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Abstract: In this work, a machine learning mapping approach for predicting the properties of 

atomistic systems is reported. Within this approach, the atomic orbital overlap, density, or Kohn-

Sham (KS) Fock matrix elements obtained at a low level of theory such as extended tight-binding 

have been used as input features to predict the electric field gradient (EFG) tensors at a higher 

level of theory such as those obtained with hybrid functionals. It is shown that the machine-

learning-predicted EFG tensors can be used to compute spin relaxation rates of several ions in 

aqueous solutions. From only a fraction of data used in direct calculation, one can predict the 

quadrupolar isotropic spin relaxation rates with good accuracy, achieving relative errors between 

about 1.7-7.6% for different ions. 
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Nuclear spin relaxation dynamics plays a crucial role in defining nuclear magnetic 

resonance (NMR) spectra, which provide crucial insight into chemical dynamics at the 

atomistic scale, with applications, for instance, in biological imaging1,2 and 

electrochemical devices.3,4 Nuclear spin relaxation in diamagnetic species occurs 

primarily via magnetic dipole-dipole, spin-rotation, and quadrupolar interactions. 

Quadrupolar nuclides are prevalent in the periodic table, and the quadrupolar relaxation 

mechanism is known to dominate over the others listed when present.5 

For a detailed understanding and prediction of quadrupolar nuclear spin relaxation 

rates, theoretical studies employing molecular dynamics (MD) have become vital. 

Pioneering studies have relied on force-field (FF) driven MD.6–13 More recently, it has 

become possible to conduct NMR relaxation studies based on ab initio molecular 

dynamics (AIMD) simulations, in which the interatomic forces are calculated via a first-

principles electronic structure method usually by using density functional theory (DFT) 

combined with a classical treatment of the nuclear motion.14–23 This approach allows for 

an accurate treatment of sub-picosecond interactions of atoms and molecules which is 

the driving force of NMR relaxation in the fast motion regime applicable, e.g., for small 

molecules in solution at not too low temperatures.  

For the purpose of calculating nuclear spin relaxation, irrespective of whether they are 

of the ab-initio or FF type, MD simulations need to be paired with calculations of the 

relevant interaction tensors that drive a given relaxation mechanism. For instance, 

quadrupolar relaxation is mediated by the fluctuations of the electric field gradient (EFG) 

tensor at the nucleus of interest as a function of time. The EFG depends on the distribution 

of electric charges surrounding the nucleus and therefore has a nuclear and electronic 
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contribution. The former is usually calculated classically from the distribution of nuclear 

(point) charges, which is obtained straightforwardly from each point along an MD 

trajectory. The latter requires the electron density and therefore – in in principle – the 

electronic EFG needs to be calculated via quantum mechanics (QM) electronic structure 

methods. For the latter, there are numerous choices of varying accuracy available, 

without or with periodic boundary conditions. For example, some of us previously 

benchmarked DFT-based EFG calculations with periodic boundary conditions vs. 

‘molecular’ calculations using cluster models extracted from MD trajectories and showed 

that both are capable of delivering comparable quadrupolar relaxation rates when the 

same functionals are employed.15 In the latter type of calculations, a much larger variety 

of electronic structure models can be employed. 

However, the computational cost of evaluating EFG tensors for hundreds or thousands 

of MD configurations can quickly become prohibitive. For example, 23Na relaxation, a 

nuclide that is ubiquitous in humans, has been shown to be useful to investigate cartilage 

damage in vivo.24,25 T2 measurements of 23Na+ have also been used in a pioneering study 

of spinal disk degeneration.26 MD simulations of such processes likely require large-scale 

FFMD simulations, which means they need to be accompanied by highly efficient 

computational methods for EFG tensors. One class of approaches uses structural data 

from the MD trajectories, atomic partial charges, and models to describe the polarization 

of the electron density surrounding the nuclide of interest to determine the EFG at 

essentially the same computational cost of an MD step.8,27,28 For example, based on 

partial atomic charges surrounding an ion in solution and the resulting ‘external’ EFG, 

Sternheimer antishielding factors29–33 𝛾∞ have been employed to obtain the total EFG at 
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these ions including the ion polarization from the external EFG by multiplying by a factor 

(1 + 𝛾∞).6,8,13,27 The square of this factor enters the relaxation rate. Note that this 

Sternheimer antishielding is far from being a small correction. For instance, a value of 

𝛾∞ =  −5.45 was reported for Na+.34  The Sternheimer model neither accounts for solute 

polarization due to steric effects, nor for EFGs due to partially covalent solvent-solute 

interactions such as hydrogen bonds. Therefore, the general utility of the Sternheimer 

approach has been questioned as being overly reductive.17,21  Force-fields with ion 

polarization terms may perform more reliably if properly parameterized,8 but there is the 

perennial question of transferability and whether such an approach also works for highly 

polarizable ions (for example, 𝛾∞ =  −162 for I )34 or covalently bonded atoms.  

As an alternative to the currently available approaches, the present work introduces the 

use of machine-learning (ML) aided calculations of EFG tensors for the purpose of MD-

based quadrupolar nuclear spin relaxation. The immediate advantage of such a method 

is that it has the potential to provide access to large systems and the dynamics with long 

correlation times affecting the spin relaxation at a modest computational cost. ML 

techniques have recently become widely adopted in various scientific domains. For 

instance, they have been used to accelerate calculations of different properties of 

molecules,35–38 solid-state materials,39,40 and proteins41,42 where the cost of standard 

calculations grows rapidly with the size of the system. The acceleration of MD simulations 

with the help of ML-based interatomic potentials43–48 enabled modeling systems with 

millions of atoms. Advanced ML models such as AlphaFold42 exceled at identifying the 

binding sites in proteins and predicting their structures. ML techniques have been 

successfully utilized to perform excited state dynamics simulations in model spin-boson 



 6 

systems,49,50 small molecules,51,52 large graphene nanoribbons with thousands of 

atoms,53 light-harvesting complexes,54 metal nanoclusters,55 to name a few. ML-based 

techniques have also been used to extend the length of the dynamical simulation, either 

by forecasting the longer-time behavior of the observed properties directly using the short-

time data56–61 or by predicting the properties such as state energies and couplings needed 

for such calculations.62–64  

Furthermore, ML techniques can be used to elevate the quality of properties extracted 

from MD studies performed at lower levels of theory. For instance, Shakiba and Akimov65 

recently demonstrated that a simple kernel ridge regression (KRR) method can be used 

to map a guess  Kohn-Sham (KS) Fock operator (based on a superposition of atomic 

densities) with non-hybrid exchange-correlation functionals, such as Perdew-Burke-

Ernzerhof (PBE),66 to a nearly-converged KS Fock operator computed using more 

computationally-demanding hybrid functionals such as Heyd-Scuseria-Ernzerhof 

(HSE06)67,68 or Becke-Lee-Yang-Parr (B3LYP).69–72 Instead of directly mapping 

molecular geometries to molecular properties using complex deep neural networks (NNs), 

in the aforementioned approach the geometries are first mapped to preprocessed data 

computed at lower levels of theory. The preprocessed data are then used as input to the 

ML model and mapped to the properties of interest corresponding to a higher level of 

theory. Only a few configurations along the precomputed trajectory are needed to 

generate the reference data at the desired level of theory. Depending on the system size 

and the length scale of the process to study, the resulting speed-up from the ML 

assistance can reach several orders of magnitude.65 
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In this work, we extend the ML-based KS Fock operator mapping approach to the 

calculation of EFG tensors in the context of quadrupolar spin relaxation calculations 

(Figure 1). Similar to the ML workflow outlined above, we aim to utilize the geometry-

sensitive guess atomic orbital overlap, density, or KS Fock matrix elements computed 

with low-cost electronic structure methods as feature vectors to predict the EFG tensor 

for nuclear spin-relaxation calculations. 

 

Figure 1. Workflow of the ML mapping approach: (1) the geometry is initially 

preprocessed by a quantum chemistry software at a low level of theory, such as a tight 

binding model or an atomic guess with a non-hybrid density functional, and the 

corresponding atomic overlap, density, and KS Fock matrices are generated; (2) the 

elements of the matrix corresponding to the interaction of an atom with all other atoms (or 

its nearest neighbor atoms) are selected as elements of the feature vector; (3) the feature 

vector is used to predict a set of properties using ML techniques. 

NMR relaxation is characterized by the longitudinal (𝑇1) and transverse (𝑇2) relaxation times 

and their inverse, the relaxation rates, respectively. The formalism is based on NMR relaxation 

theory73,74 as summarized by Spiess75, and as implemented by us in the ‘dynpy’ software76.  In the 

limit of fast motion and isotropic samples (solutions, gas phase), 𝑅1 and 𝑅2 are equal and we can 
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define an isotropic relaxation time (𝑇iso) and rate 𝑅iso.15,17,18 The corresponding spin relaxation 

rates can be computed as:  

1

𝑇iso
=

𝑒2𝑄2(2𝐼+3)

40𝐼2(2𝐼−1)ℏ2 𝐺iso
𝑄 .         (1) 

Here, 𝑄 is the spectroscopic nuclear quadrupole moment cross section, 𝑒 is the unit charge, ℏ is 

the reduced Planck constant, and 𝐼 is the nuclear spin quantum number. The function 𝐺iso
𝑄

 is given 

by: 

𝐺iso
𝑄 = 2 ∑ 𝑔2,𝑚(𝜔0)𝑚 .         (2) 

The spectral densities 𝑔2,𝑚(𝜔) = ∫ 𝑓2,𝑚(𝑡) exp(𝑖𝜔𝑡)𝑑𝑡
∞

0
 are the half-Fourier transforms of the 

EFG tensor autocorrelation functions (ACFs) 𝑓2,𝑚(𝑡) = ⟨𝑅2,𝑚(𝑡0)𝑅2,𝑚
∗ (𝑡0 + 𝑡)⟩ written here in 

terms of EFG spherical tensor elements 𝑅ℓ,𝑚, where ℓ = 2 indicates the rank of the tensor and 

𝑚 = −ℓ. . . ℓ in integer steps. The angle brackets indicate an ensemble average over time origins, 

𝑡0. The 𝑅2,𝑚 are related to the Cartesian EFG tensor components 𝑉𝛼𝛽 (𝛼, 𝛽 ∈ {𝑥, 𝑦, 𝑧}) as: 

𝑅2,0 = 3√
1

6
𝑉𝑧𝑧, 𝑅2,±1 = ∓𝑉𝑥𝑧 − 𝑖𝑉𝑦𝑧,  𝑅2,±2 =

1

2
(𝑉𝑥𝑥 − 𝑉𝑦𝑦) ± 𝑖𝑉𝑥𝑦.  (3) 

In the fast motion limit, the above Fourier transforms reduce to simple integrations to obtain the 

spectral densities, 𝑔2,𝑚, without the frequency dependence. The normalization of the total spectral 

density gives the correlation time, 𝜏𝑐 as:  

𝜏𝑐 =
1

〈𝑉(0)2〉
           (4) 

where 〈𝑉(0)2〉 = ∑ ⟨𝑅2,𝑚(𝑡0)𝑅2,𝑚
∗ (𝑡0)⟩𝑚 . Combining equations (1), (2), and (4) gives the 

relaxation rate as: 

1

𝑇iso
= 2𝐶𝑄𝜏𝑐〈𝑉(0)2〉         (5) 

where 𝐶𝑄 =
𝑒2𝑄2(2𝐼+3)

40𝐼2(2𝐼−1)ℏ2 is the prefactor on the right-hand side of equation (1). 
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Figure 2. Truncated MD snapshots of solvated (a) sodium, (b) iodine, and (c) cesium 

ions.   

In this work, we consider aqueous sodium, iodine, and cesium ions (Figure 2), for which 

quadrupolar relaxation rates were previously calculated by some of us.15,17 The Car-Parinello 

molecular dynamics (CPMD)77 trajectories were performed previously and simulated one analyte 

ion, 64 water molecules, and a counter ion (either a proton or hydroxide) in cubic simulation cells 

with periodic boundary conditions. The simulations used ultrasoft pseudopotentials78 from 

pslibrary 1.0.0,79 a fictitious electron mass of 𝜇 = 450 au, and an integration time step of 0.145 fs. 

As they were originally performed for independent investigations, the sodium trajectory utilized 

the PBE exchange-correlation functional66 and an elevated temperature of 350K to prevent the 

known ‘glass-like’ behavior of water in room-temperature simulations of water.80 The iodide and 

cesium simulations were equilibrated at 300K and employed the revised revPBE functional.81,82 

Each simulation also included Grimme’s D-2 dispersion corrections.83,84 The production phases of 

the CPMD simulations were all conducted in the NVE ensemble to a simulation length of 40 ps. 

Out of 4,000 configurations sampled, 500 snapshots at equal time intervals (ions clustered with 30 

nearest neighbor solvent molecules) are used herein to sample the EFG tensor components 
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computed at the DFT level with PBE0 functional85 with the ADF software package.86 These 

snapshot DFT calculations are the computational bottleneck of the approach. For example, each 

individual iodide cluster calculation took an average of 40 minutes to converge the SCF and obtain 

the EFG tensor using ADF. Full computational details for DFT-level computation of the EFGs can 

likewise be found in references 15 and 17. The ACFs of the EFG tensor components are then used 

to compute the spin-relaxation times according to equations 1 to 5 using the dynpy software.76 

The ML model used is a KRR model with either linear and quadratic kernels. The KRR approach 

has recently been used by Charpentier87 in a similar context to construct a ML framework with 

smooth overlap of atomic positions (SOAP)88 descriptors. Such an approach enabled 

accurate prediction of NMR tensors, which was leveraged in simulation of NMR spectra 

and incorporating finite-temperature effects for large-scale sodium silicate glass models 

at the computational cost of classical MD simulations.  

In the KRR approach, the input and output data are scaled to a mean value of zero and a standard 

deviation of 1.0. The KRR model is obtained through solving the following equations and then is 

used to predict the EFG matrix elements:  

𝑣[𝑽(𝑹(𝑡𝑖))] = ∑ 𝑲(𝑣[𝑿(𝑹(𝑡𝑖))], 𝑣[𝑿(𝑹(𝑡𝛼))] )𝒄𝛼
𝑁𝑡𝑟𝑎𝑖𝑛
𝛼=1      (6) 

where 𝑲(𝑿, 𝒀) = 𝑿𝒀𝑇 and 𝑲(𝑿, 𝒀) = (𝑿𝒀𝑇)2 are for linear and quadratic kernels respectively. 

Here, bold notation is used to indicate vectors and matrices, 𝑣[𝑿] notation represents the vectorized 

form of the corresponding matrix 𝑿, and 𝑣[𝑿(𝑹(𝑡𝛼))] represents the input feature vector extracted 

from either atomic orbital overlap, density, or KS Fock matrix. Mathematically, the KRR with 

linear kernel is essentially the same as the standard linear regression with regularization (ridge 

regression). However, the use of the KRR framework allows exploring other choices of the kernel 
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function, such as quadratic kernel which is also used in this work. Finally, the vectors of KRR 

coefficients are computed for each configuration 𝑹(𝑡𝛼) as: 

𝒄𝛼 = (𝑲 + 𝜆𝑰)−1𝑣[𝑽(𝑹(𝑡𝛼))]        (7) 

in which 𝜆 is a hyperparameter, selected as 0.1 here, to prevent overfitting. The hyperparameter is 

tuned with trial and error. As alluded to above, the guess KS Fock matrices in the atomic orbital 

basis computed with the non-hybrid PBE functional can be used as feature vectors that constitute 

inputs of the ML model, while the components of the EFG tensors computed at the PBE0/basis 

level85 act as the target outputs. In addition to the choice of guess (non-self-consistent, non-SCF) 

KS Fock matrix, we consider other possibilities for the feature vector choices: (a) guess (non-SCF) 

density matrices in the AO basis, and (b) atomic orbital overlap matrices. Although none of these 

choices capture true intrinsic electrostatics of the system, they all are sensitive to the system’s 

geometry. As was shown previously, the structure of an unconverged KS Fock may closely 

resemble that of a converged (the self-consistent, SCF) one.65 Since the EFG tensor matrix 

elements directly depend on the latter, one may expect that the EFG tensor elements can be well-

parameterized by the mapping of the non-SCF KS Fock or density matrices. In addition to using 

non-SCF matrices computed with the PBE functional, we also consider SCF matrices but 

computed using even more computationally-efficient extended tight-binding (xTB) method.89 All 

the feature vector calculations are conducted using the CP2K software.90,91 To facilitate and 

accelerate training of the ML models, the matrices are computed using only a limited shell of atoms 

surrounding the analyte ions. Due to symmetry, only the upper triangular part of these matrices is 

chosen, vectorized, and used as feature vector to map to the EFG tensors using ML (see section 

S1 of the Supporting Information).   
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A few points regarding the present methodology are worth mentioning. First, while alternative 

geometry-sensitive input features, such as SOAP-based descriptors that are widely used in ML-

based force fields,92 may be used, the present work aims to demonstrate the possibility of the 

mapping of the geometry-sensitive electronic structure-informed descriptors to the EFG tensor 

elements. The present method for ML model construction is simple to implement, DFT-informed, 

and rather efficient. While it is true that SOAP approach does not require even the low-cost DFT 

or xTB calculations and thus may be computationally inexpensive, the current method represents 

a conceptually distinct way to generate feature vectors for the EFG tensor elements prediction.  

Second, the present ML mapping approach is not meant to be globally transferable as ML-based 

force fields, but rather provides a way to accelerate the calculations of the EFG tensor elements 

for a given system and under conditions (such as temperature and concentration) used for ML 

training. Hence, the method is most useful for calculations involving multiple and/or long MD 

trajectories while the target system/conditions remain unchanged. The approach is expected to be 

transferable within small variations of temperatures and ion concentrations, as long as no phase 

transitions occur within such ranges. Third, at the moment, we utilize the simplest approach which 

does not impose any additional restrictions in regard to rotational covariance of input features such 

as those used with SOAP-based descriptors. Unlike pretrained ML models,87 this model is 

designed to work for a fixed (Cartesian) coordinate system, so the lack of rotational covariance is 

not critical in this context. It is expected, however, that enforcing the rotational covariance 

properties in the later versions of the method may help reduce the amount of data needed to reach 

the desired threshold of accuracy in the target properties and alleviate the  overfitting problem.  

We explore the quality of the ML mapping approach when the ML is trained using different 

amounts of the training data: 1%, 2.5%, 5%, 10%, 25%, and 50% of the available data used in 
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producing the reference quantities. The training samples are constructed by randomly selecting the 

indicated fraction of the data points (configurations and associated quantum-mechanical data) from 

the initial dataset without repetitions. Better approaches are likely possible, where the training 

points would be selected as the most dissimilar points in the available dataset. The data extraction 

and preparation are done using Libra code,93,94 and ML procedures are carried out using the scikit-

learn package.95 The mean absolute error between the predicted EFG tensor elements and all 

reference elements, including both training and test data points, is computed as follows: 

𝜖𝑉 =
1

9
∑ ∑ |𝑉𝑟𝑒𝑓𝛼,𝛽

− 𝑉𝑀𝐿𝛼,𝛽
|𝛽=𝑥,𝑦,𝑧𝛼=𝑥,𝑦,𝑧 ,       (8) 

where 𝑉𝑟𝑒𝑓 and 𝑉𝑀𝐿 represent the reference and ML predicted EFG tensor matrices respectively. 

We also compute the relative errors in the predicted spin-relaxation times, 𝜏iso, rates, 
1

𝑇iso
, the EFG 

tensor variances (⟨𝑉(0)2⟩), and correlation times (𝜏𝑐), with respect to their reference values: 

𝜖 =
|𝑃𝑟𝑒𝑓−𝑃𝑀𝐿|

𝑃𝑟𝑒𝑓
× 100.          (9) 

where 𝑃𝑟𝑒𝑓 and 𝑃𝑀𝐿 correspond to the reference and ML-predicted properties 𝑃, respectively. All 

additional details of the calculations are available via a Zenodo repository.96 
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Figure 3. (a, b, c) Mean absolute error of the ML-predicted EFG tensor elements; relative 

errors of (d, e, f) variance of EFG tensor elements, (g, h, i) correlation times, and (j, k, l) 
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isotropic relaxation rates. Columns correspond to different ions: (d, g, j) sodium, (e, h, k) 

iodine, and (f, I, l) cesium. In all panels, the computed properties are computed using 

atomic orbital overlap (blue), density (red), and KS Fock (green) matrices as the input to 

ML model. The input are obtained using PBE guess (solid lines) or converged xTB 

(dashed lines) calculations. All results correspond to ML models trained using a linear 

kernel. 

 



 16 

 

Figure 4. (a, b, c) Mean absolute error of the ML-predicted EFG tensor elements; relative 

errors of (d, e, f) variance of EFG tensor elements, (g, h, i) correlation times, and (j, k, l) 

isotropic relaxation rates. Columns correspond to different ions: (d, g, j) sodium, (e, h, k) 



 17 

iodine, and (f, I, l) cesium. In all panels, the computed properties are computed using 

atomic orbital overlap (blue), density (red), and KS Fock (green) matrices as the input to 

ML model. The input are obtained using PBE guess (solid lines) or converged xTB 

(dashed lines) calculations. All results correspond to ML models trained using quadratic 

kernel. 

The MAEs of the EFG tensor elements computed according to equation 6 are shown in 

panels a-c of Figures 3 and 4. The MAE consistently decreases as the training set size 

increases regardless of the atomic type (Na, I, or Cs), input feature type (atomic orbital 

overlap, density, or KS Fock matrices), kind of calculations (atomic guess or converged 

xTB), or the choice of kernel (linear or quadratic polynomials). Using the inputs based on 

the PBE atomic guess leads to better performance with relatively small errors when a 

linear kernel is employed (Figure 3a-3c). Specifically, using the linear kernel, the use of 

the density matrix as the ML input leads to smaller errors compared to the use of the KS 

Fock and overlap matrices. In turn, the choice of the KS Fock matrices is preferred over 

the atomic orbital overlap matrix since it leads to smaller MAE values, especially as the 

training set size increases. While the use of the quadratic kernel does not lead to a 

significant reduction of error (Figure 4, panels a-c), it makes the ML-based predictions 

relatively insensitive to the kind of the input feature used.  

Reproducing the EFG tensor matrix elements is necessary but not sufficient for 

computing spin relaxation rates accurately. Thus, we also analyze the quality of ML-

predicted properties that enter equations 1 to 5. Specifically, we focus on the relative 

errors in EFG tensor variance, ⟨𝑉(0)2⟩, and correlation time, 𝜏𝑐, which are the main 

components in computing spin relaxation rates. The smallest relative errors in ⟨𝑉(0)2⟩ 
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and 𝜏𝑐 are obtained when using the largest training set (50% of data), using the converged 

xTB KS Fock matrix as the feature input, and using a linear kernel in the KRR procedure. 

For the investigated systems, the relative errors are 2.4% and 0.5% for sodium (Na) ion, 

11.4% and 13.3% for iodine (I) ion, and 1.3% and 3.0% for cesium (Cs) ion for ⟨𝑉(0)2⟩ 

and 𝜏𝑐 respectively (Figure 3, panels d-i). Despite the fact that the MAE values obtained 

for ML calculations based on the xTB feature vectors are larger than those calculated 

using PBE atomic guess matrices (Figure 3, panels a-c), the relative errors are smaller in 

the former case, for both ⟨𝑉(0)2⟩ (Figure 3, panels d-f) and 𝜏𝑐 (Figure 3, panels g-i). As a 

result of such an “error cancellation”, the xTB-based spin relaxation rates are comparable 

in accuracy to those derived from the ML approach based on the PBE-guess feature 

vectors, sometimes even exceeding them in accuracy. For instance, using the largest 

training set considered, the relative error of Na spin relaxation rates is 0.8% for the PBE-

guess KS Fock, whereas the xTB-based KS Fock input feature yields comparable 1.9% 

of relative error in rates compared to the reference values obtained from standard 

calculations. More comprehensively, the relative errors in predicted spin relaxation rates 

computed using 50% of the data taken at the ML training stage are summarized in Table 

1. Furthermore, the reference and predicted individual components of the EFG tensors 

for each ion trained with different input features using 50% of training data with linear and 

quadratic kernels are brought in section S2 of the Supporting Information.  

Table 1. The spin relaxation rates (in Hz) and the corresponding relative errors (in 

parenthesis) obtained using ML models trained with 50% of data taken as the training 

set. The values are reported for atomic orbital overlap, density, and KS Fock matrices 

taken as the input feature vectors. The results are reported for ML models constructed 
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with linear and quadratic kernels (separated by the backslash) and using either 

converged xTB or PBE guess properties. The reference relaxation rates computed 

directly are shown in the last column. 

Io
n 

Relaxatio
n rate 

Guess 

Input property, Hz (% relative error) 
Reference,1
5,17 Hz Atomic orbital 

overlap 
Density KS Fock 

Na Isotropic 

PBE 
guess 

12.41 
(3.8)/13.42 
(4.1) 

12.68 
(1.7)/13.28 
(3.0) 

12.79 
(0.8)/13.45 
(4.3) 

12.89 

xTB 
13.50 
(1.9)/13.47 
(4.4) 

12.15 
(5.8)/13.29 
(3.0) 

12.65 
(1.9)/13.61 
(5.5) 

I Isotropic 

PBE 
guess 

107.00 
(6.9)/117.34 
(2.1) 

107.45 
(6.5)/122.66 
(6.8) 

97.08 
(15.5)/115.3
3 (0.4) 

114.88 

xTB 
89.26 
(22.3)/113.15 
(1.5) 

123.65 
(7.6)/118.72 
(3.3) 

88.29 
(23.2)/108.4
7 (5.6) 

Cs Isotropic 

PBE 
guess 

67.79 
(8.4)/75.24 
(20.3) 

72.44 
(15.8)/76.68 
(22.6) 

66.91 
(7.0)/75.31 
(20.4) 

62.56 

xTB 
63.72 
(1.9)/72.77 
(16.3) 

71.84 
(14.8)/74.04 
(18.6) 

61.48 
(1.7)/72.91 
(16.5) 

 

We observe that the present ML mapping approach generally yields lower errors for 

spin relaxation rates and its components (the variance and correlation time) for Na ion, 

while for both I and Cs ions larger errors are observed. We rationalize this effect based 

on the concept of ionic hardness/softness, which is related to the extent of ion’s 

polarizability. The Na ion is less easily polarized, implying that its electronic configuration 

in solvent is more similar to the isolated ion electronic structure than it is the case for Cs 
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and I. Cs+, and in particular I- are have more easily polarizable electronic shells. Thus, 

the non-local effects (e.g. due to the presence of solvent molecules) may be more 

important to account for when computing EFG tensors. Since in the current ML approach, 

the input matrices are partitioned into smaller blocks of matrix elements, based on the 

belonging of atomic orbitals to certain atomic species, information on non-local effects 

may be partially lost. Since in harder ions, such as Na, the non-local effects are less 

important for determining their properties, the matrix partitioning introduces smaller error 

in the ML mapping approach, leading to smaller errors in spin relaxation rates compared 

to Cs and I ions, where non-local effects are more critical to capture.  

The current results indicate that the success of the ML models in predicting spin 

relaxation rates is highly dependent on the complexity of both input features and the 

selected ML model. Here by “complexity”, we mean both the size of the input vector and 

the number of nonzero elements which are the interactions between angular momentum 

components of the atoms in the system. For simpler input features derived from xTB, 

KRR with a linear kernel performs well, providing accurate predictions for both variance 

and correlation time. This suggests that the linear kernel is well-suited to capturing the 

essential relationships in these simpler features. However, when the complexity of the 

input features increases, such as with the PBE input feature, KRR with neither linear nor 

quadratic kernel perform as effectively, indicating that more sophisticated ML models, 

potentially NNs, may be needed to fully exploit the detailed information present in the 

PBE-guess-based inputs. Conversely, when moving to a quadratic kernel in KRR, we 

observe a decline in performance especially for xTB features. This outcome implies that 

while the quadratic kernel is designed to capture more complex nonlinear relations than 
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the linear kernel, it may lead to overfitting, particularly in the context of the relatively 

sparse xTB data, which contain larger fraction of zero or near-zero matrix elements 

compared to the DFT one. This suggests that adding complexity to the kernel does not 

necessarily provide a better representation of the underlying physics, indicating that 

simpler input features like the ones generated from xTB are best modeled using simpler 

kernels. In our initial attempts, not presented in this work, we have explored other kernels. 

Using higher-degree kernels than the quadratic one and using radial basis function (RBF) kernels 

yielded results similar to those of the quadratic kernel, without notable improvement. Additional 

processing of the input features, such as dimensionality reduction by removing features 

with low variance, may help alleviate the overfitting issue and reduce the error values of 

the model, although such approaches are outside of the scope of the current proof-of-

principle work.  

The PBE-guess input features fall into an intermediate category. While they contain 

more complex information, the KRR models do not fully exploit this potential. The linear 

kernel cannot properly map these features to the EFG tensors while the quadratic kernel 

does not offer any significant improvements and, in some cases, worsen the results. This 

observation highlights an important point: the choice of the input features and the ML 

model must be aligned. In the current study, the xTB features align well with the 

capabilities of the KRR with a linear kernel. However, this should not diminish the value 

of using more complex inputs like the ones generated from PBE-guess. Instead, one 

should probably explore more advanced ML models, such as NNs, which may be better 

equipped to handle these inputs and capture the EFG more effectively. Overall, while our 

current ML approach works well for certain cases, particularly with simpler xTB inputs, it 
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may not be as effective for other cases. The success of this approach depends on the 

alignment between the complexity of the input features and the capacity of the ML model 

to utilize them effectively highlighting the need for careful selection of the model and 

inputs.  

The presented procedure leads to notable speed-ups in EFG tensor elements prediction compared 

to the reference PBE0 calculations. Once the ML models are constructed, the speed-up is 

determined by the ratio of the high-level (e.g. PBE0, always self-consistent) and the low-level 

(self-consistent for xTB or non-self-consistent for PBE). For the systems considered in this work, 

such ratio is approximately 24-41 and 43-66 times for xTB and PBE atomic guess calculations, 

respectively (see section S3 of the Supporting Information). Such ratios will be larger for larger 

systems, due to distinct scaling of computational complexity of the pure and hybrid functionals. 

Factoring in the costs of the ML model construction, the speed-up is determined by the ratio of the 

number of MD configurations included in the correlation function calculations to the number of 

configurations used in the ML model training. In this regard, the main goal/advantage of the 

method is to accelerate the calculations of the EFG tensors for many geometries (long MD 

trajectories or multiple distinct MD trajectories) after creating the ML model using a smaller 

fraction of the MD data.  

In conclusion, we develop an ML mapping approach for the prediction of the EFG tensor 

elements and demonstrate their use for computing quadrupolar nuclear spin relaxation 

rate. We demonstrate that one can use either the atomic orbital overlap, density, or KS 

Fock matrices obtained with low levels of electronic structure theory such as converged 

xTB and or guess PBE as input features. Using either linear or quadratic kernel ridge 

regression and sufficient amount of training data, such input vectors can be mapped 
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directly to EFG tensor elements to bypass computationally demanding calculations. Our 

analysis suggests that all of these feature input options generally yield consistent results. 

Using the quadratic kernel reduces the variability of the predicted quantities with respect 

to the choice of the input feature vector types. The developed ML mapping approach 

yields the results within a few percents of the target values (from the standard 

calculations) even when a fraction of the input data is used for training the ML model. 

Better accuracy is obtained for harder, less polarizable ions such as sodium as opposed 

to more polarizable ones such as cesium or iodide. Overall, our findings validate the 

efficiency and robustness of the ML mapping approach for predicting the EFG matrices 

which can significantly reduce the computational costs while yielding good accuracy. The 

computational acceleration in predicting the time-series of EFG tensor elements offered 

by the present approach opens new possibilities for conducting more accurate spin-

relaxation calculations where many long trajectories need to be involved.  
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