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Bayesian reinforcement learning
for navigation planning in
unknown environments

Mohammad Alali* and Mahdi Imani

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA,
United States

This study focuses on a rescue mission problem, particularly enabling
agents/robots to navigate efficiently in unknown environments. Technological
advances, including manufacturing, sensing, and communication systems, have
raised interest in using robots or drones for rescue operations. Effective rescue
operations require quick identification of changes in the environment and/or
locating the victims/injuries as soon as possible. Several techniques have
been developed in recent years for autonomy in rescue missions, including
motion planning, adaptive control, and more recently, reinforcement learning
techniques. These techniques rely on full knowledge of the environment
or the availability of simulators that can represent real environments during
rescue operations. However, in practice, agents might have little or no
information about the environment or the number or locations of injuries,
preventing/limiting the application of most existing techniques. This study
provides a probabilistic/Bayesian representation of the unknown environment,
which jointly models the stochasticity in the agent's navigation and the
environment uncertainty into a vector called the belief state. This belief state
allows offline learning of the optimal Bayesian policy in an unknown environment
without the need for any real data/interactions, which guarantees taking actions
that are optimal given all available information. To address the large size of belief
space, deep reinforcement learning is developed for computing an approximate
Bayesian planning policy. The numerical experiments using different maze
problems demonstrate the high performance of the proposed policy.

KEYWORDS

rescue operations, Markov decision process, reinforcement learning, Bayesian decision-
making, navigation planning

1 Introduction

Advances in robotics, sensing, manufacturing, and communication in recent years have
raised interest in the use of autonomous agents instead of humans for rescue missions.
Examples include using robots for time-sensitive and dangerous rescue missions, such
as response to earthquakes, mass shootings, hurricanes, and warfare zones. The utmost
factor in rescue operations is quick identification of changes in an environment or locating
victims/injuries in need of critical care.

A maze environment containing a single robot and a victim is shown in Figure 1. Let
the yellow cells represent the unknown parts of the environment after the disaster, which
could possibly be blocked with debris. Three possible navigation paths are shown in the
maze. Given the unknown parts of the environment, should the agent take the right path,
which is the closest to the victim? Wouldn’t it be better to take the longer black path without
any potential blockages (no yellow cells)? How can the robot change its decision as more
information about the victim’s condition and the environment appears?
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Several techniques for achieving autonomy in rescue operations
have been developed in recent years, with reinforcement learning
(RL) being one of the prominent methods. In recent years,
RL techniques have achieved remarkable success across various
domains, including network security, biological applications, and
robotics (Alali and Imani, 2023, 2024; Elguea-Aguinaco et al,
2023; Ravari et al., 2023; Alali et al., 2024; Asadi et al., 2024). For
autonomy in rescue operations, various RL techniques have been
developed for single-agent and multi-agent settings (Imanberdiyev
et al., 2016; Zhang et al., 2018; Bohn et al., 2019; Lin et al., 2019;
Niroui et al., 2019; Sampedro et al., 2019; Ebrahimi et al., 2020;
Hu et al., 2020; Wu et al., 2021). These RL techniques can be
divided into model-based and simulation-based categories. The
model-based RL approaches (Imanberdiyev et al., 2016; Pham et al.,
2018; Ladosz et al., 2019; Sampedro et al., 2019; Xu et al., 2019)
assume full knowledge (including potential changes/casualties)
about the agent’s environment during the rescue; the simulation-
based RL techniques (Akcakoca et al., 2019; Wang et al., 2019;
Blum et al, 2020; Hamid et al, 2021; Jagannath et al., 2021;
Falcone and Putnam, 2022), on the other hand, rely on the
availability of simulators to represent the environment during
disaster response. However, the environment during the rescue
operations is often unknown or partially known to the human
and agent, and it is prudent for an agent to make decisions given
the incomplete available information. For instance, in response
to an earthquake, the number and location of victims/injuries
and the extent of damage to the environment are often unknown
at the early stages of rescue operations. This prevents the
applicability of existing RL techniques in time-sensitive and
unknown environments. It should also be noted that the RL
techniques cannot be employed for learning a policy through
real interactions with the unknown environment, as RL often
requires thousands of interactions to learn to act in an unknown
environment, which is impossible due to the time-sensitive nature
of rescue operations.

Several techniques have been developed to combine Bayesian
approaches with RL methods (Ghavamzadeh et al., 2015; Imani
and Ghoreishi, 2022). Most of these approaches aim to address
the sample efficiency of RL methods during the learning
process (Ghavamzadeh et al., 2015; Imani et al., 2018; Kamthe
and Deisenroth, 2018). Meanwhile, Bayesian approaches have
been used to quantify the discrepancies between real-world
environments and simulations, facilitating sim-to-real policy
transfer (Feng et al., 2022; Rothfuss et al., 2024). Other Bayesian
approaches have also been developed in multi-agent and human-
AT teaming to learn the intentions and preferences of teammates
using partial data (Lin et al., 2024; Ravari et al., 2024a,b; Zhang
et al., 2024a,b). The most relevant class of approaches considering
uncertainty in environments is Bayes-adaptive methods (Guez
etal., 2012; Rigter et al., 2021; Zintgraf et al., 2021). These methods
iteratively update the posterior distribution of the environment
and simultaneously update the planning policy based on the latest
interactions. However, these methods are applicable to domains
with finite state spaces and fully unknown environments, where a
huge number of interactions are needed to learn the distribution of
the transition probabilities. These methods are also not applicable
to partially known environments or domains with large and
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continuous state spaces and often perform poorly under limited
available interactions.

Motion planning (Zhang et al., 2013; Perez-Imaz et al., 20165
Cabreira et al., 2019; de Almeida et al., 2019; Boulares and Barnawi,
2021) is another class of model-based approaches which aims to
take advantage of the system model for offline planning. Examples
of these methods are LQR/LQG methods and their non-linear
variations (Richter and Roy, 2017; Kim et al., 2019, 2021; Bouman
et al, 2020; Rosolia et al, 2022), which rely on the full or
rich knowledge of the system model for planning or replanning,
which prevents their applications in unknown environments. In
this regard, active learning, model-predictive control, and online
learning techniques have been developed for decision-making in
unknown environments (Juang and Chang, 2011; Luo et al., 2014;
Greatwood and Richards, 2019; Li et al., 2019; Chang et al., 2021).
These methods mostly rely on a greedy and local view of the
environment and perform poorly in complex realistic domains.
Safety in navigation in unknown environments has also been
studied extensively in the literature (Bajcsy et al., 2019; Krell et al.,
2019; Tordesillas et al., 2019), which focuses on guaranteeing safety
in domains with sensitive constraints.

This study develops a reinforcement learning Bayesian
planning policy for rescue operations in unknown environments.
We define a belief state, which keeps a joint probabilistic
representation of all the possible models for the environment
and agent movements. The belief state allows a Markov decision
process (MDP) formulation of an agent in unknown and uncertain
environments, allowing propagation of the entire uncertainty
offline without the need for interaction with the real environment.
We formulate the exact optimal Bayesian planning policy, which
guarantees that an agent acts optimally given all available
information. A Bayesian solution is introduced using a deep
reinforcement learning technique, allowing offline learning of the
policy over the whole belief space. We demonstrate that the
proposed reinforcement learning Bayesian policy can be employed
in real time for rescue missions in stationary and non-stationary
environments as any additional information unfolds (i.e., without
the need for learning or retraining). The effectiveness of the
proposed method is demonstrated using comprehensive numerical
experiments using different maze problems.

The article is organized as follows. In Section 2, the background
of the Markov decision process is briefly described. In Section 3,
the optimal Bayesian policy is formulated, and a solution based
on deep reinforcement learning is introduced. Section 4 includes
a discussion about the capabilities and complexity of the proposed
method. Finally, Section 5 and Section 6 contain numerical
examples and concluding remarks, respectively.

2 Background—A Markov decision
process

A Markov decision process (MDP) can be defined by a 4-tuple
(S, A, Ty, Rg), where S is the state space, A is the action space,
Tp:S x A x S is the unknown or partially known state transition
probability function such that Ty(s,a,s’) = P(s' | s,a,0) with the
set of unknown parameters # € ®,and Rg:S x A xS — R
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FIGURE 1

another victim/injury, the rescue robot should plan to take the best path.

Illustrative example of the rescue operation problem in unknown environments. The rescue robot can take any of the black, green, and orange paths
to get to the victim. Depending on the type of the unknown cells and whether each of the unknown cells is more probable to be wall, empty, or

is a bounded reward function with a real value outcome such that
Ry(s,a,s’) encodes the reward earned when action a is taken in state
s and the agent moves to state s’ in model @. The reward function
could be model-dependent in general form, meaning that similar
transitions in different models of the environment might lead to
different rewards.

If a given MDP parameterized by 6 is a true environment, we
could define a deterministic policy 7 : S — A as a mapping from
states to actions. The expected discounted reward function at state
s € S after taking action a € A and following policy 7 afterward is
defined as follows:

h
t
E Y Ro(st-ar,8¢41) | S0 = 8,20 = a,a1: 0 Nﬂ,0:|.

=0
(1)
where y is a discount factor. In the finite-horizon case, the discount

qg(s,a):E[

factor is typically set to 1. In the infinite-horizon case (h = c0), the

discount factor y € [0, 1) is included to obtain a finite sum.
According to (1), the expected return under the optimal policy

7y for the environment modeled by 6 can be expressed as follows:

h
t
E Y Ro(sp-ap,8041) [ so = 8,80 = a,a1:00 ~ n;ﬂ],

=0
()
where qp(s,a) indicates the expected discounted reward after

qz(s,a):E[

executing action a in state s and following optimal policy
wy afterward. An optimal model-specific policy 7, attains the

maximum expected return as 7, (s)
seS.

argmax, . 4 q;(s, a), for
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If the true environment model, that is, 8%, was fully known
to the agent, the optimal policy 7. could be obtained using (2).
However, the environment is often unknown in rescue operations,
and the agent needs to make decisions given partial knowledge
about the environment and/or the number or location of injuries.

3 Proposed Bayesian planning policy
for decision-making in unknown
environments

3.1 Probabilistic/Bayesian formulation of
unknown and uncertain environments

This section first describes the challenges of decision-making
in an unknown environment, followed by the proposed framework
to overcome these challenges effectively. Let us consider a maze
problem as a simple example of navigation in rescue operations,
where each cell in the maze could be one of the followings:
wall “W”, empty “E”, or injury/victim “I”. Figure 2 represents
an example of a maze problem, where the black and white
colors indicate the wall and empty cells, respectively. The yellow
cells are unknown parts of the environment, which each could
potentially be a wall (i.e., blocked after a disaster), be empty, or
contain a victim/injury. Let {cl, ..., ("™} be m unknown cells in the
environment, where ¢ € {W,E, I}. These unknown cells lead
to 3™ different possible environment models (i.e., maze models)
denoted by ® = {0',..,0%"}, where 6/ = [0/(1),---,0/(m)]
represents an MDP parametrized by #/, and 6/(I) denotes the type
of the Ith unknown cell under the jth maze model. Note that the
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FIGURE 2

Visualization of the 6 x 4 maze problem. This maze has three
unknown cells, where each could be either wall, empty, or
victim/injury.

three unknown cells in Figure 2 lead to 33 27 possible maze
models, where the environments could potentially contain 0, 1, 2,
or 3 injuries. In practice, the true environment @* is often hidden
among all the possible models in ®. For each # € ©, the number
and location of injuries and walls vary. Therefore, the optimal
model-specific policies for these models [see Equation (2)] are
different in general; thus, the policies obtained for different models
6 € O cannot be directly employed in unknown environments. It
should be noted that the maze problem and its uncertain elements
are examples of rescue missions, and the proposed method in
this study could be applied to more general environments and
environment uncertainties.

Let the initial knowledge about possible models for the true
environment be represented as g [P(0* = 0),..,P(O*
03m)], where P(6* = 6/) shows the prior probability that the
jth model is the true environment model and 2]321 Vo (j)

1. Let ag.p_; {ag,...,a_1} be the agents actions and

$1:k {s1,...sx} be the agent states until time step
k. The posterior distribution of models can be expressed

as follows:

l9k=[P(0* =0"[s1.1080:k-1)," - » P(O* =93m|51:k’ao:k—1)]’

©)
where 9(j) indicates the posterior probability that model 6/
is the true model, and we also have 213;”1 Uk(j) = 1. Note

that if no prior information about the models is available, a
uniform (i.e., non-informative) distribution can be employed. If
the independency of distribution of m unknown cells is assumed,
the posterior probability could be defined over the m unknown
cells as (Equation 4)

pr=[P(c' = W |s;.pa0:k-1), P(c" = E|'s1:1,00:-1),

P(Cl =1T] sl:k>aO:k71)>"' > P(Cm =W]| sl:k)a():kfl)) (4)

P(" =E|s1:pa0:4-1)> P(c" =T|s1.ka0:k-1)]s
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which leads to the posterior distribution over all the possible
models (i.e., ;) as

m

(i) = l_[ |:10i(l):ka(31 —2)+ lei(l):Epk(?)l —-1)
=1

()
+ lgigye; pk(3l)],

for i = 1,...,3™ and 1 opgition returns 1 if the condition is true, and
0 otherwise. Note that the rest of the study is derived for the general
form of posterior in (3) without the independence assumption.

We define the belief state at time step k as the vector of joint
agent’s state (i.e., s) and posterior probability of unknown models
D

by = s, 9],

(6)

where by, is a vector of size |s;| +3™, and by = [sg, ¥o]” is the initial
belief state. sy is the agent state at time step k taking a value in S,
and ¥y is a vector of size 3", where each element takes continuous
values between 0 and 1, and the sum of elements is 1. Thus, the
space of belief state can be expressed as B = {S X A3zn}, where Azm
represents a simplex of size 3".

3.2 MDP representation in belief space

In Section 3.1, we described that navigation in an unknown
environment could be represented by an unknown MDP. Here,
we show that the belief state defined in (6) allows representation
of the navigation task in an unknown environment through a
known MDP. The rationale behind this mapping is that, unlike
in unknown MDPs, reinforcement learning techniques can be
employed to find the optimal policy for a known MDP. In the
following paragraphs, we first define the MDP in the belief space,
then we represent all its elements, and finally, we formulate the
reinforcement learning policy in this known MDP.

The MDP in the belief space can be expressed through
(B, A, T, f(), where B is the belief state space, T:Bx A x B
is a known transition probability in the belief space such that
T(b,a,b') = P(b' | b,a) represents the transition from the belief
state b to b’ if action a is taken. Note that [as proven in (7)]
this transition is Markov and does not need the true model of
the environment since the belief state contains the entire system
uncertainty. Finally, the expected reward function in the belief state
is represented by R: B x A — R, where R(b,a) represents the
expected immediate reward if action a is taken at belief state b.

Here, we provide proof that the belief transition is a Markov
process. Let by, a, ..., ax_1, bg be the sequence of actions and belief
states up to time step k. If action aj is taken at time step k, the
probability of the next belief state can be expressed as follows:

P(bit1 | ag, by, ... bo, a0) = P(sgt1, Ok+1 | @k, Sk Vs - S0, Do a0)
= P(sg+1 | A Sk Uk o> S0, D05 0)
X P(Ok41 | Skt1> %> Sk ks - S05 D05 Ap)
= P(sit1 | ks Sk B P(Fgr1 | Skge15 3 Sk k)

= P(Skq1> Dkt1 | @k Sk D) = P(bryr | ag, by),
(7)
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where the third line is written given the fact that ¥} includes
the posterior distribution of models given all sequences of states
and actions up to time step k. Therefore, the terms dropped in
lines 2 and 3 of Equation (7) are already included in the posterior
distribution 9.

Given that b = [s, 79]T is the current belief state, and a is the
selected action at the current time, the next belief state can be one
of the following |S| vectors:

b, = [st, 91T w.p. P(b} | b,a)

b, = [s3, 9] w.p. P(b, | b,a)
b |ba~ .2 ? ? . ®

bg = [s!°,9/5]" wp. P(bjg |b,a)

The next belief state contains the next state and new posterior
= [s\9]]"
possible next belief states if the agent moves to state s’ after taking

distribution of models. For instance, b; is one of S

action a in state s. The posterior ¥/ upon observing s' can be
computed as follows:

9/() =P(0* =0/ | s =s',a,5,0)
_ P(s'|s,a,00)0()) )
Y P(si | s,a,00) (D)

M i=1,.,|S.
The probability for all |S| possible next belief state transitions

forj=1,..,

denoted in (9) can be computed according to the Markovian
properties of the belief transition in (7). In particular, the
probability that the ith belief state b] = [s', /] is observed upon
taking action a in belief state b = [s, 91T can be expressed as
follows:

P(biyy =bj | by

= P(sgr1 =8, 011 = 0] | by =b,ar = a)

=Db,a; = a)

=P(sgp1 =5 | s = 8,0 = 0,2 = a) (10)
X P(0y1 = O] | spy1 = 8,8 = 8,0 = 0, a; = a)
= P(sgt1 = st sy = 8,0 = 0,8, = a).

The last line of (10) is obtained given that U3 can only take a
single value ] [computed in (9)] with probability 1.

The expected reward function R(b,a) in the belief space can be
expressed in terms of the reward function of the true environment
as follows:

R (b = [s,l?]T,a) =

Bl

= Pb;=[s,0]]"
i=1

Z P(b’' = [s,91" | b,a)Eg|y [Re(s,a,8)]

bI,SI}

3m
|b,a) ) 9/()
I=1

Ryi(s,a,s),

(11)
where Rez(s, a,s’) represents the improvement in the rescue
operation after taking action a and moving from state s to s’ in
model 8'. It can be seen that the reward function in (11) depends
on the posterior distribution of models and the uncertainty in the
agent state transitions.

Aside from the ability to incorporate any arbitrary reward
functions defined for the true environment, the proposed belief
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formulation allows actively exploring/learning the unknown parts
of the environment. For instance, robots/drones might be deployed
in rescue operations to quickly identify road closures or other
environmental casualties. Depending on the application, the
uncertainty at specific/targeted locations or the entire environment
might be needed. The immediate gain in uncertainty reduction at
belief state b =
follows:

[s,9]7 after taking action a can be expressed as

R (b = s, ﬂ]T,a) = —Ey_ty.17pa [H®') — H®)]

El

:_Zpbwba [H®)) — H(®)] 12)
|S|

—Zp(bwba)z (D log v{() — 0 () log ¥ (1)],

where H(¥) denotes the remaining entropy (i.e., uncertainty) in
the environment model represented by the posterior probability
¥. Larger positive reward values correspond to more reduction of
entropy/uncertainty upon moving to belief state b’. The entropy
takes its lowest value 0 when representing the case where a single
model has posterior probability 1 and others 0. Therefore, this
reward function helps agents toward taking actions that provide
the highest information about unknown parts of the environment,
which is crucial in rescue operations. Note that depending on our
application, a more general form of the reward function can be
employed for learning the navigation policy.

3.3 Deep reinforcement learning Bayesian
planning policy

The MDP defined in the belief space is fully known as it
considers the posterior of all the possible environment models. We
define u: B — A as a deterministic policy, which associates an
action to each sample in the belief space. The optimal policy in the
belief space can be formulated as follows:

wh(b) = argmaxIE |:Zy R(bs,ar) | bo = b,ag: 00 ~ M} (13)
t=0

for any b € I3; where the maximization is over all possible policies
in the belief space. The expectation in (13) is with respect to the
stochasticity in the belief space denoted in (8), which includes the
uncertainty in the state transition and the posterior of environment
models reflected in the belief states. The optimal Bayesian policy,
w*, yields optimality given all available information reflected in the
belief state (i.e., the agent and model uncertainty). Finding the exact
solution for the optimization problem in (13) is not possible due to
the large size of the belief space. In the following paragraphs, we
provide an approximate solution for finding the optimal Bayesian
policy in (13) using a deep reinforcement learning approach.

This study employs the belief transition in (8) as a simulator
to generate offline trajectories required for training a deep RL
agent. These trajectories are belief transitions that propagate
the agent states and the environment uncertainty, thus, do not
require interaction with the real environment. Given the discrete
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nature of action space, we employ the deep Q-network (DQN)
method (Mnih et al, 2015) for learning the Bayesian policy in
(13). This approach aims to approximate the following expected
discounted reward function defined over the belief space:

o0

Q'(b,a) = E [Z y'R(br,ar) | bg =b,ag =a,a1:00 ~ /x*} ,
t=0

(14)

foranyb € Banda € A.

DQN approximates the Q-function in (14) using two feed-
forward deep neural networks, called Q-network and target-
network, represented by Q,, and Q,-, respectively. These two
neural networks share the same structure; the Q-network’s input
is the belief state, and its outputs are Qy(b,al), ..., Qy(b, alA), each
associated with an action. The initial weights for both Q-network
and target-network are set randomly.

For training of the neural networks, a replay memory D of fixed
size is considered. This memory is filled and replaced by repeated
episodes of belief states governed by actions generated from the
epsilon-greedy policy. Each episode starts from an initial belief state
bo = [so, %o]7, which, if unknown, can be selected randomly from
the belief space, that is, by € B. At step ¢ of the episode, an action
can be selected according to the epsilon-greedy policy defined using
the Q-network Qy as follows:

argmax,. 4 Qw(bs,a) w.p.1—e€

S 15
randomf{al, ..., a‘“‘“} (15)

a ~
W.p. €

where 0 < € < 1 is the epsilon-greedy policy rate, which controls
the level of exploration during the learning process.

Upon generating a fixed number of steps, the Q-network Q,,
should be updated according to a minibatch set of experiences
selected from the replay memory D. Letting

Z = (B D1, Fas )], ~ D, (16)
be selected as a minibatch set, the target values for updating the
Q-network can be computed as follows:

n = Fa1 +y max Q- (bus1, ), (17)
ac A
for n = 1,..., Nparch, where the target-network Q- is used for

computation of the target values. Using these target values, the
Q-network weights, w, can be updated as follows:

Nbatch N 2
w=w—aVy Z <}’n - Qw(bnain)) > (18)

n=1

where o is the learning rate, and the mean squared error is used
for the loss function in the weights update. The optimization in
(18) can be carried out using a stochastic gradient optimization
approach such as Adam (Kingma and Ba, 2015). Upon updating
w, the weights of the target-network, w—, should also be updated
using the soft update:

w =10-1)W + 1w, (19)

where 7 is a hyperparameter.
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It should be noted that the trajectories used in the DQN
method are acquired offline through the belief transition in (8). The
training can be stopped when performance improvement becomes
negligible, or a pre-specified performance is achieved. Upon
termination of the offline training, the Q-network approximates
the optimal Bayesian policy as u*(b) ~ argmax, . 4 Qw(b,a). This
Bayesian policy prescribes an action for any given belief state b € B;
thus, it can be employed in real time during the execution as the
new belief state is calculated according to the real interactions
with the environment. The major computations of the proposed
policy are during the offline process; during the execution, the
belief state needs to be tracked/updated, and the learned policy
reflected in the trained Q-network is applied according to the
latest belief.

4 Proposed Bayesian policy’s
complexity analysis and capabilities

In this section, we briefly describe the key differences between
the proposed method and some of the well-known techniques for
rescue operations. Then, we discuss the advantage and capabilities
of the proposed method as well as the computational complexity for
real-time implementation.

Let gg(s,a) be the optimal expected return for model 6
defined in (2). These values can be obtained offline using
dynamic programming or reinforcement learning approaches
tuned for any model § € ©. It should be noted that
the model-specific Q-values are defined over the original state
space and not the belief space. Assuming s; is the current
state of the agent and ¥y is the posterior distribution of
the environment models at time step k, the proposed optimal
Bayesian policy formulated in (13) and approximated using the
Q-network through (15)-(19) can be expressed in the belief space
as follows:

aj, = argmax Q*(by, a) ~ argmax Qy([si. 9], a).
ac A acA

(20)

Another well-known approach commonly used for learning
in unknown environments is the maximum aposteriori (MAP)
navigation policy, which relies on the underlying model-specific
policy with the highest posterior probability. This policy can be
expressed as follows:

ay = argmax gyup (Sk. ), (21)
acA k
where 0£AAP = argmaxyi.;_; m D (i).
In addition, active learning approaches (and their

variations) (Silver et al., 2012; Kaplan and Friston, 2018;
Choudhury and Srinivasa, 2020; Taylor et al, 2021; Rckin
et al, 2022, 2023) are widely used techniques for decision-
in unknown noted in their
these lookahead and
evaluate the options. A one-step procedure can be expressed

making environments. As

names, methods aim to actively

as follows:
3m
a = argmax Ey, [g; (s, a)] = argmaxz B (i) qzi(sk,a). (22)
acA acA
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Comparing policies in Equations (20-22), one can see that
the primary computation of all the methods is done in an
offline process. During the online execution, all methods require
updating the belief state (or the posterior probability of models),
followed by using the learned/computed Q-values obtained during
the offline process. The MAP policy in Equation (21) relies
on a single model (ie., a model with the highest posterior
probability). Thus, if several models yield the maximum posterior
probability or the model with the highest posterior is not
definitively distinguished from others, the decisions made by
the MAP policy become unreliable. Unlike the MAP policy,
the active learning approach in Equation (22) accounts for
the posterior of all models for decision-making. This policy
becomes more efficient in domains where the posterior is
peaked over a single model. If the posterior distribution is
uniform over the models, the active learning policy looks like
averaging according to various models’ Q-function. The main
difference between active learning and the proposed method
is the incapability of active learning methods to change the
posterior of the models (ie., acting to enhance modeling
information that can lead to better rewards). The active learning
decisions might keep the posterior distribution unchanged over
time, meaning that all models (including the wrong models)
contribute similarly in making decisions over time. By contrast,
the proposed Bayesian policy in Equation (20) learns the policy
over the state and posterior of models, meaning that the
action selection optimally influences the agent state and the
posterior of models in achieving the highest accumulated rewards.
This can be seen as taking actions that lead to moving to
belief states under which better navigation performance can
be achieved.

Aside from the efficiency of the proposed Bayesian policy
described above, another advantage of the proposed policy is
the generality of learning. The generality of learning refers
to the fact that the proposed policy could be employed for
a wide range of objectives. As described in Equations (11,
12), the reward could be defined for locating victims in the
environment, quick identification of the unknown parts of the
environment (i.e., changing the posterior distribution of models)
or any other reward functions that can be expressed using
the belief state. However, the active learning and MAP policies
in Equations (21, 22) can only consider the objectives (i.e.,
reward functions) that are defined according to the original state
space (i.e., not the posterior of models). These capabilities are
investigated and discussed in the next section through various
numerical experiments.

Scalability could be a limitation of our proposed method.
The size of the posterior distribution in Equation (3) grows
exponentially as the number of unknown cells increases in the
environment, and this leads to an increase in the size of the
belief space. This increases the computational complexity of
the proposed policy, making it intractable for domains with
uncertainty represented in continuous (or infinite-dimensional)
spaces. Note that the scalability of active learning and MAP policies
also increases with the uncertainty in the environment models. Our
future research will investigate approaches to scale the proposed
Bayesian policy to large environments with possibly large and
infinite number of environment models.
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5 Numerical experiments

In this section, the performance of the proposed Bayesian
policy is investigated using different maze problems with the
following two objectives: (1) locating the victims/injuries in
unknown environments as fast as possible; (2) exploring an
unknown maze environment as quickly as possible, modeled
through entropy reduction. Values of all the parameters used in our
numerical experiments are presented as follows: number of hidden
layers 3, number of neurons in hidden layers 128, « = 5 x 1074,
|D| = 10°, Npatch = 64, ¥ = 0.95, ¢ = 0.1, 7 = 1073, and the
update frequency for the Q-network is considered to be 4. Note that
all the experiments in this section are repeated for 1,000 trials, and
the average results along the 95% confidence bounds are displayed
in all the figures.

5.1 Locating injuries

5.1.1 6 x 4 maze problem

For our first set of experiments, we consider the 6 x 4 maze
shown in Figure 2. This maze consists of 5 walls and the agent
can be in any of the other 19 cells at each step. Furthermore, the
3 unknown cells indicated by yellow lead to 3* = 27 possible
maze models. For the actions, the agent at each step can select
right, left, down, or up. We also consider some stochasticity in the
environment as the agent moves to the anticipated direction with
probability of 0.8, or it will move to either of the perpendicular
directions with probability of 0.1. Each of the unknown cells could
contain an injury, be empty, or blocked by a wall. To guide the
agent to track three potential injuries, we define three new auxiliary
variables as ny = {11, 12, 13}, where each variable turns to 0 if
an agent moves to the corresponding unknown states and locates
an injury. Note that these auxiliary variables are needed to track
multiple objectives in the environment. Therefore, the state space
in this case contains the location of the agent (i.e., one of 19
possible locations in the maze) and the auxiliary variables. The
belief space size in this case is B = {{l,..,19} x {0, 1}® x
Aj7}. The reward function in the belief state is modeled using
(11), with Rg(s,a,s’) =
is located according to the maze model parameterized by 6, and

1 if upon moving to s’ a new injury

Ry (s,a,s’) = 0 otherwise.

Here, we assume that the agent can identify empty cells and
cells with injury if it moves to those states. Therefore, the transition
probability for model @ required for the belief state transition in
Equations (8, 9) can be expressed as follows:

0 o
P:s/ lt(si)=0(l) lfSl = SL

P(s' | s,a,0) = o o ,
Pev ifs' €S,

(23)

where S, contains the unknown cells, s{l is the Ith unknown cell,
and pz;(,’ is 0.8 if &’ is the neighboring cell to s at the direction
indicated by action a in the environment model @ and 0.1 if it is
in cross perpendicular neighborhood. Note that #(s’) indicates the
type of state s'; that is, W, E or I. In addition, 1,(i—g(p is 1 if the type
of state s’ and unknown cell @(l) is the same and zero otherwise.
Using the defined P(s' | s,a,0) and Equation (9), the posterior
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FIGURE 3
Agent movement trajectories under the proposed Bayesian policy in the 6 x 4 maze; each of the blue and red arrows corresponds to one

independent movement trajectory, and the difference in the trajectories is due to the movement stochasticity in the environment. The trajectories

are recorded using the proposed policy under two different initial distributions: (A) p =2, £, 21.p3 =p5 =1£, 2,21, B p) = (£, £, L] fori=1,2,3.
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FIGURE 4

(A) Performance comparison in the 6 x 4 maze with the true environment 8* = [W, /, /] and initial probabilities of unknown cells as

ps =14, % 1.p2 =pi =%, %, L1 (B) Performance comparison in the 6 x 4 maze with the true environment * = [/, /] and initial probabilities of

unknown cells as p§ = [2, £, 21, p% =pi =%, 1, L.
update in our problem can be explicitly formulated. According  E),P(c¢! = 1I)] consists of the prior probability of the ith
to Equation (5), we consider the independency assumption for  unknown cell.
the unknown cells, represented through the initial distribution ReLu is used as an activation function between each layer
po = [p(l),pg,pg], where p{) = [P(c = W),P(d = of our neural networks. Furthermore, a maximum of 50 steps is
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considered for testing our proposed planning policy; however, a
larger horizon of 250 steps is used for training purposes to account
for the discounted rewards in the final steps. In addition, the
proposed Bayesian planning policy is trained over 5,000 episodes
in each case.

To better show how different prior probabilities can affect the
agent’s decisions, we visualized the agent’s movements in the 6 x 4
maze problem using two cases in Figure 3. The prior probabilities
for all unknown cells are set to be equally distributed between wall,

%, %, %] fori=1,2,3), except for the
first unknown cell in the left maze, which is set to p(l) = [g, é, é].
The true environment is assumed to include a wall in the first

empty, and injury (i.e., p}) = [

unknown cell and injuries in the other two unknown cells. The
paths selected by the agent under the proposed Bayesian policy
are indicated in each maze in Figure 3. One can see that the agent
moves from left in Figure 3A since it has prior knowledge that the
first unknown cell is likely to be a wall. However, in Figure 3B, the
agent selects the right path since it predicts that this path leads to
the quickest rescue operation given the equal prior probabilities for
the unknown cells. Once the agent encounters the wall in the first
unknown cell, the Bayesian policy guides it to go back and reach out
to other potential injuries in the environment as quickly as possible.
Note that the agent’s movements are also uncertain, which can be
seen as the difference between the two trajectories shown in each
maze in Figure 3.

The average results for the proposed policy are compared with
three approaches; baseline approach, which is the reinforcement
learning (i.e., Q-learning) solution when the true model of the
environment is known, and MAP and active learning policies
formulated in Equations (21, 22). The baseline solution is the best
achievable solution if no uncertainty in the environment exists;
thus, it is used to assess how uncertainty in the environment model
can deviate the solutions of various policies from the solution
in the known environment. Figure 4A shows the average located
injuries and their confidence bounds using different navigation
policies for 1,000 trials and over the first 50 steps for the maze
environment shown in Figure 3A. As can be seen in Figure 4A, the
proposed policy has a superior performance compared to the active
learning and MAP policies as it matches the performance of the
baseline policy in all the steps, and after only 20 steps it can find
the two injuries in the environment successfully. Active learning
policy is the next best policy in this case, and it reaches maximum
performance after 50 steps. Notice that although active learning gets
to all the injuries after 50 steps, it still has a very low performance
in the first 30 steps, which is not desirable especially in situations
where we should get to the injuries in a timely manner. In addition,
we can see that the MAP policy has a better performance than active
learning in the first 32 steps; however, active learning performance
improves significantly after that and the MAP policy becomes the
worst policy since it shows poor performance even after 50 steps.

In the second test environment, similar prior probabilities are
used for our experiments (i.e.,p(l) = [%, é, é],p(z, = pg = [%, %, %]),
while in the true environment, all the unknown cells are considered
to be injuries. The obtained test results for this environment are
shown in Figure 4B. In this figure, we can see that the active
learning and baseline policies have the same performance, and
our method has the second best performance. This is because
in this test case all the unknown cells are injuries, whereas the
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FIGURE 5
Performance comparison in the 6 x 4 maze with the true
environment * = [W, /,/] and initial probabilities of unknown cells as

ph=1%% Lifori=1,23.

prior in our case has been set to have a higher probability for
wall for the first unknown cell. Regardless of setting a faulty prior
for our method, after only 20 steps, our method shows a high
performance in comparison with the baseline, and the performance
keeps increasing to almost the same as the baseline as the steps
increase. Moreover, we can see that the MAP policy again performs
poorly as to other methods.

Figure 5 shows the average results for the maze shown in
Figure 3B. All the unknown cells have the same initial probability
of being a wall, empty, or injury (i.e., p) = [%, %, %] fori =1,2,3).
One can see that our proposed policy has a better performance
than active learning and MAP policy as it reaches a performance
close to the baseline in only 30 steps. Active learning also reaches a
good performance after about 40 steps; however, it has much lower
performance than our approach specifically between steps 18 and
40. Finally, similar to the other previous cases, it can be observed
that the MAP policy has the worst performance in comparison with
others.

In the next set of experiments, the impact of different values
for the parameter pz;? in Equation (23) on the performance of our
proposed method is investigated. As described before, p:;? refers
to the movement stochasticity in the maze; a higher value of p:j
means that the movement is more deterministic and the agent
moves in the desired direction, and a lower value denotes that the
agent movement is more stochastic and it is more likely to end
up in one of the perpendicular directions. Four values of 1, 0.8,
0.6, and 0.4 are considered for p:;(,’. These values are tested on the
environment of Figure 3B, with all the unknown cells having the
%, %,%] for i = 1,2,3. The
average performance of the baseline method, the proposed method,

following prior probabilities: p), =
and the MAP policy in terms of average located injuries are shown

in Figure 6. Figure 6A represents the performance of different
policies at timestep 50. It can be seen that the best performance of
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the proposed policy is achieved at p:;(,) = 1, where it has performed
similarly to the baseline. The second best performance for the
proposed policy occurs under the value p:;(,) = 0.8, where our
policy has slightly smaller performance than the baseline policy.
The performance of our method under the values 0.6 and 0.4 is
lower and almost similar in both cases since both values represent
environments with high movement stochasticity. Moreover, it can
be seen that the worst performance is achieved by the MAP in all
the cases. Furthermore, Figure 6B shows the performance after 100
timesteps. In this case, our method’s performance under the values
of 0.8, 0.6, and 0.4 gets much closer to the baseline policy, whereas
the MAP policy still performs poorly. This clearly demonstrates the
robustness of our proposed method under different stochasticity
levels in the environment.

For further analysis, the impact of different unknown cells
is studied in the next set of experiments. We consider three
variations of the 6 x 4 maze problem. Figures 7A-C represent the
environments with two, three, and four unknown cells, respectively.
A uniform prior probability is used for all the unknown cells during
training, that is, [%, %, %]. Furthermore, for a fair comparison of
these environments during the test, two of the unknown cells are
assumed to contain victims/injuries as demonstrated in Figure 7,
and the other unknown cells in environments (Figures 7B, C) can
be either wall or empty. The average number of located injuries
achieved in all the environments at timesteps 10, 20, and 30
using different policies is reported in Table 1. The performance of
our proposed Bayesian policy is indicated by bold numbers. This
table shows that at each timestep, the performance of our method
decreases as the number of unknown cells (and the complexity of
the maze) increases. Furthermore, one can see that the performance
of our policy in all the environments and at all the timesteps
surpasses other policies’ performance, indicating the effectiveness
of our approach. This indicates that our method is capable of
reasoning about additional uncertainty in the environments to still
make effective decisions.
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5.1.2 4 x 4 maze problem

In this part, our policy is tested for locating injuries in a new
4 x 4 grid which is a smaller grid than the previous 6 x 4 maze
problem. This grid, visualized in Figure 8A, has three unknown
cells, leading to 27 possible environment models. The state space
of this maze can be written as S = {sl, o sh3 }. Considering three
auxiliary variables ny = {1, 12, n3} for tracking multiple targets,
the belief space size in this problem can be represented as B =
{{1,..,13} x {0, 1} x A,y}. For training our proposed policy,
we consider a case where the priors for the unknown cells are as
follows: pf) = [%, %, %] for i = 1,2,3. Furthermore, for testing
different policies, a true underlying environment with two injuries
and one wall is chosen as represented in Figure 8B. Figure 8C shows
the average located injuries achieved by different policies. It is
shown that our method has the best performance in all the steps and
exhibits a more similar behavior to the baseline policy compared to
active learning and MAP policies.

5.1.3 6 x 6 maze problem

In this subsection, we study the performance of the proposed
method for locating injuries in a 6 x 6 maze with three unknown
cells as depicted in Figure 9A, which is a larger maze than the
previous two maze problems. This maze has seven walls; this
leads to the following state and belief spaces for this maze: S =
(s}, ...s%}, B = {{1,..,29} x {0, 1} x Ap7}. The prior probabilities
of different unknown cells are assumed to be uniform during the
training of our policy. Moreover, a maze with two injuries and
one wall as shown in Figure 9B is considered for the tests. The
performance of our policy, MAP policy, and active learning policy
for this experiment is shown in Figure 9C. Our proposed policy
reaches a higher value in all the steps in terms of average located
injuries compared to the MAP and active learning policies. This
figure also denotes that the performance of our method matches the
performance of the baseline policy after 50 steps (almost 2), whereas
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FIGURE 7
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Visualization of the 6 x 4 grid problem with different numbers of unknown cells: (A) Two unknown cells. (B) Three unknown cells. (C) Four unknown
cells. For a more fair comparison, as shown in all the grids, two of the unknown cells are considered to be victims/injuries in the true underlying
environment (#*) when performing the tests, and the rest of the unknown cells in (B, C) could be wall or empty.

TABLE 1 Average number of located injuries by different policies for locating two injuries in the 6 x 4 maze with different numbers of unknown cells.

Timestep 10

Sl Two unknown cells Three Unknown Cells Four unknown cells

Proposed Policy 0.957 £0.017 0.72+0.053 0.25+0.03

Active Learning 0.003 = 0.001 0.514+0.036 0.005 = 0.001

MAP 0.016 == 0.008 0.009 = 0.006 0.009 = 0.006
Timestep 20

Policies Two unknown cells Three unknown cells Four unknown cells

Proposed Policy 1.2 £0.03 0.961 £ 0.06 0.89 = 0.056

Active Learning 0.005 = 0.001 0.761 = 0.053 0.104 = 0.025

MAP 0.137 £ 0.083 0.018 £ 0.008 0.073+0.018
Timestep 30

il Two unknown cells Three unknown cells Four unknown cells

Proposed Policy 1.395 £ 0.035 1.347 £0.055 1.191 £0.055

Active Learning 0.008 = 0.002 1.005 4 0.055 0.247 £ 0.04

MAP 0.301 = 0.033 0.207 £ 0.029 0.17 £ 0.027

The bold numbers refer to the highest average number of located injuries among all the policies. As can be seen these bold numbers are achieved by the proposed policy in all the scenarios.

the MAP and active learning policies show a low performance after
the same 50 steps (less than 0.5).

5.2 Entropy reduction

5.2.1 6 x 4 maze problem

In this part of numerical experiments, we consider the same
6 x 4 maze problem with the objective of quick exploration of
an unknown environment. Thus, the reward function in Equation
(12) is considered for our experiments, which guides the agent to
quickly navigate in the unknown environment and rapidly reduce
the overall uncertainty/entropy in the environment models. The
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state part of the belief can be expressed using 19 potential states
for the agent locations without the need for the previously defined
auxiliary variables (i.e., used for tracking the injuries). The belief
space, in this case, is B = {{1, ..., 19} x A7}, which is still a large
space. Note that in this case, the previously used approaches to
compare with our proposed policy cannot be employed. This is
due to the fact that the entropy reduction cannot be expressed in
terms of the reward for underlying state space. In fact, tracking
the posterior probabilities of the environment models is required
in this case, which is not possible with the MAP and active learning
approaches represented in Equations (21, 22). A one-step entropy
reduction policy is employed instead for comparison purposes.
This policy selects actions to maximally reduce the next step
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(A) Visualization of the 4 x 4 maze problem with three unknown cells. (B) The true test environment * = [/, W, /] with the initial probabilities of
unknown cells as pj, = [%, g %] fori=1,2,3.(C) Performance comparison of different policies for locating the injuries in the test environment

]
Unknown Cells [ Walls Y%; Rescue Robot [y Victim
o

Proposed Bayesian
Planning Policy

Active Learning Policy
--  MAP Policy

Baseline Policy

83
)
=l
g
1 H £
Q
g
3 (=] 3
ol
on
- m 5
.:é & < 01
ao o
A B Cc
FIGURE 9
(A) Visualization of the 6 x 6 maze problem with three unknown cells. (B) The true test environment * = [W, ], /] with the initial probabilities of

unknown cells as py = [%, ; %] fori=1,2,3.(C) Performance comparison of different policies for locating the injuries in the test environment

entropy as
a = argmax —Ey _ (g y17p0 [H®) — H()]. (24)
acA
We consider the following initial probabilities for unknown
cells: pf) = [%, ;1;, i] for i = 1,2,3. Based on these priors, the

starting value of entropy will be 3.12. Our proposed policy is then
tested on two different environments. The first true environment
is @ = [E,E E], where all the unknown cells are empty. The
average negative entropy at each step of the test, along with the
results of one-step entropy reduction, is shown in Figure 10A. The
proposed policy obtains a much faster reduction in the entropy
value than the one-step entropy reduction. Moreover, our approach
reaches an entropy of 0 (least uncertainty in the environment) in
only 20 steps, whereas the one-step entropy reduction shows poor
performance until step 50. This demonstrates the importance of
accounting for the possible future entropy in making decisions,
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as opposed to greedy one-step search, which is achieved by the
proposed method with policy defined over the belief state. The
second test environment consists of all walls in the unknown cells.
Figure 10B presents the results of our method and the one-step
entropy reduction policy. One can see that the entropy reduction
is slower compared to the first test case in Figure 10A, which is
due to the fact that all unknown cells are walls and the agent needs
much larger time to visit them and reduce the overall uncertainty.
However, our proposed approach, again, has achieved a much faster
reduction in entropy compared to the one-step entropy reduction
policy.

5.2.2 10 x 10 maze problem
A larger 10 x 10 maze shown in Figure 11 is considered for
this part of our numerical experiments. This maze contains four
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(A) Performance comparison in the 6 x 4 maze with the true environment 8" = [E, E, E] and initial probabilities of unknown cells as py = [;, % %] for
i=1,2,3. (B) Performance comparison in the 6 x 4 maze with the true environment * = [W, W, W] and initial probabilities of unknown cells as
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unknown cells, indicated by the color yellow in Figure 11, resulting
in 3* = 81 possible maze models. In this part, we aim to tackle the
problem of entropy reduction using this larger maze. This maze has
33 walls, so the state space can be represented by S = {sl, s 567}.
The belief space is B = {S x Ag;}, which is much larger than the
previous maze problems. We consider hyperparameters and maze
stochasticity similar to previous problems, except that since this is
a larger maze, we consider a horizon of 500 steps for the training
process. Finally, 20,000 episodes are used to train our policy in this
larger maze.

The reward function in Equation (12) is used for this part
of the experiments, meaning that it is desired for an agent to
visit all the unknown cells as quickly as possible and reduce the
overall uncertainty in the maze model to 0. Figure 12 represents two
independent paths taken by the agent under the proposed Bayesian
policy for two different initial probabilities: (a) first unknown cell
is set to have a higher chance of being a wall, and the other three
unknown cells have a higher chance of being empty or injury, that
is, pp = [, 5 1 ph = 15,3, 5] for i = 2,3,4; (b) all the
unknown cells have a higher chance of being empty or injury, that
is, pf) = [ﬁ, %, Tsz] for i = 1,2,3,4. One can see that in case
(a), the agent selects the left path to explore/visit all the unknown
cells because unknown cell number 1 has more probability of being
a wall and the Bayesian policy predicts a high likelihood that the
agent might be stuck in the right side of the maze. However, in
case (b), where all the unknown cells have more probability to
be an injury or empty, the agent decides to choose the shortest
path to get to all the unknown cells, which means that at first
it goes from the right side of the maze. This again demonstrates
the capability of the proposed method in accounting for potential
uncertainty arising from agent movement and model uncertainty
for making decisions.

Once again, similar to Figure 12B, consider that the prior

probabilities are set equally for all the unknown cells as: p6
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FIGURE 11

Visualization of the 10 x 10 maze problem. This maze has four
unknown cells, where each could be either wall, empty, or
victim/injury

1,2, 3,4, which means that each cell has
to be a wall. The starting entropy for this

1 6 5
[ 13> 12
probability of

] for i =
1
12
case is equal to 3.67. For this case, the average results of our

proposed policy and one-step entropy reduction policy for the
true environment 6
Our proposed policy outperforms the one-step entropy reduction

[I,I,I,I] are shown in Figure 13A.
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Agent movement trajectories under the proposed Bayesian policy in the 10 x 10 maze; each of the blue and red arrows corresponds to one
independent movement trajectory, and the difference in the trajectories is due to the movement stochasticity in the environment. The trajectories
are recorded using the proposed policy under two different initial distributions: (A) p =[5, &, &1and pj) = [, &, 51 fori=2,3,4, (B)
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FIGURE 13
(A) Performance comparison in the 10 x 10 maze with the true environment 8* = [/,/,/,/] and initial probabilities of unknown cells as py, = [ﬁ %, %]
fori=1,2,3,4.(B) Performance comparison in the 10 x 10 maze with the true environment 6* = [/,/,/, 1], and initial probabilities of unknown cells as
ps=15. & Hlandpl =14, &, Slfori=234.

Proposed Bayesian Planning Policy
-=--- One-Step Entropy Reduction

results by a far margin in all the steps, and it reaches an
entropy of zero after only 40 steps. As a final scenario, only
the prior probability of being a wall for the first unknown
cell is set to be larger as opposed to the previous case, that
is, p(l) = [%,%,1—10] (similar to Figure 12A). The starting
entropy value, in this case, is 3.39, and the test results on
0 =
figure, our policy has a better performance in all the steps

[I,I,1,I] are presented in Figure 13B. As seen in this

compared to one-step entropy reduction. Our navigation policy
results in zero entropy after about 45 steps, where the one-step
entropy reduction fails to achieve good performance over all
100 steps.
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6 Conclusion and future works

This study developed a reinforcement learning Bayesian
planning policy for rescue operations in unknown or partially
known environments. Unlike most existing approaches that rely
on the availability of an exact model or simulator for representing
the underlying environment, this study considers realistic problems
in which no or limited prior information about the environment
might be available. A new Bayesian formulation of navigation
in unknown and uncertain environments is provided using the
definition of belief state, which tracks the agent state and the
uncertainty of the environment up to each step. This formulation
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is used to formulate the optimal Bayesian policy, which can
be computed through the propagation of all the uncertainty
in the agent state and environment models. A solution to the
optimal Bayesian policy is introduced using a deep reinforcement
learning method. Finally, the performance of the proposed method
is demonstrated using different maze problems with various
uncertainties. Note that the proposed method is versatile and can be
applied not only to environments with discrete state spaces but also
to those with continuous state spaces or large discrete state spaces.
The computational complexity of the proposed method
increases exponentially with the number of unknown cells in
the environments, potentially limiting its scalability. Our future
work includes studying the scalability of the proposed policies
in domains with extremely large belief spaces and different
uncertainties in the model. We will also extend the idea of Bayesian
planning to domains with partially observable states, as well as
domains with multiple agents and continuous action spaces.
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Appendix

In this section, we provide the run times of our proposed
method and the compared approaches for selected experiments to
highlight the limitations and strengths of our method. Table A1l
showcases the run times of the experiments using different
methods. The reported times were recorded using a system with
two 2.4 GHz Intel E5-2680 v4 CPUs and 64 GB RAM memory. As
can be seen in Table A1, the run times of different approaches are
divided into training times and test/execution times. The training
time for our method refers to the time needed for training the
weights of the neural network, and the training time for active
learning and MAP refers to the time needed for training the

10.3389/frai.2024.1308031

policies for each of the possible environments in each experiment.
Note that active learning and MAP use the same trained policies
during the execution, therefore they have similar training times.
The test/execution time is the time that was used to record the
results over 1,000 trials for different methods. From Table A1,
one can see that our method is much faster in terms of training
compared to active learning and MAP. The execution time for
different methods is however in the same range, with our method
being faster overall throughout all the experiments. Further, it can
be seen that the complexity of the problem increases as the number
of unknown cells (Table 1, Four Unknown Cells) and the grid size
(Figure 9) increases, and this naturally results in longer training and
test/execution times as demonstrated in Table Al.

TABLE A1 Training and execution times of different policies in selected experiments.

Training time (minutes)

Test/execution time (minutes)

Our method Active learning Our method Active learning MAP

Figure 4A 126 1,247 1,247 11 20 17
Figure 4B 98 1,118 1,118 9 19 16
Figure 5 153 1,331 1,331 12 21 17
Figure 6 158 1,342 1,342 12 23 18
Table 1-two 97 1,015 1,015 7 16 14
unknown cells

Table 1-three 148 1,301 1,301 11 19 17
unknown cells

Table 1-four 169 1,375 1,375 13 21 18
unknown cells

Figure 8 82 949 949 7 15 11
Figure 9 194 1,417 1,417 16 26 22
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