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Internet of Things (IoT) devices have been increasingly deployed in smart homes to automatically monitor
and control their environments. Unfortunately, extensive recent research has shown that on-path external
adversaries can infer and further !ngerprint people’s sensitive private information by analyzing IoT network
tra"c traces. In addition, most recent approaches that aim to defend against these malicious IoT tra"c analyt-
ics cannot adequately protect user privacy with reasonable tra"c overhead. In particular, these approaches
often did not consider practical tra"c reshaping limitations, user daily routine permitting, and user privacy
protection preference in their design. To address these issues, we design a new low-cost, open source user-
centric defense system—PrivacyGuard—that enables people to regain the privacy leakage control of their IoT
devices while still permitting sophisticated IoT data analytics that is necessary for smart home automation.
In essence, our approach employs intelligent deep convolutional generative adversarial network assisted IoT
device tra"c signature learning, long short-term memory based arti!cial tra"c signature injection, and par-
tial tra"c reshaping to obfuscate private information that can be observed in IoT device tra"c traces. We
evaluate PrivacyGuard using IoT network tra"c traces of 31 IoT devices from !ve smart homes and build-
ings. We !nd that PrivacyGuard can e#ectively prevent a wide range of state-of-the-art adversarial machine
learning and deep learning based user in-home activity inference and !ngerprinting attacks and help users
achieve the balance between their IoT data utility and privacy preserving.
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1 Introduction
People are increasingly deploying the Internet of Things (IoT) devices in smart homes and build-
ings to monitor and control their environments. The total installed base of IoT devices is projected
to reach 75.44 billion worldwide by 2025, a !vefold increase over 10 years [50]. The tra"c data gen-
erated by IoT devices is recorded by Internet Service Providers (ISPs) to maintain customer ser-
vices, such as generating monthly bills, personalizing the data plan, and detecting network outages.
“Any service that provides Internet access can obviously see what resources users are accessing.
And even with encryption, tra"c patterns provide some information about activity” [35]. Verizon
uses “supercookies” to track Internet user activity, and AT&T charges customers an extra $29 per
month to avoid “the collection and monetization of their browsing history for targeted ads,” Mozilla
told Congress [36]. ISPs like AT&T, Comcast, Time Warner, Sprint, and Verizon are selling personal
network tra"c data without prior user consent to “enhance” user experience [11]. Specially, the
most recent IoT privacy survey [32] shows that 72 out of 81 popular IoT devices are sharing data
with third parties (e.g., Amazon, Akamai) completely unrelated to original manufacturers and far
beyond basic necessary device con!guration, including voice speakers, smart TVs, and streaming
dongles. People are losing access to tra"c data and sharing control of their IoT devices at home.

In parallel, signi!cant recent research [9, 10, 12, 13, 18, 21, 26, 28, 38, 39, 47, 56, 57] has shown that
it is surprisingly easy to launch attacks to infer the types of IoT devices and user activities from IoT
tra"c data, since IoT device types and their embedded user activities are highly correlated with
basic statistical metrics derived from time series data, such as mean, variance, and range. Thus, IoT
devices have signi!cant privacy threats in their network tra"c data. An important example of sim-
ple and private information that IoT tra"c data may leak is occupancy—whether or not someone
is at home and when [31]. The network tra"c rate (in kilobytes per second) of three IoT devices
from a single apartment is reported in Figure 1. The tra"c rate trace signals the occupancy status
and related activities in this home. The most recent research [29] also demonstrated that a passive
Amazon Alexa attacker can !ngerprint user voice commands and compromise the user privacy of
millions of U.S. consumers. In addition, these IoT tra"c data may also indirectly reveal privacy
information that might be interesting for insurance companies, marketers, or the government. For
instance, signi!cant tra"c spikes at mealtimes may indicate that users are regularly having meals
at home. As another example a consistent amount of TV network tra"c on Saturday night from 7
pm to 9 pm may indicate that the residents are watching NBA games every weekend. In addition,
a lack of signi!cant tra"c may show that occupants are out of town for vacation. Intuitively, user
interaction with IoT devices, such as talking to voice assistants, opening/closing doors, and watch-
ing TVs, lends itself to straightforward attacks that detect changes in these metrics and associates
them with changes in user activities.

Most recent research [9, 12, 16, 37, 54–57] proposes tra"c reshaping based prevention tech-
niques to thwart privacy attacks on IoT tra"c rate traces. Unfortunately, these approaches did not
signi!cantly consider at least one of the following facts: (1) The arti!cial tra"c “spikes” that are
injected to hide user privacy should not con$ict with the real user behavior; (2) many IoT devices
have bidirectional network tra"c $ows that should be reshaped concurrently; and (3) reshaping
operations have practical limitations, such as network bandwidth and maximum injection rate.
And these may still allow adversaries to infer user in-home sensitive private information. In addi-
tion, the native $attening algorithms broadly employed by many approaches resulted in three to
four times additional tra"c overhead. Thus, new low-cost and e#ective techniques are necessary.
To address these issues, we propose a new low-cost, open source user “tunable” defense system—
PrivacyGuard—that enables users to signi!cantly reduce the private information leaked through
IoT device network tra"c while still permitting sophisticated tra"c analytics that is necessary to
use IoT devices. In doing so, we make the following contributions.
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Fig. 1. When occupied, the IoT device tra!ic rate typically becomes larger and more variable due to user
interactions.

User Privacy Leakage Identi!cation. We explore and highlight the privacy leakage of user in-
home activities from IoT network tra"c rate traces. We discuss the fundamental privacy concerns
that govern the network tra"c rate over time for popular IoT devices. In doing so, we review,
implement, and benchmark a wide range of sophisticated user activity inference attack models
using Machine Learning (ML) or Deep Learning (DL) approaches, including k-nearest neigh-
bors, Hidden Markov Models (HMMs), Support Vector Machines (SVMs), Convolutional
Neural Network (CNNs), and an ensemble approach—AdaBoost [23].
PrivacyGuard Design. We present the design of PrivacyGuard, which enables users to regain
the privacy leakage control of their IoT devices to signi!cantly reduce the private information
leaked through IoT device network tra"c. In essence, PrivacyGuard employs intelligent Deep
Convolutional Generative Adversarial Network (DCGAN)-based tra"c signature learning,
Long Short-Term Memory (LSTM)-assisted arti!cial tra"c signature injection, and partial traf-
!c reshaping to obfuscate user privacy. We also design optimization techniques to further reduce
PrivacyGuard’s tra"c overhead.
Implementation and Evaluation. We implement PrivacyGuard, both simulator and prototype,
in python using the widely used open source frameworks. We evaluate PrivacyGuard using tra"c
rate traces of 31 di#erent IoT devices from !ve smart homes. The results have shown that Privacy-
Guard can e#ectively prevent a wide range of state-of-the-art ML/DL-based user activity inference
attacks.
Releasing Datasets and Code. Our new approaches to analyze IoT network tra"c rate traces
and prevent user sensitive information from leakage in these traces using ML/DL-based tra"c
reshaping techniques are quite general, and can be applied to address similar security and privacy
problems in other data analytics research domains, such as smart transportation system, smart
grid, and medical e-health systems. We release the source code, datasets, and attack models of
PrivacyGuard to IoT research communities on our website [3].

2 Background and Related Work
2.1 Privacy Threat Model
As shown in Figure 2, we are broadly concerned with the ability of ISPs, on-path network observers,
and third parties to infer user in-home activities from smart home network tra"c rate metadata.
The network tra"c rate metadata, including inbound/outbound tra"c rates, network protocols,
source, and destination IPs, package sizes, and so forth are accessible to many on-path entities.
And these potential adversaries may be incentives to infer user activities in smart homes where
users do not want to share this privacy-sensitive information with them. We assume that external
adversaries can use any data analytics techniques, such as data mining, ML/DL, inference, or other
statistical methods, to infer certain types of the observed pattern information in the recorded tra"c
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Fig. 2. Overview of our privacy threat model in smart homes and smart buildings.

Fig. 3. Tra!ic rate signatures using Amazon Alexa generated by querying the weather condition from three
di!erent smart home users.

Fig. 4. Fingerprinting tra!ic rate signatures using Google Home to control the light of three di!erent smart
home users.

traces. Thus, inferring user activities in these smart homes is considered as an opposition to users’
privacy preferences.

In particular, we are concerned with four di#erent types of privacy attacks. The !rst type is
learning occupancy from the data. This includes whether a home is occupied and when. The second
is learning user in-home activities from the tra!c data. User activities may include when users come
and go, when they perform their daily activities, such as going to bed, waking up, watching TV,
listening to music, and playing online games, as well as more complex questions, such as whether
a household has a baby, and whether they go on vacation on weekends. The third type is learning
network tra!c pattern information from the data. This includes whether a particular IoT device
(e.g., Voice Assistant) is present in a home, what model of an IoT device is present, and how much
tra"c the home consumes on it every month. The fourth is "ngerprinting voice command on user
interactive IoT devices. As shown in Figures 3 and 4, this may include voice command !ngerprinting
on smart home speakers, such as Alexa and Google Nest Home. Inferring this kind of detailed voice
command may further expose more serious user private information.
A"ack Scenario #1. To infer the type of IoT devices and user activities at a certain home, an
external Internet on-path adversary intends to acquire real-time network tra"c rates and leverages
ML/DL-based statistical learning and data mining approaches to analyze these data to identify IoT

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:5

Table 1. Correlation and Tra!ic Overhead Comparison of Six Major
Tra!ic Modification Approaches

PCC SRCC Security (ϵ) Additional Overhead
Pure Tra"c Injection 0.748 0.83 87.15% 97%

Hybrid Tra"c Reshaping 0.462 0.711 72.6% 103.7%
Random Tra"c Padding 0.582 0.686 54.33% 165.9%

Tor [12] 0.805 0.712 77.5% 25%
RepEL [10] 0.361 0.525 33% 100%

Tamaraw [12] 0.292 0.473 3.4% 199%

devices. Then, the external attacker may launch cyberattacks on a speci!c IoT device when user
activities permit.
A"ack Scenario #2. An external adversary from ISPs, IoT device manufacturers, or third parties
is actively monitoring the IoT tra"c traces and then uses data analytics approaches to learn the
indirect user privacy information that might be interesting for insurance companies, marketers,
or the government.
A"ack Scenario #3. An external on-path adversary is actively monitoring the IoT tra"c traces
from a smart home and then launches inference attacks to !ngerprint user voice commands that
might be interesting for insurance companies, marketers, or the government.

In addition, we assume that our smart home users would like to trust in Amazon AWS (EC2) or
Google Cloud services to protect their in-home user privacy information. Note that evaluating the
e#ectiveness of establishing trust relationship between end users and their cloud servers is outside
the scope of this article.

2.2 Related Work
We outline the design alternatives to preserve smart home user privacy using the Pure Tra"c
Injection (PTI) approach, the Hybrid Tra"c Reshaping (HTR) approach, and the Random
Tra"c Padding (RTP) approach. In doing so, we review a wide range of the most recent sophis-
ticated tra"c reshaping based prevention techniques [9, 10, 12, 13, 21, 25, 28, 39, 44–47, 56, 57] to
thwart privacy attacks on IoT tra"c rate traces.

To understand the performance of the preceding existing approaches, we implemented three
di#erent tra"c reshaping approaches. Table 1 quanti!es the e#ectiveness of the three approaches
and an additional three recent approaches by showing the Pearson Correlation Coe"cient
(PCC) and Spearman’s Rank Correlation Coe"cient (SRCC). The PCC [40] is a measure of the
linear correlation between original and modi!ed tra"c. It has a value between +1 and –1, where 1 is
total positive linear correlation, 0 is no linear correlation, and –1 is total negative linear correlation.
The SRCC [49] assesses monotonic relationships between original tra"c and modi!ed tra"c. If
there are no repeated data values, a perfect SRCC of +1.0 or –1.0 occurs when each of the variables
is a perfect monotone function of the other. Although recent approaches have been proposed
to mitigate the privacy leakage issue, the modi!ed tra"c rate traces after applying these prior
approaches may still have a very high linear and monotonic correlation with the original tra"c
rate traces. We use PCC and SRCC to quantify the e#ectiveness of the prior approaches on masking
user private information. We use ϵ-security [39] to describe the probability that a tra"c reshaping
approach fails to prevent smart home users from an external adversary’s user activity inferring.
Pure Tra#c Injection. Prior work [12, 24, 33, 39] proposed defense approaches to inject “fake”
tra"c patterns to conceal genuine user network tra"c patterns. As shown in Table 1, the general
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implementation yields additional overhead as 97%. In particular, Park et al. [39] found that tra"c
data encryption cannot prevent privacy invasions exploiting tra"c pattern analysis and statistical
inference. They !rst developed empirical models to statistically learn user behaviors using the
transition status of wireless sensors. Then, cloaking network tra"c patterns are injected to obscure
genuine tra"c patterns. Cai et al. [12] presented a defense against Tor website !ngerprinting that
can reshape tra"c rate traces by controlling the size of the parameter to pad packets. Hafeez et al.
[24] developed a tra"c morphing approach to protect against tra"c analytics attack. To obfuscate
background tra"c, they injected tra"c at a constant rate, incorporating dummy tra"c to simulate
device events and blend genuine and fake tra"c seamlessly. Another recent work [60] focuses
on ON/OFF tra"c shaping to mask user information in network tra"c package and streaming
data. However, these approaches did not completely hide the genuine tra"c patterns, in particular,
during higher and lower tra"c periods. This may still allow adversaries to distinguish “fake” tra"c
patterns from genuine tra"c patterns to infer user activities.
Hybrid Tra#c Reshaping. Prior work [10, 13] presented hybrid reshaping techniques to prevent
user privacy leakage in the aggregated network tra"c data. These approaches are aiming at com-
bining partial demand $attening and random arti!cial signature injection to obscure user privacy
in the recorded data, and leveraging activity-aware optimizations to reduce their reshaping over-
head. As shown in Table 1, the general implementation yields additional overhead as 103.7%. Chen
et al. [13] proposed to learn the “noise” injection rate using empirical statistical analytics (e.g., prob-
ability mass function) of smart home device events. Similarly, Bovornkeeratiroj et al. [10] proposed
RepEL, which employed an edge gateway to partially $atten loads and randomly replay loads to
hide private user occupancy information. A di#erential privacy (d∗-Privacy [58])-based defense
on voice speaker tra"c privacy leakage was introduced by Wang et al. [53]. The defense design
and evaluation are mainly for voice speaker tra"c analysis. Uddin et al. [51] presented a software
de!ned network motivated framework to protect user privacy from local or internal attackers. The
proposed defense is focusing on packet level tra"c padding and packet delaying. Alshehri et al.
[8] proposed an STTA (Signature-based Tunneled Tra"c Analysis) attack [8] that can be e#ective
even on tunneled tra"c. They designed a defense mechanism based on adding uniform random
noise to protect against tra"c analysis attack without introducing too much overhead. Xiong et al.
[59] proposed a local di#erential privacy motivated defense mechanism to obfuscate IoT device
packets prior to transmission in the presence of a local eavesdropper. Pinheiro et al. [42] designed
an adaptive packet padding approach for smart home networks. Their tra"c reshaping mecha-
nisms particularly consider smart home network bandwidth and utilization to dynamically adjust
their padding speed and volume. Shmatikov and Wang [47] proposed adaptive padding algorithms
to leverage the intermediate mixes to inject dummy packets into statistically unlikely gaps in the
packet $ow to destroying timing “!ngerprints” application tra"c by enforcing inter-package in-
tervals to match pre-de!ned probability mass functions. Wang et al. [57] designed a tra"c padding
algorithm that uses matched package schedules to prevent adversaries from pairing incoming and
outgoing tra"c $ows. Signi!cant work [25, 44–46] proposed to model user in-home activities us-
ing Markov chain based approaches. However, due to the empirical modeling of IoT device events
and the nature of random tra"c signature injection, these approaches may still allow smart at-
tackers to identify the randomly injected “fake” signatures and thus infer the genuine user private
information.
Random Tra#c Padding. Recent work [9, 21, 28] proposed RTP approaches that aim at prevent-
ing a passive network adversary from reliably distinguishing genuine user activities from “fake”
tra"c patterns. As shown in Table 1, the general implementation yields additional overhead of
165.9%. Dyer et al. [21] proposed a bu#ered !xed-length obfuscator based on random padding to
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prevent website !ngerprinting attacks. Juarez et al. [28] proposed an adaptive padding approach
that can provide a su"cient level of security against website !ngerprinting. The proposed ap-
proach matched the gaps between tra"c packets with a distribution of generic network tra"c.
When a large gap is identi!ed, this approach will inject padding tra"c in that gap to prevent long
gaps from being a distinguishing feature for attackers. Similarly, Apthorpe et al. [9] presented a
stochastic tra"c padding algorithm to $atten real tra"c patterns and randomly inject fake traf-
!c patterns that look like the real IoT tra"c patterns. Rather than using pre-de!ned IoT device
tra"c pattern distribution, Apthorpe et al. [9] integrated their approach with HMM, which can
better model user in-home behavior using IoT tra"c trace. However, HMM-based user behavior
modeling cannot accurately model user activities that are presented in the interleaved operations
of multiple IoT devices simultaneously.
Observation. Our results in Table 1 show that the RTP approach—Tamaraw—yields the lowest
PCC, SRCC, and ϵ-security at 0.29%, 0.47%, and 3.4%, respectively. Unsurprisingly, the PTI approach
reports the highest PCC, SRCC, and ϵ-security at 0.75%, 0.83%, and 87.15%. This is mainly due to
the fact that the PTI approach only injects and adjusts the shape of “fake” tra"c patterns and
does not reshape or modify any real IoT tra"c patterns already presented in IoT tra"c traces. The
HTR approach reports coarser correlation than the PTI approach. This is because in addition to
injecting “noise” into IoT tra"c traces, the HTR approach also makes its best e#orts to partially
$atten both genuine and “fake” tra"c patterns of IoT devices. The di#erent correlation perfor-
mance between the HTR approach and the RTP approach is due to the fact that the RTP approach
generally has a higher $attening threshold to pad IoT tra"c patterns, and also considers the bidi-
rectional tra"c padding for IoT devices (e.g., Amazon Alexa, Google Home). For the same reason,
the RTP approach—Tamaraw—reports the maximum tra"c overhead of 199% additional overhead
per device per day. However, even the best-performing approach—the RTP approach—still reports
signi!cant values of PCC and SRCC. This is mainly due to fact that this approach may not consider
practical limitations in real smart homes, such as the network bandwidth and maximum tra"c in-
jection rate, and thus the “spikes” of genuine tra"c patterns can still be observed by adversaries.

2.3 Summary
Prior research proposes signi!cant prevention techniques to thwart privacy attacks on IoT traf-
!c rate traces. Unfortunately, these approaches did not signi!cantly consider at least one of the
following facts: (1) the arti!cial tra"c “spikes” that are injected to hide user privacy should not
con$ict with the real user behavior; (2) many IoT devices have bidirectional network tra"c $ows
that need to be reshaped currently (not necessarily to be perfectly $attened); and (3) $attening
and injection operations have practical limitations, such as network bandwidth, maximum pack-
age injection rate, and user daily routine permitting. And these may still allow adversaries to infer
user in-home sensitive information by applying time series data analytics attacks. In addition, the
naive $attening algorithms broadly employed by many approaches actually resulted in three to
four times additional tra"c overhead. Thus, new lost-cost and e#ective techniques are necessary.
These valuable insights will guide the development of our proposed technique—PrivacyGuard.

3 Privacy Leakage Identification
As discussed in Section 2, we are concerned with sensitive user private information that can be
learned by adversaries from externally observed tra"c rate traces of IoT devices in smart homes.
To explore the severity and extent of this privacy threat, we design a wide range of ML/DL-based,
and ensemble method based user activities attack models to better understand and identify the
most common user activities that can be learned by these adversaries. Unlike existing work that
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Table 2. Best-Performing A"ack Models to Detect 13 Di!erent User Activities Using Two Datasets

User Activity Model MCC Cohen’s Kappa
Talk to Alexa Gradient Boosting 0.977 0.955
Control Lights Decision Tree 0.997 1.000

Print Files Logistic Regression 0.931 0.933
Baby Present Random Forest 0.953 0.954

Use Smartphone SVMs (linear) 0.917 0.942
Use Laptop Decision Tree 0.997 0.997

Walk in Home Ada Boosting 1.000 1.000
Check Body Weight CNNs 0.909 0.999

Check Weather Condition Random Forest 0.973 0.999
Play Music LSTM 0.957 0.958

Control Plugs Passive Aggressive Classi!er 0.929 0.927
Make Co#ee SVMs (Linear) 0.969 0.971

Other Activities LSTM 0.917 0.927

mainly focuses on binary occupancy status detection, we investigate multiple-class (e.g., 13-class
classi!cation for Table 2) user activities when a home is occupied. In doing so, we identify the
privacy leakage in the traces of the IoT network tra"c rate. In addition, we use all of these attack
models developed in this section to evaluate our new approach—PrivacyGuard—in Section 6. Note
that for each user activity class, we report the attacking model that yields the highest accuracy
for each user activity in Table 2. Additionally, we include smarter attack models (e.g., Gradient
Boosting, Ada Boosting, and Passive Aggressive Classi!er). These complex models are built on top
of ensemble methods which could combine the predictions of several base classi!ers built with a
given learning algorithm to improve generalizability and robustness of adversarial attacks over a
single classi!er. By doing so, we explore the fuller potential of realistic attackers.

To benchmark the performance of attack models shown in Table 2, we use the Matthews Cor-
relation Coe"cient (MCC) [34], a standard measure of a binary classi!er’s performance, where
values are in the range −1.0 to 1.0, with 1.0 being perfect user activities detection, 0.0 being ran-
dom user activities prediction, and −1.0 indicating that user activities detection is always wrong.
Cohen’s kappa [15] is a measure of the agreement between two classi!ers who each classify N
items into C mutually exclusive categories. Cohen’s kappa is widely used to evaluate multi-class
classi!ers, where 1.0 indicates a complete agreement, and κ= 0 indicates no agreement among the
multi-class classi!ers. We will discuss more details about MCC and Cohen’s kappa in Section 6.

3.1 Feature Extraction
IoT device tra"c events that have user activity information embedded are mainly re$ected and cap-
tured in the $uctuating spikes or motifs exposed in their tra"c rate traces. Next, we will describe
our approaches to automatically learn the features that capture user in-home activity information.

3.1.1 Optimal Threshold for Motif Extraction. The !rst challenge to identify tra"c features for
attack models is determining the thresholds that we can leverage to !lter out background tra"c
and maximally extract the tra"c spikes or motifs. In particular, di#erent IoT devices may require
di#erent thresholds due to their di#erent tra"c consumption patterns and tra"c volumes. For
instance, for some on/o# IoT devices (e.g., switch, motion/door sensor), which have relatively low
tra"c demand, we cannot simply use an universal threshold, which may “ignore” user activity
information exposed in their tra"c motifs.
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Fig. 5. The illustration of applying K -means on five IoT devices to identify background/low, medium, and
high tra!ic loads.

To address this issue, we design a K-Means clustering-based optimal threshold learning ap-
proach. This method aims to identify dynamic thresholds that e#ectively separate background
tra"c from all tra"c, allowing for the extraction of higher tra"c motifs from the background traf-
!c. Our insight is that IoT devices typically have three identi!able tra"c consumption patterns,
including lower or background, medium, and high tra"c mode. As shown in Figure 5(a) through
(e), our analytics using the the K-Means clustering algorithm where K = 3 has shown that IoT de-
vices typically have three identi!able tra"c consumption patterns, including low or background
(in purple), medium (in yellow), and high (in cyan) tra"c mode. In particular, the volume of back-
ground tra"c from the same IoT devices, when users are not actively using them, should ideally
remain consistent or similar across di#erent smart homes. Thus, we apply the K-Means clustering
algorithm where K = 1 on the low tra"c of all IoT devices to infer the thresholdTbackдround that
we can leverage to !lter out the background tra"c which does not capture user in-home activities,
and also the medium/high threshold Tactive that enables our approach to more e"ciently extract
the user activity embedded tra"c motifs. To benchmark the performance of optimal threshold
searching, we examine three di#erent attacks using the user activity of talking to Alexa utilizing
the attack models shown in Table 2. We report the top-3 attack models, including Linear Regres-
sion, SVM, and Decision Tree, which yielded the best attacking performance in Figure 5(f). We !nd
that employing optimal thresholds to attack user privacy yields better MCC results compared to
using a static and universal threshold. That being said, optimal thresholds could enable attackers
to more e"ciently infer user private information embedded in IoT tra"c rate traces. The algorithm
for optimal threshold searching is established in Algorithm 1.

3.1.2 Principle Feature Identification from Motifs. The second challenge is to learn the principle
features from these extracted tra"c motifs. We leverage the Principal Component Analysis
(PCA) algorithm to identify the principle features that we can use to build ML-based and DL-based
smart attack models. We !rst build a large IoT tra"c rate dataset that has network tra"c rate traces
of 31 IoT devices and empirically examine 10 statistical features based on the time series motifs of
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Fig. 6. The relationship between sliding window and user activity inference accuracy.

ALGORITHM 1: Optimal Threshold Learning
Input: Tra"c Volume V, Device List L
Output: Threshold T
Data: Tra"c Volume V, Device List L, Threshold T

1 V (t , t + δ ) = {Vt ,Vt+1, . . . ,Vt+δ } where ∑Vt
t=1 := V

2 /* For each IoT device, infer the low, medium, and high thresholds. */

3 for ∀ i ∈ L do
4 {TLowi , TMediumi , THiдhi } = K-Means (Vi (t , t + δ ), K=3)
5 Set Tbackдround = K-Means (TLow ,K = 1)
6 Set Tactive = [min{TMedium ,THiдh }, max{TMedium ,THiдh }]
7 for ∀ V (t , t + δ ) ∈ V do
8 if Vt ! Tbackдround then
9 Continue

10 else
11 /* Reshaping traffic load using selected threshold */

12 Vt = Tbackдround

each IoT device, including duration, mean, maximum and minimum values, standard deviations,
range, skewness, variation coe"cient, kurtosis, and AUC (area under the curve), among others.
We leverage PCA to analyze the principle features from IoT network tra"c rate traces.

We then further process these tra"c spikes using a sliding window to learn the sequential event
characteristics that may appear in bidirectional tra"c IoT devices. For instance, Amazon Echo
typically presents a short burst of outgoing tra"c and then incoming tra"c $ows in its tra"c
rate trace. In addition, user activity events usually have di#erent duration which may a#ect the
prediction performance of attack models. Given a speci!c tra"c rate trace, we extract the whole
tra"c into multiple independent spikes that can be potentially employed to identify di#erent user
activities. We then learn the preceding statistical metrics using a sliding window n. To ensure the
e#ectiveness of all attack models on di#erent user activities, we need to !nd the optimal sliding
window size n that can accommodate all IoT devices. Figure 6 presents the derivative of 2-degree
polynomial !tting of the attack model performance. As shown in that !gure, the sliding window
size has a signi!cant e#ect on the accuracy to identify di#erent user activities. We !nd the optimal
sliding window size n = 40 that we can guarantee our inference attack models could observe and
learn the principle features exposed in tra"c rate spikes to indicate user in-home activities.

Note that the granularity of tra"c rate traces also signi!cantly impacts the performance of
the selected features. For instance, for lower/coarser granularity tra"c traces, some features such
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Fig. 7. The overview of PrivacyGuard’s CNN structure (a) and system model (b).

as duration, standard deviations, AUC) might be less distinguishable and hidden, and thus the
ϵ-security of the external adversaries’ attack models will signi!cantly decrease. For example, con-
sidering user activities that have a very short duration, normally at the second-level (e.g., oper-
ating switches), lower/coarser granularity tra"c traces may hide the tra"c features and signi!-
cantly lower down the performance of attack models. Similarly, for long-lasting activities that are
minute-level or longer, (e.g., checking body condition), tra"c traces at lower/coarser granularity
can preserve tra"c rate signature and their features better. A fuller evaluation of granularity e#ect
is discussed in Section 6.4.4.

3.2 ML-Based Inference A!acks
We then focus on selecting the optimal ML model that has the best accuracy to detect user activity.
We investigate the most widely used ML classi!ers in prior IoT tra"c research work, including Lo-
gistic Regression, SVMs, and Random Forest. In particular, we also benchmarked di#erent kernels
for SVMs, including linear, linear passive-aggressive, linear ridge, polynomial with 1∼10 degrees,
and radial basis function. Table 2 shows the results for attacking 13 di#erent user activities. Note
that for each user activity shown in Table 2, we run all of the ML-based attack models and report
the one that has the best attacking accuracy in MCC and Cohen’s kappa.

3.3 DL-Based Inference A!acks
In addition to ML-based attack models, we design a CNN-based DL approach to detect user in-
home activities from IoT tra"c rate traces. In the following, we describe the design of our CNN
architecture, which is inspired by the most notable prior CNN research—VGGNet [52]. As shown in
Figure 7(a), our CNN architecture is composed of input, convolutional layers (ReLU), max pooling,
fully connected layers (with and without ReLU), and output. In addition, two fully connected layers
with ReLU and another fully connected layer (without ReLU) are added to process the output.

3.4 Comparison and Summary
Interestingly, as shown in Table 2, it is surprisingly easy to infer and learn user in-home activities
using their network tra"c rate traces in a smart home. On average, our ML-based and DL-based
attacking approaches yield the average MCC as 0.956 and the average Cohen’s kappa as 0.966.
These results show that our implemented ML-based, DL-based, and ensemble method based attacks
are e#ective at detecting a user’s private sensitive information (e.g., user activities) in a smart
home. Specially, the AdaBoost-based attack model achieves the best inference attack results. Thus,
IoT tra"c rate traces expose a serious threat to user in-home privacy. Therefore, new privacy
preserving techniques are necessary. We employ all of the preceding attack models to evaluate
our new approach—PrivacyGuard—in Section 6.
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4 PrivacyGuard Design
In this section, we explain how we design PrivacyGuard, a new defense system that enables users
to enjoy the bene!ts o#ered by IoT devices while also controlling the privacy of their tra"c data
with reasonable tra"c overhead.

4.1 Approximate Di"erential Privacy
Di#erential privacy was !rst presented in the work of Dwork [19] to measure the individuals’
privacy loss on database queries. Recently, di#erential privacy algorithms have become a trend in
the privacy research community of IoT devices and smart homes [20, 26, 42, 58, 58, 59], and have
been broadly adopted by Apple [4], Google [5], and Amazon [1]. Given a smart home system, we
can say a defense approach that can ensure if an arbitrary single substitution in the IoT tra"c rate
traces is small enough if the statistical query learning results cannot be used to infer accurate user
in-home sensitive information in a smart home, and thus preserves the user privacy that may be
exposed in the smart home network tra"c rate traces. Typically, (ϵ)-di#erential privacy is used
as a formulated metric to describe the privacy guarantee. Lower values of ϵ indicate a stronger
guarantee in a defense system. The de!nition for (ϵ)-di#erential privacy is this: An algorithm A is
(ϵ)-di#erential private if for all tra!c trace substitutions T1 and T2 where T1 and T2 di#er by at most
one tra!c rate signature, and for all subsets of possible answers S ⊆ Ranдe(A):

P[A(T1) ∈ S ≤ P[A(T2) ∈ S] · exp(ϵ). (1)
If the inequality is satis!ed, then the defense approach A’s output is considered to be ϵ indistin-

guishable and it will be hard for an external attacker to perform a tra"c analytics attack on the
smart home IoT tra"c. Dwork [20] proposed an approximate version of di#erential privacy, which
can be described as follows:

P[A(T1) ∈ S ≤ P[A(T2) ∈ S] · exp(ϵ) + δ . (2)
Approximate di#erential privacy is a relaxed version of standard di#erential privacy. The pa-

rameter δ enables the algorithm A to not be the ϵ di#erential privacy for some portions of IoT
network tra"c. Our system is motivated by this approximate di#erential privacy. Given a target
smart home, T1 and T2 are two substitutions of IoT network tra"c rate traces in a smart home,
and at most one tra"c rate signature/spike is di#erent. An external attacker is trying to identify
principle network tra"c features which are processed by applying the algorithm A and thus to
predict the associated user in-home activity. For approximate di#erential privacy with parameters
(ϵ , δ ), it is hard for an external attacker to perform tra"c analysis attack to infer users’ in-home ac-
tivities. Our evaluations have shown that PrivacyGuard could achieve the approximate di#erential
privacy.

Please note that although di#erential privacy is stronger and more desirable than approximate
di#erential privacy, achieving the latter is more system practical and can still could be e#ective
for us to build a low-cost computer system to help users safeguard their IoT device tra"c. Our
focus is to design a new low-cost and user-centric defense computer system that enables people
to e#ectively regain the privacy leakage control of their IoT devices. PrivacyGuard preserves user
approximate di#erential privacy by combining intelligent tra"c rate signature learning, arti!cial
tra"c rate signature injections, and partial tra"c reshaping to approximate the algorithm A. Our
system design and implementation incorporates the idea of approximate di#erential privacy due
to its natural insight aligning with our problem requirements. We also understand that there are
some defense limitation studies on di#erential privacy [14, 27]. However, the full theoretical proof
of di#erential privacy and its limitation study is outside the scope of this work. In addition, our
system design is orthogonal to new versions of approximate di#erential privacy. Users have the
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Fig. 8. PrivacyGuard’s tra!ic signature learning (a), artificial tra!ic signature injection (b), and partial tra!ic
reshaping (c). Keyang added four new complex models.

$exibility to “plug in” new approximate di#erential privacy ideas to our open source platform
by tuning our thresholds and other parameters, potentially benchmarking and enhancing their
system performance.

4.2 System Design
Figure 7(b) shows the system structure of our PrivacyGuard, which assumes that either a software
Virtual Private Network (VPN) or hardware VPN router is deployed in a smart home. Privacy-
Guard is then connected to the Wi-Fi access point, such as home router or home gateway. Note that
PrivacyGuard can be deployed either on an IoT hub (shown in Figure 7(b)), home router, or Wi-Fi
gateway. A VPN wraps all smart home tra"c from IoT devices in an additional transport layer.
By doing so, the VPN can aggregate all tra"c into a single tra"c $ow with the source and desti-
nation addresses of the VPN endpoints. Our proposed new approach—PrivacyGuard—allows user
“tunable” control over what can be learned using data analytics techniques over tra"c rate traces
from a smart home. PrivacyGuard leverages the VPN layer as the !rst defense to prevent user
in-home activity inference, although even if the VPN has been optimally con!gured, the external
adversaries may still be able to infer user activities due to user sparse activity and dominating IoT
devices [9]. Then, PrivacyGuard takes additional actions to further obscure user in-home privacy.
In essence, PrivacyGuard !rst learns IoT device tra"c signatures from their historical tra"c data.
Then, PrivacyGuard employs a DL-based user in-home activity modeling to inject arti!cial tra"c
signatures into tra"c rate traces such that the genuine user tra"c signatures are obscure in the
modi!ed tra"c rate traces. Next, PrivacyGuard partially reshapes IoT device’ tra"c rate traces by
considering practical limitations. In addition, PrivacyGuard employs multiple optimization tech-
niques to further obscure the privacy information that are exposed in the externally observed traf-
!c rate traces with lower tra"c overhead. The overhead (e.g., additional tra"c $ows) is reduced
due to our careful design to learn and reshape tra"c signatures in our system. Figure 8 shows the
three major operation $ows of PrivacyGuard. Note that end users are not required to (frequently)
retrain or manage the components in our system pipeline. Instead, users can use PrivacyGuard in
default settings (with pre-trained models).

Note also that users are not obligated to provide input during the setup process or retrain their
models within our system. For those with heightened privacy protection needs, they can cus-
tomize preferences to tune our tra"c reshaping thresholds. Our system o#ers users the $exibility
to choose their desired balance between data utility and user privacy.

4.3 Intelligent Tra"ic Rate Signature Learning
PrivacyGuard !rst learns IoT device tra"c rate signatures that are used in its later tra"c reshaping
algorithms. The goal of this tra"c rate signature learning is to ensure that it is reliably di"cult for
the external adversaries to distinguish the genuine IoT tra"c rate signatures from the “arti!cial”
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ALGORITHM 2: Tra"c Signature Learning
Input: Tra"c Volume V
Output: Tra"c Signature S
Data: Tra"c Volume V , SQLite Signature Database DB

1 /* Segment aggregated traffic volume into device levels */

2 Disaggregate tra"c volume V into device i’s volume Vi
3 for ∀ Vi ∈ V do
4 if Duplicated_Signature (Vi ) in DB then
5 /* Similar traffic signature already exists */

6 Continue
7 else
8 /* New traffic signature found */

9 Insert Vi into DB

10 Update index_keys of DB

11 /* Learn device appearance pattern */

12 for ∀ Ti ∈ T do
13 for Dayi ∈ [0, 6] do
14 for Houri ∈ [0, 23] do
15 TCi = TCi + 1 // Update traffic frequency

16 TVi+ = TVi // Update traffic rate

injected or replayed tra"c rate signatures. Di#erent IoT devices typically have di#erent tra"c sig-
natures. For a speci!c IoT device, PrivacyGuard can learn its tra"c rate signatures over time both
o%ine and online. Figure 8(a) shows the tra"c rate signatures (in kilobytes per second) of Dropcam
and Amazon Alexa. We store all tra"c signatures for IoT devices in an SQLite database. Privacy-
Guard also takes additional steps to ensure that it is reliably di"cult for external adversaries to
distinguish arti!cial tra"c demand from real tra"c demand in the SQLite database. For instance,
the time and duration for each tra"c signature, and also other attributes, such as short, long, high,
low, and medium, may compute the fraction of tra"c signatures in each category. Then, we use
this fraction to weight each category’s future tra"c signature selection such that the “arti!cial”
tra"c demand matches the breakdown of real tra"c demand. PrivacyGuard uses the PCC [40],
which is a measure of the linear correlation between the current tra"c rate signature and old traf-
!c rate signatures to eliminate the duplicated tra"c rate signature update. PrivacyGuard examines
the incoming tra"c rate signatures in the same manner, despite whether they are “old” or “new”
tra"c patterns. The major di#erence is that once a new signature is detected, we keep a copy in
our database for signature learning and future injection usage. Similarly, PrivacyGuard can also
detect and replay the new tra"c rate signatures generated by the “old” devices. The algorithm for
tra"c rate signature learning is established in Algorithm 2.

In addition, we observed that some IoT devices (e.g., body condition measurement devices and
smoke sensors) have much less frequent daily usages than other intensive user interaction IoT
devices. Thus, to ensure the accuracy and quality of tra"c rate signature learning for these IoT
devices, we leverage DCGANs [43] to build a new tra"c rate signature generator to enrich the
training tra"c data samples for those small tra"c devices. Our DCGAN architecture is composed
of convolutional layers without max pooling or fully connected layers. We leverage convolutional
stride and transposed convolution for downsampling and upsampling, respectively. The generator
network uses a 100*1 noise vector. Our !rst layer is to project and reshape inputs, then following
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ALGORITHM 3: Arti!cial Tra"c Signature Injection
Input: Tra"c Volume V
Output: Tra"c Signature S
Data: Tra"c Volume V , SQLite Signature Database DB

1 /* Inject artificial traffic signatures */

2 for Dayi [0, 6] do
3 for Houri ∈ [0, 23] do
4 if TCi!0 then
5 TCi− = TCi // Update traffic frequency limit

6 TVi− = TVi // Update traffic rate limit

7 /* Mimic user activities using LSTM */

8 Select tra"c signature Vi from DB based on our learned user activity H
9 /* Further obscure privacy in the load */

10 Update tra"c volume Vi = Vi + Vi

this layer, we have !ve convolutional layers. For the generator model, we use the ReLU activation
function for all layers except the !nal one, where we employ the Tanh activation function. Our
generator and discriminator have almost the same architectures, but re$ected. For the discrimina-
tor model, we use the Leaky ReLU activation function for all layers except the last layer where
we use the Sigmoid activation function. By doing this, we are able to build a rich set of tra"c rate
signatures for these IoT devices. Note that learning a tra"c rate signature does not necessarily
mean that PrivacyGuard will inject it. The injecting decisions are made by our real user behavior
modeling based tra"c signature injection process, which will be explained in the next section.

4.4 Artificial Tra"ic Signature Injection
PrivacyGuard does not simply inject or replay tra"c signatures randomly, since an external adver-
sary may be able to identify those random patterns in smart home tra"c rate traces. This may still
allow external adversaries to distinguish the injected “fake” tra"c demand patterns from the real
tra"c demands due to their inconsistency in user in-home behaviors in a speci!c smart home.

Prior approaches have explored the bene!ts of integrating real user behavior with their pri-
vacy preserving approaches using Bernoulli distribution, Poisson distribution, or Linear Chain
Conditional Random Field (LCCRF) into their tra"c “noise” injections into IoT tra"c traces.
PrivacyGuard selects signatures from the database to inject at an injection rate equal to the rate
at which the home generates tra"c rate traces when occupied. In addition, PrivacyGuard injects
realistic tra"c signatures that we learn from real IoT device traces in Section 4.3. More impor-
tantly, PrivacyGuard considers real user behaviors in a smart home when injecting these realistic
tra"c rate signatures for each IoT device. In doing so, PrivacyGuard can ensure that the injected
tra"c patterns still !t the tra"c distributions that represent the regular user in-home behaviors
such that the external adversaries cannot distinguish injected tra"c patterns from genuine tra"c
patterns. The algorithm for tra"c rate signature injection is established in Algorithm 3. Next, we
explain how PrivacyGuard models user in-home activities.
LSTM-Based User In-Home Activities Modeling. To address this problem, we present a recur-
rent neural network based approach to model real user in-home behaviors. Speci!cally, we design
an LSTM-based approach to model user in-home behavior using IoT tra"c rate traces. Note that
similar to HMM, the LSTM-based approach also assumes that user activities behind these IoT de-
vice events are hidden and thus can be learned through the LSTM architecture. Compared with the
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Fig. 9. Overview of LSTM-based user in-home daily routine modeling.

HMM-based approach, our LSTM-based model can learn user in-home activity using both single
IoT device events and the concurrent events of multi-IoT devices. The input shape (a.k.a. window
size) of our LSTM model is the status vector size of all IoT devices, and the IoT devices’ reported
sensor data is associated with nine di#erent user in-home activities. The output of the LSTM model
is the future user activities. As shown in Figure 9, the !rst visible layer is the LSTM layer with 10 x
10 memory blocks. To reduce over!tting and improve model performance, we apply 20% dropout
to the recurrent input signals on the LSTM units. After that, two fully connected layers with ReLU
and another fully connected layer (without Softmax) are added to process the output. Since Priva-
cyGuard is performing multi-class user activity classi!cation, we use Categorical Cross-Entropy
Loss (a.k.a. Softmax Loss) as model loss function. In addition, instead of using the classical stochas-
tic gradient descent approach to update the parameter weights, we employ the Adam algorithm
as the optimizer for our LSTM model that can better handle high-dimensional parameters and
mitigate sparse gradient problems. To train our LSTM model, we split IoT device traces with a
70%/30% split of training data to test data. PrivacyGuard leverages the LSTM-based user activity
model to select what IoT tra"c rate signatures to inject and when to inject them. Note that user
daily routines, user populations, and user patterns may be di#erent in di#erent homes. In addition,
in a new home, user activity, home con!guration, and IoT devices may vary. Users can deploy
our PrivacyGuard to automatically retrain the preceding LSTM model to learn these user in-home
patterns which we benchmarked in Table 2.
Bidirectional Tra#c Signature Injection. The way that PrivacyGuard leverages to mimic uni-
directional communication IoT devices is trivial. However, a signi!cant amount of IoT devices are
user interaction intensive, such as voice assists and IoT smart plugins, and they have bidirectional
tra"c $ows. To mimic these IoT devices, as shown in Figure 7, PrivacyGuard may be deployed
both locally and on the remote servers using a Master/Slave model. The local PrivacyGuard works
regularly as the master which is very similar to other single directional tra"c IoT devices, whereas
the remote PrivacyGuard server acts as the remote IoT device servers that are responding to local
IoT device tra"c demands. In addition, PrivacyGuard works in a mixed architecture of Master-
Slave and Publish-Subscribe. The remote servers have the same design as the local PrivacyGuard.
The mapping relationship between local in-home PrivacyGuard (a.k.a. publishers) and remote Pri-
vacyGuard servers (a.k.a. subscribers) is N:M. In other words, multiple PrivacyGuards can share a
remote PrivacyGuard server, and a single smart home PrivacyGuard can be paired with at least one
remote server. The remote server is pretending to be the “valid” IoT remote server to respond to
arti!cial IoT device bidirectional tra"c demands. To mimic the incoming/inbound tra"c, we build
the PrivacyGuard remote server on top of the tra"c and package editor/generator—Ostinato [2]—
that supports most common standard protocols including Ethernet/802.3/LLC, VLAN, ARP, IPv4,
IPv6, TCP, UDP, HTTP, SIP, RTSP, and NNTP. In particular, PrivacyGuard leverages the Ostinato
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Fig. 10. The illustration of PrivacyGuard remote server modified packages for Amazon Echo.

Python API [2] to vary packet !elds across packets at runtime—for example, changing the source
IP/MAC addresses in the packages of the PrivacyGuard remote server to those of the actual IoT
remote server (shown in Figure 10). In doing so, PrivacyGuard is able to generate incoming tra"c
from the source “valid” IoT remote server. In addition, using this design, a single point of remote
server failure will not prevent PrivacyGuard from injecting arti!cial incoming tra"c that is criti-
cal to hide user privacy in tra"c traces. Note that the possible extra tra"c from/to cloud servers,
such as copy-cat tra"c pattern injections, may serve as “free” noise injections and actually can
help PrivacyGuard better hide user sensitive information in the tra"c rate traces.

4.5 User-Centric Partial Tra"ic Reshaping
After applying the LSTM-based arti!cial tra"c signature injection, the modi!ed tra"c traces may
still expose changes in tra"c rate spikes. To hide these remaining spike changes, we design a new
user tunable partial tra"c reshaping approach. Unlike prior approaches [9, 12, 16, 37, 54–57], sim-
ply assuming that their reshaping techniques always have enough or unlimited tra"c bandwidth
to completely $atten the spikes in the externally observed tra"c traces, PrivacyGuard employs
a reshaping threshold Tr eshape = max{Tcurr ent (t),U (t),Taver aдe (t)} that only partially reshapes
the tra"c demand to a target less than the peak tra"c demand. Tcurr ent (t), U (t), and Taver aдe (t)
denote the current tra"c rate demand, the user preferred set point, and the average tra"c rate
demand, respectively. To maintain Tr eshape at each t with current tra"c demand Tcurr ent (t), Pri-
vacyGuard consumesTr eshape −Tcurr ent (t) wheneverTcurr ent (t) < Tr eshape . SinceTr eshape tra"c
demand is typically much lower than peak tra"c demand, a low reshaping threshold is able to
hide the most of the changes in tra"c rate trace data without using much network bandwidth.
The algorithm for user tunable partial tra"c reshaping is established in Algorithm 4.

Figure 11 illustrates the results of PrivacyGuard when smart home users set their privacy guar-
antee to “Auto,” “High,” and “Low” preferences. Note that under the “Auto” mode, PrivacyGuard
can automatically learn an optimal/default tradeo# point such that users can use the “least” tra"c
overhead to protect their smart home from the “most” privacy leakage. In addition, PrivacyGuard
supports smart home users, such as those who require more privacy protection or are on an unlim-
ited Internet data plan, to “tune” this learning process such that they can use more tra"c to hide
their privacy information exposed in their tra"c rate traces. Through this module, smart home
users could regain the control of at what degree the users would like to manage their privacy
leakage from IoT tra"c rates.

4.6 Online Optimizations
In addition, PrivacyGuard introduces some optimization techniques to further obscure the poten-
tial privacy leakage in the externally observed tra"c rate traces, including intelligent tra"c sig-
nature adjustment and random noise injection, and reshaping rate adjustment. We describe the
detail of each optimization as follows.
Intelligent Tra#c Signature Injection Adjustment. PrivacyGuard adjusts the replayed signa-
ture by raising or lowering each point by a small random amount (e.g., 0% to 5% of tra"c demand).
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Fig. 11. PrivacyGuard’s user tunable tra!ic reshaping GUIs, including automatic self-learning mode (a), high
mode (b), and low mode (c).

ALGORITHM 4: Partial Tra"c Reshaping
Input: Tra"c Volume V, User Preference U
Output: Modi!ed Tra"c Volume V
Data: Tra"c Volume V

1 /* Segment traffic volume trace into isolated traffic traces */

2 Separate tra"c volume V into time t ’s volume
3 V (t , t + δ ) = {Vt ,Vt+1, . . . ,Vt+δ } where ∑Vt

t=1 := V
4 for ∀ V (t , t + δ ) ∈ V do
5 Set Reshaping_threshold = max{TVt ,U ,Current_loadt }
6 if Vt ! Reshapinд_threshold then
7 Continue
8 else
9 /* Reshaping traffic load using selected threshold */

10 Vt = Reshapinд_threshold
11 Extend the reshaping for random ϵ seconds
12 V (t , t + ϵ) = Reshapinд_threshold

In addition, for each tra"c rate demand reshaping, PrivacyGuard extends its duration by a small
random amount (e.g., 0% to 5% of the regular duration) such that the starting and ending points in
the tra"c rate signature of the sleep sensor like IoT devices are hidden. PrivacyGuard only injects
tra"c rate signatures when the home user behaviors permit. For instance, at nighttime, when most
smart home users are sleeping, PrivacyGuard needs to ensure that tra"c traces have signi!cant
less interactive IoT device tra"c demands.
Tra#c Injection Rate Adjustment. PrivacyGuard also dynamically adjusts its reshaping thresh-
old and rate of arti!cial tra"c rate signature injection over time to match the expected rate each
period. Our insight is that there is no need to make lower-tra"c nighttime periods look like high-
demand tra"c daytime periods. Instead, PrivacyGuard only ensures that these time periods look
the same with respect to each other, regardless of whether a home is occupied or not. In addition,
PrivacyGuard indexes its tra"c rate signatures database based on each IoT device’s tra"c rate
signature’s real time of use. At any time, PrivacyGuard is trying to select from the past tra"c rate
signatures that occurred near that time when the LSTM-based user behaviors model allows.
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Fig. 12. The overview of our PrivacyGuard prototype.

ML and DL Model Improvements. Finally, PrivacyGuard is orthogonal to the speci!c ML and DL
technique. For instance, we use SVM, Random Forest, Logistic Regression, and other models to
build smart external attacks to evaluate existing defense performance. Our goal is to demonstrate
that it is quite straightforward to infer user in-home activities. As another example, our system
design incorporates LSTM due to its natural architecture aligning with our problem requirements.
Users have the $exibility to “plug in” new models to our open source platform, potentially bench-
marking and enhancing system performance.

5 Implementation
We implement PrivacyGuard, both simulator and prototype, in python using widely available open
source frameworks, including Pandas, Scikit-learn, and PyCUDA. The simulator takes a home’s net-
work tra"c race traces as input and applies privacy preserving techniques outlined in the previous
section. We also deploy a prototype PrivacyGuard in a “mock”smart home to demonstrate the abil-
ity to modulate a home’s network tra"c rate demands in real time to mask user activities using
PrivacyGuard’s approach online. As shown in Figure 12, we employ a Raspberry Pi 4 Model B based
hardware (Broadcom BCM2711, Arm Cortex-A72 Architecture) setup, which enables PrivacyGuard
to reshape, inject, and adjust tra"c rate demands in real time. The prototype uses IoT network traf-
!c rate data at the home’s Wi-Fi access points to query the real-time tra"c rate readings for the
entire home every minute using cronjobs. We implement PrivacyGuard’s algorithms and its opti-
mizations. We deploy our PrivacyGuard remote server on the Amazon EC2 t1.micro instance with
a cost of $0.0035 per hour. We also store the set of arti!cial tra"c rate signatures, indexed by time
period, that are available for replay in an SQLite3 database. The size of the implementation is less
than 1,500 lines of code. We use the Scikit-learn ML library in Python to build our ML attack ap-
proaches. The library supports multiple techniques including Logistic Regression, SVMs, and Ran-
dom Forest. In particular, we also implemented di#erent kernels for SVMs, including linear, linear
passive aggressive, linear ridge, polynomial with 1∼10 degrees, and radial basis function, and PCA.
For CNN-based attack approaches, we implement based on the framework from VGGNet [52]. For
user in-home activities, we implement LSTM-based user in-home activities modeling using the
Keras model library [30] and TensorFlow framework [6]. Finally, we schedule the batch jobs on
our GPU servers to compare the MCC accuracy of eight di#erent approaches using CUDA. The
server we use to get all benchmarking and evaluation results for attacking models has the follow-
ing resources: (1) CPU: 2x Intel Xeon CPU E5-2620 v4 @ 2.10 GHz, (2) GPU: NVIDIA TITAN X
(Pascal) (x8), (3) RAM: 128 GB, and (4) OS: Linux CentOS 7. PrivacyGuard can be implemented on
IoT hubs and middle boxes (e.g., Wi-Fi access points, gateway routers, and smart IoT hubs).
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6 Experimental Evaluation
Next we describe our datasets, experimental setup, metrics used to evaluate our PrivacyGuard
approaches, and evaluation results.

6.1 Datasets

Dataset 1: UNSW . We downloaded the publicly available IoT tra"c rate traces from UNSW Syd-
ney [48] that include packet level network tra"c traces of 22 IoT devices for 20.5 days. These raw
tra"c traces contain packet headers and payload information. To evaluate our approaches, we
pre-process the IoT tra"c metadata traces to IoT tra"c rate data at di#erent granularities and also
label all user in-home activities.
Dataset 2: SmartFIU . We set up our own “mock”smart home using our laboratory space that
has four graduate students operating 31 IoT devices daily. We !rst deploy a NETGEAR AC1750
smart Wi-Fi router that serves as the internal switch and the gateway to the public Internet. We
$ash the router using DD-WRT [17] (a Linux based alternative open source !rmware) and set up
ExpressVPN [22] on the router. We then install tcpdump on this gateway to capture network tra"c
data. We use 45 days of 1 minute level IoT tra"c data to evaluate our PrivacyGuard.
Dataset 3: Real Smart Home Dataset. We deploy 22 popular IoT devices in two real smart homes.
The two homes are private townhouse apartments that have two and four occupants, respectively.
We collect the second level IoT tra"c traces of 22 IoT devices from the two homes, resample them
into IoT network tra"c traces of di#erent granularities, and also record log groundtruth user ac-
tivities for the whole 2 weeks.
Dataset 4: IoT Device Captures (Kaggle #1). We download the IoT Device Captures dataset from
Kaggle, which has 30 popular IoT devices. Each IoT device was recorded for 20 segments, and
each segment has a tra"c duration as of 2 minutes. We label the groundtruth user activities by
examining their IoT device events.
Dataset 5: IoT Device Network Logs (Kaggle #2). We also download the IoT Device Network
Logs dataset, which captured 1 minute level network tra"c traces of 14 popular smart home IoT
devices for 5 days using NodeMCU with an ESP8266 Wi-Fi module. We label the groundtruth user
activities by examining their IoT device events.

Note that to label user activity in public datasets rather than ours, we develop a script to assist
us to search motifs in aggregated tra"c spikes. Then, we cluster and process the groundtruth
user activities data comprehensively. For our own datasets, we have been logging user activities
in our monitoring smart homes. In addition, to learn the e#ect of tra"c rate granularity on the
user privacy preserving degree, we pre-process the tra"c rate traces of the preceding datasets
into di#erent granularity levels (e.g., 1 second, 1 minute, 3 minutes, 5 minutes, and 10 minutes). By
default, tra"c rate granularity is set at 1 second.

6.2 Experimental Setup
PTI Approach. We !rst implement a general version of prior work [12, 39]. This approach lever-
ages Bernoulli distribution, Poisson distribution, and LCCRF to randomly inject “fake”tra"c de-
mands that are randomly selected from historical tra"c patterns.
HTR Approach. We implement a general version of prior work [10, 13]. This approach employs
a threshold-based tra"c demand $attening, and leverages Bernoulli distribution, Poisson distribu-
tion, and LCCRF to randomly inject “fake” tra"c demands.
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RTP Approach. We implement a general version of prior work [9, 21, 28]. This approach employs
tra"c demand $attening and leverages HMM-based user behavior modeling to randomly inject
“fake”tra"c demands that are randomly selected from historical tra"c patterns.
PrivacyGuard Approach. PrivacyGuard employs intelligent DCGAN-based IoT device tra"c sig-
nature learning, LSTM-based arti!cial tra"c signature injection, and partial tra"c reshaping to
further obfuscate private information that can be externally observed in IoT tra"c traces. We also
evaluate our PrivacyGuard with the online optimization approaches as we discussed in Section 4
to further obscure user private information in the externally observed tra"c rate traces, including
intelligent tra"c signature adjustment and tra"c rate adjustment.

6.3 Evaluating Metrics
Next we describe the metrics that we use to evaluate PrivacyGuard.

Ma"hews Correlation Coe#cient. To quantify the accuracy of di#erent user privacy enhanc-
ing approaches, we note that the standard evaluating metrics (e.g, accuracy and F1) would not
work well on our highly imbalanced IoT tra"c data. Based on the recommendation from prior
work [7, 41], we use the MCC [34], a standard measure of a classi!er’s performance, where val-
ues are in the range from −1.0 to 1.0, with 1.0 being perfect user activity detection, 0.0 being
random user activity prediction, and −1.0 indicating that user activity detection is always wrong.
The expression for computing MCC is as follows, where TP is the fraction of true positives, FP is
the fraction of false positives, TN is the fraction of true negatives, and FN is the fraction of false
negatives, such that TP + FP + TN + FN = 1:

TP ∗TN − FP ∗ FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

. (3)

Cohen’s Kappa. Cohen’s kappa [15] is a measure of the agreement between two classi!ers who
each classify N items into C mutually exclusive categories. Cohen’s kappa is de!ned as

κ = 1 − 1 − po

1 − pe
, (4)

where po is the relative observed agreement among classi!ers, and pe is the hypothetical proba-
bility of chance agreement, using the observed data to calculate the probabilities of each classi!er
randomly seeing each category. If the classi!ers are in complete agreement, then κ should be 1.
If there is no agreement among the classi!ers other than what would be expected by chance,
then κ = 0.
Pearson Correlation Coe#cient. The PCC [40] is a measure of the linear correlation between
two variables (e.g, original and modi!ed tra"c), computed as the covariance between the variables
divided by the product of their standard deviation. It has a value between +1 and –1, where 1 is
total positive linear correlation, 0 is no linear correlation, and –1 is total negative linear correlation.
Spearman’s Rank Correlation Coe#cient. The SRCC [49] between two variables is equal to the
PCC between the rank values of those two variables (e.g, original tra"c and modi!ed tra"c). How-
ever, unlike the PCC that assesses linear relationships, the SRCC assesses monotonic relationships
(whether linear or not). If there are no repeated data values, a perfect SRCC of +1.0 or –1.0 occurs
when each of the variables is a perfect monotone function of the other. We use the PCC and the
SRCC to quantify the e#ectiveness of di#erent approaches on masking user private information.
Adversary Con!dence. We leverage Adversary Con#dence (AC) to describe the adversary’s
ability to identify which time periods are corresponding to user activities. Given a probability p
that user activity occurs independently in n time periods, AC can be estimated as the empirical
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Table 3. Correlation and Tra!ic Overhead Comparison of Three Di!erent Major
Tra!ic Modification Approaches

PCC SRCC Tra"c Overhead
(MB per Device per Day)

Pure Tra"c Injection 0.75 0.83 29.11
Hybrid Tra"c Reshaping 0.46 0.71 32.12
Random Tra"c Padding 0.58 0.69 49.78

PrivacyGuard 0.35 0.64 27.15

Fig. 13. The comparison of occupancy detection accuracy and additional tra!ic a#er applying four di!erent
approaches.

fraction of n time periods with tra"c corresponding to user activities; q is the probability decision
function choosing to perform non-activity tra"c padding. Thus, AC can be de!ned as

AC =
np

np + n(1 − p)q . (5)

6.4 Experimental Results
6.4.1 Preventing Binary Occupancy Detection. We !rst compare the ability of four di#erent ap-

proaches regarding masking occupancy. Note that our focus in this group of experiments is on
binary occupancy status detection as opposed to the detection of multiple user activities classi-
!cations (as shown in Section 6.4.3). These approaches split the dataset into training and testing
datasets using a ratio of 7:3 after cross validation. To ensure fair comparison, we set the tra"c “cap”
for each approach as 75 MB per device per day. As shown in Table 3, PTI receives PCC and SRCC
values of 0.75 and 0.83, and HTR reports PCC and SRCC values of 0.46 and 0.71, respectively. RTP
reports smaller PCC and SRCC values of 0.58 and 0.69, respectively, whereas PrivacyGuard yields
the smallest PCC and SRCC values of 0.35 and 0.64, respectively. Thus, among all four di#erent
approaches, PrivacyGuard is the best-performing approach to hide user occupancy. As shown in
Figure 13(a), we also compare occupancy detection accuracy when applying ML/DL-based attacks
that we implemented in Section 3 to quantify the performance of HTR, RTP, and PrivacyGuard
using the MCC. PrivacyGuard yields an average MCC of 0.2235, which is much closer to random
detection (i.e., an MCC of 0.0) and a factor of more than two times less than the average MCC
when attacking on HTR modi!ed tra"c, which is 0.4665.
Results. By lowering the average MCC to 0.2235 in four smart homes, the PrivacyGuard approach
e#ectively prevents occupancy detection from a wide set of ML-based and DL-based attacks. In addi-
tion, PrivacyGuard yields a factor of more than two times less than the MCC of occupancy attacks on
the modi"ed IoT tra!c traces by prior approaches.

6.4.2 !antifying Tra"ic Overhead. We quantify the amount of network tra"c overheads that
are required to perform HTR, RTP, and PrivacyGuard. Figure 13(b) reports the amount of additional
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Fig. 14. The whole day (top), daytime (middle), and daytime with new tra!ic pa"erns (bo"om) MCC com-
parison of user activities detection before (original) and a#er applying HTR, RTP, and PrivacyGuard.

tra"c consumption for each approach. As expected, PrivacyGuard only consumes 27.15 MB of
tra"c per day on average over four datasets, which is about 2.7 times less than that of HTR, which
is 73.11 MB on average per day. In other words, PrivacyGuard consumes the least amount of tra"c
overhead while achieving the best performance to prevent user privacy leakage in four smart
homes.
Results. PrivacyGuard only consumes 27.15 MB of tra!c per day, which is about 2.75 times less than
that of HTR, which is 73.11 MB per day. PrivacyGuard consumes the least amount of tra!c overhead
while achieving the best performance to prevent user privacy leakage.

6.4.3 Preventing User Activities Detection A#acks. We next benchmark the e#ectiveness of
masking user activities when applying three di#erent privacy preserving approaches. We lever-
age ML/DL-based attack models that we built in Section 3 to detect nine di#erent user activities
using the original, HTR modi!ed, and PrivacyGuard modi!ed tra"c rate traces. Unsurprisingly, as
shown in Figure 14, PrivacyGuard always yields the worst MCC in both whole day (top) and mid-
day (7 am to 12 am, bottom), and thus is the most e#ective privacy leakage preventing technique.
In addition, we observe that the MCCs of both PrivacyGuard and PrivacyGuard using midday data
only are the same or slight higher than the MCCs when using whole day data. This is mainly due
to fact that users are typically sleeping at nighttime (12 am to 7 am), and thus most of the tra"c
occurrences in this period are not re$ecting user in-home interactive activities. Therefore, all three
approaches are reporting the same or slightly higher than the MCCs when attacking the midday
(7 am to 12 am) tra"c traces which have eliminated those “non-interactive” periods and mainly
focus on user interaction patterns. Note that we observed the same trend when using both the
UNSW dataset and the Smart* dataset.

We also examine the performance of the di#erent defending approaches when handling new
signatures. The goal is to benchmark these tra"c reshaping approaches when the incoming tra"c
has a mix of known (pre-seeded) and unknown (new) IoT tra"c rate signatures. For this example,
we set the ratio to 1:1, and we !nd that all tra"c reshaping approaches achieved MCCs similar
to those shown in Figure 14 (middle) which primarily reshaped tra"c rate traces using known
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Fig. 15. The whole day MCC comparison of three complex a"acking models targeting on PrivacyGuard.

(pre-seeded) tra"c rate signatures, and PrivacyGuard consistently yields the worst MCC. This is
mainly due to the fact that the di#erent reshaping approaches we implemented are handling the
tra"c rate signatures in the same manner, despite whether they are known or unknown signatures.

In addition to the preceding traditional single classi!er ML or DL attacks, we examine the
robustness of PrivacyGuard against complex and stronger attacks using the best-performing
“ensemble” methods, such as Gradient Boosting, Ada Boosting, and Passive Aggressive Classi!er,
which could combine the “advantages” from multiple single ML and DL classi!ers to stronger
against PrivacyGuard. In doing so, we are examining the robustness performance of four user pri-
vacy defending approaches when they encountering smarter and more comprehensive attacks. As
shown in Figure 15, we !nd that the MCCs of the four di#erent approaches slightly increase due to
the more powerful ensemble/complex attacks. However, the PrivacyGuard approach consistently
achieves the lowest MCC results, with an upper bound of 0.46. PrivacyGuard is signi!cantly
more e#ective in defending against complex attacks compared to previous HTR or RTP defense
methods.

We then examine the robustness bound by turning the user setting for their preference on pre-
serving their data privacy. We !nd that PrivacyGuard, with automatically learned settings (result-
ing in 75% tra"c reshaping), can achieve a bound MCC of 0.462, and with optimally user “tuned”
settings, it can reach an MCC of 0.341 (with 75% arti!cial tra"c), 0.273 (with 85% arti!cial traf-
!c), and 0.202 (with 95% arti!cial tra"c). Given the UNSW (with 20.5 days) dataset, with a mix
of genuine user tra"c (25%) and reshaped tra"c (75%) with automatically learned settings, the
robustness bound of PrivacyGuard is proportional to the volume of reshaped tra"c in their home.
However, for the scenarios where smart home users opt in their higher user privacy preserving,
the robustness bound of PrivacyGuard is proportional to both the user preferred setting and vol-
ume of reshaped tra"c. We !nd that we could !t these observations of attack accuracy and user
tunable setting into polynomial regression function. Note that our main focus is to build systems
to help users mitigate or reduce their data privacy leakage. There could be better potentially !tting
models, which we will further explore in our near future work.
Results. Our PrivacyGuard approach e#ectively prevents nine di#erent user activities from a wide
set of ML-based, DL-based, and ensemble sophisticated attacks in smart homes. Compared with prior
approaches, PrivacyGuard consistently yields the lowest MCC for each user activity and thus is the
best-performing privacy preserving approach.

6.4.4 !antifying Accuracy When Varying Granularity of Tra"ic Traces. We next evaluate the
user activity detection e#ect on di#erent tra"c rate traces that have di#erent levels of granularity,
such as 1 second, 1 minute, 3 minutes, 5 minutes, and 10 minutes. By doing this, we can examine
PrivacyGuard’s accuracy when attacking on di#erent granularities of tra"c traces. As shown in
Figure 16(a), as expected, higher granularity results in lower user activity detecting accuracy in the
MCC. This is mainly due to the facts that (1) PrivacyGuard performs consistently well on di#erent
tra"c trace data at di#erent granularities, and (2) fewer $uctuations and spikes are observed in
higher-resolution tra"c rate traces. In addition, when tra"c rate traces are becoming coarser,
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Fig. 16. The accuracy comparison of user activities detection when applying PrivacyGuard on tra!ic rate
data in di!erent granularities and di!erent user “tunable” additional tra!ic preferences.

some principle features, such as standard deviation, variation coe"cient, and AUC, become less
distinguishable and thus are hidden. This will further obscure use activity information exposed in
the tra"c rate traces.
Results. PrivacyGuard’s accuracy is a linear function of the granularities of IoT tra!c rate traces.
PrivacyGuard yields the MCC of 0.149 when attacking on 10 minute level network tra!c rate traces,
which is nearly the same as random prediction—that is, an MCC of 0.0.

6.4.5 !antifying Accuracy When Varying User Tunable Reshaping Preferences. We then evalu-
ate the user activity detecting accuracy e#ect on di#erent user tunable reshaping preferences. As
discussed in Section 4.5, PrivacyGuard can be tuned by users based on their own preferences to
achieve the balance between user privacy masking and additional tra"c overhead. As shown in
Figure 16(b), PrivacyGuard signi!cantly reduces user activity detection accuracy—an MCC from
∼0.95 to ∼0.5—after applying the users’ allowance of additional tra"c as 6.45 MB per device per
day (equivalent to ∼1.83 KB per device per minute). However, the HTR approach only decreases
the MCC from ∼1.0 to ∼0.96. In addition, under the overhead of 11.61 MB per device per day,
PrivacyGuard yields an MCC of 0.47, which is two times less than HTR’s MCC of 0.97.
Results. PrivacyGuard enables users the $exible control of threshold and arti"cial data injection to
achieve a tradeo# between user privacy preserving and tra!c overhead. In addition, when applying an
additional 11.61 MB per device per day tra!c overhead, PrivacyGuard yields an MCC of 0.46, which
is two times less than the MCC of 0.97 using HTR.

6.4.6 Preventing User Activities Detection by Adaptive Adversary. We next examine the e#ect
of a di#erent level adaptive adversary that has di#erent AC on PrivacyGuard’s user privacy en-
hancement performance. As shown in Figure 17(a), for the top-6 tra"c-consuming IoT devices,
the adversary’s con!dence diminishes signi!cantly when PrivacyGuard has a higher allowance
for tra"c overhead. In particular, the cameras (e.g, baby monitor, drop camera, and smart camera)
report the fastest AC decreasing. This is mainly due to the fact that these IoT cameras themselves
have more “unstable” patterns compared to other devices, which enables them to more e#ectively
adapt to the presence of our PrivacyGuard system. Figure 17(b) shows the ability of PrivacyGuard
to preserve user privacy when an adaptive adversary has more prior knowledge about our de-
ployed defense. In this group of experiments, we use the attacker knowledge level as the metric to
represent the capabilities of di#erent adaptive adversaries.

In essence, we use the percentage of tra"c rate testing dataset that an external adversary poses
to train the adversary ML or DL models to describe the attacker knowledge level to infer user
in-home activities. A value of 0% indicates that an external adversary has no prior knowledge
of the target home testing dataset and thus no cross validation is performed in their modeling,
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Fig. 17. PrivacyGuard performance comparison under di!erent adaptive adversaries.

Fig. 18. Masking user activities with the PrivacyGuard prototype. The zoomed-in inset shows Privacy-
Guard’s online operations to hide user in-home tra!ic pa"erns.

whereas a value of 100% means that the external adversary has observed or recovered all prior
knowledge about groundtruth tra"c patterns for each user activity such that the attack models
are “perfectly” trained and tested using the same testing dataset. The goal of this experiment is to
understand our system’s capability to protect user privacy under the attacks from the “adaptive”
adversaries who have or reveal di#erent tra"c rate knowledge levels of the target smart home. We
!nd that PrivacyGuard modi!ed the tra"c’s MCC with slight increases from 0.16 to 0.35, whereas
the original tra"c’s MCC $uctuates between 0.65 and 0.72. This is because attacking original tra"c
to infer user in-home activities is surprisingly easy, as we showed in Section 2 and Section 3. Note
that even when an adversary has 100% knowledge about PrivacyGuard’s DL-based defense model,
PrivacyGuard still can prevent tra"c analytics attacks at an MCC of 0.35, which is the almost two
times less than the original tra"c’s MCC of 0.72.
Results. Using PrivacyGuard, the adversary’s attack con"dence signi"cantly drops when a user per-
mits additional overhead. In addition, PrivacyGuard yields an MCC of 0.35, which is almost two times
less than that of original tra!c when an adaptive adversary has 100% prior knowledge of our Priva-
cyGuard’s modeling.

6.4.7 Prototype Demonstration. Figure 18 demonstrates the performance of the PrivacyGuard
prototype for a 3,600-second (1 hour) period of online tra"c rate data (in kilobytes per second).
The unmodi!ed (original) tra"c demand is the home’s demand without PrivacyGuard’s con-
tribution. In contrast, the PrivacyGuard-modi!ed demand is the external tra"c rate trace seen
by the adversaries, which includes using the prototype with low-cost arti!cial tra"c signature
injection, partial tra"c reshaping, and online optimizations to mask private information exposed
in tra"c rate traces. The experiment shows how PrivacyGuard prototype modi!es a home’s
tra"c demand in real time, including both replaying arti!cial tra"c rate signatures and partial
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Table 4. IoT Device Response Time without and
with PrivacyGuard

IoT Device Original With PrivacyGuard
Amazon Alexa 0.35s 0.51s
Google Home 0.42s 0.47s
Belkin Switch 0.47s 0.76s

Fig. 19. The benchmarking results when varying memory size and CPU frequency of potential PrivacyGuard
hosts.

tra"c reshaping, to mask the tra"c usage trends exposed in tra"c rate traces. Our prototype
demonstrates that PrivacyGuard’s approach permits a straightforward implementation using
widely used, o#-the-shelf components. As shown in Table 4, PrivacyGuard can enable users to
signi!cantly reduce privacy leakage while still permitting regular IoT device usage.
Results. PrivacyGuard functionality is simple to implement and deploy, requiring only the mech-
anism of basic hardware deployment and the ability to programmatically reshape tra!c rates in
real time.

6.4.8 Hosting PrivacyGuard on Di"erent IoT Devices. As shown in this work, PrivacyGuard can
be deployed on Raspberry Pi or other IoT hubs in smart homes. In practice, many other already
deployed IoT hubs, gateways, or devices potentially can be used to host PrivacyGuard. To evaluate
this potential of the PrivacyGuard system, we further benchmark and examine the performance
e#ect when PrivacyGuard is “deployed” on di#erent memory size and di#erent CPU frequency
IoT devices. Figure 19 shows the benchmarking results of PrivacyGuard on di#erent level com-
puting resource IoT devices. To generate these results, we use Raspberry Pi to simulate di#erent
resource limited IoT devices by limiting its computing resources by using the Linux OS built-in
tool cpufreq-set, which allows us to modify the settings of CPU and memory resources. For in-
stance, cpufreq-set -u 12MHz -d 12MHz will reduce CPU frequency to 12 MHz. Similarly, we
can grant more memory to the GPU and thus squeeze the RAM size available (as low as 2 MB) to
the CPU. To benchmark the performance of di#erent simulated IoT devices, we also prepared an
IoT tra"c benchmarking trace that comprises 1-hour tra"c rate data generated by 22 IoT devices
in 1-second granularity from Dataset #3 in Section 6.1.

As shown in Figure 19, the execution time (in the Z axis) that PrivacyGuard requires to reshape
1 hour long IoT tra"c data decreases when the host’s memory size is expanding. We observe that
an IoT device with a CPU frequency of 60 MHz and a RAM size of around 15 MB can achieve a
tradeo# of only around 550 ms execution time between PrivacyGuard performance and memory
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Fig. 20. Fingerprinting before and a#er applying PrivacyGuard using Amazon Alexa to query the weather
conditions.

size. Similarly, we observe a similar performance trend when varying CPU frequency from 10 to
1,600 MHz in Figure 19. We !nd the tradeo# when we set the CPU frequency at 45 MHZ and a
memory size of 15 MB. Thus, the benchmarking results verify the potential that PrivacyGuard
can be deployed on many other IoT devices in smart homes. For instance, when deploying on
the Arduino Mega 2560, which is typically equipped with a 16 MHZ ARM CPU and 8 KBytes of
memory, PrivacyGuard can reshape 1 hour IoT tra"c data within 1 second. We also pinpointed
other potential hosts for PrivacyGuard in Figure 19, such as Onion Omega2 (CPU: 580 MHz; RAM:
64 MB; execution time: 420 ms), NETGEAR R6700 v3 (CPU: 1 GHz; RAM: 256 MB; execution time:
203 ms), and Raspberry Pi V0 (CPU: 1 GHz; RAM: 512 MB; execution time 142 ms). Note that
evaluating the e#ectiveness of more smart home IoT devices will be further examined in our future
work and is outside the scope of this work.
Results. PrivacyGuard’s performance improves when the host’s computing resources are expanding.
In particular, we observe that PrivacyGuard can achieve a tradeo# between computing resources and
its privacy preserving ability. This further shows the potential to deploy PrivacyGuard on other already
deployed IoT devices in smart homes.

6.4.9 Preventing Tra"ic Rate Signature Fingerprinting. User-interactive IoT devices, especially
for voice assistants (e.g., Amazon Echo and Google Nest Home), pose signi!cant !ngerprinting
inference privacy threats when compared with other regular IoT sensors or switches. As shown in
Figures 20 and 21, when three di#erent smart home users are feeding the same voice commands to
their voice speaker assistants, the generated tra"c rate traces illustrate identi!able incoming/out-
going tra"c rate signatures. In other words, it is very feasible to !ngerprint user voice commands
using only their engaged tra"c rate traces. In addition, Table 5 further evaluates the similarity
of the tra"c rates generated by same voice commands before and after applying our Privacy-
Guard approaches. In particular, the PCC and the SRCC have decreases on average of 0.304 and
a maximum of 0.775. After applying PrivacyGuard, the tra"c rate pattern generated by the same
command shows a signi!cant drop on the correlation coe"cients by an average of 0.417 and 0.415,
respectively.
Results. PrivacyGuard can help smart home users signi"cantly defend against user in-home activities
"ngerprinting inference attacks.
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Fig. 21. Fingerprinting before and a#er applying PrivacyGuard using Google Nest Home to control the lights.

Table 5. Coe!icient Comparison (in Terms of the PCC and SRCC) before and a#er Applying
PrivacyGuard on the Aggregated Tra!ic Rates Generated by the Same Commands from

Two Di!erent Smart Home Users

Device Before Applying PrivacyGuard After Applying PrivacyGuard

Amazon Echo PCC 0.657 0.082
SRCC 0.746 0.112

Google Home PCC 0.776 0.518
SRCC 0.621 0.425

Table 6. Monthly Cost Comparison of PrivacyGuard and Six Other Recent Approaches

Approaches in USD Amazon AWS
t2.nano

Google Cloud
e2.micro

Microsoft Azure
A0

Pure Tra"c Injection 3.15 8.29 16.08
Hybrid Tra"c Reshaping 3.36 8.50 16.08
Random Tra"c Padding 5.04 9.55 17.13

Tor 1.05 6.61 14.82
RepEL 3.36 8.29 16.08

Tamaraw 6.09 10.39 17.76
PrivacyGuard 2.97 8.14 15.96

6.4.10 System Cost Analytics. As discussed in prior sections, PrivacyGuard requires a remote
cloud server to mimic bidirectional network tra"c for some smart and user intensive interaction
IoT devices. We examine the cost to run PrivacyGuard and other recent approaches to hide user
private information in their network tra"c traces. Table 6 shows the monthly household cost
comparison results of seven di#erent user privacy preserving approaches, including PrivacyGuard.
To report the results in Table 6, we perform three online quote estimations from Amazon AWS
(using t2.nano instances), Google Cloud (using e2.micro instances), and Microsoft Azure (using A0
instances), respectively. We assume that the targeted home is a standard one and has 21 popular
IoT devices.
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As shown in Table 6, PrivacyGuard only requires $2.97, $8.14, and $15.96 per month for 21 IoT
devices when employing Amazon t2.nano, Google e2.micro, and Azure A0 to mimic IoT manu-
facturer remote servers, respectively. Note that although Tor [12] showed better monthly savings
than PrivacyGuard, it is less e#ective when protecting user privacy leakage in network tra"c data
(shown in Figure 13 and Table 3). Therefore, PrivacyGuard achieves the best tradeo# between
monthly cost and user privacy preserving.
Results. PrivacyGuard only requires as low as $2.97 per month for a 21 IoT devices instru-
mented smart home to su!ciently protect user in-home private information. PrivacyGuard en-
ables smart home users to achieve the balance between computing resources and their data privacy
preserving.

7 Conclusion and Future Work
We designed a new low-cost, open source user “tunable” defense system—PrivacyGuard—that en-
ables users to signi!cantly reduce the private information leaked through IoT device network
tra"c data, while still permitting sophisticated data analytics or control that is necessary in smart
home management. We evaluated PrivacyGuard using IoT network tra"c traces of 31 IoT devices
from !ve smart homes and deploying a Raspberry Pi 4 based prototype. We found that Privacy-
Guard enables smart home users to achieve the tradeo# between data utility and data privacy, and
can e#ectively prevent a wide range of state-of-the-art ML-based and DL-based occupancy and
another nine user activity detection attacks. We plan to collect more IoT tra"c traces to further
understand the tradeo# between privacy preserving and tra"c overhead. We will also improve
our user interface to promote user experience. Additionally, we plan to benchmark more hosts of
PrivacyGuard on real IoT devices and develop a tailored smart router operating system that can
host PrivacyGuard services directly.
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