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Abstract: In this work, a machine learning mapping approach for predicting the properties of
atomistic systems is reported. Within this approach, the atomic orbital overlap, density, or Kohn-
Sham (KS) Fock matrix elements obtained at a low level of theory such as extended tight-binding
have been used as input features to predict the electric field gradient (EFG) tensors at a higher
level of theory such as those obtained with hybrid functionals. It is shown that the machine-
learning-predicted EFG tensors can be used to compute spin relaxation rates of several ions in
aqueous solutions. From only a fraction of data used in direct calculation, one can predict the
quadrupolar isotropic spin relaxation rates with good accuracy, achieving relative errors between

about 1.7-7.6% for different ions.
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Nuclear spin relaxation dynamics plays a crucial role in defining nuclear magnetic
resonance (NMR) spectra, which provide crucial insight into chemical dynamics at the
atomistic scale, with applications, for instance, in biological imaging’? and
electrochemical devices.>* Nuclear spin relaxation in diamagnetic species occurs
primarily via magnetic dipole-dipole, spin-rotation, and quadrupolar interactions.
Quadrupolar nuclides are prevalent in the periodic table, and the quadrupolar relaxation
mechanism is known to dominate over the others listed when present.®

For a detailed understanding and prediction of quadrupolar nuclear spin relaxation
rates, theoretical studies employing molecular dynamics (MD) have become vital.
Pioneering studies have relied on force-field (FF) driven MD.5-'3 More recently, it has
become possible to conduct NMR relaxation studies based on ab initio molecular
dynamics (AIMD) simulations, in which the interatomic forces are calculated via a first-
principles electronic structure method usually by using density functional theory (DFT)
combined with a classical treatment of the nuclear motion.'*-23 This approach allows for
an accurate treatment of sub-picosecond interactions of atoms and molecules which is
the driving force of NMR relaxation in the fast motion regime applicable, e.g., for small
molecules in solution at not too low temperatures.

For the purpose of calculating nuclear spin relaxation, irrespective of whether they are
of the ab-initio or FF type, MD simulations need to be paired with calculations of the
relevant interaction tensors that drive a given relaxation mechanism. For instance,
quadrupolar relaxation is mediated by the fluctuations of the electric field gradient (EFG)
tensor at the nucleus of interest as a function of time. The EFG depends on the distribution

of electric charges surrounding the nucleus and therefore has a nuclear and electronic



contribution. The former is usually calculated classically from the distribution of nuclear
(point) charges, which is obtained straightforwardly from each point along an MD
trajectory. The latter requires the electron density and therefore — in in principle — the
electronic EFG needs to be calculated via quantum mechanics (QM) electronic structure
methods. For the latter, there are numerous choices of varying accuracy available,
without or with periodic boundary conditions. For example, some of us previously
benchmarked DFT-based EFG calculations with periodic boundary conditions vs.
‘molecular’ calculations using cluster models extracted from MD trajectories and showed
that both are capable of delivering comparable quadrupolar relaxation rates when the
same functionals are employed.'® In the latter type of calculations, a much larger variety
of electronic structure models can be employed.

However, the computational cost of evaluating EFG tensors for hundreds or thousands
of MD configurations can quickly become prohibitive. For example, 2Na relaxation, a
nuclide that is ubiquitous in humans, has been shown to be useful to investigate cartilage
damage in vivo.?4#?5 T, measurements of 23Na* have also been used in a pioneering study
of spinal disk degeneration.? MD simulations of such processes likely require large-scale
FFMD simulations, which means they need to be accompanied by highly efficient
computational methods for EFG tensors. One class of approaches uses structural data
from the MD trajectories, atomic partial charges, and models to describe the polarization
of the electron density surrounding the nuclide of interest to determine the EFG at
essentially the same computational cost of an MD step.827:28 For example, based on
partial atomic charges surrounding an ion in solution and the resulting ‘external’ EFG,

Sternheimer antishielding factors?®-33 y,, have been employed to obtain the total EFG at



these ions including the ion polarization from the external EFG by multiplying by a factor
(1 +7,).881327 The square of this factor enters the relaxation rate. Note that this
Sternheimer antishielding is far from being a small correction. For instance, a value of
Yo = —5.45 was reported for Na*.3* The Sternheimer model neither accounts for solute
polarization due to steric effects, nor for EFGs due to partially covalent solvent-solute
interactions such as hydrogen bonds. Therefore, the general utility of the Sternheimer
approach has been questioned as being overly reductive.'”?' Force-fields with ion
polarization terms may perform more reliably if properly parameterized,® but there is the
perennial question of transferability and whether such an approach also works for highly
polarizable ions (for example, y,, = —162 for I7)** or covalently bonded atoms.

As an alternative to the currently available approaches, the present work introduces the
use of machine-learning (ML) aided calculations of EFG tensors for the purpose of MD-
based quadrupolar nuclear spin relaxation. The immediate advantage of such a method
is that it has the potential to provide access to large systems and the dynamics with long
correlation times affecting the spin relaxation at a modest computational cost. ML
techniques have recently become widely adopted in various scientific domains. For
instance, they have been used to accelerate calculations of different properties of
molecules,®>-38 solid-state materials,3%4° and proteins*'#? where the cost of standard
calculations grows rapidly with the size of the system. The acceleration of MD simulations
with the help of ML-based interatomic potentials*>4® enabled modeling systems with
millions of atoms. Advanced ML models such as AlphaFold*? exceled at identifying the
binding sites in proteins and predicting their structures. ML techniques have been

successfully utilized to perform excited state dynamics simulations in model spin-boson



systems,*®% small molecules,®%? large graphene nanoribbons with thousands of
atoms, 33 light-harvesting complexes,> metal nanoclusters,® to name a few. ML-based
techniques have also been used to extend the length of the dynamical simulation, either
by forecasting the longer-time behavior of the observed properties directly using the short-
time data®-%" or by predicting the properties such as state energies and couplings needed
for such calculations.2-64

Furthermore, ML techniques can be used to elevate the quality of properties extracted
from MD studies performed at lower levels of theory. For instance, Shakiba and Akimov®®
recently demonstrated that a simple kernel ridge regression (KRR) method can be used
to map a guess Kohn-Sham (KS) Fock operator (based on a superposition of atomic
densities) with non-hybrid exchange-correlation functionals, such as Perdew-Burke-
Ernzerhof (PBE),®® to a nearly-converged KS Fock operator computed using more
computationally-demanding hybrid functionals such as Heyd-Scuseria-Ernzerhof
(HSE06)%7%8 or Becke-Lee-Yang-Parr (B3LYP).5%72 |Instead of directly mapping
molecular geometries to molecular properties using complex deep neural networks (NNs),
in the aforementioned approach the geometries are first mapped to preprocessed data
computed at lower levels of theory. The preprocessed data are then used as input to the
ML model and mapped to the properties of interest corresponding to a higher level of
theory. Only a few configurations along the precomputed trajectory are needed to
generate the reference data at the desired level of theory. Depending on the system size
and the length scale of the process to study, the resulting speed-up from the ML

assistance can reach several orders of magnitude.®®



In this work, we extend the ML-based KS Fock operator mapping approach to the
calculation of EFG tensors in the context of quadrupolar spin relaxation calculations
(Figure 1). Similar to the ML workflow outlined above, we aim to utilize the geometry-
sensitive guess atomic orbital overlap, density, or KS Fock matrix elements computed
with low-cost electronic structure methods as feature vectors to predict the EFG tensor
for nuclear spin-relaxation calculations.
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Figure 1. Workflow of the ML mapping approach: (1) the geometry is initially
preprocessed by a quantum chemistry software at a low level of theory, such as a tight
binding model or an atomic guess with a non-hybrid density functional, and the
corresponding atomic overlap, density, and KS Fock matrices are generated; (2) the
elements of the matrix corresponding to the interaction of an atom with all other atoms (or
its nearest neighbor atoms) are selected as elements of the feature vector; (3) the feature

vector is used to predict a set of properties using ML techniques.

NMR relaxation is characterized by the longitudinal (T;) and transverse (T,) relaxation times

and their inverse, the relaxation rates, respectively. The formalism is based on NMR relaxation

73,74

theo as summarized by Spiess’, and as implemented by us in the ‘dynpy’ software’®. In the
ry

limit of fast motion and isotropic samples (solutions, gas phase), R; and R, are equal and we can



define an isotropic relaxation time (T,) and rate Rig,.'>!”!® The corresponding spin relaxation

rates can be computed as:

1 e%Q%(21+3) .
Tiso  40I12(2I-1)h2 1SO°

(1)

Here, Q is the spectroscopic nuclear quadrupole moment cross section, e is the unit charge, A is

Q

the reduced Planck constant, and I is the nuclear spin quantum number. The function G;g 1s given
by:
Gigo =2 Zm 92,m (wo)' (2)

The spectral densities g, p,(w) = fooo fom(t) exp(iwt)dt are the half-Fourier transforms of the

EFG tensor autocorrelation functions (ACFS) f3,,(t) = (Rym(te)R3m(to + t)) written here in
terms of EFG spherical tensor elements R, ,, where £ = 2 indicates the rank of the tensor and
m = —£... ¢ in integer steps. The angle brackets indicate an ensemble average over time origins,

to. The R,y are related to the Cartesian EFG tensor components Vyp (a, f € {x,y, 2}) as:

1 — . 1 ,
Ry = 3\/; Vszs Ry 41 = Vi — iV, Ry4p = E(Vxx - Vyy) 1 iVy. (3)

In the fast motion limit, the above Fourier transforms reduce to simple integrations to obtain the
spectral densities, g, ,,,, without the frequency dependence. The normalization of the total spectral

density gives the correlation time, 7. as:

_ 1
Te = vop

4)
where (V(0)?) = Zm(RZ,m(tO)R;,m(t0)>~ Combining equations (1), (2), and (4) gives the

relaxation rate as:

1

= 2C%7,(V(0)?) (%)

iso

where C¢ = Lror(alt3) is the prefactor on the right-hand side of equation (1)
4012(21-1)h2 ’
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Figure 2. Truncated MD snapshots of solvated (a) sodium, (b) iodine, and (c) cesium

ions.

In this work, we consider aqueous sodium, iodine, and cesium ions (Figure 2), for which
quadrupolar relaxation rates were previously calculated by some of us.!>!7 The Car-Parinello
molecular dynamics (CPMD)”’ trajectories were performed previously and simulated one analyte
ion, 64 water molecules, and a counter ion (either a proton or hydroxide) in cubic simulation cells
with periodic boundary conditions. The simulations used ultrasoft pseudopotentials’® from
pslibrary 1.0.0,7° a fictitious electron mass of y = 450 au, and an integration time step of 0.145 fs.
As they were originally performed for independent investigations, the sodium trajectory utilized
the PBE exchange-correlation functional®® and an elevated temperature of 350K to prevent the
known ‘glass-like’ behavior of water in room-temperature simulations of water.*® The iodide and
cesium simulations were equilibrated at 300K and employed the revised revPBE functional ®!:%2
Each simulation also included Grimme’s D-2 dispersion corrections.?*** The production phases of
the CPMD simulations were all conducted in the NVE ensemble to a simulation length of 40 ps.

Out 0f 4,000 configurations sampled, 500 snapshots at equal time intervals (ions clustered with 30

nearest neighbor solvent molecules) are used herein to sample the EFG tensor components



computed at the DFT level with PBEO functional®® with the ADF software package.’® These
snapshot DFT calculations are the computational bottleneck of the approach. For example, each
individual iodide cluster calculation took an average of 40 minutes to converge the SCF and obtain
the EFG tensor using ADF. Full computational details for DFT-level computation of the EFGs can
likewise be found in references 15 and 17. The ACFs of the EFG tensor components are then used
to compute the spin-relaxation times according to equations 1 to 5 using the dynpy software.”

The ML model used is a KRR model with either linear and quadratic kernels. The KRR approach
has recently been used by Charpentier?” in a similar context to construct a ML framework with
smooth overlap of atomic positions (SOAP)8 descriptors. Such an approach enabled
accurate prediction of NMR tensors, which was leveraged in simulation of NMR spectra
and incorporating finite-temperature effects for large-scale sodium silicate glass models
at the computational cost of classical MD simulations.

In the KRR approach, the input and output data are scaled to a mean value of zero and a standard
deviation of 1.0. The KRR model is obtained through solving the following equations and then is
used to predict the EFG matrix elements:

v[V(R(t))] = Zo7" K(v[X(R())] vIX(R(t)] )ea (6)
where K(X,Y) = XYT and K(X,Y) = (XYT)? are for linear and quadratic kernels respectively.
Here, bold notation is used to indicate vectors and matrices, v[X] notation represents the vectorized
form of the corresponding matrix X, and v [X (R (ta))] represents the input feature vector extracted
from either atomic orbital overlap, density, or KS Fock matrix. Mathematically, the KRR with
linear kernel is essentially the same as the standard linear regression with regularization (ridge

regression). However, the use of the KRR framework allows exploring other choices of the kernel
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function, such as quadratic kernel which is also used in this work. Finally, the vectors of KRR
coefficients are computed for each configuration R(t,) as:
o = (K+ D" w[V(R(t))] (7

in which 4 is a hyperparameter, selected as 0.1 here, to prevent overfitting. The hyperparameter is
tuned with trial and error. As alluded to above, the guess KS Fock matrices in the atomic orbital
basis computed with the non-hybrid PBE functional can be used as feature vectors that constitute
inputs of the ML model, while the components of the EFG tensors computed at the PBEO/basis
level® act as the target outputs. In addition to the choice of guess (non-self-consistent, non-SCF)
KS Fock matrix, we consider other possibilities for the feature vector choices: (a) guess (non-SCF)
density matrices in the AO basis, and (b) atomic orbital overlap matrices. Although none of these
choices capture true intrinsic electrostatics of the system, they all are sensitive to the system’s
geometry. As was shown previously, the structure of an unconverged KS Fock may closely
resemble that of a converged (the self-consistent, SCF) one.%® Since the EFG tensor matrix
elements directly depend on the latter, one may expect that the EFG tensor elements can be well-
parameterized by the mapping of the non-SCF KS Fock or density matrices. In addition to using
non-SCF matrices computed with the PBE functional, we also consider SCF matrices but
computed using even more computationally-efficient extended tight-binding (xTB) method.* All
the feature vector calculations are conducted using the CP2K software.”*®! To facilitate and
accelerate training of the ML models, the matrices are computed using only a limited shell of atoms
surrounding the analyte ions. Due to symmetry, only the upper triangular part of these matrices is
chosen, vectorized, and used as feature vector to map to the EFG tensors using ML (see section

S1 of the Supporting Information).
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A few points regarding the present methodology are worth mentioning. First, while alternative
geometry-sensitive input features, such as SOAP-based descriptors that are widely used in ML-
based force fields,”” may be used, the present work aims to demonstrate the possibility of the
mapping of the geometry-sensitive electronic structure-informed descriptors to the EFG tensor
elements. The present method for ML model construction is simple to implement, DFT-informed,
and rather efficient. While it is true that SOAP approach does not require even the low-cost DFT
or xTB calculations and thus may be computationally inexpensive, the current method represents
a conceptually distinct way to generate feature vectors for the EFG tensor elements prediction.
Second, the present ML mapping approach is not meant to be globally transferable as ML-based
force fields, but rather provides a way to accelerate the calculations of the EFG tensor elements
for a given system and under conditions (such as temperature and concentration) used for ML
training. Hence, the method is most useful for calculations involving multiple and/or long MD
trajectories while the target system/conditions remain unchanged. The approach is expected to be
transferable within small variations of temperatures and ion concentrations, as long as no phase
transitions occur within such ranges. Third, at the moment, we utilize the simplest approach which
does not impose any additional restrictions in regard to rotational covariance of input features such
as those used with SOAP-based descriptors. Unlike pretrained ML models,?” this model is
designed to work for a fixed (Cartesian) coordinate system, so the lack of rotational covariance is
not critical in this context. It is expected, however, that enforcing the rotational covariance
properties in the later versions of the method may help reduce the amount of data needed to reach
the desired threshold of accuracy in the target properties and alleviate the overfitting problem.

We explore the quality of the ML mapping approach when the ML is trained using different

amounts of the training data: 1%, 2.5%, 5%, 10%, 25%, and 50% of the available data used in
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producing the reference quantities. The training samples are constructed by randomly selecting the
indicated fraction of the data points (configurations and associated quantum-mechanical data) from
the initial dataset without repetitions. Better approaches are likely possible, where the training
points would be selected as the most dissimilar points in the available dataset. The data extraction

and preparation are done using Libra code,”***

and ML procedures are carried out using the scikit-
learn package.”® The mean absolute error between the predicted EFG tensor elements and all

reference elements, including both training and test data points, is computed as follows:

1
eV = EZazx,y,z ZB:x,y,Z |V7”efa,,8 - VML(Z,B |’ (8)

where V;..r and Vy;, represent the reference and ML predicted EFG tensor matrices respectively.

. . . ) .. 1
We also compute the relative errors in the predicted spin-relaxation times, 7js,, rates, P— the EFG

1so

tensor variances ((V (0)?)), and correlation times (z.), with respect to their reference values:

e = [Prer=Pail o 0. 9)
Pref

where Pp.r and Py, correspond to the reference and ML-predicted properties P, respectively. All

additional details of the calculations are available via a Zenodo repository.”®
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Figure 3. (a, b, c) Mean absolute error of the ML-predicted EFG tensor elements; relative

errors of (d, e, f) variance of EFG tensor elements, (g, h, i) correlation times, and (j, k, I)
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isotropic relaxation rates. Columns correspond to different ions: (d, g, j) sodium, (e, h, k)
iodine, and (f, I, I) cesium. In all panels, the computed properties are computed using
atomic orbital overlap (blue), density (red), and KS Fock (green) matrices as the input to
ML model. The input are obtained using PBE guess (solid lines) or converged xTB
(dashed lines) calculations. All results correspond to ML models trained using a linear

kernel.
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Quadratic Kernel
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Figure 4. (a, b, c) Mean absolute error of the ML-predicted EFG tensor elements; relative
errors of (d, e, f) variance of EFG tensor elements, (g, h, i) correlation times, and (j, k, I)

isotropic relaxation rates. Columns correspond to different ions: (d, g, j) sodium, (e, h, k)
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iodine, and (f, I, I) cesium. In all panels, the computed properties are computed using
atomic orbital overlap (blue), density (red), and KS Fock (green) matrices as the input to
ML model. The input are obtained using PBE guess (solid lines) or converged xTB
(dashed lines) calculations. All results correspond to ML models trained using quadratic

kernel.

The MAEs of the EFG tensor elements computed according to equation 6 are shown in
panels a-c of Figures 3 and 4. The MAE consistently decreases as the training set size
increases regardless of the atomic type (Na, I, or Cs), input feature type (atomic orbital
overlap, density, or KS Fock matrices), kind of calculations (atomic guess or converged
xTB), or the choice of kernel (linear or quadratic polynomials). Using the inputs based on
the PBE atomic guess leads to better performance with relatively small errors when a
linear kernel is employed (Figure 3a-3c). Specifically, using the linear kernel, the use of
the density matrix as the ML input leads to smaller errors compared to the use of the KS
Fock and overlap matrices. In turn, the choice of the KS Fock matrices is preferred over
the atomic orbital overlap matrix since it leads to smaller MAE values, especially as the
training set size increases. While the use of the quadratic kernel does not lead to a
significant reduction of error (Figure 4, panels a-c), it makes the ML-based predictions
relatively insensitive to the kind of the input feature used.

Reproducing the EFG tensor matrix elements is necessary but not sufficient for
computing spin relaxation rates accurately. Thus, we also analyze the quality of ML-
predicted properties that enter equations 1 to 5. Specifically, we focus on the relative
errors in EFG tensor variance, (V(0)?), and correlation time, 7., which are the main

components in computing spin relaxation rates. The smallest relative errors in (V(0)?)
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and 7, are obtained when using the largest training set (50% of data), using the converged
xTB KS Fock matrix as the feature input, and using a linear kernel in the KRR procedure.
For the investigated systems, the relative errors are 2.4% and 0.5% for sodium (Na) ion,
11.4% and 13.3% for iodine (l) ion, and 1.3% and 3.0% for cesium (Cs) ion for (V(0)?)
and 7, respectively (Figure 3, panels d-i). Despite the fact that the MAE values obtained
for ML calculations based on the xTB feature vectors are larger than those calculated
using PBE atomic guess matrices (Figure 3, panels a-c), the relative errors are smaller in
the former case, for both (V(0)?) (Figure 3, panels d-f) and . (Figure 3, panels g-i). As a
result of such an “error cancellation”, the xTB-based spin relaxation rates are comparable
in accuracy to those derived from the ML approach based on the PBE-guess feature
vectors, sometimes even exceeding them in accuracy. For instance, using the largest
training set considered, the relative error of Na spin relaxation rates is 0.8% for the PBE-
guess KS Fock, whereas the xTB-based KS Fock input feature yields comparable 1.9%
of relative error in rates compared to the reference values obtained from standard
calculations. More comprehensively, the relative errors in predicted spin relaxation rates
computed using 50% of the data taken at the ML training stage are summarized in Table
1. Furthermore, the reference and predicted individual components of the EFG tensors
for each ion trained with different input features using 50% of training data with linear and

quadratic kernels are brought in section S2 of the Supporting Information.

Table 1. The spin relaxation rates (in Hz) and the corresponding relative errors (in
parenthesis) obtained using ML models trained with 50% of data taken as the training
set. The values are reported for atomic orbital overlap, density, and KS Fock matrices

taken as the input feature vectors. The results are reported for ML models constructed
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with linear and quadratic kernels (separated by the backslash) and using either
converged xTB or PBE guess properties. The reference relaxation rates computed

directly are shown in the last column.

Input property, Hz (% relative error)
lo | Relaxatio | ~ . . Reference,’
n n rate Atomic orbital Density KS Fock 517 Hz
overlap
PBE 12.41 12.68 12.79
(3.8)/13.42 (1.7)/13.28 (0.8)/13.45
guess 1 (4.1) (3.0) (4.3)
Na | Isotropic 12.89
13.50 12.15 12.65
xTB (1.9)/13.47 (5.8)/13.29 (1.9)/13.61
4.4) (3.0) (5.5)
PBE 107.00 107.45 97.08
(6.9)/117.34 | (6.5)/122.66 (15.5)/115.3
guess 1 2.1 (6.8) 3 (0.4)
I Isotropic 114.88
89.26 123.65 88.29
xTB (22.3)/113.15 | (7.6)/118.72 (23.2)/108.4
(1.5) (3.3) 7 (5.6)
PBE 67.79 72.44 66.91
(8.4)/75.24 (15.8)/76.68 (7.0)/75.31
guess | (20.3) (22.6) (20.4)
Cs | Isotropic 62.56
63.72 71.84 61.48
xTB (1.9)/72.77 (14.8)/74.04 (1.7)/72.91
(16.3) (18.6) (16.5)

We observe that the present ML mapping approach generally yields lower errors for
spin relaxation rates and its components (the variance and correlation time) for Na ion,
while for both | and Cs ions larger errors are observed. We rationalize this effect based
on the concept of ionic hardness/softness, which is related to the extent of ion’s
polarizability. The Na ion is less easily polarized, implying that its electronic configuration

in solvent is more similar to the isolated ion electronic structure than it is the case for Cs
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and |. Cs*, and in particular I are have more easily polarizable electronic shells. Thus,
the non-local effects (e.g. due to the presence of solvent molecules) may be more
important to account for when computing EFG tensors. Since in the current ML approach,
the input matrices are partitioned into smaller blocks of matrix elements, based on the
belonging of atomic orbitals to certain atomic species, information on non-local effects
may be partially lost. Since in harder ions, such as Na, the non-local effects are less
important for determining their properties, the matrix partitioning introduces smaller error
in the ML mapping approach, leading to smaller errors in spin relaxation rates compared
to Cs and | ions, where non-local effects are more critical to capture.

The current results indicate that the success of the ML models in predicting spin
relaxation rates is highly dependent on the complexity of both input features and the
selected ML model. Here by “complexity”, we mean both the size of the input vector and
the number of nonzero elements which are the interactions between angular momentum
components of the atoms in the system. For simpler input features derived from xTB,
KRR with a linear kernel performs well, providing accurate predictions for both variance
and correlation time. This suggests that the linear kernel is well-suited to capturing the
essential relationships in these simpler features. However, when the complexity of the
input features increases, such as with the PBE input feature, KRR with neither linear nor
quadratic kernel perform as effectively, indicating that more sophisticated ML models,
potentially NNs, may be needed to fully exploit the detailed information present in the
PBE-guess-based inputs. Conversely, when moving to a quadratic kernel in KRR, we
observe a decline in performance especially for xTB features. This outcome implies that

while the quadratic kernel is designed to capture more complex nonlinear relations than
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the linear kernel, it may lead to overfitting, particularly in the context of the relatively
sparse xTB data, which contain larger fraction of zero or near-zero matrix elements
compared to the DFT one. This suggests that adding complexity to the kernel does not
necessarily provide a better representation of the underlying physics, indicating that
simpler input features like the ones generated from xTB are best modeled using simpler
kernels. In our initial attempts, not presented in this work, we have explored other kernels.
Using higher-degree kernels than the quadratic one and using radial basis function (RBF) kernels
yielded results similar to those of the quadratic kernel, without notable improvement. Additional
processing of the input features, such as dimensionality reduction by removing features
with low variance, may help alleviate the overfitting issue and reduce the error values of
the model, although such approaches are outside of the scope of the current proof-of-
principle work.

The PBE-guess input features fall into an intermediate category. While they contain
more complex information, the KRR models do not fully exploit this potential. The linear
kernel cannot properly map these features to the EFG tensors while the quadratic kernel
does not offer any significant improvements and, in some cases, worsen the results. This
observation highlights an important point: the choice of the input features and the ML
model must be aligned. In the current study, the xTB features align well with the
capabilities of the KRR with a linear kernel. However, this should not diminish the value
of using more complex inputs like the ones generated from PBE-guess. Instead, one
should probably explore more advanced ML models, such as NNs, which may be better
equipped to handle these inputs and capture the EFG more effectively. Overall, while our

current ML approach works well for certain cases, particularly with simpler xTB inputs, it
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may not be as effective for other cases. The success of this approach depends on the
alignment between the complexity of the input features and the capacity of the ML model
to utilize them effectively highlighting the need for careful selection of the model and
inputs.

The presented procedure leads to notable speed-ups in EFG tensor elements prediction compared
to the reference PBEO calculations. Once the ML models are constructed, the speed-up is
determined by the ratio of the high-level (e.g. PBEO, always self-consistent) and the low-level
(self-consistent for XTB or non-self-consistent for PBE). For the systems considered in this work,
such ratio is approximately 24-41 and 43-66 times for xXTB and PBE atomic guess calculations,
respectively (see section S3 of the Supporting Information). Such ratios will be larger for larger
systems, due to distinct scaling of computational complexity of the pure and hybrid functionals.
Factoring in the costs of the ML model construction, the speed-up is determined by the ratio of the
number of MD configurations included in the correlation function calculations to the number of
configurations used in the ML model training. In this regard, the main goal/advantage of the
method is to accelerate the calculations of the EFG tensors for many geometries (long MD
trajectories or multiple distinct MD trajectories) after creating the ML model using a smaller
fraction of the MD data.

In conclusion, we develop an ML mapping approach for the prediction of the EFG tensor
elements and demonstrate their use for computing quadrupolar nuclear spin relaxation
rate. We demonstrate that one can use either the atomic orbital overlap, density, or KS
Fock matrices obtained with low levels of electronic structure theory such as converged
xTB and or guess PBE as input features. Using either linear or quadratic kernel ridge

regression and sufficient amount of training data, such input vectors can be mapped
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directly to EFG tensor elements to bypass computationally demanding calculations. Our
analysis suggests that all of these feature input options generally yield consistent results.
Using the quadratic kernel reduces the variability of the predicted quantities with respect
to the choice of the input feature vector types. The developed ML mapping approach
yields the results within a few percents of the target values (from the standard
calculations) even when a fraction of the input data is used for training the ML model.
Better accuracy is obtained for harder, less polarizable ions such as sodium as opposed
to more polarizable ones such as cesium or iodide. Overall, our findings validate the
efficiency and robustness of the ML mapping approach for predicting the EFG matrices
which can significantly reduce the computational costs while yielding good accuracy. The
computational acceleration in predicting the time-series of EFG tensor elements offered
by the present approach opens new possibilities for conducting more accurate spin-

relaxation calculations where many long trajectories need to be involved.
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