Chack far
updates

Safeguarding User-Centric Privacy in Smart Homes

KEYANG YU, Computer Science, Colorado School of Mines, Golden, United States
Ql LI, Computer Science, Colorado School of Mines, Golden, United States

DONG CHEN, Computer Science, Colorado School of Mines, Golden, United States
LITING HU, University of California Santa Cruz, Santa Cruz, United States

Internet of Things (IoT) devices have been increasingly deployed in smart homes to automatically monitor
and control their environments. Unfortunately, extensive recent research has shown that on-path external
adversaries can infer and further fingerprint people’s sensitive private information by analyzing IoT network
traffic traces. In addition, most recent approaches that aim to defend against these malicious IoT traffic analyt-
ics cannot adequately protect user privacy with reasonable traffic overhead. In particular, these approaches
often did not consider practical traffic reshaping limitations, user daily routine permitting, and user privacy
protection preference in their design. To address these issues, we design a new low-cost, open source user-
centric defense system—PrivacyGuard—that enables people to regain the privacy leakage control of their IoT
devices while still permitting sophisticated IoT data analytics that is necessary for smart home automation.
In essence, our approach employs intelligent deep convolutional generative adversarial network assisted IoT
device traffic signature learning, long short-term memory based artificial traffic signature injection, and par-
tial traffic reshaping to obfuscate private information that can be observed in IoT device traffic traces. We
evaluate PrivacyGuard using IoT network traffic traces of 31 IoT devices from five smart homes and build-
ings. We find that PrivacyGuard can effectively prevent a wide range of state-of-the-art adversarial machine
learning and deep learning based user in-home activity inference and fingerprinting attacks and help users
achieve the balance between their IoT data utility and privacy preserving.

CCS Concepts: « Information systems — Data management systems; - Computer systems organization
— Sensor networks; - Security and privacy — Vulnerability management; Information flow control;
« Computing methodologies — Model development and analysis; Machine learning algorithms;

Additional Key Words and Phrases: Security and privacy, data analytics, IoT sensors and devices, modeling
and analysis

ACM Reference Format:
Keyang Yu, Qi Li, Dong Chen, and Liting Hu. 2024. Safeguarding User-Centric Privacy in Smart Homes. ACM
Trans. Internet Technol. 24, 4, Article 23 (November 2024), 33 pages. https://doi.org/10.1145/3701726

Corresponding author: Dong Chen, Colorado School of Mines.

This research was supported by NSF grant 2238701.

Authors’ Contact Information: Keyang Yu, Computer Science, Colorado School of Mines, Golden, Colorado, United States;
e-mail: yukeyang@mines.edu; Qi Li, Computer Science, Colorado School of Mines, Golden, Colorado, United States; e-
mail: ligi@mines.edu; Dong Chen, Computer Science, Colorado School of Mines, Golden, Colorado, United States; e-
mail: dongchen@mines.edu; Liting Hu, University of California Santa Cruz, Santa Cruz, California, United States; e-mail:
liting@ucsc.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1533-5399/2024/11-ART23

https://doi.org/10.1145/3701726

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.


HTTPS://ORCID.ORG/0000-0001-5224-1410
HTTPS://ORCID.ORG/0000-0001-6418-7474
HTTPS://ORCID.ORG/0000-0002-1052-5658
HTTPS://ORCID.ORG/0009-0007-7222-5507
https://doi.org/10.1145/3701726
mailto:permissions@acm.org
https://doi.org/10.1145/3701726
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701726&domain=pdf&date_stamp=2024-11-18

23:2 K. Yu et al.

1 Introduction

People are increasingly deploying the Internet of Things (IoT) devices in smart homes and build-
ings to monitor and control their environments. The total installed base of IoT devices is projected
to reach 75.44 billion worldwide by 2025, a fivefold increase over 10 years [50]. The traffic data gen-
erated by IoT devices is recorded by Internet Service Providers (ISPs) to maintain customer ser-
vices, such as generating monthly bills, personalizing the data plan, and detecting network outages.
“Any service that provides Internet access can obviously see what resources users are accessing.
And even with encryption, traffic patterns provide some information about activity” [35]. Verizon
uses “supercookies” to track Internet user activity, and AT&T charges customers an extra $29 per
month to avoid “the collection and monetization of their browsing history for targeted ads,” Mozilla
told Congress [36]. ISPs like AT&T, Comcast, Time Warner, Sprint, and Verizon are selling personal
network traffic data without prior user consent to “enhance” user experience [11]. Specially, the
most recent IoT privacy survey [32] shows that 72 out of 81 popular IoT devices are sharing data
with third parties (e.g., Amazon, Akamai) completely unrelated to original manufacturers and far
beyond basic necessary device configuration, including voice speakers, smart TVs, and streaming
dongles. People are losing access to traffic data and sharing control of their IoT devices at home.

In parallel, significant recent research [9, 10, 12, 13, 18, 21, 26, 28, 38, 39, 47, 56, 57] has shown that
it is surprisingly easy to launch attacks to infer the types of IoT devices and user activities from IoT
traffic data, since IoT device types and their embedded user activities are highly correlated with
basic statistical metrics derived from time series data, such as mean, variance, and range. Thus, [oT
devices have significant privacy threats in their network traffic data. An important example of sim-
ple and private information that IoT traffic data may leak is occupancy—whether or not someone
is at home and when [31]. The network traffic rate (in kilobytes per second) of three IoT devices
from a single apartment is reported in Figure 1. The traffic rate trace signals the occupancy status
and related activities in this home. The most recent research [29] also demonstrated that a passive
Amazon Alexa attacker can fingerprint user voice commands and compromise the user privacy of
millions of U.S. consumers. In addition, these IoT traffic data may also indirectly reveal privacy
information that might be interesting for insurance companies, marketers, or the government. For
instance, significant traffic spikes at mealtimes may indicate that users are regularly having meals
at home. As another example a consistent amount of TV network traffic on Saturday night from 7
pm to 9 pm may indicate that the residents are watching NBA games every weekend. In addition,
a lack of significant traffic may show that occupants are out of town for vacation. Intuitively, user
interaction with IoT devices, such as talking to voice assistants, opening/closing doors, and watch-
ing TVs, lends itself to straightforward attacks that detect changes in these metrics and associates
them with changes in user activities.

Most recent research [9, 12, 16, 37, 54-57] proposes traffic reshaping based prevention tech-
niques to thwart privacy attacks on IoT traffic rate traces. Unfortunately, these approaches did not
significantly consider at least one of the following facts: (1) The artificial traffic “spikes” that are
injected to hide user privacy should not conflict with the real user behavior; (2) many IoT devices
have bidirectional network traffic flows that should be reshaped concurrently; and (3) reshaping
operations have practical limitations, such as network bandwidth and maximum injection rate.
And these may still allow adversaries to infer user in-home sensitive private information. In addi-
tion, the native flattening algorithms broadly employed by many approaches resulted in three to
four times additional traffic overhead. Thus, new low-cost and effective techniques are necessary.
To address these issues, we propose a new low-cost, open source user “tunable” defense system—
PrivacyGuard—that enables users to significantly reduce the private information leaked through
IoT device network traffic while still permitting sophisticated traffic analytics that is necessary to
use IoT devices. In doing so, we make the following contributions.

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:3

o
n
3]

+100 Response  |ncoming —— - Incoming —— & Wzrke up
o) Outgoing —— @12 Outgoing —=— @20
x 80 < I < |Fall Asleep !
2 60 @9 i o151 | Temporary Waking|
g g s “‘\ Photo Captured D‘:u1o Movements
L 40 Command Lo Movement Detecq‘eﬁ L | l
§ 20 §3 [ E5 ‘ ‘
e N A A T M TR I
0 2 4 6 8 10 12 14 16 15 20 25 30 35 40 45 0O 1 2 3 4 5 6 7 8 9
Time (s) Time (s) Time (hours)
(a) Amazon Alexa (b) Dropcam Wireless Camera (c) Withings Sleep Sensor

Fig. 1. When occupied, the loT device traffic rate typically becomes larger and more variable due to user
interactions.

User Privacy Leakage Identification. We explore and highlight the privacy leakage of user in-
home activities from IoT network traffic rate traces. We discuss the fundamental privacy concerns
that govern the network traffic rate over time for popular IoT devices. In doing so, we review,
implement, and benchmark a wide range of sophisticated user activity inference attack models
using Machine Learning (ML) or Deep Learning (DL) approaches, including k-nearest neigh-
bors, Hidden Markov Models (HMMs), Support Vector Machines (SVMs), Convolutional
Neural Network (CNNss), and an ensemble approach—AdaBoost [23].

PrivacyGuard Design. We present the design of PrivacyGuard, which enables users to regain
the privacy leakage control of their IoT devices to significantly reduce the private information
leaked through IoT device network traffic. In essence, PrivacyGuard employs intelligent Deep
Convolutional Generative Adversarial Network (DCGAN)-based traffic signature learning,
Long Short-Term Memory (LSTM)-assisted artificial traffic signature injection, and partial traf-
fic reshaping to obfuscate user privacy. We also design optimization techniques to further reduce
PrivacyGuard’s traffic overhead.

Implementation and Evaluation. We implement PrivacyGuard, both simulator and prototype,
in python using the widely used open source frameworks. We evaluate PrivacyGuard using traffic
rate traces of 31 different IoT devices from five smart homes. The results have shown that Privacy-
Guard can effectively prevent a wide range of state-of-the-art ML/DL-based user activity inference
attacks.

Releasing Datasets and Code. Our new approaches to analyze IoT network traffic rate traces
and prevent user sensitive information from leakage in these traces using ML/DL-based traffic
reshaping techniques are quite general, and can be applied to address similar security and privacy
problems in other data analytics research domains, such as smart transportation system, smart
grid, and medical e-health systems. We release the source code, datasets, and attack models of
PrivacyGuard to IoT research communities on our website [3].

2 Background and Related Work
2.1 Privacy Threat Model

As shown in Figure 2, we are broadly concerned with the ability of ISPs, on-path network observers,
and third parties to infer user in-home activities from smart home network traffic rate metadata.
The network traffic rate metadata, including inbound/outbound traffic rates, network protocols,
source, and destination IPs, package sizes, and so forth are accessible to many on-path entities.
And these potential adversaries may be incentives to infer user activities in smart homes where
users do not want to share this privacy-sensitive information with them. We assume that external
adversaries can use any data analytics techniques, such as data mining, ML/DL, inference, or other
statistical methods, to infer certain types of the observed pattern information in the recorded traffic

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:4 K. Yu et al.

%"‘t‘% _t@ l AU %))

Internet On-Path Adversaries  Cable Modem Router

Fig. 2. Overview of our privacy threat model in smart homes and smart buildings.

1 Incoming —— 1 Incoming —— 1 Incoming ——
0 Outgoing —=— o Outgoing —=— 00 Outgoing —=—

@ @ @
g & g 80 g 80
2 e £ e 2 w0
[id i i
o 40 o 40 o 40
g 2 . g 2 /\3\97 | g 2 //\;?

0 0 = 0

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (s) Time (s) Time (s)
(a) User 1 (b) User 2 (c) User 3

Fig. 3. Traffic rate signatures using Amazon Alexa generated by querying the weather condition from three
different smart home users.

Incoming ——

Incoming ——
Outgoing —=—

Incoming ——
A Outgoing —=— @
\

Outgoing —=—

60

40

20 20

Traffic Rate (KB/s)
&
~_
>

Traffic Rate (KB/s)

Time (s) Time (s) Time (s)

(a) User 1 (b) User 2 (c) User 3

Fig. 4. Fingerprinting traffic rate signatures using Google Home to control the light of three different smart
home users.

traces. Thus, inferring user activities in these smart homes is considered as an opposition to users’
privacy preferences.

In particular, we are concerned with four different types of privacy attacks. The first type is
learning occupancy from the data. This includes whether a home is occupied and when. The second
is learning user in-home activities from the traffic data. User activities may include when users come
and go, when they perform their daily activities, such as going to bed, waking up, watching TV,
listening to music, and playing online games, as well as more complex questions, such as whether
a household has a baby, and whether they go on vacation on weekends. The third type is learning
network traffic pattern information from the data. This includes whether a particular IoT device
(e.g., Voice Assistant) is present in a home, what model of an IoT device is present, and how much
traffic the home consumes on it every month. The fourth is fingerprinting voice command on user
interactive IoT devices. As shown in Figures 3 and 4, this may include voice command fingerprinting
on smart home speakers, such as Alexa and Google Nest Home. Inferring this kind of detailed voice
command may further expose more serious user private information.

Attack Scenario #1. To infer the type of IoT devices and user activities at a certain home, an
external Internet on-path adversary intends to acquire real-time network traffic rates and leverages
ML/DL-based statistical learning and data mining approaches to analyze these data to identify IoT

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:5

Table 1. Correlation and Traffic Overhead Comparison of Six Major
Traffic Modification Approaches

PCC | SRCC | Security (¢) | Additional Overhead
Pure Traffic Injection 0.748 | 0.83 87.15% 97%
Hybrid Traffic Reshaping | 0.462 | 0.711 72.6% 103.7%
Random Traffic Padding | 0.582 | 0.686 54.33% 165.9%
Tor [12] 0.805 | 0.712 77.5% 25%
RepEL [10] 0.361 | 0.525 33% 100%
Tamaraw [12] 0.292 | 0.473 3.4% 199%

devices. Then, the external attacker may launch cyberattacks on a specific IoT device when user
activities permit.

Attack Scenario #2. An external adversary from ISPs, [oT device manufacturers, or third parties
is actively monitoring the IoT traffic traces and then uses data analytics approaches to learn the
indirect user privacy information that might be interesting for insurance companies, marketers,
or the government.

Attack Scenario #3. An external on-path adversary is actively monitoring the IoT traffic traces
from a smart home and then launches inference attacks to fingerprint user voice commands that
might be interesting for insurance companies, marketers, or the government.

In addition, we assume that our smart home users would like to trust in Amazon AWS (EC2) or
Google Cloud services to protect their in-home user privacy information. Note that evaluating the
effectiveness of establishing trust relationship between end users and their cloud servers is outside
the scope of this article.

2.2 Related Work

We outline the design alternatives to preserve smart home user privacy using the Pure Traffic
Injection (PTI) approach, the Hybrid Traffic Reshaping (HTR) approach, and the Random
Traffic Padding (RTP) approach. In doing so, we review a wide range of the most recent sophis-
ticated traffic reshaping based prevention techniques [9, 10, 12, 13, 21, 25, 28, 39, 44-47, 56, 57] to
thwart privacy attacks on IoT traffic rate traces.

To understand the performance of the preceding existing approaches, we implemented three
different traffic reshaping approaches. Table 1 quantifies the effectiveness of the three approaches
and an additional three recent approaches by showing the Pearson Correlation Coefficient
(PCC) and Spearman’s Rank Correlation Coefficient (SRCC). The PCC [40] is a measure of the
linear correlation between original and modified traffic. It has a value between +1 and -1, where 1is
total positive linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation.
The SRCC [49] assesses monotonic relationships between original traffic and modified traffic. If
there are no repeated data values, a perfect SRCC of +1.0 or —1.0 occurs when each of the variables
is a perfect monotone function of the other. Although recent approaches have been proposed
to mitigate the privacy leakage issue, the modified traffic rate traces after applying these prior
approaches may still have a very high linear and monotonic correlation with the original traffic
rate traces. We use PCC and SRCC to quantify the effectiveness of the prior approaches on masking
user private information. We use e-security [39] to describe the probability that a traffic reshaping
approach fails to prevent smart home users from an external adversary’s user activity inferring.

Pure Traffic Injection. Prior work [12, 24, 33, 39] proposed defense approaches to inject “fake”
traffic patterns to conceal genuine user network traffic patterns. As shown in Table 1, the general

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:6 K. Yu et al.

implementation yields additional overhead as 97%. In particular, Park et al. [39] found that traffic
data encryption cannot prevent privacy invasions exploiting traffic pattern analysis and statistical
inference. They first developed empirical models to statistically learn user behaviors using the
transition status of wireless sensors. Then, cloaking network traffic patterns are injected to obscure
genuine traffic patterns. Cai et al. [12] presented a defense against Tor website fingerprinting that
can reshape traffic rate traces by controlling the size of the parameter to pad packets. Hafeez et al.
[24] developed a traffic morphing approach to protect against traffic analytics attack. To obfuscate
background traffic, they injected traffic at a constant rate, incorporating dummy traffic to simulate
device events and blend genuine and fake traffic seamlessly. Another recent work [60] focuses
on ON/OFF traffic shaping to mask user information in network traffic package and streaming
data. However, these approaches did not completely hide the genuine traffic patterns, in particular,
during higher and lower traffic periods. This may still allow adversaries to distinguish “fake” traffic
patterns from genuine traffic patterns to infer user activities.

Hybrid Traffic Reshaping. Prior work [10, 13] presented hybrid reshaping techniques to prevent
user privacy leakage in the aggregated network traffic data. These approaches are aiming at com-
bining partial demand flattening and random artificial signature injection to obscure user privacy
in the recorded data, and leveraging activity-aware optimizations to reduce their reshaping over-
head. As shown in Table 1, the general implementation yields additional overhead as 103.7%. Chen
etal. [13] proposed to learn the “noise” injection rate using empirical statistical analytics (e.g., prob-
ability mass function) of smart home device events. Similarly, Bovornkeeratiroj et al. [10] proposed
RepEL, which employed an edge gateway to partially flatten loads and randomly replay loads to
hide private user occupancy information. A differential privacy (d*-Privacy [58])-based defense
on voice speaker traffic privacy leakage was introduced by Wang et al. [53]. The defense design
and evaluation are mainly for voice speaker traffic analysis. Uddin et al. [51] presented a software
defined network motivated framework to protect user privacy from local or internal attackers. The
proposed defense is focusing on packet level traffic padding and packet delaying. Alshehri et al.
[8] proposed an STTA (Signature-based Tunneled Traffic Analysis) attack [8] that can be effective
even on tunneled traffic. They designed a defense mechanism based on adding uniform random
noise to protect against traffic analysis attack without introducing too much overhead. Xiong et al.
[59] proposed a local differential privacy motivated defense mechanism to obfuscate IoT device
packets prior to transmission in the presence of a local eavesdropper. Pinheiro et al. [42] designed
an adaptive packet padding approach for smart home networks. Their traffic reshaping mecha-
nisms particularly consider smart home network bandwidth and utilization to dynamically adjust
their padding speed and volume. Shmatikov and Wang [47] proposed adaptive padding algorithms
to leverage the intermediate mixes to inject dummy packets into statistically unlikely gaps in the
packet flow to destroying timing “fingerprints” application traffic by enforcing inter-package in-
tervals to match pre-defined probability mass functions. Wang et al. [57] designed a traffic padding
algorithm that uses matched package schedules to prevent adversaries from pairing incoming and
outgoing traffic flows. Significant work [25, 44-46] proposed to model user in-home activities us-
ing Markov chain based approaches. However, due to the empirical modeling of IoT device events
and the nature of random traffic signature injection, these approaches may still allow smart at-
tackers to identify the randomly injected “fake” signatures and thus infer the genuine user private
information.

Random Traffic Padding. Recent work [9, 21, 28] proposed RTP approaches that aim at prevent-
ing a passive network adversary from reliably distinguishing genuine user activities from “fake”
traffic patterns. As shown in Table 1, the general implementation yields additional overhead of
165.9%. Dyer et al. [21] proposed a buffered fixed-length obfuscator based on random padding to

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:7

prevent website fingerprinting attacks. Juarez et al. [28] proposed an adaptive padding approach
that can provide a sufficient level of security against website fingerprinting. The proposed ap-
proach matched the gaps between traffic packets with a distribution of generic network traffic.
When a large gap is identified, this approach will inject padding traffic in that gap to prevent long
gaps from being a distinguishing feature for attackers. Similarly, Apthorpe et al. [9] presented a
stochastic traffic padding algorithm to flatten real traffic patterns and randomly inject fake traf-
fic patterns that look like the real IoT traffic patterns. Rather than using pre-defined IoT device
traffic pattern distribution, Apthorpe et al. [9] integrated their approach with HMM, which can
better model user in-home behavior using IoT traffic trace. However, HMM-based user behavior
modeling cannot accurately model user activities that are presented in the interleaved operations
of multiple IoT devices simultaneously.

Observation. Our results in Table 1 show that the RTP approach—Tamaraw—yields the lowest
PCC, SRCC, and e-security at 0.29%, 0.47%, and 3.4%, respectively. Unsurprisingly, the PTI approach
reports the highest PCC, SRCC, and e-security at 0.75%, 0.83%, and 87.15%. This is mainly due to
the fact that the PTI approach only injects and adjusts the shape of “fake” traffic patterns and
does not reshape or modify any real [oT traffic patterns already presented in IoT traffic traces. The
HTR approach reports coarser correlation than the PTI approach. This is because in addition to
injecting “noise” into IoT traffic traces, the HTR approach also makes its best efforts to partially
flatten both genuine and “fake” traffic patterns of 10T devices. The different correlation perfor-
mance between the HTR approach and the RTP approach is due to the fact that the RTP approach
generally has a higher flattening threshold to pad IoT traffic patterns, and also considers the bidi-
rectional traffic padding for IoT devices (e.g., Amazon Alexa, Google Home). For the same reason,
the RTP approach—Tamaraw—reports the maximum traffic overhead of 199% additional overhead
per device per day. However, even the best-performing approach—the RTP approach—still reports
significant values of PCC and SRCC. This is mainly due to fact that this approach may not consider
practical limitations in real smart homes, such as the network bandwidth and maximum traffic in-
jection rate, and thus the “spikes” of genuine traffic patterns can still be observed by adversaries.

2.3 Summary

Prior research proposes significant prevention techniques to thwart privacy attacks on IoT traf-
fic rate traces. Unfortunately, these approaches did not significantly consider at least one of the
following facts: (1) the artificial traffic “spikes” that are injected to hide user privacy should not
conflict with the real user behavior; (2) many IoT devices have bidirectional network traffic flows
that need to be reshaped currently (not necessarily to be perfectly flattened); and (3) flattening
and injection operations have practical limitations, such as network bandwidth, maximum pack-
age injection rate, and user daily routine permitting. And these may still allow adversaries to infer
user in-home sensitive information by applying time series data analytics attacks. In addition, the
naive flattening algorithms broadly employed by many approaches actually resulted in three to
four times additional traffic overhead. Thus, new lost-cost and effective techniques are necessary.
These valuable insights will guide the development of our proposed technique—PrivacyGuard.

3 Privacy Leakage Identification

As discussed in Section 2, we are concerned with sensitive user private information that can be
learned by adversaries from externally observed traffic rate traces of IoT devices in smart homes.
To explore the severity and extent of this privacy threat, we design a wide range of ML/DL-based,
and ensemble method based user activities attack models to better understand and identify the
most common user activities that can be learned by these adversaries. Unlike existing work that

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:8

K. Yu et al.

Table 2. Best-Performing Attack Models to Detect 13 Different User Activities Using Two Datasets

User Activity Model MCC | Cohen’s Kappa
Talk to Alexa Gradient Boosting 0.977 0.955
Control Lights Decision Tree 0.997 1.000
Print Files Logistic Regression 0.931 0.933
Baby Present Random Forest 0.953 0.954
Use Smartphone SVMs (linear) 0.917 0.942
Use Laptop Decision Tree 0.997 0.997
Walk in Home Ada Boosting 1.000 1.000
Check Body Weight CNNs 0.909 0.999
Check Weather Condition Random Forest 0.973 0.999
Play Music LSTM 0.957 0.958
Control Plugs Passive Aggressive Classifier | 0.929 0.927
Make Coffee SVMs (Linear) 0.969 0.971
Other Activities LSTM 0.917 0.927

mainly focuses on binary occupancy status detection, we investigate multiple-class (e.g., 13-class
classification for Table 2) user activities when a home is occupied. In doing so, we identify the
privacy leakage in the traces of the IoT network traffic rate. In addition, we use all of these attack
models developed in this section to evaluate our new approach—PrivacyGuard—in Section 6. Note
that for each user activity class, we report the attacking model that yields the highest accuracy
for each user activity in Table 2. Additionally, we include smarter attack models (e.g., Gradient
Boosting, Ada Boosting, and Passive Aggressive Classifier). These complex models are built on top
of ensemble methods which could combine the predictions of several base classifiers built with a
given learning algorithm to improve generalizability and robustness of adversarial attacks over a
single classifier. By doing so, we explore the fuller potential of realistic attackers.

To benchmark the performance of attack models shown in Table 2, we use the Matthews Cor-
relation Coefficient (MCC) [34], a standard measure of a binary classifier’s performance, where
values are in the range —1.0 to 1.0, with 1.0 being perfect user activities detection, 0.0 being ran-
dom user activities prediction, and —1.0 indicating that user activities detection is always wrong.
Cohen’s kappa [15] is a measure of the agreement between two classifiers who each classify N
items into C mutually exclusive categories. Cohen’s kappa is widely used to evaluate multi-class
classifiers, where 1.0 indicates a complete agreement, and k= 0 indicates no agreement among the
multi-class classifiers. We will discuss more details about MCC and Cohen’s kappa in Section 6.

3.1 Feature Extraction

IoT device traffic events that have user activity information embedded are mainly reflected and cap-
tured in the fluctuating spikes or motifs exposed in their traffic rate traces. Next, we will describe
our approaches to automatically learn the features that capture user in-home activity information.

3.1.1 Optimal Threshold for Motif Extraction. The first challenge to identify traffic features for
attack models is determining the thresholds that we can leverage to filter out background traffic
and maximally extract the traffic spikes or motifs. In particular, different IoT devices may require
different thresholds due to their different traffic consumption patterns and traffic volumes. For
instance, for some on/off IoT devices (e.g., switch, motion/door sensor), which have relatively low
traffic demand, we cannot simply use an universal threshold, which may “ignore” user activity
information exposed in their traffic motifs.

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:9

1600|
2000, i 2000{ a
15001 g 1200
. 5o s
1000 T 1000{ 800/ - T
ofls | P T
500| & & ‘ 4001 & 3
; s ke ¥
o! : : . : L : ol p— |
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 0 500 1000 1500 2000
(a) Belkin Smart Plug (b) Insteon Camera (c) LIFX Smart Bulb
3000007 ~ -
8001 1r Before C——1
& After X3
1., 08t i 3
{ L e
200000 600] ’jl: S o6t 5":
| M =3 155
L 0.4 K
400| %2 3 59
100000/ [Sela .. .o 0z | [
e o* "5 £
{ i8 200 gandat.ctes o LK e
- L EEA
o EER... . . |& catt .. Logitc PR Lreggeon T°
0 5000 10000 15000 20000 0 200 400 600 800 1000 Approaches
(d) TP-Link Camera (e) Netatmo Weather Station (f) Threshold Effect on MCC

Fig. 5. The illustration of applying K-means on five loT devices to identify background/low, medium, and
high traffic loads.

To address this issue, we design a K-Means clustering-based optimal threshold learning ap-
proach. This method aims to identify dynamic thresholds that effectively separate background
traffic from all traffic, allowing for the extraction of higher traffic motifs from the background traf-
fic. Our insight is that IoT devices typically have three identifiable traffic consumption patterns,
including lower or background, medium, and high traffic mode. As shown in Figure 5(a) through
(e), our analytics using the the K-Means clustering algorithm where K = 3 has shown that IoT de-
vices typically have three identifiable traffic consumption patterns, including low or background
(in purple), medium (in yellow), and high (in cyan) traffic mode. In particular, the volume of back-
ground traffic from the same IoT devices, when users are not actively using them, should ideally
remain consistent or similar across different smart homes. Thus, we apply the K-Means clustering
algorithm where K = 1 on the low traffic of all IoT devices to infer the threshold Tjuckgrouna that
we can leverage to filter out the background traffic which does not capture user in-home activities,
and also the medium/high threshold T,.;ive that enables our approach to more efficiently extract
the user activity embedded traffic motifs. To benchmark the performance of optimal threshold
searching, we examine three different attacks using the user activity of talking to Alexa utilizing
the attack models shown in Table 2. We report the top-3 attack models, including Linear Regres-
sion, SVM, and Decision Tree, which yielded the best attacking performance in Figure 5(f). We find
that employing optimal thresholds to attack user privacy yields better MCC results compared to
using a static and universal threshold. That being said, optimal thresholds could enable attackers
to more efficiently infer user private information embedded in IoT traffic rate traces. The algorithm
for optimal threshold searching is established in Algorithm 1.

3.1.2  Principle Feature Identification from Motifs. The second challenge is to learn the principle
features from these extracted traffic motifs. We leverage the Principal Component Analysis
(PCA) algorithm to identify the principle features that we can use to build ML-based and DL-based
smart attack models. We first build a large IoT traffic rate dataset that has network traffic rate traces
of 31 IoT devices and empirically examine 10 statistical features based on the time series motifs of

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:10 K. Yu et al.

o] Take Care of Baby

: Talk to Amazon
Walking in Home

% 0.004 + Check Body Condition
o Check Weather
o )
N —
E
a -0.004 |

-0.008

0 10 20 30 40 50 60
Sliding Window Size

Fig. 6. The relationship between sliding window and user activity inference accuracy.

ALGORITHM 1: Optimal Threshold Learning

Input: Traffic Volume V, Device List L

Output: Threshold T

Data: Traffic Volume V, Device List L, Threshold T

V(t,t+8) = Ve, Vists . - . Viss) where )7 =V

2 /* For each IoT device, infer the low, medium, and high thresholds. */
3 forVieLdo

+ | {TLowss Thedium,> THigh,} = K-Means (Vi(t, ¢ + 8), K=3)

5 Set Tbackground = K-Means (TLow. K = 1)

6 Set Tactive = [min{TMediumvTHigh}’ max{Thediums THigh}]
7 forVV(t,t +5) € Vdo

[

8 if Vi 2 Tpackground then

9 L Continue

10 else

11 /* Reshaping traffic load using selected threshold */
12 Vi = Tbackgraund

each IoT device, including duration, mean, maximum and minimum values, standard deviations,
range, skewness, variation coefficient, kurtosis, and AUC (area under the curve), among others.
We leverage PCA to analyze the principle features from IoT network traffic rate traces.

We then further process these traffic spikes using a sliding window to learn the sequential event
characteristics that may appear in bidirectional traffic IoT devices. For instance, Amazon Echo
typically presents a short burst of outgoing traffic and then incoming traffic flows in its traffic
rate trace. In addition, user activity events usually have different duration which may affect the
prediction performance of attack models. Given a specific traffic rate trace, we extract the whole
traffic into multiple independent spikes that can be potentially employed to identify different user
activities. We then learn the preceding statistical metrics using a sliding window n. To ensure the
effectiveness of all attack models on different user activities, we need to find the optimal sliding
window size n that can accommodate all IoT devices. Figure 6 presents the derivative of 2-degree
polynomial fitting of the attack model performance. As shown in that figure, the sliding window
size has a significant effect on the accuracy to identify different user activities. We find the optimal
sliding window size n = 40 that we can guarantee our inference attack models could observe and
learn the principle features exposed in traffic rate spikes to indicate user in-home activities.

Note that the granularity of traffic rate traces also significantly impacts the performance of
the selected features. For instance, for lower/coarser granularity traffic traces, some features such

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:11

Input feature © lutional feature  Fyll 5?
signals sigmals dense layers Dutput y M [

S =12, 00 31) Colm= 1,2, 64) F,(n=1,2,...,32) Categories=9 PrivacyGuard i1 kT Davice
P ~ Remote Server i) Remote Server
q o q - -— Traffic
'. ® 4 ® ® ® F*= == Artificial Noise Injection | ISP
| @ o 9 o e helilnbepe Ty )] §

T 4 @ A : =)

- : H S ® VPN Layer ..

q ) q ® ® y

_ o o >\ =

L g | ® loT Devices
le ® Privacy Guar Router

(a) The overview of our CNN architecture  (b) System model of PrivacyGuard

Fig. 7. The overview of PrivacyGuard’s CNN structure (a) and system model (b).

as duration, standard deviations, AUC) might be less distinguishable and hidden, and thus the
e-security of the external adversaries’ attack models will significantly decrease. For example, con-
sidering user activities that have a very short duration, normally at the second-level (e.g., oper-
ating switches), lower/coarser granularity traffic traces may hide the traffic features and signifi-
cantly lower down the performance of attack models. Similarly, for long-lasting activities that are
minute-level or longer, (e.g., checking body condition), traffic traces at lower/coarser granularity
can preserve traffic rate signature and their features better. A fuller evaluation of granularity effect
is discussed in Section 6.4.4.

3.2 ML-Based Inference Attacks

We then focus on selecting the optimal ML model that has the best accuracy to detect user activity.
We investigate the most widely used ML classifiers in prior IoT traffic research work, including Lo-
gistic Regression, SVMs, and Random Forest. In particular, we also benchmarked different kernels
for SVMs, including linear, linear passive-aggressive, linear ridge, polynomial with 1~10 degrees,
and radial basis function. Table 2 shows the results for attacking 13 different user activities. Note
that for each user activity shown in Table 2, we run all of the ML-based attack models and report
the one that has the best attacking accuracy in MCC and Cohen’s kappa.

3.3 DL-Based Inference Attacks

In addition to ML-based attack models, we design a CNN-based DL approach to detect user in-
home activities from IoT traffic rate traces. In the following, we describe the design of our CNN
architecture, which is inspired by the most notable prior CNN research—VGGNet [52]. As shown in
Figure 7(a), our CNN architecture is composed of input, convolutional layers (ReLU), max pooling,
fully connected layers (with and without ReLU), and output. In addition, two fully connected layers
with ReLU and another fully connected layer (without ReLU) are added to process the output.

3.4 Comparison and Summary

Interestingly, as shown in Table 2, it is surprisingly easy to infer and learn user in-home activities
using their network traffic rate traces in a smart home. On average, our ML-based and DL-based
attacking approaches yield the average MCC as 0.956 and the average Cohen’s kappa as 0.966.
These results show that our implemented ML-based, DL-based, and ensemble method based attacks
are effective at detecting a user’s private sensitive information (e.g., user activities) in a smart
home. Specially, the AdaBoost-based attack model achieves the best inference attack results. Thus,
IoT traffic rate traces expose a serious threat to user in-home privacy. Therefore, new privacy
preserving techniques are necessary. We employ all of the preceding attack models to evaluate
our new approach—PrivacyGuard—in Section 6.

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:12 K. Yu et al.

4 PrivacyGuard Design

In this section, we explain how we design PrivacyGuard, a new defense system that enables users
to enjoy the benefits offered by IoT devices while also controlling the privacy of their traffic data
with reasonable traffic overhead.

4.1 Approximate Differential Privacy

Differential privacy was first presented in the work of Dwork [19] to measure the individuals’
privacy loss on database queries. Recently, differential privacy algorithms have become a trend in
the privacy research community of IoT devices and smart homes [20, 26, 42, 58, 58, 59], and have
been broadly adopted by Apple [4], Google [5], and Amazon [1]. Given a smart home system, we
can say a defense approach that can ensure if an arbitrary single substitution in the IoT traffic rate
traces is small enough if the statistical query learning results cannot be used to infer accurate user
in-home sensitive information in a smart home, and thus preserves the user privacy that may be
exposed in the smart home network traffic rate traces. Typically, (¢)-differential privacy is used
as a formulated metric to describe the privacy guarantee. Lower values of € indicate a stronger
guarantee in a defense system. The definition for (¢)-differential privacy is this: An algorithm A is
(¢)-differential private if for all traffic trace substitutions Ty and T, where Ty and T, differ by at most
one traffic rate signature, and for all subsets of possible answers S C Range(A):

PIA(TY) € S < P[A(Ty) € S] - exp(e). 1)

If the inequality is satisfied, then the defense approach A’s output is considered to be € indistin-
guishable and it will be hard for an external attacker to perform a traffic analytics attack on the
smart home IoT traffic. Dwork [20] proposed an approximate version of differential privacy, which
can be described as follows:

PIA(T}) € S < P[A(T3) € S] - exp(e) + 5. @)

Approximate differential privacy is a relaxed version of standard differential privacy. The pa-
rameter § enables the algorithm A to not be the e differential privacy for some portions of IoT
network traffic. Our system is motivated by this approximate differential privacy. Given a target
smart home, T; and T, are two substitutions of IoT network traffic rate traces in a smart home,
and at most one traffic rate signature/spike is different. An external attacker is trying to identify
principle network traffic features which are processed by applying the algorithm A and thus to
predict the associated user in-home activity. For approximate differential privacy with parameters
(e, 9), it is hard for an external attacker to perform traffic analysis attack to infer users’ in-home ac-
tivities. Our evaluations have shown that PrivacyGuard could achieve the approximate differential
privacy.

Please note that although differential privacy is stronger and more desirable than approximate
differential privacy, achieving the latter is more system practical and can still could be effective
for us to build a low-cost computer system to help users safeguard their IoT device traffic. Our
focus is to design a new low-cost and user-centric defense computer system that enables people
to effectively regain the privacy leakage control of their IoT devices. PrivacyGuard preserves user
approximate differential privacy by combining intelligent traffic rate signature learning, artificial
traffic rate signature injections, and partial traffic reshaping to approximate the algorithm A. Our
system design and implementation incorporates the idea of approximate differential privacy due
to its natural insight aligning with our problem requirements. We also understand that there are
some defense limitation studies on differential privacy [14, 27]. However, the full theoretical proof
of differential privacy and its limitation study is outside the scope of this work. In addition, our
system design is orthogonal to new versions of approximate differential privacy. Users have the

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:13

@
S

Injected
Partial Reshaping

Injected

20 Dooming - Raw Traffic

Outgoing —=—
15 | (Amazon Echo) (Dropcam)
Response Photo Captured

NN
S &

Traffic Rate (KB/s)
S o

Traffic Rate (KB/s)
>
Traffic Rate (KB/s)

I
Movement Detected

L. o
0 5 10 15 20 25 30 160 180 200 220 240 260 280 300 320 160 180 200 220 240 260 280 300 320
Time (s) Time (s) Time (s)

(a) Traffic Signature Learning  (b) Artificial Traffic Signature Injection (c) Partial Traffic Reshaping

o o

Fig. 8. PrivacyGuard’s traffic signature learning (a), artificial traffic signature injection (b), and partial traffic
reshaping (c). Keyang added four new complex models.

flexibility to “plug in” new approximate differential privacy ideas to our open source platform
by tuning our thresholds and other parameters, potentially benchmarking and enhancing their
system performance.

4.2 System Design

Figure 7(b) shows the system structure of our PrivacyGuard, which assumes that either a software
Virtual Private Network (VPN) or hardware VPN router is deployed in a smart home. Privacy-
Guard is then connected to the Wi-Fi access point, such as home router or home gateway. Note that
PrivacyGuard can be deployed either on an IoT hub (shown in Figure 7(b)), home router, or Wi-Fi
gateway. A VPN wraps all smart home traffic from IoT devices in an additional transport layer.
By doing so, the VPN can aggregate all traffic into a single traffic flow with the source and desti-
nation addresses of the VPN endpoints. Our proposed new approach—PrivacyGuard—allows user
“tunable” control over what can be learned using data analytics techniques over traffic rate traces
from a smart home. PrivacyGuard leverages the VPN layer as the first defense to prevent user
in-home activity inference, although even if the VPN has been optimally configured, the external
adversaries may still be able to infer user activities due to user sparse activity and dominating IoT
devices [9]. Then, PrivacyGuard takes additional actions to further obscure user in-home privacy.
In essence, PrivacyGuard first learns IoT device traffic signatures from their historical traffic data.
Then, PrivacyGuard employs a DL-based user in-home activity modeling to inject artificial traffic
signatures into traffic rate traces such that the genuine user traffic signatures are obscure in the
modified traffic rate traces. Next, PrivacyGuard partially reshapes IoT device’ traffic rate traces by
considering practical limitations. In addition, PrivacyGuard employs multiple optimization tech-
niques to further obscure the privacy information that are exposed in the externally observed traf-
fic rate traces with lower traffic overhead. The overhead (e.g., additional traffic flows) is reduced
due to our careful design to learn and reshape traffic signatures in our system. Figure 8 shows the
three major operation flows of PrivacyGuard. Note that end users are not required to (frequently)
retrain or manage the components in our system pipeline. Instead, users can use PrivacyGuard in
default settings (with pre-trained models).

Note also that users are not obligated to provide input during the setup process or retrain their
models within our system. For those with heightened privacy protection needs, they can cus-
tomize preferences to tune our traffic reshaping thresholds. Our system offers users the flexibility
to choose their desired balance between data utility and user privacy.

4.3 Intelligent Traffic Rate Signature Learning

PrivacyGuard first learns IoT device traffic rate signatures that are used in its later traffic reshaping
algorithms. The goal of this traffic rate signature learning is to ensure that it is reliably difficult for
the external adversaries to distinguish the genuine IoT traffic rate signatures from the “artificial”

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:14 K. Yu et al.

ALGORITHM 2: Traffic Signature Learning

Input: Traffic Volume V
Output: Traffic Signature S
Data: Traffic Volume V, SQLite Signature Database DB

1 /* Segment aggregated traffic volume into device levels */
2 Disaggregate traffic volume V into device i’s volume V;

3 forVV; € Vdo

4 if Duplicated_Signature (V;) in DB then

5 /* Similar traffic signature already exists */
6 Continue

7 else

8 /* New traffic signature found */
9 Insert V; into DB

10 Update index_keys of DB

11 /* Learn device appearance pattern */

12 forVT; € Tdo
13 for Day; € [0,6] do

14 for Hour; € [0,23] do
15 TC; =TC;j +1 // Update traffic frequency
16 TVi+ =TV; // Update traffic rate

injected or replayed traffic rate signatures. Different IoT devices typically have different traffic sig-
natures. For a specific IoT device, PrivacyGuard can learn its traffic rate signatures over time both
offline and online. Figure 8(a) shows the traffic rate signatures (in kilobytes per second) of Dropcam
and Amazon Alexa. We store all traffic signatures for IoT devices in an SQLite database. Privacy-
Guard also takes additional steps to ensure that it is reliably difficult for external adversaries to
distinguish artificial traffic demand from real traffic demand in the SQLite database. For instance,
the time and duration for each traffic signature, and also other attributes, such as short, long, high,
low, and medium, may compute the fraction of traffic signatures in each category. Then, we use
this fraction to weight each category’s future traffic signature selection such that the “artificial”
traffic demand matches the breakdown of real traffic demand. PrivacyGuard uses the PCC [40],
which is a measure of the linear correlation between the current traffic rate signature and old traf-
fic rate signatures to eliminate the duplicated traffic rate signature update. PrivacyGuard examines
the incoming traffic rate signatures in the same manner, despite whether they are “old” or “new”
traffic patterns. The major difference is that once a new signature is detected, we keep a copy in
our database for signature learning and future injection usage. Similarly, PrivacyGuard can also
detect and replay the new traffic rate signatures generated by the “old” devices. The algorithm for
traffic rate signature learning is established in Algorithm 2.

In addition, we observed that some IoT devices (e.g., body condition measurement devices and
smoke sensors) have much less frequent daily usages than other intensive user interaction IoT
devices. Thus, to ensure the accuracy and quality of traffic rate signature learning for these IoT
devices, we leverage DCGANSs [43] to build a new traffic rate signature generator to enrich the
training traffic data samples for those small traffic devices. Our DCGAN architecture is composed
of convolutional layers without max pooling or fully connected layers. We leverage convolutional
stride and transposed convolution for downsampling and upsampling, respectively. The generator
network uses a 100*1 noise vector. Our first layer is to project and reshape inputs, then following

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:15

ALGORITHM 3: Artificial Traffic Signature Injection

Input: Traffic Volume V
Output: Traffic Signature S
Data: Traffic Volume V, SQLite Signature Database DB
1 /* Inject artificial traffic signatures */

2 for Day; [0,6] do

3 for Hour; € [0,23] do

4 if TC; >0 then

5 TCi— =TC; // Update traffic frequency limit
6 TVi-=TV; // Update traffic rate limit
7 /* Mimic user activities using LSTM */
8 Select traffic signature V; from DB based on our learned user activity H

9 /* Further obscure privacy in the load */
10 Update traffic volume V; = V; + Vi

this layer, we have five convolutional layers. For the generator model, we use the ReLU activation
function for all layers except the final one, where we employ the Tanh activation function. Our
generator and discriminator have almost the same architectures, but reflected. For the discrimina-
tor model, we use the Leaky ReLU activation function for all layers except the last layer where
we use the Sigmoid activation function. By doing this, we are able to build a rich set of traffic rate
signatures for these IoT devices. Note that learning a traffic rate signature does not necessarily
mean that PrivacyGuard will inject it. The injecting decisions are made by our real user behavior
modeling based traffic signature injection process, which will be explained in the next section.

4.4 Artificial Traffic Signature Injection

PrivacyGuard does not simply inject or replay traffic signatures randomly, since an external adver-
sary may be able to identify those random patterns in smart home traffic rate traces. This may still
allow external adversaries to distinguish the injected “fake” traffic demand patterns from the real
traffic demands due to their inconsistency in user in-home behaviors in a specific smart home.

Prior approaches have explored the benefits of integrating real user behavior with their pri-
vacy preserving approaches using Bernoulli distribution, Poisson distribution, or Linear Chain
Conditional Random Field (LCCREF) into their traffic “noise” injections into IoT traffic traces.
PrivacyGuard selects signatures from the database to inject at an injection rate equal to the rate
at which the home generates traffic rate traces when occupied. In addition, PrivacyGuard injects
realistic traffic signatures that we learn from real IoT device traces in Section 4.3. More impor-
tantly, PrivacyGuard considers real user behaviors in a smart home when injecting these realistic
traffic rate signatures for each IoT device. In doing so, PrivacyGuard can ensure that the injected
traffic patterns still fit the traffic distributions that represent the regular user in-home behaviors
such that the external adversaries cannot distinguish injected traffic patterns from genuine traffic
patterns. The algorithm for traffic rate signature injection is established in Algorithm 3. Next, we
explain how PrivacyGuard models user in-home activities.

LSTM-Based User In-Home Activities Modeling. To address this problem, we present a recur-
rent neural network based approach to model real user in-home behaviors. Specifically, we design
an LSTM-based approach to model user in-home behavior using IoT traffic rate traces. Note that
similar to HMM, the LSTM-based approach also assumes that user activities behind these IoT de-
vice events are hidden and thus can be learned through the LSTM architecture. Compared with the

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:16 K. Yu et al.

TE"“ Qutput
:: ) —

_

Py
By —

_

A
)
oy A
. — | |
Y L
\ | — —
-

.

L]

L ]

e
B m—

S

Fig. 9. Overview of LSTM-based user in-home daily routine modeling.

HMM-based approach, our LSTM-based model can learn user in-home activity using both single
IoT device events and the concurrent events of multi-IoT devices. The input shape (a.k.a. window
size) of our LSTM model is the status vector size of all IoT devices, and the IoT devices’ reported
sensor data is associated with nine different user in-home activities. The output of the LSTM model
is the future user activities. As shown in Figure 9, the first visible layer is the LSTM layer with 10 x
10 memory blocks. To reduce overfitting and improve model performance, we apply 20% dropout
to the recurrent input signals on the LSTM units. After that, two fully connected layers with ReLU
and another fully connected layer (without Softmax) are added to process the output. Since Priva-
cyGuard is performing multi-class user activity classification, we use Categorical Cross-Entropy
Loss (a.k.a. Softmax Loss) as model loss function. In addition, instead of using the classical stochas-
tic gradient descent approach to update the parameter weights, we employ the Adam algorithm
as the optimizer for our LSTM model that can better handle high-dimensional parameters and
mitigate sparse gradient problems. To train our LSTM model, we split IoT device traces with a
70%/30% split of training data to test data. PrivacyGuard leverages the LSTM-based user activity
model to select what IoT traffic rate signatures to inject and when to inject them. Note that user
daily routines, user populations, and user patterns may be different in different homes. In addition,
in a new home, user activity, home configuration, and IoT devices may vary. Users can deploy
our PrivacyGuard to automatically retrain the preceding LSTM model to learn these user in-home
patterns which we benchmarked in Table 2.

Bidirectional Traffic Signature Injection. The way that PrivacyGuard leverages to mimic uni-
directional communication IoT devices is trivial. However, a significant amount of IoT devices are
user interaction intensive, such as voice assists and IoT smart plugins, and they have bidirectional
traffic flows. To mimic these IoT devices, as shown in Figure 7, PrivacyGuard may be deployed
both locally and on the remote servers using a Master/Slave model. The local PrivacyGuard works
regularly as the master which is very similar to other single directional traffic IoT devices, whereas
the remote PrivacyGuard server acts as the remote IoT device servers that are responding to local
IoT device traffic demands. In addition, PrivacyGuard works in a mixed architecture of Master-
Slave and Publish-Subscribe. The remote servers have the same design as the local PrivacyGuard.
The mapping relationship between local in-home PrivacyGuard (a.k.a. publishers) and remote Pri-
vacyGuard servers (a.k.a. subscribers) is N:M. In other words, multiple PrivacyGuards can share a
remote PrivacyGuard server, and a single smart home PrivacyGuard can be paired with at least one
remote server. The remote server is pretending to be the “valid” IoT remote server to respond to
artificial IoT device bidirectional traffic demands. To mimic the incoming/inbound traffic, we build
the PrivacyGuard remote server on top of the traffic and package editor/generator—Ostinato [2]—
that supports most common standard protocols including Ethernet/802.3/LLC, VLAN, ARP, IPv4,
IPv6, TCP, UDP, HT TP, SIP, RTSP, and NNTP. In particular, PrivacyGuard leverages the Ostinato

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:17

Real Incoming Package:

Ethernet II, [Src: Motorola f7:d2:22 (e@:98:61:f7:d2:22), Dst: Raspberr_20:f8:54 (b&:z?:ab:za:f8:54ﬂ
Internet Protocol Version 4,|Src: [52.119.197.96, Dst: 192.168.8.325 |

Mimicked Incoming Package;| Same Src. Netid | Same MAC address and Dst. IP address

Ethernet II, [Src: Motorola_f7:d2:22 (e@:98:61:¥7:42:22), Dst: Raspberr_20:f8:54 (b8:27:eb:20:F8:54)
Internet Protocol Version &, |Src: [621119.197.116, Dst: 192.168.0.25

Fig. 10. The illustration of PrivacyGuard remote server modified packages for Amazon Echo.

Python API [2] to vary packet fields across packets at runtime—for example, changing the source
IP/MAC addresses in the packages of the PrivacyGuard remote server to those of the actual IoT
remote server (shown in Figure 10). In doing so, PrivacyGuard is able to generate incoming traffic
from the source “valid” IoT remote server. In addition, using this design, a single point of remote
server failure will not prevent PrivacyGuard from injecting artificial incoming traffic that is criti-
cal to hide user privacy in traffic traces. Note that the possible extra traffic from/to cloud servers,
such as copy-cat traffic pattern injections, may serve as “free” noise injections and actually can
help PrivacyGuard better hide user sensitive information in the traffic rate traces.

4.5 User-Centric Partial Traffic Reshaping

After applying the LSTM-based artificial traffic signature injection, the modified traffic traces may
still expose changes in traffic rate spikes. To hide these remaining spike changes, we design a new
user tunable partial traffic reshaping approach. Unlike prior approaches [9, 12, 16, 37, 54-57], sim-
ply assuming that their reshaping techniques always have enough or unlimited traffic bandwidth
to completely flatten the spikes in the externally observed traffic traces, PrivacyGuard employs
a reshaping threshold Tyeshape = max{Teyrrent(t), U(t), Taverage(t)} that only partially reshapes
the traffic demand to a target less than the peak traffic demand. Teyrrent(t), U(t), and Tgperage(t)
denote the current traffic rate demand, the user preferred set point, and the average traffic rate
demand, respectively. To maintain Tyspape at each t with current traffic demand Teurrent(t), Pri-
vacyGuard consumes Tyeshape = Teurrent (t) Whenever Teyrrent(t) < Treshape- Since Trespape traffic
demand is typically much lower than peak traffic demand, a low reshaping threshold is able to
hide the most of the changes in traffic rate trace data without using much network bandwidth.
The algorithm for user tunable partial traffic reshaping is established in Algorithm 4.

Figure 11 illustrates the results of PrivacyGuard when smart home users set their privacy guar-
antee to “Auto,” “High,” and “Low” preferences. Note that under the “Auto” mode, PrivacyGuard
can automatically learn an optimal/default tradeoff point such that users can use the “least” traffic
overhead to protect their smart home from the “most” privacy leakage. In addition, PrivacyGuard
supports smart home users, such as those who require more privacy protection or are on an unlim-
ited Internet data plan, to “tune” this learning process such that they can use more traffic to hide
their privacy information exposed in their traffic rate traces. Through this module, smart home
users could regain the control of at what degree the users would like to manage their privacy
leakage from IoT traffic rates.

4.6 Online Optimizations

In addition, PrivacyGuard introduces some optimization techniques to further obscure the poten-
tial privacy leakage in the externally observed traffic rate traces, including intelligent traffic sig-
nature adjustment and random noise injection, and reshaping rate adjustment. We describe the
detail of each optimization as follows.

Intelligent Traffic Signature Injection Adjustment. PrivacyGuard adjusts the replayed signa-
ture by raising or lowering each point by a small random amount (e.g., 0% to 5% of traffic demand).

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:18 K. Yu et al.

HomeGuard Control Panel HomeGuard Control Panel HomeGuard Control Panel
Global Settings Global Settings Global Settings
Sedect Usor Beurvicr Patbarm Seiect Usee Behavior Pattern Satect Uistr Babavior Patierm
Swect Trafc Fushapieg Threshokd Select Traffic Aeshaping Threshoid Sebect Traffc Foshaging Threshoid

N—— R -~ S — it
IE i: i i: . EER i .
B ’ ! ! s ,|4.‘ .\-'l i ! :| . ! - ‘: ; ! '.-.1.I_|__.|_.!' ' r |_1 1 r| R B .|_ BN, _--_!._ L

(a) Automatic (b) High reshaping rate (c) Low reshaping rate

Fig. 11. PrivacyGuard’s user tunable traffic reshaping GUIs, including automatic self-learning mode (a), high
mode (b), and low mode (c).

ALGORITHM 4: Partial Traffic Reshaping
Input: Traffic Volume V, User Preference U
Output: Modified Traffic Volume V
Data: Traffic Volume V
1 /* Segment traffic volume trace into isolated traffic traces */

2 Separate traffic volume V into time ¢’s volume
3 V(L +8) = Vi, Vests. ... Vyys) where 37 =V
4 forVV(t,t +6) € Vdo

5 Set Reshaping_threshold = max{TV;, U, Current_load; }

6 if V; > Reshaping_threshold then

7 L Continue

8 else

9 /* Reshaping traffic load using selected threshold */
10 Vi = Reshaping_threshold

11 Extend the reshaping for random € seconds

12 V(t,t + €) = Reshaping_threshold

In addition, for each traffic rate demand reshaping, PrivacyGuard extends its duration by a small
random amount (e.g., 0% to 5% of the regular duration) such that the starting and ending points in
the traffic rate signature of the sleep sensor like IoT devices are hidden. PrivacyGuard only injects
traffic rate signatures when the home user behaviors permit. For instance, at nighttime, when most
smart home users are sleeping, PrivacyGuard needs to ensure that traffic traces have significant
less interactive IoT device traffic demands.

Traffic Injection Rate Adjustment. PrivacyGuard also dynamically adjusts its reshaping thresh-
old and rate of artificial traffic rate signature injection over time to match the expected rate each
period. Our insight is that there is no need to make lower-traffic nighttime periods look like high-
demand traffic daytime periods. Instead, PrivacyGuard only ensures that these time periods look
the same with respect to each other, regardless of whether a home is occupied or not. In addition,
PrivacyGuard indexes its traffic rate signatures database based on each IoT device’s traffic rate
signature’s real time of use. At any time, PrivacyGuard is trying to select from the past traffic rate
signatures that occurred near that time when the LSTM-based user behaviors model allows.

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:19

loT Devices d
|

. Lamp Controlled
by Smart Plug

PrivacyGuard on
Raspberry Pi

| P ‘
(o

Fig. 12. The overview of our PrivacyGuard prototype.

Raspberry Pi
Equipped with
Touchscreen

ML and DL Model Improvements. Finally, PrivacyGuard is orthogonal to the specific ML and DL
technique. For instance, we use SVM, Random Forest, Logistic Regression, and other models to
build smart external attacks to evaluate existing defense performance. Our goal is to demonstrate
that it is quite straightforward to infer user in-home activities. As another example, our system
design incorporates LSTM due to its natural architecture aligning with our problem requirements.
Users have the flexibility to “plug in” new models to our open source platform, potentially bench-
marking and enhancing system performance.

5 Implementation

We implement PrivacyGuard, both simulator and prototype, in python using widely available open
source frameworks, including Pandas, Scikit-learn, and PyCUDA. The simulator takes a home’s net-
work traffic race traces as input and applies privacy preserving techniques outlined in the previous
section. We also deploy a prototype PrivacyGuard in a “mock”smart home to demonstrate the abil-
ity to modulate a home’s network traffic rate demands in real time to mask user activities using
PrivacyGuard’s approach online. As shown in Figure 12, we employ a Raspberry Pi 4 Model B based
hardware (Broadcom BCM2711, Arm Cortex-A72 Architecture) setup, which enables PrivacyGuard
to reshape, inject, and adjust traffic rate demands in real time. The prototype uses IoT network traf-
fic rate data at the home’s Wi-Fi access points to query the real-time traffic rate readings for the
entire home every minute using cronjobs. We implement PrivacyGuard’s algorithms and its opti-
mizations. We deploy our PrivacyGuard remote server on the Amazon EC2 t1.micro instance with
a cost of $0.0035 per hour. We also store the set of artificial traffic rate signatures, indexed by time
period, that are available for replay in an SQLite3 database. The size of the implementation is less
than 1,500 lines of code. We use the Scikit-learn ML library in Python to build our ML attack ap-
proaches. The library supports multiple techniques including Logistic Regression, SVMs, and Ran-
dom Forest. In particular, we also implemented different kernels for SVMs, including linear, linear
passive aggressive, linear ridge, polynomial with 1~10 degrees, and radial basis function, and PCA.
For CNN-based attack approaches, we implement based on the framework from VGGNet [52]. For
user in-home activities, we implement LSTM-based user in-home activities modeling using the
Keras model library [30] and TensorFlow framework [6]. Finally, we schedule the batch jobs on
our GPU servers to compare the MCC accuracy of eight different approaches using CUDA. The
server we use to get all benchmarking and evaluation results for attacking models has the follow-
ing resources: (1) CPU: 2x Intel Xeon CPU E5-2620 v4 @ 2.10 GHz, (2) GPU: NVIDIA TITAN X
(Pascal) (x8), (3) RAM: 128 GB, and (4) OS: Linux CentOS 7. PrivacyGuard can be implemented on
IoT hubs and middle boxes (e.g., Wi-Fi access points, gateway routers, and smart IoT hubs).

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:20 K. Yu et al.

6 Experimental Evaluation

Next we describe our datasets, experimental setup, metrics used to evaluate our PrivacyGuard
approaches, and evaluation results.

6.1 Datasets

Dataset 1: UNSW. We downloaded the publicly available IoT traffic rate traces from UNSW Syd-
ney [48] that include packet level network traffic traces of 22 IoT devices for 20.5 days. These raw
traffic traces contain packet headers and payload information. To evaluate our approaches, we
pre-process the 10T traffic metadata traces to IoT traffic rate data at different granularities and also
label all user in-home activities.

Dataset 2: SmartFIU. We set up our own “mock”smart home using our laboratory space that
has four graduate students operating 31 IoT devices daily. We first deploy a NETGEAR AC1750
smart Wi-Fi router that serves as the internal switch and the gateway to the public Internet. We
flash the router using DD-WRT [17] (a Linux based alternative open source firmware) and set up
ExpressVPN [22] on the router. We then install tcpdump on this gateway to capture network traffic
data. We use 45 days of 1 minute level IoT traffic data to evaluate our PrivacyGuard.

Dataset 3: Real Smart Home Dataset. We deploy 22 popular IoT devices in two real smart homes.
The two homes are private townhouse apartments that have two and four occupants, respectively.
We collect the second level IoT traffic traces of 22 IoT devices from the two homes, resample them
into IoT network traffic traces of different granularities, and also record log groundtruth user ac-
tivities for the whole 2 weeks.

Dataset 4: IoT Device Captures (Kaggle #1). We download the IoT Device Captures dataset from
Kaggle, which has 30 popular IoT devices. Each IoT device was recorded for 20 segments, and
each segment has a traffic duration as of 2 minutes. We label the groundtruth user activities by
examining their IoT device events.

Dataset 5: IoT Device Network Logs (Kaggle #2). We also download the IoT Device Network
Logs dataset, which captured 1 minute level network traffic traces of 14 popular smart home IoT
devices for 5 days using NodeMCU with an ESP8266 Wi-Fi module. We label the groundtruth user
activities by examining their IoT device events.

Note that to label user activity in public datasets rather than ours, we develop a script to assist
us to search motifs in aggregated traffic spikes. Then, we cluster and process the groundtruth
user activities data comprehensively. For our own datasets, we have been logging user activities
in our monitoring smart homes. In addition, to learn the effect of traffic rate granularity on the
user privacy preserving degree, we pre-process the traffic rate traces of the preceding datasets
into different granularity levels (e.g., 1 second, 1 minute, 3 minutes, 5 minutes, and 10 minutes). By
default, traffic rate granularity is set at 1 second.

6.2 Experimental Setup

PTI Approach. We first implement a general version of prior work [12, 39]. This approach lever-
ages Bernoulli distribution, Poisson distribution, and LCCRF to randomly inject “fake”traffic de-
mands that are randomly selected from historical traffic patterns.

HTR Approach. We implement a general version of prior work [10, 13]. This approach employs
a threshold-based traffic demand flattening, and leverages Bernoulli distribution, Poisson distribu-
tion, and LCCRF to randomly inject “fake” traffic demands.

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:21

RTP Approach. We implement a general version of prior work [9, 21, 28]. This approach employs
traffic demand flattening and leverages HMM-based user behavior modeling to randomly inject
“fake”traffic demands that are randomly selected from historical traffic patterns.

PrivacyGuard Approach. PrivacyGuard employs intelligent DCGAN-based IoT device traffic sig-
nature learning, LSTM-based artificial traffic signature injection, and partial traffic reshaping to
further obfuscate private information that can be externally observed in IoT traffic traces. We also
evaluate our PrivacyGuard with the online optimization approaches as we discussed in Section 4
to further obscure user private information in the externally observed traffic rate traces, including
intelligent traffic signature adjustment and traffic rate adjustment.

6.3 Evaluating Metrics

Next we describe the metrics that we use to evaluate PrivacyGuard.

Maithews Correlation Coefficient. To quantify the accuracy of different user privacy enhanc-
ing approaches, we note that the standard evaluating metrics (e.g, accuracy and F1) would not
work well on our highly imbalanced IoT traffic data. Based on the recommendation from prior
work [7, 41], we use the MCC [34], a standard measure of a classifier’s performance, where val-
ues are in the range from —1.0 to 1.0, with 1.0 being perfect user activity detection, 0.0 being
random user activity prediction, and —1.0 indicating that user activity detection is always wrong.
The expression for computing MCC is as follows, where TP is the fraction of true positives, FP is
the fraction of false positives, TN is the fraction of true negatives, and FN is the fraction of false
negatives, such that TP + FP + TN + FN = 1:

TP« TN — FP « FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

®)

Cohen’s Kappa. Cohen’s kappa [15] is a measure of the agreement between two classifiers who
each classify N items into C mutually exclusive categories. Cohen’s kappa is defined as

k=1-—L2 4)

where p, is the relative observed agreement among classifiers, and p, is the hypothetical proba-
bility of chance agreement, using the observed data to calculate the probabilities of each classifier
randomly seeing each category. If the classifiers are in complete agreement, then x should be 1.
If there is no agreement among the classifiers other than what would be expected by chance,
then k = 0.

Pearson Correlation Coefficient. The PCC [40] is a measure of the linear correlation between
two variables (e.g, original and modified traffic), computed as the covariance between the variables
divided by the product of their standard deviation. It has a value between +1 and -1, where 1 is
total positive linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation.

Spearman’s Rank Correlation Coefficient. The SRCC [49] between two variables is equal to the
PCC between the rank values of those two variables (e.g, original traffic and modified traffic). How-
ever, unlike the PCC that assesses linear relationships, the SRCC assesses monotonic relationships
(whether linear or not). If there are no repeated data values, a perfect SRCC of +1.0 or —1.0 occurs
when each of the variables is a perfect monotone function of the other. We use the PCC and the
SRCC to quantify the effectiveness of different approaches on masking user private information.

Adversary Confidence. We leverage Adversary Confidence (AC) to describe the adversary’s
ability to identify which time periods are corresponding to user activities. Given a probability p
that user activity occurs independently in n time periods, AC can be estimated as the empirical

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:22 K. Yu et al.

Table 3. Correlation and Traffic Overhead Comparison of Three Different Major
Traffic Modification Approaches

Traffic Overhead
PCC | SRCC (MB per Device per Day)
Pure Traffic Injection 0.75 | 0.83 29.11
Hybrid Traffic Reshaping | 0.46 | 0.71 32.12
Random Traffic Padding | 0.58 | 0.69 49.78
PrivacyGuard 0.35 0.64 27.15

UNSW dataset ——1
SmartFIU datase!
Kaggle dataset
Kaggle dataset

UNSW dataset ——1
SmartFIU datase
Kaggle dataset 1
Kaggle dataset

Addtional Traffic (M!

Original HTR RTP PrivacyGuard RTP PrivacyGuard
Occupancy Preserving Approaches Privacy Enhancing Approaches

(a) The accuracy comparison of occupancy detection  (b) The amount comparison of additional traffic

Fig. 13. The comparison of occupancy detection accuracy and additional traffic after applying four different
approaches.

fraction of n time periods with traffic corresponding to user activities; g is the probability decision
function choosing to perform non-activity traffic padding. Thus, AC can be defined as

o
= rnl=p)a ®)

6.4 Experimental Results

6.4.1  Preventing Binary Occupancy Detection. We first compare the ability of four different ap-

proaches regarding masking occupancy. Note that our focus in this group of experiments is on
binary occupancy status detection as opposed to the detection of multiple user activities classi-
fications (as shown in Section 6.4.3). These approaches split the dataset into training and testing
datasets using a ratio of 7:3 after cross validation. To ensure fair comparison, we set the traffic “cap”
for each approach as 75 MB per device per day. As shown in Table 3, PTI receives PCC and SRCC
values of 0.75 and 0.83, and HTR reports PCC and SRCC values of 0.46 and 0.71, respectively. RTP
reports smaller PCC and SRCC values of 0.58 and 0.69, respectively, whereas PrivacyGuard yields
the smallest PCC and SRCC values of 0.35 and 0.64, respectively. Thus, among all four different
approaches, PrivacyGuard is the best-performing approach to hide user occupancy. As shown in
Figure 13(a), we also compare occupancy detection accuracy when applying ML/DL-based attacks
that we implemented in Section 3 to quantify the performance of HTR, RTP, and PrivacyGuard
using the MCC. PrivacyGuard yields an average MCC of 0.2235, which is much closer to random
detection (i.e., an MCC of 0.0) and a factor of more than two times less than the average MCC
when attacking on HTR modified traffic, which is 0.4665.
Results. By lowering the average MCC to 0.2235 in four smart homes, the PrivacyGuard approach
effectively prevents occupancy detection from a wide set of ML-based and DL-based attacks. In addi-
tion, PrivacyGuard yields a factor of more than two times less than the MCC of occupancy attacks on
the modified IoT traffic traces by prior approaches.

6.4.2  Quantifying Traffic Overhead. We quantify the amount of network traffic overheads that
are required to perform HTR, RTP, and PrivacyGuard. Figure 13(b) reports the amount of additional

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:23

1 Original —— HTR ez RTP PrivacyGuard s
0.8
Q0.6
0.4
0.2
O Ll
talk to Alexa control lights print files baby present  use smartphone use laptop walk in home check body weight other activities
Whole Day User Activities
1 Original —— HTR =z RTP rivacyGuard
0.8
Q0.6
0.4
0.2
oL
talk to Alexa control lights print files baby present  use smartphone use laptop walk in home check body weight other activities
Daytime User Activities
4 Original —— HTR =z RTP rivacyGuard
0.8
Q
L§) 0.6
0.4
0.2

" takto Alexa control lights print files baby present  use smartphone use laptop walk in home check body weight other activities
New Traffic Rate Signitures

Fig. 14. The whole day (top), daytime (middle), and daytime with new traffic patterns (bottom) MCC com-
parison of user activities detection before (original) and after applying HTR, RTP, and PrivacyGuard.

traffic consumption for each approach. As expected, PrivacyGuard only consumes 27.15 MB of
traffic per day on average over four datasets, which is about 2.7 times less than that of HTR, which
is 73.11 MB on average per day. In other words, PrivacyGuard consumes the least amount of traffic
overhead while achieving the best performance to prevent user privacy leakage in four smart
homes.

Results. PrivacyGuard only consumes 27.15 MB of traffic per day, which is about 2.75 times less than
that of HTR, which is 73.11 MB per day. PrivacyGuard consumes the least amount of traffic overhead
while achieving the best performance to prevent user privacy leakage.

6.4.3 Preventing User Activities Detection Attacks. We next benchmark the effectiveness of
masking user activities when applying three different privacy preserving approaches. We lever-
age ML/DL-based attack models that we built in Section 3 to detect nine different user activities
using the original, HTR modified, and PrivacyGuard modified traffic rate traces. Unsurprisingly, as
shown in Figure 14, PrivacyGuard always yields the worst MCC in both whole day (top) and mid-
day (7 am to 12 am, bottom), and thus is the most effective privacy leakage preventing technique.
In addition, we observe that the MCCs of both PrivacyGuard and PrivacyGuard using midday data
only are the same or slight higher than the MCCs when using whole day data. This is mainly due
to fact that users are typically sleeping at nighttime (12 am to 7 am), and thus most of the traffic
occurrences in this period are not reflecting user in-home interactive activities. Therefore, all three
approaches are reporting the same or slightly higher than the MCCs when attacking the midday
(7 am to 12 am) traffic traces which have eliminated those “non-interactive” periods and mainly
focus on user interaction patterns. Note that we observed the same trend when using both the
UNSW dataset and the Smart™ dataset.

We also examine the performance of the different defending approaches when handling new
signatures. The goal is to benchmark these traffic reshaping approaches when the incoming traffic
has a mix of known (pre-seeded) and unknown (new) IoT traffic rate signatures. For this example,
we set the ratio to 1:1, and we find that all traffic reshaping approaches achieved MCCs similar
to those shown in Figure 14 (middle) which primarily reshaped traffic rate traces using known

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:24 K. Yu et al.

Regular Approach ——1 Ada Boosting ez Gradient Boostin
1

Passive Aggresive Classifier mmmmm

8 ost
o
0.25

talk to Alexa control lights print files baby present  use smartphone use laptop walk in home check body weight other activities
User Activites

Fig. 15. The whole day MCC comparison of three complex attacking models targeting on PrivacyGuard.

(pre-seeded) traffic rate signatures, and PrivacyGuard consistently yields the worst MCC. This is
mainly due to the fact that the different reshaping approaches we implemented are handling the
traffic rate signatures in the same manner, despite whether they are known or unknown signatures.

In addition to the preceding traditional single classifier ML or DL attacks, we examine the
robustness of PrivacyGuard against complex and stronger attacks using the best-performing
“ensemble” methods, such as Gradient Boosting, Ada Boosting, and Passive Aggressive Classifier,
which could combine the “advantages” from multiple single ML and DL classifiers to stronger
against PrivacyGuard. In doing so, we are examining the robustness performance of four user pri-
vacy defending approaches when they encountering smarter and more comprehensive attacks. As
shown in Figure 15, we find that the MCCs of the four different approaches slightly increase due to
the more powerful ensemble/complex attacks. However, the PrivacyGuard approach consistently
achieves the lowest MCC results, with an upper bound of 0.46. PrivacyGuard is significantly
more effective in defending against complex attacks compared to previous HTR or RTP defense
methods.

We then examine the robustness bound by turning the user setting for their preference on pre-
serving their data privacy. We find that PrivacyGuard, with automatically learned settings (result-
ing in 75% traffic reshaping), can achieve a bound MCC of 0.462, and with optimally user “tuned”
settings, it can reach an MCC of 0.341 (with 75% artificial traffic), 0.273 (with 85% artificial traf-
fic), and 0.202 (with 95% artificial traffic). Given the UNSW (with 20.5 days) dataset, with a mix
of genuine user traffic (25%) and reshaped traffic (75%) with automatically learned settings, the
robustness bound of PrivacyGuard is proportional to the volume of reshaped traffic in their home.
However, for the scenarios where smart home users opt in their higher user privacy preserving,
the robustness bound of PrivacyGuard is proportional to both the user preferred setting and vol-
ume of reshaped traffic. We find that we could fit these observations of attack accuracy and user
tunable setting into polynomial regression function. Note that our main focus is to build systems
to help users mitigate or reduce their data privacy leakage. There could be better potentially fitting
models, which we will further explore in our near future work.

Results. Our PrivacyGuard approach effectively prevents nine different user activities from a wide
set of ML-based, DL-based, and ensemble sophisticated attacks in smart homes. Compared with prior
approaches, PrivacyGuard consistently yields the lowest MCC for each user activity and thus is the
best-performing privacy preserving approach.

6.4.4 Quantifying Accuracy When Varying Granularity of Traffic Traces. We next evaluate the
user activity detection effect on different traffic rate traces that have different levels of granularity,
such as 1 second, 1 minute, 3 minutes, 5 minutes, and 10 minutes. By doing this, we can examine
PrivacyGuard’s accuracy when attacking on different granularities of traffic traces. As shown in
Figure 16(a), as expected, higher granularity results in lower user activity detecting accuracy in the
MCC. This is mainly due to the facts that (1) PrivacyGuard performs consistently well on different
traffic trace data at different granularities, and (2) fewer fluctuations and spikes are observed in
higher-resolution traffic rate traces. In addition, when traffic rate traces are becoming coarser,

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:25

06
UNSW dataset —— e
SmartFIU datase! 0.9
Kaggle dataset 1 08
04 Kaggle dataset 2 === : Optimal Threshold
8 8 0.7 . PrivacyGuard ——
= = 06 HTR —&—
02 05
E 0.4
0 b K 0.3
5 mins 10 mins 0 100 200 400 600 800 1000 1200
Data Granularity User Tunable Additional Traffic Preferences (MB/day)
(a) Different Data Granularity (b) Different User “Tunable” Additional Traffic Preferences

Fig. 16. The accuracy comparison of user activities detection when applying PrivacyGuard on traffic rate
data in different granularities and different user “tunable” additional traffic preferences.

some principle features, such as standard deviation, variation coefficient, and AUC, become less
distinguishable and thus are hidden. This will further obscure use activity information exposed in
the traffic rate traces.

Results. PrivacyGuard’s accuracy is a linear function of the granularities of IoT traffic rate traces.
PrivacyGuard yields the MCC of 0.149 when attacking on 10 minute level network traffic rate traces,
which is nearly the same as random prediction—that is, an MCC of 0.0.

6.4.5 Quantifying Accuracy When Varying User Tunable Reshaping Preferences. We then evalu-
ate the user activity detecting accuracy effect on different user tunable reshaping preferences. As
discussed in Section 4.5, PrivacyGuard can be tuned by users based on their own preferences to
achieve the balance between user privacy masking and additional traffic overhead. As shown in
Figure 16(b), PrivacyGuard significantly reduces user activity detection accuracy—an MCC from
~0.95 to ~0.5—after applying the users’ allowance of additional traffic as 6.45 MB per device per
day (equivalent to ~1.83 KB per device per minute). However, the HTR approach only decreases
the MCC from ~1.0 to ~0.96. In addition, under the overhead of 11.61 MB per device per day,
PrivacyGuard yields an MCC of 0.47, which is two times less than HTR’s MCC of 0.97.

Results. PrivacyGuard enables users the flexible control of threshold and artificial data injection to
achieve a tradeoff between user privacy preserving and traffic overhead. In addition, when applying an
additional 11.61 MB per device per day traffic overhead, PrivacyGuard yields an MCC of 0.46, which
is two times less than the MCC of 0.97 using HTR.

6.4.6 Preventing User Activities Detection by Adaptive Adversary. We next examine the effect
of a different level adaptive adversary that has different AC on PrivacyGuard’s user privacy en-
hancement performance. As shown in Figure 17(a), for the top-6 traffic-consuming IoT devices,
the adversary’s confidence diminishes significantly when PrivacyGuard has a higher allowance
for traffic overhead. In particular, the cameras (e.g, baby monitor, drop camera, and smart camera)
report the fastest AC decreasing. This is mainly due to the fact that these IoT cameras themselves
have more “unstable” patterns compared to other devices, which enables them to more effectively
adapt to the presence of our PrivacyGuard system. Figure 17(b) shows the ability of PrivacyGuard
to preserve user privacy when an adaptive adversary has more prior knowledge about our de-
ployed defense. In this group of experiments, we use the attacker knowledge level as the metric to
represent the capabilities of different adaptive adversaries.

In essence, we use the percentage of traffic rate testing dataset that an external adversary poses
to train the adversary ML or DL models to describe the attacker knowledge level to infer user
in-home activities. A value of 0% indicates that an external adversary has no prior knowledge
of the target home testing dataset and thus no cross validation is performed in their modeling,

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:26 K. Yu et al.

Amazon Echo -+ PrivacyGuard —o—-

8 B Original -+
3 SmartCam -+ 0.8
2 Tri_Speaker [ N [
S TP_Cam o S R e
o 3 0.6
> =
3 0.4
4 e
o B L
2 ° 0.2 #,v,,erl~4‘~#re o
50 100 150 200 250 0 20 40 60 80 100
Additional Traffic Overhead (%) Knowledge Level (%)
(a) Adversary Confidence (b) Adaptive Adversary

Fig. 17. PrivacyGuard performance comparison under different adaptive adversaries.

200 120

PrivacyGuard
| Original
|

60

I
1 \‘j‘
O\Ar/ﬂ‘[w‘m\«f\‘w’lk‘n

500 550 600

@
o

n
o

®
o

Traffic Rate (KB/s)

N
o

|
0 i
0 600 1200 1800 2400 3000 3600

Time (s)

Fig. 18. Masking user activities with the PrivacyGuard prototype. The zoomed-in inset shows Privacy-
Guard’s online operations to hide user in-home traffic patterns.

whereas a value of 100% means that the external adversary has observed or recovered all prior
knowledge about groundtruth traffic patterns for each user activity such that the attack models
are “perfectly” trained and tested using the same testing dataset. The goal of this experiment is to
understand our system’s capability to protect user privacy under the attacks from the “adaptive”
adversaries who have or reveal different traffic rate knowledge levels of the target smart home. We
find that PrivacyGuard modified the traffic’s MCC with slight increases from 0.16 to 0.35, whereas
the original traffic’s MCC fluctuates between 0.65 and 0.72. This is because attacking original traffic
to infer user in-home activities is surprisingly easy, as we showed in Section 2 and Section 3. Note
that even when an adversary has 100% knowledge about PrivacyGuard’s DL-based defense model,
PrivacyGuard still can prevent traffic analytics attacks at an MCC of 0.35, which is the almost two
times less than the original traffic’s MCC of 0.72.

Results. Using PrivacyGuard, the adversary’s attack confidence significantly drops when a user per-
mits additional overhead. In addition, PrivacyGuard yields an MCC of 0.35, which is almost two times
less than that of original traffic when an adaptive adversary has 100% prior knowledge of our Priva-
cyGuard’s modeling.

6.4.7 Prototype Demonstration. Figure 18 demonstrates the performance of the PrivacyGuard
prototype for a 3,600-second (1 hour) period of online traffic rate data (in kilobytes per second).
The unmodified (original) traffic demand is the home’s demand without PrivacyGuard’s con-
tribution. In contrast, the PrivacyGuard-modified demand is the external traffic rate trace seen
by the adversaries, which includes using the prototype with low-cost artificial traffic signature
injection, partial traffic reshaping, and online optimizations to mask private information exposed
in traffic rate traces. The experiment shows how PrivacyGuard prototype modifies a home’s
traffic demand in real time, including both replaying artificial traffic rate signatures and partial

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:27

Table 4. loT Device Response Time without and
with PrivacyGuard

IoT Device | Original | With PrivacyGuard
Amazon Alexa 0.35s 0.51s
Google Home 0.42s 0.47s
Belkin Switch 0.47s 0.76s

Onion Omega2
(580 MHz, 64 MB, 420

Raspb Pi Z 600
600 aspberry Pi1 Zero
(1 GHz, 512 MB, 142 ms; 400
400 200
(ms)
200 0

> 0
400
800
40 1200 CPU (MHz)

0 goo
1200 100 1600
RAM (MB) 2000
NetGear R6700v3

(1 GHz, 256 MB, 203 ms)

Fig. 19. The benchmarking results when varying memory size and CPU frequency of potential PrivacyGuard
hosts.

traffic reshaping, to mask the traffic usage trends exposed in traffic rate traces. Our prototype
demonstrates that PrivacyGuard’s approach permits a straightforward implementation using
widely used, off-the-shelf components. As shown in Table 4, PrivacyGuard can enable users to
significantly reduce privacy leakage while still permitting regular IoT device usage.

Results. PrivacyGuard functionality is simple to implement and deploy, requiring only the mech-
anism of basic hardware deployment and the ability to programmatically reshape traffic rates in
real time.

6.4.8 Hosting PrivacyGuard on Different loT Devices. As shown in this work, PrivacyGuard can
be deployed on Raspberry Pi or other IoT hubs in smart homes. In practice, many other already
deployed IoT hubs, gateways, or devices potentially can be used to host PrivacyGuard. To evaluate
this potential of the PrivacyGuard system, we further benchmark and examine the performance
effect when PrivacyGuard is “deployed” on different memory size and different CPU frequency
IoT devices. Figure 19 shows the benchmarking results of PrivacyGuard on different level com-
puting resource 10T devices. To generate these results, we use Raspberry Pi to simulate different
resource limited IoT devices by limiting its computing resources by using the Linux OS built-in
tool cpufreqg-set, which allows us to modify the settings of CPU and memory resources. For in-
stance, cpufreg-set -u 12MHz -d 12MHz will reduce CPU frequency to 12 MHz. Similarly, we
can grant more memory to the GPU and thus squeeze the RAM size available (as low as 2 MB) to
the CPU. To benchmark the performance of different simulated IoT devices, we also prepared an
IoT traffic benchmarking trace that comprises 1-hour traffic rate data generated by 22 IoT devices
in 1-second granularity from Dataset #3 in Section 6.1.

As shown in Figure 19, the execution time (in the Z axis) that PrivacyGuard requires to reshape
1 hour long IoT traffic data decreases when the host’s memory size is expanding. We observe that
an IoT device with a CPU frequency of 60 MHz and a RAM size of around 15 MB can achieve a
tradeoff of only around 550 ms execution time between PrivacyGuard performance and memory

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:28 K. Yu et al.

Incoming ——
Outgoing —=—

User 2

Traffic Rate (KB/s)

Incoming —<—
Outgoing —=—

f
User 2 ||
M

Traffic Rate (KB/s)

\ )

—
20 30 40 50
Time (s)

Fig. 20. Fingerprinting before and after applying PrivacyGuard using Amazon Alexa to query the weather
conditions.

size. Similarly, we observe a similar performance trend when varying CPU frequency from 10 to
1,600 MHz in Figure 19. We find the tradeoff when we set the CPU frequency at 45 MHZ and a
memory size of 15 MB. Thus, the benchmarking results verify the potential that PrivacyGuard
can be deployed on many other IoT devices in smart homes. For instance, when deploying on
the Arduino Mega 2560, which is typically equipped with a 16 MHZ ARM CPU and 8 KBytes of
memory, PrivacyGuard can reshape 1 hour IoT traffic data within 1 second. We also pinpointed
other potential hosts for PrivacyGuard in Figure 19, such as Onion Omega2 (CPU: 580 MHz; RAM:
64 MB; execution time: 420 ms), NETGEAR R6700 v3 (CPU: 1 GHz; RAM: 256 MB; execution time:
203 ms), and Raspberry Pi VO (CPU: 1 GHz; RAM: 512 MB; execution time 142 ms). Note that
evaluating the effectiveness of more smart home IoT devices will be further examined in our future
work and is outside the scope of this work.

Results. PrivacyGuard’s performance improves when the host’s computing resources are expanding.
In particular, we observe that PrivacyGuard can achieve a tradeoff between computing resources and
its privacy preserving ability. This further shows the potential to deploy PrivacyGuard on other already
deployed IoT devices in smart homes.

6.4.9 Preventing Traffic Rate Signature Fingerprinting. User-interactive IoT devices, especially
for voice assistants (e.g., Amazon Echo and Google Nest Home), pose significant fingerprinting
inference privacy threats when compared with other regular 10T sensors or switches. As shown in
Figures 20 and 21, when three different smart home users are feeding the same voice commands to
their voice speaker assistants, the generated traffic rate traces illustrate identifiable incoming/out-
going traffic rate signatures. In other words, it is very feasible to fingerprint user voice commands
using only their engaged traffic rate traces. In addition, Table 5 further evaluates the similarity
of the traffic rates generated by same voice commands before and after applying our Privacy-
Guard approaches. In particular, the PCC and the SRCC have decreases on average of 0.304 and
a maximum of 0.775. After applying PrivacyGuard, the traffic rate pattern generated by the same
command shows a significant drop on the correlation coefficients by an average of 0.417 and 0.415,
respectively.

Results. PrivacyGuard can help smart home users significantly defend against user in-home activities
fingerprinting inference attacks.

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



Safeguarding User-Centric Privacy in Smart Homes 23:29

Incoming
5 Outgoing —=—

=3
3

User 1 [\ User 2

=)
<3

Traffic Rate (KB/s)
5

;

o

Time (s)
a0 7 Incoming
£ ; /M : 7\ f‘\ Outgoml‘g/u‘\—ef
X 0 ,“\/ User 1 F\/I‘ S\ | user2 -
e | | [ { A\
& 40 | / “ /.
g | ‘u / \
Bt | \ | | |
= | \ | |
o / & / :
0 5 10 15 20 25 30
Time (s)

Fig. 21. Fingerprinting before and after applying PrivacyGuard using Google Nest Home to control the lights.

Table 5. Coefficient Comparison (in Terms of the PCC and SRCC) before and after Applying
PrivacyGuard on the Aggregated Traffic Rates Generated by the Same Commands from
Two Different Smart Home Users

Device Before Applying PrivacyGuard | After Applying PrivacyGuard
PCC 0.657 0.082
Amazon Echo gz 0.746 0.112
PCC 0.776 0.518
Google Home |-sp o 0.621 0.425

Table 6. Monthly Cost Comparison of PrivacyGuard and Six Other Recent Approaches

. Amazon AWS | Google Cloud | Microsoft Azure

Approaches in USD t2.nano e2.micro A0
Pure Traffic Injection 3.15 8.29 16.08
Hybrid Traffic Reshaping 3.36 8.50 16.08
Random Traffic Padding 5.04 9.55 17.13
Tor 1.05 6.61 14.82
RepEL 3.36 8.29 16.08
Tamaraw 6.09 10.39 17.76
PrivacyGuard 2.97 8.14 15.96

6.4.10  System Cost Analytics. As discussed in prior sections, PrivacyGuard requires a remote
cloud server to mimic bidirectional network traffic for some smart and user intensive interaction
IoT devices. We examine the cost to run PrivacyGuard and other recent approaches to hide user
private information in their network traffic traces. Table 6 shows the monthly household cost
comparison results of seven different user privacy preserving approaches, including PrivacyGuard.
To report the results in Table 6, we perform three online quote estimations from Amazon AWS
(using t2.nano instances), Google Cloud (using e2.micro instances), and Microsoft Azure (using A0
instances), respectively. We assume that the targeted home is a standard one and has 21 popular
IoT devices.

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.



23:30 K. Yu et al.

As shown in Table 6, PrivacyGuard only requires $2.97, $8.14, and $15.96 per month for 21 IoT
devices when employing Amazon t2.nano, Google e2.micro, and Azure A0 to mimic IoT manu-
facturer remote servers, respectively. Note that although Tor [12] showed better monthly savings
than PrivacyGuard, it is less effective when protecting user privacy leakage in network traffic data
(shown in Figure 13 and Table 3). Therefore, PrivacyGuard achieves the best tradeoff between
monthly cost and user privacy preserving.

Results. PrivacyGuard only requires as low as $2.97 per month for a 21 IoT devices instru-
mented smart home to sufficiently protect user in-home private information. PrivacyGuard en-
ables smart home users to achieve the balance between computing resources and their data privacy
preserving.

7 Conclusion and Future Work

We designed a new low-cost, open source user “tunable” defense system—PrivacyGuard—that en-
ables users to significantly reduce the private information leaked through IoT device network
traffic data, while still permitting sophisticated data analytics or control that is necessary in smart
home management. We evaluated PrivacyGuard using IoT network traffic traces of 31 IoT devices
from five smart homes and deploying a Raspberry Pi 4 based prototype. We found that Privacy-
Guard enables smart home users to achieve the tradeoff between data utility and data privacy, and
can effectively prevent a wide range of state-of-the-art ML-based and DL-based occupancy and
another nine user activity detection attacks. We plan to collect more IoT traffic traces to further
understand the tradeoff between privacy preserving and traffic overhead. We will also improve
our user interface to promote user experience. Additionally, we plan to benchmark more hosts of
PrivacyGuard on real IoT devices and develop a tailored smart router operating system that can
host PrivacyGuard services directly.

Acknowledgment

We would like to thank the anonymous reviewers for their insightful comments, which signifi-
cantly improved the quality of this article.

References

[1] Amazon. n.d. Differential Privacy. Retrieved October 25, 2024 from https://www.amazon.science/tag/differential-
privacy

[2] Ostinato. 2020. Ostinato: Packet Generator and Network Traffic Generator. Retrieved October 25, 2024 from
https://ostinato.org/

[3] GitHub. 2021. PrivacyGuard. Retrieved October 25, 2024 from https://github.com/cyber-physical-systems/
PrivacyGuard

[4] Apple. 2024. Differential Privacy Overview. Retrieved October 25, 2024 from https://www.apple.com/privacy/docs/
Differentialprivacyoverview.pdf

[5] Google Cloud. 2024. Use Differential Privacy. Retrieved October 25, 2024 from https://cloud.google.com/bigquery/
docs/differential-privacy

[6] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENLX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’16). 265-283.

[7] Josephine Akosa. n.d. Predictive Accuracy: A Misleading Performance Measure for Highly Imbalanced Data. Paper
942-2017. Oklahoma State University.

[8] Ahmed Alshehri, Jacob Granley, and Chuan Yue. 2020. Attacking and protecting tunneled traffic of smart home de-
vices. In Proceedings of the 10th ACM Conference on Data and Application Security and Privacy (CODASPY °20). ACM,
New York, NY, USA, 259-270. https://doi.org/10.1145/3374664.3375723

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.


https://www.amazon.science/tag/differential-privacy
https://ostinato.org/
https://github.com/cyber-physical-systems/PrivacyGuard
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://cloud.google.com/bigquery/docs/differential-privacy
https://doi.org/10.1145/3374664.3375723

Safeguarding User-Centric Privacy in Smart Homes 23:31

(9]

(10]

(11]

— —
[SCR
w DN
[t}

[27]

(28]

[29]

Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind Narayanan, and Nick Feamster. 2019. Keeping the
smart home private with smart(er) IoT traffic shaping. Proceedings on Privacy Enhancing Technologies 2019, 3 (2019),
128-148.

Phuthipong Bovornkeeratiroj, Srinivasan Iyengar, Stephen Lee, David Irwin, and Prashant Shenoy. 2020. RepEL: A
utility-preserving privacy system for IoT-based energy meters. In Proceedings of the 2020 IEEE/ACM 5th International
Conference on Internet-of-Things Design and Implementation (IoTDI "20). IEEE, 79-91.

T. Brewster. 2017. Now Those Privacy Rules Are Gone, This Is How ISPs Will Actually Sell Your Personal Data.
Retrieved October 25, 2024 from https://www.forbes.com/sites/thomasbrewster/2017/03/30/fcc-privacy-rules-how-
isps-will-actually-sell-your-data/

Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014. A systematic approach to developing
and evaluating website fingerprinting defenses. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, New York, NY, USA.

Dong Chen, David Irwin, Prashant Shenoy, and Jeannie Albrecht. 2014. Combined heat and privacy: Preventing occu-
pancy detection from smart meters. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing
and Communications. 208-215.

Albert Cheu, Adam Smith, and Jonathan Ullman. 2021. Manipulation attacks in local differential privacy. In Proceedings
of the 2021 IEEE Symposium on Security and Privacy (SP °21). IEEE, 883-900.

Wikipedia. n.d. Cohen’s Kappa. Retrieved October 25, 2024 from https://en.wikipedia.org/wiki/Cohen%27siappa
Trisha Datta, Noah Apthorpe, and Nick Feamster. 2018. A developer-friendly library for smart home IoT privacy-
preserving traffic obfuscation. In Proceedings of the 2018 Workshop on IoT Security and Privacy. ACM, New York, NY,
USA, 43-48.

DD-WRT. n.d. DD-WRT: a Linux based Alternative OpenSource Firmware. Retrieved October 25, 2024 from
https://dd-wrt.com/support/router-database/

Wenbo Ding and Hongxin Hu. 2018. On the safety of IoT device physical interaction control. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security (CCS ’18). 832-846.

Cynthia Dwork. 2006. Differential privacy. In Proceedings of the International Colloquium on Automata, Languages,
and Programming. 1-12.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. 2006. Our data, ourselves:
Privacy via distributed noise generation. In Advances in Cryptology—EUROCRYPT 2006. Lecture Notes in Computer
Science, Vol. 4004. Springer, 486-503.

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012. Peek-a-boo, I still see you: Why
efficient traffic analysis countermeasures fail. In Proceedings of the 2012 IEEE Symposium on Security and Privacy
(SP ’12). IEEE, 332-346.

ExpressVPN. n.d. ExpressVPN. Retrieved October 25, 2024 from https://www.expressvpn.com/

Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of Computer and System Sciences 55, 1 (1997), 119-139.

Ibbad Hafeez, Markku Antikainen, and Sasu Tarkoma. 2019. Protecting IoT-environments against traffic analysis at-
tacks with traffic morphing. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops °19). 196-201. https://doi.org/10.1109/PERCOMW .2019.8730787
Md. Kamrul Hasan, Husne Ara Rubaiyeat, Yong-Koo Lee, and Sungyoung Lee. 2008. A reconfigurable HMM for activity
recognition. In Proceedings of the 2008 10th International Conference on Advanced Communication Technology, Vol. 1.
IEEE, 843-846.

Ahmed Mohamed Hussain, Gabriele Oligeri, and Thiemo Voigt. 2021. The dark (and bright) side of IoT: Attacks and
countermeasures for identifying smart home devices and services. In Security, Privacy, and Anonymity in Computation,
Communication, and Storage. Lecture Notes in Computer Science, Vol. 12383. Springer, 122-136.

Jiankai Jin, Eleanor McMurtry, Benjamin I. P. Rubinstein, and Olga Ohrimenko. 2022. Are we there yet? Timing and
floating-point attacks on differential privacy systems. In Proceedings of the 2022 IEEE Symposium on Security and
Privacy (SP "22). IEEE, 473-488.

Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright. 2016. Toward an efficient website finger-
printing defense. In Proceedings of the European Symposium on Research in Computer Security. 27-46.

Sean Kennedy, Haipeng Li, Chenggang Wang, Hao Liu, Boyang Wang, and Wenhai Sun. 2019. I can hear your Alexa:
Voice command fingerprinting on smart home speakers. In Proceedings of the 2019 IEEE Conference on Communications
and Network Security (CNS ’19). IEEE, 232-240.

Nikhil Ketkar. 2017. Introduction to Keras. In Deep Learning with Python. Springer, 97-111.

Jinyang Li, Zhenyu Li, Gareth Tyson, and Gaogang Xie. 2020. Your privilege gives your privacy away: An
analysis of a home security camera service. In Proceedings of the 2020 IEEE Conference on Computer Communications
(INFOCOM °20). IEEE.

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.


https://www.forbes.com/sites/thomasbrewster/2017/03/30/fcc-privacy-rules-how-isps-will-actually-sell-your-data/
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://dd-wrt.com/support/router-database/
https://www.expressvpn.com/
https://doi.org/10.1109/PERCOMW.2019.8730787

23:32 K. Yu et al.

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Nicole Lindsey. 2019. Smart Devices Leaking Data to Tech Giants Raises New IoT Privacy Issues. Retrieved October
25, 2024 from https://www.cpomagazine.com/data-privacy/smart-devices-leaking-data-to-tech-giants-raises-new-
iot-privacy-issues/

Jianqging Liu, Chi Zhang, and Yuguang Fang. 2018. Epic: A differential privacy framework to defend smart homes
against Internet traffic analysis. IEEE Internet of Things Journal 5, 2 (2018), 1206-1217.

Wikipedia. n.d. Matthews Correlation Coefficient. Retrieved October 25, 2024 from https://en.wikipedia.org/wiki/
Matthews%correlation%oefficient

Mirimir. 2018. Collection of User Data by ISPs and Telecom Providers, and Sharing with Third Parties. Retrieved Octo-
ber 25, 2024 from https://www.ivpn.net/blog/collection-of-user-data-by-isps-and-telecom-providers-and-sharing-
with-third-parties

Jon Brodkin. 2019. ISPs Lied to Congress to Spread Confusion about Encrypted DNS, Mozilla Says. Retrieved Oc-
tober 25, 2024 from https://arstechnica.com/tech-policy/2019/11/isps-lied-to-congress-to-spread-confusion-about-
encrypted-dns-mozilla-says/

Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A bespoke website fingerprinting defense. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society. ACM, New York, NY, USA.

Jorge Ortiz, Catherine Crawford, and Franck Le. 2019. DeviceMien: Network device behavior modeling for identifying
unknown IoT devices. In Proceedings of the International Conference on Internet of Things Design and Implementation
(IoTDI °19). ACM, New York, NY, USA, 106-117. https://doi.org/10.1145/3302505.3310073

Homin Park, Can Basaran, Taejoon Park, and Sang Hyuk Son. 2014. Energy-efficient privacy protection for smart
home environments using behavioral semantics. Sensors 14, 9 (2014), 16235-16257.

Wikipedia. n.d. Pearson Correlation Coefficient. Retrieved October 25, 2024 from https://en.wikipedia.org/wiki/
Pearson.orrelation oefficient

Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni. 2019. The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2019, 1 (2019), 209-237.

Anténio J. Pinheiro, Paulo Freitas de Araujo-Filho, Jeandro de M. Bezerra, and Divanilson R. Campelo. 2021. Adaptive
packet padding approach for smart home networks: A tradeoff between privacy and performance. IEEE Internet of
Things Journal 8, 5 (2021), 3930-3938. https://doi.org/10.1109/JI0T.2020.3025988

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015).

Vasanthan Raghavan, Greg Ver Steeg, Aram Galstyan, and Alexander G. Tartakovsky. 2013. Coupled hidden Markov
models for user activity in social networks. In Proceedings of the 2013 IEEE International Conference on Multimedia and
Expo Workshops.

Vasanthan Raghavan, Greg Ver Steeg, Aram Galstyan, and Alexander G. Tartakovsky. 2014. Modeling temporal activ-
ity patterns in dynamic social networks. IEEE Transactions on Computational Social Systems 1, 1 (2014), 89-107.
Karsten Rothmeier, Nicolas Pflanzl, Joschka Hiillmann, and Mike Preuss. 2021. Prediction of player churn and disen-
gagement based on user activity data of a freemium online strategy game. IEEE Transactions on Games 13, 1 (2021),
78-88.

Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing analysis in low-latency mix networks: Attacks and defenses. In
Proceedings of the European Symposium on Research in Computer Security. 18-33.

Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford, Chamith Wijenayake, Arun Vishwanath,
and Vijay Sivaraman. 2019. Classifying IoT devices in smart environments using network traffic characteristics. IEEE
Transactions on Mobile Computing 18, 8 (2019), 1745-1759.

Wikipedia. n.d. Spearman’s Rank Correlation Coefficient. Retrieved October 25, 2024 from https://en.wikipedia.org/
wiki/Spearman%27s,ank.orrelation oefficient

Statista. 2016. Internet of Things Connected Devices Installed base Worldwide from 2015 to 2025 (in Billions).
Retrieved October 25, 2024 from https://www.statista.com/statistics/471264/iot-number-of-connected-devices-
worldwide/

Mostafa Uddin, Tamer Nadeem, and Santosh Nukavarapu. 2019. Extreme SDN framework for IoT and mobile applica-
tions flexible privacy at the edge. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and
Communications (PerCom °19). 1-11. https://doi.org/10.1109/PERCOM.2019.8767413

Karen Simonyan and Andrew Zisserman. n.d. Very Deep Convolutional Networks for Large-Scale Visual Recognition.
Retrieved October 25, 2024 from https://www.robots.ox.ac.uk/~vgg/research/verygeep/

Chenggang Wang, Sean Kennedy, Haipeng Li, King Hudson, Gowtham Atluri, Xuetao Wei, Wenhai Sun, and Boyang
Wang. 2020. Fingerprinting encrypted voice traffic on smart speakers with deep learning. In Proceedings of the 13th
ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec "20). ACM, New York, NY, USA,
254-265. https://doi.org/10.1145/3395351.3399357

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.


https://www.cpomagazine.com/data-privacy/smart-devices-leaking-data-to-tech-giants-raises-new-iot-privacy-issues/
https://en.wikipedia.org/wiki/Matthews%25_correlation%25_coefficient
https://www.ivpn.net/blog/collection-of-user-data-by-isps-and-telecom-providers-and-sharing-with-third-parties
https://arstechnica.com/tech-policy/2019/11/isps-lied-to-congress-to-spread-confusion-about-encrypted-dns-mozilla-says/
https://doi.org/10.1145/3302505.3310073
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://doi.org/10.1109/JIOT.2020.3025988
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://doi.org/10.1109/PERCOM.2019.8767413
https://www.robots.ox.ac.uk/~vgg/research/very_deep/%20
https://doi.org/10.1145/3395351.3399357

Safeguarding User-Centric Privacy in Smart Homes 23:33

[54] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014. Effective attacks and provable
defenses for website fingerprinting. In Proceedings of the 23rd USENIX Security Symposium (USENLX Security ’14).
143-157.

[55] Tao Wang and Ian Goldberg. 2016. On realistically attacking Tor with website fingerprinting. Proceedings on Privacy
Enhancing Technologies 4 (2016), 21-36.

[56] Tao Wang and Ian Goldberg. 2017. Walkie-Talkie: An efficient defense against passive website fingerprinting attacks.
In Proceedings of the 26th USENIX Security Symposium. 1375-1390.

[57] Wei Wang, Mehul Motani, and Vikram Srinivasan. 2008. Dependent link padding algorithms for low latency
anonymity systems. In Proceedings of the 15th ACM Conference on Computer and Communications Security. 323-332.

[58] Qiuyu Xiao, Michael K. Reiter, and Yinqian Zhang. 2015. Mitigating storage side channels using statistical pri-
vacy mechanisms. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
1582-1594.

[59] Sijie Xiong, Anand D. Sarwate, and Narayan B. Mandayam. 2018. Defending against packet-size side-channel attacks
in IoT networks. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP °18). 2027-2031.

[60] Yongxiang Zhao, Baoxian Zhang, Cheng Li, and Changjia Chen. 2017. ON/OFF traffic shaping in the Internet: Moti-
vation, challenges, and solutions. IEEE Network 31, 2 (2017), 48-57. https://doi.org/10.1109/MNET.2017.1500057NM

Received 30 March 2023; revised 1 June 2024; accepted 16 October 2024

ACM Trans. Internet Technol., Vol. 24, No. 4, Article 23. Publication date: November 2024.


https://doi.org/10.1109/MNET.2017.1500057NM

