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ARTICLE INFO ABSTRACT
Keywords: Data-driven methods have recently been introduced to address complex mechanics problems.
Fracture mechanics While model-based, data-driven approaches are predominantly used, they often fall short of

Machine learning
Symbolic regression
Fracture toughness

providing generalizable solutions due to their inherent reliance on pre-selected models. Model-
free approaches, such as symbolic regression, hold promise for overcoming this limitation by
extracting solutions directly from datasets. However, these approaches remain unexplored when
dealing with high-dimensional fracture mechanics problems and require significant customization
to be effective. In this work, we propose a new symbolic regression framework that integrates
mechanics knowledge to enhance the ability to generalize solutions. This framework also includes
a model-free variable separation scheme to decouple high-dimensional problems into simpler sub-
problems with manageable complexity while preserving data fidelity. We demonstrate the ad-
vantages of this framework through two fracture mechanics problems, showing that it can
potentially provide generalizable, analytical solutions to novel, easy-to-use fracture testing
configurations.

1. Introduction

The path of scientific breakthroughs is often shaped by combining data with physical intuition to discover mathematical expres-
sions that accurately describe datasets - a form of symbolic regression. An early example of this can be traced back to Ptolemy in 100
AD, who sought to match his astronomical observations with mathematical models to predict planetary motion. Centuries later, in the
field of fracture mechanics, the development of Paris’ law, the most established model for predicting the growth rate of fatigue cracks,
showcases a similar approach where empirical data guided the formulation of a fundamental mechanics law (Paris and Erdogan, 1963;
Paris et al., 1961).

As the field of mechanics is becoming increasingly interdisciplinary, e.g., coupled with chemistry (Athanasiou et al., 2024), optics
(McMillen et al., 2016), and acoustics (Mozaffari et al., 2023), the need to ‘learn’ physics or extract solutions from complex datasets
becomes more apparent. To address this need, model-based efforts have been recently introduced, including machine learning models,
such as neural networks (NNs), and Gaussian process regression (Lu et al., 2020; Brinez-de Leon et al., 2022; Goswami et al., 2022;
Chen and Gu, 2023; Dekhovich et al., 2024; Gu et al., 2018; Bessa et al., 2017; Vlassis and Sun, 2021; Buehler, 2024; Fuhg et al., 2024,
Niu and Srivastava, 2022; Agyei et al., 2023; Pantidis and Mobasher, 2023; Liu et al., 2023; Karapiperis and Kochmann, 2023; Liu
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et al., 2020; Liu et al., 2021; Athanasiou et al., 2023). For example, Lu et al. used NNs for extracting mechanical properties from
instrumented indentation experiments (Lu et al., 2020), and Brinez-de Leon et al. (2022) developed a deep convolutional NN (Pho-
toelastNet) for photoelasticity imaging-based stress evaluation. While model-based data-driven approaches are widely used, they often
fail to offer generalizable solutions due to their inherent dependence on pre-selected models. Model-free approaches hold promise for
overcoming this limitation by extracting solutions directly from datasets (Karapiperis et al., 2021; Prume et al., 2023; Bahmani and
Sun, 2024; Bomarito et al., 2021; Flaschel et al., 2022).

Symbolic regression is a data-driven, model-free method that can uncover intricate mathematical relationships. Using symbolic
regression, Bahmani and Sun (2024) discovered new constitutive models for polyconvex incompressible hyperelastic materials,
Bomarito et al. (2021) developed a new plasticity model for porous materials, and Flaschel et al. extracted plasticity models directly
from full-field displacement and global force data (Flaschel et al., 2022). Nevertheless, the capability of existing symbolic regression
methods to handle complex high-dimensional datasets and identify generalizable analytical solutions has not been fully explored. To
address this gap, we propose a mechanics-informed symbolic regression framework based on model-free variable separation to derive
generalizable analytical expressions for complex fracture problems. By applying mechanics knowledge to preprocess the training
dataset and using the model-free variable separation, our framework can deconstruct complex high-dimensional problems into
simpler, more manageable ones with fewer variables. Additionally, employing mechanics criteria to select the appropriate expression
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Fig. 1. Flowchart of the mechanics-informed symbolic regression algorithm. Mechanics-informed parts are green colored.



R. Yietal Journal of the Mechanics and Physics of Solids 194 (2025) 105916

from an extensive candidate list can enhance the accuracy and generalizability of the resulting solution. We demonstrate this
framework using two benchmark fracture mechanics problems: i) fracture of a Single Edge Notched Beam (SENB) specimen under
three-point bending, and ii) fracture of a Crackline-Loaded Edge-Crack (CLEC) specimen. Our symbolic regression framework provides
a methodological pathway for the extraction of fracture mechanics solutions and can potentially be extended to obtain analytical
solutions for non-standardized fracture testing configurations.

2. Incorporating mechanics knowledge in symbolic regression

Symbolic regression is a widely used method in multiple scientific fields (Zhang et al., 2021; Davidson et al., 2003; LeCun et al.,
1998; Koza, 1992; Udrescu and Tegmark, 2020); it typically consists of three key steps: dataset preparation, identification of candidate
expression, and selection of the appropriate expression. It requires the use of a dataset of sufficient size, which can be obtained from
various sources, with the most common being Finite Element Analysis (FEA) simulations or experimental data. Feature engineering is a
common challenge in dataset preparation. To address this, we employ mechanics insights to reconstruct the raw data, thereby
improving the performance of symbolic regression. There are two main categories of algorithms for identifying candidate expressions:
those for polynomial cases (e.g., gradient-based algorithms) (Davidson et al., 2003; LeCun et al., 1998) and those for non-polynomial
cases (e.g., brute-force genetic programming algorithms) (Koza, 1992). However, existing methods show poor performance when
dealing with high dimensional correlations, a challenge we address by splitting the dataset into sub-datasets of reduced dimension-
ality. We obtain symbolic expressions for the reduced-dimensionality datasets and use them to recover the symbolic expression for the
original high-dimensional problems. When selecting the appropriate expressions, existing methods rely purely on mathematical criteria,
which can lead to overfitting. Our approach overcomes this challenge by embedding mechanics knowledge in the expression selection
process.

2.1. Dataset preparation

Symbolic regression is the machine learning task aimed at discovering equations from collections of measured data. Symbolic
regression methods take a dataset S consisting of multiple measurements of a set of variables S = {X, Y}, where X is a set of variables
{x1, X2, ...} and Y is a target value. The output of symbolic regression is an equation of the form Y = f(X), where the right-hand side of
the equation is a closed-form mathematical expression. The equation should provide an optimal fit for the measurements in S, ie.,
minimize the discrepancy between the observed values of the target variable Y and the values calculated using the equation (Udrescu

and Tegmark, 2020). For example, symbolic regression can be performed on fatigue data including crack growth rate (gT%) and the

range of stress intensity factor, AK, to extract the Paris law (Paris and Erdogan, 1963; Paris et al., 1961). Dataset preparation requires
careful consideration of two key elements: i) the dataset size, and ii) the parameter space. Larger parameter spaces and datasets are
beneficial to the performance of the symbolic regression algorithm; however, they are subject to limitations related to computational
or experimental resources. Here, we start from a predefined parameter space, A, and construct a small training dataset. We gradually
increase the size of the training dataset until it is sufficient for obtaining a convergent expression. Additionally, converting the raw data
into characteristic quantities, (e.g., in case of Paris law using the range of the stress intensity factor AK instead of applied tensile
far-field loads (Paris and Erdogan, 1963; Paris et al., 1961)), can significantly enhance the performance of the algorithm. After
selecting the appropriate expression using established mechanics criteria (Fig. 1), we construct an extended dataset {X8, Y3} within a
larger parameter space A8 to test the generalization error of the selected expression, i.e., the maximum relative error ES.

2.2. Identification of candidate expressions

To break down the challenge of identifying the high-dimensional correlations, we split the dataset. The algorithm examines the
separability of variables and splits the original dataset into sub-datasets of lower dimensions accordingly. Then, we use polynomial and
non-polynomial fitting to identify expressions for each of the fully separated datasets. Assembling the expressions obtained for each of
the sub-datasets provides a set of candidate formulas able to fit the original dataset.

2.2.1. Model-free quantification of separability & creation of sub-datasets
We focus on additive and multiplicative separability of variables, as they are the most common mathematical operators. For any
dataset X = {x, ..., Xy}, comprising N number of variables and n number of datapoints (i.e. dim(X) = n x N) we define X; = {xil,
ey Xy, ey Xiy } as a subset of X, and X; = {le 2 Kyt Xy } as the remaining subset of X such that X = X; + X;. Here, k indexes
the variables in each subset, and ranges from 1 to the total number of variables in the respective datasets, N; and Nj, i.e. k =1, ...,
N; (resp. Nj). The total number of variables in X is denoted by N such that N = N; + N;. Furthermore, we denote the p-th datapoint of
the k-th variable (e.g. x;, ), or of a dataset (e.g. X), by [xik]p and [X], respectively, where p indexes the datapoints, and ranges from 1 to
the total number of datapoints n, i.e. p =1, 2,..., n.
Instead of using the NN-based approach (Udrescu and Tegmark, 2020), we apply a model-free approach to quantify the additive
and multiplicative separability indices of X; (E*(X;), E™!(X;)) by introducing error functions that calculate the error induced by
separating X; directly from the original dataset X. Such a model-free approach is expected to eliminate the uncertainty in quantifying
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the separability. A lower separability index suggests better separability. The additive separability index E* is given by Eq. (1)

n Y([X] -Y Xi ,C‘ -Y Ci X; +YC1'7C'
gy — 13 [¥(1x1,) - Y(),.G) - ¥(Gi [%],) + ¥(G. )], .
n & Y([X]P)
Similarly, the multiplicative separability index E™¥ is given by Eq. (2):
[Ym) Y(iXi,:G) x ¥(C: [xj]p)]
Emult(Xi) _ 1 - P Y(Ci,cj) (2)
n p=1 Y([X]P)
Where C; (resp. G)) is a set containing N; (resp. N;) constants {cil, vy Cigy vy c,-Ni} (resp. {cj1 soees s oor Gy }) where each constant

corresponds to the mean value of the respective variable in X; (resp. X;). Specifically, the k-th constant in C; (resp. C;), denoted by c;,
(resp. c; ), is defined as the mean value of the variable x;, (resp. x; ) across all data points as shown in Eq. (3)

1 n
G = >, 3
p=1
We test all the possible subsets, X;, of X, and select the one with the lowest separability index to split the dataset X. We define parent

datasets {X ; Y} as datasets containing more than one variable, and child datasets {)N(,«, 171-} and {)N(ji’]«} as the subset of the corresponding
parent dataset with the lowest separability index and the remaining part, respectively. Moreover, we define E' as the threshold such
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Fig. 2. Flowchart of quantifying separability and creating sub-datasets, where X are variables and Y is the target value. The use of the tilde indicates
that the computation takes place within the iterative process.
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that variables with separability index lower than this threshold (E*“ < E* or E™¥ < E) are considered separable. Separable variables
should have a separability index of 0. However, separable variables may lead to a non-zero separability index due to noise in the
experimental data. Additionally, variables that are separable within the domain of interest but non-separable across the entire defi-
nition space can also produce a non-zero separability index. When both separability indices are lower than the threshold (E** < E* and
E™t < EY), the separation scheme with the lower separability index is used, and the parent dataset is split to child datasets. The
criterion of selecting the separability threshold, E' is illustrated in Appendix A. Once E’ is determined, the order of sub-datasets of the
original dataset will be fixed. After we separate the dataset, the expressions for each sub-dataset will be obtained independently, and
the order of sub-datasets will not influence the expression candidates. This separation process is iterative: divided datasets with more
than one variable (i.e., parent datasets) are evaluated in terms of their separability, and the separation process continues until fully
separated sub-datasets {X},, Y3}, are constructed, where m =1, 2, ..., M with M being the total number of fully separated sub-
datasets and the superscript s denoting fully separated sub-datasets. Fully separated datasets are defined as those with separability
index greater than the threshold values (E*¥ > E and E™ > E'), or those containing only one variable. The procedure is illustrated in
Figs. 2 and 3.

The child datasets are constructed as follows: the parent dataset {X, Y} is split into two additive or multiplicative child datasets {X;,
Y;} and {)N(j, f’j}, based on the scheme dictated by the lowest separability index, provided it falls below the threshold, as follows:

Yi(X;) = Y(X,, ) and Y;(X;) = Y(Ci, X)) “)

where C; and C; are sets of constants such that each constant corresponds to the mean value of the respective variable in X; and X;
respectively (Eq. (3)), and Y; and 171 are the target values of X; and )~(j, respectively. Fitting the child datasets {)~(i,17i} and {f(j,f/j} yields a
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Fig. 3. Flowchart showcasing the assembly of candidate expressions. Each fully separated sub-dataset will provide a list of expressions. Recovery
constants are used to ensure that when the sub-expressions are combined, the solution accurately reflects the original dataset.
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list of symbolic expressions Y= fl- ()~(i) and 17] = ]~‘] ()?J) respectively. For each separation a recovery constant, C;, is extracted from the
parent dataset as follows:

G, =fi(C) + or x f(G)= Y(Ci.G) )

These recovery constants are required to recover the expressions of the parent dataset ¥ :f(}?). While creating the sub-datasets, we
directly utilize the data points from the parent datasets, which differs from the NN-based approach in (Udrescu and Tegmark, 2020).
The NN-based approach fits a NN to the parent dataset and then uses the NN to generate the sub-datasets, resulting in loss of fidelity. In
contrast, our proposed approach is model-free, thereby preserving fidelity.

2.2.2. Brute-force & polynomial fitting

Polynomial and non-polynomial expressions, f3,, for each fully separated dataset {X3,, Y5, = f5(X,)} are calculated using a
gradient-based algorithm and a brute-force genetic programming algorithm, respectively. Gradient-based algorithms, including
gradient descent optimization algorithms and their numerous variants, are typically used to solve unconstrained optimization prob-
lems (LeCun et al., 1998). The brute-force genetic programming algorithm is a commonly employed method for screening all possible
combinations of mathematical operators within a predefined functional space of bounded complexity and obtaining the expressions
that best fit the parent dataset (Koza, 1992; Udrescu and Tegmark, 2020). Both polynomial and brute-force methods are used to
identify an expression, which is discussed in Appendix B.

2.2.3. Assembling candidate expressions for the original dataset

To recover the solution for the original dataset (Y = f(X)), we need to assemble the symbolic expressions found for the fully
separated datasets f3 (X3,), the recovery constants C3,, and the corresponding mathematical operators (+ or x ) in a sequential
manner. As illustrated in Fig. 3, the expressions of each fully separated sub-dataset should be assembled according to the tree structure.
The entire list of symbolic expressions Y; :}i (X;) and 17] :f}(f(j) will be considered, resulting in a larger potential expression space
compared to selecting the optimal single formula or constructing a Pareto front (i.e., a collection of candidate expressions with
increasing complexity and accuracy). A broader pool of candidate expressions contains more information about each variable and is
more likely to preserve the formula that adheres to the established mechanics criteria in the subsequent selection process.

2.3. Selecting the appropriate expression

We aim to identify a formula with strong generalization capability (i.e., a small E8) rather than simply achieving the best fit to the
training dataset (i.e., minimize E7%"). F¢ and E"@" are defined by Eq. (6a) and Eq. (6b), where {X38, Y&} represents an extended dataset
within a larger parameter space A8 and {X"®" y"@n} s the training dataset.

P

P s { P
2 s 2
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T Ki(a,f=4) ° Ki(a,p =8) Extended dataset
s FSrawley N rb’rown
;) 1
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Fig. 4. (a) A SENB specimen under the three-point bend load. (b) The mechanics-informed symbolic regression result is consistent with Srawley’s
solution and Brown’s solution with maximum relative error being < 2% for K;(a, f=4) and < 1% for K;(a, 8 = 8), respectively. (c) The result
obtained from the training dataset (red) can be generalized in the extended dataset (green), where the maximum relative error, E8, of the obtained
expression is lower than 10%.
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Mechanics knowledge can play a crucial role in selecting an appropriate expression from the list of candidate expressions. Instead of
relying solely on the performance of the training dataset, which is commonly adopted in symbolic regression (Davidson et al., 2003;
LeCun et al., 1998; Koza, 1992; Udrescu and Tegmark, 2020), our new symbolic regression framework identifies the most general-
izable solutions by examining their consistency with established mechanics criteria. This approach provides a more generalizable
formula which does not necessarily yield the minimum E"". The mechanics-informed formula selection effectively avoids overfitting
issues and enhances the applicability of our solution across a broader range of parameters.

3. Case 1: Fracture of a Single Edge Notched Beam (SENB) in a three-point bending configuration

The SENB is a standard configuration for quantitative evaluation of mode-I fracture toughness (Ky) (Fig. 4). The geometry of the
beam is described as follows: the distance between two support points is s, the depth of the beam is b, and the notch depth is a. The
cross-section of the beam is rectangular, allowing the problem to be reduced to a two-dimensional (2D) problem. The three-
dimensional (3D) beam is placed on two support mounts, with an external force per unit thickness, P, applied to its middle point
on the top face. The stress intensity factor at the crack tip is K;. The mechanics-informed symbolic regression procedure is utilized to
derive a general form:

K; :Kl(a,b,s, P) 7)

We build a 2D finite element method (FEM) model and employ the J-integral (Rice, 1968) to calculate K; for a given set of {a,b,s,P}.

Using the Buckingham = theorem (Evans, 1972), we obtain three dimensionless variables {a =, =4, K = K‘PVE}. The first two define

the geometry (crack-to-depth ratio, span-to-depth ratio, respectively) while the third is the normalized stress intensity factor. We
introduce 6,,, = 3%, which is the stress of an unnotched beam under bending, to approximate the stress at the crack tip of a notched

beam. By introducing this intermediate variable, we can rewrite the normalized stress intensity factor as K; = K’bzs. After the
o‘avgsa2

mechanics-informed feature engineering, the desired general form of K; can be denoted as:
K = Ki(a,§) ®)

In practice, the range of @ and #is 0 < a < 0.7 and > 4. We utilize the predefined space of raw input parameters {a, #} which is
denoted by A = [0.1,0.6] x [4, 6] containing 11 x 9 = 99 uniformly spaced data points. The original dataset is separated according
to the separability indices defined in Eqs. (1) and (2). The values of additive and multiplicative separability indices are 1.71% and
0.06%, respectively. Consequently, the original dataset is separated into two fully separated datasets {X, ,,Y>,_;} and {X3_,, Y3 _,}
following the multiplicative rule, where X, _, = {a}, X},_, = {#}, and Y;_, and Y},_, are defined by Eq. (4). The corresponding re-
covery constant is C},_; = 1.13 (Eq. (5)). We obtain the 16 solution candidates by assembling f;,_, and f;,_,, listed in Table 1, according
to the tree diagram (Fig. 3). To select the appropriate expression, the solution of a pure bending problem is introduced based on the
following considerations: the three-point-bend beam will be reduced to a pure bending problem when the span-to-depth ratio, g, is
large. Theoretically, the generalizable solution should be able to recover the solution to a pure bending problem. Meanwhile, Benthem
and Koiter proposed the stress intensity factor for a short crack to be K; = ”% = 1.12 (Benthem and Koiter, 1973). We calculate K; for
each expression we obtained at a = 0.01 and = 100 (approximating a short crack in a slender beam) and select the optimal one by
comparing K; with the prefactor 1.12. An extended parameter space Af = [0.01,0.7] x [4,100] is used to compare the generalization
performance of the symbolic regression results. For brevity, a portion of the candidate list with E™" lower than 3% is presented in
Table 1:

Table 1
Performance of candidate solutions for the SENB configuration.
Candidate Number i@ 58 [Etrain E® K;(0.01,100)
1 0.38q7 1 er(314a = 1) < ( L)) 0.89% 53.80% 1.69
et & —6.97
2 0.58a 1 v/ef0s (27067 1107k (ecoso;;l) ~ 1) 2.07% 14.71% 1.09
3 0.38e;<wl> 11.07sin (ecos%ﬂ) - 1) 1.50% 7.05% 112
4 0.38q7 ! er(®14a = 1) A 0.94% 403.00% -3.32
N 318
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The final solution is the third formula whose K;( 0.01,100 ) = 1.12. The expression is given by:

3
_ 3Ps’a2- as 9
Kl(a:b¢s7p) - 2b4 KI(E;E)
where
. ea(mz—l) cos(z+1)
Ki(a,p) = 73.7194< " )sin(e [ 1) (10)

We compare the symbolic regression results with existing closed-form expressions for K; derived for this specific problem by the
mechanics community in Table 2.

Gross and Srawley (1965) developed a solution for a specific three-point bend specimen with g = 4. Thus, we compare the symbolic

regression result Ki(a, = 4) with Srawley’s formula Esraney in the range a € [0.1,0.6], finding the maximum difference to be less than

2% (Fig. 4a). Brown and Srawley provided a solution for three-point bend beam specimen with g = 8 for any a < 0.6 (Brown and

Srawley, 1966). Similarly, we compared the outcome of symbolic regression K;(a, #= 8) and Brown’s solution K" within the range

of @ € [0.1,0.6], showing significant agreement with a maximum difference of 0.71% (Fig. 4b). Guinea et al. (Guinea et al., 1998),
derived a general solution by interpolating existing solutions for f =4 and f = oo. This provided formula claims to fit a large
parameter space, where a € (0,0.7] and 8 € [4,00). Considering the use of a = 0.01 to denote a short crack and = 100 to approximate
a long beam, we utilize A¢ to test the generalization performance of the mechanics-informed symbolic regression solution. This
generalized parameter space is much larger than the predefined training parameter space, which is illustrated in Fig. 4c. The
mechanics-informed symbolic regression solution shows significant consistency with Guinea’s solution even in the extended dataset,
with a maximum difference less than 10%. In traditional symbolic regression procedure, the best-fit symbolic regression expression
would be selected, like the formula shown in Table 1 with E™" = 0.89%. However, this overfitting result exhibits a dramatical de-
viation when applied to the larger parameter space, resulting in 8 = 53.80%. In general, the mechanics-informed symbolic regression
can provide accurate prediction of K; for a wide range of @ and f, while Srawley’s and Brown’s approaches are constraint to a fixed . In
contrast to Guinea’s solution, symbolic regression can extract the solution directly from the raw data without relying on pre-existing
analytical solutions. These outcomes demonstrate strong consistency between the mechanics-informed symbolic regression findings
and established solutions, and the mechanics-informed steps significantly improve the generalization performance of symbolic
regression.

4. Case 2: Fracture of Crackline-Loaded Edge-Crack (CLEC) specimen

We investigate the fracture of a single edge notched cantilever beam with a non-uniform depth (Fig. 5a). The beam is loaded at the
edges of crack surfaces with a pair of line forces P. The notch size is a, and the slope of the top and bottom surfaces is m. The minimum
depth is d, which is located at the left end of the cantilever. This is a 2D plane stress model of a thin plate CLEC specimen (Gross and
Srawley, 1967). The mode-I stress intensity factor at the crack tip is K;. We use mechanics-informed symbolic regression to explore the
correlation between K; and {d,a,m,P}:

K; :Kl(m,a,d,P) (11)

Similarly to the first case (Section 3), we build a 2D FEM model and employ the J-integral to calculate K; for a given set of {d,a,m,P}.
Based on our mechanics insights, we replace d with the beam depth at the crack tip, h, = d + ma, since the crack is more sensitive to h,

than d, especially for a large a. We apply the Buckingham 7 theorem to obtain three dimensionless variables: the slope @ = m, the crack
1
Kih2

length to crack tip depth ratio § = ;%, and the normalized stress intensity factor K = =3¢, After the mechanics-informed feature en-
gineering, the desired general form of K; can be written as:
Ki =Ki(a,p) 12)
Table 2
Closed-form expressions for K; obtained through different approaches.
Approach Ki(a,b,s,P)
Srawley’s (Gross and Srawley, 1965) a a 3.93a a\ 2
(s - ) opd} (1-99 5 0-5) (215274 27()’)
b 2a a %
(1 * ?) (1-5)
Brown’s (Brown and Srawley, 1966) 12pP 1 a a\ 2 a\3 a4
G~ sb) T(m)2<1.106 - 1.552(5) +7.71 (E) - 13.53(5) + 14,23(5) )
Model-free B 21 [ afm beos(r+1)
75’5555 @ (eb(" 1) ) sin(efJr -1)
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B Training dataset
Extended dataset

(@) (b)

Fig. 5. (a) A thin plate CLEC specimen under splitting load P. (b) The result obtained from the training dataset (red) can be generalized in the
extended dataset (green), where the maximum relative error of the obtained expression, E8, is lower than 1%.

In practice, the range of [0,0.6] for a and values of g > 1 are of engineering interest (Gross and Srawley, 1967). We utilize the
predefined space of raw input parameters {a, f}, which is denoted by A =[0.2,0.4] x [1,2] containing 5 x 11 = 55 uniformly
spaced data points. The multiplicative separability index is E™* = 0.06% and is lower than the additive separability index (E%).
Thus, the original dataset is separated into two fully separated datasets {X3,Y;} and {X3, Y3} following the multiplicative rule. The
recovery constant is C; = 6.55. The candidate expressions are structured according to the tree diagram depicted in Fig. 3. There are 14
formulas in total and all of them fit well in the training dataset with E™" lower than 3%. To select a generalizable solution, we consider

the special case of a notched double cantilever beam (DCB) with uniform depth (« = 0). A classical solution to the stress intensity
~DCB ~

factor of a uniform double cantilever beam with a large g, is 5=k = 2+/3. Then we calculate K;(a = 0, f= o) = 1%./;:00) for

each expression we obtained (this indicates a DCB with an infinitely long crack) and select the best fitting one by comparing it with

K. We utilize the extended parameter space A® = [0,0.7] x [1,50], containing 1485 uniformly spaced data points to test the
generalization performance of the mechanics-informed symbolic regression solution. The comparison between the training dataset and
the extended dataset is illustrated in Fig. 5b. A portion of the candidate list is presented in Table 3:

The first formula gives K;(0, ) = 3.4509 which is close to EDCB. Thus, the final solution is given by:

p ~ a
Ki;(m,a,d,P) = NGE: ma’{, (m, T ma) (13)
where
~ r+1 A 1
Ki(a,p) = 1.5982log (W + 1) (ﬂ + sin (cos <m> >) 14)

Although candidate solutions for the first and third formulas in Table 3 fit the training dataset well, with E™@" less than 0.01%, the
mechanics-informed symbolic regression result fits the extended dataset significantly better, with F¢ = 0.38%. In contrast, the third
formula, which does not meet the mechanics criterion in selection, shows a significant increase in E$ = 9.60% in the extended dataset.
By applying the mechanics criterion, we can avoid such plausible but less generalizable solutions.

Table 3
The performance of candidate solutions for the CLEC configuration.
Candidate Number fil@ 1) Etrain E? K1(0,0)
1 T+1 . 1 0.0002% 0.38% 3.4509
3.5210g(m+ 1) 2.98(ﬁ+sm<cos( ”_1)))
2 L 208+ f+ B 0.0033% 0.40% 3.4490
10.94log (log (a + ea+1" 1) ) : P
3 16.68 208 (If + sin (cos( 1 )) ) 0.01% 9.60% 3.7919
Va+2 ’ Vr—1
4 5.02+ a— log(a) /i 0.44% 9.48% NaN
208+ p+ iy
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5. Discussion and conclusions
5.1. Convergence of mechanics-informed symbolic regression with respect to dataset size

Sufficient data to obtain a convergent expression is key for using the proposed framework. We start from a small dataset and
gradually increase its size until the expressions converge. For both examples, we investigated the influence of size of training datasets
on convergence, by utilizing refined training datasets (See Appendix C). In the SENB case, we obtained the same solution (Eq. (10))
using a dataset consisting of 99 data points and a refined dataset comprising 1071 data points. In the CLEC case, we initially used a
dataset of 55 data points and confirmed the convergence of the expression using a refined dataset of 189 data points. Starting with a
smaller dataset and progressively increasing its size until the result converges is an effective method to determine the minimum
number of data points needed for symbolic regression.

5.2. High-fidelity variable separation using a model-free approach

The model-free separation algorithm constructs sub-datasets directly from the original data points without invoking any specific
machine learning model. Such an approach preserves the fidelity of the FEM dataset and eliminates the uncertainty in the variable
separation introduced by model-based methods. For example, in NN-based approaches, the inherent training error, the variation of NN
structures, and the choice of different hyperparameters can result in loss of fidelity and in uncertainty during variable separation. Both
are detrimental to the subsequent symbolic regression steps and impede the identification of the generalizable solution (more in-
formation in Appendix D). To separate the training dataset, we compared our model-free with a NN-based approach (Udrescu and
Tegmark, 2020). For the SENB specimen case, both approaches identified the same multiplicative separability, yet the NN-based
approach introduced an additional ~ 5% error to the separated datasets (in contrast to the zero error in the model-free approach).
The generalizability of the resulting expression in the case of the NN-based approach is poor, exhibiting ~ 16% error in the extended
dataset, which is over twice the error of the expression obtained through the model-free approach. In the CLEC case, the separability
identified through the NN-based approach is highly sensitive to the selected hyperparameters of the NNs, resulting in large uncertainty
in the variable separation. The NN-based approach introduced at least ~ 3% error in separated sub-datasets, leading to an expression
with inferior generalizability (~ 8%), over 20 times the error obtained through the model-free approach. The model-free approach
demonstrates superior performance over model-based methods. The advantage of the model-free approach for variable separation is
particularly evident when the raw data is of high quality (e.g., noise-free FEM data).

5.3. Decoupling complex problems by embedding mechanics knowledge

Variable separation is an important step in using symbolic regression to solve fracture mechanics problems. When variables are
separable, we can directly identify the candidate expressions using the raw data obtained from FEA simulations. However, fracture
problems typically contain coupled variables. To decouple a fracture mechanics problem, we employ mechanics-informed feature
engineering to identify intermediate variables that are separable. These intermediate variables can help simplify the original complex
symbolic regression task into several sub-tasks that contain less variables. For the SENB case, we examined the separability of the

original dataset, {g, i, K’}‘,/E}, and found that the variables are highly coupled, as both the multiplicative and additive separability
indices exceed 30%. Therefore, we constructed a new dataset, {a = ¢, f =3, K = Klb2§ }, by introducing the intermediate variable
Caygsa2

Oavg, Which is the approximate average stress at the crack tip. The multiplicative separability index of the newly constructed dataset is
less than 1%, allowing us to fully decouple the symbolic regression task. Introducing intermediate variables can decouple complex
mechanics problems which require domain knowledge. For problems relative to stress intensity factors and energy release rates, the
average or maximum stress near the crack tip can be selected as intermediate variables. For a complex geometry, we can identify the
potential intermediate variables by examining the solution to the geometry’s simplified counterpart. For example, a uniform DCB
configuration is a special case of CLEC configuration for m = 0 (Fig. 5). The energy release rate of a uniform DCB under splitting force is

2
linearly proportional to (%) , where h s the depth at the crack tip. Therefore, we choose § =, where h, =d + ma, as the intermediate

variable for the CLEC problem, which is found to be separable. For problems involving complex constitutive laws, we can identify
intermediate variables from the solutions to simpler models, such as linear or nonlinear elastic models, similar to the approach of
Hutchinson, Rice, and Rosengren (HRR) to derive the crack-tip singularities in an elastoplastic material (Rice and Rosengren, 1968;
Hutchinson, 1968).

5.4. Selecting a generalizable expression by applying mechanics knowledge

Conventional symbolic regression algorithms cannot guarantee the generalizability of their results. We emphasize the importance
of generalizability, as a generalizable solution can offer insights into the underlying mechanics and principles of the problem under
investigation. In our framework, we enhance the generalizability of results by using a mechanics-informed selection step (Fig. 1). We
apply mechanics knowledge to develop a selection criterion that allows for identifying the most generalizable expression from a large
pool of candidates. In this work, we examine the candidate solutions by comparing them with established solutions to simplified
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problems. For example, in the SENB case, the symbolic regression task is to identify the stress intensity factor solution for a finite beam
with a finite crack. The simplified version of this problem consists of a slender beam with a short crack, whose parameter space is not
covered by the training dataset of the symbolic regression task. The solution to the original problem needs to be consistent with the
solution to the simplified problem. We employ consistency as the criterion to evaluate the generalizability of the candidate solutions. In
the CLEC case, the symbolic regression task is to identify the stress intensity factor solution for a non-uniform CLEC beam under
splitting forces. We consider a reduced problem of a uniform DCB with a long crack whose solution is well established. Similarly, the
generalizable solution to the CLEC problem should be consistent with the solution to the reduced problem. We employ this criterion to
select the appropriate expression (Eqgs. (10) and (14)). The mechanics criterion based on established solutions effectively enhances the
generalizability of the selected expression.

5.5. Potential of the framework in fracture mechanics and beyond

The proposed framework holds potential for advancing fracture mechanics by enabling efficient evaluation of fracture- and fatigue-
related properties from unconventional test specimen configurations (Athanasiou et al., 2023; Athanasiou and Bellouard, 2015;
Athanasiou et al., 2017; Nazir et al., 2022). Such evaluations are currently unattainable due to the complexity of extracting properties
from experimental datasets and the heavy reliance on complicated FEM solutions. By providing easy-to-use analytical formulas, this
framework could bypass the need for FEM simulations, and takes a crucial step toward democratizing fracture testing, especially with
novel test specimen configurations often used in small-scale mechanical testing (Athanasiou et al., 2024). Additionally, its ability to
generate generalizable solutions from limited datasets can lead to substantial resource savings, particularly in experimental testing at
challenging scales or under demanding environmental conditions.
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Appendix A. The criterion for selecting the separability threshold E*

The separability threshold, E, is a parameter that determines the maximum separability index at which a variable or a set of
variables should be considered separable. A larger E* means we allow the algorithm to separate variables with a higher separability
index during model-free variable separation (Fig. 1). In the model-free separability check, both additive and multiplicative separability
indices will be calculated (Egs. (1) and (2)) and sorted in ascending order E¥ = {ES1 B, } We can start by choosing E* = 0, and check
if the E™@" (Eq. (6b)) of the expressions obtained using this E* is lower than a pre-defined acceptable error (3%). When the expression
obtained by the selected E* cannot satisfy the pre-defined acceptable error, we need to increase E* to the next element in E*, i.e. E* =Ej,
and repeat the process until the pre-defined acceptable error is satisfied. In the SENB case (Section 3), the separability indices are E¥ =

{0.06%, 1.71%}. We start from E! = 0, which means only variables with E =0 or E™! = 0 will be separated. The minimum
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separability index is E; = E™ = 0.06% > E' = 0 therefore no separability was identified in the input dataset. Consequently, the
polynomial/ non-polynomial fitting are performed on the original input dataset {a,$,K;}. We did not obtain an expression with E"
lower than the predetermined value of 3%, while the expression with the minimum E™®" (5.67%) is:

~ 5.57

f) = ——F— 1
KA = G+ p (1)
Thus, we increase E' to 0.06% (i.e. E), to further separate the original dataset. Some expressions with E™" < 3% are listed in

Table 1.

Appendix B. Polynomial and non-polynomial fitting

To obtain symbolic expressions describing the given dataset, we use both a gradient descent algorithm (polynomial fitting) and a
brute-force algorithm (non-polynomial fitting). The gradient descent algorithm is used to address the limitations of the brute-force
algorithm, as brute-force methods can be computationally expensive when discovering high-order polynomials. In general, these
fitting algorithms contain two parts: defining the search space of candidate expressions and finding the optimal candidate expressions.

The search space should include the potential solution to the original problem while being as narrow as possible to enhance search
efficiency. For the polynomial fitting, we construct a search space containing polynomials up to degree 3N, where N is the total number
of variables. For the non-polynomial fitting, we construct a search space including expressions consisting of compositions of 14
commonly used pre-defined functions and operators (Udrescu and Tegmark, 2020). This search space performs well when tasked to
discover physically meaningful symbolic expressions (Udrescu and Tegmark, 2020; Keren et al., 2023). For different problems, the best
choice of the search space can be different. For example, Kaheman et al. (Kaheman et al., 2020) constructed a search space using a
library of candidate functions derived from measured trajectory data in nonlinear dynamics and Zhang et al. (Zhang et al., 2023)
constructed a search space using fixed equation structures to more effectively discover parametric equations.

To find the optimal expressions in a pre-defined search space, in the polynomial fitting, we applied a gradient-descent algorithm
with a learning rate of 0.001 over 10,000 iterations to obtain the polynomial, of degree under 3N, with the least fitting error. Regarding
the non-polynomial fitting, we enumerate possible operators and functions according to the complexity order defined in (Udrescu and
Tegmark, 2020), until the preset time runs out.

Appendix C. Symbolic regression results using different training dataset sizes

In the SENB case, we constructed the initial training dataset within the predefined parameter space A = [0.1,0.6] x [4,6],
consisting of 99 data points uniformly distributed across 11 x 9 grid points. Subsequently, a refined dataset, also within the same
space A, was developed with a finer mesh of 51 x 21 points, yielding a total of 1071 uniformly distributed data points. We found the
same multiplicative separability for both the initial and refined datasets, and they were separated accordingly. We obtained a large
number of candidate expressions through polynomial/non-polynomial fitting on the separated datasets. We identified the most
generalizable solution using the same mechanics criterion (Section 3). The selected solution appeared to be the same as the one ob-
tained from the initial dataset (Eq. (10)).

In the CLEC case, we began with the initial training dataset defined on the parameter space = [0.2,0.4] x [1,2], comprising 5 x

11 = 55 uniformly distributed data points. The refined dataset was collected from a denser 9 x 21 grid, resulting in 189 data points.
We identified the same multiplicative separability in both the initial dataset and the refined one and separated them accordingly (Egs.
(4) and (5)). Through the polynomial/non-polynomial fitting, we obtained more candidate expressions from the refined training
dataset. The most generalizable expression, selected according to the mechanics criterion established in Section 4, was identical to that
obtained from the initial training dataset (Eq. (14)).

Appendix D. Symbolic regression performance using model-free and NN-based separation approaches.

In the SENB case, we employed the model-free and a NN-based approach to examine the separability of the same training dataset
consisting of 99 data points. Both identified the multiplicative separability. The model-free approach was found to preserve the fidelity
of dataset. However, in the case of the NN-based approach, we observed a 4.72% error when reconstructing the original dataset from
the separated dataset, indicating a significant loss of fidelity. Subsequently, we applied the polynomial/non-polynomial fitting al-
gorithm (Section 2.2.3) to the datasets separated using the NN-based approach, assembled the expressions for separated datasets, and
selected the most generalizable expression according to the mechanics criterion established in Section 3. This expression obtained
through the NN-based approach exhibits a significantly larger E™®" error of 8.03% in the training dataset compared to the model-free
approach. Additionally, the generalizability of the NN-based expression is inferior to that of the model-free expression. The former
showed an E3 error of 16.55%, while the latter only 7.05% (Table B1).
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Table B1
Solving the SENB problem using the model-free and the NN-based separation approaches.

Variable separation approach Model-free NN-Based
Error in the separated datasets 0% 4.72%
Selected expressions Egq. (10 ~ (a(a+1))-1 X
P 2 (10) K(ap) = (7 0.57 + e7> <ﬁsﬁ)
a +1
[Etrain 1.50% 8.03%
E8 7.05% 16.55%

In the CLEC case, we employed the model-free and NN-based approaches to examine the separability of the same training dataset
consisting of 55 data points. The model-free approach identified the multiplicative separability while the NN-based approach gave
different separability depending on the selected hyperparameters of the NNs. The NN-based approach introduced 2.59% error to the
separated sub-datasets while the mode-free approach preserved the data fidelity. Subsequently, we applied the polynomial/non-
polynomial fitting (Section 2.2.3) to the sub-datasets separated through the NN-based approach and the mechanics criterion estab-
lished in Section 4 to select the most generalizable solution from assembled candidate solutions. The most generalizable expression
obtained through the NN-based approach fits well the training dataset with E™@" = 2.59%, while the model-free solution (Eq. (14)) has
an error lower than 1%. We introduced the extended dataset within A$ = [0,0.7] x [1,50] to identify the generalizability of both so-
lutions. Due to the error introduced in separated sub-datasets, the NN-based solution shows poor generalizability compared with the
model-free solution, whose E8 values are 7.62% and 0.38% respectively (Table B2).

Table B2
Solving the CLEC problem using the model-free and the NN-based separation approaches.

Variable separation approach Model-free NN-Based

Error in the separated datasets 0% 2.59%

Selected expressions Eq. (14) Ki(a,p) = 11.5cos(sin(a + 1))(0.36 + /jeSi“(Pi+1>)
[Etrain 0.0002% 2.59%

E8 0.38% 7.62%
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