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ABSTRACT

Recently, there are growing security and privacy concerns regard-
ing smart voice speakers, such as Amazon Alexa and Google Home.
Extensive prior research has shown that it is surprisingly easy to
infer Amazon Alexa voice commands over their network traffic
data. To prevent these traffic analytics (TA)-based inference at-
tacks, smart home owners are considering deploying virtual private
networks (VPNs) to safeguard their smart speakers. In this work,
we design a new machine learning (ML) and deep learning (DL)-
powered attack framework—VoiceAttack that could still accurately
fingerprint voice commands on VPN-encrypted voice speaker net-
work traffic. We evaluate VoiceAttack under 5 different real-world
settings using Amazon Alexa and Google Home. Our results show
that VoiceAttack could correctly infer voice command sentences
with a Matthews Correlation Coefficient (MCC) of 0.68 in a closed-
world setting and infer voice command categories with an MCC
of 0.84 in an open-world setting by eavesdropping VPN-encrypted
network traffic rates. This presents a significant risk to user pri-
vacy and security, as it suggests that external on-path attackers
could still potentially intercept and decipher users’ voice commands
despite the VPN encryption. We then further examine the sensitiv-
ity of voice speaker commands to VoiceAttack. We find that 134
voice speaker commands are highly vulnerable to VoiceAttack and
3 commands are less sensitive. We also present a proof-of-concept
defense approach—VoiceDefense, which could effectively mitigate
TA attack accuracy on Amazon Echo and Google Home by ~50%.
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1 INTRODUCTION

A smart speaker is a voice-activated Internet of Things (IoT) device,
within which is a virtual smart assistant that can help people with
everyday tasks. These tasks could include playing music, making ap-
pointments and controlling other IoT devices in the house. Another
example, Amazon’s voice speakers use an assistant called Alexa
and when you give voice commands such as “what is the weather
like tomorrow?”, Alexa will answer the question with current loca-
tion’s weather information. Alexa also supports voice commands
that require web-search responses and third-party enabled Alexa
“skills” [2]. Most of the skills available on the Amazon Skill Store
are developed by third-party developers to extend the capabilities
of voice assistants. Smart voice speakers, such as Amazon Echo
and Google Home, are increasingly deployed in smart homes for
automation. The global volume in the smart voice speakers segment
was forecast to continuously increase between 2024 and 2028 by in
total 108.2 million pieces (~47.56%) [39].

Extensive recent research [1, 10, 23, 28, 45] has shown that it
is surprisingly easy to fingerprint simple voice commands using
network traffic data of Amazon Alexa and Google Home. The most
recent work [28] has presented that Amazon Alexa voice commands
can be fingerprinted with ~93% accuracy, indicating a serious pas-
sive and local adversarial attack on smart speaker user privacy.
Another work [1] has shown that they actually could achieve the
accuracy of 70~80% when fingerprinting fine-grained user activ-
ities. However, these approaches often assume ideal smart home
settings. For instance, recent approaches [10, 23, 28, 45] typically
focused on local adversaries in their threat models when designing
their systems. In the work [23], the authors assumed they have
knowledge of the starting and ending times of each smart speaker
traffic trace, as well as the source and destination IP addresses of
each network traffic packet. In another work [45], the authors as-
sumed local attackers know the model of a smart speaker, and also
the IP addresses of the smart speaker and its remote voice servicing
server. Although the most recent work [1] considers both local
and external attack scenarios in their system design, the proposed
approach depended on precise detection of voice invocation traffic
flows, which can be challenging to achieve when a smart home has
multiple IoT devices operating simultaneously. In real practices,
attacks mentioned above proves challenging in real-world smart
home environments, especially those protected by VPNs where
only encrypted traffic is accessible. The precise timing and “pure”
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Figure 1: Traffic volumes produced by Amazon Echo (in a
and b) and Google Home (in ¢ and d) for the same command
“What’s the weather today?”

patterns of voice speaker traffic necessary for designing such finger-
printing attacks are not readily obtainable under these conditions.

We consider a practical setting where home owners could deploy
virtual private networks (VPNs) to safeguard their smart speakers.
Thus, adversaries are not necessarily to be local and do not have
access to the exact time when and what activities are active on
smart speakers. Unlike prior works, we do not assume attackers
know the source and destination IP addresses of smart speakers and
their remote service providing servers. Figure 1 illustrates the VPN
encrypted traffic rate traces of Amazon Alexa and Google Home,
with each command repeated twice by users. Our key insight is that
user voice commands might exhibit distinct network traffic patterns
and are already embedded in their (encrypted) outgoing/incoming net-
work traffic data. These voice commands can potentially be inferred
or recovered through advanced traffic analysis (TA) techniques,
such as machine learning (ML) or deep learning (DL)-powered
fingerprinting attacks.

To this end, we are answering these two questions: (1) “Can we
design a new fingerprinting attack that could infer voice commands
across different voice platforms via only VPN-protected smart voice
speaker network traffic traces under read-world settings?”; (2) “Can we
further design a new proof-of-concept approach that could potentially
and effectively prevent this new fingerprint attack?”. To address these
questions, we design a new ML/DL-powered attack framework—
VoiceAttack that could still accurately fingerprint voice commands
on VPN-encrypted voice speaker network traffic. In doing so, we
are making the following contributions.

Challenges. We first explore and emphasize the key challenges
in designing our new fingerprint attack—VoiceAttack that could
accurately fingerprint voice commands via VPN-encrypted traffic.
System Design of VoiceAttack. We present the design of VoiceAt-
tack, which could accurately fingerprint voice commands via VPN-
encrypted voice speaker network traffic. VoiceAttack leverages a
deep learning (DL) model to gather and preprocess VPN-encrypted
voice speaker network traffic datasets for training. Next, VoiceAt-
tack employs a novel smart speaker detection model and machine
learning (ML)-enabled traffic filtering model to automatically dis-
tinguish between different smart speaker models based on their
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respective network traffic patterns. Following this, VoiceAttack
implements an new LSTM-based fingerprinting attack with excep-
tional precision at both the sentence and category levels of voice
commands. This attack accurately categorizes and identifies voice
commands, revealing sensitive information about the user’s voice
interactions with their smart voice speakers.

Implementation and Evaluation. We implement VoiceAttack
using the most widely used programming language—Python. To
assess and benchmark VoiceAttack, we conduct evaluations under
5 different real smart home deployments. Our results show that
VoiceAttack could correctly infer voice commands sentences with
MCC as of 0.68 in closed-world setting and infer voice commands
categories with an MCC of 0.84 in open-world setting by eavesdrop-
ping VPN-encrypted network traffic, respectively. This presents
a significant risk to user privacy and security, as it suggests that
external on-path attackers could still potentially intercept and deci-
pher users’ voice commands despite the VPN encryption. We then
further examine the sensitivity of voice commands to VoiceAttack.
We find that 134 commands highly vulnerable to VoiceAttack. We
also present a proof-of-concept defense approach—VoiceDefense,
which could effectively mitigate TA attack accuracy by ~ 50%.
Releasing Datasets. Our new approaches to benchmark TA attacks
and their defenses for smart voice speakers are quite general, and
could be applied to address similar user privacy issues of other IoT
devices or in other domains. We released the datasets of VoiceAttack
to IoT research communities on our lab GitHub page [42].

2 BACKGROUND AND RELATED WORK

2.1 Overview of Smart Voice Speaker System

Smart voice speakers (e.g., Amazon Echo, Google Home, Bose Smart
Speaker, Denon Home Speaker, Harman Kardon Astra Speaker, Ed-
ifier Wi-Fi Speaker) typically have built-in voice assistants, such
as Amazon Alexa or Google Home, providing user interactive fea-
tures. The Alexa voice commands can be categorized into built-in
commands and skills-enabled commands. Built-in commands are
the voice commands that are directly processed by Amazon’s Alexa
Service. For instance, a user can ask Amazon Alexa the built-in
command—“What is the weather today?”. The Amazon Alexa will
then transmit the audio command to the Amazon Alexa Servic-
ing Server. The Alexa service contains various services, including
Weather, Wikipedia, Time, and others. For a weather request, the
service accesses the built-in weather information. There, the server
prepares the request for “weather information” at the user’s loca-
tion and response to the user. Another example, the users may ask
some “skills” related voice commands. When the user issues the
command “Turn on the master bedroom light,” Alexa forwards the
audio command to their remote Alexa Service server. The server
communicates with the Alexa Skills server, which functions as the
marketplace for skills where third parties develop the majority of
the available skills in the Amazon Skill Store. These skills are de-
signed to enhance and expand the capabilities of the voice assistant.
Eventually, the feedback control commands are transmitted via the
device cloud to the light switch, instructing it to turn on the light.
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Figure 2: Overview of our threat model.

2.2 Threat Model

As shown in Figure 2, we are broadly concerned with the ability
of external adversaries (e.g., Internet service provider, on-path net-
work observers, manufactures, cloud storage providers, and their
third-parties) to fingerprint voice commands via VPN-encrypted
network traffic traces of smart voice speakers. Note that, unlike
the recent approaches [10, 23, 28, 45], we do not assume we only
have local adversaries in their threat models when designing their
fingerprinting systems. Instead, we are focusing on a more prac-
tical real-world setting, where adversaries are on the path from
a smart home Internet router to voice speaker servicing servers.
Thus, these external adversaries can only sniff or access to VPN-
encrypted network traffic rates of smart voice speakers. Unlike prir
works, the adversaries are not assumed to have the knowledge of
“internal” metadata, such as IP addresses of the smart speaker and
its remote voice servicing server, original source and destination IP
addresses of each network packet, and starting and ending times of
each smart speaker traffic trace.

We assume external adversaries can use any sophisticated TA
inference techniques, such as ML, DL, or other statistical methods
to fingerprint voice commands using the recorded voice assistant
traffic rates. Thus, fingerprinting voice commands at both sentence
and category levels in these smart homes is considered as an opposi-
tion to smart home users’ privacy preferences. And these potential
adversaries may be incentives to fingerprint user voice commands
from smart speaker network traffic traces where users do not want
to share this privacy-sensitive information with them.

We are concerned with three types of user privacy TA attacks:

i) Fingerprinting user voice command sentences. This includes what
voice commands a user has asked and when,; ii) Fingerprinting user
voice command categories. This includes what categories a user com-
mand belongs to and when. In particular, even if voice commands
are inaccurately fingerprinted, adversaries could still deduce their
categories, potentially revealing some sensitive user information;
iii) Fingerprinting user voice command keywords. This includes what
keywords or phrases that a voice command contains and when. This
becomes particularly intriguing and potentially “useful” for external
adversaries when sentence-level fingerprinting fails. In addition to
the above-mentioned short-term user voice commands fingerprint-
ing, adversaries may infer more comprehensive and longer-term
user sensitive activities, such as whether a household has a baby,
and whether they go on vacation on weekends.
Attack Scenario #1: Fingerprinting user sentence-level voice com-
mands. To fingerprint user sentence-level voice commands, an exter-
nal Internet on-path adversary intends to acquire the voice assistant
network traffic data, and leverage ML- and DL-based traffic analysis
(TA) attacking approaches to fingerprint the voice commands that
are embedded in the traffic traces. This fingerprint attack could
result in user sensitive information leakage.
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Attack Scenario #2: Fingerprinting user category-level and keyword-
level voice commands. In addition to the prior attack scenario, an
external adversary could also use advanced ML or DL techniques
to develop a fingerprinting attack that could infer the categories
and keywords of use voice commands via VPN-encrypted smart
speaker network traffic traces.

2.3 Related Work

Although there has been relatively less emphasis on fingerprinting
voice commands from smart speakers, there is a recently growing
interest [1, 10, 23, 28, 45] in this area. Meanwhile, there is a sub-
stantial body of work dedicated to enhancing the fingerprinting
of website network traffic and IoT device activities. We classify
them into three categories, including fingerprinting website traffic,
fingerprinting IoT device, and fingerprinting voice commands.
Fingerprinting Website Network Traffic. There are significant
works [12, 13, 16, 27, 31, 44, 54] in fingerprinting website traffic
using statistical models or ML models. Researchers showed it is fea-
sible to infer user website visiting history by analyzing the network
traffic generated by user website accessing. However, voice com-
mand traffic contrasts notably with website visiting traffic. Voice
command data tends to be sparser and of shorter duration. Un-
like browsing websites, where data flow is more continuous, voice
commands of smart speakers consist of brief bursts of traffic flows.
Fingerprinting IoT Device Activities. People have also been
developing new approaches to identify IoT device activities using
their network traffic traces [4, 15, 19, 36, 40, 43, 49]. In the work [4]
and [15], the authors proposed an approach that leveraged ML mod-
els such as feed-forward neural network (FFNN), long short-term
memory (LSTM), and support vector machine (SVM) techniques to
recognize users’ activities of daily living (ADL). In the work [19],
Hafeez et al. presented a semi-supervised learning to distinguish
between malicious and benign device behaviors using network traf-
fic generated by IoT devices. Shahid et al. [36] designed a Random
Forest classifier based approach to recognize the type of IoT devices
by analyzing their outgoing and incoming traffic packages. Wan et
al. presented a model to profile diverse user activities with distinct
IoT device event sequences, which are extracted from smart home
network traffic based on their TCP/IP data packet signatures [43].
Xue et al. [49] proposed an approach to infer user activity patterns
from a sequence of device events by deterministically extracting
a small number of representative user activity patterns from the
sequence of device events. Most of these approaches either rely on
access to detailed network traffic header metadata or depend on
the sequential IP packets and intervals to fingerprint user activi-
ties. However, these approaches cannot be simply applied to our
research problem here, as such “perfect” data are not available in
VPN-encrypted voice speaker traffic rates.

Fingerprinting Voice Commands of Smart Speakers. Kennedy
et al. [23] introduced a passive voice command fingerprinting at-
tack on smart home speakers. Their work demonstrated that a
passive attacker, who can only eavesdrop encrypted traffic between
a smart home speaker and a cloud server, can use ML models to
infer users’ voice commands and compromise the privacy of voice
assistant users. Their experimental results on an Amazon Echo
using a dataset of 100 common voice commands suggested that
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Command | Adversar Targeted .

Platforms Categories Type Y Triﬁc Detection
Kennedy et al. [23] Alexa, Google Assistant Simple Local Filtered Activity
Wang et al. [45] Alexa, Google Assistant Simple Local Filtered Activity
Ahmed et al. [1] Alexa, Google Assistant, Siri | Simple, Skills | Non-local | All, Aggregated | Invocation
Charyyev et al. [10] Alexa Simple Local Filtered Activity
Mao et al. [28] Alexa Simple Local Filtered Activity
Ours Alexa, Google Assistant Simple, Skills | External | All, Aggregated | Activity

Table 1: The comparison of recent smart speaker fingerprinting systems.

voice command fingerprinting attacks can correctly infer 33.8% of
voice commands by eavesdropping on encrypted traffic in a closed
world setting. Wang et al. [45] implemented proof-of-concept at-
tacks by leveraging deep learning model in a open-world analysis.
Their experimental results indicated disturbing privacy concerns
on voice assistant network traffic data. Their attacks can correctly
infer voice commands over encrypted traffic with 92.89% accuracy
on Amazon Echo on a closed world setting. Charyyev et al. [10] pro-
posed a method that utilizes the network traffic of the speakers to
fingerprint the voice commands of users without a need for extract-
ing traffic features with ML algorithms. Their approach correctly
inferred 42% of voice commands while ML models infer 22% to 34%.
Mao et al. [28] developed a new DL model using time-series related
features (e.g., direction, time, and size of packets of smart speaker
network traffic traces) to improve the attack accuracy on the same
dataset to 93.36%. Ahmed et al. [1] presented a new taxonomy of
fingerprinting voice commands on the voice assistants. They first
detected the invocation/activation of voice assistants followed by
what specific voice command is issued. Their results have shown
that it is possible to detect when a voice assistant is activated with
99% accuracy and then utilize the subsequent traffic patterns to infer
more fine-grained user activities with around 77~80% accuracy.

Observation. As shown in Table 1, prior works [10, 23, 28, 45]
mainly focused on local adversaries in their approaches. Specially,
the approach in [23] assumed that the attacker knows which type
of smart home speaker a user has (e.g., whether it is an Amazon
Echo or a Google Home). They also assumed that the attackers
know the source and destination of packets by observing packet
headers. The work [45] further assumed the local eavesdropper can
observe and use IP address of a smart speaker to filter out the “pure”
smart speaker traffic traces. That being said, their research relies on
the availability of IP addresses, which are only accessible to local
adversaries, to separate traffic traces. Prior works [10, 23, 28, 45]
leverage the activities or patterns that are embedded in the speaker
traffic metadata and traces to fingerprint voice commands. In con-
trast, the most recent work [1] uses “invocation” traffic spikes. This
notable work [1] relaxed the strict assumptions by initially detect-
ing invocation commands (e.g.,'Hi Alexa”). They then trimmed the
network traffic immediately following these invocation commands
for fingerprinting. Prior works [10, 23, 28, 45] mainly considered
the simple built-in voice commands and skill-enabled commands
fingerprinting are not fully evaluated. Existing approaches have
not been fully evaluated in VPN-encrypted voice speaker scenarios.
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Insight. Although prir research has made significant efforts to
explore the severity of fingerprinting voice commands, these ap-
proaches have not been considered or evaluated in practical environ-
ments where users deploy VPNs to protect their traffic. Additionally,
they may not account for scenarios where users have multiple in-
terleaving IoT devices online, leading to potential noise from other
devices existing in smart speaker traffic. Specifically, invocation
commands used by the most recent work [1] may become unreliable
and inaccessible from VPN-encrypted voice speaker traffic. Prior
works [10, 23, 28, 45] assumed the access to traffic metadata, which
can only be sniffed by local adversaries, to build their fingerprinting
approaches. In our real-world setting, we focus on external adver-
saries who only have access to network rates. They do not have
access to the detailed metadata assumed in prior works [10, 23, 28, 45].
Unlike many prior works assume attacker are given the model of
the targeted voice speaker, a new fingerprinting approach could au-
tomatically recognize the smart speaker model is necessary. These
valuable insights will guide the design, implementation, and evalu-
ation of our proposed fingerprinting system— VoiceAttack.

3 CHALLENGES

VPN-encrypted Speaker Traffic. We focus on a real-world setting
where users are free to utilize encryption techniques, particularly
VPN, to conceal their voice speaker traffic data. External on-path
adversaries can only observe the VPN-encrypted traffic rate volume
traces of smart speakers. Thus, many existing approaches, which
assume detailed access to traffic metadata, including voice speaker
IP addresses, source and destination IP addresses or domains of
traffic packets, model information, accurate invocation commands,
etc., will not work in this scenario. To address this challenge, we ex-
tract a wide set of principal features that could distinguish different
voice commands using the VPN-encrypted traffic rates.

Traffic “Noise” from Other Devices. Another challenge is the
potential “noise” from other “interleaving” device traffic. In real-
world settings, there may be sometimes multiple active devices
using Internet traffic simultaneously. Another recent research [51]
showed that among 72,370 IoT traffic spikes, 15.19% have significant
aggregation due to the interleaved IoT device usages in 34-day
traffic traces of four smart homes. This could bring some noise
into voice speaker traffic rates. Prior works either did not consider
this situation or leveraged internal IP addresses which are mostly
inaccessible in real-world settings to filter out the “pure” voice
command traffic traces. To overcome this challenge, we design a
new ML-enabled traffic filtering algorithm to automatically detect
voice speaker model and also obtain voice speaker command traffic.
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Figure 3: The operational pipeline of our data collection.

Missing Similarity and Sensitivity Analysis. Prior approaches
have examined their efficiency using different metrics. One missing
in understanding the fingerprint accuracy of voice commands is the
analysis of similarity and sensitivity. To address this issue, we pro-
pose to comprehensively evaluate the performance of fingerprinting
voice commands at both the sentence, category, and keyword levels.
We also examine the effect on fingerprinting accuracy of semantic
similarity or relatedness of different voice commands.

4 DATA COLLECTION
4.1 VPN-encrypted Speaker Traffic Collection

Figure 3 illustrates the design of our traffic data collection module.
Voice Command Dataset Preparation. To prepare the voice
command datasets, we leverage the voice command categories
listed on the Amazon Alexa official website [3]. We compile 10
voice commands for each category, resulting in the collection of 200
voice commands for each voice speaker platform. These datasets
consist of basic and skills voice commands of Alexa and Google
Home. These textual voice commands are converted into audio
files using the Coqui TTS pre-trained text-to-speech conversion
model [41]. The TTS synthesis is performed using the tacotron2-
DCA model from Coqui Al trained on the L] Speech dataset.
Raw Traffic Trace Capturing. We first configure Raspberry Pi 4
Model B to operate as a VPN-enabled router running on OpenWRT.
We then use another Raspberry Pi 4 Model B with a speaker to
play all the collected auto files from the previous step. We employ
tcpdump on the VPN router to collect both incoming and outgoing
traffic generated by the invocation of voices speakers. We leverage
an open-source library—SoundDevice [38] to detect silence level
of voice speakers and thus proactively terminate a traffic trace
recording process. This “silence” indicates that a complete interac-
tive session between the voice speakers and their remote serving
servers has concluded. To ensure the quality of our data collection,
we repeat voice command 200 times.

Traffic Data Cleaning from Outliers. During our data collection
process, we observe some outlier data points caused by various
factors such as Internet connection failures, delayed responses, or
instances where the audio command was not recognized correctly
for voice assistants (e.g., “audio is not intended for Alexa”). To
ensure only valid and relevant traffic data was collected into our
datasets, we leverage the custom web crawler to extract the textual
content of each response from the voice speaker activity history.

5 SYSTEM DESIGN

Figure 4 depicts the pipeline of our new voice command finger-
printing framework— VoiceAttack.
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Figure 4: The operational pipeline of our VoiceAttack system.

5.1 Voice Speaker Network Traffic Detection

As discussed in Section 3, the first challenge is the potential noise
from other interleaving device traffic. In real-world deployments,
there could be some times multiple active devices using Internet
traffic simultaneously. To address this issue, we first design a new
ML/DL enabled traffic detection module to automatically obtain
voice speaker command traffic and thus detect the voice speaker
model (either Amazon Alexa or Google Home). There is not sig-
nificant research in IoT VPN-encrypted traffic detection area. The
most relevant ones are the recent work [25] and the netmeter en-
ergy data disaggregation works [7, 22, 24, 52, 53] in Non-intrusive
Load Monitoring (NILM) community. The aim of network traffic
detection is to provide accurate individual IoT device traffic con-
sumption estimates based on the VPN-encrypted whole-house IoT
network traffic consumption. We are highly motivated by these
works and benchmark and tailor the major disaggregation algo-
rithms in NILMTK framework [6]. Figure 5 shows the comparison
results of different disaggregation algorithms. We find that LSTM-
based approach yields the lowest Mean Absolute Percentage Error
(MAPE), indicating the highest detection accuracy. Moreover, the
MAPE exhibits only marginal changes as the number of noise de-
vices increases from 1 to 25. Figure 6 illustrates the tailored LSTM
traffic detection results when Amazon Alexa and other five IoT
devices become online simultaneously. Thus, we select LSTM as
our traffic detection approach for our VoiceAttack framework. Note
that the detection algorithms in our system design are orthogonal
to new approaches and models. Detecting the voice speaker model
becomes trivial once we acquire the“pure” network traffic traces.

5.2 Voice Speaker Traffic Preprocessing

Unlike browsing websites or other IoT device traffic, where traffic
flow is more continuous, voice commands of smart speakers consist
of brief/sharp bursts of traffic flows. To capture the features em-
bedded in these sharp and short traffic flows, we then preprocess
our voice command network traffic traces. Our data preprocessing
process is systematically divided into three stages, each designed
to refine traffic data for later optimal feature extraction.
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Figure 5: The performance of traffic detection methods.

e Trimming: Initial segments of the traffic, typically the first 0.5
to 1 second, are primarily invocation commands and thus distill
the data to the most informative segments for fingerprinting.
Resampling: To reconstruct the intrinsic patterns embedded in
the traffic traces more effectively, we resample the traffic data at
intervals of 0.1, 0.2, 0.5, and 1 second. This process is critical for
aligning temporal variations to a standard time-series framework.
Filtering: The traffic traces undergo a filtering process. Traffic
flows are bifurcated into incoming flows (from cloud servers
to smart speakers) and outgoing flows (from smart speakers to
cloud servers), thus segregating the data for focused examination.
Standardization: The principal features are often recorded using
different measurement units. To address this issue, we leverage
standard scaling, min-max scaling, and Box-Cox transformation
to further process our training dataset.

5.3 Principal Traffic Feature Extraction

We then identify and extract the principal features from the clean
voice speaker traffic. Firstly, we empirically identify the potential
candidate principal features from the voice speaker traffic. Then,
we employ Principal Component Analysis (PCA) to extract the prin-
cipal features from these identified potential features. The multi-
dimensional candidate features we learn from prior works may
come from six different categories, including Basic Statistics, Fourier
Transform Results, Spectral Features, Energy and Power, Time Se-
ries Analysis, and Distribution Characteristics. Our basic statistics
include the mean, standard deviation, median, mean absolute de-
viation, skewness, kurtosis, and duration. Our Fourier transform
features include FFT mean and FFT standard deviation. Regarding
spectral features, we mainly consider spectral centroid, entropy,
rolloff, flux, flatness, and kurtosis. We then apply energy and power-
related metrics as our features, such as root mean square (RMS),
signal magnitude area (SMA), total harmonic distortion (THD),
signal-to-noise ratio (SNR), and signal energy. Since voice speaker
traffic is described in time-series data format, we also use autocorre-
lation, crest factor, first difference mean, first difference variance, cu-
mulative sum, smoothness, number of peaks, and waveform length
to capture the relationship between time-series traffic and voice
commands. Lastly, we also leverage distribution metrics, including
entropy, entropy of energy, entropy package distribution (EPD),
and max autocorrelation peak (MAP). Totally, we have empirically
identified 31 features as the potential principal features.

Figure 7 illustrates the relationship between these five important
traffic features. Some features exhibit high correlation with others.
For instance, “sma” exhibits a linear relationship with “sd_dev”,
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Figure 7: The correlation matrix of different traffic features.

while the “entropy of energy” and the “spectral entropy” demon-
strate a strong linear correlation. Therefore, we cannot simply feed
these features directly into our fingerprinting models, as they might
lead to overfitting. To address this problem, we leverage principal
component analysis (PCA) which simplifies the complexity in high-
dimensional data while retaining trends and patterns. In addition,
PCA provides dimensionality reduction that has been used to opti-
mize the training time and solve part of the overfitting problem. We
employ PCA to automatically learn the principle features for voice
command fingerprinting. When applying PCA on our voice com-
mand datasets, the input is the whole dataset ignoring the binary
class labels. PCA computes the covariance matrix, and eigenvec-
tors and corresponding eigenvalues. Eventually, we transform our
samples onto the new subspace. We find that starting from 25 com-
ponents, the PCA’s cumulative explained variance is close to 100%,
and individual explained variance is approaching 0%. That said,
our approach is able to reduce dimensions from 66 (combined in-
coming and outgoing) to 25 while preserving most of the feature
information. We use the 25 principle components as the inputs for
our fingerprinting models which are discussed next.

5.4 Command Fingerprinting Model Selection

Our next step is to build our new voice command fingerprinting
model to infer the voice commands using the learned principal traf-
fic feature set. We focus on selecting the optimal ML/DL classifier
that could yield the best accuracy for voice command fingerprinting.
We investigate the most widely used ML/DL models in prior finger-
printing relate works, including Long short-term memory (LSTM),
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Multi-Layer Perceptron (MLP), Random Forest, Extra Trees, Logisti-
cal Regression, Support vector machines (SVMs), Extreme Gradient
Boosting (XGBoot), Decision Tree, k-nearest neighbors (KNN), and
Naive Bayes. In particular, we also benchmark the different kernels
for SVMs, including linear, linear passive-aggressive, linear ridge,
polynomial with 1~10 degrees, and radial basis function (RBF). In
addition, we also fine-tune the tree-based models (e.g., Random
Forest, Decision Tree, Extra Tree and XGBoost) to ensure we are
reporting the best performance for those ML approaches.
Fingerprinting voice command at sentence-level. The results
in Figure 8 show that the LSTM classifier yields the best MCC as
~0.7 when fingerprinting voice command at sentence level, which
is two times better than the Naive Bayes classifier. Unsurprisingly,
LSTM reports the best accuracy. LSTM has been very successful in
the literature, especially when working with sequences of words
and paragraph datasets, particularly those represented as time series
data format. MLP reports decent but suboptimal results and is often
used as a baseline point of comparison to benchmark other models
that may appear better suited for the research problem. Note that,
although other ML models yield lower accuracy, their performance
on fingerprinting user voice commands at the sentence level is still
better than prior work [23], where their inference accuracy is 33.8%
on non-VPN-encrypted voice speaker traffic. This is mainly due to
the more significant and efficient extraction process of our principal
features. The results have shown that user voice commands are
embedded in their network traffic rate traces and could be revealed
by a well-performing traffic inference fingerprint attack. Figure 9
illustrates the detailed structure of our LSTM classifier.
Fingerprinting voice command at category-level and topic-
level. Furthermore, our framework also supports more precise voice
command fingerprinting, such as category-level and keyword-level.
The insight lies in the fact that while we may not always be able
to perfectly fingerprint voice command sentences, we can still
deduce their categories and topics. This is because the semantic
similarity between the groundtruth and predicted commands could
be significant. To do this, we train a LSTM model using the Amazon
recommended 20 categories. We also train another LSTM-powered
classifier to fingerprint voice command topics.

5.5 Command Similarity & Sensitivity Analysis

Prior approaches have examined their results using different met-
rics and one big missing in understanding the fingerprint accuracy
of voice commands is the analysis of their similarity and sensitiv-
ity. To this end, we are answering the question: “Why are we able
to effectively fingerprint some voice commands while struggling
with others?”. We look into this question using semantic related-
ness/similarity algorithms, including the Wu & Palmer measure
(WUP) [48], the Resnik similarity (RES) [34], and the Lin measure
(LIN) [26]. We can analyze the correlation between these related-
ness metrics and the prediction outcomes of our fingerprint attacks
to assess the attack results. To reflect this insight on our voice com-
mand fingerprinting accuracy, we also report Top-k voice command
inference results. Top-k accuracy classification score aims at com-
puting the number of times where the correct “label” is among the
top K labels predicted (ranked by predicted scores) by a classifier.
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5.6 Full Stack Benchmarking and Evaluation

Different than prior works, VoiceAttack also provides a full stack
benchmarking on system performance using Matthews Correlation
Coefficient (MCC) [29], F1 score [18], and Mean Absolute Percent-
age Error (MAPE), and also comprehensive similarity and sensitivity
analysis using semantic relatedness/similarity algorithms, including
Wu & Palmer measure (WUP) [48], Resnik similarity (RES) [34], and
Lin measure (LIN) [26]. VoiceAttack could also assess fingerprinting
systems using their training time and resource overhead.

6 IMPLEMENTATION

We implement VoiceAttack using the most widely used program-
ming language—Python. To capture VPN-encrypted voice speaker
traffic traces for our model training, we build a prototype by using
two Raspberry Pi 4 Model B units, Amazon Echo Dot, Google Home,
and a USB speaker. We flash one Raspberry Pi to playback audio
input files and it acts as the “users” to initialize the conversations
with the two voice speakers. We flash the second Raspberry Pi with
OpenWrt and configure it as the host device for capturing traffic
data. In addition, we deploy CyberGhost VPN on this host server.
We employ paramiko to establish secure SSH communications and
sounddevice to monitor audio outputs for initiating and conclud-
ing network traffic captures based on audio activity detected from
smart speakers. We then further preprocess the captured traffic
traces (represented in .pcap format) by filtering, trimming, and
resampling. We implement the system components of VoiceAttack
using widely available open-source frameworks, including NILMTK,
Scikit-learn, and TensorFlow. We leverage standard scaling, min-
max scaling, and Box-Cox transformation to preprocess our datasets.
We first use TensorFlow to implement MLP and LSTM. We then
use Scikit-learn library to implement all other fingerprint ML and
DL models, including Random Forest, Extra Trees, Logistical Re-
gression, SVMs, XGBoot, Decision Tree, KNN, and Naive Bayes.

7 EXPERIMENTAL EVALUATION

7.1 Evaluation Scenarios

Scenario 1: Amazon Alexa Voice Command Traffic. This
dataset comprises traffic traces captured from interactions with
an Amazon Echo device, encapsulated in .pcap files. It has 200
unique voice commands categorized into 20 distinct classes, with
each class containing 10 specific commands. To ensure balanced
data collection, each command was executed 200 times, resulting in
sufficient traffic data for model training. This dataset is structured
to facilitate both sentence-level and category-level fingerprinting.
Scenario 2: Google Home Voice Command Traffic. An identical
environment for collecting Google Home data was configured in
another smart home environment. This dataset comprises network
traffic traces captured from interactions with a Google Home voice
assistant, encapsulated in .pcap files as well. The voice commands
and category information remains identical to the Amazon Alexa
dataset to maintain consistency in our experiments.

Scenario 3 ~ 5: Voice Command Traffic with additional IoT
Devices. To demonstrate the effectiveness of our fingerprinting
methods of VoiceAttack, we setup 25 additional IoT devices, includ-
ing Belkin Wemo Switch, Sengled Smartbulb, Xiaomi Smart Camera,
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two Samsung SmartThings Hubs, two Philips Hue Bridges, Rasp-
berry Pi 3, Eufycam, Dropcam, two Netgear Routers, two TP-Link
Smart Plugs, and Netatmo Welcome Camera, Triby Speaker, With-
ings Smart Scale, Withings Baby Monitor, Withings Aura Smart
Sleep Sensor, Sengled Smart Lightbulb, Belkin Wemo Motion Sensor,
PIX-STAR Photo-frame, HP Printer, and Netatmo Weather Station.
This dataset is then subjected to traffic disaggregation, followed by
sentence-level and category-level fingerprinting.

Ethical Consideration for Data Collection. We collected net-
work traffic data using DL models to explore the severity and extent
of user privacy threat from smart speakers. Our long-term goal is
to provide system solutions to enable people to regain the control
of privacy leakages through their voice speaker data. We did not
collect data from real individuals. We removed device identical in-
formation and sampled the datasets. We followed our institution’s
Institutional Review Board (IRB) exempt process.

7.2 Evaluation Metrics

Mean Absolute Percentage Error (MAPE). To quantify the dis-
aggregation accuracy of VoiceAttack, we compute the MAPE [17],
between the ground truth individual IoT device (e.g., Amazon Alexa)
traffic consumption and the VoiceAttack infers over all time inter-
vals t. A lower MAPE indicates higher accuracy with a 0% MAPE
being perfectly aggregated traffic disaggregation.

100 <& S; — P,
MAPE:—Z| LY
noim St

1

where n describes the duration of traffic disaggregation, S; denotes
the per-device groundtruth traffic consumption, and P; indicates
the predicted per-device traffic rate at time ¢.

Matthews Correlation Coefficient (MCC). We use the MCC [29],
a standard measure of a classifier’s performance, where values are
in the range —1.0 to 1.0, with 1.0 being perfect voice command
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Inference Type Sentence-Level Category-Level
Traffic Flow In Out |I+O |[In Out |I+O
Amazon Alexa [0.5431 |0.4928 |0.6844 [0.6247 |0.6065 |0.7280
Google Home |0.4814 |0.4564 [0.5702 |0.5697 |0.5397 |0.6232
Alexa+5 Dev 0.5145 [0.4372 |0.5870 [0.6130 |0.5603 |0.6782
Google+5Dev |0.3756 |0.3925 |0.4424 |0.4699 |0.4988 |0.5410
Alexa+15Dev |0.5155 |0.4518 [0.5883 |0.6061 [0.5557 |0.6867
Google+15 Dev |0.3733 |0.4083 [0.4529 |0.4840 |0.4981 |0.5549
Alexa+25 Dev [0.5293 [0.4461 |0.6071 [0.6208 |0.5785 |0.7034
Google+25 Dev |0.3780 |0.3770 [0.4735 |0.4864 |0.4813 |0.5670

Table 2: The VoiceAttack’s fingerprinting performance.

detection, 0.0 being random voice command detection, and —1.0 in-
dicating voice command inference is always wrong. The expression
for computing MCC is below.

TP«TN — FP«FN

V(TP + FP)(TP + FN)(TN + FP)(TN + FN) @

7.3 Experimental Results

7.3.1 Quantifying VoiceAttack’s fingerprinting performance using
different traffic flows. First, we evaluate the fingerprinting accu-
racy of VoiceAttack using different traffic flows under 5 different
real-world settings, including incoming traffic, outgoing traffic,
and a combination of both, with and without additional IoT de-
vices. Table 2 describes the fingerprinting accuracy when applying
VoiceAttack on incoming traffic, outgoing traffic and the combina-
tion of the two, respectively. Unsurprisingly, VoiceAttack yields the
best MCC when training on both incoming and outgoing traffic
flows for sentence-level voice command fingerprinting. In addition,
VoiceAttack achieves better accuracy when trained on incoming
traffic compared to training on outgoing traffic. We also find that
VoiceAttack yields the MCCs of 0.50 and 0.58 when fingerprinting
disaggregated Amazon Alexa traffic, which is the same as when
fingerprinting “pure” Amazon Alexa traffic. In addition, VoiceAt-
tack yields similar MCCs on disaggregated traffic for both Amazon
Alexa and Google Home, regardless of whether there are 5, 15, or
25 additional IoT devices. This is mainly due to the fact that incom-
ing traffic is less affected by “user” interactions, as it is prepared
by the voice speaker cloud server. Therefore, incoming traffic is
more reliable and easier for us to fingerprint compared to outgoing
traffic. Similarly, we observe that VoiceAttack illustrates the similar
“trends” when fingerprinting voice command at category-level.
Results: VoiceAttack yields the best MCC when training on both
incoming and outgoing traffic to fingerprint voice command at both
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Figure 10: The comparison of VoiceAttack’s accuracy on dif-
ferent traffic granularities.

sentence and category levels. VoiceAttack achieves similarly good ac-
curacy when fingerprinting the disaggregated voice speaker traffic and
“pure” voice speaker traffic. VoiceAttack also achieves better accuracy
when trained using incoming traffic compared to outgoing traffic.

7.3.2  Quantifying VoiceAttack’s fingerprinting accuracy on differ-
ent granularities of voice speaker traces. We next evaluate voice
command fingerprinting effect on different traffic rates that have
different level of granularities, such as 1 package, 0.1 second, 0.2
second, 0.5 second, and 1 second. Note that a voice command traf-
fic may only last very few seconds in real practices. As shown
in Figure 10, as expected, higher granularity results in lower fin-
gerprinting accuracy in MCC. VoiceAttack’s accuracy only drops
marginally on both Amazon Alexa and Google Home. This is mainly
due to the facts that 1) VoiceAttack performs consistently well on
voice speaker traffic traces at different granularities, 2) fewer fluc-
tuations and motifs can be observed in higher resolution traffic rate
traces. When voice speaker traffic rates are becoming coarser, some
principal features, such as standard deviation, variation coefficient
and AUC, become less distinguishable and are thus hidden.

Results: VoiceAttack performs consistently well on smart speaker
traffic at different granularities. Ranging from 0.1 second to 1 second,
VoiceAttack’s accuracy in MCC only drops marginally from 0.68 to
0.67 on Amazon Alexa and 0.57 to 0.5 on Google Home, respectively.

7.3.3  Quantifying VoiceAttack’s fingerprinting performance using
different traffic data sizes. Next, we evaluate VoiceAttack’s finger-
printing performance when varying voice speaker traffic train-
ing dataset sizes. Figure 11 illustrates the comparison results of
VoiceAttack’s accuracy in MCC when training on different sizes of
voice speaker traffic. As shown in Figure 11, VoiceAttack’s accu-
racy is a linear function of training data sizes. For Amazon Alexa,
VoiceAttack’s accuracy in MCC increases from 0.58 to 0.68. Simi-
larly, VoiceAttack’s fingerprinting accuracy on Google Home traffic
traces grows from 0.38 to 0.57. This is mainly due to the fact that
when VoiceAttack has access to a larger training data size, we can
extract more principal features and thus train a more accurate
fingerprinting classifier. Hence, VoiceAttack demonstrates greater
potential when training on larger datasets is feasible.

Results: VoiceAttack’s accuracy is a linear function of training data
sizes. Even with a training data size of only 25%, VoiceAttack still
achieves an MCC of 0.58 and 0.38 on voice speaker traffic traces from
Amazon Alexa and Google Home, respectively.

7.3.4  Quantifying VoiceAttack’s performance on an open-world set-
ting. We also consider an open-world setting to better understand
the severity of our new VoiceAttack in more real practices. We
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Figure 11: The comparison results when VoiceAttack training
on different data sizes.

curated an open-world voice command dataset comprising voice
commands observed during VoiceAttack’s training phase and those
never encountered before in its training dataset. We collect fin-
gerprinting accuracy under different scenarios. For the voice com-
mands that VoiceAttack encountered during its training process, it
achieves a MCC accuracy of 0.82 when fingerprinting at sentence-
level, indicating consistency with closed-world setting evaluations.
For the voice commands that VoiceAttack never encountered during
its training process, VoiceAttack achieves a MCC accuracy of 0.27
when fingerprinting at sentence-level. Interestingly, VoiceAttack
yields the MCCs as of 0.84 and 0.93 at category-level and topic-level.
This is primarily attributed to the fact that while VoiceAttack may
not have encountered the entire voice command sentence before,
there may be some overlapping category and topic information of
commands included its training dataset. We also find that using only
incoming traffic for fingerprinting, VoiceAttack still could yield the
MCCs as of 0.20 and 0.86 at sentence-level and category-level, re-
spectively. This further suggests that, despite variations in accents
or language styles among users in real-world settings, VoiceAttack’s
fingerprinting performance is not significantly affected.

Results: VoiceAttack could yield the fingerprinting accuracy in MCC
as of 0.27 and 0.84 at sentence-level and category-level in open-world
setting, respectively. VoiceAttack’s results demonstrate potential ro-
bustness to the variability of outgoing traffic flows of voice commands.

7.3.5  Voice Command Similarity and Sensitivity Analysis. Next, we
will look into voice command similarity and sensitivity. For instance,
for the voice command—“What’s the weather going to be like this
weekend?”, VoiceAttack yields an accuracy of 71.05% and Top-5
accuracy of 94.74% when performing sentence-level fingerprinting.
We examine the Top-5 most frequently selected predictions. The
results revealed that the most frequent voice commands are pre-
dominantly related to meteorological inquiries. Specifically,"Will
there be a thunderstorm this week?” emerged as the leading predic-
tion, constituting 18.95% of the Top-5 selections. This was closely
followed by “What’s the weather like in San Francisco?” and “Is it
going to be sunny tomorrow?”, each accounting for 17.36% of the
selections. Additionally,‘What’s the wind speed right now?” was
represented with a frequency of 6.31%. These findings underscore
a significant inclination towards weather-related queries within
the voice command system. Meanwhile, we compute semantic sim-
ilarities between voice commands using three different semantic
similarity metrics: Wu-Palmer (WUP), Resnik (RES), and Lin (LIN).
Table 3 illustrates the semantic similarity results for the different
predictions. The WUP scores here range from 0.324 to 0.392, indi-
cating a moderate level of similarity. RES scores range from 1.25
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Figure 12: The correlation between semantic similarity metrics and prediction probability.

to 2.49, indicating potential overlapping between the predictions
and the groundtruth. The LIN score shows a range similar to WUP,
from 0.066 to 0.278, reflecting the detailed semantic overlap. These
together suggest that while the commands share common terms
and structures related to weather, their specific focus differs (e.g.,
general weather vs. specific phenomena like thunderstorms).

We also examine the correlation between semantic similarity
and prediction probability. Figure 12 illustrates the relationship. We
find that the three different metrics show a similar trend, indicating
the correlation between semantic similarity metrics and prediction
probability. When the metrics are closer to 1, VoiceAttack will yield
a very high detection probability. Conversely, when the metrics are
closer to 0, VoiceAttack has a lower detection probability.
Results: The voice command fingerprinting accuracy of VoiceAttack
shows a strong correlation with semantic similarities. The stronger
the correlation, the higher the fingerprinting accuracy.

7.3.6  Quantifying the performance of countermeasure approach—
VoiceDefense. Eventually, we look into the potential preventing
techniques to mitigate VoiceAttack’s fingerprinting attack. While
there isn’t a direct approach we can apply to address our prob-
lem, there exists a substantial body of work focused on prevention
through traffic reshaping approaches [5, 8, 9, 11, 14, 20, 21, 30, 32,
33, 35, 37, 46, 47, 50, 51] to thwart privacy attacks on IoT traffic
rate traces. Motivated by these approaches, we propose a concept
of proof defense—VoiceDefense. The fundamental concept behind
VoiceDefense is to inject random “noise” traffic when active outgo-
ing traffic is detected. This action serves to confuse VoiceAttack’s
disaggregation module, effectively masking voice speaker outgo-
ing traffic. Furthermore, we will also initiate invalid requests via
the voice speaker, resulting in additional spikes in incoming traf-
fic. Through this two-directional traffic “reshaping,” we find that
VoiceDefense can decrease VoiceAttack’s fingerprinting accuracy
in MCC from 0.68 to 0.31 and from 0.57 to 0.24 on Amazon Alexa
and Google Home, respectively. Additionally with the introduction
of noise from 25 additional devices, VoiceDefense can decrease
voiceAttack’s fingerprinting accuracy in MCC from 0.61 to 0.30 and
0.47 to 0.21 on Amazon Alexa and Google Home, respectively. Note
that we defer the comprehensive implementation and evaluation
of such an approach for voice assistants to our upcoming work.
Results: We design a new concept of proof defense—VoiceDefense, it
could decrease VoiceAttack’s fingerprinting accuracy by ~50%.
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Voice Command Pair WUP | RES | LIN
Weekend vs. Thunderstorm Week 0.344 | 1.444 | 0.066
Weekend vs. San Francisco 0.392 | 2.490 | 0.278
Weekend vs. Sunny Tomorrow 0.385 | 1.707 | 0.202
Weekend vs. Wind Speed Now 0.324 | 1.255 | 0.159
Thunderstorm vs. San Francisco 0.330 | 1.789 | 0.015
Thunderstorm vs. Sunny Tomorrow 0.275 | 0.822 | 0.091
Thunderstorm vs. Wind Speed Now 0.293 | 1.292 | 0.025
San Francisco vs. Sunny Tomorrow 0.228 | 0.547 | 0.057
San Francisco vs. Wind Speed Now 0.382 | 1.946 | 0.245
Sunny Tomorrow vs. Wind Speed Now | 0.267 | 0.564 | 0.073

Table 3: The semantic similarities between voice commands.

8 CONCLUSION AND FUTURE WORK

We design a new voice command inference attack framework—
VoiceAttack that could still accurately fingerprint voice commands
via VPN-encrypted voice speaker network traffic. Our results have
shown that VoiceAttack could accurately fingerprint voice com-
mands at sentence-level in both closed-world setting and open-
world setting by eavesdropping VPN-encrypted network traffic,
respectively. VoiceAttack presents a significant risk to user privacy
and security, as it demonstrates that external on-path attackers
could still potentially intercept and decipher users’ voice commands
despite the VPN encryption. We find that 134 commands are highly
vulnerable to VoiceAttack. We also present a proof-of-concept de-
fense approach—VoiceDefense, which could effectively mitigate
inference attack accuracy on Amazon Echo and Google Home.
We plan to collect additional voice speaker traffic traces using
Amazon Alexa and Google Home, and also validate our findings on
another popular voice assistant—Siri. We will also develop more
comprehensive and cost-effective approaches to defend against
VoiceAttack while maintaining reasonable traffic overhead.
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