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Abstract— This paper focuses on joint state and parameter
estimation in partially observed Boolean dynamical systems
(POBDS), a hidden Markov model tailored for modeling
complex networks with binary state variables. The majority
of current techniques for parameter estimation rely on com-
putationally expensive gradient-based methods, which become
intractable in most practical applications with large size of net-
works. We propose a gradient-free approach that uses Gaussian
processes to model the expensive log-likelihood function and
utilizes Bayesian optimization for efficient likelihood search
over parameter space. Joint state estimation is also achieved
alongside parameter estimation using the Boolean Kalman filter.
The performance of the proposed method is demonstrated
using gene regulatory networks observed through synthetic
gene-expression data. The numerical results demonstrate the
scalability and effectiveness of the proposed method in the joint
estimation of the model parameters and genes’ states.

I. INTRODUCTION

Most real-world systems consist of multiple interacting
elements, which are monitored using noisy data collected
from various sensors [1], [2]. A special and important class
of networked systems are those with binary state variables
(i.e., nodes), such as gene regulatory networks [3]–[9],
attack graphs [10], [11], sensor networks [12], [13], brain
networks [14], and social networks [15]. Partially-observed
Boolean dynamical systems (POBDS) model is designed to
represent intricate networks with binary state variables [16],
[17]. POBDS consolidates all existing Boolean network
frameworks [18], [19]. Moreover, it possesses the capability
to effectively incorporate arbitrary non-binary data without
the necessity for ad-hoc binarization procedures. The solu-
tion to the state estimation problem for fully-known POBDS
is investigated in [20]. However, the estimator requires full
knowledge of the system model, which is often unknown or
only partially known in complex practical networks.

The maximum likelihood (ML) and Bayesian estimators
have also been developed for domains modeled by partially-
known POBDS. These methods are applicable to small
networks with finite parameter spaces [21], [22]. However,
the huge computational cost associated with these approaches
makes them intractable or inefficient in large systems or sys-
tems with large parameter spaces. More specifically, the com-
putational cost of evaluating the likelihood/posterior grows
exponentially with respect to the size of networks/systems;
also, searching for the best set of parameters becomes ex-
tremely costly in domains with larger unknown parameters.
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These limit the application of existing methods, as well as
conventional techniques, such as gradient-based maximum
likelihood or expectation maximization methods [23]–[26].
All these methods rely on frequent evaluations of the log-
likelihood (or its gradient), which makes their computations
intractable in most realistic systems.

This paper addresses the challenges associated with joint
state and parameter estimation of POBDS with significant
uncertainty in their models. A Bayesian optimization ap-
proach is introduced to tackle the computationally challeng-
ing task of inferring the unknown parameters of these mod-
els. Initially, a Gaussian process (GP) regression is used as a
surrogate model to represent the expensive-to-evaluate log-
likelihood function over the parameter space. This surrogate
model is Bayesian and offers a sample-efficient representa-
tion of the log-likelihood function. Subsequently, a sequential
and sample-efficient search using Bayesian optimization is
achieved by sequentially maximizing an acquisition function
(defined over the surrogate model). This efficient search
over the parameter space differentiates our proposed method
from existing approaches, allowing for more scalable, ac-
curate, and computationally efficient parameter estimation.
Meanwhile, the joint state estimation, alongside parameter
estimation, is achieved using the Boolean Kalman filtering
theorem.

The application of the proposed method has been demon-
strated using gene regulatory networks observed through a
single time series of cDNA microarray data. This includes
joint estimation of genes’ states, as well as noise and other
expression parameters associated with cDNA microarray
data. Numerical experiments conducted over the p53-MDM2
network demonstrate the superiority of the proposed method
compared to existing approaches.

II. BACKGROUND AND PROBLEM FORMULATION

A. POBDS Model

The POBDS consists of state and measurement pro-
cesses [16], [17]. The state process {xk;k = 0,1, . . . T}
specifies the underlying dynamics of systems, which xk =
[xk(1), ...,xk(n)]T represents the state values of n compo-
nents of the system at time step k. We assume that each
element of the state vector at every time step is drawn from
the binary set {1,0}. The states are not directly observable,
rather a vector of measurements yk is observed through the
measurement process: {yk;k = 1,2, . . . , T}. The POBDS
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model is described as [27]:

xk = f (xk−1,nk, θ) (referred to as state process)

yk = h (xk,vk, θ) (referred to as measurement process)
(1)

for k = 1,2, . . . , T . Here, θ represents a vector of unknown
parameters drawn from the set Θ, nk denotes the noise of
transition at time step k, f is defined as the network function,
and h refers to a function that maps the present state (xk)
and observation noise (vk) to the measurement space. It is
important to note that the noise processes nk,vk;k = 1,2, . . .
are assumed to be “white” in nature, signifying that the
noises at different time points are uncorrelated random
variables. Furthermore, we assume that these noise processes
are uncorrelated both with each other and with the initial
state x0.

B. Maximum Likelihood State and Parameter Estimation

Let θ ∈ Θ be a realization of the parameters of the POBDS
model, where Θ represents the space of parameters. The
parameter vector, θ, could consist of the state and measure-
ment process parameters in (1). Let y1∶T = (y1, ...,yT ) be
the available measurements. The objective is to estimate the
true parameters of the network according to the observed
measurements. The maximum likelihood (ML) estimate of
the parameters can be represented as:

θ̂ML = argmax
θ∈Θ

log p(y1∶T ∣ θ), (2)

where log p(y1∶T ∣ θ) is the logarithm of the likelihood
function, i.e., p(y1∶T ∣ θ).

The state estimation of POBDS can be computed accord-
ing to the ML estimate of the parameters as:

x̂ML
k∣T = argmin

x̂k∣T ∈{0,1}n
E [∣∣x̂k∣T − xk ∣∣22 ∣ y1∶T , θ̂ML] , (3)

for k = 1, ..., T , where x̂k∣T represents the estimate of the
system state at time state k given the information up to time
step T , ∣∣.∣∣22 is the squared L2 norm of the vector, and {1,0}n
is the set of all 2n possible state estimators. The ML state
estimator, x̂ML

k∣T , in (3) yields the minimum mean-square error
(MMSE) optimality related to the model ML estimate, i.e.,
θ̂ML. The expected error of state estimator, CML

k∣T , in (3) in
terms of the conditional mean-square error (MSE) is derived
as:

CML
k∣T = E [∣∣x̂

ML
k∣T − xk ∣∣22 ∣ y1∶T , θ̂ML] , for k = 1, ..., T ,

(4)
where CML

k∣T falls within the range of 0 to n. When CML
k∣T

is closer to the value of n, it indicates a greater estimation
error, while a value close to 0 represents a more precise
state estimation. In the following sections, our proposed
approach for the computation of the ML estimate of state
and parameters is described.

III. PROPOSED MAXIMUM LIKELIHOOD ESTIMATORS

In this section, we introduce a framework for efficient
and scalable solutions for the maximization problems in (2)
and (3). Let (x1, . . . ,x2n) represent an arbitrary listing of

all the possible state vectors (e.g., x1 = [0, ..., 0]T ,x2n =
[1, ..., 1]T ), and A = [x1⋯x2n] be a matrix of size n × 2n
which consists of all the the possible Boolean states. With the
sequence of measurements denoted as y1∶T , the subsequent
state conditional distribution vectors related to θ ∈ Θ are
defined as:

Πθ
k∣T (j) = p (xk = xj ∣ y1∶T , θ) ,

Πθ
k∣k(j) = p (xk = xj ∣ y1∶k, θ) ,

Πθ
k∣k−1(j) = p (xk = xj ∣ y1∶k−1, θ) ,

(5)

for j = 1, . . . , 2n, and k = 1,2, . . . , T . Πθ
0∣0 is also defined as

the initial distribution of the states related to model θ.
The transition matrix (Mθ

k ) of a Markov chain represented
by the parameters θ is defined as the following 2n×2n matrix:

(Mθ
k )ij = p(xk = xi ∣ xk−1 = xj , θ) , (6)

for i, j = 1, . . . , 2n and θ ∈ Θ. If all the parameters belong
to the measurement process, the transition matrix in (6) is
independent of θ.

Furthermore, when provided with an observation vector
yk at time step k, the update matrix T θ

k (yk) corresponding
to the parameter vector θ, is a 2n × 2n diagonal matrix with
the diagonal elements described as:

(T θ
k (yk))jj = p (yk ∣ xk = xj , θ) , (7)

for j = 1, . . . , 2n and θ ∈ Θ, where p(⋅) refers to a probability
mass function for discrete measurements or a probability
density function for continuous measurements. Notice that
the update matrix in (7) becomes independent of θ, if the
parameters only belong to the state process.

Our goal is to formulate the matrix representation and pro-
vide an accurate approach for computing the log-likelihood
function in equation (2). In that regard, the log-likelihood
function is expressed as the following:

L(θ) = log p(y1∶T ∣ θ)

=
T

∑
k=1

log p(yk ∣ y1∶k−1, θ),
(8)

where

p(yk ∣ y1∶k−1, θ) =
2n

∑
i=1

p(yk ∣ xk = xi, θ)p(xk = xi ∣ y1∶k−1, θ)

=
2n

∑
i=1
(T θ

k (yk))iiΠθ
k∣k−1(i)

= ∣∣T θ
k (yk)Πθ

k∣k−1∣∣1 ,
(9)

where ∣∣.∣∣ for vector v is defined as: ∣∣v∣∣1 = ∑2n

i=1 v(i).
The computation of state predictive posterior distribution,

i.e., Πθ
k∣k−1, can be achieved recursively through [28]:

Πθ
k∣k−1 = Mθ

kΠ
θ
k−1∣k−1 , (10)

with the posterior update as:

Πθ
k∣k =

T θ
k (yk)Πθ

k∣k−1
∣∣T θ

k (yk)Πθ
k∣k−1∣∣1

, for k = 1, ..., T . (11)
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Replacing (9) into (8) leads to:

L(θ) =
T

∑
k=1

log ∣∣T θ
k (yk)Πθ

k∣k−1∣∣1. (12)

Evaluating the log-likelihood function for any given θ ∈ Θ is
of order O(22n T ) due to the size of transition and update
matrices involved. This complexity grows exponentially with
the number of nodes in the network (i.e., Boolean variables),
making the calculation of the log-likelihood extremely dif-
ficult for large networks. Meanwhile, the parameter space
Θ in which the log-likelihood needs to be searched is often
large in practice, preventing the application of the existing
optimization techniques [24], [26] (e.g., gradient-based max-
imum likelihood or expectation maximization techniques),
which rely on excessive log-likelihood evaluations.

Bayesian Optimization for ML Parameter Estimation:
We assume that the parameter space Θ is a compact and
continuous set. The goal is to find the maximizer of the
log-likelihood function in (2) through a minimum number
of computationally expensive log-likelihood evaluations. To-
ward this, we employ Gaussian process (GP) regression [29]
to capture the log-likelihood function. The GP model offers
a Bayesian and sample-efficient way to represent the log-
likelihood function, which can be expressed as follows [30],
[31]:

L(θ) = GP (µ(θ), k(θ, θ)) , (13)

where µ(.) is the mean function, and k(., .) is the kernel
function. The kernel function models the correlation of the
log-likelihood function across the samples in the parameter
space. We define the kernel function as:

k(θ, θ′) = σ2
f exp

⎛
⎜
⎝
−
∣θ∣
∑
i=1

(θ(i) − θ′(i))2

li

⎞
⎟
⎠
, (14)

where ∣v∣ is the size of vector v, θ and θ′ are two arbitrary
parameter vectors, li is the length-scale hyperparameter
associated with the ith parameter, and σ2

f is called the scale
factor hyperparameter. The aforementioned hyperparameters
represent the correlation between the two parameter vectors.
One option for the mean function µ(.) in (13), which
characterizes the initial shape of the log-likelihood function
across parameter space, is the constant mean function. Hy-
perparameters of the GP (µ(.), σf , and li) can be learned by
optimizing the marginal likelihood function of the GP model
at each iteration.

Let θ1∶t denote the initial t samples drawn from the
space of parameters with the corresponding log-likelihood
values L1∶t = [L(θ1), ..., L(θt)]. Using this information, we
can represent the posterior distribution of the GP model as
follows:

L(θ) ∣ θ1∶t, L1∶t ∼N (µt
θ,Σ

t
θ), (15)

where

µt
θ = µ(θ) +K(θ,θ1∶t)K

−1
(θ1∶t,θ1∶t) (L1∶t −µ(θ1∶t)),

Σt
θ = k(θ,θ) −K(θ,θ1∶t)K

−1
(θ1∶t,θ1∶t)K

T
(θ,θ1∶t) ,

(16)

and
µ(θ1∶t) = [µ(θ1), ..., µ(θt)]T ,

K(Θ,Θ′) =
⎡⎢⎢⎢⎢⎢⎣

k(θ1, θ′1) . . . k(θ1, θ′r)
⋮ ⋱ ⋮

k(θl, θ′1) . . . k(θl, θ′r)

⎤⎥⎥⎥⎥⎥⎦
,

(17)

for Θ = {θ1, ..., θl}, Θ′ = {θ′1, ..., θ′r}.
By employing the posterior distribution of the GP model,

a sample-efficient sequential optimization can be achieved
through the following:

θt+1 = argmax
θ∈Θ

αt(θ), (18)

where αt(θ) is the acquisition function at iteration t, which
relies on the constructed surrogate model predictions rather
than the true log-likelihood function. Expected Improvement
(EI) [32], [33] is a well-known acquisition function fre-
quently used in Bayesian optimization. EI is defined as:

αt(θ) = (µt
θ −Lt

max) Φ((µt
θ −Lt

max) /
√

Σt
θ)

+
√

Σt
θ ϕ((µ

t
θ −Lt

max) /
√

Σt
θ),

(19)

where ϕ(.) and Φ(.) are the probability density function and
cumulative density function of standard normal distribution,
and Lt

max denotes the largest log-likelihood value up to the
current iteration.

The sequential selection in (19) guarantees a balance be-
tween exploration and exploitation during the parameter esti-
mation process [32]. The sequential selection process persists
until either a predetermined number of likelihood evaluations
have been completed or when consecutive iterations fail to
reveal significant changes in the GP model’s maximum value.
Upon termination of the sequential search, the parameter
vector that achieves the highest assessed log-likelihood value
represents the ML estimate of the parameters. This can be
formulated as:

θ̂ML ∶= θm∗ , where m∗ = argmax
m∈{1,...,N}

Lm , (20)

where N stands for the total number of log-likelihood
evaluations.
Boolean Kalman Smoother for ML State Estimation:
In this part of the paper, we provide an algorithm for
computation of the ML estimate of the state defined in (3).
According to the Boolean Kalman smoother theorem [21],
the exact solution for the optimal model-specific MMSE state
estimation problem in (3) can be expressed as:

x̂ML
k∣T = E [xk ∣ y1∶T , θ̂ML], for k = 1, ..., T , (21)

where v ∈ {1,0}n and v(i) =
⎧⎪⎪⎨⎪⎪⎩

0 if v(i) ≤ 1
2

1 if v(i) > 1
2

for i =

1, . . . , n. The expected error of the state estimator in (3) can
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also be obtained as:

CML
k∣T =

n

∑
i=1

min{E [xk(i) ∣ y1∶T , θ̂ML] ,

1 −E [xk(i) ∣ y1∶T , θ̂ML]}.
(22)

The expressions in (21) and (22) require the distribution of
the state associated with the ML estimate of the parameters.
In that regard, the backward probability distribution vector
is defined as:

∆θ̂ML

k∣s (i) = p(ys+1∶T ∣ xk = xi, θ̂ML) , i = 1, . . . , 2n, (23)

for s, k = 0, . . . T . We also define ∆θ̂ML

T ∣T = 12n , where 12n

represents a vector of size 2n, consisting of elements that
are all equal to 1. The smoothed posterior distribution can
be then calculated as:

Πθ̂ML

k∣T =
Πθ̂ML

k∣k−1 ○∆
θ̂ML

k∣k−1
∣∣Πθ̂ML

k∣k−1 ○∆
θ̂ML

k∣k−1∣∣1
, k = 1, . . . , T, (24)

where ○ is the Hadamard product. According to equa-
tions (21)-(24), the ML estimate of state and its expected
error at time step k can be expressed as:

x̂ML
k∣T = AΠθ̂ML

k∣T ,

CML
k∣T = ∥min{AΠθ̂ML

k∣T ,1n −AΠθ̂ML

k∣T }∥
1

,
(25)

where 1n denotes a vector of length n where every element
is equal to 1, and the minimum applies componentwise.

Fig. 1: p53-MDM2 network pathway model.

IV. NUMERICAL EXPERIMENTS

A. POBDS Model of Gene Regulatory Networks

Gene regulatory networks (GRNs) consist of a large
number of interacting genes observed via gene-expression
data. In GRNs, the POBDS state process in (1) is written as
follows [27], [30]:

f(xk−1,nk, θ) = Cxk−1 ⊕ nk , (26)

where “⊕” is the componentwise module-2 addition. Assum-
ing that the GRN consists of n genes, the connectivity matrix
C is an n × n matrix in which the element in the ith row
and jth column specifies the type of regulation from the jth
component to the ith component. The positive and negative
regulations are represented by +1 and −1, respectively, and
0 denotes no interaction between the two components. Note

that the operator v assigns 0 to the vector elements less than
or equal to zero and assigns 1 to the others.

Further, nk represents the process noise, where the bits
in nk are considered to be i.i.d. with P (nk(i) = 1) = p,
for i = 1, . . . , n. 0 ≤ p ≤ 1

2
is a parameter that specifies the

stochasticity in the state process, where p = 0 corresponds
to no stochasticity and p = 1

2
represents the largest possible

stochasticity. In our numerical experiments, we assume that
the parameter p is unknown, and its value is inferred through
the available data.

The specific type of gene-expression data determines the
characteristics of the POBDS observation model. This paper
considers the following Gaussian model, which is often used
for representing cDNA microarrays or live-cell imaging-
based assays [34]:

yk(i) = m + δxk(i) + vk(i) , k = 1,2, . . . , T, (27)

for i = 1, ..., n. vk(i) ∼ N (0, σ2) represents a zero-mean
Gaussian noise vector with uncorrelated elements, m denotes
the baseline expression which refers to the “zero” states,
δ is the differential expression value, and T represents
the trajectory length of the gene-expression data. cDNA
microarray technology has enabled scientists to study gene
activity by placing DNA pieces from different genes onto a
surface. Through the use of these arrays, researchers can
analyze and compare the levels of gene expression in a
given sample. In practice, the gene expression parameters
in (26) and (27) are unknown and should be estimated
according to the available data. In this section, we assume
that θ = (p,m, δ, σ) is the vector of parameters, and all four
parameters should be estimated simultaneously according to
the available data.

B. Results for p53-MDM2 Gene Regulatory Network

The proposed framework is applied to evaluate the per-
formance of the widely known p53-MDM2 GRN [16], [17],
[35]–[37]. This GRN is tasked with encoding the p53 tumor
suppressor protein in humans. Activation of the p53 gene
is essential for cellular responses to diverse stress signals
that may ultimately cause genome instability. Figure 1
provides a visual representation of the pathway diagram
for the p53-MDM2 network, with suppressive interactions
(-1) shown using blunt arrows and activating regulations
(+1) represented by standard arrows. Considering xk =
(ATM,p53,Wip1,MDM2) as the vector of states, the con-
nectivity matrix can be expressed as:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 +1 0 −1
0 0 +1 +1
−1 −1 0 +1
0 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(28)

In our experiments, the trajectory length T is considered to
be 100. Further, the parameter vector consists of continuous
elements θ = (p,m, δ, σ), where θ∗ = (0.01,20,30,5) and
Θ = [0,0.2] × [10,32] × [20,42] × [1,21]. This space of pa-
rameters, denoted by Θ, is very large. This large size makes it
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Fig. 2: Average absolute error of the p53-MDM2 network estimated parameters (p,m, δ, σ) from their true values obtained by the
proposed method and simulated annealing.

Fig. 3: Comparison of the average maximum log-likelihood
progress of the proposed approach and simulated annealing.

impractical to use common optimization methods like those
based on gradients or expectation maximization, as they
require numerous evaluations of the computationally expen-
sive log-likelihood function. Meanwhile, the computational
complexity of the log-likelihood function’s gradients poses
another challenge in performing the gradient-based optimiza-
tion approaches for the inference process. However, heuristic
optimization methods such as Simulated Annealing [38] have
been extensively used for efficiently optimizing continuous
parameters across large parameter spaces, particularly in the
context of biological networks [39], [40]. Hence, we have
chosen Simulated Annealing as a comparison method with
our proposed method. All the experiments are repeated 10
times, and the figures display the mean values and the 95%
confidence intervals for all the results.

The proposed ML estimation method is employed using
100 gene-expression data (T = 100) over the p53 network for
150 iterations (i.e. log-likelihood evaluations). Notice that
each iteration refers to a single log-likelihood evaluation.

We also conduct additional experiments using the Simu-
lated Annealing method for comparison purposes. Note that
the Simulated Annealing parameters have been fine-tuned
according to the current problem. The average maximum
log-likelihood progress with respect to each iteration is
represented in Figure 3. The red dashed line shows the log-
likelihood of the true underlying parameters, i.e., θ∗. Further,
the maximum log-likelihood values achieved by the proposed
method and Simulated Annealing are indicated by the black
and blue lines, respectively. One can see that in all the steps,
on average, our proposed method has a better performance
than Simulated Annealing. This shows how efficient our
method is in searching the large parameter space, Θ.

We also obtained the absolute error of the estimated pa-
rameters from their true values for the previous scenario and
presented it in Figure 2. One can notice that our estimation
method reaches a smaller average error (closer to zero) in
almost all the steps for all the parameters, which shows
the superiority of the proposed method in comparison to
Simulated Annealing. Furthermore, the estimates for each
of the four parameters using three independent runs of our
method are shown in Figure 4. The red line shows the true
value of each parameter, and the black, blue, and green lines
represent the estimates of our proposed method in the first,
second, and third runs, respectively. We can see that except
in the second and third runs for parameter δ, the estimates
for the four parameters converge to the true values within
the 150 iterations, which again shows the efficiency in terms
of parameters despite the complexity of the problem.

Additionally, the ML state estimator has been performed
alongside the ML parameter estimator. Considering that
the trajectory length is T , we define the normalized state
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Fig. 4: Estimation of the unknown parameters (p,m, δ, σ) for p53-MDM2 network using three independent runs of the proposed method.

Fig. 5: The progress of average normalized state estimation error
for the proposed method.

estimation error as:
1

T

T

∑
k=1
∣∣x̂ML

k∣T − xk ∣∣1. (29)

Figure 5 represents the average normalized state estimation
error for the results shown in Figures 2 and 3. This figure
shows that the average normalized error converges to zero
very quickly (in less than 50 iterations), which means that
the state estimation method is able to correctly estimate the
true system states efficiently.

Finally, to test the accuracy of our parameter estimation
method, we performed experiments on two cases with 250
iterations and recorded the estimated parameter values. Table
I shows the root mean square error (RMSE) values for our
parameters averaged over 10 runs for two cases: the first case
with the true parameters θ∗ = (0.1,20,30,5), and the second
case with the true parameters θ∗ = (0.01,20,30,5). From the
RMSE values shown in Table I, one can see that the proposed

TABLE I: RMSE Values for Different Parameters

Case 1 Case 2

Parameters True Values RMSE True Values RMSE

ppp 0.1 0.02 0.01 0

mmm 20 0.894 20 0

δδδ 30 1.673 30 2.683

σσσ 5 0.632 5 0

estimator is capable of reaching small RMSE values with a
limited number of log-likelihood evaluations, thus, indicating
the high accuracy of our method. Furthermore, by comparing
the RMSE values of case 1 and case 2, it can be seen that
all the RMSE values decrease to zero from case 1 to case
2, except the RMSE value for δ, which increases. This is
because the attractor of the p53 network is “0000”, meaning
that all genes spend most of their time in an inactivated
state [21]. Thus, for case 2, with p = 0.01, the available
gene-expression data is a noisy realization of parameter
m according to the measurement model (27). A lack of
representation of state values of genes at the activated state
makes inferring the differential expression parameter (δ)
extremely difficult. Consequently, we can see that despite the
zero error in the inference of all other parameters, a larger
RMSE can be seen for the differential expression parameter.

V. CONCLUDING REMARKS

This paper focuses on estimating the state and parame-
ters of dynamic networks with binary state variables. We
employed the partially-observed Boolean dynamical systems
(POBDS) model for representing these complex networked
systems. Given that the parameters of POBDS are contin-
uous, we developed a scalable and sample-efficient max-
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imum likelihood (ML) parameter estimation built on the
Bayesian optimization scheme. Then, the ML estimate of
the state is achieved using the Boolean Kalman filtering
theorem. A recursive and efficient matrix-based solution for
the computation of the estimator is introduced, followed by
performance analysis using an example of gene regulatory
networks observed through gene-expression data. Our future
research will study the estimation of large networks with
non-continuous unknown parameters.
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