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A Perspective on Democratizing
Mechanical Testing: Harnessing
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Sustainable Material Adoption
and Decentralized Manufacturing
Democratized mechanical testing offers a promising solution for enabling the widespread
adoption of recycled and renewably sourced feedstocks. Locally sourced, sustainable mate-
rials often exhibit variable mechanical properties, which limit their large-scale use due to
tight manufacturing specifications. Wider access to mechanical testing at the local level can
address this challenge by collecting data on the variable properties of sustainable feed-
stocks, allowing for the development of appropriate, uncertainty-aware mechanics frame-
works. These frameworks are essential for designing custom manufacturing approaches
that accommodate variable local feedstocks, while ensuring product quality and reliability
through post-manufacturing testing. However, traditional mechanical testing apparatuses
are too costly and complex for widespread local use by individuals or small, community-
based facilities. Despite promising efforts over the past decade to develop more affordable
and versatile testing hardware, significant limitations remain in their reliability, adaptabil-
ity, and ease–of-use. Recent advances in artificial intelligence (AI) present an opportunity to
overcome these limitations by reducing human intervention, enhancing instrument reliabil-
ity, and facilitating data interpretation. AI can thus enable the creation of low-cost, user-
friendly mechanical testing infrastructure. Future efforts to democratize mechanical
testing are expected to be closely linked with advancements in manufacturing and materials
mechanics. This perspective paper highlights the need to embrace AI advancements to facil-
itate local production from sustainable feedstocks and enhance the development of decen-
tralized, low-/zero-waste supply chains. [DOI: 10.1115/1.4066085]
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1 Democratized Mechanical Testing for Circular and
Local Production From Sustainable Feedstocks
Transition from linear to circular economic models is key to

addressing the global climate crisis [1–3]. The existing, linear
“take-make-waste” production and consumption patterns heavily
rely on fossil fuels, resulting in substantial greenhouse gas emis-
sions, resource depletion, and pollution issues. The current response
to these social and environmental challenges has so far mostly
focused on transitioning to renewable energy and improving

energy efficiencies. These measures, though critical, can only par-
tially resolve the climate problem, addressing about 55% of the gen-
erated emissions [1]. The remaining emissions arise from the long,
complex, and wasteful supply chains. Therefore, a transition to cir-
cular, decentralized supply chains, where resources are reused and
regenerated, will be desired (Fig. 1) [1,2].
Transitioning to decentralized supply chains and local production

using sustainable feedstocks requires two key factors: locally
sourced materials from recycled and/or renewable feedstocks and
easily accessible manufacturing tools and facilities. Using local
raw materials radically reduces transportation costs and related
carbon footprints. The use of abundant renewable resources or recy-
cled feedstocks, which have lower economic or environmental costs
compared to virgin materials, enhances community resilience and
resource security. In parallel, decentralized manufacturing facilities
on-demand production, minimizing waste, removing economic
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barriers for new manufacturers and smaller-scale production, and
bringing production closer to consumption. Recent technological
advancements in digital manufacturing have made decentralized
manufacturing feasible [4].
Nevertheless, manufacturing with locally sourced recycled and/

or renewable materials is currently inhibited by feedstock variabil-
ity, especially in terms of their mechanical properties, as their
quality is affected by several factors including seasonality, climatic
conditions, and recycling cycles [5–8]. For example, although wood
is a renewable resource, wood feedstocks of the same species can
exhibit 22% difference in elastic modulus and 34% difference in
toughness when grown under varying moisture conditions [9].
Such variability is also present in recycled plastics which are
usually contaminated with impurities introduced during their life
cycles and recycling processes. Impurities (e.g., color additives or
fragrances) can lead to polymer chain scission, entanglement, as
well as side-product formation, including carbon dioxide, water,
and carboxylic acid during the mechanical recycling process [10],
and can eventually result in obtaining a wide range of mechanical
properties. Therefore, even though recycled and renewable materi-
als may match or even exceed the mechanical performance and
functionalities of their synthetic or virgin counterparts [11], the
large uncertainty in their mechanical properties limits their
large-scale utilization considering the tight production specifica-
tions set by manufacturing industries.
Democratized mechanical testing can play a key role in overcom-

ing this challenge. Offering wider accessibility to mechanical
testing at the local level can enhance the collection of critical

information about the above-described heterogeneities of locally
sourced sustainable materials. This information, combined with
the latest advancements in multiscale modeling, can guide
product design and manufacturing, resulting in customized, adap-
tive manufacturing approaches capable of accommodating variable
feedstock properties. Such manufacturing approaches can be com-
plemented by post-manufacturing mechanical testing to ensure
product quality and production reliability.
This perspective discusses the challenges and opportunities to

enable circular production from sustainable feedstocks emphasizing
the democratization of mechanical testing as a key starting point.
Existing challenges and opportunities to democratize mechanical
testing are identified together with prospects on how to overcome
these challenges through recent developments in artificial intelli-
gence (AI). The role of new mechanics and tailored manufacturing
approaches in this process is considered, highlighting their integra-
tion with mechanical testing and AI. This showcases a pathway
toward a future where the solid mechanics community actively
aligns its efforts with the United Nations (UN) sustainable develop-
ment goals.

2 Challenges and Opportunities Toward Democratized
Mechanical Testing
Although democratizing mechanical testing could revolutionize

local manufacturing with sustainable feedstocks, traditional
testing apparatuses, like those used for tensile and flexural testing,
remain largely inaccessible to individuals or small community-

Fig. 1 Comparison of a linear fully circular urban productionmodel (a) and a circular one based onmanufacturing
with renewable and recycled materials (b). Democratized mechanical testing is critical for the characterization of
sustainable, highly heterogeneous feedstocks which are necessary for creating decentralized, robust, and
low-/zero-waste supply chains.
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based manufacturing facilities. This is primarily due to their high
cost, and also because of their complexity, the need for human inter-
vention, and the requirement for specialized testing environments
and high-throughput testing in certain cases.
Mechanical testing infrastructure typically consists of hardware

required for performing the test and acquiring the data, and software
for data analysis and property evaluation. For macroscale testing,
conventional equipment is used, e.g., Instron or MTS machines,
whose price ranges from $10,000 to $100,000 depending on
involved features. Test specimens are prepared usually following
American Society for Testing and Materials or International Orga-
nization for Standardization standards, in which property evaluation
is also standardized [12]. For samples that do not fit the require-
ments of these standards, i.e., unconventional shapes or small
dimensions, standardized procedures for mechanical characteriza-
tion are largely missing [13–15]. Nanoindentation-based testing
instruments typically incur a significant financial investment, with
prices ranging from approximately $100,000 to $300,000. Addi-
tionally, these instruments often necessitate the use of advanced
supplementary tools for sample preparation, such as focused-ion
beams, sophisticated laser systems, and lithographic processes.
The cumulative investment for such equipment can surpass
$1,000,000, leading to substantial ongoing operational expenses
[16]. Furthermore, for the characterization of nonstandard speci-
mens, computational modeling, which typically requires proprietary
simulation software, such as commercial finite element method
packages, is needed to interpret experimental data and extract accu-
rate mechanical properties. Such software requires acquisition of
expensive licenses and considerable domain expertise.
Several efforts have been made to develop more affordable and

versatile testing hardware during the last decade (Fig. 2) [17,18].
Amend and Lipson [19] developed a low-cost tensile testing
system known as “Freeloader” (Fig. 2(b)). This system offers a
load capacity of 5 kN, with an accuracy of 0.02%, for a cost of
less than $4000. Steuben et al. [20] improved Freeloader by intro-
ducing an electrohydraulic actuator to increase its load capacity to

20 kN and meet the requirement for testing stiffer materials. The
cost was further reduced to $2500, while commercially available
testing machines of comparable specifications range in cost from
$17,000 to $26,000 [19,21]. High-strain-rate mechanical testing
instruments [22], for characterizing materials’ response to extreme
conditions [13,23] or educational purposes [24], are currently
being developed by the engineering mechanics community.
These efforts, though promising, still have considerable room for

improvement (Fig. 2). First, the reliability of new testing instru-
ments, such as Freeloader [18], is a major concern. Calibration of
these instruments can be labor-intensive. Second, the adaptability
and ease-of-use of testing instruments to complex loading condi-
tions, specimen geometries and sizes, and temporospatial variations
in material properties, are poor [25]. Third, the accompanying open-
access software for autonomous design of experiments, control of
instruments, and analysis of measurements is largely underdevel-
oped. In light of recent advances in AI, coupled with the efforts
of the engineering mechanics community to make the best use of
it [26–41], these issues can be significantly remediated.

2.1 Enhancing Democratized Mechanical Testing Via
Artificial Intelligence. The primary purpose of employing AI in
advancing democratized mechanical testing is to minimize human
intervention required in this process. For example, to introduce a
new, low-cost testing instrument or method, extensive verification
efforts and multiple iterations would be needed to ensure reliability.
These processes can be expedited with the assistance of AI. AI can
enable autonomous control of the instruments and conduct millions
of validation tests with unprecedented precision and efficiency.
Additionally, AI can learn from the collected data the correlation
between instrument design and reliability and eventually contribute
to the iterative design of new instruments and methods. Finally, AI
can learn how measurement errors accumulate during the service
time of the instrument and can potentially bypass them by correct-
ing the raw data. Thus, the frequency of routine instrument

Fig. 2 Current challenges of commercial versus open-access instrumentation for mechanical
testing and future opportunities by the incorporation of AI
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calibration can be decreased, leading to significant savings in time
and cost for extensive mechanical testing operations.
Mechanical testing of sustainable materials requires expertise in

the design of experiments. For example, to explore the viscous
properties of recycled plastics, a well-chosen combination of
loading profiles can significantly reduce the required experimental
effort. For materials exhibiting spatial variations in their properties,
an optimized choice of sampling points can provide a more compre-
hensive description of such variations. AI frameworks, e.g., active
learning and generative models, can be used to optimize the exper-
imental designs and create self-evolving libraries of testing proto-
cols that can adapt to various practical scenarios [29].
Conducting experiments, the most cost- and expertise-intensive

step in mechanical testing, can also be transformed by AI.
Through AI frameworks, data from multiple sources (such as data
collected from force and optical sensors) can be processed simulta-
neously to achieve more precise control of instruments. Thus,

experimental success rates that surpass those of skilled experimen-
talists can be potentially achieved through AI. This can significantly
enhance high-throughput mechanical characterization of heteroge-
neous materials, especially under challenging testing conditions.
Another crucial aspect that AI can contribute to is data interpre-

tation. The use of nonstandard specimens exhibiting complex
geometries might be unavoidable in some cases when characteriz-
ing recycled/renewable feedstocks at small or community-based
manufacturing facilities due to practical considerations or limited
resources. In such scenarios, it is challenging to extract the required
mechanical properties experimentally without specific analytical or
semi-analytical solutions in place. Therefore, a new class of data
interpretation solutions based on machine learning (ML) models
has been developed to overcome this challenge [27–29]. ML
models are capable of establishing an accurate correlation
between the experimentally obtained quantities and material proper-
ties of interest, based on reference experimental and/or simulation

Fig. 3 (a) Establishing a link between experimental measurements and themechan-
ical properties of interest is challenging for specimens with non-trivial shapes and
sizes. We recently proposed that such correlations can be captured using machine
learning solutions [26–28]. (b) The ML solutions are easily deployable, setting the
scene for collaborative efforts on developing and standardizing new mechanical
testing instruments and methods for sustainable materials and structures.
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data (Fig. 3(a)). However, developing ML-based solutions is
data-intensive. Data scarcity is a common challenge that raises reli-
ability concerns. Although assessing the accuracy of ML-based
solutions becomes difficult without sufficient data, it is highly rec-
ommended to incorporate rigorous accuracy assessment techniques,
even with limited data. Advanced ML techniques [27,42], such as
active learning, have been introduced to improve the efficiency of
data usage. Another challenge in establishing accurate ML-based
solutions is data quality. It is essential to eliminate any systematic
bias in the training data. Accurate ML-based solutions derived
from sufficient amounts of quality data rely on the combination
of experimental and simulation approaches [26–28]. Finally,
ML-based solutions can be effectively shared in open-standard
file formats, along with detailed instructions for their application,
therefore facilitating their widespread implementation by the com-
munity. Our current efforts include constructing an open-access
platform that allows everyone to upload, share, deploy, and revise
their own solutions (Fig. 3(b)) [26]. Another scenario involves
data analysis and interpretation to be directly conducted on a
Cloud computing service, where data are processed using advanced
AI algorithms, and the results are then sent back to the users. In such
scenarios, the local “user” only needs to setup the experiments. The
data could be processed centrally, and new experiments suggested,
with all computational tasks performed on the Cloud server, thereby
offloading the local user’s processing and analysis burdens. Such
platforms set the scene for collaborative efforts on developing
and standardizing new mechanical testing instruments and
methods for sustainable materials and structures.

3 The Way Toward Sustainable Materials
and Structures
In line with the UN sustainable development goals [1], there is a

global push toward circular economy practices for manufacturing
products from sustainably sourced materials and decentralizing
supply chains. A key aspect to achieve such efforts is the develop-
ment of open-access pathways allowing for local communities and
individuals to engage in mechanical testing, without requiring sig-
nificant capital investments, licenses to use proprietary software

or specialized expertise [43–45]. Facilitating the use of testing
instruments though open-access practices could enable the wider
adoption of multiscale mechanical testing of heterogeneous renew-
able feedstocks at the local level (Fig. 4).
However, existing open-access efforts for low-cost mechanical

testing solutions face significant challenges, including labor-
intensive calibration procedures, poor hardware reliability under
different testing conditions, and skill-intensive interpretation of col-
lected data. Fortunately, recent technological advances in the fields
of engineering automation and AI can be leveraged to overcome
these challenges. AI can be employed in democratizing mechanical
testing by reducing human intervention, expediting verification
efforts, and contributing to the iterative design of new instruments
and methods. AI frameworks, such as active learning, can optimize
experimental designs, enhance experimental success rates, and
facilitate high-throughput mechanical characterization of heteroge-
neous materials. In addition, ML-based data interpretation solutions
can enable accurate correlation between experimental data and
material properties yet requiring sufficient amounts of quality
data. Apart from the potential contribution of existing AI frame-
works, ongoing AI research and development efforts concerning
autonomous design of experiments [46], self-calibrating hardware
[47], and multimodal “Text-to-X” generative AI platforms (e.g.,
Text-to-CAD [48]) could further enhance the implementation of
open-access, low-cost and easy-to-use mechanical testing solutions.
Developments for democratizing mechanical testing are expected

to be closely intertwined with advancements in the field of mechan-
ics of materials. The variability of the mechanical properties of sus-
tainable materials poses complex modeling challenges. The
mechanics community is called to develop modeling frameworks
that will incorporate stochasticity for the accurate understanding
and prediction of the mechanical behavior of such materials [49].
Significant research efforts need to be undertaken for proposing
new deformation models and failure criteria for these highly hetero-
geneous material systems, using experimental data collected across
multiple scales [50], from nano to the continuum scale, and multi-
ple, multi-fidelity sources (e.g., photoelasticity to digital image cor-
relation tests [13–15,25]). Furthermore, it will be critical to obtain
easy-to-deploy [51], uncertainty-aware predictive surrogate
models, and risk-assessment frameworks based on multiscale

Fig. 4 Enabling the wider adoption of sustainable materials needs democratized mechanical testing [26–28], new mechanics
of materials knowledge [13–15,25,50], and tailored design [7–9] andmanufacturing approaches [4,11,49]. AI can help overcome
existing challenges, e.g., enhancing the predictive accuracy and efficiency of mechanical testing, for deriving
uncertainty-aware constitutive laws and for developing data-driven manufacturing models.
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material responses, while minimizing the amount of data needed.
Such advanced predictive capabilities would be essential for
designing structures that are both environmentally friendly and
mechanically robust.
Lastly, new manufacturing platforms tailored for heterogeneous

sustainable feedstocks need to be developed. Traditional manufac-
turing equipment is designed for homogeneous feedstocks of
consistent properties and predictable behavior under standard pro-
cessing conditions, in order for the developed products to meet
the stringent quality criteria demanded by downstream industries.
However, bio-based materials may require varying processing tem-
peratures, since seasonality and regionality might affect their
melting points or humidity contents [10]. To enable manufacturing
of sustainable feedstocks that exhibit stochastic properties and
behaviors, adaptive, data-driven manufacturing models able to
predict performance and facilitate processing refinements “on-
the-fly” need to be developed [49,52]. In addition, specialized pre-
treatment approaches are necessary to improve the manufacturabil-
ity of specific sustainable feedstocks [11]. Developing and optimiz-
ing suitable pre-treatment technologies would be critical to enable
scalable and energy-efficient manufacturing of sustainable materi-
als. Finally, bioinspired design methodologies, such as self-
assembling [53–55] and morphogenesis [56], that have been
explored in the recent decades within the mechanics community
may assist in accommodating for discrepancies in the feedstock,
by carefully controlling self-assembly units and assembly condi-
tions (e.g., temperature, pH [57,58]). These approaches could also
facilitate local manufacturing and assembly of sustainably
sourced products. However, detailed understanding of the fatigue
behavior of heterogeneous sustainable feedstocks will be required
to assess their self-assembly capabilities [59,60].
Therefore, to enable circular and local production from sustain-

able feedstocks, democratized mechanical testing guided by AI is

key and goes hand in hand with the generation of new mechanics
knowledge as well as the development of tailored and dynamic
manufacturing processes. To ensure the overall sustainability and
successful implementation of such an approach in practice, it will
be necessary to establish relevant metrics and integrate sustainabil-
ity assessments, e.g., life cycle analysis, from the early stages of
research and development processes, to quantify environmental
impacts, economic viability, and social implications and identifying
areas for improvement (Fig. 5) [61,62].
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