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Abstract
In this paper we consider the problem of recovering a low-rank Tucker approximation
to amassive tensor based solely on structured random compressivemeasurements (i.e.,
a sketch). Crucially, the proposed random measurement ensembles are both designed
to be compactly represented (i.e., low-memory), and can also be efficiently computed
in one-pass over the tensor. Thus, the proposed compressive sensing approach may
be used to produce a low-rank factorization of a huge tensor that is too large to store
in memory with a total memory footprint on the order of the much smaller desired
low-rank factorization. In addition, the compressive sensing recovery algorithm itself
(which takes the compressive measurements as input, and then outputs a low-rank
factorization) also runs in a time which principally depends only on the size of the
sought factorization, making its runtime sub-linear in the size of the large tensor one
is approximating. Finally, unlike prior works related to (streaming) algorithms for
low-rank tensor approximation from such compressive measurements, we present a
unified analysis of both Kronecker and Khatri-Rao structured measurement ensem-
bles culminating in error guarantees comparing the error of our recovery algorithm’s
approximation of the input tensor to the best possible low-rank Tucker approximation
error achievable for the tensor by any possible algorithm.We further include an empir-
ical study of the proposed approach that verifies our theoretical findings and explores
various trade-offs of parameters of interest.
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1 Introduction

With the rapid increase in data acquisition and data-driven applications comes the
need for efficient methods to acquire, store, reconstruct, and analyze large-scale data.
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Inmany settings, this data is multi-modal, making a tensor representation themost nat-
ural. These settings range frommedical to communications to a widespread use in data
science in general [1–5]. Although the tensor is a higher mode analogue of the matrix,
linear algebraic and computational results for matrices generally do not extend beyond
twomodes.However, aswithmatrices, tensor data often has an implicit low-rank struc-
ture that can be utilized for efficient computation. In contrast to matrices, there are
several non-equivalent notions of low-rankness for tensors. Such low-rank structures
structures arise from factorizations such as Tucker, CANDECOMP/PARAFAC (CP),
tubal, and tensor train [1].

Because of the large-scale nature of tensor data – both in the number of modes
and the dimensionality of each mode – computationally efficient methods are critical
for computing such factorizations, as well as recovering the data from compressed
measurements. An ideal framework for this recovery should reduce overall memory
requirements, involve measurement schemes with fast matrix-vector multiplies, apply
to a wide range of low-rank decompositions, be robust to non-exact low-rankness,
and provide a computationally tractable, provably accurate recovery scheme. The
framework should apply to both static and streaming settings, the latter occurring
when the tensor data is being updated sequentially over time (e.g. slice by slice, entry-
wise, or rank-one updates) and when one wishes to save on space by only storing a
compressed version of the data.

1.1 Prior work

A number of papers aim to obtain low-rank tensor decompositions in a fast an effi-
cient way, often using randomization. Some of the Tucker-rank related works include
[6–9]. Here, we assume that the tensor is received as part of a stream of data, i.e.,
the complete raw tensor is not stored and we minimize the number of visits to each
tensor entry (to at most one or two times each, referring to the one-pass or two-pass
algorithms, respectively). In the earlier work [10], the authors describe a variant of
Tucker-Alternating Least Squares (aka Higher Order Orthogonal Iteration, multi-pass
scenario) that employed TensorSketch to produce the necessary measurements. How-
ever, the quality of reconstruction for iterative schemes is sensitive to the initialization
used for the factors and core, as well as requiring possibly many iterations to converge
or overcome “swamps”, a well documented issue with the ALS approach.

Herein we aim to recover a low-rank tensor from oblivious linear measurements
such as those employed in compressive sensing tasks. Some of these measurements
satisfy the Tensor Restricted Isometry Property (TRIP) and are amenable to provable
recovery by iterative algorithms like the measurements and recovery procedures dis-
cussed in [11–13]. One of the main goals of this work is to make related measurement
maps and recovery algorithms more memory-efficient by using more structured linear
measurements. It is known to be hard to design such measurements that also satisfy
the TRIP [13, 14]. As a result, in this work we employ direct recovery procedures that
allow for error analysis that does not rely on the TRIP.

In the prior work of Hendrikx and De Lathauwer [15], the authors describe an
algorithm that recovers a tensor from linear combinations of its entries where the
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measurement operations themselves are constrained to be Kronecker-structured. In
that work they give necessary and sufficient conditions for perfect recovery of exactly
low-rank tensors. They also describe some relevant heuristics and provide empirical
results for the performance of the recovery when the tensor or its measurements are
subject to white noise. Additionally they demonstrate how to adapt their method to
two other tensor formats: CP and tensor train.

In the work of Sun et al. [16], a comparable low Tucker-rank recovery procedure to
[15]was described (Algorithm4.1, Tucker Sketch).However, themeasurement ensem-
bles analyzed therein were both random and structurally less constrained, allowing for
a tractable probabilistic analysis (i.e., theGaussianmeasurements used to estimate fac-
tors in [16] were not constrained to be strictlymodewise as in theKronecker-structured
case considered in [15]). As a result, quasi-optimal low-rank approximation guarantees
for unstructured Gaussian linear measurements of the recovered tensor are proven in
expectation in [16]. Furthermore, motivated by hugememory requirements of unstruc-
tured Gaussian measurement maps analyzed therein (which will generally take up as
much storage as the data tensor itself), the authors also empirically investigate the per-
formance of more structured measurement maps constructed via Khatri-Rao products
of smaller Gaussian matrices. In those experiments they show that these Khatri-Rao
structured measurements deliver nearly as good approximations in practice as the
unstructured memory-hungry maps they analyzed theoretically, with the additional
benefit of also requiring significantly less space to store. Prior to the work of [16, 17]
applied similar ideas to develop a single-pass sketch for PCA in the two-mode (matrix)
case, but also required a Gaussian sketch. While our focus is on tensors, we expect
that our approach will also make the analysis of a wide variety of related one-pass
PCA methods for 2-mode tensors, such as those discussed in [17], more tractable.

1.2 Contribution

In this work, we further study recovery from the Kronecker and Khatri-Rao measure-
ment ensembles introduced in [15, 16]. Our analysis unifies and adds to both of these
works in several ways. First, unlike in [15], our error analysis applies in the non-exact
low-rank case, and quantifies how our low-rank approximation error bounds depend
on the relevant parameters of the problem. Second, though the overarching structure of
our theoretical analysis employs a similar strategy to that in [16], it is instead applied to
more structured, memory efficient, and difficult to analyze Kronecker and Khatri-Rao
structured measurement ensembles. The acquired measurements can then be used in
a single unified recovery method (see Algorithm 1, which effectively matches those
utilized in both [16] and [15]) to produce a low-rank factorization.

Among other differences from [16], we believe it is important to emphasize that the
more structuredmeasurement ensembles analyzedherein canoperate on the tensor data
in subtly different modewise manners than the measurements analyzed there. That is,
our measurements yield several smaller tensors whose entries are obtained by matrix-
vector operations involvingmeasurement matrices operating on various fibers or slices
of the tensor data. This can have significant practical advantages since neither the entire
original tensor nor the entire measurement operator need to be kept in working mem-
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ory in order to obtain such measurements. Additionally, besides applying the analysis
to these more structured measurement ensembles, we remove the theoretical assump-
tion in [16] that the entries of the sketching matrices are drawn independently from
a Gaussian distribution, and instead rely on a more general Johnson-Lindenstrauss
property-based analysis in order to derive with-high-probability recovery guarantees
formore generalmeasurement ensembles. The advantage of this is that there are several
well known distributions of random matrices with, e.g., fast matrix-vector multiplies
that are known to satisfy this property, and our alternate analysis makes it a straightfor-
ward exercise to derive measurement requirements and error bounds for measurement
ensembles constructed from such different choices of sketching matrices.

Theorem 5 summarizes our main results. In order to state it, we will first describe
some tensor concepts and operations related to the measurement process. The precise
statements of the results are given in Theorem39 (for genericmeasurement ensembles)
and Theorems 41 and 43 (specialized for sub-gaussian measurement ensembles).

1.3 Tensor andmeasurement preliminaries

Here we recall terminology and set notation that will be useful in describing the
tensor operations used in stating our main result and throughout this paper. For a more
thorough introduction we refer the reader to, e.g., [1, 18].
Tensor order, fibers, and unfoldings The order of a tensor is its number of modes.
That is, X ∈ R

n1×...nd is an order d tensor, or a d-mode tensor.Mode- j fibers are the
tensor analogue of rows and columns in the matrix case. They are the vectors given
by fixing all but one of the indices and varying the j-th coordinate. For example,
the 3-mode tensor tensor X ∈ R

n1×n2×n3 will have n2n3 mode-1 fibers x:, j,k ∈ Rn1

indexed by j ∈ [n2] and k ∈ [n3], n1n3 mode-2 fibers xi,:,k ∈ Rn2 indexed by i ∈ [n1]
and k ∈ [n3], and n1n2 mode-3 fibers xi, j,: ∈ Rn3 indexed by i ∈ [n1] and j ∈ [n2].
The mode- j unfolding of a tensor X ∈ R

n1×...nd is an n j ×∏d
k=1,k �= j nk matrix, X[ j],

formed by arranging the mode- j fibers of X as the columns of X[ j]. The ordering of
these columns is not important so long as it is consistent across calculations.

Inner product and norm The set of all d-mode tensorsX ∈ Rn1×...×nd forms a vector
space when equipped with component-wise addition and scalar multiplication. The
standard inner product of two tensors X ,Y ∈ Rn1×...×nd is

〈X ,Y〉 :=
∑

j1∈[n1],... jd∈[nd ]
X j1,..., jdY j1,..., jd .

The standard tensor norm is then defined by this inner product as ‖X‖2 :=√〈X ,X 〉. Note that the standard tensor inner product and norm above correspond
to the standard dot product and Euclidean norm as applied to vectorized tensors in
RN , where N = ∏d

j=1 n j .

Random variables It will also be useful to discuss probabilistic quantities. We denote
the probability that a random variable Y belongs to a set E by P(Y ∈ E). We further
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write the expectation of a random variable Y by E(Y ), and refer to E(|Y |p) as its p-th
absolute moment. The p-th root of the p-th absolute moment of a random variable Y
is also referred to as its L p norm. It is denoted by

‖Y‖L p := (E |Y |p)1/p

for all p ∈ [1,∞).

Definition 1 (Modewise product) The j-mode product of a d-mode tensor X ∈
R
n1×···×nd with a matrix � ∈ R

m j×n j is denoted as X × j �, and defined compo-
nentwise as

(X × j �
)
i1,...,i j−1,�,i j+1,...,id

=
n j∑

i j=1

��,i jXi1,...,i j ,...,id (1)

for � ∈ [m j ] and i j ∈ [n j ]. Equivalently, for the respective unfoldings,
(X × j �

)
[ j] =

�X[ j].

Additionally, we let ◦ denote the outer product of two tensors. That is, if X ∈
R
n1×···×nd and Y ∈ R

m1×···×m f , then X ◦ Y ∈ Rn1×···×nd×m1×···×m f with entries
given by (X ◦ Y) j1,..., jd ,i1,...,i f := X j1,..., jdYi1,...,i f .

1.3.1 The Tucker decomposition and low-rank approximation

Next, we define the Tucker decomposition of tensors which decomposes a tensor into
a core tensor that is multiplied by a factor matrix along each of its modes. Crucially,
this decomposition relates to the proposed modewise measurement operations in a
convenient fashion as we detail in Section 3.

Definition 2 (Tucker decomposition) LetX ∈ R
n1×···×nd . We say thatX has a Tucker

decomposition of rank r = (r1, . . . , rd) if there existsG ∈ R
r1×···×rd , andUj ∈ R

n j×r j

with orthonormal columns for all j ∈ [d], so that

X = G×1U1×2U2×3 · · ·×d Ud =
∑

i∈{(i1,...,id ) | i j∈[r j ] ∀ j∈[d]}
Gi ·u(1)

i1
◦u(2)

i2
◦· · ·◦u(d)

id
,

(2)
where u( j)

i j
denotes the i j -th column of Uj , and Gi := Gi1,...,id ∈ R. We will also use

the shorthand X = [[G,U1, . . . ,Ud ]] := G ×1U1 ×2U2 ×3 · · · ×d Ud when referring
to the rank-r Tucker decomposition of a given rank-r tensor X .

There is an equivalent formulation to (2) using unfoldings of X and of G in terms
of matrix-matrix products:

X[ j] = UjG[ j]
(
Ud ⊗ · · · ⊗Uj+1 ⊗Uj−1 ⊗ · · · ⊗U1

)T
, (3)

where ⊗ denotes the standard Kronecker matrix product (see (6) and, e.g., [19]).
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Given an arbitrary tensor X ∈ R
n1×···×nd of unknown Tucker rank it is often of

interest to compute a good rank-r approximation of X . In fact, an optimal Tucker
rank-r minimizer [[X ]]optr ∈ R

n1×···×nd satisfying

∥
∥
∥X − [[X ]]optr

∥
∥
∥
2

= inf
G∈Rr1×···×rd ,

Uj∈Rn j×r j

‖X − [[G,U1, . . . ,Ud ]]‖2 (4)

always exists (see, e.g., Theorems 10.3 and Theorem 10.8 in [20]). However, com-
puting such an [[X ]]optr (which is not unique) is generally a challenging task that is
accomplished only approximately via iterative techniques (see, e.g., [1]). As a result,
in such situations one usually seeks to instead compute a quasi-optimal rank-r tensor
X̃ satisfying

∥
∥
∥X − X̃

∥
∥
∥
2

� C inf
G∈Rr1×···×rd ,

Uj∈Rn j×r j

‖X − [[G,U1, . . . ,Ud ]]‖2 , (5)

where C ∈ R
+ is a positive constant independent of X .

The next lemma can be used to demonstrate that one can recover a quasi-optimal
rank-r approximation of an arbitrary tensor X ∈ R

n1×···×nd by simply computing the
left singular vectors of X[ j] for all j ∈ [d]. That is, the resulting modewise-defined
rank-r projection (playing the role of X̃ in (5) above) can be shown to be quasi-optimal
by first bounding the error between X[ j] and its best rank-r j projection from above by
the optimal Tucker approximation error (4) ∀ j ∈ [d]. The error between X[ j] and its
best rank-r j projection is, in turn, equal to the sumof the squares of the trailing singular
values of X[ j] ∀ j ∈ [d] by the Eckart-Young Theorem. The following related lemma
is a variant of [20, Theorem 10.3] which we prove here for the sake of completeness.

Lemma 3 Let X ∈ R
n1×···×nd , denote the i th-largest singular value of X[ j] by

σi
(
X[ j]

)
, and define �r , j := ∑ñ j

i=r+1 σi
(
X[ j]

)2
for all j ∈ [d] and r ∈

[
ñ j := min

{
n j ,

∏
j �=k nk

}]
. Fix r ∈ [ñ1] × · · · × [ñd ] and suppose that [[X ]]optr

satisfies (4). Then,
d∑

j=1

�r j , j � d
∥
∥
∥X − [[X ]]optr

∥
∥
∥
2

2
.

Proof Let Pj ∈ R
n j×n j be a rank r j orthogonal projection matrix satisfying

∥
∥X[ j] − Pj X[ j]

∥
∥2
F = �r j , j �

∥
∥X[ j] − Y

∥
∥2
F for all rank at most r j matrices Y .1

Noting that Y =
(
[[X ]]optr

)

[ j] will be a rank at most r j matrix by (3), we then have

that

�r j , j �
∥
∥
∥
∥X[ j] −

(
[[X ]]optr

)

[ j]

∥
∥
∥
∥

2

F
=

∥
∥
∥X − [[X ]]optr

∥
∥
∥
2

2
∀ j ∈ [d].

1 The Eckart-Young Theorem guarantees that we can compute such a Pj from the left singular values of
X[ j].
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Summing over the d values of j above now finishes the proof. �

Note, in order to simplify notation moving forward, we will assume that n j = n

and r j = r for all j ∈ [d]; that is our tensors will have equal side lengths and the rank
will likewise be the same in every mode, thus suppressing the need for additional level
of sub-scripting.

1.4 Kronecker products, Khatri-Rao products, and leave-one-out modewise
measurement notation and examples

We now will describe and provide some notation for the measurement operators used
throughout the rest of this paper. The general concept we are able to specialize to
several cases is the following:

Definition 4 (Leave-One-Out Measurements) Given a d-mode tensor X with side-
lengths n, leave-one-out measurements are the result of reducing all but one mode
using linear operations on the unfolding of the tensor. That is,

Bj = �( j, j)X[ j]�T− j

are leave one out measurements whenever �( j, j) ∈ R
n×n and full-rank, �− j ∈

R
m′×nd−1

where m′ � nd−1.

Any measurement process that can be equivalently described as left multiplication
of an unfolded tensor by a full-rank square matrix and right multiplied by some other
linear operator that reduces all other modes is a leave-one measurement process. We
will consider three specific cases for how to construct the overallmeasurement operator
�− j in Definition 4: Kronecker structured, Khatri-Rao structured and unstructured
measurement operators.

We will need to recall some matrix products. The Kronecker product of matrices
A ∈ R

m1×n1 and B ∈ R
m2×n2 is the matrix A ⊗ B ∈ R

m1m2×n1n2 and is defined by

A ⊗ B :=

⎡

⎢
⎢
⎢
⎣

a1,1B a1,2B . . . a1,n1B
a2,1B a2,2B . . . a2,n1B

...
...

. . .
...

am1,1B am1,2B . . . am1,n1B

⎤

⎥
⎥
⎥
⎦

. (6)

The Khatri-Rao product of two matrices is the matrix that results from computing
the Kronecker product of their matching columns. That is, for A ∈ R

m1×n and B ∈
R
m2×n , their Khatri-Rao product is the matrix A � B ∈ R

m1m2×n defined by

A � B := [
a1 ⊗ b1 a2 ⊗ b2 . . . an ⊗ bn

]
.

In this paper, we also use a so-called row-wise Khatri-Rao product (sometimes
called the face-splitting product) of A ∈ R

m×n1 and B ∈ R
m×n2 , denoted by A • B ∈
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R
m×n1n2 , and defined by (A • B)T := AT � BT . Given the close relationship between

the Khatri-Rao and face-splitting products, we will refer to both of them as being
“Khatri-Rao structured” below.

1.4.1 Kronecker structured measurements

Kronecker structured leave-one-out measurements are constructed by taking the Kro-
necker product of several component matrices, in addition to one square measurement
matrix of full-rank to be applied to the mode which is uncompressed (which may
simply be the identity). We will require leave one out measurements for each mode.
Collectively the matrices needed to define this ensemble will form a set

{
�(i, j)

}
i, j∈[d]

where �(i, j) ∈ R
m×n when j �= i , and where �(i,i) ∈ R

n×n for all i ∈ [d].
Our measurements then are

B j := X
dą

i=1

�( j,i) (7)

for all j ∈ [d] using the matrices
{
�( j,i)

}d
i=1. Crucially, we can identify this tensor

ofmeasurementsB j with a flattened versionwhichmakes it clear that Kronecker struc-
tured modewise measurements do define leave-one-out measurements conforming to
Definition 4.

B j = �( j, j)X[ j]�T− j = �( j , j)X[ j](�( j ,1) ⊗ �( j ,2) ⊗ . . . � j, j−1 ⊗ �( j, j+1) ⊗ · · · ⊗ �( j,d))
T (8)

Conceptually, the Kronecker products of matrices can be rewritten in terms of
matrix products of auxiliary matrices. This will be useful if we wish to examine
via, e.g., (3), how several modewise products change the properties of the resulting
factor matrices Uj in the Tucker decomposition of a given tensor. As an illustration,
consider the case of a three mode tensor X ∈ R

n1×n2×n3 . Let x ∈ Rn1n2n3 denote
the vectorization of X , and further suppose that � j ∈ R

m j×n j for j = 1, 2, 3 are
three measurement matrices used to produce modewise measurements of X given by
X ×1 �1 × �2 ×3 �3. Allowing for an additional reshaping, we can identify these
three modewise operations equivalently with a single matrix-vector product using a
variant of (3). That is, one can see that vec (X ×1 �1 × �2 ×3 �3) = �x where
� = �3 ⊗ �2 ⊗ �1 ∈ R

m1m2m3×n1n2n3 . Let In denote the n × n identity matrix. The
mixed-product property of the Kronecker product can now be used to further show
that in fact � = �̃3�̃2�̃1, where

�̃1 = In3 ⊗ In2 ⊗ �1 ∈ R
m1n2n3×n1n2n3 ,

�̃2 = In3 ⊗ �2 ⊗ Im1 ∈ R
m1m2n3×m1n2n3,

�̃3 = �3 ⊗ Im2 ⊗ Im1 ∈ R
m1m2m3×m1m2n3 .

Hence, vec (X ×1 �1 × �2 ×3 �3) = �̃3�̃2�̃1vec(X ). This example can be eas-
ily be extended to any number of modes.
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Computing Kronecker Structured Measurements in One Pass
Given (i1, . . . , id) ∈ [n]d letE (i1,...,id ) ∈ R

n×···×n be the canonical basis tensor defined
entrywise by

E (i1,...,id )
j1,..., jd

=
{
1 if ( j1, . . . , jd) = (i1, . . . , id)

0 else
.

Fix j ∈ [d] and let be z− j = 1 + ∑ j−1
k=1(ik − 1)nd−k−1 + ∑d

k= j+1(ik − 1)nd−k .

The mode- j unfolding of E (i1,...,i j ,...,id ) can then be given by E (i1,...,id )
[ j] = E(i j ,z− j) ∈

Rn×nd−1
which can be written entrywise by

E (i1,...,id )
[ j] = E(i j ,z− j) =

{
1 if (h, �) = (

i j , z− j
)

0 else
.

For any given tensor X ∈ Rn×···×n the flattened Kronecker measurement (7) can
now be computed via

Bj = �( j, j)X[ j]�T− j = �( j, j)

⎛

⎝
∑

(i1,...,id )∈[n]d
Xi1,...,i j ,...,id E

(i j ,z− j)

⎞

⎠�T− j

=
∑

(i1,...,id )∈[n]d
Xi1,...,i j ,...,id�( j, j)E(i j ,z− j)�T− j (9)

=
∑

(i1,...,id )∈[n]d
Xi1,...,i j ,...,id

(
�( j, j)

)
:,i j

((
�− j

)
:,z− j

)T
.

Note that (9) allows each Kronecker measurement Bj to be computed in just one
pass over the entries ofX by sequentially summingweightedouter products of columns
of�( j, j) with columns of�− j . In a streaming setting (e.g., under the “turnstile model"
[21]) the influence of entrywise increments to X on each Bj measurement can be
tracked analogously. See Algorithm 2 for an outline of this sketching procedure.

Another common choice one might make in passing through the entries of X once
would be to load it as a series of sub-tensors. For example, suppose for simplicity that
d = 3 and that we load X ∈ Rn×n×n as a series of n matrices

{X:,:,k
}
k∈[n] ⊂ Rn×n .

Fix j ∈ [3]. In this setting the Kronecker structured measurements (7) can be partially
computed easily on each submatrix since the partial Kronecker measurements

B′
j := X ×1 �( j,1) ×2 �( j,2)

will satisfy (B′
j ):,:,k = �( j,1)(X:,:,k)�T

( j,2) for all k ∈ [n]. Hence, if we define the new
tensor Ẽ (i1,i2;i3) entrywise via

Ẽ (i1,i2;i3)
j1, j2, j3

=
{(

�( j,3)
)
j3,i3

if ( j1, j2) = (i1, i2)

0 else
,
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then we can see that

B j =
∑

k

⎡

⎣
∑

i1,i2

(
�( j,1)(X:,:,k)�T

( j,2)

)

i1,i2
Ẽ (i1,i2;k)

⎤

⎦ . (10)

Note that (10) allows each Kronecker structured measurement B j to be incremen-
tally computed in just one pass over these n submatrices of X . Of course, many other
one-pass strategies for computing these measurements also exist depending on how
one wants to/can read through X .

1.4.2 Khatri-Rao structured measurements

Leave-one-out measurement ensembles which are Khatri-Rao products of smaller
maps are also possible and have been considered before in works such [16]. That is,

Bj = �( j, j)X[ j]�T− j

= �( j, j)X[ j]
(
�T

( j,1) � �T
( j,2) � . . . �T

( j, j−1) � �T
( j, j+1) · · · � �T

( j,d)

)T

= �( j, j)X[ j]
(
�( j,1) • �( j,2) • . . . �T

( j, j−1)
• �( j, j+1) . . . • �( j,d)

)T
(11)

where �( j, j) is a full-rank square matrix, and �( j,i) ∈ R
m×n for j �= i . Note that

in this case we can consider �− j ∈ R
m×nd−1

as sketching sub-tensors of size nd−1

to size m (as opposed to md−1 as was done previously with Kronecker structured
measurement maps). See Algorithm 3 for a summary of the required sketches.

Computing Khatri-Rao Structured Measurements in One Pass
Given they are linear measurements, Khatri-Rao structured measurements can also be
updated in flattened form according to (9). For additional implementational details on
computing suchmeasurements in one pass we refer the interested reader to the relevant
sections on the “Tensor Random Projection (TRP)” in [16]. Herein we primarily focus
instead on the theoretical analysis of such measurements (see, e.g., §3.3).

1.4.3 Unstructured measurements

In [22], a type of leave-one-out measurements are described and analyzed, however in
that work their measurement ensembles are not structured, but instead are Gaussian
matrices where �− j ∈ R

m×nd−1
has entries all drawn independently and is right

multiplied by an unfolding of the tensor:

Bj = �( j, j)X[ j]�T− j
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where again �( j, j) is some square, full-rank matrix.
As an important observation, the storage requirements for the sketching matrix

itself in this case is large, comparable in size to the data itself, which can be undesir-
able. Furthermore, the error analysis in [22] conducted on this type of measurement
when the unstructured matrix �− j has i.i.d. Gaussian entries relies on probabilistic
bounds known for Gaussian matrices. Comparable bounds for other distributions, or
for matrices constructed using Kronecker or Khatri-Rhao products are not covered in
the analysis. Note, Kronecker or Khatri-Rao structured measurements alleviate to a
large degree the storage problem associated with �− j ∈ R

m×nd−1
when compared to

in the unstructured case since the entire sketching matrix does not need to be main-
tained inmemory, but rather just constituent components�( j,i) ∈ R

m×n can be stored,
and the action of the Kronecker or Khatri-Rao product on the tensor can computed
as part of the sketching phase. This does incur additional operations in the sketching
phase, and in our runtime analysis and numerical experiments we detail the trade-off
between space and run-time for these various choices of measurement operators.

Computing Unstructured Measurements in One Pass
Again, unstructured measurements can also be updated in flattened form using, e.g.,
(9). Of course, the most efficient means of doing so will vary depending on the situa-
tion/application.

1.4.4 Core measurements

Regardless of which type leave-one-measurements are used for each of the modes, in
order to recover the full factorization using only a single access to the data X , we will
require an additional set of measurements for use in estimating the core. These are in
all cases, modewise, and can compress all modes.

Bc := X
dą

j=1

� j (12)

using the matrices
{
� j

}d
j=1. See Algorithm 4 for a summary of the required core

sketches.
All together then, these d + 1 measurement tensors, d of the leave-one-out type

and one of the type in (12) will be used to recover the parts of the original full tensor.
Figure 1 is a schematic rendition of the overall measurement procedure in the three
mode case (d = 3).

Note that the nd entries of the original tensorX are compressed into dnmd−1 +md
c

entries of thed+1 total differentmeasurement tensors; one leave-one-outmeasurement
for each of the d modes as well as the onemeasurement tensor for use in estimating the
core. Recovery naturally will require the storage of themeasurement operators in some
fashion along with the measurement tensors. As dense matrices, the measurement
operators collectively have d((d − 1)mn + n2) + dmcn total entries. However the
number of random variables required to generate these matrices may be significantly
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Fig. 1 Schematic for the two types of measurement tensors used in recovery Algorithm 9 for a three mode
tensor. Measurement tensors Bi of the type shown in (a) for i = 1 will be used to estimate the factors of
the Tucker decomposition, and the measurement tensor Bc in (b) will be used to estimate the core of the
Tucker decomposition

fewer depending on the method employed. For example, when using sub-sampled
Fourier transforms, the number of random bits required to construct an ensemble is
linear in n. Additionally, some choices of measurement matrices allow for near-linear
time matrix-vector multiplication. This is often accomplished by choosing matrices
that exploit either the Fast-Fourier transform, or fast Hadamard multiplication, and
will allow us to compress our tensors faster than with Gaussian measurements for
example.

As we detail, applying the measurement operators is asymptotically the most com-
putationally intensive part of the algorithm, and thus in settings where it is useful to
economize the computational effort to obtain measurements these matrices have sig-
nificant advantages. Whichever choice for type of measurements are used, however,
the efficiency in terms of the run-time of the recovery algorithm is largely dependent
on the ratios m/n and mc/n.

Computing Core Measurements in One Pass
Core measurements are another form of Kronecker structured measurements. Given
this, they can be computed in one pass using all of the same techniques already
discussed in Section 1.4.1.

1.4.5 The canonical one-pass recovery algorithm

Wecan now stateAlgorithm1 as the canonical algorithm for one-pass recovery the ten-
sor using leave-one-out measurements. The algorithm outputs an estimate in factored
formX1 = [[H, Q1, . . . , Qd ]], and we say one-pass to emphasize that after measuring
the tensor X , no additional access to the data is required to obtain the estimate X1.
The inputs to the algorithm are leave-one-out measurements Bi for each of the modes
of any type, as well as measurements Bc for use in recovering the core, some of the
related measurement operators �(i,i), �i , and a target rank r parameter. Algorithm 1
consists of two loops. The first loop recovers the factor matrices Qi in the Tucker
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factorization. The second loop depends on the output of the first loop and computes
the core H of the Tucker factorization.

Note that within the pseudo-code for Algorithm 1 the “unfold” function in the body
of Algorithm 1 takes a tensor and flattens it into the given shape by arranging the
specified mode’s fibers as the columns, e.g. H ← unfold(Bc,mc ×md−1

c ,mode = 1)
is equivalent to H ← (Bc)[1] using the notation of Section 1.3, the matrix that is
obtained by flattening the d-mode tensor Bc along mode-1. The “fold” function is the
inverse of “unfold”, and takes a matrix that is an unfolding along the specified mode
of a tensor and reshapes it into a tensor with the specified and compatible dimensions,
e.g.B ← fold(H , r ×mc × · · · × mc︸ ︷︷ ︸

d−1

,mode = 1) takes thematrix H with dimensions

r ×md−1
c and reshapes it into a d mode tensor where the first mode is of length r and

the remaining d − 1 modes are of length mc.
In the scenario where it is possible to access the original tensorX twice (we refer to

this as the two-pass scenario), we can compute the optimal core G given our estimated
factor matrices Qi to obtain an estimate X2 = [[G, Q1, . . . , Qd ]]. See Algorithm 10
and Algorithm 12 in Appendix B for the detailed formulation of the two-pass recovery
procedure.

With the measurement operators described and the canonical algorithm outlined,
we can now state a representative main result. The full unabridged results are found
in Section 3.5.

Theorem 5 (A Summary Main Result) Let X be a d-mode tensor of side length n,
ε ∈ (0, 1), δ ∈ (0, 1

3 ), and r ∈ [n] := {1, . . . , n}. Denote an optimal rank r =
(r , . . . , r) ∈ R

d (d � 2) Tucker approximation of X by [[X ]]optr . There exists a
one-pass recovery algorithm (see Algorithm 1) that outputs a Tucker factorization
X1 = [[H, Q1, . . . , Qd ]] ofX from leave-one-out linearmeasurements that will satisfy

‖X − X1‖2 � (1 + eε)

√
d(1 + ε)

1 − ε

∥
∥
∥X − [[X ]]optr

∥
∥
∥
2

(13)

with probability at least 1 − δ. The total number of linear measurements the

algorithm will use is bounded above by m′(r , d, ε, n, δ) =
[
nd + Crd2

ε2
ln

(
dnd
δ

)]

(
Crd2

ε2
ln

(
dnd
δ

))d−1
, where C > 0 is an absolute constant. Furthermore, the recov-

ery algorithm (Algorithm 1) runs in time o(nd) for large n � r .

Remark 6 More generally and more exactly, the number of measurements is always
ndmd−1+md

c wherem andmc are as in Theorem41 forKronecker structuredmeasure-
ments, or dm̃n +md

c where m̃ and mc are as in Theorem 43 in the case of Khatri-Rao
structured measurements.

Proof Combine Theorem 41 (or Theorem 43) with Theorem 42 and Lemma 3. �

Bounds that depend on the total size of the tensor are typical in similar compressive

scenarios. Our bound by contrast, although it is not tight, depends on the number of
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Algorithm 1 One Pass HOSVD Recovery from Leave-One-Out Measurements.
input :
Bi ∈ R

n×md−1
for i ∈ [d] leave-one-out measurements

�(i,i) ∈ R
n×n for i ∈ [d] full-rank sensing matrix for uncompressed mode

Bc a d mode tensor of measurements with side lengths mc

�i ∈ R
mc×n for i ∈ [d] measurement matrices for core measurements

r = (r , r , . . . , r) the rank of the HOSVD
output: X̂ = [[H, Q1, . . . Qd ]]
# Factor matrix recovery
for i ∈ [d] do

# Solve n × n linear system
Solve �(i,i)Fi = Bi for Fi
# Compute SVD and keep the r leading singular

vectors

U , 	, V T ← SVD(Fi )
Qi ← U:,:r

end
# Core recovery
for i ∈ [d] do

# unfold measurements, mode-i fibers are columns,

size mc × r (i−1)md−1−(i−1)
c

H ← unfold(Bc,mc × r (i−1)md−1−(i−1)
c ,mode = i)

# Undo the mode-i measurement operator and factor’s
action by finding least square solution to mc × r
over-determined linear system

Solve �i Qi Hnew = H for Hnew

# reshape the flattened partially solved core into
a tensor

Bc ← fold(Hnew, r × r · · · × r︸ ︷︷ ︸
i

×mc × · · · × mc︸ ︷︷ ︸
d−i

,mode = i)

# Each iteration mc → r in ith mode
end
H ← Bc

degrees of freedom of the sketched tensor and not its full size. Furthermore, in our
numerical experiments we demonstrate some of the main trade-offs involved when
choosing between Kronecker or Khatri-Rao constructed sketches in terms of approx-
imation error and performance.

Remark 7 Note that Theorem 5 guarantees that Algorithm 1 will recover an exact
Tucker factorization of any rank r tensor with high probability since the right-hand
side of (13) will be 0 in such cases. Given this, one can see that Algorithm 1 must use
�(n)-measurements. That said, if n itself is prohibitively large one could certainly
imagine, e.g., replacing the square�(i,i) ∈ R

n×n matrices in our Kronecker structured
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measurements with something else like, e.g., an m × n compressive sensing matrix
instead. Doing so for all i ∈ [d]would then indeedmakem′ scale poly-logarithmically
in n instead of linearly in n. However, doing so would also mean that one could at
best, e.g., produce a sparse approximation to an exact Tucker factorization (instead of
an exact factorization itself).

2 Preliminaries

The following preliminaries will provide the necessary definitions and basic results
needed to conduct our probabilistic error analysis of the various leave-one-out mea-
surements and Algorithm 1. We will rely heavily on some definitions in randomized
numerical linear algebra and compressive sensing.

2.1 Randomized numerical linear algebra preliminaries

Definition 8 ((ε, δ, p)-Johnson-Lindenstrauss (JL)property) Let ε > 0, δ ∈ (0, 1),
and p ∈ N. A randommatrix� ∈ R

m×n has the (ε, δ, p)-Johnson-Lindenstrauss (JL)
property2 for an arbitrary set S ⊂ R

n with cardinality at most p if it satisfies

(1 − ε) ‖x‖22 � ‖�x‖22 � (1 + ε) ‖x‖22 for all x ∈ S (14)

with probability at least 1 − δ.

For all random matrix distributions discussed in this work, only an upper-bound on
the cardinality of the set S appearing in Definition 14 is required in order to ensure
with high probability that a given realization satisfies (14). No other property of the
set S to be embedded will be required to define, generate, or apply �. Such random
matrices are referred to as data oblivious, or simply oblivious. The following variant of
the famous Johnson-Lindenstrauss Lemma [23] demonstrates the existence of random
matrices with the oblivious JL property.

Theorem 9 (sub-gaussian random matrices have the JL property) Let S ⊂ R
n be an

arbitrary finite subset of Rn. Let δ, ε ∈ (0, 1). Finally, let � ∈ R
m×n be a matrix with

independent, mean zero, variance m−1, sub-gaussian entries all admitting the same
parameter c ∈ R

+.3 Then

(1 − ε)‖x‖22 � ‖�x‖22 � (1 + ε)‖x‖22
will hold simultaneously for all x ∈ S with probability at least 1 − δ, provided that

m � C

ε2
ln

( |S|
δ

)

, (15)

2 Formally, a distribution overm×n matrices has the JL property if a matrix selected from this distribution
satisfies (14) with probability at least 1−δ. For brevity, here and in the next similar cases, the term “random
matrix” will refer to a distribution over matrices.
3 See, e.g., Remark 7.25 in [24] for details regarding sub-gaussian random variables are their parameters.
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where C � 8c(16c+1) is an absolute constant that only depends on the sub-gaussian
parameter c.

Proof See, e.g., Lemma 9.35 in [24]. �

Next, we define a similar property for an infinite, yet rank constrained, set.

2.1.1 Oblivious Subspace Embedding (OSE) results

In this section we will review so-called Oblivious Subspace Embedding property,
and describe how to construct them from any random matrix distribution with the JL
property.

Definition 10 [(ε, δ, r)-OSE property] Let ε > 0, δ ∈ (0, 1), and r ∈ N. Fix an
arbitrary rank r matrix A ∈ R

n×N . A random matrix � ∈ R
m×n has the (ε, δ, r)-

Oblivious Subspace Embedding (OSE) property for (the column space of) A if it
satisfies

(1 − ε) ‖Ax‖22 � ‖�Ax‖22 � (1 + ε) ‖Ax‖22 for all x ∈ R
N (16)

with probability at least 1 − δ.

Note that if Q ∈ R
n×r is an orthonormal basis for the column space of a rank

r matrix A ∈ R
n×N , then the images of A and Q coincide, i.e. {Qy | ∀y ∈ R

r } ={
Ax | ∀x ∈ R

N
}
. Furthermore, since Q has orthonormal columns so that ‖Qy‖2 =

‖y‖2 holds, (16) is equivalent to

(1 − ε) ‖y‖22 � ‖�Qy‖22 � (1 + ε) ‖y‖22 for all y ∈ R
r (17)

holding in this case. Below we will use the equivalence of (16) and (17) often by regu-
larly constructing matrices satisfying (16) by instead constructing matrices satisfying
(17).

The next result shows that randommatrices with the JL property also have the OSE
property. It is a standard result in the compressive sensing and randomized numerical
linear algebra literature (see, e.g., [25, Lemma 5.1] or [26, Lemma 10]) that can be
proven using an ε-cover of the appropriate column space.

Lemma 11 (Subspace embeddings from finite embeddings via a cover) Fix ε ∈ (0, 1).
Let Lr

B ⊂ R
n be the r-dimensional subspace of Rn spanned by an orthonormal basis

B, and define SrB :=
{

x
‖x‖2

∣
∣ x ∈ Lr

B \ {0}
}
. Furthermore, let C ⊂ SrB be a minimal

(
ε
16

)
-cover of SrB ⊂ Lr

B. Then if � ∈ C
m×n satisfies (14) with S ← C and ε ← ε

2 , it
will also satisfy

(1 − ε)‖x‖22 � ‖�x‖22 � (1 + ε)‖x‖22 ∀x ∈ Lr
B. (18)

Proof See, e.g., Lemma 3 in [27] for this version. �

Using Lemma 11 one can now easily prove the following corollary of Theorem 9

which demonstrates the existence of random matrices with the OSE property.
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Corollary 12 A randommatrix� ∈ R
m×n with mean zero, variance m−1, independent

sub-gaussian entries has the (ε, δ, r)-OSE property for an arbitrary rank r matrix
A ∈ R

n×N provided that

m � C
r

ε2
ln

(
C ′

εδ

)

� C

ε2
ln

(
( 47

ε
)r

δ

)

,

where C ′ > 0 is an absolute constant, and C > 0 is an absolute constant that only
depends on the sub-gaussian norms/parameters of �’s entries.

Proof As is done in Lemma 11, suppose S is a minimal ε
16 -cover of the r dimensional

unit sphere in the column span of A. The cardinaltiy of this cover is bounded by
( 47

ε

)r
.

Apply Theorem 9 to the finite set S. �


Finally, the following lemma demonstrates that matrices satisfying (16) for A also
approximately preserve the Frobenius norm of A. We present its proof here as an
illustration of basic notation and techniques.

Lemma 13 Suppose � ∈ R
m×n satisfies (16) for a rank r matrix A ∈ R

n×N . Then,

∣
∣
∣‖A‖2F − ‖�A‖2F

∣
∣
∣ � ε ‖A‖2F .

Proof Let ei ∈ R
N denote the standard basis vector where the i-th entry is 1, and all

others are zero (i.e., ei is the i-th column of the N × N identity matrix IN ). Similarly
let bi denote the i-th column of any given matrix B, and set Ã := �A. By (16), we
conclude that for all i ∈ [N ] we have

∣
∣
∣‖Aei‖22 − ‖�Aei‖22

∣
∣
∣ � ε ‖Aei‖22 .

To establish the desired result, we represent the squared Frobenius norm of a matrix
as the sum of the squared �2-norms of its columns. Doing so, we see that

∣
∣
∣‖A‖2F − ‖�A‖2F

∣
∣
∣ =

∣
∣
∣
∣
∣

N∑

i=1

(
‖ai‖22 − ‖ãi‖22

)
∣
∣
∣
∣
∣

�
N∑

i=1

∣
∣
∣‖ai‖22 − ‖ãi‖22

∣
∣
∣

=
N∑

i=1

∣
∣
∣‖Aei‖22 − ‖(�A)ei‖22

∣
∣
∣ � ε

N∑

i=1

‖Aei‖22 = ε ‖A‖2F .

�


Wewill nowdefine a property of randommatrices related to fast approximatematrix
multiplication.
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2.1.2 The Approximate Matrix Multiplication (AMM) property

First proposed in [26, Lemma6] (see also, e.g., [28] for other variants), the approximate
matrix multiplication property will be crucial to our analysis below.

Definition 14 ((ε, δ)-AMM property) Let ε > 0 and δ ∈ (0, 1). A random matrix
� ∈ R

m×n satisfies the (ε, δ)-Approximate Matrix Multiplication property for two
arbitrary matrices A ∈ R

p×n and B ∈ R
n×q if

‖A�T�B − AB‖F � ε‖A‖F‖B‖F (19)

holds with probability at least 1 − δ.

The following lemma can be used to construct random matrices with the AMM
property from random matrices with the JL property. A slightly generalized version
is proven in Appendix A for the sake of completeness.

Lemma 15 (The JL property provides the AMM property) Let A ∈ R
p×n and B ∈

R
n×q . There exists a finite set S ⊂ R

n with cardinality |S| � 2(p + q)2 (determined
entirely by A and B) such that the following holds: If a random matrix � ∈ R

m×n

has the (ε/2, δ, 2(p + q)2)-JL property for S, then � will also have the (ε, δ)-AMM
property for A and B.

Proof Combine Lemma 48 with Remark 45. �

Using Lemma 15 one can now prove the following corollary of Theorem 9 which

demonstrates the existence of random matrices with the AMM property for any two
fixed matrices.

Corollary 16 Fix A ∈ R
p×n and B ∈ R

n×q . A random matrix � ∈ R
m×n with mean

zero, variance 1
m , independent sub-gaussian entries will have the (ε, δ)-Approximate

Matrix Multiplication property for A and B provided that

m � C

ε2
ln

(
2(p + q)2

δ

)

,

where C > 0 is an absolute constant that only depends on the sub-gaussian
norms/parameters of �’s entries.

Proof Apply Theorem 9 to the finite set S guaranteed by Lemma 15. �

We now present a capstone definition for this section that will be useful in our

analysis of the general measurement ensembles considered herein.

2.1.3 Projection Cost Preserving (PCP) sketches

The following property first appeared in the form below in [29, Definition 1] (see also,
however, [30, Definition 13] for the statement of an equivalent property in a different
form that appeared earlier).
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Definition 17 (A (ε, c, r)-Projection Cost Preserving (PCP) sketch) Let ε, c > 0,
and r ∈ N. A matrix X̃ ∈ R

n×m is a (ε, c, r)-PCP sketch of X ∈ R
n×N if for all

orthogonal projection matrices P ∈ R
n×n with rank at most r ,

(1 − ε) ‖X − PX‖2F �
∥
∥
∥X̃ − P X̃

∥
∥
∥
2

F
+ c � (1 + ε) ‖X − PX‖2F (20)

holds.

The next lemma can be used to construct random matrices that are PCP sketches
of a given matrix X with high probability. Before the lemma can be stated, however,
we will need one additional definition.

Definition 18 (Head-Tail Split) For any A ∈ R
m×n , we can split A into his leading

r -term and its tail (n − r)-term Singular Value Decomposition (SVD) components.
That is, consider the SVD of A = U	V T . For any r � rank(A), let Ur ∈ R

m×r and
Vr ∈ R

n×r denote the first r columns of U ∈ R
m×m and V ∈ R

n×n , respectively.
We then define Ar := UrUT

r A = AVrV T
r to be A’s best rank r approximation with

respect to ‖ · ‖F . Furthermore, we denote the tail term by A\r := A − Ar .

One can now see that random matrices with the OSE and AMM properties for
matrices derived from X ∈ R

n×N will also be PCP sketches of X with high proba-
bility. Variants of the following result are proven in [31, 32]. We include the proof in
Appendix A.2 for the sake of completeness.

Theorem 19 (Projection-Cost-Preservation via the AMM and OSE properties) Let
X ∈ R

n×N of rank r̃ � min{n, N } have the full SVD X = U	V T , and let Vr ′ ∈ R
N×r ′

denote the first r ′ columns of V ∈ R
N×N for all r ′ ∈ [N ]. Fix r ∈ [n] and consider

the head-tail split X = Xr + X\r . If � ∈ R
m×N satisfies

1. subspace embedding property (16) with ε ← ε
3 for A ← XT

r ,
2. approximate multiplication property (19) with ε ← ε

6
√

min{r ,r̃} for A ← X\r and
B ← Vmin{r ,r̃},

3. JL property (14) with ε ← ε
6 for S ← {the n columns of XT\r }, and

4. approximate multiplication property (19) with ε ← ε

6
√
r
for A ← X\r and B ←

XT\r ,

then X̃ := X�T is an (ε, 0, r)-PCP sketch of X.

Proof See Appendix A.2. �

The following lemma can be used to construct PCP sketches from randommatrices

with the JL property.

Lemma 20 (The JL property provides PCP sketches) Let X ∈ R
n×N have rank r̃ �

min{n, N }. Fix r ∈ [n]. There exist finite sets S1, S2 ⊂ R
N (determined entirely by X)

with cardinalities |S1| �
( 141

ε

)min{r ,r̃}
and |S2| � 16n2 + n such that the following

holds: If a random matrix � ∈ R
m×N has both the

(
ε
6 ,

δ
2 ,

( 141
ε

)r)
-JL property for S1
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and the
(

ε

6
√
r
, δ
2 , 16n

2 + n
)
-JL property for S2, then X�T will be an (ε, 0, r)-PCP

sketch of X with probability at least 1 − δ.

Proof To ensure property 1 of Theorem 19 we can appeal to Lemma 11 to see that
� being an (ε/6)-JL-embedding of a minimal

(
ε
48

)
-cover of the at most min{r , r̃}-

dimensional unit ball in the column space of XT
r will suffice. Letting S1 be this

aforementioned
(

ε
48

)
-cover, we can further see that |S1| � (141/ε)min{r ,r̃} by the

proof of Corollary 12. Hence, if � ∈ R
m×N has the

(
ε
6 ,

δ
2 ,

( 141
ε

)r)
-JL property for

S1, then property 1 of Theorem 19 will be satisfied with with probability at least 1− δ
2 .

Applying Lemma 15 one can see that there exist sets S′
2, S

′′
2 ⊂ RN with |S′

2| �
2(n + min{r , r̃})2 � 8n2 and |S′′

2 | � 2(n + n)2 = 8n2 such that an (ε/6
√
r)-JL-

embedding of S′
2 ∪ S′′

2 will satisfy both properties 2 and 4 of Theorem 19. Hence,
since r � 1, we can see that an (ε/6

√
r)-JL-embedding of S2 := S′

2 ∪ S′′
2 ∪ S will

satisfy Theorem 19 properties 2 – 4, where S is defined as per property 3. Noting
that |S2| � |S′

2| + |S′′
2 | + |S| � 16n2 + n, we can now see that � will satisfy

all of Theorem 19’s properties 2 – 4 with probability at least 1 − δ
2 if it has the

(
ε

6
√
r
, δ
2 , 16n

2 + n
)
-JL property for S2.

Concluding, the prior two paragraphs in combination with the union bound imply
that all of Theorem 19’s properties 1 – 4 will hold with probability at least 1 − δ

if � has both the
(

ε
6 ,

δ
2 ,

( 141
ε

)r)
-JL property for S1 and the

(
ε

6
√
r
, δ
2 , 16n

2 + n
)
-JL

property for S2. An application of Theorem 19 now finishes the proof. �

Using Lemma 20 one can now prove the following corollary of Theorem 9 which

demonstrates the existence of a PCP sketch for any fixed matrix X .

Corollary 21 Fix X ∈ R
n×N and r ∈ [n]. Let � ∈ R

m×N be a random matrix with
mean zero, variance 1

m , independent sub-gaussian entries. Then, X�T will be an
(ε, 0, r)-PCP sketch of X with probability at least 1 − δ provided that

m � C
r

ε2
max

{

ln

(
C1

εδ

)

, ln

(
C2n

δ

)}

,

where C1,C2 > 0 are absolute constants, and C > 0 is an absolute constant that
only depends on the sub-gaussian norms/parameters of �’s entries.

Proof Apply Theorem 9 to the finite set S1 guaranteed by Lemma 20 with ε ← ε
6 and

δ ← δ
2 . Similarly, apply Theorem 9 to the finite set S2 guaranteed by Lemma 20 with

ε ← ε

6
√
r
and δ ← δ

2 . The result now follows by Lemma 20. �


We finish here by noting that Corollary 21 is just one example of a PCP sketching
result that one can prove with relative ease using Lemma 20. Indeed, Lemma 20 can
be combined with other standard results concerning more structured matrices with
the JL property (see, e.g., [33–36]) to produce similar theorems where � has a fast
matrix-vector multiply.
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3 The proofs of our main results

The objective is to show that we can retrieve a accurate low rank Tucker approximation
of a tensor X via Algorithm 1 from valid sets of linear leave-one-out and core mea-
surements as described in Section 1.4. We will denote the approximation of X output
by Algorithm 1 asX1 here to emphasize that a single pass over the original data tensor
X suffices in order to compute the linear input measurements required by Algorithm
1. Hence, Algorithm 1 in this setting is an example of a streaming algorithm which
doesn’t need to store a copy the original uncompressed tensor X in memory in order
to successfully approximate it. Nonetheless, we wish to show that this algorithm still
produces a quasi-optimal approximation ofX in the sense of (5) with high probability
when given such highly compressed linear input measurements. Particular choices for
measurement ensembles will make explicit the dependence on other parameters of the
problem (these choices define specializations of Algorithm 1, and are summarized as
Algorithm 9 and 11 in Appendix B).

More specifically, in this section we will show that with high probability for a given
d-mode tensor X , error tolerance ε > 0, and chosen rank truncation parameter r , that

‖X − X1‖2 � (1 + eε)

√
√
√
√1 + ε

1 − ε

d∑

j=1

�r , j (21)

will hold whenever Algorithm 1 is provided with sufficiently informative input mea-
surements. Here the �r , j are defined as per Lemma 3, and “sufficiently informative”
means that (i) the leave-one-out measurements used to form X1 are of sufficient size
to satisfy several PCP properties, and that (i i) the core measurements used to formX1
are of sufficient size to ensure the accurate solution of least squares problems com-
puted as part of Algorithm 1. Finally, we note that one can see from (21) together with
Lemma 3 that Algorithm 1 will perfectly recover exactly low Tucker-rank tensors if
the rank parameter r is made sufficiently large.

In order to prove that (21) holds, we will need to also consider a weaker variant
of Algorithm 1 which permits a second pass of the data tensor X . These weaker
algorithms will first compute estimates of the factors of the tensor Qi as Algorithm
1 does, but thereafter will be allowed to use those factors to operate on the original
tensor X in order to approximate its core (see Algorithms 10 and 12). We denote
the estimate of the tensor that results from this procedure as X2 to emphasize that it
requires a second accesses to the original data during core recovery. Note that such
two-pass algorithms are of less practical value in the big data and compressive sensing
settings since it is often not possible to directly access the data tensor again after the
initial compressed measurements have been taken in these scenarios. Nevertheless,
this two-pass estimate will be extremely useful when proving (21). In particular, our
proof will result from the following triangle inequality:

‖X − X1‖2 = ‖X − X1 + X2 − X2‖2 � ‖X − X2‖2︸ ︷︷ ︸
Term I

+‖X1 − X2‖2︸ ︷︷ ︸
Term II

. (22)
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BoundingTerm I in (22)will be the subject of Section 3.1.Aswe shall see, bounding
Term I is straightforward if we have that leave-one-out measurements imply various
PCP properties; and so the main work of Sections 3.2 and 3.3 will be to demonstrate
how, for the structured choices of measurement operators considered herein, we can
ensure that the PCP property is satisfied. Bounding Term II, on the other hand, will
require us to apply a bound on the error incurred by solving sketched least square
problems on a carefully partitioned re-expression of the Term II error. That argument
is the subject of Section 3.4. Finally, we combine our analysis of these two error terms
along with particular choices for measurement operators to state the full versions of
our main results in Section 3.5.

3.1 Bounding ‖X − X2‖2
In the two pass scenario, we first compute estimates for the factor matrices, Qi (see
Algorithm 5), using leave-one-out measurements Bi for each i ∈ [d]. Then, using
these factor matrices, we wish to solve

argmin
H

‖X − [[H, Q1, Q2, . . . , Qd ]]‖2 .

One can see that the solution will be

G := X ×1 QT
1 ×2 QT

2 · · · ×d QT
d

(see, e.g., [37]). Let
X2 := G ×1 Q1 ×2 Q2 · · · ×d Qd (23)

denote the estimate obtained from a two-pass recovery procedure (i.e., Algorithm 10
or 12). Additionally, we note the following fact about modewise products (see, e.g.,
[18, Lemma 1]):

X ×i A ×i B = X ×i (BA).

As a result, if we are permitted a second pass over X to compute the core we have
that

X2 = G ×1 Q1 ×2 Q2 · · · ×d Qd

=
(
X ×1 QT

1 ×2 QT
2 · · · ×d QT

d

)
×1 Q1 ×2 Q2 · · · ×d Qd

= X ×1 Q1Q
T
1 ×2 · · · ×d Qd Q

T
d

Using this expression we can now bound the two pass error term ‖X − X2‖2.
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Theorem 22 (Error bound for Two-Pass ‖X − X2‖2) Suppose X̃[ j] := X[ j]�T− j ∈
R
n×md−1

are (ε, 0, r)-PCP sketches of X[ j] for each j ∈ [d]. If Q j ∈ R
n×r for r � m

are factor matrices obtained from Algorithm 5, then

‖X − X2‖2 =
∥
∥
∥X − X ×1 Q1Q

T
1 ×2 · · · ×d Qd Q

T
d

∥
∥
∥
2

�

√
√
√
√1 + ε

1 − ε

d∑

j=1

�r , j . (24)

Proof Since the Qi QT
i are orthogonal projectors, we have by [38, Theorem 5.1] that

∥
∥
∥X − X ×1 Q1Q

T
1 ×2 · · · ×d Qd Q

T
d

∥
∥
∥
2

2
�

d∑

j=1

∥
∥
∥X − X × j Q j Q

T
j

∥
∥
∥
2

2
. (25)

From Algorithm 5 (recalling that �−1
( j, j)Bj = X[ j]�T− j = X̃[ j]), we have that the

Q j ’s are the best rank-r approximations for their respective sketched problems, since

Q j = argmin
rank(Q)=r

QT Q=Ir

∥
∥
∥X̃[ j] − QQT X̃[ j]

∥
∥
∥
F

by the Eckart-Young Theorem.
Now suppose that each Uj ∈ R

n×r forms an optimal rank r approximation to X[ j]
in the sense that

Uj = argmin
rank(U )=r
UT U=Ir

∥
∥
∥X[ j] −UUT X[ j]

∥
∥
∥
F

.

By the hypothesis that X̃[ j] is a (ε, 0, r)-PCP sketch of X[ j], we have that

(1 − ε)

∥
∥
∥X − X × j Q j Q

T
j

∥
∥
∥
2

2
= (1 − ε)

∥
∥
∥X[ j] − Q j Q

T
j X[ j]

∥
∥
∥
2

F

�
∥
∥
∥X̃[ j] − Q j Q

T
j X̃ j

∥
∥
∥
2

F

�
∥
∥
∥X̃[ j] −UjU

T
j X̃[ j]

∥
∥
∥
2

F

� (1 + ε)

∥
∥
∥X[ j] −UjU

T
j X[ j]

∥
∥
∥
2

F
= (1 + ε)�r , j ,

where we have used the definition of (ε, 0, r)-PCP sketches in the first and third
inequalities. After a rearrangement of terms, substituting the above into (25) now
yields the inequality in (24). �


We have now established in Theorem 22 that we have a quasi-optimal error bound
for Term I in (22) whenever our leave-one-out measurement matrices �T− j yield
(ε, 0, r)-PCP sketches of all d unfoldings X j . Next, we will demonstrate how to
ensure that Kronecker structured and Khatri-Rao structured leave-one-out measure-
ment matrices provide PCP sketches.
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3.2 PCP Sketches via Kronecker-structured leave-one-out measurement matrices

In this sectionwe studywhenKronecker-structuredmeasurementmatriceswill provide
the PCP property. To begin we will show that the JL and OSE properties are inherited
under matrix direct sums and compositions. These are useful facts because our overall
leave-one-out matrices can be constructed using these operations. In particular, we
will follow the example in the last paragraph of Section 1.4.1 and consider a matrix
�− j ∈ R

md−1×nd−1
defined as

�− j =
d⊗

i=1
i �= j

�i =
d−1∏

i ′=1

�̃i ′ for �i ∈ R
m×n (26)

where

�̃i ′ := In ⊗ · · · ⊗ In︸ ︷︷ ︸
d−1−i ′

⊗ �i j (i ′) ⊗ Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i ′−1

∈ R
mi ′nd−1−i ′×mi ′−1nd−i ′

(27)

for

i j (i
′) :=

{
i ′ if i ′ < j

i ′ + 1 if i ′ � j
.

Here, In denotes an n × n identity matrix.
The next three lemmas will be used to help show that �− j as defined in (26)

inherits both the JL and OSE properties from its component �i matrices. Having
established this, we can then use, e.g., Lemma 20 to prove PCP sketching results for
such Kronecker-structured �− j .

Lemma 23 Suppose that �1 ∈ R
m1×N1 and �2 ∈ R

m2×N2 are two random matrices.
Denote their matrix direct sum by � = �1 ⊕ �2 ∈ R

(m1+m2)×(N1+N2). Then,

1. If �1 and �2 are (ε, δ1, p) and (ε, δ2, p)-JLs respectively, then � is an
(ε, δ1 + δ2, p)-JL.

2. If �1 and �2 are (ε, δ1, r) and (ε, δ2, r)-OSEs respectively, then � is an
(ε, δ1 + δ2, r)-OSE.

Proof Part 1.: Consider a set S ⊂ R
N1+N2 with cardinality p. Let z ∈ S. Group the

first N1 coordinates of z into x ∈ R
N1 and the last N2 coordinates of z into y ∈ R

N2 .
Observe that

‖�z‖22 =
∥
∥
∥
∥

[
�1 0
0 �2

] [
x
y

]∥
∥
∥
∥

2

2
= ‖�1x‖22 + ‖�2y‖22 � (1 + ε)

(‖x‖22 + ‖y‖22
) = (1 + ε) ‖z‖22

will hold whenever both ‖�1x‖22 � (1 + ε)‖x‖22 and ‖�2y‖22 � (1 + ε)‖y‖22 hold.
The (1− ε)-distortion lower bound is similar. As a result, we can use the union bound
to see that � will have the (ε, δ1 + δ2, p)-JL property.
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Part 2.: Suppose X ∈ R
n×(N1+N2) has rank r . Let X1 and X2 denote the sub-

matrices of X containing the first N1 and last N2 columns of X , respectively. Note
that both X1 and X2 have at most rank r . Furthermore, note also that

∥
∥
∥�XT y

∥
∥
∥
2

2
=

∥
∥
∥
∥

(
�1X

T
1

�2X
T
2

)

y

∥
∥
∥
∥

2

2
� (1 + ε)

(∥
∥
∥XT

1 y
∥
∥
∥
2

2
+

∥
∥
∥XT

2 y
∥
∥
∥
2

2

)

= (1 + ε)

∥
∥
∥XT y

∥
∥
∥
2

2
.

will hold for any arbitrary vector y ∈ R
n whenever both ‖�1XT

1 y‖22 � (1+ε)‖XT
1 y‖22

and ‖�2XT
2 y‖22 � (1+ε)‖XT

2 y‖22 hold. The (1−ε)-distortion lower bound is similar.
As a result, we can see that � will be an (ε, δ1 + δ2, r)-OSE by the union bound. �


Note that there is no requirement that�1 and�2 need to be independent in Lemma
23. This is crucial for the next lemma, which will involve many copies of the same
measurement matrix.

Lemma 24 (Direct Sums Inherit the OSE and JL Properties) For some i ′ ∈ [d − 1],
let �̃i ′ be defined as in (27) and set � := �i j (i ′) ∈ R

m×n.

1. If� has the
(
ε, δ

mi ′−1nd−i ′−1 , r
)
-OSE property, then �̃i ′ will have the (ε, δ, r)-OSE

property.

2. If � has the
(
ε, δ

mi ′−1nd−i ′−1 , p
)
-JL property, then �̃i ′ will have the (ε, δ, p)-JL,

property.

Proof First consider the rearrangement of �̃i ′ in (27) defined as follows

�̃ := Im ⊗ Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i ′−1

⊗ In ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
d−1−i ′

⊗ �.

Note that the Kronecker product of two identity matrices is itself an identity matrix.
Thus, we can rewrite this as simply

�̃ = Im ⊗ Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i ′−1

⊗ In ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
d−1−i ′

⊗ � =

⎡

⎢
⎢
⎢
⎣

� 0 . . . 0
0 � . . . 0

0 0
. . . 0

0 0 . . . �

⎤

⎥
⎥
⎥
⎦

.

That is, we have a block diagonal matrix with m̄ = mi ′−1nd−i ′−1 copies of� along
its diagonal. Thus, if � has either the (ε, δ/m̄, r)-OSE or the (ε, δ/m̄, p)-JL property,
repeated applications of Lemma 23 will then establish the desired OSE or JL properity
for �̃.
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Now consider �̃i ′ as in (27). There exist unitary (permutation) matrices L and R
which interchange rows and columns such that

L�̃R = L

⎛

⎜
⎝Im ⊗ Im ⊗ · · · ⊗ Im︸ ︷︷ ︸

i ′−1

⊗ In ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
d−1−i ′

⊗ �

⎞

⎟
⎠ R

= L
(
Imi ′−1nd−1−i ′ ⊗ �

)
R = In ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸

d−1−i ′
⊗ � ⊗ Im ⊗ Im ⊗ · · · ⊗ Im︸ ︷︷ ︸

i ′−1

= Ind−1−i ′ ⊗ � ⊗ Imi ′−1 = �̃i ′ .

Noting that both the OSE and JL properties are invariant to unitary transformations
of a given randommatrix, one can now see that �̃i ′ = L�̃R will indeed have the same
desired OSE or JL property as was established for �̃. �


Lemma 24 allows us to infer JL and OSE properties of the �̃i ′ matrices in (27) from
the properties of the smaller random matrices �i ∈ R

m×n appearing in (26). The next
lemma will allow us to then use these inferred properties of the �̃i ′ matrices to derive
OSE and JL properties for �− j from (26) in terms of the properties of its component
�i ∈ R

m×n .

Lemma 25 (A Composition Lemma for the OSE and JL Properties) Let ε ∈ (0, 1)

and �̃i ′ ∈ R
mi ′nd−1−i ′×mi ′−1nd−i ′

for i ′ ∈ [d − 1].
1. If �̃i ′ is an

(
ε

2(d−1) ,
δ

d−1 , r
)
-OSE for all i ′ ∈ [d − 1], then �̃ =

d−1∏

i ′=1
�̃i ′ is an

(ε, δ, r)-OSE.

2. If �̃i ′ is an
(

ε
2(d−1) ,

δ
d−1 , p

)
-JL for all i ′ ∈ [d − 1], then �̃ =

d−1∏

i ′=1
�̃i ′ is an

(ε, δ, p)-JL.

Proof Part 1.: Let Y T ∈ R
nd−1×n be an arbitrary matrix of rank at most r . Denote

Ỹi ′ =
(
�̃i ′ . . . �̃1

)
Y T ∈ R

mi ′nd−1−i ′×n for i ′ ∈ [d − 1]. Note that each Ỹi ′ has rank at
most r . Fix some z ∈ R

n . Suppose for the moment that (16) holds for each i ′ ∈ [d−1]
with � = �̃i ′ , A = Ỹi ′−1, and x = z, we have that

∥
∥
∥�̃Y T z

∥
∥
∥
2

2
=

∥
∥
∥�̃d−1

(
�̃d−2 . . . �̃1

)
Y T z

∥
∥
∥
2

2

=
∥
∥
∥�̃d−1Ỹd−2z

∥
∥
∥
2

2

�
(

1 + ε

2(d − 1)

)∥
∥
∥Ỹd−2z

∥
∥
∥
2

2

=
(

1 + ε

2(d − 1)

)∥
∥
∥�̃d−2Ỹd−3z

∥
∥
∥
2

2

...
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�
(

1 + ε

2(d − 1)

)d−1 ∥
∥
∥Y T z

∥
∥
∥
2

2

�
(

1

1 − ε/2

)∥
∥
∥Y T z

∥
∥
∥
2

2

� (1 + ε)

∥
∥
∥Y T z

∥
∥
∥
2

2
,

where we have used the general bound (1 + k/n)n � ek � (1 − k)−1 for k ∈ [0, 1)
in the second to last inequality. Similarly, for a lower bound one can see that

∥
∥
∥�̃Y T z

∥
∥
∥
2

2
�

(

1 − ε

2(d − 1)

)d−1 ∥
∥
∥Y T z

∥
∥
∥
2

2

� (1 − ε)

∥
∥
∥Y T z

∥
∥
∥
2

2
.

Union bounding over the failure probability that (16) holds for each i ′ ∈ [d − 1]
as supposed above now yields the desired result.

Part 2.: An essentially identical arguments also applies to obtain the desired JL
property result. �


We now have all the necessary results to show how the component maps �i of a
Kronecker structured measurement ensemble as per (26) can guarantee a Kronecker
sketch with the projection cost preserving property.

Theorem 26 (Kronecker Products of JL matrices yield PCP Sketchs) Let ε ∈ (0, 1),
X ∈ R

n×nd−1
have rank r ∈ [n], and �− j ∈ R

md−1×nd−1
be defined as in (26) and

(27). Furthermore, suppose that the �i ∈ R
m×n in (26) have both the

1.
(

ε
12(d−1) ,

δ
2(d−1)nd−2 ,

( 141
ε

)r)
-JL property, and the

2.
(

ε

12
√
r(d−1)

, δ
2(d−1)nd−2 , 16n

2 + n
)
-JL property

for all i ′ ∈ [d − 1]. Then, X�T− j will be an (ε, 0, r)-PCP sketch of X with probability
at least 1 − δ.

Proof By Lemma 20 we know that X�T− j will be an (ε, 0, r)-PCP sketch of X with

probability at least 1 − δ if �− j has both the
(

ε
6 ,

δ
2 ,

( 141
ε

)r)
-JL property and the

(
ε

6
√
r
, δ
2 , 16n

2 + n
)
-JL property. In fact, by Lemma 25 we can further see that it

suffices to have the �̃i ′ from (26) and (27) have both the

1.
(

ε
12(d−1) ,

δ
2(d−1) ,

( 141
ε

)r)
-JL property, and the

2.
(

ε

12
√
r(d−1)

, δ
2(d−1) , 16n

2 + n
)
-JL property

for all i ′ ∈ [d − 1]. Finally, looking now at Lemma 24 for each i ′ ∈ [d − 1] we can
see that the assumed properties of the �i ∈ R

m×n in (26) will guarantee both of these
sufficient conditions. �
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The following corollary of Theorem 26 guarantees a Kronecker sketch with the
projection cost preserving property when the component matrices �i in (26) are sub-
gaussian random matrices.

Corollary 27 (Kronecker Products of sub-gaussian Matrices Yield PCP Sketches)
Suppose X is a real valued d-mode tensor with side-lengths all equal to n. Let
ε ∈ (0, 1), δ ∈ (0, 1), r ∈ [n], j ∈ [d]. If �− j = ⊗d

i=1
i �= j

�i ∈ R
md−1×nd−1

defined

as in (26) with random matrices �i ∈ R
m×n having i.i.d centered variance m−1,

sub-gaussian entries such that

m � max

{
C1r(d − 1)2

ε2
ln

(
nd (d − 1)

δ

)

,
C2(d − 1)2

ε2
ln

((
141

ε

)r nd−2(d − 1)

δ

)}

for absolute constants C1,C2 > 0 then the sketched unfolding X̃[ j] = X[ j]�T− j ∈
R
n×md−1

is an (ε, 0, r)-PCP sketch of X[ j] with probability at least 1 − δ.

Proof To obtain the first quantity maximized over we apply Theorem 9 with ε ←
ε

12
√
r(d−1)

, δ ← δ
2(d−1)nd−2 , and |S| ← 16n2 + n. Similarly, for the second quantity

maximized over we apply Theorem 9 with ε ← ε
12(d−1) , δ ← δ

2(d−1)nd−2 , and |S| ←
( 141

ε

)r
. The result now follows from Theorem 26. �


Remark 28 Note that Theorem 26 is quite general, requiring only that the random
matrices�i in (26) should be drawn from some distribution having a couple JL proper-
ties. As a result of this generality, its Corollary 27 concerning sub-gaussian component
matrices turns out to be sub-optimal by (at least a) factor of d in that setting. To obtain
a slightly sharper result in d for sub-gaussian�i we recommend replacing our implicit
use of Lemma 24 in the proof of Corollary 27 (via Theorem 26) with [39, Lemma 14]
instead.

Remark 29 One might wonder how our Corollary 27 based on a Kronecker product
construction compares to a denseGaussian sketchwithoutKronecker structure. Indeed
using dense Gaussian improve the sketching dimension from md−1 to m. The reason
is that the sketch we apply to each mode needs to have roughly the same JL-moment
guarantees as to that of the final sketch.

However, applying a dense Gaussian sketch has some drawbacks. For example, it
naively requires�(nd) random bits to store the sketching matrix. One could of course
try to improve this using, e.g., a pseudorandom number generator. However, each, e.g.,
matrix entry would then need to be queried every time the sketch was applied, which
could incur substantial overhead. In contrast, since none of our sketching matrices
require too much memory, we could keep them loaded in uncompressed form on, e.g.,
a GPUwheremultiplication with streaming updates could be handledmore efficiently.

3.3 PCP sketches via Khatri-Rao structured leave-one-out measurement matrices

In this section we study how to ensure that Khatri-Rao structured leave-one-out mea-
surement matrices will provide the PCP property. To start we will first show that
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random Khatri-Rao structured measurement maps, denoted in this section by

�− j = 1

m
�1 • �2 • . . . � j−1 • � j+1 • �d where �i ∈ R

m×n ∀i ∈ [d] \ { j},

will have the JL property whenever all their component matrices �i have i.i.d. sub-
gaussian entries. Having established this, we can then use, e.g., Lemma 20 to prove
PCP sketching results for such Khatri-Rao Structured �− j .

Theorem 30 Let ε > 0, 0 < δ � e−2, and �− j = 1
m�1 • �2 • . . . � j−1 • � j+1 • �d

where all the �i ∈ R
m×n for i ∈ [d] \ { j} have i.i.d. mean zero, variance one,

sub-gaussian entries. Then �− j is an (ε, δ, k)-JL whenever

m � Cd−1 max

{

ε−2 log
k

δ
, ε−1

(

log
k

δ

)d−1
}

for a constant C ∈ R+ that depends only on the sub-gaussian norm of the i.i.d.
�i -entries.

The proof of Theorem 30 largely follows the argument proposed in Section 2 of [40]
concerning the so-called p-moment JL property of Khatri-Rao structured measure-
ments. We note that Kronecker products of sub-gaussian vectors are not sub-gaussian
in general, so the general idea is to use Markov’s inequality for higher moments of the
norm of �− jy with a fixed y ∈ R

n to obtain the desired result. To proceed with the
argument, we will need the following two concentration results.

Lemma 31 [Lemma 19 in [39]] LetY be a d−1mode tensors with side lengths of size
n, p � 1, and � j (i, :) ∈ R

n for j ∈ [d − 1], i ∈ [m] be independent random vectors
each satisfying the Khintchine inequality

∥
∥〈� j (i, :), y〉

∥
∥
L p � Cp ‖y‖2 for any vector

y ∈ R
n where Cp a constant depending only on p. Then

‖〈�1(i, :) ⊗ �2(i, :) ⊗ · · · ⊗ �d−1(i, :), vec(Y)〉‖L p � Cd−1
p ‖Y‖2 .

Lemma 32 (Corollary 2 in [41]) If p � 2 and Z , Z1, . . . , Zm are i.i.d symmetric
random variables then we have

∥
∥
∥
∥
∥

m∑

i=1

Zi

∥
∥
∥
∥
∥
L p

� C sup
s∈[max{2, p

m },p]

{
p

s

(
m

p

)1/s

‖Z‖Ls

}

.

Here C > 0 is an absolute constant.

In particular, we will utilize the following corollary of Lemma 32.

Corollary 33 If under conditions of Lemma 32, in addition, we know that ‖Z‖Ls �
(Cs)d−1, then

∥
∥
∥
∥
∥

1

m

m∑

i=1

Zi

∥
∥
∥
∥
∥
L p

� Cd−1 max

{

2d−1

√
p

m
,
(pe)d−1

m

}

.
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Proof The proof of this corollary loosely follows the argument presented in [40]. Since
‖Z‖Ls � (Cs)d−1, Zi ∼ Z , the expression over which we are taking the supremum
in Lemma 32 is a function whose derivative with respect to s is non-decreasing. That
is, the derivative

∂

∂s

[
p

s

(
m

p

)1/s

sd−1

]

= psd−4
(
m

p

)1/2 (

(d − 2)s − log
m

p

)

has at most a single root in the interval of interest at s = log m
p

d−2 . Noting the sign change
at this root, we conclude that the maximum value must occur at the endpoints of the
interval, and cannot occur at the critical point that is interior to the interval. Evaluating
the function of interest at s = 2 we obtain 2d−2√mp; we will further upper-bound this
by 2d−1√mp in order to simplify analysis for the right endpoint. Additionally, since
we are interested only in an upper bound, we need not evaluate the possible endpoint
s = p

m , since if 2 <
p
m , we are increasing the interval over which we are maximizing

by instead considering s = 2.
We will now bound the expression at the right endpoint when s = p � 2. Clearly

(1/p)1/p � 1 thus

(
m

p

)1/p

pd−1 � m1/p pd−1.

If the function value at the right endpoint actually dominates 2d−1√mp (i.e., our
upper bound of the function value at the left endpoint), we will have thatm1/p pd−1 �
2d−1√mp must hold. We will now use this assumption to remove the dependence on
m in our current upper bound for the function value at the right endpoint after noting
that doing so will still yield a valid upper bound whenever the functions value at the
right endpoint fails to already be bounded by 2d−1√mp.

Proceeding as planned, our assumption yields that

m1/2−1/p �
( p

2

)d−1
p−1/2.

Rearranging of terms, we get that

m1/p �
[( p

2

)d−1
p−1/2

] 2
p−2

=
[( p

2

) 2d−2
p−2

]

p
−1
p−2 .

The factor p
−1
p−2 is less than one. A tedious calculation reveals that

( p
2

) 2d−2
p−2 is

decreasing for all p � 2, and therefore m1/p bounded by lim p→2
( p
2

) 2d−2
p−2 = ed−1.

maximizing over our two upper bounds and then averaging over m, we obtain the
desired inequality. �
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Now we are ready to give a formal proof of Theorem 30.

Proof of Theorem 30 Note that the result is unchanged for any choice of mode to leave
out, so we will shorten the notation and work with � := �− j within this proof. Let
K be the sub-gaussian norm of an entry in the � j ’s. We aim to bound the probability
that ∣

∣
∣
∣
1

m
‖�x‖22 − ‖x‖22

∣
∣
∣
∣ � ε‖x‖22 for a fixed x ∈ R

nd−1
.

Without loss of generality, assume ‖x‖2 = 1. Furthermore, note that

1

m
‖�x‖22 − 1 = 1

m

m∑

i=1

[
〈�(i, :), x〉2 − 1

]
. (28)

Now, since the entries of each� j are i.i.d. mean zero and variance one sub-gaussian
random variables, they satisfy Khintchine’s inequality (see, e.g., [42]) in the form

∥
∥〈� j (i, :), y〉

∥
∥
L p � CK

√
p ‖y‖2 for any fixed y ∈ R

n .

By Lemma 31, this implies that the rows of � satisfy a generalized Khintchine’s
inequality in the form

‖〈�(i, :), x〉‖L p = ∥
∥〈�1(i, :) ⊗ �2(i, :) ⊗ . . . ⊗ �d−1(i, :), x〉

∥
∥
L p � (C ′ p) d−1

2 ‖x‖2 ,

(29)
where C ′ is a new constant that only depends on K .
To bound the L p-norm of the sum in (28) we will now bound the L p-norm of each

summand. Using the centering Lemma 49 and continuing to estimate for one term we
see that

∥
∥
∥〈�(i, :), x〉2 − 1

∥
∥
∥
L p

� 2
∥
∥
∥〈�(i, :), x〉2

∥
∥
∥
L p

= 2 ‖〈�(i, :), x〉‖2L2p

= 2 ‖〈�1(i, :) ⊗ �2(i, :) ⊗ . . . ⊗ �d−1(i, :), x〉‖2L2p

(29)
� 2((C ′2p)

d−1
2 )2 ‖x‖22 � (C ′′ p)d−1 ‖x‖22 = (C ′′ p)d−1.

We would now like to apply Corollary 33 to help bound the L p-norm of the sum
in (28). However, we need to symmetrize our random variables first. Toward that end,
define

Zi = ρi

(
〈�(i, :), x〉2 − 1

)
, (30)

where ρi are i.i.d. Rademacher random variables. Note that ‖Zi‖L p = ‖(〈�(i, :), x〉2 − 1
) ‖L p � (C ′′ p)d−1.

Appealing now to Corollary 33 we have that,

∥
∥
∥
∥
∥

1

m

m∑

i=1

Zi

∥
∥
∥
∥
∥
L p

� (C ′′)d−1 max

{

2d−1

√
p

m
,
(pe)d−1

m

}

(31)
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for any p � 2. The upper bound in [43, Lemma 6.3] then further implies that

∥
∥
∥
∥
∥

1

m

m∑

i=1

[〈�(i, :), x〉2 − 1
]
∥
∥
∥
∥
∥
L p

� 2

∥
∥
∥
∥
∥

1

m

m∑

i=1

Zi

∥
∥
∥
∥
∥
L p

� 2(C ′′)d−1 max

{

2d−1

√
p

m
,
(pe)d−1

m

}

.

Employing Markov’s inequality, we finally have that

P

{∣
∣
∣
∣
∣

1

m

m∑

i=1

[
〈�(i, :), x〉2 − 1

]
∣
∣
∣
∣
∣
� ε

}

= P

{∣
∣
∣
∣
∣

1

m

m∑

i=1

[
〈�(i, :), x〉2 − 1

]
∣
∣
∣
∣
∣

p

� ε p

}

� (C ′′′)p(d−1)
max

{
(
p
m )p/2,

(pe)p(d−1)

mp

}

ε p
.

Taking p = log(k/δ) and m � C̃d−1 max
{
ε−2 log k

δ
, ε−1

(
log k

δ

)d−1
}
, the last

expression is upper bounded by δ/k. Hence, � is an (ε, δ, k)-JL by the union bound
over k vectors. �

Remark 34 In order to employ Lemmas 31 and 32, it is necessary that the rows� j (i, :)
have independent and identical distributions and that these rows satisfy Khintchine’s
inequality. Assuming that thematrices�i all have i.i.d sub-gaussian entries as we have
done in Theorem 30 implies both these necessary properties of the rows. However,
we note that more general (though perhaps less natural) assumptions will also suffice.
For example, the distributions of the i.i.d sub-gaussian entries of the �i may also vary
by column.

We can now use Theorem 30 to derive row bounds that guarantee that our Khatri-
Rao structured sub-gaussian measurement matrices will provide PCP sketches with
high probability.

Theorem 35 Let ε > 0, 0 < δ � e−2, and X be a d mode tensor with side-lengths
equal to n. Furthermore, suppose that �− j := 1

m�1 • �2 • . . . � j−1 • � j+1 • . . . • �d

where the �i ∈ R
m×n for i ∈ [d] \ { j} are as in Theorem 30 with

m � Cd−1 max

⎧
⎨

⎩
ε−2 log

( 141
ε

)r

δ/2
, ε−1

(

log

( 141
ε

)r

δ/2

)d−1

,
r

ε2
log

17n2

δ/2
,
r

ε

(

log
17n2

δ/2

)d−1
⎫
⎬

⎭

(32)
for a positive constant C ∈ R+. Then, X̃[ j] = X[ j]�T− j will be an (ε, 0, r)-PCP
sketch of X[ j] with probability at least 1 − δ.

Proof By Lemma 20 we know that it suffices for the measurement matrix�− j to have

both the
(

ε
6 ,

δ
2 ,

( 141
ε

)r)
-JL property and

(
ε

6
√
r
, δ
2 , 16n

2 + n
)
-JL property. Combining

these two required JL properties with Theorem 30 yields (32) after combining and
simplifying constants. �
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We can now see that both Kronecker and Khatri-Rao structured measurements
can satisfy the PCP property required by Theorem 22. This demonstrates that such
memory-efficient measurements may be used to bound the first term in (22) as desired.
Given this partial success, we will now turn our attention to the second term in (22).

3.4 Bounding ‖X1 − X2‖2
Next, we show how to bound Term II in (22). Recall thatX1 is the output of Algorithm
1, and that X2 is the tensor recovered by the two-pass algorithm consisting of the
first “Factor matrix recovery” phase of Algorithm 1 followed by the second pass core
recovery procedure discussed in Section 3.1. That is, X1 := [[H, Q1, . . . , Qd ]] is the
single-pass estimate of the tensor X output by Algorithm 1, and

X2 = G ×1 Q1 ×2 · · · ×d Qd = X ×1 Q1Q
T
1 ×2 · · · ×d QdQ

T
d ,

where G is the core estimate from the two-pass algorithm, and where the Qi ∈ R
n×r

have r orthonormal columns.
To begin, we note that the one-pass core H computed by Algorithm 1 can be

recovered from its input measurements by

H = Bc ×1 (�1Q1)
† ×2 · · · ×d (�d Qd)

†

= (X ×1 �1 ×2 · · · ×d �d) ×1 (�1Q1)
† ×2 · · · ×d (�d Qd)

†. (33)

In addition, we note that the norm of the difference between the two estimates
is the same as the norm of the difference of their cores since factor matrices have
orthonormal columns.

Lemma 36 In the notation outlined above,

‖X1 − X2‖2 = ‖H − G‖2 .

Proof

‖X1 − X2‖2 = ‖H ×1 Q1 ×2 · · · ×d Qd − G ×1 Q1 ×2 · · · ×d Qd‖2
= ‖(H − G) ×1 Q1 ×2 · · · ×d Qd‖2
= ‖(Q1 ⊗ · · · ⊗ Qd)vec (H − G)‖2
= ‖H − G‖2

since (Q1 ⊗ · · · ⊗ Qd) has orthonormal columns. �


In order to simplify the presentation of our culminating results we next state a
definition for an Affine-Embedding property. In Lemma 40 below we then describe
how this property relates to the OSE and AMM properties.
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Definition 37 ((ε, r , N )-AE property) Let ε > 0, and r ∈ N, fix Q ∈ R
n×r an

arbitrary matrix with orthonormal columns and an arbitrary matrix B ∈ R
n×N . A

matrix � ∈ R
m×n is an (ε, r , N )-Affine Embedding (AE) for given matrices Q and

B if it satisfies ∥
∥
∥(�Q)†�B

∥
∥
∥
F

� (1 + ε) ‖B‖F . (34)

With this definition in hand, we are now able to prove the main theorem of this
section. It will allow us to relate Term II of (22) with Term I.

Theorem 38 Let X2 = [[G, Q1, . . . , Qd ]] denote the two-pass tensor estimate, and
X1 = [[H, Q1, . . . , Qd ]] denote the single-pass tensor estimate for a d-mode tensor
X . Furthermore, let ε ∈ (0, 1), and �i ∈ R

mc×n be a (ε/d, r , ni−1rd−i )-AE for the
matrices Qi and

(
X[i] − (X2)[i]

)⊗i−1
j=1 In

⊗d
j=i+1

(
� j Q j

)†
� j for each i ∈ [d].

Then,
‖X1 − X2‖2 � eε ‖X − X2‖2 . (35)

Proof By Lemma 36 it is enough to estimate the difference between the cores G and
H. He have that

H − G (33)= (X ×1 �1 ×2 · · · ×d �d) ×1 (�1Q1)
† ×2 · · · ×d (�d Qd)

† − G
= ((X − X2) ×1 �1 ×2 · · · ×d �d) ×1 (�1Q1)

† ×2 · · · ×d (�d Qd)
†

+ (X2 ×1 �1 ×2 · · · ×d �d) ×1 (�1Q1)
† ×2 · · · ×d (�d Qd)

† − G
= (X − X2) ×1 (�1Q1)

†�1 ×2 · · · ×d (�d Qd)
†

+ G ×1 (�1Q1)
†�1Q1 · · · × (�d Qd)

†�d Qd − G
= (X − X2) ×1 (�1Q1)

†�1 ×2 · · · ×d (�d Qd)
†�d .

Now consider the following related mode-i unfolding for i ∈ [d], where
(
� j Q j

)†
� j for j < i is replaced with an n × n identity matrix In ,

X ′
i := (

X[i] − (X2)[i]
) i−1⊗

j=1

In

d⊗

j=i+1

(
� j Q j

)†
� j . (36)

Each �i is an (ε/d, r , ni−1rd−i )-AE, where Q ← Qi and B ← X ′
i , for i =

1, 2, . . . , d. Thus,

‖H − G‖2 =
∥
∥
∥
∥
∥
∥
(�1Q1)

† �1
(
X[1] − (X2)[1]

) d⊗

j=2

(
� j Q j

)†
� j

∥
∥
∥
∥
∥
∥
F

�
(
1 + ε

d

) ∥
∥X ′

1

∥
∥
F

...
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�
(
1 + ε

d

)d ∥
∥X ′

d

∥
∥
F

� eε ‖X − X2‖2 ,

where we have used Definition 37 d-times together with the bound
(
1 + ε

d

)d � eε .�


3.5 Putting it all together with row bounds

In the previous subsections we have demonstrated that we can bound both error terms
in (22) when the leave-one-out and core measurements satisfy certain embedding
properties. In particular, we have shown how the Johnson-Lindenstrauss property
(Definition 8) can be used to obtain both the Oblivious Subspace Embedding (Defini-
tion 10) and an Approximate Matrix Multiplication properties (Definition 14). These
two properties are then used with compositions and direct sums to show how a tensor
unfolding will satisfy a Projection Cost Preserving property (Definition 17), which
was the essential ingredient in bounding the error term ‖X − X2‖2. Next, we intro-
duced Affine-Embeddings (Definition 37), which are the crucial ingredient needed for
bounding the error term ‖X1 − X2‖2. In this section we will show how JL and OSE
properties imply the AE property. All together then, these will enable us to verify the
requirements of Theorem 39 in a straightforward manner once we have specified the
type of leave-one-out measurements, and the particular type of sensing matrices.

Theorem 39 (Error bound for one-pass) Let X1 = [[H, Q1, . . . , Qd ]] denote the
single-pass tensor estimate for a d-mode tensor X with side length n obtained from
Algorithm 1 using leave-one-out linear measurements Bi for i ∈ [d], and core mea-
surements Bc. Let ε > 0 and δ ∈ (0, 1/2). Then,

‖X1 − X‖2 � (1 + eε)

√
√
√
√1 + ε

1 − ε

d∑

j=1

�r , j where �r , j :=
ñ j∑

i=r+1

σi
(
X[ j]

)2 (37)

will hold whenever

1. �(i,i) ∈ R
n×n are full-rank matrices for all i ∈ [d],

2. �−1
(i,i)Bi = X[i]�T− j ∈ R

n×md−1
are (ε, 0, r)-PCP sketches of X[i] for each i ∈ [d],

and
3. �i ∈ R

mc×n is an (ε/d, r , ni−1rd−i )-AE for the matrices Qi and X ′
i as in (36)

for all i ∈ [d].

Proof Recalling (22) we have that

‖X1 − X‖2 = ‖X1 − X + X2 − X2‖2 � ‖X − X2‖2︸ ︷︷ ︸
Term I

+‖X1 − X2‖2︸ ︷︷ ︸
Term II

. (38)
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We know from Theorem 22 that

‖X − X2‖2 �

√
√
√
√1 + ε

1 − ε

d∑

j=1

�r , j (39)

whenever X[ j]�T− j ∈ R
n×md−1

are (ε, 0, r)-PCP sketches of X[ j] for each j ∈ [d].
Furthermore, Theorem 38 together with our third assumption implies that

‖X1 − X2‖2 � eε ‖X − X2‖2 . (40)

Using (39) and (40) in (22) now yields the desired result. �

We now have need for the lemma that links the AE property to the JL and OSE

properties, and thus provides the necessary machinery to fully account for row bounds
that guarantee with high probability that the recovered tensor satisfies the stated bound
in Theorem 39.

Lemma 40 Let B ∈ R
n×N and suppose that Q ∈ R

n×r , n � r , has orthonormal

columns. If� ∈ R
m×n is an

( 1
2 , δ, r

)
-OSE for Q, and has the

(
ε

2
√
r
, δ

)
-AMMproperty

for QT and (I − QQT )B, then � will be an (ε, r , N )-AE for the matrices Q and B
with probability at least 1 − 2δ.

Proof Denote Ỹ := (�Q)†�B and Y ′ := QT B, the solutions to the sketched and
un-skechted linear least square problems given by minimizing ‖�B − �QY‖F and
‖B − QY‖F , respectively, with respect to Y . Whenever � is a (1/2, δ, r)-OSE for Q
we know that �Q will be full-rank. It follows that (�Q)T�(B − QỸ ) = 0 will then
also hold because (�Q)† = [

(�Q)T (�Q)
]−1

(�Q)T . As a consequence,

QT�T�Q(Ỹ − Y ′) = QT�T�Q(Ỹ − Y ′) + (�Q)T�(B − QỸ )

= QT�T�(QỸ − QY ′ + B − QỸ )

= QT�T�(B − QY ′).

When the approximate matrix multiplication property also holds we will now have
that

∥
∥
∥(�Q)T�Q(Ỹ − Y ′)

∥
∥
∥
F

=
∥
∥
∥QT�T�(B − QY ′)

∥
∥
∥
F

=
∥
∥
∥QT�T�(I − QQT )B

∥
∥
∥
F

� ε

2
√
r

∥
∥
∥QT

∥
∥
∥
F

∥
∥
∥(I − QQT )B

∥
∥
∥
F

(41)

= ε

2

∥
∥
∥(I − QQT )B

∥
∥
∥
F

= ε

2

∥
∥B − QY ′∥∥

F .

Furthermore, whenever � is a
( 1
2 , δ, r

)
-OSE for the column space of Q, all the

eigenvalues of QT�T�Q − I will be within the interval [−1/2, 1/2]. Thus, we can
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bound its operator norm
∥
∥QT�T�Q − I

∥
∥ � 1/2.Wemay now combine this operator

norm bound with (41) and see that

∥
∥
∥Ỹ − Y ′

∥
∥
∥
F

=
∥
∥
∥(Ỹ − Y ′) − (�Q)T�Q(Ỹ − Y ′) + (�Q)T�Q(Ỹ − Y ′)

∥
∥
∥
F

�
∥
∥
∥(�Q)T�Q(Ỹ − Y ′)

∥
∥
∥
F

+
∥
∥
∥
[
(�Q)T�Q − I

]
(Ỹ − Y ′)

∥
∥
∥
F

� ε

2

∥
∥
∥(I − QQT )B

∥
∥
∥
F

+
∥
∥
∥
[
(�Q)T�Q − I

]∥
∥
∥
∥
∥
∥Ỹ − Y ′

∥
∥
∥
F

� ε

2

∥
∥
∥(I − QQT )B

∥
∥
∥
F

+ 1

2

∥
∥
∥Ỹ − Y ′

∥
∥
∥
F

.

Rearranging the inequality above while noting the invariance of the Frobenius norm
to multiplication by a matrix with orthogonal columns, we learn that

∥
∥
∥Ỹ − Y ′

∥
∥
∥
F

=
∥
∥
∥Q(Ỹ − Y ′)

∥
∥
∥
F

� ε

∥
∥
∥(I − QQT )B

∥
∥
∥
F

.

To finish, we may now apply the triangle inequality to see that

∥
∥
∥Ỹ

∥
∥
∥
F

�
∥
∥
∥Ỹ − Y ′

∥
∥
∥
F

+ ∥
∥Y ′∥∥

F

� ε

∥
∥
∥(I − QQT )B

∥
∥
∥
F

+
∥
∥
∥QT B

∥
∥
∥
F

� ε

∥
∥
∥(I − QQT )

∥
∥
∥ ‖B‖F +

∥
∥
∥QT

∥
∥
∥ ‖B‖F

= (1 + ε) ‖B‖F .

In addition, we note that taking a union bound over the two necessary OSE and
AMM conditions establishes the stated probability guarantee. �


Weare now prepared to state how a particular choice of distribution used to generate
our measurement matrices as well as the leave-one-out measurement type (Kronecker
or Khatri-Rao) can satisfy the error bound (37) with high probability. Note that below
Algorithms 9 and 11 refer to the specialization of Algorithm 1 to the type of leave-
one-out measurement (Kronecker or Khatri-Rao, respectively).

Theorem 41 (Error bound for one-pass Kronecker-structured sub-gaussian measure-
ments) Suppose X is a d-mode tensor with side length n. Let ε > 0, δ ∈ (0, 1

3 ),
r ∈ [n]. Furthermore, let
1. �(i,i) ∈ R

n×n be arbitrary full-rank matrices,
2. �(i, j) ∈ R

m×n for i �= j be random matrices with mutually independent, mean
zero, variance m−1, sub-gaussian entries with

m � max

{
C1r(d − 1)2

ε2
ln

(
ndd2

δ

)

,
C2(d − 1)2

ε2
ln

((
141

ε

)r nd−2d2

δ

)}

, and
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3. �i ∈ R
mc×n be random matrices with mutially independent, mean zero, variance

m−1, sub-gaussian entries with

mc � max

{

C3 ln

(
(94)r d

δ

)

,
C4rd2

ε2
ln

(
d(r + nd−1)2

δ

)}

. (42)

Then X1 = [[H, Q1, . . . , Qd ]] the output of Algorithm 9 (i.e., Algorithm 1 spe-
cialized to Kronecker sub-gaussian measurements Bi and Bc), will satisfy (37) with
probability at least 1 − 3δ.

Proof We verify that the requirements of Theorem 39 are satisfied. Note that:

1. �(i,i) ∈ R
n×n are full-rank matrices by assumption.

2. We have from Corollary 27 where δ ← δ
d that X[ j]�T− j is a (ε, 0, r)-PCP sketch

of X[ j] for all j ∈ [d] with probability at least 1 − δ when �(i, j) ∈ R
m×n are

independent sub-gaussian random matrices with

m � max

{
C1r(d − 1)2

ε2
ln

(
ndd2

δ

)

,
C2(d − 1)2

ε2
ln

((
141

ε

)r nd−2d2

δ

)}

.

3. A substitution of ε ← 1
2 , δ ← δ

d into Corollary 12 yields,

mc � C3 ln

(
(94)r d

δ

)

(43)

in order to ensure �i is ( 12 ,
δ
d , r)-OSE. Using Corollary 16, where ε ← ε

2d
√
r
,

δ ← δ
d and noting that the matrices Qi and X ′

i as in (36) have are r × n and
n × ni−1rd−i , respectively, we have that when

mc � C4rd2

ε2
ln

(
2d(r + nd−1)2

δ

)

(44)

then �i has the ( ε

2d
√
r
, δ
d )-AMM property for each i ∈ [d]. Lemma 40 now shows

how the OSE and AMM properties ensure that �i has the desired AE property for
each i ∈ [d] with probability at least 1− 2δ/d. The union bound now implies that
the third requirement of Theorem 39 will hold with probability at least 1 − 2δ.

Taking a maximum over (43) and (44) after simplifying and adjusting constants
then yields (42). A final union bound over the failure probabilities for requirements
of �(i, j) and �i now yields the result. �


The following runtime analysis demonstrates that instances of Algorithm 1 can
indeed recover low-rank approximations of d-mode tensors of side length n in o(nd)-
time. As a result, one can see that Algorithm 1 is effectively a sub-linear time recovery
algorithm for a large class of low Tucker-rank tensors.
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Theorem 42 Suppose that m < n < md−1 and that m > Cmc for some absolute
constant C > 0. Then, Algorithm 9, when given the Bi and Bc measurements as input,
runs inO(dn2md−1) − time and requires the storage of dnmd−1 +md

c measurement
tensor entries, and at most d(d−1)mn+n2+dmcn total measurement matrix entries.

Proof Inside the factor matrix recovery loop of Algorithm 5, called by Algorithm 9,
the two main sub-tasks are to solve the linear system �(i,i)Fi = Bi and to compute a
truncated SVD, Fi = U	V T . Solving the linear system can be accomplished using
QR-factorization via Householder orthogonalization. Doing so requires 4

3n
3 floating

point operations to compute the factorization of �(i,i), and 2n2md−1 operations to
form QT Bi and n2md−1 operations to solve RFi = QT Bi via back substitution. The
complexity of computing the SVD is O(nmd−1 min(n,md−1)). Therefore the factor
recovery loop has overall complexity

O(dn2md−1)

if we assume that n < md−1.
Next we consider the core recovery loop. for the first iteration of the loop of Algo-

rithm 8, we must form �1Q1 at a cost of O(mcnr). Next we solve a linear system
�1Q1H = B1 at a cost of O(2mcr2 − 2

3r
3 + 3md

c r). The first iteration dominates
the complexity, since subsequent solves use a smaller right hand side formed from
solutions from the previous iterations. Furthermore, if we assume mc = O(m), we
have a core recovery loop with complexity

O(dmdr).

Thus overall the recovery algorithm has O(dn2md−1) complexity. In the situation
where �(i,i) = In then the computation of the SVDs in the factor recovery step
dominates the run-time of the algorithm. Clearly the size of the measurement tensors
are nmd−1 per factor and md

c for the core, which yields the space complexity of the
measurements. �


One of the advantages of the structure of the argument in Theorem 39 is that once
it is known how to ensure a given random matrix will satisfy the JL property, we
can (with the help of Lemma 40) account for how to assemble related measurement
operators that satisfy the error bound (37) in a straightforward way. For example,
using Theorem 3.1 in [33] along with bounds appearing in that work on the sketching
dimension, we have that a sub-sampled and scrambled Fourier matrix is a (ε, δ, p)-JL
of vectors inRn provided that

m � C

ε2
log

( p

δ

)
log4 n.

Using such existing results one can easily update Theorem 41 to instead use
sub-sampled and scrambled Fourier measurement matrices �(i, j) and �i instead of
matrices with independent sub-gaussian entries.
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Furthermore, it need not be the case that the distribution is the same for each
componentmap�(i, j) or�i . It is important only that eachmap satisfies the JLprimitive
for arbitrary sets. We are free to choose a measurement map for a particular mode to
suit some other purpose. For example, in the case that the side lengths of the tensor
are unequal, we may prefer to choose a map that admits a fast matrix-vector multiply
in order to economize run-time for the modes which are long, and on smaller modes,
choose maps which have better trade-offs for quality of approximation in terms of m
(e.g., we may prefer dense sub-gaussian random matrices for these modes).

On the other hand, a measurement ensemble which does not rely on the Kronecker
product of components, like that in Theorem 30, does not admit this sort of reasoning.
Mixing measurement maps of different kinds in that case has no clear advantage, and
indeed, may even serve to undermine the advantages.

Theorem 39 can still be used to provide Khatri-Rao structured leave-one-out
measurement results. Verifying the requirements of Theorem 39 for Khatri-Rao mea-
surements using Theorem 35 yields the following result.

Theorem 43 (Error bound for one-pass Khatri-Rao structured sub-gaussian measure-
ments) Suppose X is a d-mode tensor with side length n, Let ε > 0, δ ∈ (0, 1

3 ),
r ∈ [n]. Furthermore, let
1. �(i,i) ∈ R

n×n be full-rank matrices of any kind,
2. �(i, j) ∈ R

m̃×n for i �= j be random matrices with mutually independent, mean
zero, variance m̃−1, sub-gaussian entries with

m̃ � Cd−1 max

{

ε−2 ln

(( 141
ε

)r
2d

δ

)

, ε−1

(

ln

(( 141
ε

)r
2d

δ

))d−1

,

r

ε2
ln

(
34n2d

δ

)

,
r

ε

(

ln

(
34n2d

δ

))d−1}

,

and
3. �i ∈ R

mc×n be random matrices with mutually independent, mean zero, variance
m−1, sub-gaussian entries with

mc � max

{

C3 ln

(
(94)r d

δ

)

,
C4rd2

ε2
ln

(
d(r + nd−1)2

δ

)}

.

Then X1 = [[H, Q1, . . . , Qd ]] the output of Algorithm 11 (i.e., Algorithm 1 spe-
cialized to Khatri-Rao sub-gaussian leave-one-out measurements Bi and Kronecker
measurements Bc) will satisfy (37) with probability at least 1 − 3δ.

Proof The proof is again based on verifying the requirements of Theorem 39.

1. The first requirement is satisfied by assumption.
2. The row requirement for the �(i, j) follows from an application of Theorem 35

with δ ← δ/d. As a result of doing so, we learn that the second requirement will
be satisfied with probability at least 1 − δ after a union bound.
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3. The third requirement is satisfied identically to the argument in the proof of The-
orem 41.

The proof now concludes identically to the proof of Theorem 41. �

Comparing the Theorem 42, we note, e.g., that Theorem 43 will require the storage

of dm̃n + md
c measurement tensor entries (where the m̃ here is from the second

condition of Theorem 43). Comparing this to the dnmd−1 + md
c measurements from

Theorem 42 (where m here is as in Theorem 41) one can see that there are parameter
regimes where Khatri-Rao structured measurements will lead to a smaller overall
measurement budget.

4 Numerical experiments

In this section we present numerical results that support our theoretical contributions
and address practical trade-offs involved in the different choices for measurement
type. (Code and resulting data are available at https://github.com/cahaselby/leave_
one_out_recovery.) Unless otherwise specified, the tensors in the experiments are
random three-mode cubic tensors, with side length n = 300 and rank r = 10. We
use the following procedure (same as in [16]) to generate low-rank tensors; the core’s
entries are uniformly and independently drawn from [0, 1] and the factors are formed
by first sampling a standard normal distribution for each entry and then normalized
andmade orthogonal using QR-factorization. The data points in the plots are themean
of 100 independent trials. The parameterm refers to the sketching dimension for maps
�(i, j) ∈ R

m×n used in recovering factor Qi . For the left-out mode we remove the
need to solve the full n × n linear system by setting �(i,i) to be the n × n identity
matrix. The parameter mc refers to the sketching dimension for �i ∈ R

mc×n which
are used in recovering the core H.

In experiments with noise, the additive Gaussian noise tensorN is scaled according
to the desired signal to noise ratio and added to the true, (low-rank) tensor X0. That
is, X = X0 + N is the observed, noisy tensor.

Signal to noise ratio (SNR) is calculated as 10 log10 (‖X‖2 / ‖X0 − X‖2). Relative
error is calculated as (‖X̂ − X‖2)/ ‖X0‖2 where X̂ is the full estimated tensor.

4.1 Recovering low-rank tensors

In this first simple experiment, we fix the signal to noise ratio at 30 decibels (dB)
and vary the sketching dimension m to show the dependence on the accuracy of
our estimate on the number of measurements. For each m we set mc = 2m. Rank
truncation is fixed at r = 10, which matches the rank of the true, noiseless tensor
X0, see Fig. 2. For the plot (b) in the figure, we have the maximum principal angle
among the three estimated factors and true factors (Qi ,Ui ) in degrees, see [44]. Note,
there is no straightforward way to plot the relative error which is due to the factor
estimates vs. the core estimate, because the decomposition will in general not be
unique. However, since principal angle is invariant to non-singular transformations,
plot (b) provides empirical evidence that the factor estimates alone are improving with
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Fig. 2 Error plots for different sketching dimensions and a fixed SNR of 30 dB and a fixed rank truncation of
10. Plot (a) compares relative errors for both one-pass and two-pass recovery. Plot (b) shows the maximum
principal angle among all estimated sub-spaces and the true factor matrices

sketching dimension. We note that for these low-rank tensors with noise, we are able
to fit at or below the level of noise (relative error of 0.001) easily — evidently finding
good rank 10 approximations to the (full-rank) noisy tensor X .

This perhaps surprising result motivated us to try the method on a class of tensors
in which we could be more certain about what quality of rank 10 approximation is
achievable. In our second set of experiments, we examine performance on super-
diagonal tensors with tail decay. Since we are truncating to rank 10, this tail can be
thought of as structured, deterministic noise. These are tensors where all values are
zero except for those on the diagonal, andwherewe have some decay on themagnitude
of all values on the diagonal for indices larger than r = 10. In particular we have two
types of decay, exponential tail decay in plot (a), where

Xi jk =

⎧
⎪⎨

⎪⎩

1 i = j = k ∈ [r + 1]
10−1(i−r) i = j = k ∈ [r + 2, n]
0 otherwise

(45)

and polynomial tail decay in plot (b),

Xi jk =

⎧
⎪⎨

⎪⎩

1 i = j = k ∈ [r + 1]
(i − r)−1 i = j = k ∈ [r + 2, n]
0 otherwise.

(46)

These highly constrained tensors are clearly not low-rank, however it is reasonable
to suppose that a recovery algorithm for a given rank truncation would output an
estimate that is close to the leading r terms of the diagonal. The residual in that case

will simply be the norm of the tail-sum
√∑n

i=r+1 X 2
i i i , which we have included as

the red horizontal line in Fig. 3.
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Fig. 3 Error plots for different sketching dimensions in the noiseless setting with a fixed rank truncation
of 10. Plot (a) compares relative errors for both one-pass and two-pass recovery for super-diagonal tensors
where the diagonal entries have exponential decay of type (45), and plot (b) super-diagonal tensors with
polynomial decay of the type (46)

4.2 Allocating core and factor measurements

Onequestion raisedbyour error analysis is how toweigh the error contributionbetween
the tasks of estimating the factor matrices and estimating the core. In other words, for
a given total measurement budget, how should we allocate between the two tasks if
we wish to decrease overall relative error? In the following experiment (see Fig. 4)
we find the relative error under various noise levels for pairs of sketching dimensions
(m,mc). We compare pairs (13, 12) and (11, 36) and (8, 48). These choices of sketch-
ing dimensions were chosen since they have nearly equal overall compression ratios
of 0.57%, 0.58%, 0.62% respectively, however they vary considerably on whether
they emphasize measurements to be used in estimating the factors or the core of the
tensor. Note that the two-pass error, which relies only on the factor matrix estimates
is naturally best when the factor sketches are larger, i.e. the m = 13 case. However
the relative error of the recovered tensor in the one-pass setting is more than ten times
better when more of the total measurement budget is allocated to estimate the core as
shown in Fig. 4. This shows that in some situations it is preferable to allocate more
resources to obtain measurements for the core than the factors, up to some threshold.
For example in Fig. 4, the rank of the true signal is 10, and going below this dimension
for the factor sketches does correspond with no longer improving on the accuracy in
terms of the trade-off between m and mc.

4.3 Error bounds apply to sub-gaussianmeasurement matrices

In this next experiment we demonstrate, in a similar manner as done in Figure 1 in
[16], that recovery performance of Algorithm 11 does not vary greatly for different
choices of types of sub-gaussian measurement matrices. What is different from that
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Fig. 4 Relative error plots at different signal to noise ratios for two-pass and one-pass recovery of noisy
low-rank tensors. Ordered pairs indicates the choice for sketching dimensions (m,mc)

earlier work is that themeasurement ensembles are all Kronecker structured. Plotted in
Fig. 5 are relative errors for Gaussian (g), sparse uniform from [−1, 0, 1]with weights
1
6 ,

2
3 ,

1
3 (sp0), sub-sampled randomized Fourier transforms as in [45] (rfd) and amixed

measurement ensemble that uses Gaussian-RFD-sparse measurements where we vary
by mode which measurement type is used, which is a scenario that is practically and
theoretically not well suited for theKhatri-Rao structuredmeasurement operators used
in [16].

Fig. 5 Relative errors for one-pass, two-pass for Kronecker measurement ensembles made up of different
kinds of sub-gaussian random matrices. The legend g, sp0, rfd, mix correspond to Gaussian, sparse, sub-
sampled random Fourier transform, and a mixture of all three for the measurement ensembles
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Fig. 6 Relative error comparison forKhatri-Rao andKronecker-structuredmeasurements. Right hand figure
shows the average time for sketching and recovery phases of the algorithm

4.4 Comparison to Khatri-Rao

This set of experiments demonstrates that the sketching phase will dominate the run-
time of Algorithm 1 regardless of the choice of leave-one-out type, however the
Kronecker-structured measurements are able to generate more measurements for a
fixed number of operations as compared to Khatri-Rao structured measurements, see
Fig. 6. This means that it is possible to achieve similar or better performance using
strictly modewise measurements and in less overall time as problems grow in size
with respect to total number of tensor elements; i.e. both number of modes and length
of those modes. In Fig. 6 for the Kronecker-structured measurements we sketch to
m = 25, for the Khatri-Rao ensemble we sketch pairs of modes to 225. We see that
the Kronecker measurements perform incrementally better in terms of relative error
but at less than half the overall run-time. Sketching times are about five times faster
for the Kronecker-structured measurements as compared to the Khatri-Rao. Note that
this does trade speed for space — the total number of entries in the leave one out
measurements is nearly three times larger for the Kronecker-structured measurements
versus the Khatri-Rao, i.e. sketches Bi as per (8) and (11) have sizes 300 × 252, and
300 × 225 respectively.

4.5 Application to video summary task

As a practical demonstration, we consider the same video summary task first described
in [10] and again in [16]. In this demonstration, the video is taken with a camera in a
fixed position. The video is a nature scene and a person walks in front of the camera at
two different time points in the second half of the video. The first 100 and the last 193
frames are removed since they include setup that results in small shifts of the camera.
The entire video has been converted to grayscale. This yields a three mode tensor of
dimensions 2200 × 1080 × 1980 which has a size of about 41 GB when stored as an
array of doubles. We wish to identify the parts of the scene that include the person
walking and distinguish them from the relatively static scene elsewhere. As discussed
in [16], there is a third salient time varying feature in this particular video, which is the
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light intensity of the scene, since at around frame 940 the scene darkens. Furthermore
there are changes in the light intensity as the camera automatically adjusts after the
person walks in and out of frame. For this reason, we cluster the frames using three
centers, rather than two.

In all cases, we use k-means to cluster the frames, however we assign features to
frames in four different ways:

1. Using the sketch B1 ∈ R
2200×202 , as in (7) that leaves out the time dimension,

then clustering using k-means on the rows of the unfolding of the sketch along the
first, temporal mode.

2. Unfolding the temporal mode of the reconstructed tensor using a one-pass set of
measurements, i.e. (X1)[1] ∈ R

2200×2138400 (recall that X1 denotes the output of
Algorithm 1).

Fig. 7 (a) Cluster assignments for the 2200 frames in the video. Top run corresponds to using the mea-
surements for the first mode only B1, middle rows use one and two pass approximations of the tensor, and
the last row uses the factor matrix U1 for the temporal mode only. We use Gaussian sketching matrices for
both spatial modes and the real part of RFD for the temporal mode. Sketching parameters are m = 20,
mc = 40 and rank truncation of r = 10 in all modes. (b) Three reference frames at 0, 1000 and 1496
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3. Unfolding the reconstructed tensor using a two-pass scenario, (X2)[1] ∈
R
2200×2138400 (recall that X2 denotes the output of Algorithm 10).

4. Estimated temporal factor matrix U1 ∈ R
2200×20 (see in Algorithm 1).

As we can see in Figs. 7a, b, the sketch alone shows reliable clustering of the
main temporal changes in the video, which verifies the observation in [16] about
using the measurements as an effective feature set for clustering, although in that case
the measurements were Khatri-Rao structured whereas ours are Kronecker-structured.
The unfoldings of the reconstructed tensor also reliably distinguishes the main parts of
the scene. The reconstruction is useful at least to get clusted interpretability. Although
certainly natural to wish to cluster on the temporal factor, this method appears inferior
to any of the preceding.

As an added advantage of using themodewise,Kronecker structuredmeasurements,
we can in principle select measurement maps for different modes. Gaussian measure-
ment maps theoretically have some advantages over other types in terms of accuracy
for a fixed number of measurements, whereas applying RFD or other Fourier-like
transforms to modes that have longer fibers would net a better payoff in terms of over-
all run-time because of the faster matrix-vector multiply permitted by these structured
matrices. In this demonstration, we use Gaussian matrices along the spatial modes,
and RFD matrices for the temporal mode.

In the earlier work [10], the authors describe a variant of Tucker-Alternating Least
Squares (aka Higher Order Orthogonal Iteration) that employed TensorSketch to pro-
duce the necessary measurements used to reconstruct the same video tensor data we
have used here. In the subsequent work [16], different authors then perform the same
task, but use an approach which fits the framework we have described as Algorithm 1,
where the measurement matrices are Khatri-Rao structured, and the �i have entries
drawn from standard Gaussian distribution. Here, analysis of the type afforded by
Theorem 43 may also help explain the discrepancy between the sketching dimensions
seen in [10] and [16]. Naturally there are several differences between the approaches,
but the CountSketch matrices used in TensorSketch operators as shown in [39] have a
O ( 1

δ

)
dependency in order to ensure the OSE property, whereas the other ensembles,

such as dense Gaussians, enjoy an O (
log 1

δ

)
dependence for this parameter.

As was discussed in [16], the video is not especially low-rank in practice — in
particular along the spatial dimensions in terms of relative error of the reconstruction.

Fig. 8 The 1456th frame of the grey-scale video is shown for the original, the one-pass, and two-pass
reconstructions using sketching dimension of m = 300,mc = 601 and r = 50 for each mode. Although
the reconstructions for this choice of sketching dimension and rank truncation are not particularly accurate
for this video, nevertheless the reconstructions provide enough information to perform the summary task
of clustering the frames into the major temporal changes that occur during the scene
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However the clusters appear distinct enough that assigning clusters with this summary
type of information is still possible (Fig. 8).

Appendix A: Technical proofs

Herein we provide proofs for selected results from Section 2.1.

A.1: Proof of Lemma 15

Our proof of Lemma 15 will utilize several intermediate lemmas. Our first lemma
concerning the approximate preservation of inner products is a slight generalization
of [46, Corollary 2].

Lemma 44 (The JL property implies angle preservation) Let S ⊂ C
n with cardinality

at most p and ε ∈ (0, 1). If a random matrix � ∈ C
m×n has the (ε/4, δ, 4p2)-JL

property for

S′ =
{

x
‖x‖2 + y

‖y‖2 ,
x

‖x‖2 − y
‖y‖2 ,

x
‖x‖2 + i

y
‖y‖2 ,

x
‖x‖2 − i

y
‖y‖2

∣
∣ x, y ∈ S

}

,

then
|〈�x,�y〉 − 〈x, y〉| � ε‖x‖2‖y‖2 ∀x, y ∈ S (A1)

will be satisfied with probability at least 1 − δ.

Proof Note that if either x = 0 or y = 0, then (A1) automatically holds because 0 � 0.
Thus, suppose without loss of generality that x, y �= 0. Considering the normalizations
u = x

‖x‖2 , v = y
‖y‖2 , one can see that the polarization identity implies that

|〈�u,�v〉 − 〈u, v〉| =
∣
∣
∣
∣
∣

1

4

3∑

�=0

i�
(
‖�u + i��v‖22 − ‖u + i�v‖22

)
∣
∣
∣
∣
∣

� 1

4

3∑

�=0

ε

4
(‖u‖2 + ‖v‖2)2 = ε

will hold whenever (14) holds with S ← S′ and ε ← ε/4. The result now follows by
renormalizing. �

Remark 45 Note that if S ⊂ R

n it suffices for a random matrix � ∈ R
m×n to have the

(ε/2, δ, 2p2)-JL property for a smaller set S′ ⊂ R
n in Lemma 44. This can be seen

by using the real version of the polarization identity instead of the complex version.

The next lemma constructs a set S to utilize in Lemma44 based on twomatriceswith
normalized columns. The end result is an entrywise approximate matrixmultiplication
property for the two column-normalized matrices in question.
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Lemma 46 (The JL property allows approximate matrix multiplies for unitary matri-
ces) Let V ∈ C

n×p and U ∈ C
n×q have unit �2-normalized columns. Suppose

that � ∈ C
m×n satisfies (A1) from Lemma 44 where S = {

u j |u j = U [:, j]} ∪{
v j |v j = V [:, j]}. Then

∣
∣
∣
(
V ∗�∗�U − V ∗U

)
k, j

∣
∣
∣ � ε, for all 1 � k � p and 1 � j � q.

Proof Note that |S| = p + q. Thus,
∣
∣S′∣∣ � 4(p + q)2 in Lemma 44. Furthermore,

�V =
⎛

⎝
. . .

�v1 �v2 . . . �vp
. . .

⎞

⎠ , and �U =
⎛

⎝
. . .

�u1 �u2 . . . �uq
. . .

⎞

⎠ .

Hence,
(
(�V )∗ �U

)
k, j = 〈�u j ,�vk〉. Therefore, given Lemma 44, for all choices

of k, j we have

∣
∣
∣
(
V ∗�∗�U − V ∗U

)
k, j

∣
∣
∣ = ∣

∣〈�u j ,�vk〉 − 〈u j , vk〉
∣
∣ � ε‖vk‖2‖u j‖2 = ε.

�


The next lemma constructs a new set S to utilize in Lemma 44 by selecting a
well chosen subset of the singular vectors of both A and B. This set will ultimately
determine how the finite set S promised by Lemma 15 depends on A and B. As we
shall see, it’s proven by applying Lemma 46 to two unitary matrices provided by the
SVDs of A and B.

Lemma 47 (The JL property implies the AMM property for arbitrary matrices) Let
A ∈ C

p×n and B ∈ C
n×q have SVDs given by A = U1	1V ∗ and B = U	2V ∗

2 , and
suppose that � ∈ C

m×n satisfies the conditions of Lemma 46 for U and V . Then,

‖A�∗�B − AB‖F � ε‖A‖F‖B‖F

Proof We will expand the quantity of interest according the SVD of A and B. Doing
so we see that

‖A�∗�B − AB‖F = ‖U1	1V
∗�∗�U	2V

∗
2 −U1	1V

∗U	2V
∗
2 ‖F

= ‖U1	1
(
V ∗�∗�U − V ∗U

)
	2V

∗
2 ‖F

= ‖	1
(
V ∗�∗�U − V ∗U

)
	2‖F

=
√
√
√
√

p∑

k=1

q∑

j=1

(	1)
2
k,k |V ∗�∗�U − V ∗U |2k, j (	2)

2
j, j
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�

√
√
√
√

p∑

k=1

q∑

j=1

σk(A)2ε2σ j (B)2

= ε

√
√
√
√

p∑

k=1

σk(A)2

√
√
√
√

q∑

j=1

σ j (B)2

= ε‖A‖F‖B‖F .

�

Lemmas 44, 46, and 47 now collectively prove the following generalized version

of Lemma 15.

Lemma 48 (The JL property provides the AMM property) Let A ∈ C
p×n and B ∈

C
n×q . There exists a finite set S ⊂ C

n with cardinality |S| � 4(p + q)2 (determined
entirely by A and B) such that the following holds: If a random matrix � ∈ C

m×n

has the (ε/4, δ, 4(p + q)2)-JL property for S, then � will also have the (ε, δ)-AMM
property for A and B.

Wewillmake use of this simple centering result with regards to L p norms of random
variables.

Lemma 49 Suppose X a real random variable, and let p � 1, Then,

‖X − E[X ]‖L p � 2 ‖X‖L p

Proof Let μ = E[X ]. By Jensen’s inequality, ‖μ‖L p = |μ| � E[|X |] = ‖X‖L1

Observe,

‖X − μ‖L p � ‖X‖L p + ‖μ‖L p

� ‖X‖L p + ‖X‖L1

� 2 ‖X‖L p

Wherewe have usedMinkowski’s inequality in the first line, and Jensen’s inequality
in the third. �


A.2: Proof of Theorem 19

A similar proof appears in support of [32, Theorem 2], which was itself simplified
from earlier work [31]. We reproduce the proof here for completeness, and to clarify
details. We begin by restating Theorem 19 for ease of reference.

Theorem 50 (Restatement of Theorem 19) Let X ∈ R
n×N of rank r̃ � min{n, N }

have the full SVD X = U	V T , and let Vr ′ ∈ R
N×r ′

denote the first r ′ columns of
V ∈ R

N×N for all r ′ ∈ [N ]. Fix r ∈ [n] and consider the head-tail split X = Xr+X\r .
If � ∈ R

m×N satisfies
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1. subspace embedding property (16) with ε ← ε
3 for A ← XT

r ,
2. approximate multiplication property (19) with ε ← ε

6
√

min{r ,r̃} for A ← X\r and
B ← Vmin{r ,r̃},

3. JL property (14) with ε ← ε
6 for S ←

{
the n columns of XT\r

}
, and

4. approximate multiplication property (19) with ε ← ε

6
√
r
for A ← X\r and B ←

XT\r ,

then X̃ := X�T is an (ε, 0, r)-PCP sketch of X.

Proof Let Q ∈ R
n×r be a an arbitrary matrix with orthonormal columns so that

QQT ∈ R
n×n is an orthogonal projection matrix. It suffices to show that

∣
∣
∣
∣

∥
∥
∥(I − QQT )X

∥
∥
∥
2

F
−

∥
∥
∥(I − QQT )X�T

∥
∥
∥
2

F

∣
∣
∣
∣ � ε

∥
∥
∥(I − QQT )X

∥
∥
∥
2

F
. (A2)

Writing X in terms of its head-tail split, (A2) becomes

∣
∣
∣
∣

∥
∥
∥(I − QQT )(Xr + X\r )

∥
∥
∥
2

F
−

∥
∥
∥(I − QQT )(Xr + X\r )�T

∥
∥
∥
2

F

∣
∣
∣
∣ � ε

∥
∥
∥(I − QQT )X

∥
∥
∥
2

F
,

(A3)
where Xr has the thin SVD representation Xr = Ur	r V T

r withUr and Vr containing
the first r columns of U and V from the full SVD of X , respectively.4

Letting P := (I − QQT ), and using that tr AAT = ‖A‖2F , one may expand the
left hand side of (A3). Noting that X\r XT

r = 0 and P = PT while doing so, we can
now see that

∣
∣
∣
∣

∥
∥
∥(I − QQT )(Xr + X\r )

∥
∥
∥
2

F
−

∥
∥
∥(I − QQT )(Xr + X\r )�T

∥
∥
∥
2

F

∣
∣
∣
∣ =

∣
∣
∣tr

(
P(Xr X

T
r + X\r XT\r )P

)
− tr

(
P(Xr�

T�XT
r + Xr�

T�XT\r + X\r�T�XT
r + X\r�T�XT\r )P

)∣
∣
∣ .

Regrouping terms in the last expression while noting the invariance of trace to
transposition, one can we can now further see that

∣
∣
∣tr

(
P(Xr X

T
r + X\r XT\r )P

)
− tr

(
P(Xr�

T �XT
r + Xr�

T �XT\r + X\r�T �XT
r + X\r�T �XT\r )P

)∣
∣
∣

=
∣
∣
∣tr

(
P(Xr X

T
r − Xr�

T �XT
r )P

)
+ 2 tr

(
P(X\r�T �XT

r )P
)

+ tr
(
P(X\r XT\r − X\r�T �XT\r )P

)∣
∣
∣

�
∣
∣
∣tr

(
P(Xr X

T
r − Xr�

T �XT
r )P

)∣
∣
∣ + 2

∣
∣
∣tr

(
P(X\r�T �XT

r )P
)∣
∣
∣ +

∣
∣
∣tr

(
P(X\r XT\r − X\r�T �XT\r )P

)∣
∣
∣ .

4 If r � N we let Vr = V .
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Looking back at (A3) in the light of this last computation, one can now see that it
suffices to prove that

∣
∣
∣tr

(
P(Xr X

T
r − Xr�

T�XT
r )P

)∣
∣
∣ + 2

∣
∣
∣tr

(
P(X\r�T�XT

r )P
)∣
∣
∣ +

∣
∣
∣tr

(
P(X\r XT\r − X\r�T�XT\r )P

)∣
∣
∣

� ε ‖PX‖2F (A4)

holds to establish the desired result. Going forward we will therefore aim to prove
(A4) by proving each of the following three bounds:

(a)
∣
∣tr

(
P(Xr XT

r − Xr�
T�XT

r )P
)∣
∣ � ε

3 ‖PX‖2F ,
(b)

∣
∣tr

(
P(X\r�T�XT

r )P
)∣
∣ � ε

6 ‖PX‖2F , and
(c)

∣
∣
∣tr

(
P(X\r XT\r − X\r�T�XT\r )P

)∣
∣
∣ � ε

3 ‖PX‖2F .
Proving (a) – (c) will establish (A4), thereby completing the proof.
Proof of Bound (a):Using again that tr AAT = tr AT A = ‖A‖2F and that P = PT

we have

∣
∣
∣tr

(
P(Xr X

T
r − Xr�

T�XT
r )P

)∣
∣
∣ =

∣
∣
∣
∣

∥
∥
∥XT

r P
∥
∥
∥
2

F
−

∥
∥
∥�XT

r P
∥
∥
∥
2

F

∣
∣
∣
∣ .

Applying Lemma 13 in the light of assumption 1, we now have that

∣
∣
∣tr

(
P(Xr X

T
r − Xr�

T�XT
r )P

)∣
∣
∣ � ε

3

∥
∥
∥XT

r P
∥
∥
∥
2

F
= ε

3

∥
∥
∥VrV

T
r XT P

∥
∥
∥
2

F

� ε

3

∥
∥
∥XT P

∥
∥
∥
2

F
= ε

3
‖PX‖2F

as desired.
Proof of Bound (b): Using the invariance of trace to both transposition and per-

mutations, as well as that PT = P = P2, we can see that

∣
∣
∣tr

(
P(X\r�T�XT

r )P
)∣
∣
∣ =

∣
∣
∣tr

(
P(Xr�

T�XT\r )P
)∣
∣
∣ =

∣
∣
∣tr

(
PXr�

T�XT\r
)∣
∣
∣ .

Recalling the full SVD X = U	V T , we note that if r̃ := rank(X) < min{n, N }we
can remove the last n− r̃ columns ofU , the last N − r̃ columns of V , and the last n− r̃
rows and N − r̃ columns of 	 to form the thin SVD X = Ũ 	̃Ṽ T with Ũ ∈ Rn×r̃ ,
	̃ ∈ R

r̃×r̃ , and Ṽ ∈ RN×r̃ . Having done so we note that 	̃ will be invertable and that
ŨŨ T Xr = Xr so that we may write

∣
∣
∣tr

(
P(X\r�T�XT

r )P
)∣
∣
∣ =

∣
∣
∣tr

(
PXr�

T�XT\r
)∣
∣
∣

=
∣
∣
∣tr

(
PŨŨ T Xr�

T�XT\r
)∣
∣
∣

=
∣
∣
∣tr

(
PŨ 	̃Ṽ T Ṽ 	̃−1Ũ T Xr�

T�XT\r
)∣
∣
∣
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=
∣
∣
∣tr

((
PŨ 	̃Ṽ T

) (
Ṽ 	̃−1Ũ T Xr�

T�XT\r
))∣

∣
∣

=
∣
∣
∣tr

(
(PX)

(
Ṽ 	̃−1Ũ T Xr�

T�XT\r
))∣

∣
∣ .

Recall now that 〈A, B〉F := tr(ABT ) is an inner product on matrices with ‖A‖F =√
tr(AAT ). Hence,wemay apply theCauchy-Schwarz inequality to our last expression

to see that

∣
∣
∣tr

(
P(X\r�T�XT

r )P
)∣
∣
∣ =

∣
∣
∣tr

(
(PX)

(
Ṽ 	̃−1Ũ T Xr�

T�XT\r
))∣

∣
∣

� ‖PX‖F
∥
∥
∥Ṽ 	̃−1Ũ T Xr�

T�XT\r
∥
∥
∥
F

= ‖PX‖F
∥
∥
∥	̃−1Ũ T Xr�

T�XT\r
∥
∥
∥
F

.

Expanding Xr in terms of its thin SVD representation Xr = Ur	r V T
r we now have

that

∣
∣
∣tr

(
P(X\r�T�XT

r )P
)∣
∣
∣ � ‖PX‖F

∥
∥
∥	̃−1Ũ T Xr�

T�XT\r
∥
∥
∥
F

= ‖PX‖F
∥
∥
∥	̃−1Ũ TUr	r V

T
r �T�XT\r

∥
∥
∥
F

= ‖PX‖F
∥
∥
∥V T

min{r ,r̃}�
T�XT\r

∥
∥
∥
F

= ‖PX‖F
∥
∥
∥X\r�T�Vmin{r ,r̃}

∥
∥
∥
F

.

Finally, we may now use that X\r Vmin{r ,r̃} = X(IN − VrV T
r )Vmin{r ,r̃} =

X
(
Vmin{r ,r̃} − Vmin{r ,r̃}

) = 0 to see that

∣
∣
∣tr

(
P(X\r�T�XT

r )P
)∣
∣
∣ � ‖PX‖F

∥
∥
∥X\r�T�Vmin{r ,r̃}

∥
∥
∥
F

= ‖PX‖F
∥
∥
∥X\r�T�Vmin{r ,r̃} − X\r Vmin{r ,r̃}

∥
∥
∥
F

� ‖PX‖F
(

ε

6
√
min{r , r̃}

∥
∥X\r

∥
∥
F

∥
∥Vmin{r ,r̃}

∥
∥
F

)

,

where we have utilized assumption 2 in the last inequality. We are now finished after
using that

∥
∥Vmin{r ,r̃}

∥
∥
F = √

min{r , r̃}, and noting that
∥
∥X\r

∥
∥
F � ‖PX‖F holds for

all rank n − r or greater orthogonal projections P by the definition of Xr .
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Proof of Bound (c): Again using the invariance of trace to permutations as well as
P = P2 = I − QQT we have that

∣
∣
∣tr

(
P(X\r XT\r − X\r�T �XT\r )P

)∣
∣
∣ =

∣
∣
∣tr

(
P(X\r XT\r − X\r�T�XT\r )

)∣
∣
∣

=
∣
∣
∣tr

(
(I − QQT )(X\r XT\r − X\r�T �XT\r )

)∣
∣
∣

�
∣
∣
∣tr

(
X\r XT\r − X\r�T �XT\r

)∣
∣
∣

+
∣
∣
∣tr

(
QQT (X\r XT\r − X\r�T �XT\r )

)∣
∣
∣

�
∣
∣
∣
∣

∥
∥
∥XT\r

∥
∥
∥
2

F
−

∥
∥
∥�XT\r

∥
∥
∥
2

F

∣
∣
∣
∣ +

∥
∥
∥QQT

∥
∥
∥
F

∥
∥
∥X\r XT\r − X\r�T �XT\r

∥
∥
∥
F

,

wherewe have again utilizedCauchy-Schwarz in the last inequality. Utilizing assump-
tion 3, the first term just above can be bounded by ε

6‖XT\r‖2F = ε
6‖X\r‖2F using an

argument analogous to the proof of Lemma 13. Doing so we see that

∣
∣
∣tr

(
P(X\r XT\r − X\r�T�XT\r )P

)∣
∣
∣ � ε

6
‖X\r‖2F +

∥
∥
∥QQT

∥
∥
∥
F

∥
∥
∥X\r XT\r − X\r�T�XT\r

∥
∥
∥
F

= ε

6
‖X\r‖2F + √

r
∥
∥
∥X\r XT\r − X\r�T�XT\r

∥
∥
∥
F

.

Finally, we may now employ assumption 4 to bound the second term just above.
Doing so we obtain that

∣
∣
∣tr

(
P(X\r XT\r − X\r�T�XT\r )P

)∣
∣
∣ � ε

6
‖X\r‖2F + √

r
∥
∥
∥X\r XT\r − X\r�T�XT\r

∥
∥
∥
F

� ε

6
‖X\r‖2F + √

r
ε

6
√
r
‖X\r‖2F

= ε

3
‖X\r‖2F .

To conclude we note again that
∥
∥X\r

∥
∥
F � ‖PX‖F holds for all rank n − r or greater

orthogonal projections P by the definition of Xr . �


Appendix B: Algorithms

There are four tasks relevant in Algorithm 1 where by making difference choices
for these tasks, we get variants of the algorithm. Two of the tasks are related to the
measurement process: sketching the tensor in order to produce leave-one-out measure-
ments, and also sketching the tensor without leaving out a mode in order to produce
measurements useful in computing the core. The second two tasks are then recovering
the factor matrices, and recovering the core.

Note, if we permit a second pass on the tensor X after estimating factor matrices
Qi , then core measurements are not necessary, and the optimal core given these factor
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matrices can be found by computing

G = X ×1 QT
1 ×2 QT

2 · · · ×d QT
d

See section 4.2 in [1]. This then is the computation used in two-pass versions of
the algorithm; it requires first to compute the factor matrices from measurements, and
then apply these factors modewise to the original tensor; no separate measurement
tensor for the core is required. Crucially however, this relies on a second access to the
data; for which we are computing a HOSVD.

In this appendix then, we break apart Algorithm 1 into these tasks, and show how
combining different choices for these tasks produces the variants of the algorithm
considered.

Within the pseudo-code, “unfold” refers to the operation of taking a tensor and
flattening it into a matrix of the size listed by arranging the specified mode’s fibers
as the columns. The operation “fold” is the inverse of this, taking a matrix as viewed
as an unfolding along the specified mode and reshaping it into a tensor of the given
dimensions.

Algorithm 2 takes measurement matrices (e.g. sub-gaussian random matrices) and
the data tensor X and produces a set of leave-one-out measurements which can be
viewed as tensors or as flattened matrices. That is, it is practical to apply the mea-
surement matrices along the modes and obtain a tensor of measurements with d − 1
modes each of length m and one mode of length n, see Fig. 1 for a schematic depic-
tion. The measurement process takes slices of the tensor and maps them to (smaller)
slices with (mostly) shorter edge lengths. Or we can conceive of the measurements as
a matrix by unfolding the measurement tensor along the mode that is uncompressed
and thus obtaining a matrix of size n ×md−1, one such matrix for each mode i ∈ [d].
It is Kronecker structured because of the correspondence of modewise products of
tensors with matrices to matrix products of unfoldings of a tensor with matrices, see
for example (3).

Alternatively, we can use Algorithm 3 which also produces a set of leave-one-out
measurements of the tensor X which can be viewed as a matrix. It is Khatri-Rao
structured because the measurement matrix applied to the unfolding is formed using
Khatri-Rao products. Note, unlike Algorithm 2, there is not necessarily any natural
way to view the measurements Bi as tensors of d modes - the sketching process in
this case takes slices of the tensor and maps them to vectors and we gather these into
matrices Bi of size n × m for each i ∈ [d].

In order to estimate the core, we wish another, independent set of measurements.
These are obtained in the manner as Algorithm 2, only now we are permitted to
compress all the modes, producing a tensor of d modes all with side length equal to
mc.

Next, we describe the procedure which takes as input (a) leave-one-out measure-
ments of X (from Algorithm 2 or 3), (b) the full-rank sensing matrices applied to
the uncompressed modes of X , and (c) our desired target rank vector of r, and then
outputs a factor matrix Qi for each mode. In the case of exact arithmetic, no rank
truncation, and no noise, this exactly recovers the factors (see (24)).
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Algorithm 2 Leave-One-Out Kronecker Sketching.
input :
�(i, j) where rank(�(i,i)) = n and �(i, j) ∈ R

m×n for i, j ∈ [d], i �= j
X a d mode tensor with side lengths n
output: Bi for i ∈ [d]
# COMPLETE MEASUREMENT SUMMARY
for i ∈ [d] do

Bi ← X ×1 �(i,1) ×2 �(i,2) ×3 · · · ×d �(i,d)

# Now unfold the measurement tensor so the mode-i
fibers are columns, size n × md−1

Bi ← unfold(Bi , n × md−1,mode = i)
end

# AN EXAMPLE ONE-PASS VARIANT
Initialize Bj ← Matrix of 0s ∀ j ∈ [d]
for (i1, . . . , id) ∈ [n]d do

for j ∈ [d] do
y ← (�( j,1)):,i1 �· · ·�(� j, j−1):,i j−1 �(�( j, j+1)):,i j+1 �· · ·�(�( j,d))):,id
B j ← Bj + Xi1,...,i j ,...,id

(
�( j, j)

)
:,i j y

T

end
end

Algorithm 3 Leave-One-Out Khatri-Rao Sketching.
input :
�(i, j) where rank(�(i,i)) = n and �(i, j) ∈ R

m×n for i, j ∈ [d], i �= j
X a d mode tensor with side lengths n
output: Bi for i ∈ [d]
for i ∈ [d] do

Bi ← �(i,i)X[i]
(
�(i,1) • �(i,2) • . . . • �i,i−1 • �i,i+1 • . . . • �i,d

)T

end

Algorithm 4 Core Sketching.
input :
�i ∈ R

mc×n , i ∈ [d]
X a d mode tensor with side lengths n
output: Bc

Bc ← X ×1 �1 ×2 �2 ×3 · · · ×d �d

Lastly, we consider the task of obtaining the core of the HOSVD of the data tensor.
The two ways described in Section 3 are to either compute the core using a second
access to the data tensor - in which case this is a matter of applying the transpose of
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Algorithm 5 Recover HOSVD Factors from Leave-One-Out Measurements.
input :
Bi ∈ Rn×md−1

for i ∈ [d] measurements that leave mode i uncompressed
�(i,i) ∈ Rn×n for i ∈ [d]
r = (r , . . . , r) desired rank for HOSVD
output: Q1, . . . , Qd ∈ R

n×r

# Factor matrix recovery
for i ∈ [d] do

# Solve n × n linear system
Solve �(i,i)Fi = Bi for Fi
# Compute SVD and keep the top r singular vectors

U , 	, V T ← SVD(Fi )
Qi ← U:,:r

end

the factor matrices from Algorithm 5 to the data tensor. This is detailed in Algorithm
10.

Algorithm 6 Compute HOSVD Core with Second Access.
input :
Q1, . . . , Qd ∈ R

n×r computed factor matrices
X a d mode tensor with side lengths n.
output: G a d mode tensor with side lengths r
G = X ×1 QT

1 ×2 QT
2 · · · ×d QT

d

In the scenario in which a second access to the tensor is not desired, instead we
obtain the core of the HOSVD by solving a linear system involving the measurement
operators and the factor matrices, see (33). This is equivalent to solving the linear
system a mode at a time as detailed in Algorithm 7, a method of practical value
because it does not require as much working memory.

A third possibility is to “re-use” leave-one-out measurements to compute the core.
Theoretically this involves new dependencies on the errors introduced by estimating
the factors and errors introduced by recovering the core that are not addressed in any of
our main results. Practically however, it would be desirable to avoid having to produce
the core measurement tensor, and empirically on synthetic data the overall error is not
effected.

We are now able to state the variants of the general algorithm.
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Algorithm 7 Recover HOSVD Core from Measurements.
input :
Bc a d mode tensor with side lengths mc

�i ∈ R
mc×n

Q1, . . . , Qd ∈ R
n×r computed factor matrices

output: H
for i ∈ [d] do

# unfold measurements, mode-i fibers are columns,

size mc × r (i−1)md−1−(i−1)
c

H ← unfold(Bc,mc × r (i−1)md−1−(i−1)
c ,mode = i)

# Undo the mode-i measurement operator and factor’s
action by finding least square solution to mc × r
over-determined linear system

Solve �i Qi Hnew = H for Hnew

# reshape the flattened partially solved core into
a tensor

Bc ← fold(Hnew, r × r · · · × r︸ ︷︷ ︸
i

×mc × · · · × mc︸ ︷︷ ︸
d−i

,mode = i)

# Each iteration mc → r in ith mode
end

Algorithm 8Recover HOSVDCore fromRecycled Leave OneOutMeasurements.
input :
Bj for a fixed j .
� j,i for each i ∈ [d]
Q1, . . . , Qd ∈ R

n×r computed factor matrices
output: H
for i ∈ [d] do

# unfold measurements, mode-i fibers are columns,

size m × r (i−1)md−1−(i−1)

H ← unfold(B j ,m × r (i−1)md−1−(i−1),mode = i)
# Undo the mode-i measurement operator and factor’s

action by finding least square solution to m × r
over-determined linear system

Solve �( j,i)Qi Hnew = H for Hnew

# reshape the flattened partially solved core into
a tensor

B j ← fold(Hnew, r × r · · · × r︸ ︷︷ ︸
i

×mc × · · · × mc︸ ︷︷ ︸
d−i

,mode = i)

# Each iteration m → r in ith mode or n → n when
i = j

end
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Algorithm 9 Recover HOSVD Kronecker One Pass.

# Obtain measurements for factors with Alg. 2
B1, B2, . . . , Bd ← Leave-One-Out Kronecker Sketching(

{
�(i, j)

}
i, j∈[d] ,X )

# Obtain measurement for core with Alg. 4
Bc ← Core Sketching({�i }i∈[d] ,X )

# Estimate factor matrices using Alg. 5
Q1, Q2, . . . , Qd ← Recover HOSVD Factors from
Leave-One-Out Measurements (

{
�(i,i)

}
i∈[d] , {Bi }i∈[d] , (r , . . . , r))

# Estimate core using Alg. 8
H ← Recover HOSVD Core from Measurements({�i }i∈[d] ,Bc)

output: X̂ = [[H, Q1, . . . Qd ]]

Algorithm 10 Recover HOSVD Kronecker Two Pass.

# Obtain measurements for factors with Alg. 2
B1, B2, . . . , Bd ← Leave-One-Out Kronecker Sketching(

{
�(i, j)

}
i, j∈[d] ,X )

# Estimate factor matrices using Alg. 5
Q1, Q2, . . . , Qd ← Recover HOSVD Factors from
Leave-One-Out Measurements(

{
�(i,i)

}
i∈[d] , {Bi }i∈[d] , (r , . . . , r))

# Compute core using Alg. 6
H ← Compute HOSVD Core with Second Access({Qi }i∈[d] ,X )

output: X̂ = [[H, Q1, . . . Qd ]]

Algorithm 11 Recover HOSVD Khatri-Rao One Pass.

# Obtain measurements for factors with Alg. 3
B1, B2, . . . , Bd ← Leave-One-Out Khatri-Rao Sketching(

{
�(i, j)

}
i, j∈[d] ,X )

# Obtain measurements for core with Alg. 4
Bc ← Core Sketching({�i }i∈[d] ,X )

# Estimate factor matrices using Alg. 5
Q1, Q2, . . . , Qd ← Recover HOSVD Factors from Leave-One-Out
Measurements (

{
�(i,i)

}
i∈[d] , {Bi }i∈[d] , (r , . . . , r))

# Estimate core using Alg. 8
H ← Recover HOSVD Core from Measurements({�i }i∈[d] ,Bc)

output: X̂ = [[H, Q1, . . . Qd ]]
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Algorithm 12 Recover HOSVD Khatri-Rao Two Pass.

# Obtain measurements for factors with Alg. 3
B1, B2, . . . , Bd ← Leave-One-Out Khatri-Rao Sketching(

{
�(i, j)

}
i, j∈[d] ,X )

# Estimate factor matrices using Alg. 5
Q1, Q2, . . . , Qd ← Recover HOSVD Factors from Leave-One-Out
Measurements (

{
�(i,i)

}
i∈[d] , {Bi }i∈[d] , (r , . . . , r))

# Compute core using Alg. 6
H ← Compute HOSVD Core with Second Access({Qi }i∈[d] ,X )

output: X̂ = [[H, Q1, . . . Qd ]]
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