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ABSTRACT 

Terahertz (THz) quantum cascade lasers (QCLs) are technologically important laser sources for the THz range but are complex to model. An 

efficient extended rate equation model is developed here by incorporating the resonant tunneling mechanism from the density matrix 

formalism, which permits to simulate THz QCLs with thick carrier injection barriers within the semi-classical formalism. A self-consistent 

solution is obtained by iteratively solving the Schrödinger–Poisson equation with this transport model. Carrier–light coupling is also included 

to simulate the current behavior arising from stimulated emission. As a quasi-ab initio model, intermediate parameters, such as pure 

dephasing time and optical linewidth, are dynamically calculated in the convergence process, and the only fitting parameters are the interface 

roughness correlation length and height. Good agreement has been achieved by comparing the simulation results of various designs with 

experiments, and other models such as density matrix Monte Carlo and non-equilibrium Green’s function method that, unlike here, require 

important computational resources. The accuracy, compatibility, and computational efficiency of our model enable many application scenarios, 

such as design optimization and quantitative insights into THz QCLs. Finally, the source code of the model is also provided in the 

supplementary material of this article for readers to repeat the results presented here, investigate, and optimize new designs. 

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0198059 

 
I. INTRODUCTION 

Terahertz (THz) quantum cascade lasers (QCLs), demonstrated 

two decades ago,1 are currently the most advanced semiconductor 

lasers in the spectral range between 1 and 5 THz. With proven 

potential in many applications, including security screening, remote 

sensing, nondestructive imaging, high-speed communications, 

astronomy, biology, and medicine, THz QCLs are believed to be the 

underpinning devices for the upcoming THz technology 

revolution.2–4 So far, the highest record for pulsed THz QCL 

operation is 261 K (−12 °C).5 However, their operation at room 

temperature is still an unresolved challenge. The temperature 

performance of QCLs is related to many complex interconnected 

physical mechanisms, resulting in the difficulty in QCL design and 

optimization, which has led to a very slow improvement of operation 

temperature in the past decades.6 To accelerate the development of 

THz QCLs, an efficient and accurate design/optimization tool is 

needed to push the limit of THz QCLs. 

Despite the success in the accuracy of the density matrix (DM) 

method7–17 and the non-equilibrium Green’s function (NEGF) 

approach,18–24 computational speed is always crucial for design and 

optimization tasks of complex structures like QCLs. Progress has 

been made in the past decade on DM, for example, simplified DM 

incorporated with the Monte Carlo algorithm15 and improved 

infinite-period DM approach without the need for the a priori defined 

dominant transport states.11 Also, a completely positive Markovian 

evolution of DM is demonstrated;12–14 the time dependency and full 

in-plane dynamics captured in such a method provide a deep insight 

into the physics process in QCLs. Advanced DM, derived from first 

https://doi.org/10.1063/5.0198059
https://doi.org/10.1063/5.0198059
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0198059
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0198059&domain=pdf&date_stamp=2024-03-18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0198059
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principle,12–14,16,17 enables researchers to study more general cases. 

Differing from DM in, e.g., Refs. 7, 9, and 15, well-defined 

eigenstates are used instead of manually chosen tight-binding states 

separated by one or more coupling barriers. Nevertheless, such a 

model usually has higher numerical and mathematical complexity to 

be implemented. The quantum mechanical NEGF approach has been 

proven to be a powerful tool to investigate, design, and optimize 

QCL devices,18,25–27 including those based on commercialized 

software, e.g., nextnano.5,24,28–30 However, as NEGF can easily 

involve a lot of computational resources, it is difficult to run on 

computers other than the modern high-performance computing 

(HPC) clusters within a reasonable time. Compared with the above-

mentioned two approaches, scattering-based hopping transport 

models like Monte Carlo and self-consistent rate equation methods 

are less computationally demanding. For Monte Carlo, a large 

ensemble of carriers is considered (typically 104–105) in a stochastic 

way. With each carrier trajectory tracked and updated in many short 

time intervals, the system evolves in the time domain and finally 

reaches its steady state. The 3D Monte Carlo method explicitly 

considers the intrasubband scattering processes and makes the in-

plane electron distribution form automatically without making any 

thermalization assumption. Though the Monte Carlo simulation 

provides a deeper insight into the physical nature of QCL, the 

complexity is much higher than that of the rate equation model. By 

applying similar conditions, simulation results show that the in-plane 

carrier distribution by Monte Carlo is indeed very close to the Fermi–

Dirac function,31,32 which can be directly adopted to describe the in-

plane carrier distribution and simplify the 3D problem to be 1D. The 

solution of the rate equations still needs a self-consistent algorithm 

because of the a priori unknown carrier distribution and scattering 

rates.33 The convergence speed and numerical stability are 

significantly improved by dynamically changing the weighting 

factor.34 Despite efforts devoted to simplifying the DM and NEGF, 

for example, by neglecting the in-plane wavevector dependency to 

reduce the order of the density matrix7,9 and allowing the scattering 

self-energies to be k-independent,35,36 the self-consistent rate 

equation method is still the most computationally efficient compared 

to the other methods. Here, we will show that the resonant tunneling 

transport mechanism incorporated self-consistent rate equation 

model developed in this work has comparable accuracy with other 

QCL modeling techniques. Beyond the above-mentioned 

selfconsistent model, the reduced rate equation (RRE) model37–40 

considering only a subset [e.g., the upper and lower lasing level 

(LLL) lifetime] of laser parameters is a further simplification of the 

full self-consistent RE model. Taking advantage of its simplicity, 

RRE models are usually used to study the dynamic behavior of 

QCLs. The previous RRE model treats the laser parameters as 

constant, making such a model only valid around designed bias or 

certain temperatures.37,38 Recently, the RRE model has been 

extended by incorporating the bias and temperature-dependent 

parameters extracted from the full self-consistent RE model.39,40 As 

the semiclassical RE model is still used to obtain the input 

parameters of the RRE model in Ref. 39, our model, where the 

drawback of the semi-classical method has been overcome, could 

help to further improve the accuracy of the current REE models. 

Semiclassical models have been frequently used in QCL design 

and modeling at the early stage. Both Monte Carlo and rate equation 

calculations have been compared with experiments, showing 

adequate validity.33,34,41–45 However, the semiclassical method only 

considers the incoherent scattering mechanism, with which the 

whole structure of the simulation window (typically three QCL 

periods) is considered by a single and well-defined Hamiltonian. The 

fundamental limitation of such a method, discussed by many 

references,15,46,47 can be easily found, especially in THz QCL 

modeling, where a thicker injection barrier (∼5 nm) is usually used 

to suppress the wrong injection channel for a small photon transition 

energy (∼10 meV). Consequently, the anti-cross energy gap 

corresponding to the coupling energy is very small, and, thus, the 

electron transport is dominated by resonant tunneling in this case. In 

the semiclassical method, however, the quantum coherent tunneling 

and dephasing are neglected, and the transition rates depend only on 

the scattering-induced process. At alignment bias, the wavefunctions 

of the two states extend across the barrier, and the instantaneous 

event opens a “short-cut” for the electrons transport across the 

barrier, and an unphysical spike of the current density will appear in 

the calculation. Recently, coherent evolution, which is naturally 

included in DM, has been incorporated into the existing 

semiclassical framework to describe the carrier transport across a 

thick barrier in THz QCLs. Callebaut and Hu46 first included 

coherent transport in the Monte Carlo model. Instead of using full 

DM, the intra-module was treated by the semiclassical MC approach, 

and the transport through the barrier was handled by solving the 

Liouville equation. The pure dephasing time is, however, from a 

phenomenological constant value for all subbands. Later, 

Jirauschek15 further improved and simplified the framework of DM-

MC. In his model, instead of treating the Boltzmann transport 

equation (MC) and Liouville equation (DM) simultaneously, the 

intra-module transition rate was described by the tunneling rate 

equation. Hence, this model is closer to the “hopping transport” 

model and more compatible with the MC framework. Another 

improvement from Jirauschek is that the dephasing time is not from 

the phenomenological value but calculated according to the intra-

subband scattering rate by Ando’s model,48,49 providing a more ab 

initio way of simulation. Apart from the MC, the rate equation 

method has also been extended by including the tunneling rate from 

the DM formalism. Two typical models are from Terrzi47 and 

Razavipour.50 Researches based on these enhanced rate equation 

methods have shown great potential in modeling THz QCLs.51,52 

However, further improvement is needed for these models. For 

example, empirical values of the pure dephasing time and optical 

linewidth are still used.50,51 However, in Ref. 52, the pure dephasing 

rate is calculated based on Ando’s model, the carrier–light coupling 

is neglected, resulting in inaccurate current density estimation after 

lasing. Terazzi’s model is a rather ab initio model without additional 

fitting parameters, but to our knowledge has only been applied to 

mid-infrared (MIR) QCLs,47 where the operational physics are 

significantly different. In our model, some modifications have been 

applied and accuracy has been improved. For example, the coupling 

strength calculated by the method in Terrazi’s model has been found 



 

J. Appl. Phys. 135, 115703 (2024); doi: 10.1063/5.0198059 135, 115703-3 

© Author(s) 2024 

Journal of 

ARTICLE 

Applied Physics 

pubs.aip.org/aip/ja p 

underestimated by around 20%. We use an alternative way for the 

coupling strength and the result is improved when compared with the 

exact value of the anticrossing gap from a well-defined Hamiltonian. 

Moreover, electron– electron (EE) scattering, which could be 

essential to modeling THz QCL, is also neglected in Terazzi’s model. 

Based on the framework of Terazzi’s model47 and taking 

advantage of MC and rate equation methods,15,50–54 we aim to 

demonstrate a comprehensive self-consistent rate equation model of 

THz QCLs. One or more missing effects (as mentioned in the last 

paragraph) in the existing rate equation model with similar 

configuration have been complemented.47,50–52 The missing effects in 

these literatures also bring about some problems to catch the 

experimental result. For example, in Ref. 51, as dephasing time 

varies with bias, different fitting values have to be applied to match 

the experiment I–V curve. Although in Ref. 52, improvements have 

been made by including the leakage to continuum and calculating the 

dephasing rate with Ando’s model, dispensing with the empirical 

input. However, without carrier–light coupling, the discrepancy 

cannot be compensated by their leakage model after lasing threshold. 

EE scattering can be important and have a significant impact on 

certain structures.34,55 Hence, it is important to include all these 

effects in a single model. Some major parts of the simulation or 

techniques are carefully selected and also different from the 

literature above. Detailed investigation and comparison for these 

changes, for example, tunneling coupling strength and secondorder 

current have been given. Our model follows the spirit of ab initio 

modeling. The only structural fitting parameters in the transport 

model are the effective interface roughness height and correlation 

length. All other intermediate parameters, such as the pure dephasing 

time and optical linewidth, are dynamically calculated. 

This paper is organized as follows: Sec. II discusses the 

theoretical basics and technical details of the model. Section III will 

demonstrate the calculation results using our model and compare 

them with experimental results. Last, a summary of the study and 

some potential improvements of the model will be discussed in Sec. 

IV. 

II. THEORY AND MODEL 

Some key features and modifications have been applied based 

on Terazzi’s work to tailor our model to satisfy the requirements of 

THz QCL design.9,47 (1) An improved equation [Eq. (13)] is used to 

calculate the coupling strength rather than the “first-order 

approximation” proposed in Terazzi’s model.47 The latter uses the 

localized wavefunction and effective mass profile to compute the 

coupling strength. However, we found that the method used in this 

work (using localized potential instead of effective mass) has a better 

match with the anticrossing gap obtained by the well-defined 

potential profile of symmetric two-well structures. Some additional 

comparison of these two methods is presented in Sec. II C. (2) EE 

scattering is included. It is argued that the EE process involves four 

states, and the N4 complexity (N is the number of states) makes it 

computationally expensive.32 However, in most THz QCLs, only a 

few states are involved in the transport process. Thus, it is reasonable 

to consider EE scattering for these states, and due to the 

commutability, the most time-consuming calculation process of the 

form factor can be simplified by skipping those combinations with 

identical results. (3) Instead of calculating the dephasing rate at 

thermal energy (kth ¼ h1p2mkkBTeffi, where kB is the Boltzmann 

constant and Te is the electron temperature), we compute the 

dephasing rate in the whole k-space and averaged them according to 

the Fermi–Dirac distribution before entering the 1D transport model. 

(4) Both of the first- and second-order approximations of the current 

density are considered. However, it seems the secondorder current 

developed in Ref. 47 underestimated the current before alignment at 

low temperatures. Hence, we retain the firstorder current 

approximation since it has proven to work well for QCLs.15 (5) 

Instead of using the method in Ref. 47, where the photon population 

is numerically converged, the carrier–light coupling is carried out 

based on the time-evolution of classical light intensities from the MC 

model. The latter is more straightforward and compatible with our 

rate equation model without significantly increasing the 

computational load. A similar time-evolution behavior of the light 

intensity as in Ref. 54 is made. Other features such as 

nonparabolicity, self-self-consistent Schrödinger–Poisson equation, 

and kinetic energy balancing (electron temperature calculation) are 

also included in our model. 

A. Bandstructure 

The tunneling rate of carriers in QCL is derived from the DM 

formalism, where the band structure needs to be calculated with the 

tight-binding Hamiltonian.32,53 In this model, the periodic active 

region structure is separated by the injection barriers, as the latter 

usually acts as the “bottlenecks” of current circulation in THz 

QCLs. Each period is a single module containing the localized 

basis states. The tight-binding potential Vtb is then defined for each 

identical module. Note that because we use the matrix solution of the 

Schrödinger equation32 to ensure the wavefunction decays properly 

to zero at the quasi-infinite edge of the simulation window, the most 

left and right barriers must be numerically extended thick enough 

according to the injection barrier potential and the applied electric 

field since we need two periods to close the system for the 

establishment of rate equations. The solutions of the adjacent module 

are then duplicated and shifted by the period length and bias per 

period. Next, nonparabolicity is included by considering the energy 

dependent quantization effective mass in the 

Schrödinger equation 

 h2 d 1 d 

 *(E, z) dz ψ(z) þ V(z)ψ(z) ¼ Eψ(z), (1) 

2 dz m 

where V(z) is the potential profile, which is equal to the tightbinding 

potential Vtb here, E is the eigenenergy, and ψ(z) is the envelope 

wavefunction of electrons. The energy dependent quantization 

effective mass m*(E, z) ¼ m*(z)[1 þ α0(z)(E  V(z))], and the 

nonparabolicity parameter α0 ¼ (Eg þ Δso/3), where Eg is the bandgap 
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and Δso is the split-off energy. The non-linear eigenvalue problem of 

Eq. (1) is then solved by a matrix finite difference method 

(FDM).56,57 For the in-plane effective mass of each subband, 

nonparabolicity can be easily considered by averaging z and E 

dependent effective mass according to the wavefunction. However, 

for clarity and simplicity, we assume the in-plane isotropy and take 

the in-plane effective mass as a constant of GaAs (0:067m0). Though 

the in-plane nonparabolicity can cause effects like additional optical 

broadening, it is found to be negligible in GaAs-based THz QCLs 

because of a large bandgap of GaAs material system, and the main 

states involved in the carrier transport process lie on the bottom of 

the quantum wells.58 Last, to deal with the nonparabolicity, the k.p 

method considering the coupling between the conduction band and 

the valence band is also used in 

this field.14,59 

The Hartree approximation of electron–electron interactions is 

implemented by solving Eq. (1) together with the Poisson equation 

 d ðϵðzÞ 
d 

~(z) ¼ q2
e"nD(z)  X ns

ijψi(z)j2#, (2) 

V 

 dz dz i 

where ϵ(z) ¼ ϵ0ϵr is the permittivity, V~(z) is the electrostatic (self) 

potential, qe is the elementary charge, nD(z) is the volume doping 

density, and ns
i is the sheet carrier density of state i. The 

Schrödinger–Poisson system can be solved based on the thermal 

distribution (Fermi–Dirac) with the minimum computational 

efforts.60,61 A more accurate way is to determine the carrier 

distribution by the carrier transport model,53 but it is time-consuming 

since the transport model needs to be invoked several times until the 

Schrödinger–Poisson system converges. Benefiting from the fast 

calculation speed of the rate equation method, the computational 

time in this model is in a reasonable range (typically within 1 min 

with ∼5 S–P iterations). It is essential to note the periodicity of the 

charge density, where Eq. (2) is strictly resolved within a single 

period length [z0, z0 þ Lp), and z0 is the starting coordinate of the 

period. The localized wavefunction itself, however, does not fulfill 

the periodic condition as the up- and downstream module 

wavefunction could extend to the central one. Thus, the periodicity 

of the probability density is established by adding the tails of the 

wavefunction in the adjacent modules into the central one, then jψij2 

¼ jψij2 þ jψ(i1)j2 þ jψ(iþ1)j2 and jψ(in)(z)j2 ¼ jψi(z þ nLp)j2. 

The boundary condition is set by V~(z0) ¼ V~(z0 þ Lp) ¼ 0, and it is 

again solved by the finite difference method. Finally, the total 

potential V ¼ V0 þ V~, where V0 is the potential without considering 

the space charge effects, is again entering Eq. (1), and the whole 

process run iteratively until convergence is achieved. The 

electrostatic potential of the other region in the simulation window, 

say the right period and the extended barriers, can be obtained by 

shifting and duplicating from the central period. Figure 1 shows the 

self-self-consistent result of the S–P system. As for the THz QCL,62 

the carrier sheet density is 3  1010 cm2, the magnitude of the 

selfpotential is less than 1 meV, as can be seen in Fig. 1(a). And the 

influence on the potential is barely visible. Another case for 

midinfrared (MIR) QCL63 is given in Fig. 1(b) to illustrate the 

intuitive relation between the effect of the S–P equation and the 

doping density. Here, the doping density is much higher, causing the 

sheet carrier density per period to be about one order of magnitude 

larger. The magnitude of the self-potential is also roughly ten times 

larger than that in Fig. 1(a), resulting in significant bending of the 

potential profile. For this reason, the S–P equation is usually 

included in the modeling of MIR QCLs,9,25,64 but sometimes ignored 

in THz QCLs.50–52 Thus, with low doping density, the S–P equation 

may be disregarded to maintain high computational efficiency in 

design and optimization processes. Furthermore, other 

phenomenological effects such as interdiffusion32,65 could bring 

much larger change to the potential profile than the S–P effect. To 

maintain the clarity, this effect is not included in our model. 

B. Scattering mechanisms 

In this study, five scattering mechanisms are considered for the 

intra-module transport. They are longitudinal optical phonon (LO) 

scattering, EE scattering, impurity (IMP) scattering, interface 

roughness (IFR) scattering, and alloy disorder (AD) scattering. 

Because the localized states within a module are strongly coupled, 

and dephasing is less important, resonant tunneling is disregarded 

inside the module, and only inter-subband scattering needs to be 

considered. From Fermi’s golden rule, the scattering rate of a 

specific mechanism (m), from state ji, kii to all possible state in the 

final subband j reads 

Wij(m,k)i ¼ 2hπ Xkj  Dk jH~ (m)jikiE2δ(Ej,kj  Ei,ki 

), (3) j j 

with H~ is the perturbing Hamiltonian causing scattering, k is the 

wavevector, and Ei, ki is the energy of the state ji, kii. Note the above 

equation is for the elastic process. For the inelastic process (e.g., 

phonon scattering), the delta function becomes δ(Ej,kj  Ei,ki + hω0), 

where the upper sign (+) stands for emission, the lower sign (−) 

stands for absorption, and hω0 is the phonon energy. We do not show 

the explicit equations for every scattering mechanism for clarity of 

the paper. Detailed information about the scattering equations, the 

symbols, and the references are given in Table I in Appendix A. The 

mean scattering rate is computed according to the Fermi–Dirac 

distribution before entering the rate equations32 

W(m)f 

 (m) ¼ Ð ij,ki i(ki)[1  fj(kj)] kidki 
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 Wij πnsi :

 (4) 

In the above equation, k ¼ jkj, and the carrier distribution fi(ki) 

is the Fermi–Dirac function in this model. Note that fi(ki) is also a 

function of the quasi-Fermi level in each subband μi, It is related to 

the 2D carrier density ns
i of each state by the equation 

 s mki μikBETie,0 

 ni ¼ π h2 kBTe ln 1 þ e , (5) 

where μi is then solved by bisection method dynamically according 

to the ns
i in the current iteration. The final state blocking arising from 

Pauli’s exclusion principle is incorporated by including [1  fj(kj)] in 

the integral. The numerical upper limit of the wavevector for all 

subbands is defined as kmax 
¼ 

p2mk(Vmax  E1,0)/h2ffi, Vmax is the 

maximum potential within a module and E1,0 is the first subband 

energy at k = 0. In particular, EE scattering is a two-body problem 

that involves four states. The scattering rate between two states is 

calculated by considering all possible combinations of the subbands 

involved, i.e., Wij(EE) ¼ P0 Wii(EE0jj0) þ Wiijj(EE)  Wijji(EE).32 Final 

i ,j0 

state blocking is dismissed when averaging the EE scattering rate for 

simplification. The total scattering rate is calculated by summing up 

all scattering mechanisms Wij 
¼ 

Pm Wij
(m). 

It is important to mention that the cut-off Ecut(k) energy exists 

in the scattering rate.32 For LO phonon scattering, this is because the 

energy difference between the initial and final subbands is too large 

or too small for states with a small k-vector to absorb or emit an LO 

phonon, where the scattering cannot occur. For the elastic process, 

the scattering from a lower subband to a higher subband cannot 

happen if the kinetic energy of the lower subband does not exceed 

the bottom of the higher subband as the energy conservation has to 

be satisfied. Then, the scattering rate 

below this cut-off wavevectorthe integration in Eq. (4) should start 

from the cut-off wavevector.kcut 
¼ 

p2mkEcut/h2ffi is all zero, and 

 

FIG. 1. Solution of the Schrödinger–Poisson equation. The self-consistent potentials are displayed in the top row. The original potential of the material 

band edge (dashed red) and the bent potential (solid black), together with the converged wavefunctions, are shown in the bottom row. The shaded 

areas are the doping region. (a) A THz QCL with electron sheet density per period of 3  1010 cm2.62 (b) A MIR QCL with electron sheet density per period 

of 3:9  1011 cm2.63 



 

J. Appl. Phys. 135, 115703 (2024); doi: 10.1063/5.0198059 135, 115703-6 

© Author(s) 2024 

Journal of 

ARTICLE 

Applied Physics 

pubs.aip.org/aip/ja p 

We uniformly apply the Debye and Thomas–Fermi 

approximation in the screening of the LO phonon scattering, EE 

scattering, and IMP scattering,66 where the inversion screen length is 

calculated by 

3e2n3D 

 q2s ¼ >><8  n23avgϵDEqavgFe2 ,(kBT , 2EF/3), (6) 

 >>>: ϵkBTL , (kBT . 2EF/3), 

with the mean 3D electron density n3
avg

D and Fermi energy for 

electron gas at 0 K EF ¼ (3π2neh3)2/3/2m*. In the above equation, 

Debye’s model is used for high temperatures, as the latter fails at low 

temperatures, the Thomas–Fermi model is then used to compensate 

such a scenario. This approach has been proven to be accurate and 

computationally efficient compared to the full random phase 

approximation (RPA)67 as the 3D electron density and lattice 

temperature in Eq. (5) do not change on the run of self-consistent 

iteration and the kinetic energy balance iteration. Thus, the 

precalculated k-dependent scattering rate can be reused without 

recalculating them in every self-consistent iteration. Though 

advanced methods like full RPA68 and simplified 2-D RPA66 provide 

better results, they will relate the screening effect to the subband 

carrier distribution, leading to the recalculation of the scattering rate 

at each self-consistent iteration and, therefore, considerably slowing 

down the convergence speed. 

The pure dephasing contribution to the broadening of the 

tunneling rate and optical transitions are accounted for by the intra-

subband scattering from Ando’s model.48,49 As EE scattering is 

explicitly excluded in Ando’s model when identical effective mass is 

used for each subband,48 and the contribution of LO phonon 

scattering is negligible,15,49,69 only the elastic processes (IMP, IFR, 

AD) are considered for pure dephasing rates. The pure dephasing 

rate is given by 

*(
ij,

m
k 

) π Xk D ~ (m) ikE  D jk0jH~ (m)jjkE2δ(εk  εk0 ), γ 

¼ h 0 ik0jH j 

(7) 

where εk ¼ h2k2/(2mk). Again, the in-plane nonparabolicity is ignored 

in this model, and the above equation only holds for identical 

effective mass in two subbands. More information can be found in 

Ref. 47 when nonparabolicity and nonuniform in-plane effective 

mass are used. The phenomenological value of the pure dephasing 

time for all subbands, with the relation τ*
ij ¼ (γ*

ij)1, are sometimes 

used to fit the experiment data, typically around 0.3–1 ps.7,50,51 In this 

work, however, the pure dephasing rate is not a fitting parameter but 

is calculated using Eq. (6). The source of the explicit equations for 

different scattering mechanisms again can be found in Table I, with 

the difference in the definition of the symbols explained in the 

annotation. 

C. Resonant tunneling and rate equations 

As discussed in Sec. II A, under the framework of tightbinding 

theory, the whole structure separated by the injection barrier is 

reckoned as a module containing the localized basis states. The 

electron transport across the injection barriers is modeled by 

resonant tunneling. The tunneling rate derived from the DM 

formalism is then used to describe the inter-module (interperiod) 

transport. As k-conservation holds for the first-order current, the 

tunneling rate from ji, ki to j j0, ki is15,50,71 

2Ω2ij0 γij0,k 

 
 Rij0,k ¼ Δ2ij0 þ γ2ij0,k , (8) 

where j0 denotes the subbands in the right-side module as illustrated 

in Fig. 2, γij0,k is the dephasing rate, and hΔij0 ¼ Ei,0  Ej0,0 is the detuning 

energy from subband i to j0. The dephasing rate consists of two parts, 

the lifetime broadening part from the intersubband scattering inside 

a module and the pure dephasing part between two subbands in 

different modules, reads48 

 γij0,k ¼  (γi,k þ γ j,k) þ γ*ij0,k: (9) 

The lifetime broadening is computed by summing over the 

inter-subband scattering rate to all subbands within a module γi,k 
¼ 

P 

Wi‘,k, and the pure dephasing is calculated by accounting 

‘=i 
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the rate of IMP, IFR, and AD obtained through Eq. (7). The k-

dependency needs to be removed for a 1D rate equation model. To 

do this, the first and second term in Eq. (9) is averaged before we 

compute the dephasing rate. The lifetime broadening can be 

calculated through the averaged scattering rate obtained by Eq. (4). 

The mean pure dephasing rate is resolved over the population 

difference between two subbands,72 

γ* (10) 

γ*ij0 ¼Ð ijj0,fkij(kfi)(k) fj0 

(fkj0)(jkkdk)jkdk : Ð 

The dephasing rate can then be obtained as 

γij0 ¼ (γi þ γj)/2 þ γ*ij0 : 
(11) 

The dephasing rate is then a k-independent value entering Eq. 

(8), and the k-independent first-order tunneling rate between 

doublets spanning the injection barrier is established with 

 

FIG. 2. Carrier transport model description. Two adjacent modules of a 
QCL are separated by the injection barrier (blue shaded area), with the 
tight-binding potential of the left period (solid red line) and extended 
potential (dashed grey) reported. Intra-module carrier transport is 
driven by inter-subband scattering. The coupling of two adjacent 
modules is described using coupling strength. The inter-module 
tunneling rate can be calculated with the detuning energy and the 
dephasing rate. The structure is from Ref. 70. 

2Ω2ij0 γij0 

 Rij0 ¼ Δ2ij0 þ γ2ij0 : (12) 

One could also obtain the mean tunneling rate by directly 

substituting Eq. (8) into (4), which we found nearly identical 

results in the L–I–V curve with the former way. However, all the 

results shown in this paper are obtained by Eq. (12) to avoid 

theoretical ambiguity. The last undefined parameter in Eq. (12) is 

the coupling strength (the Rabi frequency). Here, the coupling 

strength is calculated as15,46 

 (hΩij0 )2 ¼ D ψijVext  Vtbjψ j0 EDψijVext  V0tbjψ j0 E, (13) 

where Vext is the extended potential profile for the complete two 

periods. Vtb and V0
tb are the padded tight-binding potential for the left 

and right period respectively as shown in Fig. 2. Alternative ways can 

be used to calculate the coupling strength, for example, in Refs. 47 

and 50. These two methods reported similar results to those from Eq. 

(13). A comparison of the coupling strength vs the electric field of the 

structure in Fig. 2 with all three methods is presented in Fig. 3. From 

Fig. 3 and also discussed in Ref. 47, Terazzi’s method underestimated 

the coupling strength by about 20%, and because Razavipour’s 

method sometimes reports complex solutions,50 these two methods 

are not used in our model. Equation (13) will also underestimate the 

coupling strength by numerically comparing the calculated coupling 

strength of two ground localized bases with the detuning energy 

(anticrossing in actual QCL structure) hΔ of two identical quantum 

wells computed by the well-defined potential (extended) profile all 

at once. In Fig. 4, with the exact value of the coupling strength given 

by hΩect ¼ hΔ/2, we compute the ratio between the value from Eq. 

(13) and the exact value by varying the barrier width, well width, 

and the barrier height (i.e., the aluminum content in AlGaAs 

barrier). The ratio is generally stable when the barrier width is larger 

than 2 nm and slightly decreases with the well width. A lower ratio 

is also found for higher Al content. Generally, though some instability 

is found for thin well and barrier region, the approximation from Eq. 

(13) is accurate within the range shown in Fig. 4, with the worst 

scenario predicting 79% of the expected coupling strength at 15 nm 

well width and 0.5 nm barrier width with 0.3 Al content, indicating 

the overall validity of such method to compute the coupling strength 

for most of QCL structures. The method is also compared with the 

recent work, where the coupling strength is obtained by the EZ states 

(energy E and position z within the subspace of the multiplet) 

extracted from NEGF simualtion.73 The coupling strength of the 

injector state and the upper lasing lever of the devices, ETH2019,74 

MITG552, MITG652,75 and lU2022,73 are investigated. The values in 

the same sequence with the above-mentioned device are calculated to 

be Ω = 1.37, 1.22, 1.32, and 1.67 meV. Reasonable agreement, with 

only 10% overestimation except ETH2019, has been reached by 

comparing with those from EZ states in Ref. 73, which are Ω = 1.58, 

1.08, 1.17, and 1.49 meV. It is interesting to mention that when 

nonparabolicity is neglected, a better overall match is found (except 

ETH2019), and the results from our model is Ω = 1.22, 

1.05, 1.12, and 1.44 meV. The reason for larger coupling strength is 

that when nonparabolicity is considered, the smaller effective mass in 

the barrier results in a larger overlap between the wavefunctions. 



 

J. Appl. Phys. 135, 115703 (2024); doi: 10.1063/5.0198059 135, 115703-8 

© Author(s) 2024 

Journal of 

ARTICLE 

Applied Physics 

pubs.aip.org/aip/ja p 

To this point, all necessary parameters used to establish the 

rate equations are given. Despite coherent and incoherent 

processes existing universally in the whole QCL structure, the 

states within a module are strongly coupled, and the doublets 

across the thick injection barrier are weakly coupled and strongly 

damped by dephasing. Hence, it is reasonable to treat the intra-

module and inter-module transport by inter-subband scattering 

(incoherent) and resonant tunneling (coherent) respectively, as 

shown in Fig. 2. The rate equation of the two-period system can 

then be established. In principle, three periods are required in 

order to set up the rate equations, but due to the periodicity, only 

two periods are needed to close the quantum system. The 

population density of the state i in the primary period (left period 

in Fig. 2) is dnsi ¼ X (Wji þ Rj0i þ Rji0 )nsj  nis X (Wij þ Rij0 þ Ri0j): 

(14) 

 dt 
j,j=i j,j=i 

In the above equation, the subscript i0j denotes the rate from 

the right period to the left period and vice versa. The j ¼ 1, ... , 

N, where N is the number of subbands in one period. Note that 

the summation of j operate also on

 j0 (e.g., in Rj02, j,Pj=2 0 0 0 0 

 

FIG. 3. Comparison of the coupling strength calculated by Eq. (13) (solid), 
Terazzi’s method47 (dashed-dotted), and Razavipour’s method50 (dashed) 
between states in the structure in Fig. 2 vs the electric field. 

FIG. 4. The ratio between the calculated coupling strength and the exact 
value. The calculated value is obtained between the localized ground 
basis of two coupled QWs under tight-binding Hamiltonian from Eq. 
(13). The exact result is half of the detuning energy between the coupled 
states obtained by extended well-defined Hamiltonian as illustrated in 

the inset. The grey surface is for the Al0.15GaAs barrier, and the colored 
surface is for the Al0.3GaAs barrier. 

more computationally efficient to only include these subbands. It 

is worth noting that, for high-temperature operation, electrons can 

get enough kinetic energy to occupy higher subbands, resulting in 

additional current leakage. Thus, for high temperatures, all 

subbands should be included to study the electron transport 

behavior. Moreover, the theory describing the bound-to-continuum 

leakage (e.g., in Ref. 52) may also be used to better estimate the 

device performance at high temperatures. The steady-state solution 

of Eq. (14) can be obtained by setting dns
i/dt ¼ 0. Because the 

scattering and tunneling rate are all related to the carrier density of 

each subband, the solution should be obtained in a self-consistent 

manner.33 By assuming equal carrier distribution in all subbands 

initially, the new carrier densities of each subband in the next 

iteration can be calculated by Eq. (14) and renormalized according 

to the total sheet carrier density in one period, i.e., P ns
i ¼ ns

p. The 

i 

stability and convergence speed are improved by introducing a 

weighting factor dynamically during iterations.34 

Experiment evidence has found that the electron temperature 

can be much higher than the lattice temperature.76 The kinetic 

balance method is vital in the rate equation model to estimate the 

electron temperature that enters the Fermi–Dirac function. The 

latter describes the in-plane carrier distribution and is used to 

calculate the mean scattering rate in Eq. (4). The electron 

temperature will have a notable effect, especially on the scattering 

         . In   

 

 

  

 

that participate in the carrier transport process are 1    
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rate with a cut-off wavevector, as elevated electron temperature 

will enable the hot electrons to have enough kinetic energy to 

scatter, which significantly increase the mean scattering rate 

between two subbands. The electron temperature is obtained by the 

kinetic energy balance method.32,47,77 The kinetic energy 

generation rate reads 

 δK ¼ X X nsiWij(m)hΔij þ Eo(m), (15) 

 i,j m 

in which i, j sum over all subbands considered in one module, and 

m sums over all scattering mechanisms. Eo
(m) ¼ Eph for LO phonon 

absorption and 
E

o
(m) ¼ Eph for LO phonon emission, and Eph is the 

phonon energy. For the elastic process, Eo
(m) ¼ 0. The tunneling rate 

is not included in Eq. (15) because we use first-order current here, 

where k-conservation holds, and the kinetic energy of the carrier 

does not change. If the second-order current is used, energy is 

conserved, and the resonant tunneling is an “elastic-like” process, 

and the tunneling rate must be added to Eq. (15).47 Notably, 

experimental results have shown that the electron temperatures of 

certain structures can be different in each subband.78 An enhanced 

kinetic energy balancing method, which determines individual Te 

per subband, was developed where a good agreement have been 

reached with experiment.79 However, such a method could 

sometimes cause instability to the model because of the difficulties 

in solving sets of nonlinear equations. Some known problems have 

been encountered and discussed in, e.g., Refs. 47 and 80, including 

false solution at localized minimum, and overflow electron 

temperatures in certain subbands. Hence, to keep numerical 

robustness, we retain the single electron temperature model. 

Comparison with the Monte Carlo model in Ref. 15 shows the 

validity of our model, in which the electron temperature range 

extracted from the Monte Carlo simulation for the two-well 

structure at 10 and 125 K lattice temperature are 116–127 and 154–

165 K, respectively, and the results from our rate equation model 

are 115.6 and 135.2 K, where the differences are all in a reasonable 

range. 

The current density can be evaluated at the injection barrier 

after obtaining the electron temperature with a converged steady 

state. The equation for the current density reads 

 J ¼ qe X (Rij0 nsi  Rj0insj), (16) 

i,j 

where i sums over the states in the life period and j sums over the 

states in the right period. 

D. Carrier–light coupling 

Starting from the optical properties of the QCL, the spectral 

gain coefficient can be calculated by45 

¼ q2
eω jZijj2 1ð [ fi(k)  fj(k)]L(hω  Eij,k, 

Γij,k)kdk, cÐ0nrLp i,jX,Ei.Ej 0 

g(hω) 

(17) 

with the photon transition energy hω, the light speed c, the 

reflective index nr, and the length of a period Lp. The summation is 

over all possible combinations of the states within one period. 

Diagonal gain between different periods is not considered here as 

the wavefunction is not well-defined in a tight-binding framework. 

Zij ¼ ψij
z
jψj is the dipole element. In addition, 

1 Γh 

 L(x, Γh) ¼ π x2 þ Γ2h (18) 

is the Lorentzian line shape function with half-width at half 

maximum (HWHM) Γh. Eij,k ¼ Ei,k  Ej,k is the energy difference of 

subband i and j at wavevector k. Γij,k ¼ hγij,k is the k-dependent 

energy broadening. Equation (17) is a general equation for 

considering different in-plane nonparabolicity and k-dependent 

broadening. It can be simplified to the following equation when 

constant in-plane effective mass is used, and the broadening is 

averaged by Eqs. (4) and (10): g(hω) ¼ ϵq02enπωrLp i,jX,Ei.Ej 

jZijj2(nis  njs)L(hω  Eij, Γij): (19) c 

From Ando’s theory, the k-independent energy broadening Γij 

¼ hγij,k can also be calculated using Eq. (11) by replacing j0 with j,15 

i.e., considering the pure dephasing between subbands within a 

module. Different from the current broadening, when calculating 

the optical broadening, the lifetime part also needs to include the 

tunneling rate to adjacent periods γi 
¼ 

P Wi‘ 
þ 

P (Ri‘0 þ Ri0‘). 

 ‘=i ‘ 

Without optical coupling, the result obtained from Eq. (19) is the 

unsaturated gain. The threshold current can be obtained when the 

maximum modal gain ΓoptMgmax(h
ω

M) is larger than the modal loss 

opt 
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is the mode frequency, andαM, where ΓM is the optical confinement 

factor of modeαM is the total cavity loss. However, theM, ωM lasing 

field will also affect the carrier transport, altering subband 

populations and current density. Hence, it is important to include 

the carrier–light coupling after the threshold. We, therefore, 

introduce the optical transition rate between subband i and j,54 

 Wijopt ¼ cϵq02enπrh jZijj2 X IML(hωM  Eij, Γij): (20) 

M 

53The intensity of mode M, IM evolves over time domain 

with 

 @@IMt ¼ nc [ΓoptMg(hωM)  αM]IM, (21) 
r 

which can be further written in the intensity evolution over a short 

time interval Δt by54 

 IM(t þ Δt) ¼ IM(t)e[ΓMoptg(hωM)αM]ncrΔt: (22) 

To reduce the computational load, mode competition can be 

disregarded by assuming single mode operation at maximum gain 

with photon transition energy Eul ¼ Eu  El from the upper lasing 

level (ULL) to the lower lasing level (LLL).54 Thus, the summation 

in Eq. (20) is removed, and h
ω

M is replaced by Eul. Though Wij
opt 

here is a k-independent value, we can still substitute it into Eq. (4) 

to include the final state blocking effect. Carrier–light coupling can 

then be included in the rate equation model by adding the optical 

transition term P (Wopt
ji ns

j  Wij
optni

s) in the right-hand 

side of Eq. (14). j,j=i 

The iteration procedure of the carrier–light coupling is carried 

out as follows. First, the rate equation without the optical term is 

self-consistently resolved. The unsaturated modal gain can then be 

compared with the total cavity loss. Onceoptical coupling iteration 

begins. Since Eq. Γ(21)optMgdoes not explicitly(hωM) . αM, the 

include the spontaneous emission term, a seed initial intensity [e.g., 

IM(t ¼ 0) ¼ 300 W/cm254] is applied to give the origin of the lasing 

oscillation. With a sufficiently short time interval (e.g., 0.3 ns), the 

optical transition rates from Eq. (20) can be calculated according 

to the present light intensity. Then, by assuming the optical 

transition rates to be constant within the short time interval, the rate 

equation containing the optical transition rate is selfconsistently 

solved, after which the subband population and gain are updated. 

The latter is then used to calculate the light intensity in the next 

time interval. The above procedure is repeated until a steady state 

is reached for IM. Note here that the cavity loss consists of 

waveguide loss and mirror loss, and the optical confinement factor 

can be obtained by waveguide modeling techniques or 

experimentally result. These values are treated as predefined input 

parameters in this model. 

Figure 5 shows the simulated temporal evolution of the 

fourwell structure in Ref. 70 (the same structure in Fig. 2). During 

the carrier–light coupling evolution, the carrier density of state 3 

decreased. While the carrier density of state 2 increased because 

of the increased optical transition rate. Steady state is reached at 

∼8 ns. The saturated gain at a steady state compared with an 

unsaturated gain is plotted in the inset of Fig. 5, and the peak of the 

saturated gain coincides with the cavity loss (28 cm−1). 

 

FIG. 5. In the four-well phonon–photon–phonon design shown in Fig. 2. 

Temporal evolution of the carrier density (right axis) and the light intensity 

(left axis) of the optical mode with the transition energy E32 ¼ 14:3 meV 

(3.46 THz). The inset is the unsaturated gain and the saturated gain 

spectrum. In this simulation Te ¼ TL ¼ 77 K, cavity loss is set to be 28 cm−1, 

optical confinement factor Γopt ¼ 1, and interface roughness parameter are 

ΔIFR ¼ 1:6 Å ΛIFR ¼ 100 Å. 

E. Model layout 

The complete flow chart of the model in this study is shown in 

Fig. 12 in the Appendix B. As can be seen, the self-consistent 

procedure of the rate equation, together with the carrier–light 

coupling, is nested in the kinetic balancing loop. The form factors of 

IMP, LO phonon, and EE scattering are calculated before the kinetic 

balance loop is conducted. Next, the k-dependent scattering and 

dephasing rates are calculated, and form factors are visited according 

to the specific exchange wavevector with the interpolation method. 

As mentioned in Sec. II B, the Debye and Thomas– Fermi screening 

method is used. The k-dependent scattering rates, dephasing rates, 
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and coupling strength do not change in the kinetic balance loop. 

Thus, multiple invoking these time-consuming calculation 

subroutines are avoided, and scattering between subbands only 

needs to be averaged using the existing data by the Fermi– Dirac 

distribution. The outermost Schrödinger–Poisson loop is for the 

“self-self-consistent” solution. As the electrostatic potential alters 

the potential profile, wavefunction and eigenstates are changed. 

Hence, it is inevitable to recalculate form factors and the k-

dependent scattering rate in each Schrödinger–Poisson iteration. 

The total computational time is multiplied by the convergence 

iterations needed for the Schrödinger–Poisson loop. A possible 

way to avoid this heavy computational load is to solve the 

Schrödinger– Poisson system before the transport model, i.e., 

from thermal distribution. However, significant differences in the 

potential profile and gain spectra have been found between these 

two 

methods.47,81 

The computational efficiency is greatly improved as we 

calculate the look-up table of form factors before commencing the 

multi-dimensional integration of scattering mechanisms like IMP 

and EE. Because the k-dependent scattering rates in the mesh grid 

of wavevector space are pre-calculated, they only need to be 

averaged within the self-consistent procedure. In a modern PC 

with an Intel i9 13900K processor, and considering a four-level 

structure, with around 1000 and 50 discrete points in real and k 

space respectively, the MATLAB (MathWorks Inc.) 

implementation of the full calculation for a single bias typically 

takes about 2.5 min including the carrier light coupling with 

Schrödinger–Poisson equation converged in five iterations. Fast 

variation of the structural parameters can be achieved by ignoring 

EE scattering (using about 60% of the total time) and 

compensating by IFR scattering, as suggested in Ref. 82. The 

Schrödinger–Poisson system can also be disregarded for low 

doping densities. With these two simplifications, an L–I–V curve 

with 60 points can be calculated within 10 min, moving the code 

to a server with Intel Xeon Platinum 8468 only half the 

computational time. Such small improvements could be attributed 

to the poor multiplicity of the code, where many sequential 

procedures still exist in the code. Potential acceleration of the 

efficiency can be done by optimizing the algorithm, e.g., 

calculating the form factor using discretized Fourier 

transform,51,83 and multiplicity or moving the code to some low-

level programming language such as C++ and FORTRAN. This 

is, however, beyond the topic of this paper, so we will not do 

further discussion here, but it is obvious this configuration of the 

program has much greater potential to be used as a fast 

optimization tool of QCLs. 

III. RESULTS AND DISCUSSION A. L–I–Vcharacteristics 

We use three devices ranging from two- to four-well design 

to verify the model and compare the calculated L–I–V curves with 

experiment results. The band diagram and their wave functions are 

given in Fig. 6. The first device (EV1183)84 is a two-well design 

in which the population inversion is established between j30i and j20i. 

The electrons are injected from j1i to j30i by resonant tunneling and 

carrier depopulation is achieved by LO phonon scattering from j20i to 

j10i. The center 15 Å of the phonon well is doped to give a 1:5  1010 

cm2 sheet carrier density per period. This is a typical design of a three-

level system. Note that other higher bound states also exist and may 

involve in the carrier transport at high temperatures, resulting in 

additional leakage channels that sabotage the population inversion. It 

is worth mentioning that the record of operation temperature so far 

was achieved by the two-well design.5,75 A clean three-level system is 

achieved by using a higher barrier and reducing the leakage parasitic 

channels. The latter is found to be crucial for high-temperature 

operation of QCLs. The second device (V775) is the one with 

operation temperature up to 200 K.62 It has three wells, and the center 

50 Å of the widest phonon well is doped to give 3  1010 cm2 sheet 

carrier density per period. The carrier transport behavior is very 

similar to the two-well design. The difference is that an additional 

subband j20i exists near j30i, population inversion is created 

between20i. Because of the broadening of the optical line-j40i and 

both j30i and j 

width, both could contribute to the gain of the QCL. Additionally, the 

41 Å wide barrier to the left of the phonon well is almost comparable 

with the injection well (43 Å). A probably more accurate way of 

modeling this structure could be reckoning this barrier as an 

additional coupling barrier under tight-binding theory, and thus the 

transport from j3i to j2i is described by resonant tunneling. This, 

however, has not yet been included in the current model. The third 

device (V843) with four wells has two LO phonon scattering 

processes. The injection barrier is delta doped to give a 3:25  1010 

cm2 sheet carrier density per period. Carriers injected from j1i to j40i 

followed by an LO phonon scattering from j40i to j30i. The electron 

depopulation is again achieved by LO phonon relaxa- 

30 

tion frombetweenThe calculatedj ij2and0i toj20ji1L.0–i. Population 

inversion is, thus, establishedI–V curves under different temperatures 

are 

compared to the experimental measurements and other models in Fig. 

7. The material parameters of AlGaAs are calculated by Vegard’s law 

with the data from Ref. 87. Because all three devices used a double 

metal waveguide, the optical confinement factors are set to be 1 in the 

simulation. The total cavity losses are set according to the original 

study of these devices. They are 12 cm−1 for device EV1183,84 37.5 

cm−1 for V775,62 and 38.2 cm−1 for V843.70 In the characteristic 

conducted in this section, the interface roughness correlation length 

ΛIFR is all set to be 100 Å for these structures. The mean height ΔIFR 

for EV1183 and EV775 is 2 Å. It is, however, set to 1.2 Å for V843 

to better fit the experimental result. We also assume the lattice 

temperature is the same as the heatsink temperature in pulsed mode 
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reported in the original studies. The light intensities are 

renormalized to present a clear comparison with the experimental 

results. 

For the two-well resonant phonon device (EV1183), the 

calculated I–V curve at 10 K generally matches the experiment 

data except for an additional current peak at 9 kV/cm. This bump 

is attributed to the alignment of state j1i and j20i, where the 

tunneling rate R120 at 9 kV/cm is calculated to be 1:35  1011 s1. The 

experimental measurement result does not show any current peak 

or a plateau. The discrepancy is partially due to the growth 

deviation,15 which causes well width to vary in different stages. 

Additional broadening of the current density exists as the 

alignments are reached at different biases across the whole 

structure, which may flatten the current peak. Our calculation 

perfectly repeats the I–V curve calculated using the density matrix 

ensemble Monte Carlo method (DM-EMC),15 where the current 

peak is also found at the same bias. We also show the L–I–V curve 

under different temperatures. The simulated L–I–V curve does not 

change significantly with temperature from 10 to 120 K. The bent 

I–L curve at 10 K near the threshold is due to the lasing starting at 

the negative differential resistance (NDR) region. The current 

after this threshold bias starts to increase because the optical 

current appears, and resonance condition is gradually established 

between state j1i and j30i. The current reaches a second peak (0.77 

kA/cm2) when j1i is aligned with j30i at 13.5 kV/cm. As mentioned 

before, our model considers only the mode with the highest gain, 

while in reality, multi-mode behavior and mode hopping effects 

may exist.82 This may explain why the calculated I–L curve has a 

generally 

(c) Four-well indirect pumped phonon–photon–phonon device 
(V843).70 

 

FIG. 6. Conduction band potential profile and probability densities offset by the eigenenergies of the investigated structures (two periods). Bias, sheet 

carrier density per period, material composition, and wafer number are reported. (a) Two-well resonant phonon device (EV1183).84 (b) Three-well resonant 

phonon device (V775).62 
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linear dependency while the experimental one is bell-shaped in 

this structure or noisy in other devices. The threshold currents Jth 

at 10 and 70 K are 0.3 and 0.36 kA/cm2, respectively, which match 

the experimental results. However, the model fails to estimate the 

threshold current at 120 K. The experiment finds a very steep 

increase in threshold current after 70 K. At 120 K, the 

experimental threshold is around 0.7 kA/cm2, but the model 

obtains Jth ¼ 0:32 kA/cm2, which only about half of the 

experimental result. Although the waveguide loss could increase 

with temperature,88 changing the waveguide loss at the same 

temperature in the model cannot reproduce such a result because 

the simulated maximum of the non-lasing I–V curve is only 0.38 

kA/cm2 at alignment bias with such temperature. The model, 

however, predicts 0.7 kA/cm2 non-lasing peak current at a much 

higher operation temperature of 280 K. From an experimental 

point of view, the operation temperature can be higher than the 

heatsink, even with pulsed operation.11 Still, it seems this effect 

cannot compensate for such a significant difference. This may be 

due to the thermally activated strong current leakage over the 

barriers to the continuum at high temperature as the barrier of this 

device is relatively low (15% Al content in the barrier). Hence, 

this inconsistency with the experiment can be potentially 

improved by adding a proper thermal model and considering the 

current leakage to the continuum. 

Our calculation shows an excellent agreement with the 

experiment for the second resonant phonon device (V775). At 10 

K, the small bump at 2.5 kV/cm is due to the alignment of j2i and 

j30i. Notably, the calculated I–V at 10 K peaks at 9 kV/cm, 

followed by an NDR region before the threshold (9–10.25 

kV/cm). The peak is to drop beyond this alignment and again 

increases as the designedattributed to the alignment between j1i 

and j30i. The current starts injection channel between j1i and j40i 

is turned on, which corresponds to the third current peak at 12.25 

kV/cm. The calculated NDR region coincides with the experimental 

current plateau at the same bias range. The reason why the experiment 

shows a plateau instead of a valley-shaped curve has been explained 

by the electric field domain (EFD) in Ref. 85. In short, because the 

device tends to maintain current flow continuity, another current 

carrying channel with a higher electric field starts to establish from 

the top contact side of the active region. The total applied voltage 

increased as more and more periods switched to the higher EFD, but 

the current almost remained the same. This hypothesis was later 

proved in Ref. 86 by using scanning voltage microscopy (SVM) with 

the device (V843) that we will discuss in the following paragraph. 

Apart from the I–V, the I–L curve fits quite well with a waveguide 

loss of 37.5 cm−1. The underestimated threshold at low temperatures 

may also be attributed to the EFD effect. At higher temperatures, from 

80 to 150 K, the simulated threshold matches well with the 

experimental one. However, with the increased temperature, an 

additional simulated current plateau appeared from 7 to 9 kV/cm 

because the resonant tunneling fromj j1i 1toi 20i with a lower bias 

is equally important as tunneling from j to j30i with a higher bias. A 

generally more stable transport property is found, and the threshold 

for higher temperature is located at the positive differential resistance 

(PDR) region, which makes it easier for the model to estimate the 

threshold current. Last, we find the simulated lasing I–V curves are 

almost identical for different temperatures with different non-lasing 

curves pinned on them. This behavior also matches the measurements 

at different temperatures in Ref. 85. 

In the simulation of the four-well phonon–photon–phonon 

device (V843), a smaller interface roughness mean height is chosen 

ΔIFR = 1.2 Å to fit the measurement result. An overall agreement is 

achieved with the experiment. The result from the rate equation 

method in this work is comparable with the NEGF result.70 A lower 

peak current is found at the designed bias (21.5 kV/cm) in the NEGF 

 

FIG. 7. L–I–V curves of the three structures from the model in this work, experiments, and other models. (a) EV1183: experiment data are extracted from 

Ref. 84, and DM-EMC result is from Ref. 15. (b) V775: experiment measurement is from Refs. 62 and 85. (c) V843: experiment data from Ref. 86, and NEGF 

calculated in Ref. 70. 
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simulation because carrier light coupling was not considered in 

the NEGF method.70 NEGF and our model predict two current 

peaks before the threshold at 4.5 and 9 kV/cm. The former is 

because of the tunneling from j1i to j20i, the latter is because of the 

alignment of j1i and j30i. The difference between the experimental 

I–V plateau from 9 kV/cm to the turning point before the current 

sharply increases and the valley-shaped simulation result is again 

because of the EFD. SVM measurement has shown that in the 

current plateau from 9 to 16 kV/cm, two EFDs coexist and are 

pinned at these two ends of electric fields.86 Reproduction of this 

phenomenon may need a deeper understanding of the dynamics of 

the EFD formation,89 which could be interesting to be included in 

the models in the future version. Note that in another current 

valley from 4.5 and 9 kV/cm, where a current shoulder is found in 

the experiment, a uniformed electric field is revealed by SVM 

across the whole structure in this region.86 Hence, it is likely the 

difference between the theoretical and experiment here is not due 

to the EFD but because some unknown broadening mechanisms 

fade the valley away from the I–V curve. Our model predicts the 

correct threshold current at different temperatures but with a larger 

dynamic range. The theoretical peak current is around 2 kA/cm2 

at 21.25 kV/cm comparable to 1.6 kA/cm2 at 20.8 kV/cm in the 

measurement. The model overestimates the dynamic range 

because, experimentally, the dynamic range can be cut off because 

the driving circuit pushes the laser into the following NDR region 

before it reaches the designed alignment bias. This phenomenon 

has also been found in the V775, as the same design with different 

metal contact shows a significant difference in dynamic range.62 

From the above-mentioned comparison, our model 

reproduces the experiment measurements with reasonable 

accuracy. Difference between the calculation and experiments still 

exists because many complicated phenomena and effects from 

reality are not fully revealed in the model. Nevertheless, a perfect 

agreement with the results from counterpart models, DM-EMC 

and NEGF, shows the rationality of the difference with the 

experiment and further validates our model. Fast computational 

speed enables us to contain carrier light coupling and self-self-

consistent Schrödinger– Poisson system with reasonable 

calculation time. As THz QCL designs are numerically and 

experimentally very sensitive, further improvements in the 

accuracy may require more realistic effects to be considered in the 

model, which may inevitably bring about a heavier numerical 

load. By intensively testing different designs, the current model 

seems adequate to fulfill the requirements to predict the 

performance of a QCL quantitatively. Furthermore, the 

microscopical information of the active region can help to identify 

some optimization directions, such as the influence of the barrier 

height and doping, trade-off between diagonal and vertical 

transition design, suppressing the leakage channel, etc., showing 

the broad application scenario of the model. 

B. Influence of the interface roughness parameter 

The interface roughness is vital to the QCL performance. As it is 

hard to directly measure the local imperfections,90 it is treated as two 

effective parameters, correlation height ΔIFR and length ΛIFR, 

describing the average deviation in the heterostructure. These two 

parameters are usually swept in the range of ΔIFR ¼ 0:1–3 Å, ΛIFR ¼ 

20–100 Å.82 This section analyzes the influence of varying IFR 

parameters on our rate equation model. IFR is considered in the inter-

subband scattering rate, inter-module pure dephasing rate, and intra-

module pure dephasing rate in the model. These three aspects further 

affect the subband population, dephasing time, optical linewidth of 

the structure, and the general performance of the device. The degree 

of the impact of IFR depends on specific QCL designs. In the four-

well design V843, with much thinner barriers within a period, 

nonzero wavefunctions considerably extended across the interfaces, 

and the influence of IFR parameters becomes more critical. Here, we 

use the V843 design to demonstrate the effect of the varying IFR 

parameters in this model. To reduce the complexity of this analysis, 

we fix the correlation length ΛIFR to a typical value of 100 Å,53 varying 

the height 
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parameter ΔIFR, and focus on the impact to the gain and current 

density. Note that carrier–light coupling is turned off in this test. 

Figure 8 shows the gain evolution along with the IFR 

correlation height. Test conditions are given in the figure caption. 

At the designed alignment bias of V843, the gain peak is 

dramatically dropped when ΔIFR increased from 0 to 0.3 nm. 

Although IFR is related to many properties of the QCL, such as 

carrier lifetime, tunneling rate, and electron temperature, two key 

factors contribute to such a change. First, a larger ΔIFR corresponds 

to a larger IFR scattering rate and pure intra-module dephasing 

rate, leading to the increased optical linewidth, which is shown in 

the inset of Fig. 8(a). For the parameter used in Sec. III A ΔIFR ¼ 

0:12 nm, the calculated FWHM is about 5 meV (1.2 THz), which 

meets the typical optical linewidth for THz QCL.7,50,51 Second, a 

larger ΔIFR results in a higher inter-subband scattering rate, making 

the population inversion more difficult to be achieved. In Fig. 

8(b), the subband population of the ULL j3i decreased from 2  1010 

to 0:75  1010 cm2 when ΔIFR increased from 0 to 0.3 nm. With a 

higher IFR scattering rate, more and more carriers are scattered 

from j3i to j1i through indirect (3 → 2 → 1) and direct (3 → 1) 

channels. Such a change can also be reflected in the inversion 

lifetime of j3i, the increment of 1/τ3 is apparent because of the 

contribution from IFR. It is worth mentioning that although the 

population inversion is still held when ΔIFR ¼ 0:3 nm, no gain has 

been observed because the tail of the strong absorption peak at 

phonon energy (∼36 meV) from j1i ! j2i and j3i ! j4i acts as material 

loss and overcomes the gain from j3i ! j2i at working frequency. 

Apart from the gain spectrum, the change of the I–V curve 

with varying ΔIFR is given in Fig. 9. The broadening effect on the 

I–V curve is pronounced. No local peak current is found when ΔIFR 

= 0.3 nm at 4.5 or 9 kV/cm. Instead, a continuously increasing I–

V is observed. It is known that the broadening of the I–V curve is 

very sensitive to the pure dephasing rate.47,51 From the inset of Fig. 

9, we can see that the pure dephasing rate is dominated by the IFR 

contribution. AD scattering plays a minor role in the GaAs/ AlGaAs 

material system, as most wavefunctions are localized in the well 

(GaAs) region. V843 is delta doped at the injection barrier, which is 

less overlapped with the wavefunctions, making the IMP scattering 

less dominant. Also, from the relation of the peak gain vs the electric 

field, the gain is observed and reaches its peak at a similar applied 

field, with the dropping magnitude for larger ΔIFR. Then, for the 

same cavity loss of 38 cm−1, the threshold is found at a higher 

electric field and current density for a larger correlation height. 

Lasing cannot occur when ΔIFR is as large as 0.2 nm in this 

 

FIG. 9. I–V and peak optical gain vs the electric field of V843 for varying 

ΔIFR from 0 to 0.3 nm, ΛIFR ¼ 10 nm The three insets are the total and IFR 

pure dephasing rate of 1–20, 1–30, and 1–40 at their alignment electric 

field of 4.5, 9, and 21 kV/cm, respectively. 

 

FIG. 8. Influence of the IFR parameter to the unsaturated gain of V843 at designed bias 21.5 kV/cm, ΛIFR is fixed to 10 nm, TL ¼ 77 K, ΔIFR varies from 0 (no 

IFR) to 0.3 nm. (a) Gain spectrum with varying correlation height. Inset is the optical linewidth of transition 2 → 3 vs the ΔIFR parameter. (b) Subband 

population change with the ΔIFR. Inset is the total inverse lifetime (blue) of the ULL j3i and contribution from IFR scattering (red). 
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test. This, to some extent, indicates that the growth quality is 

essential to the performance of QCLs. 

From a modeling point of view, the reproduction of IFR in 

the actual device has always been troublesome because it can vary 

from hundreds of interfaces and different devices with even 

identical active region designs. It is also one of the major gaps that 

prevent a truly ab initio model, as the IFR parameters still need to 

be treated as a phenomenological fitting parameter. As suggested 

in Ref. 11, a larger IFR parameter can be used to represent yet 

unknown mechanisms and compensate for the EE scattering. A 

similar result can be achieved with larger IFR parameters, and the 

computational efficiency can be greatly improved without the EE 

mechanism. 

C. Second-order current 

Although second-order current approximation is disregarded 

in the above test results, it may be helpful to clarify and discuss 

the influence and difference with the first-order current here. The 

second-order current is implemented by incorporating the 

firstorder tunneling rate with the correction parameter σ.9,47,71 The 

second-order tunneling rate reads: Rij0 ¼ Rij0 σij0 , and σij0 is 

calculated by 

σij0 ¼ Θ(hΔij0 ) þ Θ(hΔj0i) ln {1ln {1
þ 

exp[(þ exp[(μi μEi i 

Ehi)Δ/(jk0iB)/T(ek)]}BTe)]} , 

(23) 

where μi is the Fermi level of subband i. Θ(x) is the Heaviside step 

function. The second-order current density is obtained by 

replacing Rij0 with Rij0 in Eq. (16). Its application in the rate 

equation model is equivalent to reckoning the tunneling rate as an 

elastic-like process.9,47,71 As demonstrated in Fig. 10(a), the first-

order current is established by the population difference of two states 

with identical wavevector k. Hence, no matter whether the final 

subband energy is higher or lower than the initial subband energy, all 

electrons in the initial subband will contribute to the current. The 

second-order current approximation shown in Fig. 10(b) follows the 

energy conservation. When the subband edge of the initial subband is 

lower than the final subband (E1 , E2), only the electrons located in 

the shaded area, where E1,k . E2 will contribute to 

 

FIG. 11. I–V comparison between first-order and second-order current 
approximation of the device EV1183, with kinetic balance and by 
assuming a constant electron temperature of 50 K. The lattice 
temperature is set to be 10 K in this test. The inset is the electron 
temperature estimated by the two methods. 

 

FIG. 10. Schematic diagram of the (a) first-order current approximation and (b) second-order current 

approximation. 
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As an elastic-like process, the tunneling rate must be included 

in the kinetic energy equation if the second-order current 

approximation is applied in the model. Equation (15) becomes 

δK ¼ X X nsiWij(m)(hΔij þ Eo(m)) þ X hΔij0 (Rij0 nsi  Rj0insj): 

 i,j m i, j0 

(24) 

The second term in the above equation accounts for the 

kinetic energy rate from resonant tunneling. With these two 

modifications, EV1183 is used to test the difference between the 

first and second current approximation. Figure 11 shows the I–V 

test result using both methods. The experiment result is also 

plotted in the same figure for side-by-side comparison. With the 

kinetic balance method, the current density is generally lower for 

the second-order approximation with a current peak at the same 

bias. Almost zero current density is observed until the electric 

field reaches 8 kV/cm. The second-order approximation also 

predicts lower electron temperature. Such difference is more 

prominent at the low applied field, which is, however, not because 

of the second term in Eq. (24) but due to a significantly smaller 

kinetic term from incoherent scattering [first term in Eq. (24)]. 

Because the second-order approximation largely suppresses the 

tunneling from a lower subband to a higher subband (i.e., j1i to 

j20i) before they aligned, the subband carrier densities at zero bias 

for j2i are 7:3  108 cm2 and 2:8  107 cm2 for first- and second-order 

approximation, respectively. With much higher carrier scattered 

from j2i to j1i in the first-order approximation, a higher electron 

temperature is found to represent these scattered electrons to the 

lower subband j1i. To eliminate the influence of the electron 

temperature, a second test is conducted with a constant Te ¼ 50 K 

and other input parameters unchanged. With constant Te (lower 

than the Te estimated by the kinetic balance method from the first-

order model and higher than the second-order model at the low 

applied field from 0 to 9 kV/cm), the I–V for the first-order model 

is almost unchanged and current from the second-order model has 

slightly increased below 9 kV/cm. By comparing with the 

experiment result, we found that the second-order approximation 

significantly underestimates the current density with the kinetic 

balance method. Although an improved result was found by 

artificially setting a higher constant electron temperature, Te ¼ 50 

K, such a difference can still not be compensated. From the 

definition of the second-order parameter σ, the difference with the 

first-order current becomes smaller for higher temperatures as the 

slope of σ vs hΔj0i becomes less steep. For low electron 

temperature, σ(hΔj0i) becomes more abrupt and it decays to the 

step function [σij0 ¼ Θ(hΔij0 )] as Te approaches to zero. For low 

temperatures, carriers are settled in bottom of j1i, and no current 

flow will be found. Apart from the device shown here, test results 

from other structures also show underestimated current density at 

low temperatures. This leads us to suspect that the second-order 

current approximation implemented in the rate equation model may 

underestimate the tunneling rate, especially at low temperatures (i.e., 

kBTe  hΔ).47 Derived from the DM, the coherence associated with the 

transition j2, ki to j1, ki consists of the direct contribution (first order) 

and scattering-assisted contribution (second order).47,91 The current 

density is established between four states with two additional 

exchange wavevectors q+ having same energy with the other subband 

at wavevector k [e.g., in Fig. 10(b), they are j1, ki, j1, qþi, j2, ki, j2, qi, 

with E1,k ¼ E2,q and E2,k ¼ E2,qþ ]. By implementing the second-order 

current in the rate equation, contribution from j1, ki with lower energy 

than the subband edge of j2i (e.g., E1,k , E2,0) is completely ignored, 

which is probably the reason of such underestimation at low 

temperatures before alignment is reached. Validation of the second-

order current theory is beyond the limit of this study, which may need 

more theoretical and experimental effort. As many aspects can result 

in the difference between reality and theory, accurately modeling THz 

QCL remains an open topic. In this study, although it seems that the 

first-order current can better fit the experimental result at low 

temperatures, the model indeed overestimates I–V a bit at a low bias 

range, so it could still be important to consider the correction from 

the second-order current in our rate equation model, but in a more 

comprehensive way. 

IV. CONCLUSION 

In this study, a rate equation transport model, including resonant 

tunneling from DM formalism, is developed. Theoretical and model 

description is given in detail, with some analysis of the intermediate 

parameters during the simulation. The model follows the spirit of ab 

initio modeling, and the only fitting parameter in the transport 

model is the interface roughness correlation height and length. The 

influence of the IFR parameters has been presented in Sec. III B. In 

Sec. III A, three devices with different design strategies have been 

modeled with good agreement with experiment measurement and 

other models, such as DM-EMC15 and NEGF,70 showing good 

compatibility of the model for various designs. Our model is highly 

computationally efficient and flexible compared to counterpart 

models. The calculation time for a complete simulation at a single 

bias is about one minute in a modern server with adequate numerical 

settings to maintain accuracy. Moreover, the Schrödinger–Poisson 

system, kinetic energy balancing, and carrier light coupling can be 

turned on and off according to specific application scenarios. For 

example, for fast variation, the self-self-consistent Schrödinger– 

Poisson equation can be disregarded, and the result of a single bias 

can be extracted in 10 s. Benefiting from the arbitrarily defined 

number of subbands entering the transport, current leakage to 

continuum in some cases may be compensated by including a higher 

quasi-continuum state from the FDM, despite the specific current 

leakage model not being included yet. A deep insight into the 

transport process can be revealed by various intermediate parameters, 

e.g., scattering rate, tunneling rate, dephasing time, unsaturated and 

saturated gain, etc., providing an intuitive understanding of 

complicated phenomena in QCLs. The flexibility and computational 

efficiency of the model enable us to optimize the structural 



 

J. Appl. Phys. 135, 115703 (2024); doi: 10.1063/5.0198059 135, 115703-18 

© Author(s) 2024 

Journal of 

ARTICLE 

Applied Physics 

pubs.aip.org/aip/ja p 

parameters with fast variation speed and sufficient information 

extracted from the results. The secondorder current approximation 

does not fit well the experiment result at low temperatures, 

whereas the first-order current model is more suitable in such 

conditions. This may indicate the necessity to develop a more 

sophisticated theory to implement such correction to the rate 

equation model. More realistic effects and improvements, 

including continuum current leakage, hot phonon, multi-mode 

carrier–light coupling, second-order gain, and tight binding with 

arbitrary coupling barrier, could be incorporated into the current 

model to push the limit of accuracy further—this will, of course, 

albeit at the expense of greater computational load. Overall, 

despite lots of simplification has been made, we conclude that the 

current configuration of the model has a good balance between 

computational speed and accuracy. Therefore, this model can be 

used as a fast design optimization tool and give a first insight into 

the design performance of THz QCL. 

SUPPLEMENTARY MATERIAL 

The source code and documentation for its usage can be 

found in the supplementary material. 
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APPENDIX A: SCATTERING EQUATIONS 

TABLE I. The source of the scattering rate equations used in this model and corresponding equation numbers in the reference. 

Scattering mechanism Symbol in this work Symbol in reference Reference Equation number in reference 

LOa Wij(LO,ki ) Wik,j 53 Eqs. (82)–(87) 

EEa Wii(EE0jj0),ki Wijfg(EE)(ki) 51 Eqs. (17)–(18) 

IMP (inter-subband)a  Wij(IMP,ki ) Wik,j 53 Eqs. (101)–(103) 

IFR (inter-subband)a Wij(IFR,ki ) Wik,j 53 Eqs. (110) 

AD (inter-subband)a Wij(AD,ki ) Wif(ki) 32 Eq. (10.248) 

IMP (pure dephasing)b γ* (ij,kIMP) Γ(intraμ,ν) 47 Eq. (5.54) 

IFR (pure dephasing)b γ* (ij,kIFR) Γ(intraμ,ν) 47 Eq. (5.27) 

AD (pure dephasing)b γ* (ij,kAD) Γ(intraμ,ν) 47 Eq. (5.45) 

a 
The physical definition of the symbol in this work is the same as the references. 

bThe relation of the physical definition between this work and the reference is: γ0ij ¼ Γintra(i,j) /2h. 
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The source of the scattering rate equations used in this model 

and the corresponding equation numbers in the reference are given 

in Table I. 

APPENDIX B: PROGRAM LAYOUT 

The flow chart of the model in this work is given in Fig. 

12. 
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