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T MINIMAL EQUATIONS FOR MATRIX SCHUBERT VARIETIES
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8
Y Explicit minimal generators for Fulton’s Schubert determinantal ideals are determined along with some
0 implications.
1
2 1. Introduction and results
13

20
201/,

3
391/,

12 Let Mat,,«, be the space of n x n matrices over a field k; the coordinate ring is R = k[x;;]1<; j<n. Let
15 GL, be the general linear group of invertible 7 x n matrices with a Borel subgroup B of upper triangular
16 matrices and B_ of lower triangular matrices. Let B_ x B act on Mat, x, by (b_,b)- M =b_M b~!. Let
17w be a permutation in the symmetric group &, on [n] = {1,2, ..., n}, and suppose M,, is its permutation
15 matrix with 1 in position (i, w(i)) and O elsewhere.

Y Definition 1.1 [2; 7]. The matrix Schubert variety X, is the B_ x B orbit closure of M,,.

>1 Definition 1.2 [2; 7]. The Schubert determinantal ideal I,, C R is the defining ideal of X,,.

22 Since [2], there has been interest in matrix Schubert varieties and the Schubert determinantal ideals;
2 see, e.g., [1;3;4;5;6;7;8;9; 10].

2 Let ri,j = ri j(w) be the rank function of w. It counts the number of 1’s weakly northwest of
% position (i, j) in M,,. Let M/ denote the northwest i x j submatrix of a generic matrix M € Mat,, ,.

2% In [2], it is proved that I,, is indeed generated by determinants
27

g (D) I, = <(r,',j + 1) x (r; j + 1) size minors of MU @i, j)e [n]2>,

29

o and that this ideal is prime [2, Corollary 3.13].

o In loc. cit., Fulton minimizes the description of the generators (1). The Rothe diagram of w is

32 Dw)={G, j)enP:j<w@@),i<w ()}

33 . .
2> Fulton’s essential set is
34

35 Ew)={G jeDw):G+1,/),GJj+1) ¢Dw}

36 .
- Fulton proved that I, = ((r; j + 1) x (r; ; + 1) size minors of MW%il: (i, j) e E(w)). This is a minimal

. list of rank conditions needed to describe I,,, but does not provide a minimal set of generators. The
o minors in this description are called the essential minors of I,,.

i 2020 AMS Mathematics subject classification: 05SE40, 14M12, 14M15.

41 Keywords and phrases: matrix Schubert varieties, minimal generators, Grobner basis, complete intersection.
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T

Figure 1. Rothe diagram of w = 619723458, the boxes of D(w) are shaded.
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Example 1.3 (essential minors do not form a minimal generating set). The reader can check that

)

The latter two essential minors can be dispensed with; they are implied by the first two.

X21 X22
X31 X32

X11 X12
X31 X32

X11 X12
X21 X22

’ ’

Iy = <X11,X12,

18 For I, J C [n] with |[I| = |J], define m ; to be the determinant of the submatrix of M with row and
19 column indices / and J, respectively. An essential generator m; ; belongs to (i, j) € E(w) if I € [i],
20 JC[jlandr=|I|=|J|=r;;+ 1.

2 Definition 1.4. A minor my_; attends MY TN >rp jand [JO[ | =r j+1or [IN[i']|=r; j+1
2 and |[J N[ > riv .
23

5, Definition 1.5. A minor m, ; that belongs to (i, j) € E(w) is elusive if it does not attend M [i".7'] for all
% (', j") € E(w) such that ryr j <r; ;.

26 Theorem 1.6. The ideal I, is minimally generated by elusive minors. Moreover, for any b € D(w) there
27 exists an elusive minor whose southeast corner is b.

* Example 1.7. Let w = 619723458 (see Figure 1). An example of an elusive minor is mj 2 3),(5,7,8}
29 h . . . . [4,5]
— whereas my 2,3, 14,5,8} is not elusive since it attends M.
i Theorem 1.6 is a handy way to hand compute the size of a minimal generating set. Here, the minimal

°! generating set contains five generators of degree 1, (3)(3) generators of degree 2 and 1+ (})(3) generators
2 of degree 3. All five degree 1 essential minors are elusive, a degree 2 essential minor is elusive if and

3 only if 1 ¢ I, and a degree 3 essential minor is elusive if and only if |J N[5]] < 1.

> Anexercise is w = 13865742 [7, Example 1.3.5]. A minimum generating set is of size 104 and consists

* of 21 (2 x 2) minors and 83 (3 x 3) minors.!

36
5;  Knutson and Miller [7, Theorem B] proved that the essential minors of 7,, form a Grobner basis with

3g Tespect to any antidiagonal term order <, that is, a monomial order that picks the antidiagonal term of a

30 Minor as the initial term (one example is the lexicographic ordering obtained by reading the rows of the
40 generic matrix right-to-left in rows, and from top-to-bottom). Knutson, Miller and Yong [8, Theorem 3.8]

4 lThis example is also considered in the unpublished Section 3 of earlier arXiv preprint versions 1 and 2 of [7]. The notion of

42 attends is more general than “causes” used in those preprints and the published version.
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1 prove the same result for any diagonal term order <’ (where the order picks the diagonal term of a minor
5 as the initial term), but under the hypothesis that w is vexillary (that is 2143-avoiding; see the definition
5 of pattern avoidance below). We refine these statements.

1%/2

_* Corollary 1.8. The set of elusive minors is a Grébner basis for I, under an antidiagonal term order <. If
° we assume w is vexillary, the same statement is true under diagonal term order <'. That is, in either case,

I, has a Grébner basis given by a set of minimal generators.
7

s The codimension of X,, C K" is £(w) = #D(w), that is, the number of inversions of w [2, Corol-
o lary 3.13]. Since the size of a minimal generating set is an invariant, X,, is a complete intersection if and
10 only if the size of the set of its elusive minors is £(w). Using this, we give a self-contained proof of the
1, result below of Ulfarsson and Woo [11, Corollary 6.3], which is a pattern avoidance characterization of
1, matrix Schubert varieties that are complete intersections. Their result came after an earlier characterization
13 by Hsiao [4, Theorem 5.2], which depends on the Grobner basis theorem of [7, Theorem B].

12 Recall w e &, pattern includes u € S,, if there exist indices i| <ip <--- <iy, suchthat w(i;), ..., w(i,)
15 1s in the same relative order as u(1), ..., u(m). Furthermore, w avoids u if no such indices exist.

1 Corollary 1.9 [4; 11]. The matrix Schubert variety X, is a complete intersection if and only if w avoids
171342, 1432 and 1423.2

18

1o Infact, the proofs in [4; 11] construct a minimal set of generators for I, to prove “ <= ". However,

oo their arguments do not do this outside of those cases.
201/, —
/2 o

. 2. Proofs

2 Proof of Theorem 1.6. Suppose a minor m belonging to (i, j) € E(w) is not elusive; say it attends M1"J']
2% for (i’, j') € E(w) satisfying r;. j(w) < r; j(w). Then it follows by induction using cofactor expansion
% that m is in the ideal generated by the (r_j 4+ 1) x (r7_j» + 1) minors belonging to M'"/'l. Hence m can
2% be dispensed with.

i Conversely, suppose m = mj j belonging to e = (i, j) € E(w) is elusive. Let
28

20 I={1<ij<ih<--<ipp1<i} and J={1=Zj1<p<--<jrp1=Jjh

30
— where r =r; j(w).
31

32 Claim 2.1. For any 1 <k <r+1,we haver; ;j>kandr; ; > k.

S Proof of Claim 2.1: We will prove r;, ; > k; r; j, > k follows from the same reasoning. We proceed

i by induction. For k = 1, suppose r;, ; = 0 < k, then (i1, j) € D(w). There is (a, b) € E(w) weakly
% Southeast of (i1, j) and in the same connected component of D(w). Since r,p =r;; j; =0, b > j and

* I'nla]= 1> 0, the minor m; ; attends M- a contradiction.

 Now suppose r;, ; > k forall 1 <k < s for some s <r+1. If (is, j) € D(w), there is a (a, b) € E(w)

% that is in the same connected component as (i, j) and weakly southeast of (i, j). If r; ; =5 — 1, then
391/2i my,j attends M'-P1 4 contradiction. So ri;,j = s in this case. Now if (i, j) ¢ D(w), since (i, j) € D(w)
40

4l 2In [11, Corollary 6.3], the additional patterns 31524, 24153 and 351624 are listed. However these follow from the
42 size 4 patterns.
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12 Figure 2. Relative position of e, ¢’ and P

14 andi > iy, we know that w(i;) < j. Since r;_, j >s—1,weseer; j >r;_, j+1=s, completing the
15 induction step. O
16 To prove that m = m; ; is necessary as a generator, it suffices to find a point P € Mat,, such that m
17 does not vanish at P but every other essential generator does vanish. Set P, , =1ifa =i, and b= j,_,4»
18 for 1 <t <r+1, and let all other entries be 0. In words, P places 1’s on the antidiagonal of m. Evidently,
19 m does not vanish at P.

20 It remains to prove all other essential minors do vanish at P. Suppose, to the contrary that m’ is a minor
21 that belongs to ¢’ € E(w) but does not vanish at P. Since the only minor of size at least r,(w) + 1 that
22 does not vanish at P is m, ry(w) <r.(w). Let ¢’ = (i’, j’). If €’ is not in the rectangle with corners (1, 1)
23 and (i,4+1 — 1, jr4+1 — 1), by definition, m attends M Le'] contradicting the assumption that m is elusive.
24 Thus, the only possibility is that i’ < i,4; and j' < j.4+1 as depicted in Figure 2.

25 Letusassume thati, <i’ <i,4j and jy < j' < je41 for some 0 < p, £ <r+ 1, where iy = jo :=1 (in
26 the figure, p = ¢ = 2). Since m’ does not vanish at P, it is straightforward that p + ¢ > r 4+ 1 (otherwise,
27 m’ only involves O entries) and r;» j» < p+£ — (r + 1) (the right-hand side is the number of 1’s that appear

28 in the northwest i, x j, rectangle of M,,). In particular, this implies that
29

0 Tigjo <p+€—(r+1).

* By Claim 2.1, ri j, = L. Since r; j = r, we obtain

32

33 rip,j—r,-p’jzSr,-,j—ri,ﬂgr—ﬁ.

3* Hence,

>® fi,j<p+Ll—@r+D+r—Ll=p—1

36

i Yet by Claim 2.1, we have Fi,j = D>2 contradiction. So all other essential minors vanish on P.

38 We now turn to the second statement of the theorem, restated here in more exact form.
39
o Proposition 2.2. For b=(i, j)€ D(w), the minor my;_, ;) [j—r,j| is elusive with southeast corner b.

E Proof. Letr =rp(w),I =[i —r,i]and J =[j —r, j]. We will show that m; ; is an elusive minor.
42 Since r,(w) = r for any e € E(w) that is in the same connected component as b in D(w), the minor m; ;
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1 belongs to any such e. Suppose m_; attends M [¢'] for some ¢’ = (i, j') € E(w). We can assume, without

5 loss, that i’ <i and j > j.

'3 Since b, ¢’ € D(w), we know that (i’, j) € D(w). Let k =i —i’, we then have

A r,-/,j(w)zr—k—}—l.

5

o Since ro(w) > 1y j(w),

= re(w)>r—k+1.

E Thus any minor that belongs to ¢’ has size at least r — k + 2. Since

9

o IN[i'|=r—k+1<r—k+2,

E my j does not attend M (] a contradiction. Therefore m 1.7 1s elusive, as claimed. O

12
15 Proof of Corollary 1.8. For f € R, let init.(f) be the initial term of f under <. By definition, a

1. generating set & of I, is a Grobner basis if

5 (inito(f) : f €¥) = (init(f) : f € l).
16
17 By [7, Theorem B], the essential minors are a Grobner basis under <. Therefore it suffices to show

1g that if m is a nonelusive minor then init m is divisible by init_ m’ where m’ is an elusive minor. We
1o proceed by induction, ordering the essential set by rank value. In the base case where the rank is 0, all
5o the associated 1 x 1 minors are elusive, trivially. Suppose m belongs to (i, j) € E(w) but is not elusive.
5, Since m =my,; is not elusive we may suppose, without loss of generality, that there is (i’, j') € E(w)
5, With ryr j/(w) < r; j(w) such that [I N[i']| > ry j» and |[J N[j']| =r; j + 1 (the argument in the other
53 case is similar). Thus, there is a minor m j that belongs to (i, j’) (and of size (ri/ jy + 1) x (rj jr + 1))
5. Whose antidiagonal term divides that of m; ;. More precisely I’ consists of the r; j» + 1 smallest indices
o of I, and J’ consists of the r;/ j 4 1 largest indices of J. If mp ; is elusive we are done. Otherwise
5 by induction init m s j is divisible by inito m~ j» for some elusive mj~ j» in which case init<m» _j»
5, divides initom; j, as desired.

s If wis vexillary and e, ¢’ € E(w) then e cannot be strictly northwest of e’. Using this and the Grobner
5o basis result [8, Theorem 3.8], the second sentence follows like the first.

I The final sentence of the statement then is immediate from Theorem 1.6.

> Proof of Corollary 1.9.
32

3; Lemma 2.3. The variety X, is a complete intersection if and only if X,,-1 is a complete intersection.
34 Proof. Notice that D(w) is the transpose of D(w™"). The lemma then follows from (1). O

* Lemma 2.4 (shifting). Ifmy_j is an elusive minor of I, then myp_y: is elusive whenever I' = (I —{i}) U{t},

* Wheret>iandt & I, or similarly for J'.
37

3 Proof. Since |[I'N[iI']| < [IN[i"']| and |J'N[j']| < |J N[j]] for all i’, j* € [n], the lemma is immediate

3 from the definitions. O

40 (=): We prove the contrapositive. Suppose w pattern embeds 1342 or 1432. Let a; < a < a3 < a4 be
41 such that w(a;) < w(as) < w(az), w(az). Set by =w(ay), by =w(as), b3 = w(az) and by = w(as3), then
42 e = (as, by) € D(w) as shown in Figure 3.
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11 Figure 3. w embeds 1342 (left); w embeds 1432 (right).

1 Furthermore, we can assume, without loss, that for any a < a;, we have w(a) > b,. That is, we can
14 pick (ai, by) to be the highest nonzero entry in M,, that is strictly northwest of e. Since w(ay) = b3 > by,
15 we have a3 > r,(w) + 1. Set r =r.(w), and let

16 I=[az—r,a3], I'={az—r—1}Ulas—r+1,a3], J=I[by—r, bl

17 . . . .. . . ..
. Since m j is elusive (by Proposition 2.2), to show that m - ; is also elusive, it is enough to prove that

% there does not exist (i’, j') € E(w) such that JN[j'1=J, ry y =0and I N[i"] = {az3 —r — 1}. Suppose
. not. Indeed, since w(az) > by, we know that a3 —r — 1 > a; and thus r; j» > 1, a contradiction. Therefore,
o there are at least two elusive minors whose southeast corner is e and therefore, by Theorem 1.6, the
. variety X, is not a complete intersection.

5 Since w includes 1342 if and only if w™! includes 1423, we are done by Lemma 2.3.

,a (<=): We again argue the contrapositive. Suppose X, is not a complete intersection. By Theorem 1.6,
s there is either e = (i, j) € D(w) having more than one elusive minor m with southeast corner e, or there is
5 ane=(i, j) e [n]? — D(w) that is the southeast corner of an elusive minor m’ that belongs to ¢’ € E(w).
,7 In the second case, by using Lemma 2.4 to repeatedly shift the southmost row and/or eastmost column

s used by m’ one obtains another elusive minor m” with southeast corner ¢’ which is different than the
»9 elusive minor from the proof of Proposition 2.2. Hence we assume we are in the first case.

3 Letr=r.(w). By using Lemma 2.3 or Lemma 2.4, we may assume that m;/_; is an elusive minor, where

3t I'={i—-r—1}Uli—r+1,i] and J=[j—r,jl
% Since m: j is elusive, r;_,_1 j >1. Also, since (i, j) € D(w), either w(i—r—1) < jor (i—r—1, j) € D(w).
v Suppose w(i —r — 1) < j, by the pigeonhole principle, there exists a such that (a, j) € D(w) and

gi—r—l<a<i.Asaresult,

36 i—r—1<a<i<w_1(j) and w(@—r—1)<j<w(),w().
3" Therefore w embeds 1342 or 1432, and we are done.

% Hence (i —r —1, j) € D(w). Since ri—r—1,j > 1, there exists a < i —r — 1 such that w(a) < j. Since

¥ (i—r—1,j)e D(w), wegetw( —r—1) > j. We then have

40

41
42 Therefore, w embeds 1342 or 1432. 0

a<i—r—1<i<w*1(j) and w() <j<w(@@—r—1),w().
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