
Journal of Physics A:
Mathematical and
Theoretical

            

PAPER

Arctic curves of the T-system with slanted initial
data
To cite this article: Philippe Di Francesco and Hieu Trung Vu 2024 J. Phys. A: Math. Theor. 57
335201

 

View the article online for updates and enhancements.

You may also like
Fusion hierarchies, T-systems, and Y-
systems of logarithmic minimal models
Alexi Morin-Duchesne, Paul A Pearce and
Jørgen Rasmussen

-

Double tangent method for two-periodic
Aztec diamonds
Philippe Ruelle

-

Temperature profile of the Thomson-
effect-induced heat release/absorption in
junctionless single conductors
Takahiro Chiba, Ryo Iguchi, Takashi
Komine et al.

-

This content was downloaded from IP address 174.62.155.198 on 02/06/2025 at 15:49

https://doi.org/10.1088/1751-8121/ad65a5
/article/10.1088/1742-5468/2014/05/P05012
/article/10.1088/1742-5468/2014/05/P05012
/article/10.1088/1742-5468/2014/05/P05012
/article/10.1088/1742-5468/2014/05/P05012
/article/10.1088/1742-5468/2014/05/P05012
/article/10.1088/1742-5468/2014/05/P05012
/article/10.1088/1742-5468/aca4c4
/article/10.1088/1742-5468/aca4c4
/article/10.35848/1347-4065/acc3e6
/article/10.35848/1347-4065/acc3e6
/article/10.35848/1347-4065/acc3e6


Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 57 (2024) 335201 (57pp) https://doi.org/10.1088/1751-8121/ad65a5

Arctic curves of the T-system with slanted
initial data

Philippe Di Francesco∗ and Hieu Trung Vu

Department of Mathematics, University of Illinois, Urbana, IL 61821, United States
of America

E-mail: philippe@illinois.edu and hvu@illinois.edu

Received 15 March 2024; revised 16 July 2024
Accepted for publication 19 July 2024
Published 30 July 2024

Abstract
We study the T-system of type A∞, also known as the octahedron recur-
rence/equation, viewed as a 2+ 1-dimensional discrete evolution equation.
Generalizing earlier work on arctic curves for the Aztec Diamond obtained
from solutions of the octahedron recurrence with ‘flat’ initial data, we con-
sider initial data along parallel ‘slanted’ planes perpendicular to an arbit-
rary admissible direction (r,s, t) ∈ Z3

+. The corresponding solutions of the
T-system are interpreted as partition functions of dimer models on some suit-
able ‘pinecone’ graphs introduced by Bousquet–Mélou, Propp, and West in
2009. The T-system formulation and some exact solutions in uniform or peri-
odic cases allow us to explore the thermodynamic limit of the corresponding
dimer models and to derive exact arctic curves separating the various phases
of the system. This direct approach bypasses the standard general theory of
dimers using the Kasteleyn matrix approach and uses instead the theory of
Analytic Combinatorics in Several Variables, by focusing on a linear system
obeyed by the dimer density generating function.

Keywords: dimers, arctic phenomenon, exact solution, thermodynamic limit,
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1. Introduction

The T-system, also known as the octahedron recurrence, is a system of non-linear equations
describing the time evolution of a quantity Ti,j,k indexed by the Z3 lattice, where (i, j) are
thought of as discrete space coordinates, and k a discrete time. The T-system originated in the
context of integrable quantum spin chains, as a functional relation between transfer matrices
[33, 34]. The T-system was more recently reinterpreted in the framework of cluster algebras
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[19] as a particular set of mutations in an infinite rank system. As a consequence, solutions
display the Laurent phenomenon: the solution can be expressed in terms of any admissible ini-
tial data as a Laurent polynomial with non-negative integer coefficients. This system displays
rich combinatorial properties, depending on the choice of initial data/boundary conditions,
such as discrete integrability [18], and periodicity properties [20, 25–27, 35]. In particular,
the T-system with periodic boundary conditions is related to the pentagram map, an integrable
dynamical system on polygons of the projective plane [30], and its higher generalizations [24].

We also consider the combinatorics of dimer configurations, i.e. perfect matchings of
(planar) graphs. The perfect matching of a graph G is a subgraph of G such that every ver-
tex belongs to exactly one edge. In the case of the graph on the Z2 lattice, perfect matchings
can be visualized dually as domino tilings, i.e. tilings by means of 2× 1 and 1× 2,rectangles.
A method for counting the number of domino tilings of a finite domain of Z2 was devised
independently by Kasteleyn [29] and by Temperley and Fisher [41].

For suitable domain/graph shapes, dimer models display the so-called arctic phenomenon:
when the domain/graph is scaled to a very large size, in typical configurations there is a sharp
separation between ‘frozen’ regions of the domain with regular lattice-like dimer configura-
tions and ‘liquid’ regions where the dimers are disordered, eventually converging to an ‘arctic
curve’. The simplest instance is the arctic circle theorem for the uniform domino tiling of large
Aztec diamonds [7, 28]. A general theory of arctic curves in dimer problems was developed
by Kenyon, Okounkov and Sheffield, building on Kasteleyn’s solution, and establishes a con-
nection to solutions of the complex Bürgers equation [31, 32].

The T-system solutions with suitable initial conditions can be interpreted in terms of vari-
ous combinatorial objects such as tessellations of the triangular lattice and families of non-
intersecting lattice paths. Significant progress was made by Speyer [40], who worked out the
general solution in terms of a weighted dimer model on a suitable graph (see also [12]). In
addition to computing exact dimer partition functions, this interpretation of T-system solu-
tions provides a tool to investigate asymptotic properties of the corresponding dimer models.
This was first applied to the domino tilings of the Aztec diamond for various types of (peri-
odic) weights [22], by considering the solutions of the T-system with ‘flat initial data’ assign-
ments providing a weighting of the dimer model. This work uses the recent progress in the
area of Analytic Combinatorics in Several Variables (ACSV) which provides analytic tools to
study the asymptotic enumeration of combinatorial objects with rational multivariate gener-
ating functions [2, 36–38]. Indeed, the crucial ingredient in [22] is the fact that the average
local dimer density ρi,j,k at point (i, j,k), which vanishes in crystalline phases and is non-trivial
in liquid phases, has an explicit rational generating function in 3 variables, the denominator
of which governs the behavior of ρi,j,k when i, j,k→∞ with (i/k, j/k)→ (u,v) finite, eventu-
ally yielding via ACSV the arctic curve for the rescaled model in the (u, v) plane. Similar and
further results were also found by the more traditional Kasteleyn method [3, 5, 6]. However,
the T-system approach advocated in this paper is in a sense much more direct, as it simply
relies on exactly solving the T-system for given initial data that determine the geometry and
weights of the corresponding dimer problem. Moreover it provides exact explicit formulas for
dimer density generating functions, instrumental in the study of the arctic phenomenon. A
detailed comparison between the results of this paper and the Kasteleyn method will be done
elsewhere [23].

The aim of the present paper is to study solutions of the T-system with different initial data,
giving rise to different dimer models, that also display an artic phenomenon, which we invest-
igate by use of ACSV. Our initial data are along collections of (2t) parallel planes perpendicular

3



J. Phys. A: Math. Theor. 57 (2024) 335201 P Di Francesco and H T Vu

to a fixed direction (r,s, t) ∈ Z3 in the (i, j,k) space-time. The corresponding solutions of the T-
system are interpreted as the partition functions of weighted dimer configurations of so-called
pinecones [4], certain families of bipartite planar graphs with square and hexagonal inner faces
only. We find new solutions of the T-system corresponding to different uniform dimer weights
along each initial data slanted plane, for which an arctic phenomenon occurs. We show this by
computing explicit rational generating functions for the corresponding dimer density ρi,j,k at
point (i, j,k). As before, the singularities of the latter determine the arctic curves for the cor-
responding dimer models. We then explore non-uniform but periodic initial data along slanted
planes, and in the exactly solvable cases we obtain higher order linear systems for the local
density, leading to more involved arctic curves in the same spirit as [22].

Finally, we show that a given T-system solution for a given (r,s, t)−slanted initial data also
provides insights on dimer models arising from in any other (r̃, s̃, t̃)−slanted initial data given
by the values taken by the previous solution along the corresponding new set of parallel planes.
By construction, the new dimer model also displays an arctic phenomenon with its own arctic
curve, which we view as a holographic image of the former.

The paper is organized as follows.
In section 2, we recall known facts on T-system solutions and their interpretation in terms

of dimer models. We define the (r,s, t)−slanted initial data and show their relation to dimer
models on the pinecone graphs of [4]. Section 3 is devoted to the case of uniform but specific
initial values along each initial data plane, and proceeds as follows: we first present the exact
solution of the T-system, then derive the local dimer density, which we finally analyze via
ACSV to get the arctic curve. We then follow the same procedure for non-uniform but 2× 2-
periodic initial data within each plane in sections 4 and 5. Section 4 is devoted to the exact
solution and its periodicity properties. Section 5 deals with the local dimer density, and the
computation of the associated arctic curves. In particular, like in [22], a new ‘facet’ dimer
phase emerges as a consequence of the staggering of initial data. In section 6, we describe the
holographic principle, which allows to ‘view’ any (r,s, t)−slanted solution from a different
(r̃, s̃, t̃) point of view. Section 7 is devoted to a discussion of the detailed structure of the facet
phase, a 3D formulation of the holographic principle, and a few concluding remarks.

Some cumbersome explicit expressions for systems and arctic curves of this paper are avail-
able online [1].

2. T-system and dimers

2.1. General setting and slanted plane initial data

The T-system or octahedron relation is the following recursion relation for variables Ti,j,k > 0,
i, j,k ∈ Z

Ti,j,k+1Ti,j,k−1 = Ti+1,j,kTi−1,j,k+Ti,j+1,kTi,j−1,k. (2.1)

It may be interpreted as a discrete time k evolution for the variable T, expressing its value at
the time k+ 1 vertex of an octahedron in terms of the values at the 4 vertices at time k and at
a single vertex at time k− 1. It is also interpreted as a particular mutation in an infinite rank
cluster algebra. As the T-system clearly conserves the parity of i+ j+ k, we may restrict our
study to solutions subject to the additional condition i+ j+ k= 0 mod 2. This condition will
always be assumed implicitly unless otherwise specified.
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The solution Ti,j,k is unique once we fix admissible initial data along any given ‘stepped
surface’ k made of the vertices (i0, j0,ki0,j0), i0, j0 ∈ Z, where the height function ki,j : Z2 → Z
obeys |ki+1,j− ki,j|= |ki,j+1 − ki,j|= 1 for all i, j ∈ Z. The initial data assignments read

Ti0,j0,ki0,j0 = ti0,j0 , (i0, j0 ∈ Z) (2.2)

for some fixed initial variables ti0,j0 > 0, i0, j0 ∈ Z.
In this paper, we consider solutions of the A∞ T-system subject to initial data along (r,s, t)-

slanted parallel planes

(Pm) = {(i, j,k) |ri+ sj+ tk= m}

for some fixed integers r,s, t⩾ 0 such that t>max(r,s) and gcd(r,s, t) = 1. Throughout the
paper, without loss of generality we shall also assume r⩽ s, as the converse is easily reached
upon interchanging i↔ j. Note that when r,s, t are odd, only even values ofm occur, as i+ j+ k
is even.

It is easy to see that an admissible initial data set for the T-system consists of specifying the
values of Ti,j,k along 2t consecutive parallel planes (Pm), m= 0,1,2, . . .,2t− 1. These form a
particular stepped surface, by noting that neighboring points (i, j,k) and (i∓ 1, j,k± 1) belong
respectively to planes (Pm), m= ri+ sj+ tk and (Pm±(t−r)) while (i, j∓ 1,k± 1) belong to
(Pm±(t−s)). Moreover, using the T-system as a recursion relation in the discrete variable k, we
may write

Ti,j,k+1 =
Ti+1,j,kTi−1,j,k+Ti,j+1,kTi,j−1,k

Ti,j,k−1
.

The point (i, j,k+ 1) belongs to the plane (PM) for M= ri+ sj+ t(k+ 1). The above
relation shows that Ti,j,k+1 is determined by values of T on the 5 other planes:
(PM+r−t),(PM−r−t),(PM+s−t), (PM−s−t),(PM−2t). We may therefore use the relation recurs-
ively to obtain all values of T in (PM) from the data on (PM−1),(PM−2), . . . ,(PM−2t).

The stepped surface corresponding to (r,s, t)-slanted planes initial conditions reads

ki,j =
1
t
×
{

Mod(ri+ sj,2t)− ri− sj if i+ j = 0 [2]
Mod(ri+ sj+ t,2t)− ri− sj if i+ j = 1 [2]

(2.3)

where we have identified the index m=Mod(ri+ sj+ tMod(i+ j,2),2t) of the plane Pm con-
taining the point (i, j,ki,j). Equivalently, we have

ki,j =

{
−2

⌊ ri+sj
2t

⌋
if i+ j even

1− 2
⌊ ri+sj+t

2t

⌋
otherwise

(2.4)

Remark 2.1. The latter expression allows to characterize alternatively the (r,s, t)-slanted
stepped surface as the lowest stepped surface lying above the plane (P0) : ri+ si+ tk= 0,
(i, j,k) ∈ Z3. By lowest we mean that any ‘down’ mutation sending some point (i, j,k)→
(i, j,k− 2) will end strictly below the (P0) plane.

We may finally also write a single parity-independent formula for ki,j in the form

ki,j = i+ j− 2

⌊
ri+ sj+ t(i+ j)

2t

⌋
. (2.5)
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Figure 1. The six possible face configurations for the k coordinate of any stepped surface
k and the associated black/white square/triangle tessellation.

2.2. Solution as a dimer model partition function

In [12, 22], it was shown that the solution Ti,j,k to the T-system subject to initial conditions
of the form (2.2) on some stepped surface k is the partition function of a dimer model on a
bipartite graph obtained as follows.

First, from the octahedral mutation interpretation, we note that the solution Ti,j,k may be
expressed in terms of a finite subset of the initial data (2.2), namely that lying in the cone
|x− i|+ |y− j|⩽ |z− k|, (x,y,z) ∈ Z3 with apex (i, j,k). LetD =Dr,s,t

i,j,k denote the intersection
of the initial data stepped surface with this cone.

Further recording the k-coordinates of the points in D, and applying the dictionary of
figure 1, allows to construct a tessellation with black/white triangles and squares of the projec-
tion of D onto the (x, y) plane. It turns out that the (r,s, t)-slanted tessellated stepped surfaces
are very special:

Theorem 2.2. Each vertex of an (r,s, t)-slanted tessellated stepped surface may only have one
of the five possible environments depicted below:

To prove the Theorem, we note that the general stepped surface conditions |ki+1,j− ki,j|=
|ki,j+1 − ki,j|= 1 (i, j ∈ Z) would give rise to 24 = 16 possible environments for the vertex
(i, j,ki,j). However, these rules are further restricted by equation (2.4) as follows.

Lemma 2.3. The (r,s, t)-slanted stepped surfaces obey the further conditions:

ki−1,j− ki+1,j ∈ {0,2} , ki,j−1 − ki,j+1 ∈ {0,2} , ki+1,j− ki,j+1 ∈ {0,2} (2.6)

Proof. We show that the value −2, allowed by the general stepped surface condition, is ruled
out here. Using (2.5), we have first:

ki−1,j− ki+1,j =−2+ 2

(⌊
ri+ sj+ t(i+ j)+ r+ t

2t

⌋
−
⌊
ri+ sj+ t(i+ j)− r− t

2t

⌋)
.
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The arguments of the integer parts differ by 2 r+t2t > 1, hence the difference cannot be 0, which
implies that ki−1,j− ki+1,j 6=−2. The same reasoning leads to ki,j−1 − ki,j+1 6=−2. Finally,
using again (2.5):

ki+1,j− ki,j+1 = 2

(⌊
ri+ sj+ t(i+ j)+ s+ t

2t

⌋
−
⌊
ri+ sj+ t(i+ j)+ r+ t

2t

⌋)
The arguments of the integer parts differ by s−r

2t > 0, which implies ki+1,j− ki,j+1 ⩾ 0 and rules
out the value −2.

We are now ready to prove theorem 2.2. The first two conditions of (2.6) rule out the fol-
lowing nine possible vertex environments:

where the horizontal (resp. vertical) pairs of dots indicate the violation of the first (resp. second)
restrictions of (2.6). Finally the third restriction in (2.6) rules out the first face configuration
of figure 1, and therefore the following two vertex environments:

where we also indicated by a pair of dots the heights violating the third restriction of (2.6).
Having ruled out 11 possible environments, we are left with the 16− 11= 5 stated in the
Theorem.

We represent a few sample tessellated domainsD in figure 2, in the cases (r,s, t) = (1,1,3)
and (r,s, t) = (1,2,3), for solutions T0,0,k, k= 2,4,6.

From the tessellated domain D, one can construct the bipartite dual graph G = Gr,s,ti,j,k , by
assigning black/white bicolored vertices •/◦ corresponding to the color of the faces in the
original triangulation. Faces ofG are labeled by coordinates (x, y) of the dual vertex (x,y,kx,y) ∈
D. A dimer configuration on G is an independent set of edges of G such that every vertex of
G belongs to exactly one edge. The edges in this set can be thought as occupied by dimers,
usually represented as thickened edges of G.

7
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Figure 2. The tessellation domain Dr,s,t
i,j,k for (r,s, t) = (1,1,3) and (r,s, t) = (1,2,3),

centered at the point (i, j,ki,j) (marked by a •), equal to the projection of the point (i, j,k)
onto the initial data stepped surface k.

Theorem 2.4 ([12]). The solution of the T-system with slanted initial data is expressed as:

Ti,j,k =
∑

dimer configs.D
onG

∏
faces (x,y)

ofG

{
(tx,y)

vx,y/2−1−Nx,y(D) (x,y) interior faces

(tx,y)
1−Nx,y(D) (x,y) boundary faces

where the sum extends over all dimer configurations D on the dual graph G, while vx,y is the
valency of the face (x, y) and Nx,y(D) ∈ {0,1, . . .,vx,y} denotes the number of dimers occupying
the edges at the boundary of the face (x, y). The initial data tx,y’s serve as local Boltzmann
weights for the dimer model.

Proof. The proof of the theorem proceeds similarly to the case of 4− 6− 8-graph in theorem
3.10 of [12], with the extra restrictions of lemma 2.3.

In this paper, we apply theorem 2.4 to the particular case of (r,s, t) slanted initial data. The
corresponding bipartite graphs G actually already appeared in the literature [4] under the name
of ‘pinecones’. The precise connection is given in the next section.

Example 2.5. We consider the solution T0,0,4 of the (1,1,3)-slanted T-system. The tessellated
domainD0,0,4

1,1,3 is represented in figure 3(A). The dual graph G
0,0,4
1,1,3 together with its face weights

ta,b is represented in figure 3(B). Finally, we show a sample dimer configuration in figure 3(C),

8
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Figure 3. The tessellated domain (A) for T0,0,4 with (1,1,3)-slanted initial data, the
corresponding dual graph (B) G0,0,4

1,1,3 and a sample dimer configuration (C).

corresponding to the contribution
t−1,−1t−1,2t0,0t1,−2t2,0t2,2
t−1,1t0,−1t1,−1t1,1t2,1

to the partition function T0,0,4,

expressed as a Laurent polynomial of the initial data ta,b.

2.3. Slanted plane initial data and dimers on pinecones

2.3.1. (r,s, t)-dual graph structure. Let us first describe the structure of the dual graphs G
to the (r,s, t)-slanted initial data tessellations of previous section, which we shall call (r,s, t)-
slanted graphs for short. As is clear from the discussion of section 2.2, each such graph is
a finite subset of the infinite (doubly periodic) graph dual to the tessellation of the infinite
stepped surface k, namely that corresponding to only retaining faces (x, y) within the cone
|x− i|+ |y− j|⩽ |z− k|, with z= kx,y. Let us first describe this infinite graph. The restriction
theorem 2.2 implies dually that the faces of any (r,s, t)-slanted graph may only be hexagons
or squares of the following types:

where the hexagon corresponds to the first three vertex environments of theorem 2.2, and
the two squares to the two remaining environments. These faces are naturally arranged into
columns of faces (i, j), j ∈ Z (strips of width 1), each column a succession of hexagonal/square
faces (see figure 4(a) for the (r,s, t) = (2,4,9) example). Bi-colorability imposes that squares
always go by pairs, and we may alternatively view any vertical strip as made of only hexagons
with some horizontal edges added in the middle.

By the minimality property of the stepped surface k (see remark 2.1), we deduce that each
vertical plane section (of the form x=constant) of the tessellation of k reduces to an infin-
ite minimal path in the integer (y, z) plane (with fixed parity of y+ z= x mod 2) and with

9
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Figure 4. (a) The fundamental domain of a vertical slice of the bicolored graph dual to
the tessellated (2,4,9)-slanted stepped surface. (b) A x=const. section of the stepped
surface k (shown as a minimal path above the line sy+ tz=−rx). We label each vertex
by S/H for square/hexagon for the type of each corresponding dual face. (c) The infin-
ite bicolored graph dual to the tessellated (2,4,9)-slanted infinite stepped surface: dots
indicate the periodicity lattice for the graph.

up/down steps (1,±1). The path is described by its vertex coordinates (y,z= kx,y), and min-
imality means it is the lowest path above the line sy+ tz=−rx. In turn, each vertex of this path
corresponds to a square or an hexagonal face of the corresponding vertical strip in the dual.
More pecisely, each ‘double descent’ of the form (kx−1,y,kx,y,kx+1,y) = (µ,µ− 1,µ− 2) gives
rise to a hexagon at (x, y), while each ‘down-up’ (kx−1,y,kx,y,kx+1,y) = (µ,µ− 1,µ) and each
‘up-down’ (kx−1,y,kx,y,kx+1,y) = (µ,µ+ 1,µ) give rise to squares at (x, y). The H/S sequence
is moreover 2t-periodic, due to the relation kx,y+2t = kx,y− 2s.

We have represented the correspondence between the (minimal) path (y,kx,y) and the ver-
tical slice structure in figures 4(b) and (a) for the case (r,s, t) = (2,4,9). In figure 4(b), vertices
in the middle of a double descent are marked H (for hexagonal face in the dual) while those in
themiddle of an ‘up-down’ or ‘down-up’ are marked S (for square). Upon changing to coordin-
ates (u, v) (by a rotation of 45◦, see figure 4(b)), the minimal path has steps (1, 0) and (0,−1),
and connects the origin to the point (t− s,−(t+ s)), while staying above the line y=− s+t

t−sx
that joins them.

To make the contact with the pinecone graphs of [4], it is best to describe the above suc-
cessions of squares and hexagons as a sequence of hexagons, with odd horizontal edges (con-
necting a white vertex on the left to a black vertex on the right) added in the middle of certain
hexagons so as to form pairs of consecutive squares. In [4], the positions of these added edges

10
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are recorded through functions L,U. In our infinite (r,s, t) slanted bipartite graph, the positions
(i.e. vertical coordinates) of the occupied odd horizontal edges in the vertical slice (depicted
in blue in figure 4(a)) are given by w= 1− 2v, for v the coordinates of the vertices of the path
closest to the line as in figure 4(b), namely

w= 1+ 2

⌊
t+ s
t− s

u

⌋
(u ∈ Z) .

(e.g. w= 1+ 2
⌊
13
5 u

⌋
= 1,5,11,15,21 for u ∈ [0, t− s) in figure 4(a)). We conclude that the

succession of square and hexagonal faces is uniquely determined by (s, t).
However the relative positions of successive vertical slices depends additionally on the

value of r as well. Indeed, the picture described so far remains identical in any other slice,
except for the fact that the origin is a function of the position of the vertical plane x. Using the
value (2.5) for kx,y = z, and performing the change to rotated coordinates u,v with:

u=
z+ x+ y

2
, v=

z− x− y
2

,

the line rx+ sy+ tz= 0 becomes

v=− (s+ t)u+(r− s)x
t− s

,

and therefore the positions of the horizontal edges in the slice x read again 1− 2v for v is the
coordinates of the vertices of the path closest to the line, leading to:

1+ 2

⌊
(s+ t)u+(r− s)x

t− s

⌋
. (2.7)

Note finally that the v coordinate here is shifted by −x/2, hence the absolute positions of
horizontal edges in the (r,s, t)-slanted bipartite graph are given by

w= w(x) = 1− x+ 2

⌊
(s+ t)u+(r− s)x

t− s

⌋
(u,x ∈ Z) . (2.8)

This is illustrated in figure 4(c), where we indicate the periodicity of the graph with a dot
(which tracks the position of the w= 1 edge of the x= 0 slice in the other slices, modulo the
2(t+ s) periodicity along the vertical direction). Note that the formula for w in (2.8) is for the
case when the domain is centered at (0, j,k) for some values of j,k ∈ Z. The general case where
i 6= 0 will requires some translation in x and v (see next section).

2.3.2. Dimer graph. Recall that the initial data domain of interest for the solution of Ti,j,k
must lie in the pyramidal cone C : |z− k|⩾ |x− i|+ |y− j| for (x,y,z) ∈ Z3 with x+ y+ z= 0
mod 2. The dimer graph boundaries are therefore delimited by the intersection of the initial
data stepped surface k and the cone boundary ∂C. The border of the largest domain is obtained
by intersecting ∂C with the P0 plane rx+ sy+ tz= 0. In the plane x= i, ∂C reduces to the two
lines z− k= y− j and z− k=−(y− j). In the (u, v) coordinate frame, the former reads v=
k−j−i

2 and the latter u= k+i+j
2 . The first line corresponds to an upper bound on the maximum

value of v reached (i.e. vmax =
k−i−j

2 ), and the second on the maximum value of u (i.e. umax =
k+i+j

2 ). Recall from the previous section that the maximum value of v reached in (2.7) is 0

11
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from figure 4(b). Thus, it is requires a translation by vmax =
k− i− j

2
. Once re-translated into

the set of positions of horizontal edges in the dimer graph of previous section, this gives the
positions:

w(x,u) = 1+(k− i− j)− (x− i)+ 2

⌊
(t+ s)u+(r− s)x

t− s

⌋
= k− j+ 1− x+ 2

⌊
(t+ s)u+(r− s)x

t− s

⌋
. (2.9)

More generally, in the parallel planes x=const. we get bounds on the values taken by u.Writing
k− z= ϵ(x− i)+ η(y− j) with ϵ,η ∈ {1,−1}, and eliminating x via rx=−sy− tz gives:

y=
(ηj+ k) t+(r− tϵ)x+ i tϵ

ηt− s
, z=

(ηj+ k)s+(ηr− ϵs)x+ ϵsi
s− tη

(2.10)

Applying the change of variables of the previous section u=
x+ y+ z

2
,v=

z− x− y
2

, the

quantity w= k− j+ 1− 2v− x reads

w= k− j+ 1+ y− z

= k− j+ 1+
(ϵi + ηj+ k)(s+ t)+ x(r(1+ η)− ϵ(s+ t))

ηt− s
(ϵ,η ∈ {−1,1}) (2.11)

This gives the four lines w= w±
min(x) and w= w±

max(x) in the (x,w) plane, delimiting the
dimer graph, and eventually the four line segments{

w−
min (x) = 1− (x− i)

w−
max (x) = 1+ 2(ri+sj+tk)+(2r+t+s)(x−i)

t−s

(
− ri+ sj+ tk

r+ t
⩽ x− i⩽ 0

)
(2.12){

w+
min (x) = 1+(x− i)

w+
max (x) = 1+ 2(ri+sj+tk)+(2r−t−s)(x−i)

t−s

(
0⩽ x− i⩽ ri+ sj+ tk

t− r

)
(2.13)

Finally, the dimer graph G is determined by the function w(x) (2.8) together with
the conditions

w±
min (x)⩽ w(x,u)⩽ w±

max (x) ,

(
−kt+ j s+ ir

r+ t
⩽ x− i⩽ ri+ sj+ tk

t− r

)
. (2.14)

The corresponding domain is depicted in figure 5.

2.4. Comparison with Pinecones

The Pinecones defined in [4] were constructed to provide combinatorial solutions of the three-
term Gale-Robinson sequence:

a(ñ)a(ñ− m̃) = a
(
ñ− ĩ

)
a
(
ñ− j̃

)
+ a

(
ñ− k̃

)
a
(
ñ− l̃

)
(2.15)

with the initial condition a(ñ) = 1 for ñ= 0,1, . . . , m̃− 1 with ĩ, j̃, k̃, l̃ given integers satisfy-
ing ĩ+ j̃= k̃+ l̃= m̃, and j̃=min{̃i, j̃, k̃, l̃}. The parameters ĩ, j̃, k̃, m̃, l̃, ñ are borrowed from the

12
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Figure 5. The domain (2.14) in the x,w coordinates.

notations in [4] and are different from our i, j,k,m (we have used the tilde notation to distin-
guish them). For each set of parameters {̃i, j̃, k̃, l̃}, the authors construct a sequence of pinecone
graphs (Pn)n⩾0 ≡ (P(ñ; ĩ, j̃, k̃, l̃))ñ⩾0, entirely determined by the functions:

U(ñ,R,C) = 2C+R− 3− 2

⌊
m̃C+ k̃R+ ĩ− ñ− 1

j̃

⌋

=−1−R− 2

 ĩC+
(
k̃− j̃

)
R+ m̃− ñ− 1

j̃


L(ñ,R,C) = 2C+R− 3− 2

⌊
m̃C+ l̃R+ ĩ− ñ− 1

j̃

⌋
= U(ñ,−R,C+R) .

The graphs are drawn on a substrate of ‘brickwall’ lattice inZ2 made of horizontal hexagons
(i.e. with all horizontal edges (x,y)− (x+ 1,y), x,y ∈ Z, and every other vertical one (x,y)−
(x,y+ 1), x,y ∈ Z, x+ y= 0 mod 2), to which some central vertical edges (x,y)− (x,y+ 1)
are added at positions determined by U(ñ,R,C) (in the upper part of the pinecone in the row

13
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R= 0,1,2, . . .) and L(ñ,R,C) (in the lower part of the pinecone in the rows−R= 0,−1,2, . . .),
with C⩾ 0 limited by the conditions that U(ñ,R,C)> R and L(ñ,R,C)> R. These give the
respective following bounds for the positions U(ñ,R,C) and L(ñ,R,C):

U : 0⩽ C⩽
⌊
ñ− m̃− k̃R

j̃

⌋
(2.16)

L : 0⩽ C⩽
⌊
ñ− m̃− l̃R

j̃

⌋
(2.17)

Lemma 2.6.

U(ñ,R,C) =−1−R− 2

 ĩC+
(
k̃− j̃

)
R+ m̃− ñ− 1

j̃


= 1−R+ 2

−ĩC+
(̃
j− k̃

)
R+ ñ− m̃

j̃

 (2.18)

for j̃> 0 ∈ Z.

Proof. It is sufficient to show −bxc= b−x− 1

j̃
c+ 1 for x= a

j̃
, j̃> 1,a ∈ Z. Let n= bxc,

i.e. such that n⩽ x< n+ 1, n ∈ Z, then −n− 1− 1
j̃
<−x− 1

j̃
⩽−n− 1

j̃
<−n, hence:

−n− 2⩽ b−x− 1

j̃
c⩽−n− 1

Assuming−n− 2= b−x− 1
j̃
c, then we would have−x− 1

j̃
<−n− 1, hence n+ 1− 1

j̃
< a

j̃
<

n+ 1, which contradicts a ∈ Z, as the width of the interval is strictly less that 1
j̃
. Therefore we

must have −n− 1= b−x− 1
j̃
c, and the Lemma follows.

Comparing equations (2.16)–(2.17) to (2.14), we find the following correspondence:

Theorem 2.7. The graphs G are identified with pinecones via the following correspondence
between our parameters (r,s, t) and the parameters ĩ, j̃, k̃, l̃, m̃ of [4]:{
ĩ= t+ s j̃= t− s k̃= t+ r l̃= t− r m̃= 2t ñ= ri+ sj+ tk+ 2t if r,s, t not all odd
ĩ= t+s

2 j̃= t−s
2 k̃= t+r

2 l̃= t−r
2 m̃= t ñ= ri+sj+tk

2 + t otherwise
(2.19)

Proof. From lemma 2.6:

U(ñ,R,C) = 1−R+ 2

−ĩC+
(̃
j− k̃

)
R+ ñ− m̃

j̃


L(ñ,R,C) = 1+R+ 2

⌊
−ĩC− l̃R+ ñ− m̃

j̃

⌋
= 1−R+ 2

−ĩC+
(̃
j− l̃

)
R+ ñ− m̃

j̃


14
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For r,s, t not all odd, the first identification of parameters in the theorem (with ĩ= t+ s, j̃− l̃=
r− s, m̃= 2t, j̃= t− s) allows to identify for x⩾ i where i is the index for the solution of the
T-system Ti,j,k:

w(x,u) = L

(
ri+ sj+ tk+ 2t,x− i,

k+ i+ j
2

− u

)
,

corresponding to a mapping of variables R= x− i, C=
k+ i+ j

2
− u and ñ= kt+ js+ ri+ 2t.

Moreover, the bounds R< L(ñ,R,C)⩽ L(ñ,R,0) turn into

x− i < w(x,u)⩽ 1+
2(ri+ sj+ tk)+ (2r− t− s)(x− i)

t− s

which is equivalent to (2.13) and (2.14). Similarly, when x⩽ i, using U(ñ,R,C) =
L(ñ,−R,R+C), we find that

w(x,u) = U

(
ri+ sj+ tk+ 2t,−(x− i) ,

k+ i+ j
2

− u+ x− i

)
,

while the bounds R< U(ñ,R,C)⩽ U(ñ,R,0) and (2.12) are identical. When r,s, t are all odd,
we may rewrite

w(x,u) = k− j+ 1− x+ 2

⌊ t+s
2 u+

r−s
2 x

t−s
2

⌋
and the above identifications correspond now to the second line of (2.19).

We conclude that the dimer graphs for r,s, t-slanted initial data T-system solutions are noth-
ing but the pinecones of [4], with the correspondence of theorem 2.7 above. For convenience,
in the remainder of this paper, we will work in the original (x,y,z) coordinates, and no longer
refer to the (x,u,v) frame. Any of our results on limit shapes can be straightforwardly trans-

lated into pinecone language via the change of variables u=
z+ y+ x

2
, v=

z− x− y
2

, and x

unchanged (note that the pinecones must also be flipped to match our dual slanted graphs).
Let us briefly recall the core phenomenon of [4], which is best explained by embedding the

pinecone configurations into a minimal Aztec diamond shaped domain, obtained by adding
brick-wall configurations (with only hexagons and no extra vertical edges), with fixed bound-
ary dimer configurations, which propagate throughout the added hexagons to provide frozen
configurations at/within the boundaries of the pinecone. The dimer configurations involve a
‘core’ of active edges that may or may not be occupied by dimers. From the dual (stepped-
surface) point of view, such brick-wall additions correspond to a continuation of the stepped
surface beyond the intersection with the pyramid of apex (i, j,k), by the four plane faces of the
pyramid itself (see figure 6 for an illustration). Indeed, the latter planes decompose into altern-
ating Black and White triangles, with only 6-valent vertices, thus giving rise to the hexagons
of the added brick-wall in the dual graph.

We give below examples of pinecones and the corresponding function w(x,u), and of the
core phenomenon.

Example 2.8. Let (r,s, t) = (2,4,9), and i = 1, j = 2,k= 3, with ri+ sj+ tk+ 2t= 55=
n and k+i+j

2 = 3. We have w(x,u) = 2− x+ 2
⌊
13u−2x

5

⌋
= 1−R+ 2

⌊
37−13C−2R

5

⌋
, (R= x−

1,C= 3− u), leading to the successive positions for x− 1 ∈ [−3,5] in figure 7. These coincide
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Figure 6. Tessellated domain for the (1,1,3)-slanted stepped surface for T0,0,6, extended
by the four sides of the pyramid with apex at (i, j,k). The red line marks the boundary
between the domain and its continuation via the four infinite planes forming the pyramid.

Figure 7. Value of w(x,u) indicating the positions of extra vertical edges (in red).

with the values U(55,R,C), (R= 3,2,1) followed by L(55,R,C), (R= 0,1,2,3,4,5), which
determine the pinecone on the left (figure 8).

Example 2.9. Let (r,s, t) = (1,1,3), and i = 0, j = 0,k= 4, with ri+sj+tk
2 + t= 9, and k+i+j

2 =
2 as in example (2.5). We have w(x,u) = 5− x+ 4u, (R= x,C= 2− u) which is represented
in figure 9.

These coincide with the values U(9,R,C), (R= 1) followed by L(9,R,C), (R= 0,1,2,3),
which determine the pinecone (figure 10).
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Figure 8. Dimer graph for the partition function T1,2,3 with rows indexed by R for the
(2,4,9)-slanted stepped surface.

Figure 9. Dimer graph for the partition function T0,0,4 with rows indexed by R for the
(1,1,3)-slanted stepped surface.

Figure 10. Value of w(x,u).
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Figure 11. Dimer configurations corresponding to the 4 terms of the T0,−1,3 solution of
the (1,1,3)-slanted initial data T-system.

Example 2.10. We now illustrate the core phenomenon in the case of the solution T0,−1,3 of
the (1,1,3)-slanted T-system. The solution reads:

T0,−1,3 =
t0,−2t0,1
t0,0

+
t−1,0t0,−2t1,0
t0,−1t0,0

+
t−1,−1t1,−2t1,0
t0,−1t1,−1

+
t−1,−1t2,−1

t1,−1
.

We have represented the corresponding four dimer configurations of the full dimer domain in
figure 11: here the core is extended by brick wall hexagonal faces to an Aztec diamond shape
(but could go on and cover the entire plane as well, as suggested by the dual graph of that
of figure 6). The brick wall addition is similar to figure 5 in [4], and the blue faces do not
contribute to the partition function by theorem 2.4.

18
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3. The case of uniform slanted initial data

3.1. Uniform T-system solution

For fixed values of (r,s, t) the simplest solution of the T-system (2.1) corresponds to choosing
uniform initial data in each initial data plane (Pℓ), ℓ= 0,1, . . .,2t− 1.More precisely, choosing
the initial values of T to be Ti,j,k = aℓ for all (i, j,k) ∈ (Pℓ) for some positive real numbers
a0,a1, . . .,a2t−1, we deduce that for all m⩾ 2t:

Ti,j,k = am (i, j,k) ∈ (Pm)

where am, m⩾ 2t are subject to the ‘Gale-Robinson’ recursion relation

am am−2t = am+r−t am−r−t+ am+s−t am−s−t

Among these solutions a particularly simple one consists in taking aℓ = αℓ(ℓ−1)/2 for ℓ=
0,1, . . .,2t− 1, leading to

am = αm(m−1)/2, (m ∈ Z) , (3.1)

provided α satisfies

αt
2

= αr
2

+αs
2

. (3.2)

It is easy to see that this equation always admits a unique positive solution such that α> 1,
which we pick from now on. As an example, taking r= s= 0 and t= 1 leads to the ‘flat’
initial data along two parallel planes k= 0 and k= 1, leading to the Aztec diamond domino
tiling solution Ti,j,k = 2k(k−1)/2 with α= 2. By a slight abuse of language we shall call the
solution (3.1) the uniform solution of the T-system with (r,s, t)-slanted plane initial data.

3.2. Density

3.2.1. Expectation values. In section 2.3, we have interpreted the solution Ti,j,k of the T-
system as the partition function of some suitable (r,s, t)-dimer model with local Boltzmann
weights expressed in terms of the initial data. To gain access to statistical properties of the
dimer model, such as the average number of dimers occupying the edges adjacent to a given
face, we may use the dependence of T on the initial data as follows. Pick a point (i0, j0,k0 =
ki0,j0) belonging to one of the initial data planes (Pri0+sj0+tk0) with 0⩽ ri0 + sj0 + tk0 < 2t).
Assume it corresponds in the dimer graph to the center of a 2v-valent face. As the local con-
tribution for this face to the partition function is (ti0,j0)

v−1−Ni0,j0 (D), we may write

ρ
(i0,j0,k0)
i,j,k :=

1
Ti,j,k

ti0,j0∂ti0,j0 (Ti,j,k) = 〈v− 1−Ni0,j0 (D)〉i,j,k (3.3)

where 〈f〉i,j,k stands for the statistical average of the function f over the dimer configurations
D for the (i, j,k) dimer model, and where k0 = ki0,j0 indicates the time variable along the initial
data surface. We refer to the function ρ as the (local) density of dimers at position (i0, j0,k0)
in the (i, j,k) dimer model.
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Figure 12. Density profile for ρ(i0,j0)0,0,4 where i0, j0 =−3, · · · ,5.

Example 3.1. We compute explicitly all values of ρ0,0,4 at various sources (i0, j0)with uniform
initial data (3.2).

...

ρ
(−3,5)
0,0,4 ρ

(−2,5)
0,0,4 · · · ρ

(5,5)
0,0,4

ρ
(−3,4)
0,0,4 ρ

(−2,4)
0,0,4 · · · ρ

(5,4)
0,0,4

· · ·
...

. . .
. . .

... · · ·
ρ
(−3,−3)
0,0,4 ρ

(−2,−3)
0,0,4 · · · ρ

(5,−3)
0,0,4

...

=

0 0 0 0 0 0 0 0 0
0 0 0 1

16 0 0 0 0 0
0 0 1

16 − 1
8

1
4 0 0 0 0

0 0 3
8 0 − 3

8
3
8 0 0 0

0 1
4 − 1

2
1
8 − 1

8 − 3
8

1
4 0 0

0 1
4 − 1

4 0 1
8 0 − 1

8
1
16 0

0 0 1
2 − 1

4 − 1
2

3
8

1
16 0 0

0 0 0 1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 0
(3.4)

where the 0’s at the boundary extend to infinity as these initial data points do not contribute to
the density ρ0,0,4. The density profile is shown in figure 12.

An interesting property of this density is that it is an order parameter for the crystalline/li-
quid phases of the model, namely ρ(i0,j0,k0)i,j,k vanishes identically in the crystal phase, while it
fluctuates and becomes non-zero in the liquid regions. Indeed, as we shall see below, the crys-
talline phase is characterized by the presence of exactly v− 1 dimers around each 2v-valent
face (1 for squares, 2 for hexagons), leading to a vanishing local density by (3.3).

Another property is translation invariance, namely that

ρ
(i0,j0,k0)+(x,y,z)
i+x,j+y,k+z = ρ

(i0,j0,k0)
i,j,k

∣∣∣
ta,b→ta+x,b+y

, x,y,z ∈ Z, x+ y+ z= 0mod2, (3.5)

for all translations by (x,y,z) that leave the initial data surface k invariant. In the case of (r,s, t)
parallel initial data planes, only translations such that rx+ sy+ tz= 0 are allowed. The latter
property is key to allow us to use the explicit value of ρ(i0,j0,k0)i,j,k , for varying (i, j) and fixed
(i0, j0,k0 = ki0,j0) to browse through the local densities of the dimer model. Indeed, instead of
interpreting this quantity as a local density of the (i, j,k) dimer model, we may use translational
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invariance (3.5) to reinterpret it as the local density at some varying point ∼(i0 − i, j0 − j) in a
dimer model whose graph is centered at a fixed point ∼(0,0) close to the origin.

The T-system relation allows to derive a linear recursion relation for ρ, by simply differen-
tiating w.r.t. ti0,j0,k0 :

ρ
(i0,j0,k0)
i,j,k+1 + ρ

(i0,j0,k0)
i,j,k−1 = Li,j,k

(
ρ
(i0,j0,k0)
i+1,j,k + ρ

(i0,j0,k0)
i−1,j,k

)
+Ri,j,k

(
ρ
(i0,j0,k0)
i,j+1,k + ρ

(i0,j0,k0)
i,j−1,k

)
, (3.6)

where

Li,j,k :=
Ti+1,j,kTi−1,j,k

Ti,j,k+1Ti,j,k−1
, Ri,j,k =

Ti,j+1,kTi,j−1,k

Ti,j,k+1Ti,j,k−1
= 1−Li,j,k. (3.7)

ρ is further determined by the initial conditions ρ(i0,j0,k0)i,j,k = δi,i0δj,j0δk,k0 along the initial data
surface k.

The density ρ can be explicitly computed whenever the solution Ti,j,k of the T-system is
explicit. This is done in the next sections for (r,s, t)-slanted initial data planes planes (Pℓ),
ℓ= 0,1, . . .,2t− 1.

3.2.2. The density of the uniform case. In the uniform case, we have the solution Ti,j,k =
αm(m−1)/2 where m= ri+ sj+ tk, leading to the coefficients

Li,j,k = αr
2−t2 , Ri,j,k = αs

2−t2 ,

independent of i, j,k, while α> 1 is the solution of (3.2). Let us define the function µ(i, j,k) =
ri+ sj+ tk. It will be convenient to gather solutions of (3.6) into generating functions

ρ(i0,j0,k0) (x,y,z) :=
∑
i,j,k∈Z

µ(i,j,k)⩾0

ρ
(i0,j0,k0)
i,j,k xi yj zk.

As a first example, taking (i0, j0,k0) = (0,0,0), and using the recursion relation (3.6), mul-
tiplying by xiyjzk and summing over i, j,k ∈ Z gives

1− ρ(0,0,0) (x,y,z) =
z2

1+ z2 − zαr2−t2
(
x+ 1

x

)
− zαs2−t2

(
y+ 1

y

) ,
easily derived by noting that ρ0,0,2 =−1. For later use, we define

Dr,s,t (x,y,z) := 1+ z2 − zαr
2−t2

(
x+

1
x

)
− zαs

2−t2
(
y+

1
y

)
. (3.8)

This denominator will govern the arctic phenomenon for the pinecones.
More generally, we define the refined densities for m= 0,1, . . .,2t− 1:

ρ(i0,j0,k0)m (x,y,z) :=
∑

i,j∈Z, k∈Z+
µ(i,j,k)⩾0, µ(i,j,k)=m [2t]

ρ
(i0,j0,k0)
i,j,k xi yj zk.

All these functions can be obtained from the density ρ(i0,j0,k0) via the following:
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Lemma 3.2. Setting ω = ei
π
t , we have the identity

ρ(i0,j0,k0)m (x,y,z) =
1
2t

2t−1∑
ℓ=0

ω−mℓ ρ(i0,j0,k0)
(
xωrℓ,yωsℓ,zωtℓ

)
Proof. We compute

1
2t

2t−1∑
ℓ=0

ω−mℓ ρ(i0,j0,k0)
(
xωrℓ,yωsℓ,zωtℓ

)
=

1
2t

2t−1∑
ℓ=0

ω−mℓ

∑
i,j,k

ρ
(i0,j0,k0)
i,j,k xiyjzkωriℓ+sjℓ+tkℓ


=

1
2t

2t−1∑
ℓ=0

∑
i,j,k

ρ
(i0,j0,k0)
i,j,k xiyjzkωℓ(ri+sj+tk−m)


= ρ(i0,j0,k0)m (x,y,z)

where in the last line we have used the identity δx,m [2t] =
1
2t

∑2t−1
ℓ=0 ω

ℓ(x−m)

Note that if r,s, t are all odd integers, then µ(i, j,k) only takes even integer values, due to
the condition i+ j+ k= 0 [2], hence only even m’s contribute to the refined densities. This
simplifies the study of solutions to (3.6), which we postpone to the end of this section.

Assume r,s, t are not all odd. In this case, we may find a triple of integers u,v,w ∈ Z2 such
that ru+ sv+ tw= 1 and u+ v+w= 0 [2]. Then µ(mu,mv,mw) = m. Assume that µ(i, j,k)⩾
0 and µ(i, j,k) = m [2t]. Consider the integer ki,j such that µ(i, j,ki,j) = m (and therefore
k− ki,j ∈ 2Z), so that we have µ(mu− i,mv− j,mw− ki,j) = 0. We may use the translational
invariance (3.5) for the translation vector (mu− i,mv− j,mw− ki,j) to rewrite

ρ
(i0,j0,k0)
i,j,k = ρ

(mu+i0−i,mv+j0−j,mw+k0−ki,j)
mu,mv,mw+k−ki,j

,

where the values of the initial data ta,b = ta+mu,b+mv are unchanged, as the translation is par-
allel to the initial data planes. This equation allows us to re-interpret the generating function
ρ
(i0,j0,k0)
m (x,y,z) as that of the local dimer densities of the dimer model for Tmu,mv,mw+k−ki,j .

Here k governs the size of the dimer graph and the coordinates i, j allow to explore its faces at
positions (mu+ i0 − i,mv+ j0 − j).

More precisely, we may rewrite the generating function:

ρ(i0,j0,k0)m (x,y,z) =
∑
i,j,k∈Z

µ(i,j,k)⩾0, µ(i,j,k)=m [2t]

ρ
(mu+i0−i,mv+j0−j,mw+k0−ki,j)
mu,mv,mw+k−ki,j

xi yjzk

= xmu+i0 ymv+j0
∑

i′,j ′∈Z, k ′∈Z+

ρ
(i ′,j ′,k ′0 )
mu,mv,mw+2k ′x

−i ′ y−j ′ zki,j+2k ′

where i ′ = mu+ i0 − i, j ′ = mv+ j0 − j, and k ′0 is such that p= µ(i0, j0,k0) = µ(i ′, j ′,k ′0), and
where we have expressed k= ki,j+ 2k ′, so that the summation is over integers k′ such thatm+
2tk ′ ⩾ 0, i.e. k ′ ⩾ 0 as 0⩽ m< 2t. Using finally ki,j = (m− ri− sj)/t= (m−mru−msv−
ri0 − sj0 + ri ′ + sj ′)/t, we arrive at

ρ(i0,j0,k0)m (x,y,z) = xmu+i0 ymv+j0 zmw+k0−p/t
∑

i′,j ′∈Z, k ′∈Z+

ρ
(i ′,j ′,k ′0 )
mu,mv,mw+2k ′

(
zr/tx−1

)i′ (
zs/ty−1

)j′
z2k

′
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This implies that the generating function ρ̃p,m(x,y,z) :=
∑

i′,j ′,k ′ ρ
(i ′,j ′,k ′0 )
mu,mv,mw+2k ′x

i′yj
′
z2k

′
is

expressed as

ρ̃p,m (x,y,z) = xmu+i0ymv+j0z−m/t ρ(i0,j0,k0)m

(
zr/tx−1,zs/ty−1,z

)
. (3.9)

This generating function however only explores points with fixed value of µ(i0, j0,k0) =
p, and we need to consider values of (i0, j0,k0) pertaining to the different planes
(P0),(P1), . . .,(P2t−1) to explore all the faces of the dimer graph. To this end, wemust compute
the generating function ρ(i0,j0,k0)(x,y,z) for all values µ(i0, j0,k0) = p ∈ [0,2t− 1]. We have the
following:

Theorem 3.3. For all triples (i0, j0,k0) such that µ(i0, j0,k0) = p ∈ [0,2t− 1], we have
ρ(i0,j0,k0)(x,y,z) = xi0yj0zk0 ρp(x,y,z), where for r⩽ s< t:

ρp (x,y,z) =
1

D(x,y,z)



1− zαr
2−t2

(
x+ 1

x

)
− zαs

2−t2
(
y+ 1

y

)
(0⩽ p< t− s)

1− zαr
2−t2

(
x+ 1

x

)
− zαs

2−t2
(

1
y

)
(t− s⩽ p< t− r)

1− zαr
2−t2

(
1
x

)
− zαs

2−t2
(

1
y

)
(t− r⩽ p< t+ r)

1− zαr
2−t2

(
1
x

)
(t+ r⩽ p< t+ s)

1 (t+ s⩽ p< 2t)

,

and for s⩽ r< t:

ρp (x,y,z) =
1

D(x,y,z)



1− zαr
2−t2

(
x+ 1

x

)
− zαs

2−t2
(
y+ 1

y

)
(0⩽ p< t− r)

1− zαr
2−t2

(
1
x

)
− zαs

2−t2
(
y+ 1

y

)
(t− r⩽ p< t− s)

1− zαr
2−t2

(
1
x

)
− zαs

2−t2
(

1
y

)
(t− s⩽ p< t+ s)

1− zαr
s−t2

(
1
y

)
(t+ s⩽ p< t+ r)

1 (t+ r⩽ p< 2t)

,

with D(x,y,z) as in (3.8).

Proof. Using the recursion relation (3.6), we see that the initial data at (i0, j0,k0) propagates
to the following points (with k− k0 = 1,2):

• (i0, j0,k0 + 2) with µ= 2t+ p⩾ 2t for all p;
• (i0 + 1, j0,k0 + 1) with µ= t+ r+ p⩾ 2t for p⩾ t− r;
• (i0, j0 + 1,k0 + 1) with µ= t+ s+ p⩾ 2t for p⩾ t− s;
• (i0 − 1, j0,k0 + 1) with µ= t− r+ p⩾ 2t for p⩾ t+ r;
• (i0, j0 − 1,k0 + 1) with µ= t− s+ p⩾ 2t for p⩾ t+ s;

These govern the numerators in the above formulas for the densities ρp.

Let us now consider the case when r,s, t are all odd integers. In that case, we may find a
triple of integers (u,v,w) ∈ Z2 such that ru+ sv+ tw= 2, and u+ v+w= 0 [2]. As µ(i, j,k)
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is even, we write µ(i, j,k) = 2m [2t], and µ(i, j,ki,j) = 2m and apply again the same translation
invariance. The net result is an even version of (3.9):

ρ̃2p,2m (x,y,z) = xmu+i0ymv+j0z−2m/t ρ
(i0,j0,k0)
2m

(
zr/tx−1,zs/ty−1,z

)
. (3.10)

where µ(mu+ i0 − i,mv+ j0 − j,mw+ k0 − ki,j) = µ(i0, j0,k0) = 2p.
In all cases, combining the results of lemma 3.2 and theorem 3.3, we now have access

to the large i ′, j ′,k ′ asymptotics of the local densities ρ(i
′,j ′,k ′0 )

mu,mv,mw+2k ′ which are governed by
the singularities of their generating function ρ̃p,m(x,y,z), namely the zeroes of their common
denominator as x,y,z approach 1. In all cases the denominator vanishes like

∆r,s,t (x,y,z) := Dr,s,t

(
zr/tx−1,zs/ty−1,z

)
, (3.11)

as x,y,z approach 1. Note that in the scaling limit when i, j,k→∞ with i/k, j/k finite, the
‘center’ (mu,mv) of the dimer domain, which depends on m ∈ [0,2t− 1] scales uniformly to
the origin.

3.3. Arctic phenomenon

3.3.1. Asymptotics of the density function and arctic curve. As shown in the previous section
the singularities of the density are governed by the zeros of the function ∆(x,y,z) (3.11). We
now apply the method of multivariate generating functions by [36, 37] for conical singularities,
letting x 7→ eϵx, y 7→ eϵy and z 7→ e−ϵ(ux+vy) and expanding at leading order in ϵ, we find

∆r,s,t

(
eϵx,eϵy,e−ϵ(ux+vy)

)
= ϵ2Hr,s,t (x,y,z)+O

(
ϵ4
)

for some explicit polynomial H of x,y (we drop the subscript r,s, t when there is no ambigu-
ity). Further imposing thatH(x,y) = ∂xH(x,y) = ∂yH(x,y) = 0 has a non-trivial solution in x,y

leads to the vanishing condition of the Hessian determinant:

∣∣∣∣ ∂2xH ∂x∂yH
∂x∂yH ∂2yH

∣∣∣∣= 0, and finally

to the (dual) arctic curve:

(1−A) t2u2 +At2v2 −A(1−A) (ru+ sv+ t)2 = 0 (3.12)

where

A= Ar,s,t := αr
2−t2 , 1−A= αs

2−t2 (3.13)

It is easy to show that t2 −Ar2 > 0 and t2 − (1−A)s2 > 0, while 0< A< 1 generically, so that
the curve (3.12) is always an ellipse.

Let us also derive the scaling limit of the pinecone domain, centered at the origin. In the
original (i, j,k) coordinates, it is the intersection of the pyramid |x|+ |y|= |k− z| and of the
slanted initial data planesPm: rx+ sy+ tz= mm= 0,1, . . .,2t− 1. After rescaling by k, setting
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Figure 13. Arctic curves for r,s, t-pinecones, together with the scaled domain. Left:
(r,s, t) = (1,1,3), center: (r,s, t) = (0,1,3), right (r,s, t) = (1,2,3).

u= x/k, v= y/k andw= z/k, we get for k→∞: |u|+ |v|= |1−w| and ru+ sv+ tw= 0. The
resulting 4 equations t(1± u± v)+ ru+ sv= 0 give rise to 4 segments1:

v=− t
t+ s

− t+ r
t+ s

u, v=− t
s− t

− t+ r
s− t

u

(
u ∈

[
− t
t+ r

,0

])
v=− t

t+ s
+
t− r
t+ s

u, v=− t
s− t

+
t− r
s− t

u

(
u ∈

[
0,

t
t− r

])
.

(3.14)

We summarize the results into the following:

Theorem 3.4. The limit shape of typical large size (r,s,t)-pinecone domino tilings associated
to the solution of the T-system with uniform initial data ti,j = αm(m−1)/2 on each slanted plane
m= ri+ sj+ tk= 0,1, · · · ,2t− 1, is the ellipse (3.12) inscribed in the scaling domain (3.14).
This ‘arctic’ ellipse separates a liquid phase (center) from four frozen crystalline phases
(corners).

3.3.2 Examples

Example 3.5. Case t= 1,r= s= 0. In this case, we have α= 2 and A= 1−A= 1
2 . This is

the case of ‘flat’ initial data planes ki,j =Mod(i+ j,2) ∈ {0,1}, for which the pinecone dimer
configurations reduce to domino tilings of the Aztec diamond of size k. The corresponding
arctic curve is the celebrated arctic circle u2 + v2 − 1

2 = 0, inscribed in the rescaled domain,
the square |u|+ |v|= 1.

Example 3.6. Cases r= s< t. In this case, we have α= 2
1

t2−r2 and A= 1−A= 1
2 again. The

arctic ellipse takes the simple form:

t2 (u− v)2 +
(
t2 − r2

)(
u+ v− rt

t2 − r2

)2

=
t4

t2 − r2
.

This curve is displayed in figure 13(left) for r= s= 1 and t= 3.

1 The four corresponding segments are the images of the four segments (2.12) and (2.13) of the pinecone formulation.
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Figure 14. Density profile for r,s, t-pinecones obtained by extracting the coefficients of
xiyjzk in ρ̃p,m(x,y,z) and plotting the result as a function of i/k, j/k for fixed large k, i, j
in a suitable range around the origin. For better statistics, graphs for a few neighboring
values of k are superposed. The lighter color corresponds to the smaller value of ρi,j,k,
and the light blue color indicates when ρi,j,k is strictly 0.

Example 3.7. Cases r= 0< s< t. We have αt
2
= 1+αs

2
, A= α−t2 , and the arctic ellipse

reads:

(1−A) t2u2 +A
(
t2 − (1−A)s2

)(
v− (1−A)st

t2 − (1−A)s2

)2

=
A(1−A) t4

t2 − (1−A)s2
.

This curve is displayed in figure 13(center) for r= 0, s= 1, and t= 3.

Recall that the local densities ρ(x,y,k
′
0 )

mu,mv,mw+2k measure of the expectation value, within the
statistical ensemble of dimer configurations of the pinecone domain of size k, of the observable
vx,y/2− 1−Nx,y(D), whereNx,y(D) is the number of dimers occupying the edges around the
face (x, y) of the domain D, and vx,y is the valency of the face (x, y). The 4 corners of the
scaled domain have vanishing density, indicating a ‘frozen configuration’, where each face is
occupied by 1 (resp. 2) edge(s) for square faces (reps. hexagonal faces), resulting in vx,y/2−
1−Nx,y = 0 in both cases.

For completeness, we have computed numerically the value of the local density

ρ
(i,j,k ′0 )
mu,mv,mw+2k, which is the coefficient of xiyjzk of the density generating function ρ̃p,m(x,y,z)

of equations (3.9) and (3.10), in domains centered at the origin, for large k, as functions of
(i/k, j/k). The corresponding plots for the three cases (r,s, t) = (1,2,3),(1,1,3),(1,0,3) (with
darker shades for larger values of ρi,j,k) are represented in figure 14, for large values of k. The
domain of non-zero values of ρ show the arctic ellipses, outside of which ρ→ 0 (white zone
delimited by the segments (3.14)). The corresponding white-colored corners correspond to
fundamental crystalline states as mentioned above. There are four distinct such states, each
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Figure 15. The four frozen dimer configurations (up to rotation) in the four corners
of the (r,s, t) = (1,0,3)-pinecone dual graph. In a larger case, one should see that these
frozen facets concentrate at the 4 corners of the dual graph. The blue regions of brickwall
configurations stay frozen outside of the ‘active’ zone.

corresponding to a (N,S,E,W) corner similar to the case of the Aztec Diamond in [22], char-
acterized by an occupation number Nx,y(D) = 1 (resp. 2) on each square (resp. hexagonal)
face (x, y) (see figure 15 for an illustration). Thus, away from the corners, the dimer model has
non-trivial entropy with ρ 6= 0, indicating the liquid phase (darker shades) in figure 14.

Remark 3.8. We expect the four corners of the quadrangular scaling domain of (r,s, t)
pinecones to be in a crystalline phase, where each square face is singly occupied and each
hexagonal face is doubly occupied (see figure 15, where we also listed the various (a) square
(up to rotation) and (b), (c) hexagonal face configurations). In general, the (r,s, t) pinecones
can be drawn on a square lattice, with missing vertical edges corresponding to hexagons. The
crystal phases of the Aztec diamond graph (with only square faces) are either of the 4 ‘brick
wall’ configurations (2 horizontal and 2 vertical obtained from each other by respectively a
horizontal/vertical translation by one unit) depicted up to translation in figure 16(left). Three
of these four give rise to admissible crystal phases of the pinecone drawn on the same lattice
(see figure 16(right) for the case (1,1,3), where each row is a succession of a sequence of two
squares followed by one horizontal hexagon, and successive rows are shifted by one unit to
the right). Indeed the condition of each square being singly occupied and each hexagon being
doubly occupied is obviously satisfied. In general, we expect the bulk of the crystal phases to
be in analogues of the three abovementioned states, governed by either of the three hexagon
configurations of figure 15(b). Outside of the scaled domain, every faces are hexagonal and
oriented in such ways that the contributing weight is alway 0.
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Figure 16. From horizontal/vertical ‘brick wall’ crystalline phases on the square lattice
(left) to that on pinecones (right), illustrated here in the case (1,1,3), where the cor-
responding stepped surfaces are drawn on a square lattice with missing vertical edges
(middle of hexagons). Out of the four possible brick wall crystals on the square lattice,
only three are compatible with the hexagon arrangement.

4. The case of slanted 2× 2-periodic initial data: solution and periodicities

In this section, we will focus on a specific initial data on the stack of slanted (r,s, t) = (r,r, t)-
planes, which has periodicity two in both i and j direction, namely, on each slanted plane Pm,
m ∈ {0,1, · · · ,2t− 1}:

ti,j = αm(m−1)/2 ×


a (i = 0, j = 0 mod 2)

b (i = 0, j = 1 mod 2)

c (i = 1, j = 0 mod 2)

d (i = 1, j = 1 mod 2)

(4.1)

such that ri+ sj+ tk= m, i+ j+ k= 0mod 2, and with α= 2
1

t2−r2 as in example 3.6. This ini-
tial data determines entirely the solution of the T-system, and its built-in periodicity induces a
periodicity property of the quantities Li,j,k and Ri,j,k which allows to derive the density function
exactly, as we show in the sections below.

4.1. The case of r= s and t in 2Z+ 1

When r= s and t are odd coprime integers, the condition r(i+ j)+ tk= µ, together with the
fact that i+ j+ k= 0 mod 2, forces µ to be an even integer. Indeed, the quantity r(i+ j)+ tk=
r(i+ j+ k)+ (t− r)kmust be even as both t− r and i+ j+ k are even. In particular, only even
planes P2m,m ∈ [0, t− 1], contain initial data points, and the solution is defined on even planes
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as well.Writing r(i+ j+ k)+ (t− r)k= 2m, we see that k is constrained by the relation t−r
2 k=

m mod r. As r and t are coprime this is easily solved as k= θm mod r, where θ ∈ [0,r− 1]
denotes the inverse of t−r

2 modulo r.

This suggests to apply a change of variables (i, j,k)→ (i,k,m), with m= r i+j+k)2 + t−r
2 k,

and k= θm mod r, which allows to recover j = (m− t−r
2 k)/r. Accordingly, we write Ti,j,k =

T2mi,k . For these new variables, the initial data t ′i,k is naturally indexed by pairs i,k ∈ Z, in
bijection with the initial data ti,j. Indeed, from the discussion of section 2.1, the stepped sur-
face of initial data is (i, j,ki,j) with ki,j as in (2.3), and we have the initial data assignments

ti,j = Ti,j,ki,j = T2mi,j

i,ki,j
= t ′i,ki,j (2.2), where 2mi,j =Mod(r(i+ j)+ tMod(i+ j,2),2t). In the par-

ticular case of 2× 2 periodic initial data (4.1), with ti+2,j = ti,j+2 = ti,j, we have the following.

Lemma 4.1. For every i,k, the following periodicity relations hold for all initial data planes
m= 0,1, . . ., t− 1:

T2mi+2,k = T2mi,k

T2mi,k+2r = T2mi,k

Proof. The first relation follows from the fact that (i+ 2, j,k) and (i, j+ 2,k) belong to the
same plane 2m= r(i+ j+ 2)+ tk, therefore share the same value of ti+2,j = ti,j+2 = ti,j and
therefore T2mi+2,k = T2mi,k . For the second relation, note that the points (i+ 2t, j,k) and (i, j,k+
2r) belong to the same plane with 2m= r(i+ j)+ tk+ 2rt, therefore share the same value of
ti+2t,j = ti,j, hence T2mi+2t,k = T2mi,k+2r = T2mi,k .

Recall that for fixed m, k must satisfy k= θm mod r. From lemma 4.1, T2mi,k depends only
on k mod 2r, which takes only two values k0 and k1, where k0 =Mod(θm,r) ∈ [0,r− 1] and
k1 = k0 + r ∈ [r,2r− 1]. Moreover, as r is odd, k0 and k1 have opposite parities, and we deduce
that T2mi,k = t ′i,k only depends on k mod 2 (as well as i mod 2 from the Lemma). This results in
the correspondence of initial data: t ′i,Mod(i+j,2) = ti,j, namely on each plane P2m:

t0,0 = t ′0,0 = αm(2m−1) a
t0,1 = t ′0,1 = αm(2m−1) b
t1,0 = t ′1,1 = αm(2m−1) c
t1,1 = t ′1,0 = αm(2m−1) d

(4.2)

Using the change of variables Ti,j,k → T2mi,k , we may rewrite the quantities L of (3.7) as

Li,j,k = L2mi,k =
T2m+r−t
i+1,k−1T

2m−r−t
i−1,k−1

T2m−2t
i,k−2 T

2m
i,k

The next theorem is the key of our study of the arctic phenomenon for 2× 2-periodic initial
data.

Theorem 4.2. The solution of the T-system with 2× 2-periodic initial data has the following
periodicity properties:

(1) L2mi,k , for k= θm mod r, depends only on i,k modulo 2.

(2) L2m+4t
i,k = L2mi,k .
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Proof. The proof uses the uniqueness of the solution T2mi,k of the T-system subject to the initial
data. Let us define recursively a new variable θ2mi,k by:

θ2m+r+ti+1,k+1 = θ2mi,k fi,k (m) (i,k ∈ Z;m⩾ 0) (4.3)

θ2mi,k = t ′i,k,

(
i,k ∈ Z;m ∈

[
0,
t+ r− 2

2

])
, (4.4)

where the functions fi,k(m) depend only on i,k mod 2 with

f0,0 (m) = α
r+t
2 (4m+r+t−1)

(
a2+d2

2

)η(m)
×
(
b2+c2

2

)η(m− t−r
2 )

aµ ′(m)bµ(m−
t−r
2 )cµ

′(m− t−r
2 )dµ(m)

f1,0 (m) = α
r+t
2 (4m+r+t−1)

(
a2+d2

2

)η(m)
×
(
b2+c2

2

)η(m− t−r
2 )

aµ(m)bµ
′(m− t−r

2 )cµ(m−
t−r
2 )dµ ′(m)

= f0,0 (m)
∣∣
a↔d,b↔c

f0,1 (m) = α
r+t
2 (4m+r+t−1)

(
a2+d2

2

)η(m− t−r
2 )

×
(
b2+c2

2

)η(m)
aµ(m−

t−r
2 )bµ ′(m)cµ(m)dµ ′(m− t−r

2 )
= f0,0(m)

∣∣
a↔b,c↔d

f1,1(m) = α
r+t
2 (4m+r+t−1)

(
a2+d2

2

)η(m− t−r
2 )

×
(
b2+c2

2

)η(m)
aµ ′(m− t−r

2 )bµ(m)cµ ′(m)dµ(m−
t−r
2 )

= f0,0(m)
∣∣
a↔c,b↔d

(4.5)

and

η (m) =
⌊m
t

⌋
+

⌊
m− t−r

2

t− r

⌋
−
⌊
m− (t− r)

t− r

⌋
µ(m) = 2

⌊
m+ t
2t

⌋
µ ′ (m) = 2

⌊m
2t

⌋
+ 1.

Our aim is to show that θ2mi,k = T2mi,k for all i,k ∈ Z and m⩾ 0. By construction the initial values
for 0⩽ m⩽ t+r

2 − 1 coincide. To show the identity between θ2mi,k and T2mi,k , we must show that
they agree on the remaining initial data planes, and that moreover they obey the same T-system
relations. This is the content of the following lemma:

Lemma 4.3. (1) θ2mi,k = T2mi,k for all
r+ t
2

⩽ m⩽ t− 1

(2) The 2 quantities

L2m
i,k =

θ2m+r−t
i+1,k−1θ

2m−r−t
i−1,k−1

θ2m−2t
i,k−2 θ

2m
i,k

and R2m
i,k =

θ2m+r−t
i,k−1 θ2m−r−t

i,k−1

θ2m−2t
i,k−2 θ

2m
i,k

can be expressed as ratios of f’s, which satisfy L2m
i,k +R2m

i,k = 1.

Proof. First note that as both the initial data t ′i,k and the transition functions fi,k(m) only
depend on i,k mod 2, so does θ2mi,k for all m⩾ 0. It is sufficient to check (1) in the case where
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i,k= 0 [2], as we can reach the other cases by a permutation of the variables (a,b,c,d) (as is
clear from (4.5)). For 0⩽ m< t−r

2 , we have:

θ2m+r+t0,0 = θ2m1,1

(
a2+d2

2

)η(m)
×
(
b2+c2

2

)η(m− t−r
2 )

aµ ′(m)bµ(m−
t−r
2 )cµ

′(m− t−r
2 )dµ(m)

= c×

(
a2+d2

2

)η(m)
×
(
b2+c2

2

)η(m− t−r
2 )

aµ ′(m)bµ(m−
t−r
2 )cµ

′(m− t−r
2 )dµ(m)

We must compare this to T2m+r+t0,0 = a for 0⩽ m⩽ t− r− 2
2

. The desired identification fol-

lows from the relations η(m) = η(m− t− r
2

) = µ(m− t− r
2

) = µ(m) = 0, µ ′(m− t−r
2 ) = 1

and µ ′(m) =−1, all valid for 0⩽ m⩽ t− r− 2
2

.

To show (2), first note that we have from (4.3):

L2m
i,k =

fi,k−2 (m− t)

fi−1,k−1
(
m− r+t

2

) ,
which depends only on i,k mod 2. The quantity R2m

i,k can be easily related to L2m
i,k by noting

that it corresponds to an interchange of the roles of i and j in the original variables, which is
implemented by the interchange b↔ c in the initial data. This gives:

R2m
i,k = L2m

i,k

∣∣∣
b↔c

,

also depending only on i and k mod 2. We may restrict ourselves to the case i = k= 0 mod 2
as all the other parities of i,k are obtained by permuting a,b,c,d.

We compute

L2m
0,0 =

f0,0 (m− t)

f1,1
(
m− r+t

2

) =

(
b2+c2

2

)φ(m− t+r
2 )

2bψ(m−
t+r
2 )cψ

′(m− t+r
2 )
,

R2m
0,0 = L2m

0,0

∣∣∣
b↔c

=

(
b2+c2

2

)φ(m− t+r
2 )

2bψ
′(m− t+r

2 )cψ(m−
t+r
2 )
, (4.6)

expressed in terms of the functions

φ(m) = η (m+ r− t)− η (m) , ψ (m) = µ(m+ r− t)−µ(m) ,

ψ ′ (m) = µ ′ (m+ r− t)−µ ′ (m) .

Notice that these can only take finitely many values. Specifically, we note that φ(m+ t) =
φ(m), and

φ(m) =

{
−1 for m ∈ [0, t− r− 1]mod t
0 for m ∈ [t− r, t− 1]mod t

We also have ψ(m) = ψ ′(m+ t), ψ ′(m+ 2t) = ψ ′(m), and

ψ ′ (m) =

{
0 for m ∈ [t− r,2t− 1]mod2t
−2 for m ∈ [0, t− r− 1]mod2t

ψ (m) = ψ ′ (m+ t) =

{
0 for m ∈ [−r, t− 1]mod2t
−2 for m ∈ [−t,−r− 1]mod2t
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We deduce that if m ∈ [t− r, t− 1] mod 2t, then ψ(m) = ψ ′(m) = 0, and similarly for m ∈
[2t− r,2t− 1] mod 2t, while in both cases φ(m) = 0. On the other hand, if m ∈ [0, t− r− 1]
mod 2t, then ψ ′(m) =−2, ψ(m) = 0, whereas if m ∈ [t,2t− r− 1] mod 2t, then ψ ′(m) = 0,
ψ(m) =−2, while in both cases φ(m) =−1. This leads finally to:

L2m
0,0 =R2m

0,0 =
1
2
, for m ∈

[
t− 3r
2

,
t− r
2

− 1

]
mod t

L2m
0,0 =

c2

b2 + c2
, R2m

0,0 =
b2

b2 + c2
, for m ∈

[
− t+ r

2
,
t− 3r
2

− 1

]
mod 2t

L2m
0,0 =

b2

b2 + c2
, R2m

0,0 =
c2

b2 + c2
, for m ∈

[
t− r
2
,
3t− 3r

2
− 1

]
mod 2t

In all cases this gives L2m
0,0 +R2m

0,0 = 1, which is equivalent to the T-system relation for i,k= 0
mod 2.

We conclude that the variables θ2mi,k and T2mi,k are identical, as they obey the same T-system
relations with the same initial data. The statement (1) of theorem 4.2 follows, as L2mi,k = L2m

i,k
only depends on i,kmod 2. The statement (2) follows from the fact that the functions φ,ψ,ψ ′

are 2t-periodic in m. Indeed, restricting again to the case i = k= 0 mod 2, the periodicity
property L2m+4t

0,0 = L2m
0,0 follows immediately from equation (4.6).

4.2. The case of r= s and t of opposite parity

Most of the results in this section are proved identically to those of section 4.1. In the case when
r= s and t have opposite parity, all integer values of m= r(i+ j+ k)+ (t− r)k contribute. We
now have a unique solution k= ξm mod 2r where ξ is the inverse of (t− r) mod 2r. The
periodicity lemma 4.1 now becomes:

Lemma 4.4. For every i,k, the following periodicity relations hold for all initial data planes
m= 0,1, . . .,2t− 1:

Tmi+2,k = Tmi,k
Tmi,k+2r = Tmi,k

Note that as a consequence of 2r-periodicity in k, and the fact that k is fixed mod 2r (to the
value ξmmod 2r), we may drop the index k from the initial data. Finally theorem 4.2 becomes:

Theorem 4.5. The solution of the T-system with 2× 2-periodic initial data has the following
periodicity properties:

(1) Lmi,k, for k= ξm mod 2r, depends only on i modulo 2, and not on k.

(2) Lm+4t
i,k = Lmi,k.

The technical details of the proof are somewhat cumbersome and will be given elsewhere.

5. The case of slanted 2× 2-periodic initial data: arctic phenomenon

Throughout this section we restrict to the case when 0⩽ r= s< t, with r, t coprime, and to
the 2× 2 periodic (r,r, t)-slanted initial data (4.1).
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5.1. General case: deriving the density function

Using the change of variables (i, j,k)→ (i,k,m), the local density of dimers at (i0, j0,k0) in the
domain centered at (i, j) can be written ρi,j,k = ρmi,k, and satisfies the equation (3.6), namely

ρmi,k+ ρm−2t
i,k−2 = Lm

i,k

(
ρm−t+r
i+1,k−1 + ρm−t−r

i−1,k−1

)
+Rm

i,k

(
ρm−t+s
i,k−1 + ρm−t−s

i,k−1

)
, (5.1)

subject to the initial conditions ρmi,k = δi,i0δk,k0δm,ri0+sj0+tk0 .
In the previous sections, we have established periodicity properties of the coefficients

Li,j,k = Lm
i,k and Ri,j,k = Lm

i,k in the variables i,k,m.
Assume that Li,j,k is periodic along some lattice Λ⊂ Z3, then ρi,j,k = ρmi,k can be computed

explicitly by the method of [22] (see section 3.2 in particular), which consists of splitting
the generating function ρ(x,y,z) =

∑
i,j,k∈Z,ri+sj+tk⩾0 ρi,j,kx

i yjzk into pieces corresponding to
equivalence classes of points (i, j,k) modulo the periodicity lattice Λ. The results of previous
sections display naturally the lattice Λ in the variables (i,k,m). For short, we write Lm

i,k = Lβ ,
ρmi,k = ρβ , etc with β = (i,k,m). The periodicity property is Lβ+Λ = Lβ . We have the density
generating function

ρ(x,y,z) =
∑

i,k∈Z, m∈Z+

ρmi,kx
i y

m−tk−ri
s zk =

∑
β

ρβwβ (x,y,z) ,

where wβ(x,y,z) = xβ1y
β3−tβ2−rβ1

s zβ2 are additive weights, namely satisfying wβwγ = wβ+γ .
The recursion relation (5.1) reads:

ρβ + ρβ−(0,2,2t) = Lβ
(
ρβ+(1,−1,r−t) + ρβ−(1,1,t+r)

)
+Rβ

(
ρβ+(0,−1,s−t) + ρβ−(0,1,t+s)

)
.

(5.2)

The above splitting amounts to write ρ(x,y,z) =
∑
γ∈F ρ

(γ)(x,y,z) where F is a fundamental
domain for Λ, and

ρ(γ) (x,y,z) =
∑

β∈γ+Λ, β3⩾0

ρβwβ (x,y,z) .

This allows to rewrite (5.2) in terms of generating functions with β summed over γ+Λ. For
all γ ∈ F, we get:

ρ(γ) +w(0,2,2t)ρ
(γ−(0,2,2t)) = ϵγ +Lγ

(
w(1,−1,r−t)ρ

(γ+(1,−1,r−t)) +w−(1,1,t+r)ρ
(γ−(1,1,t+r))

)
+Rγ

(
w(0,−1,s−t)ρ

(γ+(0,−1,s−t)) +w−(0,1,t+s)ρ
(γ−(0,1,t+s))

)
,

(5.3)

where all superscripts are understood modulo Λ, and represented by elements of the funda-
mental domain F. The term ϵγ corresponds to the initial condition ρi,j,k = δi,i0δj,j0δk,k0 along
the plane Pm0 , with m0 = ri0 + sj0 + tk0, namely ϵγ = δγ,(m0,i0,k0). This gives a linear system
of |F| equations for the functions ρ(γ) = ρ(γ)(x,y,z), γ ∈ F, which can be solved by Cramer’s
rules. The common feature to all ρ(γ)(x,y,z) is that they are rational functions of (x,y,z) with
common denominator D(x,y,z) given by the |F| × |F| determinant of the system.
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5.2. Singularity loci

By the same argument as in section 3.3.1, we deduce that the singularities of the actual dimer
density generating function come from the function

∆(x,y,z) = D
(
zr/tx−1,zs/ty−1,z

)
.

We finally have to apply ACSV [2, 22, 36–38] to the vicinity of the point (x,y,z) = (1,1,1) to
derive the arctic curve of the model.

5.3. Elimination

For r> 1, similarly to section 3.3.1, we expand

∆
(
eϵx,eϵy,e−ϵ(ux+vy)

)
= ϵθ (H(x,y,u,v)+O(ϵ)) (5.4)

at leading order in ϵ, leading to polynomials H(x,y,u,v) generically of higher degree θ > 2.
Explicit calculations up to t= 8 lead us to conjecture:

Conjecture 5.1.

θ = θr,r,t := 2(t+ 1+ Mod(r,2)) . (5.5)

To find the (dual) arctic curve, we must eliminate the x,y variables from the system
H(x,y,u,v) = ∂xH(x,y,u,v) = ∂yH(x,y,u,v) = 0. To that effect, we perform the euclidean
division of the polynomial H(x,y,u,v) by ∂xH(x,y,u,v), both considered as polynomials of
x. This gives: H(x,y) = q1(x)(∂xH(x,y))+R1(x), which we iterate in the form Ri−1(x) =
qi+1(x)Ri(x)+Ri+1(x) for i⩾ 1, with R0(x) = ∂xH(x,y). The process is iterated until we reach
the ‘constant’ (say Rm(y,u,v)) term, which will be a polynomial in y,u,v where y can be
factored since the starting polynomial H(x,y,u,v) is homogenous in x and y. After remov-
ing the y dependent factor, we end up with a polynomial of u,v which determines the arctic
curve. Note that in this elimination process, there are instances when at some ith iteration of
the Euclidean algorithm, the remainder Ri(x) already factors out some polynomial in u,v inde-
pendent of x,y. However, such polynomials in general are either linear or of lower degree than
the one of interest, reached only at the last step.

5.4. Symmetries

As we only consider the cases with r= s, we note that the (r,r, t)-slanted initial data planes
are invariant under the translation (i, j,k)→ (i+ 1, j− 1,k) = (i, j,k)+ (1,−1,0). However,
the initial data assignments (4.1) are not invariant: this translation corresponds to a permuta-
tion (a,b,c,d)→ (d,c,b,a). In the scaling limit of large k and finite i/k, j/k, the dimer parti-
tion functions Ti,j,k and Ti+1,j−1,k become undistinguishable: in particular, such a (bounded)
translation does not affect the limit shape, therefore we expect the limiting arctic curve to be
invariant under the permutation (a,b,c,d)→ (d,c,b,a).

We may repeat the argument with translations by (1,−2,1) and (−2,1,1), which do not
leave the (r,r,t)-slanted planes invariant but map them on uniformly close ones in the scaling
limit. As a consequence, we expect the limiting arctic curve to be invariant under the permuta-
tions (a,b,c,d)→ (c,d,a,b) and (a,b,c,d)→ (b,a,d,c) as well.
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5.5. Examples

For both cases of sections 4.1 and 4.2, the fundamental domain of Λ has |F|= 8t points. This
number is quite large in general, and we choose to give a few meaningful examples in the
following sections. Throughout the reamaining sections, we use the following two parameters:

τ =
a2

a2 + d2
, σ =

b2

b2 + c2
. (5.6)

The arctic curves are determined using themethod described in section 5.3.We use the notation
Hrst(x,y,u,v) for the generic (r,s, t) case. The symmetries described in section 5.4 imply that
the arctic curves are invariant under each of the three transformations:

(σ,τ)→ (1−σ,1− τ) , (σ,τ)→ (τ,σ) , (σ,τ)→ (1− τ,1−σ) .

5.5.1. The case r= s= 1, t odd in general. For simplicity, the coefficients of the linear sys-
tem (5.3) may be organized into quadruplesQm = (L2m

0,0,L2m
1,0,L2m

0,1,L2m
1,1) form ∈ [0,1, · · · ,2t−

1]. The periodicity lattice Λ for the triples (i,k,m) for L2m
i,k ’s and R2m

i,k ’s is generated by
(2,0,0),(0,2,0),(0,0,2t) with F= [0,1]× [0,1]× [0,2t− 1].

We mainly discuss the case (r= s= 1, t= 3) in full detail, as higher odd values of t display
similar behaviors. On F, the coefficients of the system (5.3) read:

Q0 = (σ,1−σ,τ,1− τ) Q1 =
(
1
2 ,

1
2 ,

1
2 ,

1
2

)
Q2 = (1−σ,σ,1− τ,τ)

Q3 = (1−σ,σ,1− τ,τ) Q4 =
(
1
2 ,

1
2 ,

1
2 ,

1
2

)
Q5 = (σ,1−σ,τ,1− τ)

(5.7)

in terms of the parameters (5.6).

Remark 5.2. Notice from the vector Qm that L2m
0,0 = 1−L2m

1,0 and L2m
0,1 = 1−L2m

1,1. This is
simply a consequence of (4.5) and the fact that L2m

i,k =R2m
i,k |a↔d,b↔c. For example, the case:

L2m
0,0 =

f0,0 (m− t)

f1,1
(
m− t+r

2

) =
f0,0 (m− t)

f0,0
(
m− t+r

2

)
|a↔c,b↔d

1−L2m
1,0 =R2m

1,0 = L2m
1,0|b↔c,a↔d =

f0,0 (m− t)

f0,0
(
m− t+r

2

)
|a↔c,b↔d

(5.8)

The coefficient matrix of the linear system (5.7) can be found in [1] (file ‘supplementary
material’). Following the steps of ACSV like in section 3.3.1, we find that the leading expan-
sion (5.1) of the scaled determinant of the system leads to θ = θ1,1,3 = 10 and:

H1,1,3 (x,y,u,v) = 1024 (x+ 2ux− y+ 2vy)(−x+ 2ux+ y+ 2vy)

× (2ux+ 2vy+ 2στx−σx− τx− x− 2στy+σy+ τy− 2y)

× (4ux+ 4vy+ 2στx−σx− τx+ 2x− 2στy+σy+ τy+ y)

×H∗
1,1,3 (x,y,u,v)

(5.9)

H∗
1,1,3(x,y,u,v) is the factor of interest with the highest degree, which yields the arctic curves

in our case. The full expression is cumbersome (see file ‘supplementary material’ in [1]). We
provide some initial examples where we pick somewhat arbitrary values of σ and τ . This
provides us with 2 inner regions inside the ‘initial’ ellipses from the uniform case. However,
in this case, the initial polynomial to which we apply the elimination procedure of section 5.3
is generically of degree 6, while the final (dual) arctic curve is of degree 14.
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Figure 17. Arctic curves for (r,s, t) = (1,1,3), together with the scaled domain with
fixed σ = 1/4.

Through investigating different values of σ and τ , we observe interesting collapses of inner
regions when for instance τ becomes small (see e.g. figure 17(D)), which is the motivation for
the next section.

• τ = 0 case.

For τ = 0, the function H1,1,3(x,y,u,v) factors into a product of some linear and two quadratic
polynomials, denoted H1(x,y,u,v) and H2(x,y,u,v). Imposing the condition of vanishing of
the Hessian like in section 3.3.1 on each of the latter results in two tangent ellipses. The full
phase separation also includes segments obtained by including the other factors.

We have:

H(x,y,u,v) |τ=0 = 1024(−2ux− 2vy+ x− y)2 (−2ux− 2vy− x+ y)2

× (−2ux− 2vy+σx+ x−σy+ 2y)(−4ux− 4vy+σx− 2x−σy− y)

×H1 (x,y,u,v) H2 (x,y,u,v)

H1 (x,y,u,v) =
(
4u2x2 − 8uvxy+ 2σux2 − 4ux2 − 2σuxy− 2uxy+ 4v2y2 + 2σvxy− 4vxy− 2σvy2

− 2vy2 − 3σx2 + x2 + xy+ 3σy2 − 2y2
)

H2 (x,y,u,v) =
(
8u2x2 + 16uvxy+ 6σux2 − 6σuxy+ 6uxy+ 8v2y2 + 6σvxy− 6σvy2 + 6vy2

+3σx2 − 2x2 + xy− 3σy2 + y2
)

(5.10)

which gives the 2 elliptic pieces of arctic curves:

P1 (u,v) =−(4− 10u− 14v+ 32uv)2 +
(
2− 28u+ 32u2

)(
−10− 20v+ 32v2

)
P2 (u,v) =−(4+ 18u+ 6v+ 64uv)2 +

(
−10+ 12u+ 64u2

)(
2+ 36v+ 64v2

) (5.11)

These encompass the liquid phase (see figure 18).
In addition to the two tangent ellipses, we find segments that are tangent to the ellipses. We

argue that these are the degenerate limits when τ→ 0 of the smooth arctic curve with τ > 0.
This can be visualized by comparing figure 18 to the last plots (C),(D) of figure 17, upon
interchanging the roles of σ and τ .

We end this section by providing another 4 arctic curves corresponding to (r,s, t) = (1,1,3)
and (r,s, t) = (1,1,5) with τ = 0 and some choices of σ in figure 19.
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Figure 18. Artic Curve for (r,s, t) = (1,1,3) for τ = 0 and σ = 1
4 .

Figure 19. Arctic curves for r,s, t-pinecones, together with the scaled domain for
fixed τ = 0. Left: (r,s, t) = (1,1,3),σ = 1

2 , Center: (r,s, t) = (1,1,5),σ = 1
2 , Right:

(r,s, t) = (1,1,5),σ = 2
3 .

• σ = τ case.

Another interesting case is when σ = τ . The leading term H(x,y,u,v) at the leading order λ10

reads:

H(x,y,u,v) |τ→σ = 1024(2ux+ x+ 2vy− y)(2ux− x+ 2vy+ y)

×
(
−x+ 2ux− 2y+ 2vy− 2xσ+ 2yσ+ 2xσ2 − 2yσ2

)
×
(
2x+ 4ux+ y+ 4vy− 2xσ+ 2yσ+ 2xσ2 − 2yσ2

)
×
(
−x+ 2ux+ y+ 2vy+ 2xσ− 2yσ− 2xσ2 + 2yσ2

)2
×H∗ (x,y,u,v)

(5.12)

where H∗(x,y,u,v) is the highest order polynomial factor of interest (see file ‘supplementary
material’ in [1] for an explicit expression). Note that H∗(x,y,u,v) has degree 4 in x,y, hence
we must use the elimination process of (5.3).

We display in figure 20 the resulting arctic curves, for 1/2> τ ⩾ 0. Observe the develop-
ment of inner curves from the interior of a bigger curve as σ = τ decreases.

An interesting feature of these curves is that when τ = σ = 0, the curve degenerates into a
polygon. We will provide a combinatorial intepretation of this phenomenon in the discussion
section. To conclude this section, we notice that a similar behavior happens when σ = 1− τ
(see figure 21).
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Figure 20. Arctic Curves for (r,s, t) = (1,1,3) and σ = τ .

Figure 21. Arctic Curves for (r,s, t) = (1,1,3) and σ = 1− τ .

5.5.2. The case r, t not both odd

• σ,τ general

We fix the case of interest to be (r,s, t) = (2,2,3). Recall that theorem 4.5, the periodicity of
L and R only dependent on i modulo 2. The periodicity lattice Λ for the L’s and R’s is now
generated only by (2,0,0),(0,0,4t), i.e. F= {(i,m)}= [0,1]× [0,4t− 1].

The coefficients of the linear system (5.3) may be organized into Qm = (Lm
0 ,Lm

1 ) for
m ∈ [0,1, · · · ,4t− 1] which also gives |F|= 24, as F= [0,1]× [0,4t− 1]. The difference with
section (5.5.1) where both r, t are odd is that eachQi contains only two values since L depends
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Figure 22. Some arctic curves for (r,s, t) = (2,2,3).

only on i modulo 2 but there are twice as many values of m to be considered. On F, the coef-
ficients read

Q0 = (σ,1−σ) Q1 =
( 1
2 ,

1
2

)
Q2 =

( 1
2 ,

1
2

)
Q3 =

( 1
2 ,

1
2

)
Q4 =

( 1
2 ,

1
2

)
Q5 = (1− τ,τ)

Q6 = (1−σ,σ) Q7 =
( 1
2 ,

1
2

)
Q8 =

( 1
2 ,

1
2

)
Q9 =

( 1
2 ,

1
2

)
Q10 =

( 1
2 ,

1
2

)
Q11 = (τ,1− τ)

(5.13)

in terms of the variables σ,τ of (5.6).
The coefficient matrix for the linear system (5.13) is shown in [1] (file ‘supplementary

material’). We apply a similar technique as previous section and obtain the following data.
Notice that the choice σ = τ = 1

2 reduces to the uniform case, and we recover an ellipse with
no inner region:

P(u,v) |σ=τ=1/2 =
(
20u2 + 24u− 18

)(
20v2 + 24v− 18

)
− (20uv+ 12u+ 12v)2

For general σ and τ , the expansion is up to order θ= 8, and the quantity H223(x,y,u,v) is a
homogenous polynomial of order 8 in x,y, which necessitates seven iterations of the eliminat-
ing process of H223(x,y,u,v) and its derivative w.r.t. x to obtain the final arctic curve P(u,v).
We end this section with some explicit examples of (2,2,3)-slanted 2× 2 toroidal initial data
(see figure 22 for a few generic cases). However, the detail of the computation for these cases
is cumbersome and will be available only upon request.
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Figure 23. Arctic curves for (r,s, t) = (2,2,3) with fixed τ = 0.

• τ = 0 case

The polynomial H(x,y,u,v)|τ=0 reads:

H(x,y,u,v) |τ=0 = 16(2ux+ 2vy+ x− y)(2ux+ 2vy− x+ y)×
(
32u3x3 + 96u2vx2y+ 48u2x3

+ 48u2x2y+ 96uv2xy2 + 96uvx2y+ 96uvxy2 − 24σux3 − 2ux3 + 28ux2y+ 24σuxy2

−26uxy2 + 32v3y3 + 48v2xy2 + 48v2y3 − 24σvx2y− 2vx2y+ 28vxy2 + 24σvy3

− 26vy3 + 4σx3 − 5x3 − 12σx2y+ 9x2y+ 12σxy2 − 3xy2 − 4σy3 − y3
)

×
(
160u3x3 + 480u2vx2y− 64σu2x3 − 16u2x3 + 64σu2x2y− 80u2x2y+ 480uv2xy2

−128σuvx2y− 32uvx2y+ 128σuvxy2 − 160uvxy2 + 24σux3 − 34ux3 + 44ux2y

−24σuxy2 − 10uxy2 + 160v3y3 − 64σv2xy2 − 16v2xy2 + 64σv2y3 − 80v2y3

+24σvx2y− 34vx2y+ 44vxy2 − 24σvy3 − 10vy3 + 4σx3 + x3 − 12σx2y+ 3x2y

+12σxy2 − 9xy2 − 4σy3 + 5y3
)

Note that in this case, the polynomial factors into two polynomials, each of order 3 in x,y.
This results in two higher degree curves, which delimit two tangent regions like in the previous
section (see figure 23 for an illustration).

However, one different feature for this case is that when τ = σ = 0, the arctic curve no
longer degenerates into a polygon.

• τ = σ case

When τ = σ, the leading coefficient H223(x,y,u,v) is a homogenous polynomial of degree 8
in x,y and the curve P(u,v) is of degree 20 in u,v (see figure 24 for some illustration). Note
the symmetry τ → 1− τ as expected from section 5.4.

5.5.3. The case r>1, t odd. We fix the case of interest to be (r,s, t) = (3,3,5). For the most
general values of σ,τ , the order of the expansion is θ = θ3,3,5 = 14, but our computational
capability does not provide credible resolution for the arctic curves. As the value of θ increases,
we expect more inner regions within the scaled domain. However, as before, the calculation
simplifies in special cases such as τ = 0 or τ = σ described below.
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Figure 24. Arctic curves for (r,s, t) = (2,2,3) with some sample values of σ = τ .

Figure 25. 2 pieces curve of (r,s, t) = (3,3,5), τ = 0.

• τ = 0 and σ arbitrary
When τ = 0 and for all σ, the coefficient H(x,y,u,v) is of the form:

H(x,y,u,v) |τ=0 = 4096(2ux+ x+ 2vy− y)2 (2ux− x+ 2vy+ y)2

× (2ux+σx+ 2x+ 2vy+ 3y− yσ)(8ux+σx− 3x+ 8vy− 2y− yσ)

×H1 (x,y,u,v)×H2 (x,y,u,v)
(5.14)

where H1 and H2 are two factors of degree 4 as polynomials of x,y. We obtain a similar situ-
ation as in previous section (see figure 25), where the arctic curve consists of two tangent
components corresponding to the two factors H1 and H2.

• τ = σ arbitrary
In this case, the factor of interest H∗(x,y,u,v) in the coefficient H(x,y,u,v) is of degree 6 in
x,y (see [1] for details), resulting in two inner regions (see figure 26).

6. A Holographic principle for T-system limit shapes

6.1. General principle

In this paper we have studied new exact solutions of the T-system, with (r,s, t)-initial data
specified along parallel planes prependicular to some direction (r,s, t). The ‘flat’ case stud-
ied in [22] corresponds to r= s= 0, t= 1, and used different solutions of the T-system with
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Figure 26. 2 pieces curve of (r,s, t) = (3,3,5), τ = σ.

various periodicities. In this section, starting from a solution of the T-system for some (r,s, t)-
initial, we re-interpret the same solution as corresponding to some different initial data along
some (r̃, s̃, t̃)-planes. The latter is simply dictated by the exact solution of the former, however
simple (r,s, t) initial data (such as the uniform case studied in section 3.1) naturally lead to
highly non-uniform and more complicated initial data in arbitrary (r̃, s̃, t̃)-planes. In particular,
when (r̃, s̃, t̃) = (0,0,1) our 2× 2 periodic solutions give rise to new solutions of the T-system
with ‘flat’ initial data in the planes k= 0,1, which were not considered in [22]. However the
holographic principle described below allows to derive arctic curves for those as well.

Using the new (r̃, s̃, t̃) initial data settings, the solution of the T-system is interpreted as
partition function for dimers on (r̃, s̃, t̃) pinecones, whose limit shape is governed by the same
equations as the original (r,s, t) setting. In particular, the determinant of the linear system for
the density ρ, which is a function Dr,s,t(x,y,z) of (r,s, t), remains the same. However, due to
the new interpretation, we must apply the rescaling (3.11) with the new values (r̃, s̃, t̃) instead
of (r,s, t), therefore the singularities of the density generating function ρ(x,y,z) are governed
by the function:

∆r̃,̃s,̃t
r,s,t (x,y,z) = Dr,s,t

(
z
r̃
t̃ /x,z

s̃
t̃ /y,z

)
. (6.1)

This amounts to simply changing the ‘point of view’ on the same solution of the T-system,
namely considering it from the perspective of another direction (r̃, s̃, t̃) 6= (r,s, t), providing a
sort of holographic view on the former result.

In the next sections, we illustrate this holographic principle for uniform and 2× 2 periodic
cases.

6.2. The uniform case

To illustrate the holographic concept, let us first consider the simplest case of uniform (r,s, t)-
plane initial data viewed from the ‘flat’ perspective with (r̃, s̃, t̃) = (0,0,1). Specifically, we
re-interpret the solution Ti,j,k of the T-system with (r,s, t)-slanted uniform initial data in
section 3.1 as new ‘flat’ initial data the solution for k= 0,1. This new initial data reads
t̃i,j = Ti,j,Mod(i+j,2), with:

Ti,j,0 = α
(ri+sj)(ri+sj−1)

2 (i+ j = 0mod2)

Ti,j,1 = α
(ri+sj+t)(ri+sj+t−1)

2 (i+ j = 1mod2)

with α> 1 as in (3.2). This non-uniform initial data t̃i,j on the flat stepped surface ki,j = i+ j
mod 2 depends explicitly on (i, j,k) via the quantity ri+ sj+ tk and on (r,s, t) via α as well.
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Figure 27. Density profile for given (r,s, t)-slanted values viewed from the (0,0,1) per-
spective on the scaled domain |u|+ |v|= 1. We have represented the coefficient ρi,j,k
of the generating series ρ(x,y,z) of order k= 45 and k= 46, written as a function of
(i/k, j/k), for i ∈ {−45, · · · ,45} and j ∈ {−45, · · · ,52}.

Applying the rescaling (6.1) with (r̃, s̃, t̃) = (0,0,1), and repeating the derivation of the dual
curve as in section 3.3.1, we find that the arctic curve (3.12) is replaced with:

(1−A)u2 +Av2 −A(1−A) = 0 (6.2)

where A= Ar,s,t as in (3.13). Note that the result amounts to substituting (r,s, t)→ (r̃, s̃, t̃) =
(0,0,1) in (3.12), while keeping the value of A= Ar,s,t unchanged. The above is a family of
ellipses parameterized by A, inscribed in the Aztec square |u|+ |v|= 1. Note that when r= s,
(6.2) reduces to the artic circle, as a= 1− a= 1

2 . We provide computational evidence for this
observation in figure 27 for a few values of (r,s, t).

More generally, let us examine the (r,s, t)-uniform solution from the generic (r̃, s̃, t̃) point of
view. Recall the value (3.8) of the denominator Dr,s,t(x,y,z) of the density generating function
ρ(0,0,0)(x,y,z) for the uniform (r,s, t)-slanted case. Using the new rescaling (6.1), we get:

∆r̃,̃s,̃t
r,s,t (x,y,z) := Dr,s,t

(
zr̃/̃tx−1,zs̃/̃ty−1,z

)
,

and expanding at leading order in λ, we find:

∆r̃,̃s,̃t
r,s,t

(
eλx,eλy,e−λ(ux+vy)

)
= λ2H(x,y,u,v)+O

(
λ4
)

We again have an explicit polynomial H(x,y,u,v) for which the vanishing Hessian condition
leads to the following family of ellipses:

(1−A) t̃2 u2 +At̃2 v2 −A (1−A) (r̃u+ s̃v+ t̃)2 = 0 (6.3)

with A= Ar,s,t as in (3.13).
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Figure 28. Arctic curves library for non-uniform data, fixed τ = 0 and σ varied.

6.3. 2× 2-toroidal case

We now illustrate the holographic principle in the case of (r,r, t)-2× 2 periodic initial data as
in (4.2), with the solution as in section 4.1, viewed from the ‘flat’ perspective with (r̃, s̃, t̃) =
(0,0,1). As before, the new initial data is simply t̃i,j = Ti,j,Mod(i+j,2), where Ti,j,0 and Ti,j,1 are
the solutions of the 2× 2-toroidal, (r,r, t)-slanted T-system.

For the remainder of this section, let us restrict to the case (r,r, t) = (1,1,3). As explained
above, the singularities of the density function are governed by the rescaled determinant of
the system∆0,0,1

113 (x,y,z) := D113(x−1,y−1,z) with D1,1,3 = D as in section 5.5.1. This leads to
new dual arctic curves inscribed in the Aztec square |x|+ |y|= 1. We now follow the sequence
of results of section 5.5, which we reinterpret in the (r̃, s̃, t̃) = (0,0,1) setting.

6.3.1. Case τ =0. For τ = 0, we again obtain the same type of inner curves but now with the
scaling domain |u|+ |v|= 1 of the Aztec Diamond (see figure 28). The leading order terms at
λ10 and depending on σ,x,y takes the form:

H(x,y) = 1024(2ux+ 2vy+ x− y)2 (2ux+ 2vy− x+ y)2

× (3ux+ 3vy−σx− x+σy− 2y)(3ux+ 3vy−σx+ 2x+σy+ y)

×
(
6u2x2 + 12uvxy+ 4σux2 + ux2 − 4σuxy+ 5uxy+ 6v2y2 + 4σvxy+ vxy− 4σvy2

+ 5vy2 + 3σx2 − 2x2 + xy− 3σy2 + y2
)

×
(
6u2x2 + 12uvxy+ 4σux2 − 5ux2 − 4σuxy− uxy+ 6v2y2 + 4σvxy− 5vxy− 4σvy2

− vy2 − 3σx2 + x2 + xy+ 3σy2 − 2y2
)

By the same techniques as before, we obtain similar curves as in section 5.5.2, but with the
scaled domain for (r̃, s̃, t̃) = (0,0,1).
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Figure 29. Arctic curves library for non-uniform data, τ = σ varied.

6.3.2. Case τ = σ. We repeat the above with the case σ = τ in figure 29 and the case σ 6= τ
in figure 30. Explicit forms of arctic curves are available upon request.

6.3.3. Case τ = 1/2, σ arbitrary. The case τ = 1/2 andσ arbitrary is represented in figure 30.

6.3.4. Generic holography

Remark 6.1. While our 2× 2 toroidal solutions only hold in the (r,r, t) cases, there is no
restriction on the ‘point of view’ direction (r̃, s̃, t̃). Indeed, we can take any triple (r̃, s̃, t̃) encod-
ing the desired stepped surface where the new initial data t̃i,j lies.

To illustrate the remark above, we show in figure 31 several arctic curves from different
(r̃, s̃, t̃)-stepped surfaces points of view, taking for initial data the 2× 2-toroidal (1,1,3)-slanted
T-system with σ = 1

2 and τ = 1
4 .

6.4. m-toroidal holography

In this section, we apply the holographic principle to the m-toroidal solutions of the T-system
with flat iniital data with (r,s, t) = (0,0,1) (see section 4 in [22]). The m-toroidal initial data
on the flat initial data plane (r,s, t) = (0,0,1) are prescribed to be:

ai = Ti+1,−i,0 = ti+1,−i bi = Ti+2,−i+1,0 = ti+2,−i+1

ci = Ti,−i,1 = ti,−i di = Ti+1,−i+1,1 = ti+1,−i+1
(6.4)

for i ∈ Z, with the additional restriction:

ti+m,j−m = ti,j and ti+2,j+2 = ti,j (i, j ∈ Z)

45



J. Phys. A: Math. Theor. 57 (2024) 335201 P Di Francesco and H T Vu

Figure 30. Arctic curves library for non-uniform data, fixed τ = 1/2 and σ varied.

Figure 31. Several (̃r, s̃, t̃) views of arctic curves of the (1,1,3) slanted 2× 2 periodic
solution with τ = 1/4, σ = 1/2.

The T-system with this initial data was solved explicitly (see theorem 4.2 of [22] for details).
For our interest, we want an explicit description of the quantities Li,j,k and Ri,j,k in the recursion
relation for the density ρi,j,k. They obey the following periodicities:

Li+2,j+2,k = Li,j,k Li+m,j−m,k = Li,j,k Li+1,j+1,k+2 = Li,j,k
Ri+2,j+2,k = Ri,j,k Ri+m,j−m,k = Ri,j,k Ri+1,j+1,k+2 = Ri,j,k

Therefore, the density function can split as above, modulo the periodicity lattice Λ⊂ Z3

generated by the vectors (2,2,0),(m,−m,0) and (1,1,2), and obeys a linear system. Let
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λi =
aibi−1

ai−1bi+ aibi−1
and µi = Li+2,−i+1,1 =

ci+1di
cidi+1 + ci+1di

. These quantities are not inde-

pedent and satisfy the relation:

m−1∏
i=0

(
1
λi

− 1

)
=

m−1∏
i=0

(
1
µi

− 1

)
= 1

The solution of the general system ofm-periodic densities is the rational function in x,y,zwith
denominator the determinant of the following block matrix:

C=


z−1I zI −M(x,y) −M̄

(
y−1,x−1

)
zI z−1I −M

(
y−1,x−1

)
−M̄(x,y)

−P(x,y) −P̄
(
y−1,x−1

)
z−1I zI

−P
(
y−1,x−1

)
−P̄(x,y) zI z−1I

 (6.5)

where

P(x,y) =



µ0
x 0 0 · · · 0 1−µ0

y
1−µ1
y

µ1
x 0 · · · 0 0

0 1−µ2
y

µ2
x

. . . 0 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · 0 1−µm−1

y
µm−1

x


and

M(x,y) =



1−λ0
y

λ0
x 0 · · · 0 0

0 1−λ1
y

λ1
x · · · 0 0

0 0 1−λ2
y

λ2
x

. . . 0
...

. . .
. . .

. . .
. . . λm−2

x
λm−1

x · · · · · · 0 0 1−λm−1

y


and P̄ is P where µi and 1−µi interchanged and M̄ is M where µi and 1−µi interchanged.

By the holographic principle, we now wish to view the exact solution of the T-system
with m-toroidal ‘flat’ initial data from an (r̃, s̃, t̃)-slanted perspective. Setting D0,0,1(x,y,z) =

det(C), the denominator of the density in the new persective reads: ∆r̃,̃s,̃t
0,0,1(x,y,z) :=

D0,0,1(zr̃/̃tx−1,zs̃/̃ty−1,z). The corresponding dual curves give the limit shapes of large (r̃, s̃, t̃)
pinecones corresponding to the m-toroidal solutions. In figures 32–34, we list these new arc-
tic curves for the same parameters as in section 4.2 of [22] for (r̃, s̃, t̃) = (1,2,3),(1,0,3) and
(2,3,5) respectively.

7. Discussion/conclusion

7.1. The ‘facet’ or ‘pinned’ phase

In this paper, we have investigated the limit shape of large typical dimers configurations on
r,s, t-pinecones, in the cases of uniform (initial data plane-dependent) and 2× 2 periodic
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Figure 32. Arctic curves for the 3-toroidal initial data corresponding to different val-
ues λ1, where λ0 = 1/2, λ2 = 1−λ1 and µ0 = µ1 = µ2 = 1/2. View from (̃r, s̃, t̃) =
(1,2,3) perspective.

Figure 33. Arctic curves for the 3-toroidal initial data corresponding to different val-
ues λ1, where λ0 = 1/2, λ2 = 1−λ1 and µ0 = µ1 = µ2 = 1/2. View from (̃r, s̃, t̃) =
(1,0,3) perspective.

Figure 34. Arctic curves for the 3-toroidal initial data corresponding to different val-
ues λ1, where λ0 = 1/2, λ2 = 1−λ1 and µ0 = µ1 = µ2 = 1/2. View from (̃r, s̃, t̃) =
(2,3,5) perspective.
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Figure 35. (a): Tessellation domain of (r,s, t) = (1,1,3), (b): Dual graph to the tessel-
lation with the initial values a,b,c,d indicated in each face.

slanted plane initial data. Whereas the uniform case only displays a liquid region separated
from frozen corners by an arctic ellipse, the periodic case shows the emergence of a new
‘facet’ phase already observed in the case of the domino tilings of large Aztec diamonds with
2× 2 periodic weights [22]. In this work, the phase was investigated in the limit when a→ 0,
where the liquid phase disappears, and shown to be ‘pinned’ on the sublattice of square faces
with initial data weight a.

We argue that a similar structure holds in the 2× 2 slanted case considered in this paper.
Let us first restrict to the case (r,s, t) = (1,1,3). To investigate this new facet phase, we note
that the limit σ,τ → 0 of figures 20 suppresses the liquid phase to leave us with only a central
facet phase separated from the frozen corners by a quadrangular arctic separation. (The same
phenomenon occurs in all (1,1, t) cases for odd t.). Wemay therefore concentrate on the σ,τ →
0 limit.

Let us consider as an example the tessellation domain for the case (r,s, t) = (1,1,3) where
we only include the active region in figure 35, along with its dual graph:
As explained above, the facet phase is maximal for σ = a2

a2+d2 → 0 and τ = b2

b2+c2 → 0,
obtained by sending a,b→ 0 while c,d remain finite and positive. From the defintion of the
partition function, the contribution of the local weight at face (x, y) to the partition function is
tvx,y/2−1−Nx,y
x,y . Thus, as a,b→ 0, the contribution of maximally occupied dimer configurations
around the a,b faces dominates the partition function Ti,j,k, expressed as Laurent polynomial
of initial data tx,y. As i, j,k→∞, the dominating configurations are those corresponding to
Laurent monomial terms with highest total degree in a,b in the denominator. We illustrate this
with two examples for the case (r,s, t) = (1,1,3) via the explicit 2× 2 periodic solutions T0,0,4
and T1,1,4.

7.1.1. T0,0,4 and T1,1,4 with σ,τ → 0. Applying the initial data (4.1), we find four dominant
terms in the explicit solution T0,0,4 as a,b,→ 0 namely T0,0,4 is up to a numerical factor:

t−1,0t−1,3t0,−2t1,0t1,3
t0,−1t0,0t0,2t0,3

+
t−1,−1t−1,3t1,−2t1,0t1,3

t0,−1t0,2t0,3t1,−1
+
t−1,0t−1,2t0,−2t1,0t1,1t1,3

t0,−1t0,0t0,1t0,2t1,2

+
t−1,−1t−1,2t1,−2t1,0t1,1t1,3

t0,−1t0,1t0,2t1,−1t1,2
. (7.1)
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Figure 36. Dimer configurations corresponding to (7.1) for the dominant terms in the
(1,1,3)-slanted solution T0,0,4. The maximally occupied faces are shaded.

Similarly, T1,1,4 is dominated by the following 8 terms:

t−1,0t−1,2t21,1t1,4t2,−1t3,1t3,4
t0,0t0,1t0,2t2,0t2,1t2,3t2,4

+
t−1,0t−1,3t1,1t1,2t1,4t2,−1t3,1t3,4

t0,0t0,2t0,3t2,0t2,1t2,3t2,4

+
t−1,0t−1,2t1,0t1,1t1,4t3,−1t3,1t3,4

t0,0t0,1t0,2t2,0t2,3t2,4t3,0
+
t−1,0t−1,3t1,0t1,2t1,4t3,−1t3,1t3,4

t0,0t0,2t0,3t2,0t2,3t2,4t3,0

+
t−1,0t−1,2t21,1t1,3t2,−1t3,1t3,2t3,4
t0,0t0,1t0,2t2,0t2,1t2,2t2,3t3,3

+
t−1,0t−1,3t1,1t1,2t1,3t2,−1t3,1t3,2t3,4

t0,0t0,2t0,3t2,0t2,1t2,2t2,3t3,3

+
t−1,0t−1,2t1,0t1,1t1,3t3,−1t3,1t3,2t3,4

t0,0t0,1t0,2t2,0t2,2t2,3t3,0t3,3
+
t−1,0t−1,3t1,0t1,2t1,3t3,−1t3,1t3,2t3,4

t0,0t0,2t0,3t2,0t2,2t2,3t3,0t3,3
.

(7.2)

In each of these contributions, it is easy to track the maximally occupied faces (i, j), as they
contribute t−1

i,j . The four (resp. eight) terms in (7.1) and (7.2) correspond to the following dimer
configurations:

The structure of the slanted planes gives a sequence of square and hexagonal faces on the
pinecone. Upon examining figures 36 and 37, we observe that some specific hexagonal a
and b type faces are always maximally occupied by three dimers, each with two independ-
ent ‘pinned’ equally probable configurations, while their surroundings vary. Alternatively,
the dominant terms listed in (7.1) and (7.2) share some particular terms in the denominator
that correspond to these pinned hexagonal faces. We argue that this structure generalizes to
arbitrary size for σ,τ → 0. To see how, we display in figure 38 below some sample densit-
ies ρ(i0,j0,k0)i,j,k say for m= 26 (ρ1,1,8) and m= 30 (ρ0,0,10): First note that the local density
only takes values −1,− 1

2 ,0,
1
2 ,1. The value −1 corresponds to maximally occupied faces,

among which hexagons form a sublattice. The hexagons correspond to the red faces (value
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Figure 37. Dimer configurations corresponding to (7.2) for the dominant terms in the
(1,1,3)-slanted solution T1,1,4, with shaded maximally occupied faces.

Figure 38. Local density ρ1,1,8 (top) and ρ0,0,10 (bottom) at all points (i0, j0).
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Figure 39. Local density configuration around the maximally- (left) and minimally
(right) occupied hexagonal face (i, j) of the dimer model in the thermodynamic limit
k→∞.

−1) which alternate with blue faces (also hexagons, but with value 1) along diagonal lines
with direction (1,−1), spaced by 3 units. Once we fix the configuration of these maximally
occupied hexagonal faces, there is a unique configuration of their surroundings, and averaging
over the two possible configurations of each such face produces the factors 1

2 (1+ 0) = 1
2 or

1
2 (−1+ 0)) =− 1

2 i.e. the green and brown faces, while the blue hexagons correspond to an
average over 4 configurations determined by the choices of the two pinned adjacent hexagons:
1
4 (0+ 1+ 1+ 2) = 1 i.e. the blue faces. In other words, we have the following local structure
in figure 39. From figure 39 left, we see that the squares at the left and right of the pinned
hexagon are occupied by 1 or 0 dimer (average 1

2 ), while those on top and bottom are occu-
pied by 1 or 2 (average − 1

2 ), and it is easy to reconstruct the unique configuration for each
choice of the pinned hexagon configurations.

In summary, like in the Aztec case of [22], the facet phase observed here is pinned on a
particular sublattice (here of hexagons of type a,b), but has a non-zero entropy of 2 per pinned
hexagon. This explains the fact that the partition function has always 2nH contributions, where
nH is the number of pinned hexagons (nH =2 and 3 in the examples of figures 36 and 37). We
argue that this is the general structure of the facet phase occurring in general as bubbles inside
the liquid zones. The same structure holds for more general slanted planes (1,1, t) for odd t.
However, in addition to a sublattice of pinned hexagons, there are additional frozen domains
where strips of t− 3 consecutive squares are maximally occupied by dimers, next to shifted
strips of t− 3 consecutive empty squares in alternance, between rows of pinned hexagons. For
example, the (1,1,5)-slanted density profile for ρ1,0,9 reads:

In figure 40, we observe the usual alternance of red/blue hexagons along diagonals in the
direction (1,−1), now spaced by 5 units. In addition, we have pairs of consecutive red (max-
imally occupied) square faces along vertical lines spaced by 2 units, alternating with pairs of
consecutive blue (empty) squares.

More generally, the number of square faces between two hexagonal faces along vertical
lines is t− 1 in the case of (1,1, t)-slanted initial data. Inbetweeen two consecutive pinned
(red) hexagons along a vertical, say at positions (i, j) and (i, j+ t), there is a sequence of t− 3
maximally occupied (red) square faces (with only one frozen configuration, with all their hori-
zontal edges occupied) at positions (i, j+ 2), · · · ,(i, j+ t− 2), while between the two (blue)
hexagons at positions (i+ 1, j− 1) and (i+ 1, j− 1+ t) there is a sequence of t− 3 empty
(brown) squares at positions (i+ 1, j+ 1), · · · ,(i+ 1, j+ t− 1). The pattern is repeated on a
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Figure 40. Local density ρ1,0,9 for the case of (1,1,5)-slanted initial data.

lattice generated by (2,−2) and (0, t). The only variations in the configurations are determ-
ined by the 2 choices for each pinned hexagonal face. We expect a similar ‘pinned’ structure
to hold within all the facet phases observed above.

7.2. 3D view of the holographic principle

In section 6.1, we introduced a holographic principle which allows to re-interpret in dimer
language any given solution of the T-system with an (r,s, t)−slanted initial data giving rise to
an arctic phenomenon, in terms of any other slanted direction (r̃, s̃, t̃). We argue now that the
two arctic curves pertaining to the same solution of the T-system are simply intersections of
a single two-dimensional surface in three dimensions with the corresponding slanted planes.
This is easy to see on the uniform case of section 6.2. Indeed, the holographic arctic ellipse
equation (6.3) may indeed be interpreted as the intersection in 3D space with coordinates
(u,v,w) of the slanted plane Pr̃,̃s,̃t : r̃u+ s̃v+ t̃w= 0 with the curve

Cr,s,t : (1−Ar,s,t) u
2 +Ar,s,t v

2 −Ar,s,t (1−Ar,s,t) (w− 1)2 = 0

The latter is a cone2 with apex (0,0,1) which is parameterized by the initial data direction
(r,s, t), and contains the original arctic curve of the uniform (1,1,3)−slanted model in the
plane Pr,s,t (as the original arctic ellipse is the intersection of the plane Pr,s,t with the surface
Cr,s,t). In fact, the surface Cr,s,t is also defined as the family of lines through the apex (0,0,1)
that intersect the (r,s, t) arctic curve in the plane Pr,s,t, defined by:

ru+ sv+ tw= 0, and (1−Ar,s,t) t
2u2 +Ar,s,t t

2v2 −Ar,s,t (1−Ar,s,t) (ru+ sv+ t)2 = 0.

Wemay therefore think of the curve (6.3) as the 2D holographic view of the surface Cr,s,t in 3D
(see figure 41 for the example r= 1,s= 1, t= 3). Note finally that the domain for the dimer
models corresponds to the inside of the pyramid |u|+ |v|= |w− 1|, which is tangent to the
surface Cr,s,t along four lines.

We suspect the surface Cr,s,t may have a physical meaning as the singularity locus of some
3D statistical model inside the pyramid |u|+ |v|= |w− 1|, where the surface corresponds to
sharp phase separations like in the 2D interpretation.

2 This property is easily seen from the homogeneity of the surface equation in the variables (u,v,w− 1).
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Figure 41. The surface for the T-system with (1,1,3)-slanted uniform initial data (depic-
ted in orange/brown), together with Left: the original slanted initial data plane P1,1,3

(depicted in blue); Right: the holographic section in the direction (1,3,5), i.e. the plane
P1,3,5 (depicted in blue).

Figure 42. The surface for the T-system with (1,1,3)-slanted 2× 2-periodic initial data
with σ = τ = 1/4 (depicted in orange/brown), and the original slanted initial data plane
P1,1,3 (depicted in blue). Left: upper side view. Right: lower side view.

We expect this phenomenon to be general, namely that all holographic views of any given
(r,s, t)-model studied in this paper are obtained as the intersection of a suitable cone in 3D
(conjecturally defined by the family of lines through the apex (0,0,1) that intersect the original
(r,s, t)-arctic curve in the plane Pr,s,t), with the corresponding view-planes.

As an illustration, we have represented in figure 42 the surface for the (1,1,3)− slanted
2× 2 periodic case for σ = τ = 1/4 (in orange/brown) in two different views showing the
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above and below parts. The blue plane is the original slanted plane P1,1,3, and the intersection
with the surface was depicted in figure 20(C). The actual equation of the surface (a cone of
homogeneous degree 8) is available on demand from the authors.

7.3. Conclusion and perspectives

This paper has introduced new solutions of the T-system and interpreted them in terms of dimer
partition functions with special initial data. This study is by no means exhaustive and would
deserve a more systematic approach, leading possibly to a classification of exact solutions.
However, the study has allowed us to find explicit arctic curves for a large class of suitably
weighted pinecone dimer models, thus extending widely the results of [22]. In particular, we
have identified the structure of the new included ‘facet’ phase forming bubbles inside the liquid
phase, as being pinned on some sublattice of hexagonal faces of the pinecones, while keeping
a non-zero entropy.

We also introduced a holographic principle allowing for re-interpreting exact solutions from
different points of view, and eventually exhibiting an underlying three-dimensional structure.

Dimer models have many different formulations, and it would be interesting to investigate
the non-intersecting lattice path/network formulation associated to the (r,s, t) pinecones. This
formulation has the advantage of giving an alternative route to access to thermodynamic prop-
erties of the models, and in particular the arctic phenomenon: we may hope to be able to use
the so-called tangent method of Colomo and Sportiello [9–11, 13–17, 21], and compare the
results to those obtained in the present paper. Some advances in this direction were perfomed
in [39] for the case of the two-periodic Aztec diamond.

Finally, beyond the case of dimers, arctic curves have been derived for interacting fermion
models such as the Six or Twenty Vertex models [8–10, 13], and display new features, such as
non-analyticity of arctic curves in non-free femion cases. These cases escape Kasteleyn theory,
although the partition functions are still determinantal. It is known however that determinants
obey Plücker relations, of which the T-system is one particular example. Such relations were
already used in [8, 13] to obtain the thermodynamic free energy and boundary one-point func-
tions, but a general approach to path density is still lacking. It would be very interesting to
mimick the approach of the present paper in these more involved cases.
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