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Abstract— Bayesian attack graphs (BAGs) are powerful mod-
els to capture the time-varying progression of attacks in com-
plex interconnected networks. Network elements are modeled
by graph nodes, and connections among components are repre-
sented through edges. The nodes take binary values, represent-
ing the compromised and uncompromised state of the network
components. BAGs also offer a probabilistic representation
of the likelihood of external and internal attacks progressing
through exploit probabilities. The accuracy and timely detection
of attacks are the main objectives in the security analysis of
networks modeled by BAGs. This can ensure network safety by
identifying network vulnerabilities and designing better defense
strategies (e.g., reimaging devices, installing firewalls, changing
connections, etc.). Two main challenges in achieving accurate
detection in complex networks are 1) the partial monitoring of
the network components due to the limited available resources
and 2) the uncertainty in identifying and removing some
compromises in the network due to the ever-evolving complexity
of attacks. For a general class of BAGs, this paper presents an
optimal minimum mean square error (MMSE) attack detection
technique with arbitrary uncertainty in the monitoring and
reimaging process. As with the Kalman filtering approach used
for linear Gaussian state-space models, the derived solution
exhibits the same optimality. A recursive matrix-form imple-
mentation of the proposed detection method is introduced, and
its performance is examined through numerical experiments
using a synthetic BAG.

I. INTRODUCTION

Many practical systems consist of multiple devices con-
nected through the Internet or communication systems. The
growth in network systems has provided the opportunity
to achieve superior operating performance while at the
same time putting these systems at serious risk of cyber
attacks. Examples include computer networks, autonomous
cars, traffic lights, power systems, and many more [1]–[5].
If successful, external attacks can enter these systems and
spread throughout the network components. Therefore, rapid
and efficient detection of attacks is crucial to ensure the
security of these complex networks.

Graph-based models have shown significant success in
interconnected network security analysis. These models eval-
uate the network security and the risks associated with
network components according to the external and internal
threats [6]. Bayesian attack graph (BAG) is a powerful
class of models within graph-based models that represent
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the propagation of the attack in complex interconnected
networks [7]–[10]. BAGs are probabilistic graphical mod-
els consisting of nodes and edges. Nodes represent the
compromised status of the network components, and edges
indicate the probabilities of attack progression among con-
nected nodes/components [11]–[13]. The attack progression
depends on many factors, such as the type of machine/server,
the security installed in the machine (e.g., firewalls), the
number of connected devices, and connections to external
sources. The use of graph-based models allows Markovian
representation of the attack propagation in the network [14],
[15]. Monitoring network compromises is often constrained
by the availability of resources, and its accuracy is impacted
by the complexity of attacks and monitoring systems. This
often leads to partial observability of network compromises,
which poses a significant challenge in detecting network
compromises.

In recent years, several attack detection methods have been
developed for BAGs. These include those built on maximum
aposteriori (MAP) or maximum likelihood (ML) criteria, as
well as those relying on heuristics [16]–[22] or approxima-
tions [23]–[25] to scale detection to larger domains. Most
existing attack detection methods are built on the assumption
that the compromises are directly observable upon routine
monitoring. Furthermore, they assume that reimaging can
fully clean machines’ compromises [26]–[28].

The ever-evolving complexity of attacks and attackers
poses uncertainty in monitoring and removing compromises
in the network. Meanwhile, the limited available resources
often allow partial monitoring or reimaging of the nodes.
Therefore, it is critical to develop methods that can effec-
tively detect system compromises while taking into account
all sources of uncertainty. For a general form of BAG,
this paper derives the optimal minimum mean square error
(MMSE) attack detection method with arbitrary uncertainty
in the monitoring and reimaging process. MMSE optimality,
similar to the Kalman filter for the linear Gaussian state-
space model, is achieved by considering the binary struc-
ture of the nodes in the graph [29], [30]. Furthermore,
the proposed detection method maintains the component-
wise maximum aposteriori optimality, unlike the commonly
used maximum aposteriori solution for all nodes. The paper
presents the exact matrix-form implementation of the optimal
detector. Numerical experiments are carried out to examine
the performance of the proposed method in terms of its ac-
curacy and robustness to uncertainty and available resources.
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II. BACKGROUND - BAYESIAN ATTACK GRAPHS (BAGS)

Bayesian attack graphs are well-known models that rep-
resent how attacks progress through a network. Essentially,
a BAG can be described as a structured tuple [31] denoted
as: G = (N ,T ,E ,P). Here, N signifies the set of n network
components, T represents the various types of nodes, E is
the set of directed edges connecting these nodes, and P is
the corresponding set of exploit probabilities. The nodes are
represented as binary random variables, taking 0 or 1 cor-
responding to the uncompromised and compromised status
of nodes, respectively. The nature of a network component
significantly influences its vulnerability to compromise. In
this context, we distinguish between two types of nodes, de-
noted as Ti, which can take values from the set {AND,OR}.
Specifically, AND nodes (e.g., administrative servers) are
susceptible to compromise only when all of their incoming
neighbors are compromised. In contrast, OR nodes (e.g.,
SQL server) can be compromised even if just one of their
incoming neighbors is compromised. The direction of edges
in the network graph is indicative of the potential attack path.
Regarding the relationships among the nodes, the ith node
is considered an in-neighbor of the jth node if the edge
(i, j) ∈ E exists. Consequently, the in-neighbor set of any
given node j can be explicitly denoted as Dj = {i ∈ N ∣
(i, j) ∈ E}. The presence of an edge (i, j) ∈ E indicates the
potential for the jth node to be compromised through node i.
The set P includes the exploit probabilities associated with
these edges, where ρij ∈ P means the probability that the
jth node is compromised through the ith node when node i
is already compromised. Additionally, we identify a subset
of nodes within the network, denoted as NL ⊂N , which are
exposed to direct external attacks. For each node l in this
subset, its corresponding exploit probability is represented
as ρl.

III. OPTIMAL DETECTION FOR BAYESIAN ATTACK
GRAPHS

A. BAG Representation as a Hidden Markov Model (HMM)

1) State Process: The BAG can be viewed as a binary-
state Markov process, where binary-state variables represent
the compromise status of nodes. The state vector encom-
passes the compromise states of all (n) nodes within the
network and is denoted as xt = [xt(1), ...,xt(n)]. Here,
each xt(i) can get a value of 0 or 1, with xt(i) = 1
indicating the compromise of the ith component at the time
step t and, conversely, xt(i) = 0 denoting its uncompro-
mised state. Consequently, the state vector xt = (0,0,⋯,0)
signifies a network entirely devoid of compromises, while
xt = (1,1,⋯,1) indicates a network in which all nodes have
been compromised. As such, the state vector can take any
of the 2n possible state values, collectively represented as
{x1,⋯,x2n}.

As the attack spreads across the network, the graph nodes
undergo compromised status changes. The propagation of
the attack depends on the external attack probabilities, the
internal exploit probabilities, the security level of the nodes

indicated by the nodes’ type, and the mitigation made to
remove the compromises in the network. For example, AND
nodes resist single threats in their in-neighbor set, as all
nodes in the set must be compromised for a successful
breach at an AND node. In contrast, OR nodes can be com-
promised with just one compromised in-neighbor. Similarly,
large exploit probabilities and external attacks increase the
vulnerability of the network to breaches.

A common way to remove network compromises is by
applying automated security patches on selected comput-
ers/servers with potential compromises. Despite the sim-
plicity of this approach (resulting from the possibility of
being performed remotely in the background), these com-
puter/server compromises may not be certainly removed, es-
pecially in domains with new and difficult-to-detect attacks.
Reimaging is another common way to remove compromises
in network components, which requires reinstalling machines
and servers. Despite the cost and potential disruptions in
network performance, this approach has a high success rate
in removing compromises. The unsuccessful removal occurs
in the case that attackers have stolen the server/computer
credentials (e.g., domain passwords), in which reinstalling
might not fully secure the device. For simplicity, we refer
to any type of action for removing compromises as reimag-
ing. Let at−1 ⊂ N be a subset of nodes selected for the
reimaging process at the time step t. We assume that (1−α)
is the success probability of removing the compromise at
any selected node, where 0 ≤ α ≤ 1 is the probability
of unsuccessful removal of compromise. The value of α
depends on the complexity of the reimaging process; a more
extensive patching or reimaging process corresponds to a
smaller α value.

Depending on the type of node, the conditional probability
that the jth node is compromised at the time step t, given
the state of the nodes at the time step t−1 (denoted as xt−1)
and the set of reimaged nodes (at−1 = {i1, ..., ir} ⊂ N ), can
be written as:
● AND Nodes:

P (xt(j) = 1 ∣ xt−1,at−1) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1j∉at−1 + α1j∈at−1)[ρj + (1 − ρj) ∏
i∈Dj

ρij1xt−1(i)=1]

if xt−1(j) = 0
1j∉at−1 + α1j∈at−1 if xt−1(j) = 1,

(1)
● OR Nodes:

P (xt(j) = 1 ∣ xt−1,at−1) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1j∉at−1 + α1j∈at−1)[ρj + (1 − ρj)[1−

∏
i∈Dj

(1−ρij1xt−1(i)=1)]] if xt−1(j) = 0,

1j∉at−1 + α1j∈at−1 if xt−1(j) = 1,
(2)

where 1condition is equal to 1, when the condition holds (i.e.
condition = True), and 0 otherwise (i.e. condition = False).
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With binary-state variables, one can calculate the probability
of the jth variable being 0 with P (xt(j) = 0 ∣ xt−1,at−1) =
1 − P (xt(j) = 1 ∣ xt−1,at−1).

2) Measurement Process: This paper considers a realis-
tic scenario where the network components are monitored
partially and imperfectly. In practice, network compromises
might not be definitively detectable by routine network
monitoring. In particular, it can be difficult to identify
more sophisticated and newer types of attacks on computers
and servers. Meanwhile, monitoring network compromises
demands resources, time, and costs, which are often limited
in practical settings, and excessive monitoring can also delay
network operations. Therefore, a small subset of nodes is
often monitored to ensure network security. Consider st−1,
which consists of the indices of m nodes chosen for mon-
itoring at the time step t. These indices, {i1, ..., im} ⊂ N ,
are selected in advance at time step t− 1 for the subsequent
network monitoring at time step t. The resulting observations
from this selection are collectively denoted as yt, where
yt(i) represents the observation obtained from node st−1(i).

In this paper, we assume the potential compromise is
monitored with probability (1 − q) where 0 ≤ q ≤ 1 denotes
the probability of missing the compromise in the monitoring
process. The observation process described above can be
expressed at time step t as:

yt(i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if xt(st−1(i)) = 1 with probability 1 − q
0 if xt(st−1(i)) = 1 with probability q

0 if xt(st−1(i)) = 0 with probability 1

,

(3)
for i = 1, ...,m. Accurate monitoring systems can be repre-
sented by small q values, whereas larger q values represent
networks with more advanced compromises or less accurate
monitoring systems.

B. Optimal MMSE Attack Detection

Let a0∶t−1 = (a0, ...,at−1) be the sequence of the reimaged
nodes, and s0∶t−1 = (s0, ..., st−1) and y1∶t = (y1, ...,yt) be
the selected monitoring nodes and associated observations up
to the time step t. The detection objective is to find the best
estimate of network compromises at any given time step.
This can be formulated as finding the attack detector x̂t∣t
of the true state xt by minimizing a criterion that measures
the difference between the detected and the true unobserved
attack. One of the most popular criteria is mean-squared error
(MSE), formulated as:

C(xt, x̂t∣t) = E [∣∣xt − x̂t∣t∣∣22 ∣ a0∶t−1, s0∶t−1,y1∶t] , (4)

where ∣∣.∣∣22 is the squared L2 norm (i.e. MSE). The estimate
that minimizes MSE is called the minimum mean square
error (MMSE) attack detector and can be obtained as:

x̂MS
t∣t = argmin

x̂t∣t∈Ψ
C(xt, x̂t∣t) , (5)

where Ψ is the set of all possible attack detectors. The
solution for this optimization problem resembles the exact

solution obtained by Kalman Filtering for linear and Gaus-
sian state-space model [32].

We define the thresholding operator v, which acts on
any vector v ∈ [0,1]n and sets v(i) = 1 if v(i) > 1/2,
and 0 otherwise, for i = 1, . . . , n. The following theorem
characterizes the exact optimization solution in (5).
Theorem 1: Given a0∶t−1, s0∶t−1 and y1∶t be the reimaged
nodes, the monitored nodes, and the observations, up to time
t. The exact optimal MMSE attack detector at time step t can
be achieved as:

x̂MS
t∣t = E [xt ∣ a0∶t−1, s0∶t−1,y1∶t] , (6)

with optimal conditional MSE

CMS
t∣t =

n

2
−

n

∑
i=1
∣E [xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t] −

1

2
∣ . (7)

The error takes the values 0 ≤ CMS
t∣t ≤ n/2, and the operator

∣.∣ represents the absolute value. The smaller values of CMS
t∣t

indicate a more precise attack detection, while the larger
values indicate a higher expected attack detection error. The
operator E[.] applied to the expected value of the state vector
transforms the values of the vector greater than 0.5 to 1 and
less than or equal to 0.5 to 0.

Proof: Given the sequence of observation y1∶t at nodes
s0∶t−1, we seek a detector x̂t∣t of the true compromise xt by
solving the minimization in (5). This minimization can be
expanded as:

x̂MS
t∣t = argmin

x̂t∣t∈Ψ
C (xt, x̂t∣t)

= argmin
x̂t∣t∈Ψ

E [∣∣xt − x̂t∣t∣∣22 ∣ a0∶t−1, s0∶t−1,y1∶t]

= argmin
x̂t∣t∈Ψ

n

∑
i=1

E [∣xt(i) − x̂t∣t(i)∣2 ∣ a0∶t−1, s0∶t−1,y1∶t] .

= argmin
x̂t∣t∈Ψ

n

∑
i=1

E [∣xt(i) − x̂t∣t(i)∣ ∣ a0∶t−1, s0∶t−1,y1∶t] ,

(8)
where the last line is obtained given that ∣∣v∣∣22 = ∣∣v∣∣1 =
∑n

i=1 ∣v(i)∣ for a Boolean vector ∣v∣.
The minimization in (8) can be achieved by choosing

x̂t∣t(i) that minimizes E[∣xt(i)−x̂t∣t(i)∣ ∣ a0∶t−1, s0∶t−1,y1∶t],
for i = 1, . . . , n. Since the state variables are Boolean, the
minimizer is given by:

x̂MS
t∣t (i) = 1E[xt(i)∣a0∶t−1,s0∶t−1,y1∶t]>1/2

= E[xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t] ,
(9)

In other words,

x̂MS
t∣t = E[xt ∣ a0∶t−1, s0∶t−1,y1∶t] . (10)

The optimal conditional MSE can also be expressed as:

CMS
t∣t =

n

∑
i=1

P (x̂MS
t∣t (i) ≠ xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t) , (11)
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where

P (x̂MS
t∣t (i) ≠ xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 −E[xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t]
if E[xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t] > 1/2

E[xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t] , otherwise

=min{E[xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t],
1 −E[xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t]}.

(12)

Substituting (12) into (11) leads to

CMS
t∣t =

n

2
−

n

∑
i=1
∣E[xt(i) ∣ a0∶t−1, s0∶t−1,y1∶t] −

1

2
∣ .

(13)
The last expression in (11) is derived from the identity
min{a, 1 − a} = 1/2 − ∣a − 1/2∣, which is true for values
of a between 0 and 1.

C. Exact Calculation of Optimal Attack Detector

This section presents our recursive algorithm for calculat-
ing the optimal MMSE attack detector. Let A = [x1, . . . ,x2n]
be a n× 2n matrix consisting of an arbitrary enumeration of
possible network compromises. We define the conditional
probability distribution of the compromise-status vector at
time step t given the information up to time step t as:

Πt∣t(i) = P (xt = xi ∣ a0∶t−1, s0∶t−1,y1∶t) , i = 1, . . . , 2n.
(14)

Using (6) and (14), we can formulate the optimal MMSE
attack detector as follows:

x̂MS
t∣t = E [xt ∣ a0∶t−1, s0∶t−1,y1∶t] = AΠt∣t. (15)

Similarly, using (7) and (14), we can compute the optimal
conditional MSE as:

CMS
t∣t =

n

2
−

n

∑
i=1
∣ (AΠt∣t)i −

1

2
∣ , (16)

where (AΠt∣t)i represents the probability of node i being
compromised at time step t, given information up to time
t − 1.

Under the reimaged nodes at−1 let Mt(at−1) be the 2n×2n
transition matrix of the Markov chain:
(Mt(at−1))ij = P (xt = xi ∣ xt−1 = xj ,at−1)

=
n

∏
l=1
(ηijl (at−1)1xi(l)=1 + (1 − ηijl (at−1))1xi(l)=0) ,

(17)

for i, j = 1, . . . , 2n; where

ηijl (at−1) = (1l∉at−1 + α1l∈at−1)1xj(l)=0[ρl + (1 − ρl)

∏
r∈Dl

ρrl1xj(r)=1]1Nl=AND + (1l∉at−1 + α1l∈at−1)1xj(l)=0

[ρl + (1 − ρl)(1 −∏
r∈Dl

(1 − ρrl1xj(r)=1))]1Nl=OR

+ (1l∉at−1 + α1l∈at−1)1xj(l)=1.
(18)

Note that 1Nl=AND is 1 if node l is an AND node and 0
otherwise. Similarly, 1Nl=OR is 1 if node l is an OR node and
0 otherwise, and the expression in (18) is derived according
to (1) and (2).

Furthermore, we define the update vector, Tt(yt, st−1)
given the observation vector yt from nodes st−1 at time step
t:

(Tt(yt, st−1))i = P (yt ∣ xt = xi, st−1)

=
m

∏
l=1

P (yt(l) ∣ xt = xi, st−1)

=
m

∏
l=1

P (yt(l) ∣ xt (st−1(l)) = xi (st−1(l)))

=
m

∏
l=1
∣(q − 1)xi (st−1(l)) − yt(l) + 1∣,

(19)

for i = 1, . . . , 2n, where the last expression in (19) is deduced
based on the observation model presented in (3).

Algorithm 1 Optimal Detection for Bayesian Attack Graphs

1: Initialization: Π0∣0.

2: for k = 1,2, . . . do

3: Prediction: Πt∣t−1 = Mt(at−1)Πt−1∣t−1.

4: Update: Πt∣t =
Tt(yt,st−1) ○Πt∣t−1
∣∣Tt(yt,st−1) ○Πt∣t−1∣∣1

.

5: MMSE Attack Detector: x̂MS
t∣t = AΠt∣t .

6: Optimal MSE: CMS
t∣t =

n
2
−∑n

i=1 ∣ (AΠt∣t)i − 1
2
∣.

7: end for

Fig. 1: The 10-node BAG used for our numerical experiments.

We also define Πt∣t−1 as the predictive posterior of com-
promise status at time step t as:

Πt∣t−1(i) = P (xt = xi ∣ a0∶t−2, s0∶t−2,y1∶t−1) , i = 1, . . . , 2n.
(20)

A recursive computation of Πt∣t−1 can be performed as
follows:

Πt∣t−1 = Mt(at−1)Πt−1∣t−1 . (21)
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Fig. 2: The average true attack detection under 2, 4, 6, and 8 monitored nodes when (a) 2 random nodes are reimaged at any given time;
(b) no reimaging.

With the information available up to time step t, we can
express the posterior distribution of attacks at time t as
follows [33]–[35]:

Πt∣t =
Tt(yt, st−1) ○ Πt∣t−1

∣∣Tt(yt, st−1) ○ Πt∣t−1∣∣1
, (22)

where ○ is the component-wise multiplication of two vectors.
The steps of the proposed detection method are provided

in Algorithm 1. The computational complexity of the al-
gorithm is of the order O(22n) since it requires the use
of a transition matrix to compute the predictive posterior
distribution.

IV. NUMERICAL EXPERIMENTS

The numerical experiments presented in this section assess
the performance of our proposed attack detection method.
We focus on the network illustrated in Fig. 1, originally
presented in [31], [36] (minor modification is made to
suit the network to our context). This BAG comprises 10
nodes, resulting in a total of 210 = 1,024 possible network
compromise states. We assume a uniform prior for initial
network compromises, i.e., Π0∣0(i) = 1/210, i = 1, ..., 210.
All results in these experiments are averaged over 100
independent runs. Network vulnerabilities, denoted by ρij ,
are as follows:

ρ12=0.5, ρ14=0.6, ρ25=0.4, ρ36=0.35, ρ39=0.4,

ρ47=0.7, ρ54=0.6, ρ58=0.5, ρ62=0.5, ρ87=0.7,

ρ98=0.5, ρ108=0.5, ρ109=0.4.

The vulnerability of three nodes to external attacks is denoted
by the following parameters: ρ1=0.6, ρ3=0.7, ρ10=0.6.

In the first experiment, the observation uncertainty q is set
to 0.2, indicating the inaccuracy of the monitoring system
in capturing the compromise. Likewise, the inaccuracy of
the reimaging is set to α = 0.2. The average detection
accuracy for different numbers of monitoring nodes is shown
in Fig. 2. Fig. 2(a) represents the case where 2 random
nodes are selected for reimaging at any time step. As can
be seen, higher accuracy is achieved when more nodes are

used for monitoring network compromises. The accuracy
rate increases at early time steps as the uncertainty in
network compromises due to the uniform prior fade out upon
monitoring more nodes. However, after 6 to 7 time steps, the
accuracy becomes, on average, constant (while fluctuating)
and larger for cases with more monitoring nodes. Fig. 2(b)
represents similar results when there is no reimaging. Com-
promised nodes, in this case, stay compromised and are
likely to spread attacks rapidly to the entire network. Despite
being more catastrophic, this case is easier for state detection.
This is evident by the larger detection accuracy in all cases
compared to 2 reimaged nodes per step in Fig. 2(a). In the
event of no reimaging, there are fewer switches from 0 to
1 or from 1 to 0, which ultimately has helped to achieve
higher detection accuracy and fewer fluctuations.

The average detection error of each node associated with
the result in Fig. 2(a) with 2 reimaging nodes per step is
shown in Fig. 3. It can be seen that the error decreases
as more observations become available. Furthermore, mon-
itoring more nodes leads to lower errors. Comparing the
error for various nodes, one can see that the least detection
error is obtained for node 8, which is an AND node with
3 connections from nodes 5, 9, and 10. The compromise
in this node requires all neighboring nodes to be compro-
mised and, at the same time, all exploits from neighboring
nodes to be successful (see equation (1)). This makes the
node less vulnerable than others, which can be seen in
fewer possible dynamics and less average detection error.
Fig. 4 shows the average compromise rate obtained without
reimaging, random reimaging of 1 node and 2 nodes per
time step. The number of randomly monitored nodes per
step is two. There are 100 trajectories of length 20 with
uncertainty parameters q = 0.2 and α = 0.2. It can be
seen that the average true compromise rate decreases as
the number of reimaging nodes increases. The reduction
is especially evident for AND nodes (nodes 2, 4, and 8)
since the removal of compromise at their single in-neighbor
can prevent them from being compromised. However, the
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Fig. 3: The average detection error per node under 2, 4, 6, and 8 monitored nodes and 2 randomly selected nodes for reimaging.

Fig. 4: The average true and detected compromise rate per node under no reimaging, and 1-node and 2-node reimaging.

OR nodes could still be compromised, even if one of their
neighboring nodes becomes uncompromised. Comparing the
results of the proposed detection policy and the true compro-
mise rates, one can see that the detection accuracy is very
high under no reimaging. This comes from the fact that all
nodes under no reimaging become compromised and stay
at that status, leading to high detection accuracy. However,
a larger detection error can be seen with two reimaging
nodes. The reason is that the spread of attacks becomes
more challenging once reimaging takes place, especially in
scenarios where imperfect reimaging poses another layer of
uncertainty regarding the compromised status of the nodes.
Nodes 1, 3, and 10 are directly susceptible to external attacks,
making them more prone to compromise. Therefore, it is
expected that they have higher compromise rates than other
nodes. However, the fact that they are likely to be and remain
compromised makes it easier to detect their state. As we can
see, nodes 1, 3, and 10 exhibit a smaller difference between
true and detected compromises.

Fig. 5: The average detection error with respect to the reimaging
uncertainty (α).

The next part of the numerical experiment analyzes how
reimaging uncertainty affects the performance of the pro-
posed detection method. Fig. 5 represents the average attack
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Fig. 6: The average detection error with respect to the monitoring
uncertainty (q).

detection error with respect to reimaging uncertainty when a
random reimaging node is selected over all, AND, and OR
nodes. Two nodes are randomly monitored with the measure-
ment uncertainty of q = 0.2 per step. It can be seen that the
error is largest under the highest uncertainty in the reimaging
process (i.e., values of α close to 0.5). The two ends of
α = 0 and α = 1 represent the perfect reimaging and no
reimaging scenarios, respectively. Therefore, the minimum
error has been obtained given the minimum uncertainty of
cleaning or not cleaning the compromises in these two cases.
Comparing the reimagining in AND and OR nodes, one
can see that similar trends have been obtained when the
reimagining is over all, AND or OR nodes. For α = 0.5,
which corresponds to the most uncertain reimaging process,
reimaging over AND nodes has a less negative impact
on detection performance. This comes from the fact that
the AND nodes are less likely to be compromised; thus,
reimaging them does not significantly affect the detection
error.

Fig. 6 represents the average error of attack detection
per step with respect to the monitoring uncertainty. A node
is randomly reimaged at any given time with α = 0.4. q
represents the uncertainty in observing the compromise at 2,
4, 6, 8 randomly monitored nodes per step. It can be seen
that the error is minimum for q = 0 under 8 monitored nodes
and is larger for smaller monitored nodes. As monitoring
uncertainty increases, the average detection error increases in
all cases. In particular, q = 1 represents the case in which the
monitored node will show uncompromised results, regardless
of whether it is compromised. This has led to a relatively
larger detection error than the smaller uncertainty values of
the monitoring at various monitored nodes. Monitoring will
be ineffective in that case (q = 1) since it does not provide
any information to detect network compromises.

V. CONCLUSION

Cybersecurity aims to detect attacks in the network ac-
curately and promptly to prevent their spread. The main
challenges in detection are partial monitoring due to re-
source limitations and difficulty in detecting and removing

complex attacks. This paper derives the optimal minimum
mean square error (MMSE) attack detection for a general
class of BAGs under uncertain monitoring and reimaging.
The optimal solution resembles the Kalman filtering method
derived for linear Gaussian state-space models. The proposed
attack detection method is implemented with a recursive
and efficient matrix-form algorithm. The performance of the
proposed method has been demonstrated for attack detection
of a network containing 10 nodes when the network is
compromised through external attacks. Our future work will
study the security analysis of larger networks, including
systematizing detection, monitoring, and defense in large and
complex networks.
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[18] M. Husák, J. Komárková, E. Bou-Harb, and P. vCeleda, “Survey of
attack projection, prediction, and forecasting in cyber security,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 640–660,
2018.

[19] B. Asvija, R. Eswari, and M. Bijoy, “Bayesian attack graphs for
platform virtualized infrastructures in clouds,” Journal of Information
Security and Applications, vol. 51, p. 102455, 2020.

[20] K. Wu, H. Qu, and C. Huang, “A network intrusion detection method
incorporating Bayesian attack graph and incremental learning part,”
Future Internet, vol. 15, no. 4, p. 128, 2023.

[21] M. Alali and M. Imani, “Inference of regulatory networks through
temporally sparse data,” Frontiers in control engineering, vol. 3,
p. 1017256, 2022.

[22] A. Ravari, S. F. Ghoreishi, and M. Imani, “Optimal recursive expert-
enabled inference in regulatory networks,” IEEE control systems
letters, vol. 7, pp. 1027–1032, 2022.

[23] S.-c. Liu and Y. Liu, “Network security risk assessment method based
on HMM and attack graph model,” in 2016 17th IEEE/ACIS inter-
national conference on software engineering, artificial intelligence,
networking and parallel/distributed computing (SNPD), pp. 517–522,
IEEE, 2016.

[24] S. Wang, Z. Zhang, and Y. Kadobayashi, “Exploring attack graph for
cost-benefit security hardening: A probabilistic approach,” Computers
& security, vol. 32, pp. 158–169, 2013.

[25] Y. Ma, Y. Wu, D. Yu, L. Ding, and Y. Chen, “Vulnerability associ-
ation evaluation of internet of thing devices based on attack graph,”
International Journal of Distributed Sensor Networks, vol. 18, no. 5,
p. 15501329221097817, 2022.

[26] S. Chockalingam, W. Pieters, A. Teixeira, and P. v. Gelder, “Bayesian
network models in cyber security: a systematic review,” in Nordic
Conference on Secure IT Systems, pp. 105–122, Springer, 2017.

[27] A. Sahu and K. Davis, “Structural learning techniques for Bayesian
attack graphs in cyber physical power systems,” in 2021 IEEE Texas
Power and Energy Conference (TPEC), pp. 1–6, IEEE, 2021.

[28] M. Frigault, L. Wang, S. Jajodia, and A. Singhal, “Measuring the
overall network security by combining CVSS scores based on attack
graphs and Bayesian networks,” in Network Security Metrics, pp. 1–
23, Springer, 2017.

[29] C. Liang, F. Wen, and Z. Wang, “Trust-based distributed Kalman
filtering for target tracking under malicious cyber attacks,” Information
Fusion, vol. 46, pp. 44–50, 2019.

[30] C.-Z. Bai, V. Gupta, and F. Pasqualetti, “On Kalman filtering with
compromised sensors: Attack stealthiness and performance bounds,”
IEEE Transactions on Automatic Control, vol. 62, no. 12, pp. 6641–
6648, 2017.

[31] Z. Hu, M. Zhu, and P. Liu, “Adaptive cyber defense against multi-stage
attacks using learning-based POMDP,” ACM Transactions on Privacy
and Security (TOPS), vol. 24, no. 1, pp. 1–25, 2020.

[32] M. S. Grewal, A. P. Andrews, and C. G. Bartone, Kalman filtering.
Wiley Telecom, 2020.

[33] M. Alali and M. Imani, “Reinforcement learning data-acquiring for
causal inference of regulatory networks,” in American Control Con-
ference (ACC), IEEE, 2023.

[34] S. H. Hosseini and M. Imani, “An optimal Bayesian intervention policy
in response to unknown dynamic cell stimuli,” Information Sciences,
2024.

[35] A. Ravari, S. F. Ghoreishi, and M. Imani, “Optimal inference of hidden

Markov models through expert-acquired data,” IEEE Transactions on
Artificial Intelligence, 2024.

[36] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk
management using Bayesian attack graphs,” IEEE Transactions on
Dependable and Secure Computing, vol. 9, no. 1, pp. 61–74, 2011.

3934

Authorized licensed use limited to: Northeastern University. Downloaded on June 02,2025 at 15:41:41 UTC from IEEE Xplore.  Restrictions apply. 


