal maps are 
the canonical ones. Observe that composing the two maps along the top row gives the 
functor T ; it therefore suffices to show that RΓ≥0 maps D(cohA) to Db

gr(A)≥0. It is well-
known that the map RΓ≥0 : D(QcohX) → Dgr(A0)≥0 maps Db(cohX) to Db

gr(A0)≥0, 
and an object in Dgr(A)≥0 is contained in Db

gr(A0)≥0 if and only if it is contained in 
Db

gr(A)≥0. Thus, the commutativity of the diagram implies (3). !

Corollary 3.19. Let A be as in Setup 3.14. For all i ∈ Z, we have commutative triangles

D(QcohA)

"T

RΓ∗ Dgr(A)

DQgr(A),
RΓ∗

D(QcohA)

"T

RΓ≥i

Dgr(A)≥i

DQgr(A),
RΓ≥i

D(cohA)

"T

RΓ≥i

Db
gr(A)≥i

Dqgr(A).
RΓ≥i

That is, our versions of derived global section functors may be identified, in this setting, 
via the equivalence T from Theorem 3.18(2).

Proof. This follows from Propositions 3.3 and 3.6, Lemma 3.16(2), Theorem 3.18, and 
the uniqueness of right adjoints. !
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4. Proof of Theorem 1.3

The proof of our main result, Theorem 1.3, goes roughly as follows. Let A be as 
in Setup 2.8, where A0 is Gorenstein or (strictly) commutative, and fix i ∈ Z. Proposi-
tion 3.6 implies that the truncated derived global section functor RΓ≥i identifies Dqgr(A)
with a weak semiorthogonal summand Di of Db

gr(A)≥i. Recall from Definition 2.14 that 
Perfgr(A) denotes the thick subcategory of Db

gr(A) given by perfect objects; let Dsg
gr(A)

denote the quotient Db
gr(A)/ Perfgr(A), the singularity category of A. Assume in addi-

tion that A is Gorenstein, and let a be its Gorenstein parameter; Lemma 4.2 below 
yields an embedding of Dsg

gr(A) as a semiorthogonal summand Ti of Db
gr(A)≥i. Our proof 

of Theorem 1.3, which mirrors Orlov’s original argument, shows that Ti is in fact a 
semiorthogonal summand of Di when a ≥ 0, and Di is a semiorthogonal summand of 
Ti when a ≤ 0; and moreover the complements in each case are given by exceptional 
collections.

Let us fix some notation. For i ∈ Z, let P<i (resp. P≥i) denote the thick subcategory 
of Perfgr(A) generated by the modules A(e) for e > −i (resp. A(e) for e ≤ −i), and let 
S<i (resp. S≥i) denote the thick subcategory of Db

gr(A) generated by the modules k(e)
for e > −i (resp. k(e) for e ≤ −i). Define the subcategories Pop

<i, P
op
≥i of Perfgr(Aop) and 

Sop
<i, S

op
≥i of Db

gr(Aop) similarly.
We now recall some background on semiorthogonal decompositions, following [51, 

Section 1]. Given a k-linear triangulated category B and a full triangulated subcategory 
C of B, the right orthogonal C⊥ of C is the triangulated subcategory given by {B ∈
B : HomB(C, B) = 0 for all C ∈ C}, and the left orthogonal ⊥C is defined similarly. We 
say C is right admissible (resp. left admissible) if the inclusion C ↪→ B admits a right 
(resp. left) adjoint, and we say C is admissible if it is left and right admissible. The 
subcategory C is right (resp. left) admissible if and only if for all B ∈ B, there is an exact 
triangle

B′ → B → B′′ → B′[1]

such that B′ ∈ C and B′′ ∈ C⊥ (resp. B′ ∈ ⊥C and B′′ ∈ C). A sequence of triangu-
lated subcategories C1, . . . , Cn of B forms a weak semiorthogonal decomposition (resp. 
semiorthogonal decomposition) of B if there are left admissible (resp. admissible) sub-
categories

B1 = C1 ⊆ B2 ⊆ · · · ⊆ Bn = B

such that each Ci is the left orthogonal of Bi−1 in Bi. When C1, . . . , Cn form a weak 
semiorthogonal decomposition of B, we write B = 〈C1, . . . , Cn〉.

An object B in B is called exceptional if HomB(B, B[j]) = 0 for j 2= 0, and 
HomB(B, B) ∼= k. An exceptional collection in B is a sequence E1, . . . , En of excep-
tional objects such that HomB(Ei, Ej [+]) = 0 for all + ∈ Z when i > j. An exceptional 
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collection E1, . . . , En is called full if the objects E1, . . . , En generate all of B. When 
E1, . . . , En form a full exceptional collection, the subcategories Ci of B generated by the 
Ei form a semiorthogonal decomposition of B; in this case, we write B = 〈E0, . . . , En〉. 
An exceptional collection E0, . . . , En is called strong if HomB(Ei, Ej [+]) = 0 for all i and 
j when + 2= 0.

Lemma 4.1 (cf. [51] Lemma 2.3). Fix i ∈ Z. The subcategory S<i (resp. P<i) of Db
gr(A)

is left (resp. right) admissible, and we have weak semiorthogonal decompositions

Db
gr(A) = 〈S<i,Db

gr(A)≥i〉 = 〈Db
gr(A)≥i,P<i〉, Dtors

gr (A) = 〈S<i,S≥i〉,

Perfgr(A) = 〈P≥i,P<i〉.

Proof. Given M ∈ Db
gr(A), we have a short exact sequence 0 → M≥i → M → M/M≥i →

0. The object M/M≥i is in S<i, and M≥i is in ⊥S<i. It therefore follows from [51, Remark 
1.3] that S<i is left admissible. Moreover, Db

gr(A)≥i is the left orthogonal ⊥S<i of S<i

in Db
gr(A), i.e. we have Db

gr(A) = 〈S<i, Db
gr(A)≥i〉. If M is torsion, then M≥i ∈ S≥i, and 

so we conclude Dtors(A) = 〈S<i, S≥i〉.
Let M ∈ Db

gr(A), and choose a semi-free resolution F of M as in Proposition 2.16. 
Let F ′ be the dg-submodule of F consisting of free summands generated in internal 
degree strictly less than i. We have a short exact sequence 0 → F ′ → F → F/F ′ → 0; 
observe that F/F ′ ∈ Db

gr(A)≥i, and the properties of F guaranteed by Proposition 2.16
imply that F ′ is contained in Perfgr(A) and hence in P<i. This yields the remaining two 
semiorthogonal decompositions. !

Lemma 4.2 (cf. [51] Lemma 2.4). Let A be as in Setup 2.8. Assume A is Gorenstein and 
that either A0 is Gorenstein or (strictly) commutative. Let a be the Gorenstein parameter 
of A, and fix i ∈ Z. The subcategory S≥i (resp. P≥i) is right (resp. left) admissible in 
Db

gr(A)≥i, and there are weak semiorthogonal decompositions

Db
gr(A)≥i = 〈Di,S≥i〉 = 〈P≥i, Ti〉,

where Di is the essential image of RΓ≥i, and the composition Ti ↪→ Db
gr(A)≥i

q−→ Dsg
gr(A)

is an equivalence. Moreover, the right orthogonals of the subcategories Di and Ti of 
Db

gr(A) are as follows:

T ⊥
i = 〈S<i,P≥i〉 and D⊥

i = 〈P≥i+a,S<i〉.

Proof. By Proposition 3.6, RΓ≥i : Dqgr(A) → Di is an equivalence. Since RΓ≥i is the 
right adjoint of the canonical functor Db

gr(A)≥i → Dqgr(A), it follows that Di is left 
admissible in Db

gr(A)≥i, with left orthogonal S≥i. We conclude that S≥i is right admissible 
in Db

gr(A)≥i, and there is a weak semiorthogonal decomposition Db
gr(A)≥i = 〈Di, S≥i〉.
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Since A is Gorenstein, the functor RHomAop(−, A) gives an equivalence

Db
gr(Aop) "−→ Db

gr(A)op (4.3)

By Lemma 4.1, the subcategory Pop
<−i+1 of Db

gr(Aop) is right admissible; by duality, it 
follows that P≥i is left admissible in Db

gr(A), and hence in Db
gr(A)≥i as well. We thus have 

a weak semiorthogonal decomposition Db
gr(A)≥i = 〈P≥i, Ti〉 for some Ti ⊆ Db

gr(A)≥i. By 
[51, Lemma 1.4], we have Ti + Db

gr(A)≥i/P≥i. It therefore follows from [51, Lemma 
1.1] that the canonical functor Db

gr(A)≥i/P≥i → Db
gr(A)/ Perfgr(A) = Dsg

gr(A) is fully 
faithful. By Proposition 2.16, this functor is also essentially surjective and hence an 
equivalence. Finally, we observe that the composite functor Ti → Dsg

gr(A) coincides with 
the composition Ti ↪→ Db

gr(A)≥i
q−→ Dsg

gr(A).
The equality T ⊥

i = 〈S<i, P≥i〉 is immediate from Lemma 4.1. We now show 
D⊥

i = 〈P≥i+a, S<i〉. Using Lemma 4.1 and the equality Db
gr(A)≥i = 〈Di, S≥i〉, we have 

〈S<i, Di〉 = S⊥
≥i. The Gorenstein condition on A implies that S⊥

≥i ⊆ Db
gr(A) corresponds 

to ⊥Sop
<−i−a+1 ⊆ Db

gr(Aop) via the duality (4.3). The subcategory ⊥Sop
<−i−a+1 ⊆ Db

gr(Aop)
coincides with (Pop

<−i−a+1)⊥ ⊆ Db
gr(Aop) by Lemma 4.1. Finally, applying the dual-

ity (4.3) to (Pop
<−i−a+1)⊥ gives ⊥P≥i+a ⊆ Db

gr(A); we conclude that 〈S<i, Di〉 is equal to 
⊥P≥i+a, i.e. D⊥

i = 〈P≥i+a, S<i〉. !

Lemma 4.4. Let A be as in Setup 2.8. We have full exceptional collections

Perfgr(A) = 〈. . . , A(−1), A,A(1), . . . 〉 and Dtors
gr (A) = 〈. . . ,k(1),k,k(−1), . . . 〉.

Proof. Fix j, m, p ∈ Z. The statement concerning Perfgr(A) follows from Remark 2.15
and the evident isomorphism HomDgr(A)(A(m), A(j)[p]) ∼= H(A)pj−m. Similarly, the 
statement about Dtors

gr (A) follows from Lemma 3.1 and the isomorphism HomDgr(A)(k(m),
k(j)[p]) ∼= H(k)pj−m whenever j ≥ m; let us prove this isomorphism. Let G "−→
A(m)≥−m+1 be a semi-free resolution as in Proposition 2.16, and observe that, if j ≥ m, 
then HomDgr(A)(A(m)≥−m+1, k(j)[p]) = HomA(G, k(j)[p]) = 0 for degree reasons. Ap-
plying RHomA(−, k(j)[p]) to the triangle

A(m)≥−m+1 −→ A(m) −→ k(m) −→ A(m)≥−m+1[1],

we conclude HomDgr(A)(k(m), k(j)[p]) ∼= HomDgr(A)(A(m), k(j)[p]) ∼= H(k)pj−m when 
j ≥ m. !

Proof of Theorem 1.3. We will use the notation of Lemma 4.2 throughout the proof. Let 
us now prove (1) and (3). Since a ≥ 0, we have P≥i+a ⊆ ⊥S<i. Thus, the components 
of the decomposition D⊥

i = 〈P≥i+a, S<i〉 from Lemma 4.2 may be interchanged, i.e. 
D⊥

i = 〈S<i, P≥i+a〉. In particular, if a = 0, then the right orthogonals of Di and Ti in 
Db

gr(A) coincide and hence we obtain an equivalence Dsg
gr(A) "−→ Dqgr(A). Noting that 
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P≥i = 〈P≥i+a, A(−i − a + 1), . . . , A(−i)〉 when a > 0, applying Lemma 4.2 once again, 
we have

Db
gr(A) = 〈S<i,P≥i, Ti〉 = 〈S<i,P≥i+a, A(−i − a+ 1), . . . , A(−i), Ti〉.

We conclude that Di = 〈A(−i − a + 1), . . . , A(−i), Ti〉 when a > 0. Recall that Di

is the essential image of RΓ≥i; hence, by Proposition 3.6, πi : Di → Dqgr(A) is an 
equivalence. Letting Φi : Dsg

gr(A) → DQgr(A) denote the fully faithful embedding given 
by the composition Dsg

gr(A) + Ti ↪→ Di + DQgr(A), we have the weak semi-orthogonal 
decomposition DQgr(A) = 〈πA(−i − a + 1), . . . , πA(−i), Φi Dsg

gr(A)〉 when a > 0. By 
Lemma 4.4, the sequence of objects πA(−i − a + 1), . . . , πA(−i) in Dqgr(A) form an 
exceptional collection. Since the left orthogonal of an admissible category is admissible, 
and a subcategory generated by an exceptional collection is admissible, we see that the 
above decomposition is in fact semi-orthogonal. We now prove (2). Since A is Gorenstein, 
we have RHomA(k(s), A(t)) = k(a + t − s)[n] for some n ∈ Z. Since a < 0, it follows 
that, if M ∈ S<i and N ∈ P≥i, then HomDb

gr(A)(M, N) = H0(RHomA(M, N))0 = 0. 
Thus, the components of the decomposition T ⊥

i = 〈S<i, P≥i〉 from Lemma 4.2 may be 
interchanged, i.e. T ⊥

i = 〈P≥i, S<i〉. Applying Lemma 4.2 once again, and using that 
S<i−a = 〈S<i, k(−i), . . . , k(−i + a + 1)〉, we have

Db
gr(A) = 〈P≥i,S<i−a,Di−a〉 = 〈P≥i,S<i,k(−i), . . . ,k(−i+ a+ 1),Di−a〉.

We conclude that Ti = 〈k(−i), . . . , k(−i + a +1), Di−a〉. Recall from Lemma 4.2 that q :
Ti → Dsg

gr(A) is an equivalence. Letting Ψi : Dqgr(A) → Dsg
gr(A) denote the fully faithful 

embedding given by the composition Dqgr(A) + Di−a ↪→ Ti + Dsg
gr(A), we have the weak 

semiorthogonal decomposition Dsg
gr(A) = 〈qk(−i), . . . , qk(−i + a + 1), Ψi Dqgr(A)〉. It 

follows from Lemma 4.4(2) that the sequence qk(−i), . . . , qk(−i +a +1) ∈ Dsg
gr(A) forms 

an exceptional collection. Once again, since the left orthogonal of an admissible category 
is admissible, and a subcategory generated by an exceptional collection is admissible, 
the above decomposition is semi-orthogonal. !

Remark 4.5. Let A be as in Theorem 1.3 and i ∈ Z. When a ≤ 0, the embed-
ding Ψi : Dqgr(A) → Dsg

gr(A) is straightforward to describe: it sends M̃ ∈ Dqgr(A) to 
qRΓ≥i−a(M̃) ∈ Dsg

gr(A), where q : Db(A) → Dsg
gr(A) denotes the canonical map. When 

a ≥ 0, the embedding Φi : Dsg
gr(A) → Dqgr(A) is given as follows; this discussion mirrors 

that of Burke-Stevenson in [15, Section 5]. Let q(M) be an object in Dsg
gr(A). Given a 

free dg-A-module P , let P≺j denote the dg-submodule given by summands of the form 
A(s)[t] with s > −j, and let P!j := P/P≺j . Let F be a semi-free resolution of M as in 
Proposition 2.16 and G a semi-free resolution of HomA(F!i, A) as in Proposition 2.16. 
The object Φi(M) ∈ Dqgr(A) is π(HomA(G, A)≺i), where π : Db(A) → Dqgr(A) is the 
canonical map. For example, if M ∈ Perfgr(A), then F may be chosen to be finitely gen-
erated, and HomA(F!i, A) is its own semi-free resolution. Thus, Φi(M) = (F!i)≺i = 0, 
as expected.
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Remark 4.6. The assumption in Theorem 1.3 that A0 is Gorenstein and strictly commu-
tative is needed to apply Proposition 3.6 in the proof of Lemma 4.2. But, as explained 
in Remark 3.7, this hypothesis in Proposition 3.6 can be replaced with the assumption 
that A0 admits a balanced dualizing complex, in the sense of [66, Definition 4.1]; the 
same is thus true of Theorem 1.3.

Proof of Corollary 1.4. It follows by combining [53, Corollary 3.12] and [66, Corollary 
5.6] that A0 admits a balanced dualizing complex. The result therefore follows from 
Theorem 1.3 and Remark 4.6. !

Example 4.7. Theorem 1.3 applies to each of the families of Gorenstein dg-algebras dis-
cussed in Examples 2.23 through 2.27. For instance, suppose K is the Koszul complex 
on homogeneous forms f1, . . . , fc ∈ k[x0, . . . , xn], where deg(xi) = 1 for all i. Let K
denote the sheaf of dg-algebras on Pn associated to K. Recall from Example 2.23 that 
the Gorenstein parameter of K is a := n + 1 −

∑c
i=1 deg(fi). By Theorem 3.18, we 

have Dqgr(K) + Db(K), and so Theorem 1.3(3) yields fully faithful embeddings between 
Db(K) and Dsg

gr(K). As a specific example, say n = 3, c = 2, and f1 and f2 are given by 
the (non-regular) sequence x2

0−x0x3, x0x1−x0x2. Since a = 0, we have Db(K) + Dsg
gr(K).

Example 4.8. Consider the exterior algebra E =
∧

k(e0, . . . , en), considered as a dg-
algebra with trivial differential and bigrading given by bideg(ei) = (di, 1), where 
di ≥ 1 for all i. The dg-algebra E satisfies the conditions in Theorem 1.3, and we 
have RHomE(k, E) = HomE(k, E) = k(−d), where d =

∑n
i=0 di. Thus, the Gorenstein 

parameter of E is −d < 0; since Dqgr(E) = 0, we conclude that Dsg
gr(E) has a full excep-

tional collection, namely Dsg
gr(E) = 〈k, . . . , k(−d + 1)〉. It is known that Koszul duality 

yields an equivalence Dsg
gr(E) + Db(P), where P denotes the weighted projective stack 

with weights d0, . . . , dn [8, Proposition 6.3]; moreover, Db(P) is generated by the excep-
tional collection O(−d + 1), . . . , O by Theorem 1.2 and [51, Corollary 2.18]. Thus, the 
full exceptional collection of Dsg

gr(E) obtained here is a manifestation of Koszul duality.

Remark 4.9. The exceptional collections arising as the orthogonal of Dsg
gr(A) in Dqgr(A)

in Theorem 1.3(1) and of Dqgr(A) in Dsg
gr(A) in Theorem 1.3(2) need not be strong.

(1) Suppose the Gorenstein parameter a is positive, and let C denote the exceptional 
collection πA(−i − a + 1), . . . , πA(−i) ∈ Dqgr(A). The proof of Theorem 1.3 implies 
that C is strong if and only if the exceptional collection A(−i − a + 1), . . . , A(−i) ∈
Dgr(A) is strong. It is easily seen that this latter collection is strong if and only if 
Hp

j (A) = 0 for all p < 0 and j ≤ a − 1. In particular, it is strong if A is concentrated 
in cohomological degree zero, i.e. in the context of Orlov’s Theorem (Theorem 1.2). 
For an example where the collection C is not strong, let A be the Koszul complex 
on x2

0, x0x1 ∈ S = k[x0, . . . , x7]. In this case, a = 4 (Example 2.23), and H−1(A) is 
a non-zero cyclic S-module generated in internal degree 3 = a − 1; thus, C is not 
strong.
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(2) Now suppose a < 0. As in (1), the exceptional collection C = qk(−i), . . . , qk(−i +a +
1) ∈ Dsg

gr(A) is strong if and only if the exceptional collection k(−i), . . . , k(−i +a +1)
in Dgr(A) is strong. The latter collection is strong if and only if ExtpA(k, k)j = 0 for all 
p > 0 and j ≥ a +1. This need not be the case, even in the context of Orlov’s Theorem 
(Theorem 1.2): taking A = k[x]/(x3), we have a = −2, and Ext1A(k, k)a+1 = k.

(3) While the exceptional collection obtained in (2) above is not always strong, even 
in the case of Theorem 1.2, Orlov constructs a “dual” exceptional collection that is
strong in his setting: see the proof of [51, Corollary 2.9]. This exceptional collection 
has a natural analog in our context; however, it need not always be strong. In detail: 
we define Ei := A(i +a +1)/A(i +a +1)≥−a, and we consider the collection of objects 
C = E0, . . . , E−a−1 in Db

gr(A); one easily checks that this collection generates the 
same thick subcategory of Db

gr(A) as k(−i), . . . , k(−i + a + 1). Once again, this is a 
(strong) exceptional collection if and only if qE0, . . . , qE−a−1 is a (strong) exceptional 
collection in Dsg

gr(A). Fix p ∈ Z and 0 ≤ i, j ≤ −a − 1. We claim that there is an 
isomorphism HomDgr(A)(Ei, Ej [p]) ∼= Hp(Ej)−i−a−1. Indeed, let G be a semi-free 
resolution of A(i + a + 1)≥−a as in Proposition 2.16; we have HomDgr(A)(A(i + a +
1)≥−a, Ej [p]) = HomA(G, Ej [p]) = 0 for degree reasons. Applying RHomA(−, Ej [p])
to the triangle A(i + a + 1)≥−a −→ A(i + a + 1) −→ Ei −→ A(i + a + 1)≥−a[1] gives 
the desired isomorphism, and it follows immediately from this isomorphism that the 
collection C is exceptional. To see that the collection C is not always strong, suppose 
A is the Koszul complex on x2

0, x0x1, x3
2 ∈ k[x0, x1, x2]. By Example 2.23, we have 

a = −4, and a direct calculation shows that HomDgr(A)(E0, E3[−1]) ∼= H−1(E3)3 =
H−1(A)3 2= 0.

Remark 4.10. Let A be as in Setup 2.8, and suppose Dsg
gr(A) = 0. Since the object k is 

perfect and concentrated in cohomological degree 0, a (bigraded version of a) result of 
Jørgensen [39, Theorem A] implies that the cohomology of A is concentrated in cohomo-
logical degree 0. The case of Theorem 1.3 where Dsg

gr(A) = 0 thus yields no new results 
beyond those implied by Orlov’s Theorem (Theorem 1.2).

Remark 4.11. Let us suppose that A is as in Theorem 1.2, with Gorenstein parame-
ter a = 0, so that we have Dqgr(A) + Dsg

gr(A). It follows from [46, Theorem 1.1] that 
Dqgr(A) (resp. Dsg

gr(A)) is equivalent to the subcategory of compact objects in the homo-
topy category of complexes of injective objects (resp. the homotopy category of acyclic 
complexes of injective objects) in the abelian category qgr(A) defined in [5] (resp. the 
abelian category of graded A-modules). This raises the question: is the equivalence in 
Theorem 1.2(3) the induced map on compact objects arising from an equivalence of these 
larger homotopy categories? If so, does this equivalence extend to the differential graded 
setting?
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5. Application to the Lattice Conjecture

Let C be a C-linear dg-category, Ktop
∗ (C) its topological K-theory groups [13], and 

HP∗(C) its periodic cyclic homology groups; see e.g. [16, Section 3] for background on 
periodic cyclic homology of dg-categories. There is a topological Chern character map 
chtop : Ktop

∗ (C) → HP∗(C) [13, Section 4]. The Lattice Conjecture [13, Conjecture 1.7]
predicts that the complexified topological Chern character is an isomorphism when C is 
smooth and proper. We recall that a dg-category is called smooth if it is perfect as a 
C-C-bimodule, and it is proper if the total cohomology of each of its morphism complexes 
is finite dimensional over k; for instance, if X is separated of finite type over C, then the 
dg-category of perfect complexes on X is smooth and proper if and only if X is smooth 
and proper over C [52, Proposition 3.31].

Conjecture 5.1 (The Lattice Conjecture). Suppose C is smooth and proper. The topological 
Chern character map chtop induces an isomorphism Ktop

∗ (C) ⊗Z C
∼=−→ HP∗(C).

Motivation for the Lattice Conjecture comes from Katzarkov-Kontsevich-Pantev’s 
work on noncommutative Hodge theory [42]. Specifically: when C is a smooth and proper 
dg-category, Ktop

0 (C) ⊗ZQ is believed to provide the rational lattice in the (conjectural) 
noncommutative Hodge structure on HP0(C). While the Lattice Conjecture involves 
smooth and proper dg-categories, it is known to hold in many cases beyond this setting. 
The following is a list of families of dg-categories for which the Lattice Conjecture is 
known:

(1) Perf(X), for X a derived stack of finite type over C and either Deligne-Mumford 
with separated diagonal or of the form [Y/G], where Y is a quasi-separated derived 
algebraic space of finite type over C, and G is an affine algebraic group with di-
agonalizable identity component [41, Theorem A] (special cases of this result had 
previously been obtained in [13,33,45]);

(2) a connected, proper dg-algebra [45, Theorem 1.1];
(3) a connected dg-algebra A such that H0(A) is a nilpotent extension of a commutative 

C-algebra of finite type [45, Theorem 1.1];
(4) Db(X), where X is a quasi-separated derived algebraic space of finite type over C [41, 

Theorem B] (a special case of this result had previously been obtained in [17]).

As an application of Corollary 1.4, we obtain a family of additional cases of the 
Lattice Conjecture. Before we state our result, we recall that, given a dg-algebra A, 
the categories Db

gr(A), Perfgr(A), and Dsg
gr(A) arise as the homotopy categories of dg-

categories. Specifically: finitely generated dg-A-modules form a dg-category, and we may 
take the dg-quotient [20] of this dg-category by its subcategory of exact dg-modules to 
obtain a dg-category Db

gr(A)dg whose homotopy category is Db
gr(A), i.e. a dg-enhancement

of Db
gr(A). Define a dg-enhancement Perfgr(A)dg of Perfgr(A) in the same way, and then 
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take the dg-quotient of Db
gr(A)dg by Perfgr(A)dg to form a dg-enhancement Dsg

gr(A)dg
of Dsg

gr(A). Considering A as a differential Z-graded algebra by forgetting the internal 
grading, we also form the triangulated categories Db(A), Perf(A), and Dsg(A) whose 
objects are differential Z-graded A-modules with no internal grading. We define dg-
enhancements Db(A)dg, Perf(A)dg, and Dsg(A)dg of these triangulated categories just as 
above.

Theorem 5.2. Let A be as in Setup 2.8. Assume that A is Gorenstein and dimk H(A) <
∞. The Lattice Conjecture holds for the dg-categories Perfgr(A)dg, Perf(A)dg, Db

gr(A)dg, 
Db(A)dg, Dsg

gr(A)dg, and Dsg(A)dg.

Remark 5.3. Theorem 5.2 was already known for Perf(A)dg by a theorem of Kono-
valov [45, Theorem 1.1]; see (2) in the above list of known cases of the Lattice Conjecture. 
Theorem 5.2 gives an alternative proof of a special case of this result of Konovalov. 
Corollary 1.4 and Lemma 4.4 state that Dsg

gr(A) and Perfgr(A) have full exceptional 
collections, and the proof of Theorem 1.3 yields that Db

gr(A) has a semiorthogonal 
decomposition whose summands have full exceptional collections; thus, the topologi-
cal Chern character for each of these three categories is just a direct sum of copies of 
chtop : Ktop

∗ (C) → HP∗(C). The main cases of interest in Theorem 5.2 are thus Db(A)dg
and Dsg(A)dg. When A is graded commutative, the Lattice Conjecture was previously 
proven by Khan for Db(A)dg (and consequently for Dsg(A)dg as well), via different meth-
ods [41, Theorem B].

Proof of Theorem 5.2. By Corollary 1.4 and Lemma 4.4, Dsg
gr(A) and Perfgr(A) have 

full exceptional collections; it is therefore immediate that the Lattice Conjecture holds 
for Dsg

gr(A)dg and Perfgr(A)dg. By the “2 out of 3” property for the Lattice Con-
jecture [45, Theorem 1.1], we conclude that the conjecture holds for Db

gr(A)dg as 
well. Let Db

gr(A)dg/(−)Z denote the dg-orbit category associated to the grading twist 
functor (−); see e.g. [61, Page 1] for the definition of the dg-orbit category. Define 
Perfgr(A)dg/(−)Z and Dsg

gr(A)dg/(−)Z similarly. The Hom complex between objects M
and N in Db

gr(A)dg/(−)Z is given by 
⊕

i∈Z HomDb
gr(A)dg(M, N(i)) + HomDb(A)(M, N)dg, 

and similarly for Perfgr(A)dg/(−)Z. It follows that the canonical functors

Perfgr(A)dg/(−)Z → Perf(A)dg, Db
gr(A)dg/(−)Z → Db(A)dg (5.4)

induce fully faithful embeddings on homotopy categories. Observe that Perf(A) is gen-
erated by A, and Db(A) is generated by k, since dimk H(A) < ∞. Thus, the dg-
functors (5.4) are essentially surjective up to summands on homotopy categories and 
hence Morita equivalences. Applying [61, Theorem 1.5] and the “2 out of 3” property for 
the Lattice Conjecture, the conjecture holds for Perf(A)dg and Db(A)dg. By the “2 out 
of 3” property yet again, the conjecture also holds for Dsg(A)dg. !
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