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Abstract: This paper addresses the inference challenges associated with a class of hidden
Markov models with binary state variables, known as partially observed Boolean dynamical
systems (POBDS). POBDS have demonstrated remarkable success in modeling the ON and
OFF dynamics of genes, microbes, and bacteria in systems biology, as well as in network
security to represent the propagation of attacks among interconnected elements. Despite existing
optimal and approximate inference solutions for POBDS, scalability remains a significant issue
due to the computational cost associated with likelihood evaluations and the exploration of
extensive parameter spaces. To overcome these challenges, this paper proposes a kernel-based
particle filtering approach for large-scale inference of POBDS. Our method employs a Gaussian
process (GP) to efficiently represent the expensive-to-evaluate likelihood function across the
parameter space. The likelihood evaluation is approximated using a particle filtering technique,
enabling the GP to account for various sources of uncertainty, including limited likelihood
evaluations. Leveraging the GP’s predictive behavior, a Bayesian optimization strategy is
derived for effectively seeking parameters yielding the highest likelihood, minimizing the overall
computational burden while balancing exploration and exploitation. The proposed method’s
performance is demonstrated using two biological networks: the mammalian cell-cycle network

and the T-cell large granular lymphocyte leukemia network.
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1. INTRODUCTION

Hidden Markov Models (HMMs) with binary state vari-
ables are a specialized and crucial class of models de-
signed to capture the dynamic behaviors of systems or
processes consisting of interconnected elements. This class,
known as partially observed Boolean dynamical systems
(POBDS) [Imani and Braga-Neto (2017); Imani et al.
(2019)], has demonstrated remarkable success across di-
verse domains. Examples include biological networks in
genomics and metagenomics, where the ON and OFF
behavior of genes, microbes, and bacteria is effectively
captured by the POBDS model [Puvsnik et al. (2022)].
Another widespread application is in network security,
where the POBDS is utilized to capture the attack status
and probabilistic propagation of attacks among intercon-
nected elements [Kazeminajafabadi and Imani (2023)].
The POBDS can also be seen as a generalization of exist-
ing Boolean network models [Zhang (2023)], considering
general-form stochasticity in the state process and partial
observability of binary state variables through arbitrary
(e.g., non-binary) observations.

* The authors acknowledge the support of the National Insti-
tute of Health award 1R21EB032480-01, National Science Founda-
tion awards IIS-2311969 and IIS-2202395, ARMY Research Lab-
oratory award W911NF2320179, ARMY Research Office award
W911NF2110299, and Office of Naval Research award N00014-23-
1-2850.

A major objective is to construct the POBDS model ac-
cording to noisy available observations. Several methods
have been developed for the inference of POBDS, includ-
ing optimal joint state and maximum likelihood (ML)
inference [Imani and Braga-Neto (2017)], optimal Bayesian
estimation and inference [Imani et al. (2019)], and particle
filtering for scalable estimation and ML inference [Imani
and Braga-Neto (2018)]. Despite their success, these ap-
proaches face challenges when dealing with systems with
substantial uncertainty, typically modeled through several
unknown parameters reflected in large parameter spaces.
The computational cost associated with likelihood or pos-
terior evaluations often prevents the inference of POMDP
models, particularly when dealing with parameter spaces
with a large or infinite number of selections. Additionally,
finding the gradients of the likelihood function can be
impossible (for discrete or mixed discrete and continuous
parameter spaces), expensive (growing exponentially with
the size of systems), and inaccurate (when the likelihood
function is approximated).

To address the limitations of existing methods, this paper
introduces a kernel-based particle filtering approach that
represents the expansive likelihood function defined over
a large parameter space using a surrogate model. The
surrogate model is Gaussian process (GP) regression [Ras-
mussen and et al. (2006)], a non-parametric approach
with great predictive capabilities according to the limited
likelihood evaluations. Given the scale of the system, an
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auxiliary particle filter is employed for an efficient approxi-
mation of the likelihood function, where the approximation
is factored into the construction of the GP model. The
search for the model/parameter with the highest likeli-
hood value, i.e., the ML inference solution, is obtained by
developing a Bayesian optimization method. The Bayesian
optimization performs a sequential search across the space
of parameters based on the GP model’s latest posterior,
where a balance between exploration and exploitation is
achieved to ensure the scalability of the inference over the
large parameter spaces. The proposed inference approach
simultaneously estimates the underlying state based on
the performed auxiliary particle filter. The estimated
state yields an approximate minimum mean squared error
(MMSE) optimality corresponding to the ML estimate
of the parameters. The efficacy of the proposed method
is evaluated using the inference of gene regulatory net-
works observed through high-throughput sequencing data.
Two well-known biological networks, the mammalian Cell-
Cycle network [Alali and Imani (2024); Davidich and Born-
holdt (2008)] and the T-cell Large Granular Lymphocyte
(T-LGL) Leukemia network [Saadatpour et al. (2011)], are
considered for performance analysis. The results in terms
of the inference and state estimation accuracy, as well
as the robustness of inference with respect to the system
stochasticity level, are reported.

2. BACKGROUND AND PROBLEM FORMULATION

2.1 POBDS Model

Assume a network consisting of n components, where the
state value of each component can be expressed as 0 or
1 (i.e., a gene status as OFF or ON, or a machine secu-
rity as compromised or not compromised). The network
state at time step k can be represented using a vector
of size n consisting of the status of all components, i.e.,
xi = [x£(1),...,xk(n)], where x; takes its value in one of
the 2™ possible binary vectors , i.e., xx € X = {x',...,x>" }.
The connections/interactions among different components
govern the state transitions, which are often probabilistic
in practice. The stochasticity could be due to the un-
modeled parts of the systems or the intrinsic stochasticity
in the system behavior. The state process of POBDS is
expressed through:

xi ~ P(.| xk-1,0) (state process), (1)

where x;, and x;_; are the states at time steps k and k-1,
P(-) represents the probability mass function (discrete
nature of state variables), and the parameter vector 6
represents the unknown parts of the state process. The
dependency on the next system state to only the previous
time step represents the Markovian assumption of the state
process. 8 € O represents a realization of the state process,
where © is a finite or infinite space depending on the
problem structure.

The binary state variables x1.; are often not directly ob-
servable but rather can be accessed through noisy observa-
tions y1:,. Following is the POBDS measurement process:

i ~ P(.| Xk, 0) (measurement process), (2)

where the parameter vector 8 includes the unknown parts
of the measurement process as well. Note that any POBDS
can be described through the state and measurement
processes introduced in (1) and (2).
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2.2 Maximum Likelihood Estimation

In the context of the POBDS model, let 8 € O signify the
parameters, with © denoting the parameter space. This
parameter vector may include the parameters governing
both the state and measurement processes detailed in (1)
and (2). Let the available measurements be represented
as yir = (y1,-.,y7). The primary goal is to infer the
parameters of the model based on these observed mea-
surements. The Maximum Likelihood (ML) estimation of
these parameters is defined as [Alali and Imani (2022);

Ravari et al. (2024)]:
- ML
6  =argmaxlog P(y1.r|0), (3)
HC]

where log P(y1.7 | €) is the logarithm of the likelihood
function, P(yq.r | 0). This log-likelihood function can be
expressed as: T
Lr(0) =log P(y1r|0) = ) log P(yk | yix-1.0).  (4)
k=1
The state estimation in the context of POBDS can be
determined using the ML estimate of the parameters,
represented as:
. . . ~ ML
M = argmin E [||xk -x1l3 | vk, 0 ] , (5)
%x,€{0,1}™
for k = 1,...,T. Here, x; denotes the estimated system
state at time k, and |.|[3 is the squared Ly norm of the
vector. The set {1,0}" encompasses all 2" potential states.
The ML state estimator, fclezI;, as in (5), ensures minimal

mean-square error (MMSE) optimality relative to the ML

. -~ ML
estimate of the model, 8 .

According to the Boolean Kalman filter theorem [Imani
and Braga-Neto (2017)], the solution for optimization in
(5) can be achieved as:

ML
" =E [Xk | yi:%,0 ], (6)

where Vv maps the elements greater than 0.5 to 1 and others
to 0.

3. PROPOSED KERNEL-BASED PARTICLE
FILTERING METHOD

This paper aims to allow scalable inference achieved
through solving the optimization of argmaxg.q L7(8),
where Lr(0) = log P(y1.r | ). Two main challenges in
solving this problem are: 1) a large and non-differentiable
parameter space, which prevents going through all possible
parameters or using gradient-based approaches to effi-
ciently search the space; 2) the log-likelihood calculation
for any given 0, i.e., L1(6), can be extremely expensive,
which often occurs in large systems. In fact, the state
space in POBDS grows exponentially with the number of
elements in the systems, leading to exponentially larger
costs for exact log-likelihood evaluations.

This paper tackles the aforementioned inference issues
using the following two key elements: 1) incorporating the
particle filtering method for a scalable approximation of
the log-likelihood function; 2) effective search over large
(and non-differentiable) parameter spaces using Bayesian
optimization techniques. These two key elements, outlined
below, ensure the scalability of inference with respect to
the size of parameters and the systems, enabling inference
for practical problems.
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3.1 Particle Filtering Approximation of Log-Likelihood

The transition probability in POBDS refers to the like-
lihood of moving from one state to another. The state
space of POBDS takes in a finite set of 2" binary vectors
for a system of n components. Therefore, The transition
probabilities can be expressed using a matrix of 2" x 2™,
which becomes computationally intractable in large sys-
tems. Particle filtering approaches have been extensively
used as tractable solutions for state and parameter esti-
mation in systems with large or continuous state spaces.
This paper employs an auxiliary particle filtering approach
(APF) [Pitt and Shephard (1999)] to enable efficient com-
putation of the log-likelihood function.

Let the auxiliary variable, (i, be an index that identifies
the particles from the preceding step. For any 6 € O, the
APF represents the joint state and auxiliary variable as:

P(Xka Ck |y1:k7 0)
o< P(Xp-1,Ck | y1-1,0) P(xk | X1, Ck, 0) P(yr|xx, 0),
(7)
for (y=1,...,N.
Let the posterior distribution at time step k-1 be approx-
imated as:

1 N
P(xp-1 =X | y14-1,0) & N > Wke—l,ilxl=xz_l RIS
i1 .

for [ = 1,...,2"; where {xz_l,pW,f_M}f\il are N particles
with their associated weights. The joint probability of state
and auxiliary variable in (7) can be expressed as:

P(Xka Ck |y1:k7 0) &< Wko—l,g"k P(Xk ‘Xk—l,Ck ) 0) P(yk |/u'k,<k ) 0)7
9)

for ¢, = 1,...,N. Note that uj,; denotes the state at
time step k, i.e., xi, given the particles Xg—l,i' This paper
employs the most probable state as this representation,
where the pix ¢,-; can be expressed as:

/lz,z' = argmax P(xy = x! | ng1,m9)7 (10)
le{1,...,2n}
fori=1,...,N. The particles and weights representing the
state distribution at time step k£ can be obtained using a
two-step update. By employing (10), the weights for the
joint state and auxiliary, known as the weights of the first-
stage, are determined as follows:

Vko,i = P(yk | :uk,iaa)wke—l,iv (11)
fori=1,...,N. In the second stage, the auxiliary variables
{C,g’i}f\il, which represent the selected particle indices, are
acquired by drawing a sample from the discrete distribu-
tion established by {Vke’i}f\il subsequent to appropriate
normalization. That is, {Cgi N~ Cat({V,gi N)). “Cat”
here represents the discrete categorical distribution.

To remove the auxiliary variable and create the next
particles, one needs to generate N particles at time step k
according to the particles and auxiliary variables as:

XP i~ P(xi | X1 ¢, ,0), fori=1,...,N. (12)
The second stage weights then can be expressed as:
= P(yk | SN)
0 ki
hi T BT g (13)

The next particles and their associated weights are shown
using {Xz,m ngi ﬁl, where ngi = Wk‘gl/ Zjl\il ngj, for
i = 1,...,N. The unbiased estimator of the likelihood
elements at each time step can be obtained as [Pitt (2002)]:

1 X 1 X -,
P(yr | y1:6-1,0) = NZV’” NZWk,i . (14)
i=1 i=1

Using (4) and (14), the log-likelihood gets approximated
according to the two-stage weights as:

T 1 N 0 1 N 0
Lr(0) =~ Z log N ka,i N ZW;H . (15)
k=1 i=1 i=1

The complexity of the APF method for each log-likelihood
evaluation is O(N x T'). A large particle number (i.e.
N) provides a more accurate approximation of the log-
likelihood function and smaller N offers approximations
with higher variablities.

Using the computed weights of the particle filter, for any
6 € © one can write: E[x | y1,0] ~» Y, WP, x8 .. The
ML estimate of the state given the observations for model

L
6  can be approximated according to (6) as:

éML

. ~ML N ~ML
N =Blxk |y, 0 1~ Y WP X0 (16)
i=1

%ML in (16), ensures approximate MMSE optimality rela-
~ML
tive to the ML estimate of the model, 8 .

8.2 Bayesian Optimization for ML Estimation

Assume that © forms a space including continuous, dis-
creet, or a mix of continuous and discrete parameters. The
goal is to locate the maximum value of the log-likelihood
function in (3) with minimal approximate log-likelihood
evaluations in (15). To achieve this, Gaussian process
(GP) regression [Rasmussen and et al. (2006)] is adopted
to capture the log-likelihood function efficiently. The GP
model offers a Bayesian and sample-efficient representation
of the approximated log-likelihood function.

While the log-likelihood function is deterministic given a
set of observed measurements, the particle-based evalu-
ation of the log-likelihood function is stochastic, coming
from the variability in the distribution of the particles.
The smaller number of particles leads to more stochas-
ticity, whereas larger particle sizes provide less stochastic
outcomes (i.e., values closer to the exact log-likelihood
function). This paper accounts for this stochasticity and
models the log-likelihood function using the following GP
regression:

Lr(0) ~ L7(8) + ALY, (17)

where ALY ~ N(0,0%) is the zero-mean Gaussian resid-
ual with variance 012\[7 representing the stochasticity due to
the particle filtering approximation with N particles, and

Lr7(0) is the GP model as:

Here, p(.) denotes the mean function and k(.,.) signifies
the kernel function. One possibility for the mean func-
tion p(.) in (18), which defines the initial shape of the
approximated log-likelihood function across the parameter
space, is the constant mean function. The kernel function
models the correlation among approximated log-likelihood
values across the samples from the space of parameters.
The definition of the kernel function is as follows:

/ 16| N -0 (i
k(970):0;exp —ZM

;o (19)
i=1 l;



where |v| denotes the size of vector v, 6 and 0 are ar-
bitrary parameter vectors, [; represents the length-scale
hyperparameter linked to the ith parameter, and 0? is the
scale factor hyperparameter, reflecting the correlation be-
tween the parameter vectors. The GP’s hyperparameters
(u(.), oy, l; and o) are learned by iteratively optimizing
the GP model’s marginal likelihood function.

Let 0; denote the initial ¢ samples drawn from the
parameter space, with corresponding approximated log-
likelihood values Iy = [I(01),...,1(6;)]. Utilizing this
information, we establish the posterior distribution of the
GP model as follows:

L7(0) 014,114 ~ N(Mtoa Zte)7 (20)
where pf) and X} are defined as:
1o = 11(0) + Ko.0,.) K., 0., (1 = £(014)), o
Yo = k0.0) = K0.00:) K(6,.0.0) K(0.01.)
and .
w(01:) = [H(91) ~-~7M(9t)] ;
K(@’@/) = .
k(@m,el) k(em,eib)
for ® ={04,...,0,,}, ©® ={6},...,0.}.

Using the GP model’s posterior distribution, a sample-
efficient sequential optimization is achieved throuj

) @( ) 1S
57 ¢( L /\/279),

where the maximization is over the acquisition function at
iteration t. This acquisition function is called the Expected
Improvement (EI) [Jones et al. (1998); Manshour et al.
(2023)], and it serves as a common acquisition function in
Bayesian optimization. Note that the acquisition function
relies on surrogate (i.e., GP) model predictions instead of
the approximated log-likelihood function. The sequential
selection in (23) ensures a balance between exploration
and exploitation in the parameter estimation process. This
process continues until a predefined number of likelihood
evaluations are completed or consecutive iterations fail to
reveal significant changes in the maximum value of the GP
model. Upon completion, the parameter vector yielding
the highest assessed log-likelihood value represents the ML
estimate of the parameters, formulated as:

~ML
(7] = 0m*7

t
0;.1 = argmax (/~Lo Ly
0cO

*
where m™ = argmax [,

me{1,...,M}
with M denoting the number of log-likelihood evaluations.

4. NUMERICAL EXPERIMENTS
4.1 Mammalian Cell-Cycle Network

We start our analysis by examining our proposed ap-
proach on the mammalian cell-cycle network displayed
in Fig. 1. This network manages the process of cellu-
lar division in mammals, and its behavior significantly
influences overall organismal growth. Comprised of 10
genes, the network’s state at time step k is represented
by xx = [x1(1),...,xx(10)]7 =[CycD, Rb, p27, E2F, CycE,
CycA, Cdc20, Cdhl, UbcH10, CycB]?. Each gene’s state,
denoted by xx(7) € {0,1}, indicates whether the ith gene

(24)
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Fig. 1. Mammalian Cell-Cycle network pathway diagram.

is activated (1) or inactive (0). The state process for this
network can be expressed as [Hosseini and Imani (2024)]:
(25)
where the operator v assigns 0 to vector elements less
than or equal to 0.5 and 1 to others, the symbol “®”
denotes componentwise module-2 addition, and nj rep-
resents the independent and identically distributed (i.i.d.)
binary noise, where the probability of the i*" element of
n; being equal to 1 is p. The parameter p lies between 0
and 0.5, and indicates the stochasticity in the state process
where p = 0 signifies no stochasticity and p = 0.5 represents
maximum stochasticity. The connectivity matrix, C? for
the mammalian cell-cycle network can be represented us-
ing Fig. 1 by the following 10 x 10 matrix:

x ~ COxy_1 @1y,

[+1-1-10 0 0 0 0 0 0]"
00 0-1-1-100 0 0
0 +1 41 41 41 0 O +1 0 O
000 0+1+410 0 0 0
cor |0 -1-10-100 0 0 0 (26)
0 -1-1-1-1410 -141 0]
00 0 0 0 -1-1+1+1-1
00 00O0-100 -1-1
0000 O0-100+10
[0 -1-1-10 0 +1-1+1 0|

where the elements +1 and -1 indicate positive and sup-
pressive regulations, and 0 denotes no relationships be-
tween the genes. The value at the ith row and jth column
(ci,j) denotes the type of regulation or interaction occur-
ring from the jth gene to the ith gene. Note that 8" in
C?" denotes the true model of the regulatory network.
The genes’ states are only partially observable through
the gene-expression data. The widely recognized Gaussian
model, frequently applied in live-cell imaging-based assays
and ¢cDNA microarrays [Hua et al. (2012)], characterizes
the measurement process in the POMDP model in (2) as
follows:

yk(i) = m+5Xk(i)+Vk(i), k=1,2,...,T, (27)
where v (i) ~ N'(0,0%) represents a zero-mean Gaussian
noise vector with uncorrelated elements, m is the baseline
expression (referring to the “zero” state), and ¢ denotes
the differential expression value.
The following parameters are used for all the experiments:
trajectory length T = 100, process noise p = 0.05, baseline
expression m = 20, and differential expression § = 30.
Moreover, all the experiments are repeated 10 times, and
all the figures display the mean values and the 95% con-
fidence intervals for the results. For comparison purposes,
the same experiment is carried out using the Simulated
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Fig. 2. Performance comparison of our method and simulated annealing throughout topology optimization of the mammalian cell-cycle
network: (a) average log-likelihood progress (b) average connectivity error progress (c) average state estimation MSE progress.

Annealing [Biswas and Acharyya (2014)] method, which
has been extensively used for efficiently optimizing param-
eters across various parameter spaces, particularly in the
context of biological networks [Handzlik and Manu (2022)].

We consider that the following 10 elements of the true

connectivity matrix to be unknown: cp; = -1, c35 =
-1, ¢3100 = -1, ca2 = -1, ¢c54 = +1, c67 = -1, cg9 =
-1, cg3 = +1, cg6 = +1, cgg = —1. Since each of these

unknown interactions could take values in {-1,0,+1},
there will be 3'° = 59,049 possible models, ©, for the
mammalian cell-cycle network.
The proposed method with particle size N = 5,000 is
implemented for this problem. Fig. 2(a) shows the average
maximum log-likelihood via our method and simulated an-
nealing after 100 log-likelihood evaluations. The solid black
curve is our method’s log-likelihood, the blue dotted one
is from simulated annealing, and the dashed red line is the
true log-likelihood, approximated using the particle filter.
One can see that our method consistently achieves a higher
log-likelihood. Fig. 2(b) displays the average connectiv-
ity error during optimization, measuring the L; norm
of the difference between true and estimated vectorized
connectivity matrices. Our method maintains a smaller
connectivity error compared to simulated annealing in all
the optimization steps. Additionally, Fig. 2(c) examines
how our method performs concerning the average state
estimation MSE, defined as Y7, || — %3, /T. Fig. 2(c),
shows that our method yields lower state estimation MSE
throughout the inference process, compared to simulated
annealing.

4

- Proposed Method Mean
95% Confidence Interval

Taal

0.05 0.15
Process Noise
Fig. 3. Changes of connectivity error in the presence of different
process noise (p) in the cell-cycle network.

Connectivity Error
—_ o

In this part, the impact of varying process noise (p) on
connectivity error is studied. In Fig. 3 four p values (0.01,
0.05, 0.15, and 0.3) are examined, showcasing trends in the

Fig. 4. T-LGL leukemia network pathway diagram

average connectivity error after 100 likelihood evaluations.
Notably, errors decrease at p values of 0.05 and 0.15 but
rise again at 0.3. At low p (0.01), the network tends
to stabilize in attractor states, complicating the accurate
inference of the network model and resulting in a higher
connectivity error. Conversely, higher p values (0.05, 0.15)
introduce more stochasticity, aiding in exploring diverse
system states and improving inference. However, beyond
a certain point (0.3), excessive stochasticity negatively af-
fects the inference of gene interactions, leading to increased
connectivity error due to the system’s unpredictability.

4.2 T-cell Large Granular Lymphocyte Leukemia Network

T-cell large granular lymphocyte (T-LGL) leukemia is a
long-lasting illness marked by clonal proliferation of cy-
totoxic T cells. A simplified Boolean network model of
T cell survival signaling in the context of this disease
is constructed in Saadatpour et al. (2011). Fig. 4 rep-
resents the pathway diagram for this network. T-LGL
leukemia’s state at time step k can be shown by x; =
[x(1),...,xx(18)]7 =[CTLA4, TCR, CREB, INFG, P2,
GPCR, SMAD, FAS, sFas, Ceramide, DISC, Caspase,
FLIP, BID, IAP, MCL1, S1P, Apoptosis]?. The follow-
ing 10 interactions of the T-LGL leukemia network are
assumed to be unknown: cpq1 = -1, c34 = +1, cio8 =
+1, c16,11 = -1, c11,13 = =1, c1214 = +1, ¢co 17 = +1, c2.18 =
-1, ci13,18 = -1, 18,18 = —1. These 10 unknown elements in
the connectivity matrix, lead to 59,049 possible models.

The exact computation of log-likelihood in this network
is extremely expensive, however using our method, the
complexity significantly reduces. The proposed method is
applied to this problem using 300,000 particles for 100
likelihood evaluations and the results are compared with
simulated annealing. Fig. 5(a) represents the progress of
log-likelihood over the 100 evaluations. As can be seen in
the figure, the average maximum log-likelihood using the
proposed method is more than the values obtained using
simulated annealing. Moreover, Fig. 5(b) and 5(c), show



—— Proposed Method

—————— True Log-Likelihood

Mohammad Alali et al. / IFAC PapersOnLine 58-15 (2024) 1-6

———— Simulated Annealing

(=)

-8885
~8890
-8895
-8900
2-8905
-8910
-8915
-8920
-8925

kelihood

W

1

-L

w

Connectivity Error
N

IS
[ 38

Maximum L

State Estimation MSE

0.90

10 20 30 40 50 60 70 80 90
Number of Likelihood Evaluations

()

10 20 30 40 50 60 70 80 90
Number of Likelihood Evaluations

(b) (c)

10 20 30 40 50 60 70 80 90
Number of Likelihood Evaluations

Fig. 5. Performance comparison of our method and simulated annealing throughout topology optimization of the T-LGL leukemia network:
(a) average log-likelihood progress (b) average connectivity error progress (c) average state estimation MSE progress.

the progress of connectivity error and state estimation
MSE for this experiment. One can see that in both figures,
the proposed method has lower values than simulated an-
nealing. Therefore, these figures demonstrate the superior
performance of our approach during the inference process.

5. CONCLUDING REMARKS

This paper presented a novel approach to tackle the
computational challenges in inferring partially observed
Boolean dynamical systems (POBDS), which are crucial
for modeling diverse systems like genomics systems and
network security. By introducing a kernel-based particle
filtering method, the paper mitigates the scalability issues
inherent in these models. The Gaussian process (GP)
is leveraged to approximate the computationally expen-
sive likelihood function and Bayesian optimization is uti-
lized for sample-efficient explorations over the parameter
spaces. The application of this method was demonstrated
on two biological networks showcasing its potential in
addressing complex real-world problems. The obtained
results showed that the proposed method enables scalable
and efficient inference for POBDS. Our future work will
include the inference in domains with extremely large
parameter spaces, which demands more sequential search
and scalable alternatives to the GP model.

REFERENCES

Alali, M. and Imani, M. (2022). Inference of regulatory
networks through temporally sparse data. Frontiers in
Control Engineering, 3.

Alali, M. and Imani, M. (2024). Bayesian lookahead per-
turbation policy for inference of regulatory networks.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 1-14.

Biswas, S. and Acharyya, S. (2014). Gene expression profil-
ing by estimating parameters of gene regulatory network
using simulated annealing: A comparative study. In
2014 IEEE International Advance Computing Confer-
ence (IACC), 56-61.

Davidich, M.I. and Bornholdt, S. (2008). Boolean network
model predicts cell cycle sequence of fission yeast. PloS
one, 3(2), el672.

Handzlik, J.E. and Manu (2022). Data-driven modeling
predicts gene regulatory network dynamics during the
differentiation of multipotential hematopoietic progeni-
tors. PLOS Computational Biology, 18(1), 1-31.

Hosseini, S.H. and Imani, M. (2024). An optimal Bayesian
intervention policy in response to unknown dynamic cell
stimuli. Information Sciences, 666, 120440.

Hua, J., Sima, C., Cypert, M., Gooden, G.C., Shack, S.,
Alla, L., Smith, E.A., Trent, J.M., Dougherty, E.R.,
and Bittner, M.L. (2012). Dynamical analysis of drug
efficacy and mechanism of action using GFP reporters.
Journal of Biological Systems, 20(04), 403-422.

Imani, M. and Braga-Neto, U. (2018). Particle filters for

partially-observed Boolean dynamical systems. Auto-
matica, 87, 238-250.
Imani, M. and Braga-Neto, UM. (2017). Maximum-

likelihood adaptive filter for partially observed Boolean
dynamical systems. IEEE Transactions on Signal Pro-
cessing, 65(2), 359-371.

Imani, M., Dougherty, E.R., and Braga-Neto, U.M. (2019).
Boolean Kalman filter and smoother under model uncer-
tainty. Automatica.

Jones, D.R., Schonlau, M., and Welch, W.J. (1998). Ef-
ficient global optimization of expensive black-box func-
tions. Journal of Global optimization, 13(4), 455-492.

Kazeminajafabadi, A. and Imani, M. (2023). Optimal
monitoring and attack detection of networks modeled
by bayesian attack graphs. Cybersecurity, 6(1), 22.

Manshour, N., He, F., Wang, D., and Xu, D. (2023).
Integrating protein structure prediction and bayesian
optimization for peptide design. In NeurlPS 2023
Generative AI and Biology (GenBio) Workshop.

Pitt, M.K. (2002). Smooth particle filters for likelihood
evaluation and maximisation. Technical report, Univer-
sity of Warwick, Department of Economics.

Pitt, M.K. and Shephard, N. (1999). Filtering via simula-
tion: Auxiliary particle filters. Journal of the American
statistical association, 94(446), 590-599.

Puvsnik, vZ., Mraz, M., Zimic, N., and Movskon, M.
(2022). Review and assessment of Boolean approaches
for inference of gene regulatory networks. Heliyon.

Rasmussen, C.E. and et al. (2006). Gaussian processes for
machine learning. MIT Press.

Ravari, A., Ghoreishi, S.F., and Imani, M. (2024). Opti-
mal inference of hidden Markov models through expert-
acquired data. IEEFE Transactions on Artificial Intelli-
gence, 1-15.

Saadatpour, A., Wang, R.S., Liao, A., Liu, X., Loughran,
T.P., Albert, I., and Albert, R. (2011). Dynamical
and structural analysis of a t cell survival network
identifies novel candidate therapeutic targets for large
granular lymphocyte leukemia. PLoS computational
biology, 7(11), €1002267.

Zhang, K. (2023). A survey on observability of Boolean
control networks. Control Theory and Technology, 1-33.



