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Active droplet driven by collective chemotaxis

Christian Carlssona and Tong Gao *ab

Surfactant-laden fluid interfaces of soft colloids, such as bubbles and droplets, are ubiquitously seen in

various natural phenomena and industrial settings. In canonical systems where microparticles are driven in

hydrodynamic flows, convection of the surfactant changes local surface tension. Subsequently, the

interplay of Marangoni and hydrodynamic stresses leads to rich interfacial dynamics that directly impact

the particle motions. Here we introduce a new mechanism for self-propelled droplets, driven by a thin

layer of chemically active microparticles situated at the interface of a suspended droplet, which is a direct

extension of the planar collective surfing model by Masoud and Shelley (H. Masoud and M. J. Shelley,

Phys. Rev. Lett., 2014, 112, 128304). These particles can generate chemicals locally, leading to

spontaneous Marangoni flows that drive the self-aggregation of microparticles. This process, in turn,

creates a polarized surfactant distribution, which induces collective chemotaxis and dipolar bulk flows,

ultimately breaking the symmetry. By assuming the local surfactant production to be either proportional to

particle density or saturated at a high particle density, we observe that the system can be chemotactically

diverging or approach a steady state with constant migration velocity. The system is studied analytically in

the linear region for the initial transient dynamics, yielding critical numbers and familiar patterns, as well as

numerically for larger amplitudes and over a long time using spectral methods.

1. Introduction

Active fluids define a novel class of non-equilibrium materials
composed of self-driven microparticles that consume local fuels
to perform mechanical work.1,2 The many-body interactions
between suspended microparticles lead to spontaneous collective
dynamics whose sizes are much larger than individual micropar-
ticles. The unstable dynamics of active fluids encompass a range
of phenomena, including pattern formation, instability cascades,
density fluctuations, ordering transitions, and anomalous diffu-
sion. When properly manipulated, the non-equilibrium physical
properties of active fluids can be used to design novel applications
of microfluidic transport and mixing.3–6

Active fluids are varied. Of particular interest here is a class
of active interfacial flows where a thin layer of active constituents
reside on liquid–liquid or liquid–air interfaces.7,8 The hydro-
dynamic coupling between the interfacial movements of active
microparticles and the resting bulk fluid9–11 effectively produces
unstable dynamics that exhibit spatiotemporal features with
unique characteristic length and time scales, and can drastically
differ from those measured in coherent bulk flows.12 As demon-
strated by Masoud and Shelley,13 reciprocal coupling with a

chemical concentration field can be achieved by introducing
chemically active particles that produce or consume chemical
species to alter the local concentration field, which effectively
generates Marangoni stresses that drive the flows. The resultant
collective aggregation accompanies intriguing critical behaviors
of chemotactic collapse predicted by the canonical Keller–Segel
model. It is seen that the particle distributions shrink to singular
point density ‘‘sinks’’ from which the induced interfacial flows
are drained into the bulk.

Given the prevalence of particle-laden fluid interfaces in
various natural phenomena and industrial settings, exploring
non-equilibrium interfacial dynamics as such may potentially
suggest novel mechanisms for manipulating soft colloidal
systems, especially for droplets and emulsions. For canonical
(passive) systems of surfactant laden droplets, Marangoni
flow spontaneously occurs as the surfactant redistributes to
change surface tension, which could be either driven by exter-
nal forces (e.g., gravity14,15) and imposed flows (e.g., shear16,17)
or caused by hydrodynamically coupling with another field
(e.g., thermocapillarity18,19). More interestingly, in recent times
there have been considerable efforts in studying self-propelling
droplets that generally exploit the chemo-hydrodynamic cou-
pling for symmetry breaking via Marangoni flows. These active
systems take full advantage of the droplet’s fluidic nature to
carry and encapsulate various kinds of chemical species, which
hence facilitate controllable chemical reactions, either on the
surface20 or in the bulk,21 to alter surfactant distribution
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directly, as well as utilizing micellar dissolution to change
surface tension.22

In this work, we adopt Masoud and Shelley’s model13 on
spherical geometries to reveal the mechanism of spontaneous
generation of Marangoni flows that may break symmetry and
induce droplet migration. Unlike the canonical systems where
surfactants are driven out of equilibrium, we consider scenarios
of chemically active microparticles that reside on the droplet
surface and continuously secrete chemical species, such as
bacteria-laden droplets.23–25 Their chemical secretions act as a
source of biosurfactants, which in turn lead to collective chemo-
taxis, altering the surface tension.26 Once these chemical sub-
stances are set free, they become affixed to the interface between
liquids, facilitating their transport into the bulk volume. Our
model exhibits parallels with the active colloid model of De Corato
et al.,27 where a spherical, rigid particle with surface-bound
enzymes continuously produces surfactants, resulting in steady
self-propulsion. In that model, surface advection-diffusion of
mobile enzymes leads to spontaneous polarization from a uniform
state, inducing Marangoni flows that break symmetry. Notably, the
instability in their system is governed entirely by enzyme transport
and diffusion at the surface, without being coupling to bulk flow.
In contrast, while our model similarly displays axisymmetric
polarization of microparticles and the generation of interfacial
Marangoni flows, the symmetry-breaking instability arises from
the development of swirling bulk flows within the droplet, driven
by the surface aggregation of microparticles.

As discussed below, we first examine the Keller–Segel system’s
diverging chemotactic process where singular solutions form
on the surface. Next, we employ a phenomenological chemo-
mechanical model to enable localized surfactant saturation,
thereby preventing the occurrence of density singularities effec-
tively. This model represents one of the most straightforward
approaches for investigating bacteria quorum sensing, which is a
signaling mechanism that controls high density during bacterial
aggregation.28,29 We have conducted both asymptotic analysis and
nonlinear simulation to uncover the underlying rich dynamics. In
the linear regime of initial transient, we consider the limit of pure
diffusion for the chemical species by neglecting advection. We
solve for the analytical solutions of the coupled system using
Lamb’s fundamental solutions in spherical geometries.30 The late
time dynamics are resolved in direct simulations of the full
equations using the open-source spectral codes of the Dedalus
project.31 Overall, we demonstrate that adjusting local surfactant
consumption or depletion regulates the collective interfacial
dynamics, which effectively drives swirling flows in the bulk to
break symmetry, resulting in entire-body movements. The pre-
vailing pattern within the droplet resembles the classical Hada-
mard–Rybczynski solution of a moving spherical bubble.32,33

Furthermore, we illustrate that introducing a saturation mecha-
nism for local surfactant production not only prevents divergence
but also facilitates steady droplet migration.

The paper is organized as follows. Section 2 presents a
model of a droplet immersed in another Newtonian fluid. We
introduce the governing equations of the interfacial dynamics
of microparticles, which hydrodynamically couple with the

Stokes flow and chemical transport inside and outside of the
droplet. Section 3 seeks analytical solutions in the linear regime
to obtain critical conditions for collective chemotaxis to occur
and illustrates how internal flow generation breaks symmetry
to drive the whole-body migration. In particular, we examine
axisymmetric modes in the diffusion-dominant limit where the
chemical Péclet numbers tend to zero. Diverging behavior is
seen when the local interfacial chemical production rate is
proportional to the local particle density. A comparison is made
with the planar geometry in the limit of a large mode number.
Section 4 demonstrates that introducing a local surfactant-
saturation mechanism effectively prevents chemotactic collap-
sing and leads to steady-state bulk flow generation and stable
droplet migration. Finally, we summarize and draw conclu-
sions in Section 5.

2. Mathematical model

Our mathematical model builds upon and expands the pre-
vious investigation of the collective dynamics of immobile,
chemically active microparticles on a flat surface,13 extending
it to the context of a spherical liquid–liquid interface of a
droplet. Consider a spherical droplet of radius R immersed in
another fluid, where chemically active particles on the droplet
surface (e.g., liquid–liquid interface) continuously produce
surfactant. The spherical coordinates are represented by the
orthonormal unit vectors (êf, êy, êr). The surface number
density of microparticles, c(f, y, t) (0 r f o 2p, 0 r y r p),
is governed by

@c
@t

þrs �U cð Þ ¼ DpDsc; (1)

where Dp is the diffusion coefficient and U(f, y) = (u, v) = uêf +
vêy represents the induced Marangoni flow field on the sphe-
rical surface. Here we use the subscript ‘‘s’’ to denote the
spatial gradient on the surface of a sphere. The particles excrete
chemical species whose bulk concentration fields are denoted
by Ci/o(f, y, r, t), where the subscript ‘‘i’’ and ‘‘o’’ denote the
solution for the interior of the drop and for the fluid outside,
respectively. They satisfy the governing equations

@Ci=o

@t
þ ui=o � rCi=o ¼ Dci=oDCi=o (2)

where ui/o(f, y, r) = (ui/o, vi/o, wi/o) = ui/oêf + vi/oêy + wi/oêr is the
3D fluid velocity field and Dci/o is the diffusion coefficient in
the bulk. The chemical field is continuously defined across the
domain. On the liquid–liquid interface, the interior and exter-
ior bulk chemicals are directly coupled via

Dci
@Ci

@r

����
r¼R

�Dco
@Co

@r

����
r¼R

¼ _mFðcÞ (3)

Ci|r=R = Co|r=R = C (4)

where C represents the surfactant distribution on the interface.
Function F(c) describes the details of the local surfactant
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production below

F cð Þ ¼
c; uniform productionð Þ

4c
1þ c

local saturationð Þ

8><>: (5)

with coefficient :
m4 0 characterizing the surfactant production

per active particle. Here we consider two scenarios. In the first
uniform production (UP) model, we choose a linear function F
to continuously introduce chemicals at a uniform rate that can
cause divergence, similar to the results for the planar Keller–
Segel system.13 Alternatively, we allow the chemical flux to
saturate locally as the particle density increases following the
Michaelis–Menten way (i.e., one of the simplest enzyme kinetic
models), which has been used to model quorum sensing
regulatory systems such as bacteria aggregation.34–36 Herein-
after, we will term it the local saturation (LS) model. Our results
demonstrate that the second model can effectively regulate
singularities in the density field.

The corresponding bulk fluid velocity fields inside and
outside the droplet satisfy the incompressible Stokes equation:

�rpi/o + mi/oDui/o = 0, and r�ui/o = 0. (6)

where pi/o is the pressure field and mi/o is the fluid viscosity. On
the surface, we enforce the continuity condition in the tangen-
tial direction, i.e.,

(ui, vi)|r=R = (uo, vo)|r=R = U. (7)

Since the spherical shape is fixed and no fluid penetrates the
interface, we require the third component (i.e., in the radial
direction) to be

wi|r=R = wo|r=R = 0. (8)

The surface tension g is assumed to be an affine function of
the chemical concentration at the surface, g(f, y, t) = g0 + aC|r=R,
where g0 and a are constants. Then the jump condition of the
traction force in the tangential direction becomes

mi
@ui
@r

� ui

r
;
@vi
@r

� vi

r

� �����
r¼R

�mo
@uo
@r

� uo

r
;
@vo
@r

� vo

r

� �����
r¼R

¼ arsCjr¼R

(9)

The traction jump condition in the radial (normal) direction is
not taken into account since it can be decoupled from the
Marangoni-flow-driven system dynamics for a fixed spherical
shape. For non-dimensionalization, we rescale particle density,
length, chemical concentration, and time, with averaged parti-

cle number density c � 1

4p

Ð
cdO, droplet radius R, reference

concentration Cref B �cR/Dc, and advection time scale t B mDc/

(a :
m �c), respectively. Hence, the dimensionless equations read

@c
@t

þrs � ðUcÞ ¼ Pe�1
p Dsc (10)

@Ci=o

@t
þ ui=o � rCi=o ¼ Pe�1

ci=oDCi=o (11)

�rpi/o + Dui/o = 0, r�ui/o = 0. (12)

where the Péclet numbers are given by Pep = tp/t and Peci/o = tci/o/t,
with tp = R2/Dp and tci/o = R2/Dci/o being the particles’ diffusion
time scale and chemical species, respectively. The above govern-
ing equations are subjected to the interfacial conditions

@Ci

@r

����
r¼1

�lD
@Co

@r

����
r¼1

¼ FðcÞ (13)

Ci|r=1 = Co|r=1 = C (14)

@ui
@r

� ui

r
;
@vi
@r

� vi

r

� �����
r¼1

�lm
@uo
@r

� uo

r
;
@vo
@r

� vo

r

� �����
r¼1

¼ rsC

(15)

(ui, vi)|r=1 = (uo, vo)|r=1 = U, wi|r=1 = wo|r=1 = 0, (16)

where lD ¼ Dco

Dci
and lm ¼ mo

mi
, respectively, represent the ratio of

diffusivity and viscosity. Overall, the evolution of the interfacial
density of microparticles is governed by an advection-diffusion
equation with the induced Marangoni flow being the source
of energy, driving fluid fields both inside and outside of the
droplet.

To handle the migration of the droplet, we choose the co-
moving coordinate with the motile droplet. Then the corres-
ponding far-field conditions in the external flow field read

Co|r-N = 0, (17)

uo|r-N = �V, (18)

where V represents the unknown droplet migration velocity to
be solved together with the other variables. The initial condi-
tion for the concentration field is

Ci/o(f, y, r, t = 0) = 0. (19)

Besides the linear analysis discussed below, we use the
Dedalus project,31 an open-source spectral code, to perform
nonlinear simulation for the above coupled equation system.
We choose quadrature points with the spatial resolution Nf �
Ny � Nr = 128 � 64 � 64 (along with dealiasing) and the time-
marching step Dt r 1/400. A third-order Runge–Kutta scheme
is used for the time stepping.

3. Linear analysis in the limit of small
chemical Péclet numbers
3.1. Axisymmetric modes

To begin, we follow the classical stability analysis of chemically
active droplets22,37,38 to seek axisymmetric solutions. The
particle density can be constructed using the classical Lamb
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solution in Stokes flows30 as

cðy; tÞ ¼ 1þ
X1
n¼1

cnðtÞPnðcos yÞ (20)

where Pn are Legendre polynomials and cn(t) are the corres-

ponding coefficients. Note that
1

4p

Ð
cdO ¼ 1, as required. The

modal solutions for the chemical concentration field become

Ciðy; rÞ ¼ Anr
nPnðcos yÞ; Coðy; rÞ ¼

Bn

rnþ1
Pnðcos yÞ: (21)

The continuity condition in eqn (14) immediately yields Bn =
An. Using the UP model (i.e., F = c), eqn (13) requires

(n + lD(n + 1))An = cn. (22)

To solve for the velocity field, we choose the stream
function as

Cðy; rÞ ¼ a

rn
þ b

rn�2
þ crnþ1 þ drnþ3

� �
sin2 yP0

nðcos yÞ (23)

where ‘‘,’’ is the derivative on cos y. The polar (i.e., v) and radial
(i.e., w) velocity components can be calculated as

v ¼ � 1

r sin y
@C
@r

¼ na

rnþ2
þ ðn� 2Þb

rn
� ðnþ 1Þcrn�1 � ðnþ 3Þdrnþ1

� �
� sin yP0

nðcos yÞ;

(24)

w ¼ 1

r2 sin y
@C
@y

¼ nðnþ 1Þ a

rnþ2
þ b

rn
þ crn�1 þ drnþ1

� �
Pnðcos yÞ:

(25)

Setting a = b = 0 is automatically determined for solutions
inside the sphere (r o 1). Then applying the no-penetration
condition (16) for the w component yields d = �c and the
expression for the polar angular component becomes

vi y; rð Þ ¼ Vn

2
ðnþ 1Þrn�1 � ðnþ 3Þrnþ1
� �

sin yP0
nðcos yÞ (26)

with coefficient Vn. For the flow outside of the droplet (r 4 1),
obviously d = 0 can be chosen, as well as c = 0 for n 4 1. The
polar velocity component becomes

voðy; rÞ ¼
na

rnþ2
þ ðn� 2Þb

rn
� 2cd1n

� �
sin yP0

nðcos yÞ: (27)

From continuity at the interface, eqn (16), we have

voðy; r ¼ 1Þ ¼ naþ ðn� 2Þb� 2cd1nð Þ sin yP0
nðcos yÞ

¼ viðy; r ¼ 1Þ ¼ �Vn sin yP0
nðcos yÞ:

(28)

The far-field condition in (18) reads

vo(y, r - N) = �2c sin y = �V sin y, (29)

leading to 2c = V. Also, since wo|r=1 = 0, we need a + b + cd1n = 0.

Putting it together, a ¼ �Vn

2
þ V

4
d1n and b ¼ Vn

2
� 3V

4
d1n. The

polar component of eqn (15) requires

@vi
@r

� vi

r

� �����
r¼1

�lm
@vo
@r

� vo

r

� �����
r¼1

¼ 1

r

@C

@y

����
r¼1

; (30)

leading to

An ¼ ð1þ lmÞð2nþ 1ÞVn �
3

2
lmVd1n: (31)

When linearizing eqn (10), combining eqn (31) and (22), it is
straightforward to obtain

c0
nðtÞ ¼

nðnþ 1Þ
Pep
� �ðnÞ

crit

1�
Pep
� �ðnÞ

crit

Pep

 !
cnðtÞ ¼ scnðtÞ (32)

where

Pep
� �ðnÞ

crit
¼ nþ lDðnþ 1Þð Þ ð1þ lmÞð2nþ 1Þ � lm

3V

2V1
d1n

� �
(33)

is the critical Péclet number for the nth-order mode – when Pep
goes beyond (Pep)

(n)
crit, the growth rate s becomes positive, and

hence suggests the nth mode becomes unstable. To close the
system, the Lorentz reciprocal theorem39,40 gives

V ¼ 2

3
V1: (34)

Thus, the critical Péclet numbers for the surface particles
finally become

(Pep)
(n)
crit = (n + lD(n + 1))((1 + lm)(2n + 1) � lmd1n).

(35)

A few examples are given in Fig. 1. Note that a smaller critical
Péclet number, for a given mode n, not only leads to a lower
stability threshold, but also indicates a faster growth. Using
eqn (22) and (31) for n = 1, together with (34), the droplet
migration speed can be derived as

V ¼ 2c1

3 3þ 2lm
� �

1þ 2lDð Þ
: (36)

Also, in accordance with linear theory, higher-order modes
(with n 4 1), whether symmetric or asymmetric, do not con-
tribute to the droplet’s motion. To examine the above result, we
perform direct simulation using Dedalus to solve the full
governing equation set presented in Section 2. In Fig. 2, we
choose the initial condition c(y) = 1 + 0.001P1(cos y) with Pep =
50, Pec = 0, and lm = 1. Excellent agreements are seen between
full simulation and eqn (36). In Fig. 3, we plot the resultant
chemical and flow fields for the first two modes. The first mode
c1 induces a donut-shaped vortex ring inside and a source-
dipole-like flow field outside of the liquid–liquid interface,
which hence effectively breaks symmetry to drive the entire-
body migration. The mode exhibits a polar structure with a
concentrated region or ‘‘hotspot’’ at the north pole, where
micropaticles, for a sufficiently large value of Pep, eventually
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aggregate to form a singularity, and a depletion zone at the
south pole. The streamlines of the bulk flow show how the
resulting Marangoni force induces the two counter-rotating
vortices reminiscent of the classical Hadamard–Rybczynski
solution, in which surfactants are driven out of equilibrium by
gravity.32,33 In comparison, the second mode c2 produces
symmetric chemical distribution and flow structure, which
doesn’t produce any net motion. More generally, the nth sur-
face mode induces n vortex rings stacked inside the droplet. As
the instability grows, the particle density becomes more and
more singular and eventually diverges.

In Fig. 4, we perform a long time simulation in the nonlinear
regime to reveal the system’s diverging behaviors during

chemotactic collapsing, via sequential snapshots of surface
density distribution and flow patterns. In the top panel, it is
evident that the particle density keeps increasing near the north
pole, with the maximum value cmax(t) occurring at y = 0. From
the corresponding time-sequential snapshots shown in the
bottom panel, we observe the resultant flow pattern gradually
losing fore-aft symmetry, with the vortex center moving closer to
the north pole. We highlight that, without using an interfacial
advection-diffusion-reaction equation to define surfactant trans-
port, the polar concentration distribution arises solely from
the hydrodynamic interaction with the chemical field. As the
induced fluid flow intensifies, the passive microparticles are
carried by the interfacial flow, acting as a moving surfactant
source. Nevertheless, without any regulation mechanism,
these microparticles continue to migrate toward the north pole,
resulting in the observed diverging behavior.

Fig. 1 Critical Péclet numbers as a function of lD and lm predicted by eqn (35).

Fig. 2 Linear growth of particle density fluctuation (top) and migration
speed (bottom). (Top) Comparisons are made between numerical simula-
tions when fixing lm = 1, with Pep = 50 and initial condition c(y) = 1 +
0.001P1(cos y), and the slope from the linear theory (given in eqn (32)).
(Bottom) Comparisons for the droplet speed V obtained from full simula-
tion and the linear theory in eqn (36).

Fig. 3 Chemical concentration field inside the spherical drop (colors), as
well as streamlines for the flow inside (black) and outside (gray), for the first
two modes n = 1, 2.

Fig. 4 Evolution of particle density distribution (top) and flow patterns
(bottom) during the chemotactic collapsing, starting from the initial con-
dition c(y, t = 0) = 1 + 0.5P1(cos y) (cmax = 1.5), showing divergent behavior.
Pep = 200, lD = lm = 1.
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3.2. Comparison with planar geometry for large n

In this section a comparison is made to the linearized planar case,
where a flat 2D interface (at z = 0) separates two fluids occupying
the regions �N o z o 0 and 0 o z o N, respectively. Since the
problem doesn’t involve a natural length scale, a square region
L � L is considered, where the fields are forced to be L-periodic in
both directions. The governing equations are nondimensionalized
using L instead of R. Its connection to the spherical case is illustrated
in Fig. 5. The bulk equations have the same form, with Peclet
numbers Pecl/u, where the subscripts ‘‘l’’ and ‘‘u’’ denote the lower
(zo 0) and upper solutions (z4 0), respectively. For the UP case, the
dimensionless boundary conditions at the interface become

@Cl

@z

����
z¼0

�lD
@Cu

@z

����
z¼0

¼ c (37)

Cl|z=0 = Cu|z=0 = C (38)

@

@z
ul; vlð Þ

����
z¼0

�lm
@

@z
uu; vuð Þ

����
z¼0

¼ rsC (39)

ul|z=0 = uu|z=0 = U, wl|z=0 = wu|z=0= 0, (40)

where lD ¼ Dcu

Dcl
and lm ¼ mu

ml
, and the far-field behavior

Cl|z-�N = 0 (41)

Cu|z-+N = 0 (42)

ul|z-�N = 0 (43)

uu|z-+N = 0 (44)

By applying analogous linear analysis techniques used for
phoretic flows on planar surfaces,13,41,42 and taking the limit
as Pecl/u - 0, we employ the 2D Fourier transform

@2

@z2
� k2

� �
Ĉl=uðk; z; tÞ ¼ 0 (45)

where k = (kx, ky) and k = |k|. The solutions, for k a 0, are

Ĉl(k, z, t) = a(k,t)ekz (46)

Ĉu(k, z, t) = b(k, t)e�kz (47)

where the boundary conditions (37) and (38) require

aðk; tÞ ¼ bðk; tÞ ¼ ĉðk; tÞ
kð1þ lDÞ

(48)

Similarly, solving for the velocity field leads to

v̂lðk; z; tÞ ¼ Iþ z

k
kk

h i
� Ûðk; tÞekz (49)

ŵl(k, z, t) = �izk�Û(k, t)ekz (50)

v̂uðk; z; tÞ ¼ I� z

k
kk

h i
� Ûðk; tÞe�kz (51)

ŵu(k, z, t) = �izk�Û(k, t)e�kz (52)

and the Marangoni stress (39) gives

ð1þ lmÞk Iþ 1

k2
kk

� �
� Ûðk; tÞ ¼ ikĈðk; 0; tÞ (53)

Finally, the Fourier transformed velocity field at the surface
becomes

Ûðk; tÞ ¼ ik
ĉðk; tÞ

2k2ð1þ lmÞð1þ lDÞ
(54)

Consider a small disturbance c = 1 + eg(x, t), with e { 1, from
eqn (10) giving

@ĝ

@t
þ ik � Û ¼ � 1

Pep
k2ĝ (55)

to first order in e, and therefore

@ĝ

@t
ðk; tÞ ¼ 1

2ð1þ lmÞð1þ lDÞ
1� ðPepÞðkÞcrit

Pep

" #
ĝðk; tÞ (56)

where

(Pep)
(k)
crit = 2(1 + lm)(1 + lD)k

2. (57)

For periodicity, we require k = (2pn1, 2pn2) where ni = 0, 1, 2,. . .,
i = 1, 2. To compare with the spherical axisymmetric case,
consider fluctuations in only one direction, e.g. n2 = 0. See
Fig. 5. For n c 1, eqn (32) becomes

c0
nðtÞ �

1

2ð1þ lDÞð1þ lmÞ
1� 2ð1þ lDÞð1þ lmÞn2

Pep

� �
cnðtÞ

(58)

Note that Pep is defined differently in the spherical and planar
cases. Set y = y0 + yd, for a given 0 o y0 o p, where yd is
sufficiently small. The asymptotic form, n c 1, of the Lagrange
polynomials43 is

Pnðcos yÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

pn sin y

r
cos nþ 1

2

� �
y� p

4

� �
(59)Fig. 5 Illustration of the planar geometry and its connection to the

spherical domain.
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which becomes

Pnðcos yÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pn sin y0

s
cos nyd þ nþ 1

2

� �
y0 �

p
4

� �
(60)

with zeros in steps Dyd = p/n. For the planar case, restoring the
length scale L,

g ¼ A cos 2pn1
x

L
þ d


 �
(61)

Let L = pR/N, with N c 1, giving

g ¼ A cos 2n1N
x

R
þ d


 �
¼ A cos nyd þ dð Þ (62)

where n = 2n1N and yd = x/R. We thus have

ðPepÞ
ðkÞ
crit

ðPepÞplanar
¼ 2ð1þ lmÞð1þ lDÞk2

L2

Dpt

¼ 2ð1þ lmÞð1þ lDÞð2n1NÞ2
R2

Dpt

¼
ðPepÞ

ðnÞ
crit

ðPepÞspherical
(63)

and the growth/decay rates are the same.

4. Steady droplet migration due to
local surfactant saturation

To motivate the design of robust active droplets driven by
Marangoni flows, it is desirable to inhibit the collective che-
motactic collapsing behaviors. In this section, we demonstrate
that the system dynamics can be stabilized using the LS model.
Note that in the linear regime, the LS model predicts the same
critical Péclet numbers as the UP model in eqn (35). When
going beyond the linear regime, the local value of Fmay further
increase but will eventually saturate to 1. To investigate the full
nonlinear dynamics of quorum-sensing driven droplet migra-
tion, we choose to initialize c using spherical harmonics Ymn
according to

cðf; y; t ¼ 0Þ ¼ 1þ bYðf; yÞ

� 1þ
X10
n¼1

Xn
m¼0

anm Re Ym
n ðfþ Dfnm; yÞ

� 

; (64)

with the values of anm being sampled uniformly on the interval
[0, a], where a is chosen so that max(|Ŷ|) = 0.5, and Dfnm

likewise being sampled from [0, 2p]. Note that, since spherical
harmonics with n4 0 are used, the restriction �c = 1 still holds.
As demonstrated in Fig. 6, even though we may choose arbitrary
initial fields, they all end up, after a transient period, showing
the same axisymmetric dipole-type profile at the steady state.

In Fig. 6(a), it is seen that unlike the diverging behaviors
predicted by the UP model, now the particle density character-
ized by cmax gradually saturates at later times when using the LS
model, leading to a stable polarized structure and steady migra-
tion speed. In contrast, the gray dash-dot line representing
the UP model continues to show diverging behavior without

reaching a steady state. The shape at saturation of the axisym-
metric profile c(y), as well as the peak value cmax, depends on
the value of Pep. Profiles are shown in panel (c). In panel (b), the
droplet speed first exhibits an overshoot during the initial
transient and then decays to steady-state values as c saturates.
Also, we see that faster migration occurs when Pep is closer to the
critical value (in this case, (Pep)

(1)
crit = 15). Note that here the

migration speed is the magnitude of the projected velocity along
the steady droplet migration direction which appears to be
random.

Streamlines for the cases Pep = 50 and 250 at late times are
shown in Fig. 8. In contrast to the UP case, the stable surfactant
surface polarization leads to steady flow patterns. The resultant
velocity fields are seen to be stronger further towards the top
(y = 0), where the larger particle densities need to be sustained
against the diffusive transport. In order to shed some light on
the transient behavior of the droplet speeds in Fig. 7(b), in
particular regarding the peaks before saturation, time series of
the velocity profiles for the axisymmetric initial condition are
displayed at the bottom in Fig. 8. The polar velocity on the
surface, i.e., the Marangoni flows, at saturation not only is
weaker for the Pep = 250 case, but also deviates more from a
sinusoidal shape, suggesting the interactions of higher-order
modes. To elucidate the role of the relative properties of the
inner and outer fluids, simulations, all using Pep = 50, were
carried out for a few different values of lD and lm. Some typical
results for steady migration are collected in Table 1, which
reflects the similar trends predicted in the linear regime by
eqn (36). Generally speaking, we observe that the droplet
speed increases when the diffusion coefficient and viscosity
are larger inside the drop. We also see that the speed is more
sensitive to the varying values of lD than to lm. Moreover, as
shown in panel (a) and (b), the initial transient time is largely
affected by the initial condition – initial randomly-selected
modes apparently lead to longer transition times before the
system saturates at steady states. In contrast, the particle
distribution and migration speed all approach the same
steady-state values at late times and hence are independent of
the initial conditions.

Fig. 6 Nonlinear simulation of steady droplet migration due to the local
surfactant saturation when a quorum-sensing model is used. (Left) Initial
microparticle distribution created from a random sampling using eqn (64).
(Right) Equilibrium particle distribution during steady droplet migration at a
late time (t = 200).
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5. Conclusions

In this work, we present a theoretical model for a prototype of
an active droplet powered by assemblies of chemically active
microparticles moving on the droplet surface while continu-
ously producing chemical surfactants. Physically, the local
surfactant production effectively builds surface tension gradi-
ents to spontaneously drive Marangoni flows to redistribute the
microparticles. In the meantime, the resultant non-equilibrium
interfacial dynamics due to collective chemotaxis induce intri-
guing fluid flows in the bulk, together with concentration
variations of surfactant. Here we present two phenomenologi-
cal models that describe the chemotactic responses (i.e., the UP
and LS model) where we assume the local surfactant produc-
tion either is proportional to particle density or saturates
during particle aggregation. Combining analytical analysis
and nonlinear simulations, we investigate the diverging nature
of the UP model and illustrate the Hadamard–Rybczynski-like
swirling bulk flows due to a polar surface chemical

Fig. 7 Evolution of the particle density field (a) and droplet migration
speed (b), along with the axisymmetric profiles of c at saturation (c). Here
we set lD = lm = 1, giving critical Péclet number (Pep)

(1)
crit = 15 from the

axisymmetric linear theory. The initial conditions are either c = 1 +
0.5P1(cos y) or randomized according to eqn (64).

Fig. 8 (Top) Streamlines for the steady-state velocity fields at a late time
(t = 200) when choosing Pep = 50 and 250. (Bottom) Corresponding time
evolution of the Marangoni flow (the polar velocity component) at the
interface. The initial condition for c is chosen as c(y, t = 0) = 1 +
0.5P1(cos y).

Table 1 Steady-state values of cmax and V for different lD and lm, where
Pep= 50

lD lm cmax V

0.5 1 20 0.134
1 0.5 27 0.164
1 1 20 0.134
1 2 12 0.099
2 1 20 0.134
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distribution, propelling the droplet in a liquid. Similar flow
structures are also seen inside another class of self-propelling
droplets that directly encapsulate active suspensions using soft
boundaries such as surface tension or elastic membranes.44,45

Furthermore, we show that allowing the local surfactant to
saturate using the LS model can effectively prevent system
divergence and permit steady-state chemical distributions
and migration speeds, which hence can be used to inspire
real-world active droplet design. It is straightforward to extend
this study to other scenarios, including imposing various
types of background flows, droplet–droplet interactions, and
additional multiphysics coupling with external fields. We
anticipate this model will provide a new angle in studying
non-equilibrium interfacial dynamics and will inspire new
active droplet designs in experiments.
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