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MINIMAL EQUATIONS FOR MATRIX SCHUBERT VARIETIES

SHILIANG GAO AND ALEXANDER YONG

Explicit minimal generators for Fulton’s Schubert determinantal ideals are determined along with some

implications.

1. Introduction and results

Let Matn×n be the space of n × n matrices over a field k; the coordinate ring is R = k[xi j ]1fi, jfn . Let

GLn be the general linear group of invertible n × n matrices with a Borel subgroup B of upper triangular

matrices and B− of lower triangular matrices. Let B− × B act on Matn×n by (b−, b) · M = b−Mb−1. Let

w be a permutation in the symmetric group Sn on [n] = {1, 2, . . . , n}, and suppose Mw is its permutation

matrix with 1 in position (i, w(i)) and 0 elsewhere.

Definition 1.1 [2; 7]. The matrix Schubert variety Xw is the B− × B orbit closure of Mw.

Definition 1.2 [2; 7]. The Schubert determinantal ideal Iw ¢ R is the defining ideal of Xw.

Since [2], there has been interest in matrix Schubert varieties and the Schubert determinantal ideals;

see, e.g., [1; 3; 4; 5; 6; 7; 8; 9; 10].

Let ri, j = ri, j (w) be the rank function of w. It counts the number of 1’s weakly northwest of

position (i, j) in Mw. Let M [i, j] denote the northwest i × j submatrix of a generic matrix M ∈ Matn×n .

In [2], it is proved that Iw is indeed generated by determinants

(1) Iw =
〈

(ri, j + 1) × (ri, j + 1) size minors of M [i, j] : (i, j) ∈ [n]2
〉

,

and that this ideal is prime [2, Corollary 3.13].

In loc. cit., Fulton minimizes the description of the generators (1). The Rothe diagram of w is

D(w) = {(i, j) ∈ [n]2 : j < w(i), i < w−1( j)}.

Fulton’s essential set is

E(w) = {(i, j) ∈ D(w) : (i + 1, j), (i, j + 1) ̸∈ D(w)}.

Fulton proved that Iw = ï(ri, j + 1) × (ri, j + 1) size minors of M [i, j] : (i, j) ∈ E(w)ð. This is a minimal

list of rank conditions needed to describe Iw, but does not provide a minimal set of generators. The

minors in this description are called the essential minors of Iw.
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Figure 1. Rothe diagram of w = 619723458, the boxes of D(w) are shaded.

Example 1.3 (essential minors do not form a minimal generating set). The reader can check that

I3142 =

〈

x11, x12,

∣

∣

∣

∣

x21 x22
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∣

∣

∣

∣

,

∣

∣

∣

∣

x11 x12

x21 x22

∣

∣

∣

∣

,

∣

∣

∣

∣

x11 x12

x31 x32

∣

∣

∣

∣

〉

.

The latter two essential minors can be dispensed with; they are implied by the first two.

For I, J ¦ [n] with |I | = |J |, define m I,J to be the determinant of the submatrix of M with row and

column indices I and J , respectively. An essential generator m I,J belongs to (i, j) ∈ E(w) if I ¦ [i],

J ¦ [ j] and r = |I | = |J | = ri, j + 1.

Definition 1.4. A minor m I,J attends M [i ′, j ′] if |I ∩[i ′]|> ri ′, j ′ and |J ∩[ j ′]|= ri, j +1 or |I ∩[i ′]|= ri, j +1

and |J ∩ [ j ′]| > ri ′, j ′ .

Definition 1.5. A minor m I,J that belongs to (i, j) ∈ E(w) is elusive if it does not attend M [i ′, j ′] for all

(i ′, j ′) ∈ E(w) such that ri ′, j ′ < ri, j .

Theorem 1.6. The ideal Iw is minimally generated by elusive minors. Moreover, for any b ∈ D(w) there

exists an elusive minor whose southeast corner is b.

Example 1.7. Let w = 619723458 (see Figure 1). An example of an elusive minor is m{1,2,3},{5,7,8},

whereas m{1,2,3},{4,5,8} is not elusive since it attends M [4,5].

Theorem 1.6 is a handy way to hand compute the size of a minimal generating set. Here, the minimal

generating set contains five generators of degree 1,
(

3
2

)(

5
2

)

generators of degree 2 and 1+
(

5
1

)(

3
2

)

generators

of degree 3. All five degree 1 essential minors are elusive, a degree 2 essential minor is elusive if and

only if 1 /∈ I , and a degree 3 essential minor is elusive if and only if |J ∩ [5]| f 1.

An exercise is w = 13865742 [7, Example 1.3.5]. A minimum generating set is of size 104 and consists

of 21 (2 × 2) minors and 83 (3 × 3) minors.1

Knutson and Miller [7, Theorem B] proved that the essential minors of Iw form a Gröbner basis with

respect to any antidiagonal term order z, that is, a monomial order that picks the antidiagonal term of a

minor as the initial term (one example is the lexicographic ordering obtained by reading the rows of the

generic matrix right-to-left in rows, and from top-to-bottom). Knutson, Miller and Yong [8, Theorem 3.8]

1This example is also considered in the unpublished Section 3 of earlier arXiv preprint versions 1 and 2 of [7]. The notion of

attends is more general than “causes” used in those preprints and the published version.
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MINIMAL EQUATIONS FOR MATRIX SCHUBERT VARIETIES 103

prove the same result for any diagonal term order z′ (where the order picks the diagonal term of a minor

as the initial term), but under the hypothesis that w is vexillary (that is 2143-avoiding; see the definition

of pattern avoidance below). We refine these statements.

Corollary 1.8. The set of elusive minors is a Gröbner basis for Iw under an antidiagonal term order z. If

we assume w is vexillary, the same statement is true under diagonal term order z′. That is, in either case,

Iw has a Gröbner basis given by a set of minimal generators.

The codimension of Xw ¦ k
n2

is ℓ(w) = #D(w), that is, the number of inversions of w [2, Corol-

lary 3.13]. Since the size of a minimal generating set is an invariant, Xw is a complete intersection if and

only if the size of the set of its elusive minors is ℓ(w). Using this, we give a self-contained proof of the

result below of Ulfarsson and Woo [11, Corollary 6.3], which is a pattern avoidance characterization of

matrix Schubert varieties that are complete intersections. Their result came after an earlier characterization

by Hsiao [4, Theorem 5.2], which depends on the Gröbner basis theorem of [7, Theorem B].

Recall w∈Sn pattern includes u ∈ Sm if there exist indices i1 < i2 < · · ·< im such that w(i1), . . . , w(im)

is in the same relative order as u(1), . . . , u(m). Furthermore, w avoids u if no such indices exist.

Corollary 1.9 [4; 11]. The matrix Schubert variety Xw is a complete intersection if and only if w avoids

1342, 1432 and 1423.2

In fact, the proofs in [4; 11] construct a minimal set of generators for Iw to prove “ ⇐H ”. However,

their arguments do not do this outside of those cases.

2. Proofs

Proof of Theorem 1.6. Suppose a minor m belonging to (i, j)∈ E(w) is not elusive; say it attends M [i ′, j ′]

for (i ′, j ′) ∈ E(w) satisfying ri ′, j ′(w) < ri, j (w). Then it follows by induction using cofactor expansion

that m is in the ideal generated by the (ri ′, j ′ + 1)× (ri ′, j ′ + 1) minors belonging to M [i ′, j ′]. Hence m can

be dispensed with.

Conversely, suppose m = m I,J belonging to e = (i, j) ∈ E(w) is elusive. Let

I = {1 f i1 < i2 < · · · < ir+1 f i} and J = {1 f j1 < j2 < · · · < jr+1 f j},

where r = ri, j (w).

Claim 2.1. For any 1 f k < r + 1, we have rik , j g k and ri, jk g k.

Proof of Claim 2.1: We will prove rik , j g k; ri, jk g k follows from the same reasoning. We proceed

by induction. For k = 1, suppose ri1, j = 0 < k, then (i1, j) ∈ D(w). There is (a, b) ∈ E(w) weakly

southeast of (i1, j) and in the same connected component of D(w). Since ra,b = ri1, j = 0, b g j and

I ∩ [a] g 1 > 0, the minor m I,J attends M [a,b], a contradiction.

Now suppose rik , j g k for all 1 f k < s for some s < r +1. If (is, j) ∈ D(w), there is a (a, b) ∈ E(w)

that is in the same connected component as (is, j) and weakly southeast of (is, j). If ris , j = s − 1, then

m I,J attends M [a,b], a contradiction. So ris , j g s in this case. Now if (is, j) /∈ D(w), since (i, j) ∈ D(w)

2In [11, Corollary 6.3], the additional patterns 31524, 24153 and 351624 are listed. However these follow from the

size 4 patterns.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
391/2

40

41

42



104 SHILIANG GAO AND ALEXANDER YONG

e
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Figure 2. Relative position of e, e′ and P

and i > is , we know that w(is) < j . Since ris−1, j g s − 1, we see ris , j g ris−1, j + 1 = s, completing the

induction step. □

To prove that m = m I,J is necessary as a generator, it suffices to find a point P ∈ Matn×n such that m

does not vanish at P but every other essential generator does vanish. Set Pa,b = 1 if a = it and b = jr−t+2

for 1 f t f r +1, and let all other entries be 0. In words, P places 1’s on the antidiagonal of m. Evidently,

m does not vanish at P .

It remains to prove all other essential minors do vanish at P . Suppose, to the contrary that m′ is a minor

that belongs to e′ ∈ E(w) but does not vanish at P . Since the only minor of size at least re(w)+ 1 that

does not vanish at P is m, re′(w) < re(w). Let e′ = (i ′, j ′). If e′ is not in the rectangle with corners (1, 1)

and (ir+1 − 1, jr+1 − 1), by definition, m attends M [e′] contradicting the assumption that m is elusive.

Thus, the only possibility is that i ′ < ir+1 and j ′ < jr+1 as depicted in Figure 2.

Let us assume that i p f i ′ < i p+1 and jℓ f j ′ < jℓ+1 for some 0 f p, ℓ < r + 1, where i0 = j0 := 1 (in

the figure, p = ℓ = 2). Since m′ does not vanish at P , it is straightforward that p + ℓ > r + 1 (otherwise,

m′ only involves 0 entries) and ri ′, j ′ < p +ℓ− (r +1) (the right-hand side is the number of 1’s that appear

in the northwest i p × jℓ rectangle of Mw). In particular, this implies that

ri p, jℓ < p + ℓ − (r + 1).

By Claim 2.1, ri, jℓ g ℓ. Since ri, j = r , we obtain

ri p, j − ri p, jℓ f ri, j − ri, jℓ f r − ℓ.

Hence,

ri p, j < p + ℓ − (r + 1) + r − ℓ = p − 1.

Yet by Claim 2.1, we have ri p, j g p, a contradiction. So all other essential minors vanish on P .

We now turn to the second statement of the theorem, restated here in more exact form.

Proposition 2.2. For b=(i, j)∈D(w), the minor m[i−r,i],[ j−r, j] is elusive with southeast corner b.

Proof. Let r = rb(w), I = [i − r, i] and J = [ j − r, j]. We will show that m I,J is an elusive minor.

Since re(w) = r for any e ∈ E(w) that is in the same connected component as b in D(w), the minor m I,J
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MINIMAL EQUATIONS FOR MATRIX SCHUBERT VARIETIES 105

belongs to any such e. Suppose m I,J attends M [e′] for some e′ = (i ′, j ′) ∈ E(w). We can assume, without

loss, that i ′ < i and j ′ > j .

Since b, e′ ∈ D(w), we know that (i ′, j) ∈ D(w). Let k = i − i ′, we then have

ri ′, j (w) g r − k + 1.

Since re′(w) g ri ′, j (w),

re′(w) g r − k + 1.

Thus any minor that belongs to e′ has size at least r − k + 2. Since

|I ∩ [i ′]| = r − k + 1 < r − k + 2,

m I,J does not attend M [e′], a contradiction. Therefore m I,J is elusive, as claimed. □

Proof of Corollary 1.8. For f ∈ R, let initz( f ) be the initial term of f under z . By definition, a

generating set S of Iw is a Gröbner basis if

ïinitz( f ) : f ∈ Sð = ïinitz( f ) : f ∈ Iwð.

By [7, Theorem B], the essential minors are a Gröbner basis under z. Therefore it suffices to show

that if m is a nonelusive minor then initz m is divisible by initz m′ where m′ is an elusive minor. We

proceed by induction, ordering the essential set by rank value. In the base case where the rank is 0, all

the associated 1 × 1 minors are elusive, trivially. Suppose m belongs to (i, j) ∈ E(w) but is not elusive.

Since m = m I,J is not elusive we may suppose, without loss of generality, that there is (i ′, j ′) ∈ E(w)

with ri ′, j ′(w) < ri, j (w) such that |I ∩ [i ′]| > ri ′, j ′ and |J ∩ [ j ′]| = ri, j + 1 (the argument in the other

case is similar). Thus, there is a minor m I ′,J ′ that belongs to (i ′, j ′) (and of size (ri ′, j ′ + 1)× (ri ′, j ′ + 1))

whose antidiagonal term divides that of m I,J . More precisely I ′ consists of the ri ′, j ′ + 1 smallest indices

of I , and J ′ consists of the ri ′, j ′ + 1 largest indices of J . If m I ′,J ′ is elusive we are done. Otherwise

by induction initz m I ′,J ′ is divisible by initz m I ′′,J ′′ for some elusive m I ′′,J ′′ in which case initzm I ′′,J ′′

divides initzm I,J , as desired.

If w is vexillary and e, e′ ∈ E(w) then e cannot be strictly northwest of e′. Using this and the Gröbner

basis result [8, Theorem 3.8], the second sentence follows like the first.

The final sentence of the statement then is immediate from Theorem 1.6.

Proof of Corollary 1.9.

Lemma 2.3. The variety Xw is a complete intersection if and only if Xw−1 is a complete intersection.

Proof. Notice that D(w) is the transpose of D(w−1). The lemma then follows from (1). □

Lemma 2.4 (shifting). If m I,J is an elusive minor of Iw, then m I ′,J ′ is elusive whenever I ′ = (I −{i})∪{t},

where t > i and t ̸∈ I , or similarly for J ′.

Proof. Since |I ′ ∩ [i ′]| f |I ∩ [i ′]| and |J ′ ∩ [ j ′]| f |J ∩ [ j ′]| for all i ′, j ′ ∈ [n], the lemma is immediate

from the definitions. □

(=⇒): We prove the contrapositive. Suppose w pattern embeds 1342 or 1432. Let a1 < a2 < a3 < a4 be

such that w(a1) < w(a4) < w(a2), w(a3). Set b1 = w(a1), b2 = w(a4), b3 = w(a2) and b4 = w(a3), then

e = (a3, b2) ∈ D(w) as shown in Figure 3.
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Figure 3. w embeds 1342 (left); w embeds 1432 (right).

Furthermore, we can assume, without loss, that for any a < a1, we have w(a) > b2. That is, we can

pick (a1, b1) to be the highest nonzero entry in Mw that is strictly northwest of e. Since w(a2) = b3 > b2,

we have a3 > re(w) + 1. Set r = re(w), and let

I = [a3 − r, a3], I ′ = {a3 − r − 1} ∪ [a3 − r + 1, a3], J = [b2 − r, b2].

Since m I,J is elusive (by Proposition 2.2), to show that m I ′,J is also elusive, it is enough to prove that

there does not exist (i ′, j ′) ∈ E(w) such that J ∩ [ j ′] = J , ri ′, j ′ = 0 and I ∩ [i ′] = {a3 − r − 1}. Suppose

not. Indeed, since w(a2) > b2, we know that a3 −r −1 g a1 and thus ri ′, j ′ g 1, a contradiction. Therefore,

there are at least two elusive minors whose southeast corner is e and therefore, by Theorem 1.6, the

variety Xw is not a complete intersection.

Since w includes 1342 if and only if w−1 includes 1423, we are done by Lemma 2.3.

(

=⇒

): We again argue the contrapositive. Suppose Xw is not a complete intersection. By Theorem 1.6,

there is either e = (i, j) ∈ D(w) having more than one elusive minor m with southeast corner e, or there is

an e = (i, j) ∈ [n]2 − D(w) that is the southeast corner of an elusive minor m′ that belongs to e′ ∈ E(w).

In the second case, by using Lemma 2.4 to repeatedly shift the southmost row and/or eastmost column

used by m′ one obtains another elusive minor m′′ with southeast corner e′ which is different than the

elusive minor from the proof of Proposition 2.2. Hence we assume we are in the first case.

Let r = re(w). By using Lemma 2.3 or Lemma 2.4, we may assume that m I ′,J is an elusive minor, where

I ′ = {i − r − 1} ∪ [i − r + 1, i] and J = [ j − r, j].

Since m I ′,J is elusive, ri−r−1, j g1. Also, since (i, j)∈D(w), either w(i−r−1)< j or (i−r−1, j)∈ D(w).

Suppose w(i − r − 1) < j , by the pigeonhole principle, there exists a such that (a, j) ∈ D(w) and

i − r − 1 < a < i . As a result,

i − r − 1 < a < i < w−1( j) and w(i − r − 1) < j < w(a), w(i).

Therefore w embeds 1342 or 1432, and we are done.

Hence (i − r − 1, j) ∈ D(w). Since ri−r−1, j g 1, there exists a < i − r − 1 such that w(a) < j . Since

(i − r − 1, j) ∈ D(w), we get w(i − r − 1) > j . We then have

a < i − r − 1 < i < w−1( j) and w(a) < j < w(i − r − 1), w(i).

Therefore, w embeds 1342 or 1432. □
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