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Abstract: Substance use disorders affect 17.3% of Americans. Digital health solutions that use

machine learning to detect substance use from wearable biosignal data can eventually pave the

way for real-time digital interventions. However, difficulties in addressing severe between-subject

data heterogeneity have hampered the adaptation of machine learning approaches for substance use

detection, necessitating more robust technological solutions. We tested the utility of personalized

machine learning using participant-specific convolutional neural networks (CNNs) enhanced with

self-supervised learning (SSL) to detect drug use. In a pilot feasibility study, we collected data from

9 participants using Fitbit Charge 5 devices, supplemented by ecological momentary assessments to

collect real-time labels of substance use. We implemented a baseline 1D-CNN model with traditional

supervised learning and an experimental SSL-enhanced model to improve individualized feature

extraction under limited label conditions. Results: Among the 9 participants, we achieved an average

area under the receiver operating characteristic curve score across participants of 0.695 for the

supervised CNNs and 0.729 for the SSL models. Strategic selection of an optimal threshold enabled

us to optimize either sensitivity or specificity while maintaining reasonable performance for the other

metric. Conclusion: These findings suggest that Fitbit data have the potential to enhance substance

use monitoring systems. However, the small sample size in this study limits its generalizability to

diverse populations, so we call for future research that explores SSL-powered personalization at a

larger scale.

Keywords: wearables; Fitbit; substance use; self-supervised learning; personalized models; remote

monitoring

1. Introduction

Substance use is a major public health issue in the United States. According to the
National Survey on Drug Use and Health [1], in 2022, approximately 48.7 million Americans
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aged 12 or older, or 17.3 percent, had a reported substance use disorder. Given the extensive
burden of substance abuse on personal and public health, there is considerable interest in
innovative solutions to mitigate its effects. Wearable technologies such as smartwatches
have emerged as a promising monitoring tool, with about one-third of U.S. adults using
these devices for health monitoring [2]. These relatively low-cost, non-invasive devices hold
potential for sensing real-time use and cravings, potentially leading to digital interventions
that can reduce heavy use, avoid relapse, and monitor for potential overdoses. By providing
insights through continuous physiological monitoring, wearables have the potential to
enhance treatment strategies and improve outcomes for individuals with substance use
disorders [3].

There has been a surge in research interest around leveraging artificial intelligence (AI)
to develop models using biosensor data for the detection of substance use [4]. Wrist-worn
or mobile devices equipped with biosensors usually collect data that continuously monitor
physiological and behavioral metrics. These data can include HR, movement patterns, skin
temperature, and electrodermal activity, providing insights into an individual’s physical
and behavioral state [5]. Remote ecological momentary assessments (EMAs), or in-the-wild
self-reports via means such as a smartphone, can gather prediction labels while participants
carry out their everyday activities, offering contextually relevant data [6–8]. EMAs have
been used to study substance use, as it is known to be triggered by episodic behavior and
contextual factors [9–12]. By capturing dynamic, real-time interactions between behavior
and physiological factors, EMAs can offer valuable insights into substance use. While many
computational techniques can efficiently process and categorize data nearly in real-time,
they often fall short in terms of adjusting to the heterogeneity of biosignal data both within
and between subjects, indicating a need for more adaptable AI solutions [4]. To address
this issue, we propose personalized AI models that enable the models to adapt dynamically
to each patient’s unique characteristics.

In this case study, we aimed to develop personalized machine learning models for
drug use prediction, as measured by EMAs, from Fitbit biosignal data. We gathered
data from 9 adults with varied drug use patterns and health conditions, all recruited
from two local programs in Hawaii, including a harm reduction outreach program and
a substance use treatment facility, as well as students and staff from the University of
Hawaii community. The participants continuously tracked their physiological metrics
using commercially available, low-cost Fitbit Charge 5 devices. Participants also logged
specific instances of substance use through EMAs administered via a mobile app. We
trained two convolutional neural networks (CNNs) for each participant: (1) a control model
using traditional supervised learning and (2) an experimental model optimized to enhance
personalized feature extraction via self-supervised learning (SSL) applied at the level of
individual biosignal data.

We contribute the following: (1) We demonstrate that commercially available and
inexpensive non-research devices with few sensors, like the Fitbit Charge 5, can still
capture significant predictive signals related to substance use. (2) We develop and validate
personalized models that are tailored to the unique physiological and behavioral patterns
of each participant. (3) We explore whether SSL can boost the predictive capabilities of our
models. (4) We conduct a comprehensive analysis of the trade-offs between sensitivity and
specificity at various thresholds.

2. Related Work

2.1. Wearable Biosensors for Substance Detection

Our work builds upon a growing field of research on the use of wearable biosignals
for substance use prediction. Researchers have applied wearable biosensors to substance
use detection in a variety of settings, from emergency departments to natural environ-
ments, providing objective data [13,14]. Carreiro et al. demonstrated how these devices
can differentiate between stress and craving signals [15]. Various machine learning tech-
niques, such as support vector machines (SVMs) and neural networks, have enhanced
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the automated detection of substance use behaviors through smartphone sensors and
other biosensors [16,17]. For example, Natarajan et al. applied logistic regression to detect
cocaine use with wearable electrocardiogram sensors [18], while Mahmud et al. employed
gradient boosted trees [19] and Gullapalli et al. applied temporal convolutional attention
networks [20] for broad drug use detection. Studies have also employed random forests for
detecting kratom intoxication [21] and SVM-based methods for monitoring non-adherence
in opioid surveillance [22]. Wang et al. developed a method that utilizes data streams
from wearable biosensors monitoring sympathetic nervous system activity, showcasing the
potential of biosensors in real-time drug detection [23].

2.2. SSL and Personalization

Despite recent advancements in wearable biosensors and machine learning, substantial
challenges remain for achieving clinical-grade performance. Current algorithms and models
frequently struggle to adapt to new conditions and manage dynamic changes in sensor
data. This has catalyzed the development of more adaptable AI solutions, such as SSL and
personalized modeling, which can significantly enhance the adaptability and effectiveness
of monitoring technologies.

Personalized deep learning models have effectively predicted changes in anxiety
levels, demonstrating the practicality and impact of using personally tailored models for
mental health monitoring [7]. Combining personalization with SSL predicts stress events
on public datasets more accurately than baseline approaches, showcasing the benefits of
SSL in enhancing personalized learning models [5,24,25].

Research into personalized models using SSL have further explored the potential of
deep learning techniques to predict complex physiological events such as stress-induced
blood pressure spikes [26]. Additionally, researchers have used personalized models to
detect collaborative non-adherence in opioid surveillance [22]. These developments offer
promising future avenues for personalized healthcare interventions.

3. Materials and Methods

This pilot feasibility study aimed to utilize wearable Fitbit sensors combined with ma-
chine learning to predict real-time drug use (Figure 1). We collected data from 9 participants
recruited through two local programs in Hawaii: a harm reduction outreach initiative and
a substance use treatment facility. We also recruited broadly at the University of Hawaii,
including both students and staff. We equipped all participants with Fitbit devices that
continuously monitored heart rate (HR) and step count during waking hours as well as
breathing rate (BR), steps, sleep quality, and blood oxygen saturation (SpO2) during sleep.
Alongside biosensor data, we asked the participants to complete EMA surveys 4 times a
day to provide labels of substance use and cravings. We trained personalized AI models to
predict real-time drug use from a 1 h time window of Fitbit data.

9 participants provided data specific to drug use patterns and recorded at least ten
instances of drug use during the monitoring period, thus making them eligible for inclu-
sion in our analyses. These individuals were actively using at least one of the following
substances during the study period: methamphetamine (meth), alcohol, cannabis, opioids,
cocaine, sedatives/benzodiazepines, nicotine, mushrooms, or Gamma-hydroxybutyrate
(GHB) at least twice per week. The 9 participants consisted of 3 men, 5 women, and
1 non-binary individual, with ages ranging from 23 to 55 years and averaging 36.1 years.
The race and ethnicity breakdown of the participants was as follows: 2 white, 2 native
Hawaiian, 1 Japanese, 1 Hispanic (Mexican), 1 Samoan or Tongan, and 1 Filipino. All were
residents of Oahu, Hawaii and had consistent access to a smartphone with data connectivity
throughout the 4-week study period.
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Figure 1. Study overview. We recruited participants and equipped them with Fitbits collecting

various biosensor data, including HR, steps taken, BR, sleep patterns, and SpO2. Concurrently,

participants completed EMAs via a custom mobile app, recording each substance use event over the

monitoring period. We then analyzed these data using personalized deep learning models to detect

substance use based on biosensor data from the Fitbit. To protect patient privacy and to avoid asking

participants to self-report illegal activity, we gave participants the option to record fruit code names

rather than substance names, and the participants eligible for our analysis chose this option.

During the monitoring period, participants wore a Fitbit Charge 5 watch continuously,
removing it only for necessary activities such as exposure to water (e.g., showering, swim-
ming, or surfing). We instructed them to wear the device 24 h a day to capture both daytime
and nighttime physiological data, which included HR variability (HRV), BR, SpO2, and
processed sleep quality data, collected primarily during nighttime rest. We captured and
managed data via a bespoke app called BanAware, downloaded on participants’ personal
smartphones. Developed for both iOS and Android platforms, the app facilitated the
real-time monitoring and the collection of EMA data. Participants periodically recorded
their substance use and related behaviors through the app while maintaining their normal
routines to ensure the accurate capture of natural behavior patterns. Additionally, we
required them to complete EMAs four times daily. We securely stored the data on Amazon
Web Services (AWS), adhering to the Health Insurance Portability and Accountability Act
(HIPAA) guidelines for encryption and security. We processed the data on an Elastic Cloud
Compute (EC2) instance and used DynamoDB for storage, featuring mandatory server-side
encryption to protect participant confidentiality. For detailed protocol specifications, see
Sun et al. [27].

3.1. Biometric Features

We hypothesized that the biosignal data we collected would be useful for detecting
substance use based on prior work [15,18,19,21,28]. During waking hours, the sensors
measured HR and step count. We monitored BR, HRV, and SpO2 during sleep. Detailed
BR analyses covered various sleep stages—deep sleep, REM (rapid eye movement), and
light sleep—as well as cumulative metrics for entire sleep periods. Sleep metrics such
as sleep efficiency, total sleep duration, minutes awake, and sleep onset time provided
comprehensive insights into participants’ sleep patterns. We recorded SpO2 at one-minute
intervals to monitor respiratory and cardiovascular health during the sleep period, and
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HRV features included the root mean square of successive differences (RMSSDs), low
frequency (LF), high frequency (HF), and overall metric coverage.

Increases in HR are associated with drug craving [29]. Therefore, we recorded HR
data throughout the day at one-minute intervals and then aggregated them into one-hour
time steps to reduce noise. During these intervals, we calculated statistical metrics such
as the mean, standard deviation, maximum, and dominant frequency. The dominant
frequency within each time step was determined using the fast Fourier transform (FFT),
mathematically represented as:

FFT(x) =
N−1

∑
n=0

x(n) · e−
i2πkn

N .

This transformation converted the time-series HR data into the frequency domain,
facilitating the examination of periodic patterns and rhythms across the hourly intervals.
FFT allowed for the detection of recurring patterns that may not be immediately visible
in the time domain. Frequency components provided deeper insights into anomalies or
specific rhythms that may correspond to physiological changes associated with drug use.

Physical activity positively reduces drug cravings in individuals with substance use
disorders by enhancing internal inhibition and resistance to drugs, with moderate- to
high-intensity exercise proving most effective in supporting sports rehabilitation and
strengthening the ability to inhibit cravings and manage drug-seeking behaviors [30,31].
For step data, we recorded measurements at one-minute intervals. In processing these
data, we calculated the average and maximum step counts within each hourly interval.
Additionally, we computed the total number of active minutes per hour, defined as minutes
where the step count exceeded zero. This approach allowed for a detailed analysis of
physical activity patterns throughout the day.

For the SpO2 data specifically collected during sleep periods, we used a binary marker
to identify instances when SpO2 levels fell below 90%, indicating potential hypoxemia.
The daily aggregations of these measurements included metrics such as the average SpO2,
the dominant frequency of SpO2 values during the sleep period, and the total number
of minutes per day with SpO2 levels below 90%. These metrics are commonly used for
analyzing SpO2 [32].

Substance use, particularly involving alcohol, cannabis, cocaine, and opioids, can
significantly disrupt sleep architecture [33,34]. Such substances can affect total sleep time,
REM sleep, and sleep efficiency, leading to issues like increased sleep latency, reduced slow-
wave sleep (SWS), and sleep fragmentation during withdrawal periods [35]. Stimulants like
nicotine tend to increase HR and reduce HRV by activating the sympathetic nervous system,
resulting in lower HRV [36,37]. Low HF-HRV is associated with more severe symptoms in
individuals with substance use disorder than in those with PTSD [38]. We mapped these
features to the previous day’s data and averaged them to correlate sleep-related data with
the previous day’s drug use for predictive analysis. We measured BR and sleep-related
metrics during each sleep cycle, while we recorded HRV every minute. We calculated the
ratio of low to high frequency (L/H Ratio).

For each participant, we represented each of the features as a 1D time series for
subsequent feature selection.

3.2. EMA Labels

The labeled data consisted of both “use” and “non-use” labels, generated based on
drug use instances reported in EMA surveys. The “use” labels indicated the start time
and type of drug used. Throughout the monitoring period, participants periodically
completed EMA surveys while maintaining their daily routines to ensure the accurate
recording of all drug use instances. In each EMA, the participants reported the approximate
times (including the date, hour, and minute) of their drug use within the past 24 h via
the smartphone app interface. For each reported drug use instance, we extended the
corresponding label using a sliding window approach, aligning it with the average effect
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duration of the specific substance used. We aggregated each instance into a 1 h interval for
noise reduction. We automatically labeled time periods without drug use as “non-use”.

3.3. Data Processing

We divided the time series data into overlapping windows of 12 time steps, with each
step representing 1 h. We chose a temporal input length of 12 h for modeling short-term
dependencies and capturing intraday patterns. As indicated by the data quality table, the
drug use labels were limited relative to the large number of input features. To address this
imbalance, we oversampled the “use” labels by increasing their frequency within local
sections of the dataset while maintaining the temporal integrity of the time-series data.

For feature selection, we used a random forest model to assess the feature importance
based on reductions in Gini impurity. Given the variability among participants, we retained
features exceeding the median importance score individually for each person, allowing
the personalized refinement of the model to emphasize predictors critical for predictive
accuracy in specific contexts. Figure 2 shows the distribution of feature utilization. Addi-
tionally, we imputed missing values in the dataset using a random forest model. Finally,
we normalized the input features before training.

Figure 2. Distribution of each feature’s utilization. Features are ranked by their selection count using

Gini impurity.

3.4. Model Architecture and Training

To identify patterns indicative of drug use, we developed two models using 1D
convolutional neural networks (1D-CNN) for each participant: a control model utilizing
traditional supervised learning and an experimental model employing SSL to enhance
feature extraction and pattern recognition. The SSL-based model utilized learned biometric
representations to effectively detect drug use patterns without explicit labels. Personalized
models mitigate inter-person overfitting more effectively than a single model designed for
all participants by training individually on data specific to each person. We implemented
both supervised and SSL-based models using TensorFlow version 2.17.0. [39].

3.4.1. Convolutional Neural Network Architectures

We implemented a 1D CNN for binary classification of time-series data. Initially,
we fed selected features from each participant as input into the 1D CNN. This network
consisted of a convolutional layer equipped with 32 size-3 filters using ReLU activation for
nonlinear processing. Following this layer, we implemented a max pooling layer with a
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pool size of 2, which effectively reduced the dimensionality of the feature maps from 10 to
5 per channel. We then flattened the pooled outputs into a 160-unit vector and applied a
dropout layer with a 50% rate [40] to prevent overfitting. The network ended with a dense
layer with sigmoid activation, outputting the drug use probability. Optimized with the
Brier score, this efficient architecture ensured effective learning from time-series data.

3.4.2. Supervised Learning Framework

The supervised learning framework used a pre-trained model for multi-output re-
gression on biometric data and transfer learning for drug use classification, as depicted in
Figure 3. In the pre-training phase, the model utilized identical hyperparameters to the
supervised CNN to maintain consistency. It processed selected features from each partic-
ipant using a Conv1D layer for feature extraction, a pooling layer to reduce dimensions,
and a flatten layer that transforms feature maps into vectors. We then passed these vectors
through dense layers and used mean squared error for biometric predictions. Subsequently,
we used the weights from the convolutional, pooling, and flatten layers for fine-tuning.
We augmented this backbone with new dense layers specifically designed for the binary
classification of drug use and fine-tuned the model to this new task. Additions included
a dense layer with 32 units and ReLU activation, a dropout layer with a 50% rate to mit-
igate overfitting, and a final dense layer with sigmoid activation for binary output. The
fine-tuning phase similarly used the Brier score for optimization.

Figure 3. An SSL-enhanced transfer learning framework for drug use classification, utilizing selected

biometric features from each participant. A CNN pre-trained with SSL, outlined with a dotted line

around the 1D convulutional, pooling, and flatten layers, is fine-tuned with new dense layers to

predict drug use from biometric featrues. The dotted line indicates the layers transferred for the

task-specific model.

3.4.3. Optimization and Training

The base CNN employed the Adam optimizer [41] with a 0.001 initial learning rate
and an early stopping criterion of up to 10 epochs, with ReduceLROnPlateau [39] used as a
callback algorithm. We trained the model for 200 epochs, with a batch size of 32 and a 20%
validation split.

For the SSL framework, the pre-training phase involved training the CNN model
for 100 epochs on biometric features. After the weights were transferred, we froze the
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transferred layers for the first 100 epochs of training. We then unfroze these layers for an
additional 100 epochs of training, with the transferred model using a batch size of 32 and a
20% validation split for fine-tuning.

3.5. Experiments

We aimed to continuously predict drug use among participants (binary classification)
within 1 h windows, based on processed features. To evaluate the model, we used a
70–30 split for training and testing the data, corresponding to the monitoring period. This
split ensured that the test data included a sufficient representation of drug use instances
for evaluation. We independently trained and tested the models using data from each
participant to achieve personalization. This approach enabled us to tailor the predictive
models to individual behavioral patterns, potentially enhancing the accuracy and relevance
of the predictions for each subject.

3.6. Evaluation

To assess the performance of our models, we focused on four metrics: sensitivity,
specificity, precision, and the area under the receiver operating characteristic curve (AUC),
defined as follows:

Sensitivity (TPR) =
TP

TP + FN
(1)

Specificity (TNR) =
TN

FP + TN
(2)

Precision (PPV) =
TP

TP + FP
(3)

AUC = Area under the ROC curve (4)

Sensitivity, also known as the true positive rate (TPR), is crucial for identifying all
relevant cases of drug use, ensuring that no positive instance is missed. Specificity, or true
negative rate (TNR), is vital for reducing false alarms by correctly identifying non-use
instances, which helps in avoiding unnecessary interventions. Precision, the positive pre-
dictive value (PPV), measures the reliability of the model in predicting positive outcomes,
indicating the probability that a predicted positive is an actual case of drug use. The
AUC measures the overall ability of the model to discriminate between positive (drug use)
and negative (non-use) classes across all possible classification thresholds. These metrics
collectively assess the model’s effectiveness in correctly identifying and classifying drug
use instances. We used these four metrics to evaluate the personalized model developed
for each participant using only their data.

To explore the effect of classification thresholds, we extracted predictions from the
emitted probabilities of our models using thresholds ranging from 0.1 to 0.9, incremented by
0.1. To evaluate the robustness of the models, we used block bootstrapping on the test data
specific to each participant. We applied the block bootstrap for 30 trials and recorded the
means and standard deviations of the evaluation metrics. This method selects contiguous
blocks of data, sized according to the square root of the test set length, to preserve the
sequence integrity of the dataset. This is particularly important for time-series models,
as it helps to ensure that the performance metrics accurately reflect realistic conditions.
In contrast to cross-validation, block bootstrapping also addresses the issue where the
infrequency of drug use events may result in many folds having test sets lacking any drug
use labels.

4. Results

Table 1 presents a summary of the data quality for all participants, quantifying the
percentage of device-wearing time (HR data coverage) per participant, the total duration
of the monitoring period based on the recorded HR data in days, and the number of drug
use instances.
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Table 1. Data quality summary metrics for each of the 9 study participants.

ID Drug Use Instances Drugs Used Wearing Time
Monitoring Period

(Days)

27 197 2 73.70% 27
20 31 2 33.14% 6
19 63 3 68.94% 28
18 38 1 97.99% 29
15 59 2 95.72% 29
14 63 1 89.61% 29
13 104 3 60.40% 27
12 74 4 85.09% 27
10 52 3 90.87% 27

Table 2 presents the performance metrics for both purely supervised and self-supervised
learning models developed for each participant, highlighting variability in specificity and
sensitivity at the 0.5 decision threshold as well as AUC, along with the specific substances
used by each participant. Among the 9 participants, we achieved an average AUC of 0.695
for the supervised CNN and 0.729 for the SSL model. We observe that for most participants,
SSL results in a higher AUC than the supervised CNN, except for participants 12 and
27, where the supervised model performed slightly better. At a threshold of 0.5, both
supervised learning and SSL tend to have higher specificity compared to the corresponding
sensitivity, indicating a stronger ability to identify true negatives. Notably, there is an
increase in sensitivity with SSL for most participants. In addition, we find that there is no
significant correlation between our data quality summary metrics and model performance,
although we note that our summary metrics do not capture the intricacies of the data
collection process.

Tables 3–5 display the test performances for participants 14, 18, and 20 at various
decision thresholds. We highlighted these participants due to their relatively consistent
high AUC at a 0.5 decision threshold, indicating high-quality data from these participants.
Supplementary Material is available for the test results of all participants across all thresh-
olds. We observe that participants 14, 18, and 20 not only achieved higher AUC values
but also maintained more stable performance metrics in terms of specificity and sensitivity
when varying the decision threshold compared to other participants, providing another
indicator of high-quality data.

Figure 4 illustrates the trade-offs between the mean sensitivity and specificity across
different thresholds for participants 14 and 18, as detailed in Table 6. We specifically chose
these participants for this analysis due to their higher AUC values and the stability of their
performance metrics across various thresholds. When selecting thresholds, our strategy
prioritized achieving high specificity while ensuring reasonable sensitivity, typically around
0.5, and similarly, high sensitivity while maintaining acceptable specificity levels, based on
the training performance. We observe from the table that, for Participant 14, the threshold
of 0.31 results in a high sensitivity of 0.969 with a modest specificity of 0.543, which suits
scenarios where false negatives are more critical to avoid. Conversely, for Participant 18,
a threshold of 0.66 yields a specificity of 0.915 and a sensitivity of 0.516, demonstrating a
scenario where reducing false positives is prioritized.

Table 2. Performance metrics for supervised and self-supervised learning. Bold values in the AUC

column indicate higher performance.

Participants ID
Supervised Learning Self-Supervised Learning

Substance Used
Specificity Sensitivity AUC Specificity Sensitivity AUC

10 0.788 0.474 0.687 0.657 0.700 0.758 Alcohol, Cannabis, Nicotine
12 0.661 0.563 0.659 0.668 0.536 0.642 Alcohol, Meth, Nicotine, GHB



AI 2024, 5 2734

Table 2. Cont.

Participants ID
Supervised Learning Self-Supervised Learning

Substance Used
Specificity Sensitivity AUC Specificity Sensitivity AUC

13 0.772 0.527 0.703 0.742 0.530 0.714 Alcohol, Cannabis, Nicotine
14 0.768 0.809 0.744 0.693 0.883 0.753 Cannabis
15 0.820 0.428 0.662 0.777 0.543 0.667 Cannabis, Mushroom
18 0.703 0.824 0.808 0.727 0.632 0.834 Cannabis
19 0.769 0.199 0.478 0.760 0.206 0.601 Meth, Alcohol
20 0.478 0.649 0.879 0.456 0.935 0.980 Meth, Nicotine
27 0.658 0.491 0.638 0.758 0.349 0.613 Meth, Nicotine

Table 3. Comparison of specificity and sensitivity by decision threshold for CNN and SSL models for

ID 14.

Threshold
Supervised Learning (CNN) Self-Supervised Learning (SSL)

Specificity (Mean ± SD) Sensitivity (Mean ± SD) Specificity (Mean ± SD) Sensitivity (Mean ± SD)

0.1 0.203 ± 0.135 0.820 ± 0.322 0.343 ± 0.191 0.875 ± 0.258
0.2 0.346 ± 0.185 0.945 ± 0.210 0.360 ± 0.214 0.917 ± 0.234
0.3 0.485 ± 0.163 0.883 ± 0.271 0.498 ± 0.151 0.904 ± 0.190
0.4 0.588 ± 0.174 0.68 ± 0.434 0.593 ± 0.199 0.799 ± 0.290
0.5 0.768 ± 0.091 0.809 ± 0.304 0.693 ± 0.146 0.883 ± 0.205
0.6 0.833 ± 0.118 0.619 ± 0.415 0.851 ± 0.136 0.713 ± 0.396
0.7 0.923 ± 0.068 0.458 ± 0.401 0.921 ± 0.094 0.569 ± 0.399
0.8 0.978 ± 0.043 0.311 ± 0.412 0.983 ± 0.045 0.381 ± 0.396
0.9 1.000 ± 0.000 0.167 ± 0.267 1.000 ± 0.000 0.115 ± 0.252

Table 4. Comparison of specificity and sensitivity by decision threshold for CNN and SSL models for

ID 18.

Threshold
Supervised Learning Self-Supervised Learning

Specificity (Mean ± SD) Sensitivity (Mean ± SD) Specificity (Mean ± SD) Sensitivity (Mean ± SD)

0.1 0.245 ± 0.249 1.000 ± 0.000 0.185 ± 0.195 1.000 ± 0.000
0.2 0.365 ± 0.188 1.000 ± 0.000 0.440 ± 0.214 1.000 ± 0.000
0.3 0.482 ± 0.147 0.882 ± 0.322 0.628 ± 0.187 1.000 ± 0.000
0.4 0.637 ± 0.139 0.826 ± 0.379 0.715 ± 0.133 0.880 ± 0.214
0.5 0.703 ± 0.131 0.824 ± 0.340 0.727 ± 0.140 0.632 ± 0.392
0.6 0.863 ± 0.141 0.583 ± 0.373 0.855 ± 0.149 0.447 ± 0.484
0.7 0.943 ± 0.060 0.083 ± 0.186 0.932 ± 0.085 0.350 ± 0.391
0.8 0.989 ± 0.027 0.071 ± 0.175 1.000 ± 0.000 0.000 ± 0.000
0.9 1.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000

Table 5. Comparison of specificity and sensitivity by decision threshold for CNN and SSL models for

ID 20.

Threshold
Supervised Learning (CNN) Self-Supervised Learning (SSL)

Specificity (Mean ± SD) Sensitivity (Mean ± SD) Specificity (Mean ± SD) Sensitivity (Mean ± SD)

0.1 0.000 ± 0.000 1.000 ± 0.000 0.085 ± 0.143 1.000 ± 0.000
0.2 0.042 ± 0.161 1.000 ± 0.000 0.330 ± 0.414 1.000 ± 0.000
0.3 0.295 ± 0.397 1.000 ± 0.000 0.457 ± 0.403 0.931 ± 0.117
0.4 0.583 ± 0.470 0.920 ± 0.098 0.713 ± 0.408 0.933 ± 0.128
0.5 0.478 ± 0.500 0.649 ± 0.216 0.456 ± 0.458 0.935 ± 0.111
0.6 1.000 ± 0.000 0.675 ± 0.263 1.000 ± 0.000 0.947 ± 0.112
0.7 1.000 ± 0.000 0.405 ± 0.355 1.000 ± 0.000 0.903 ± 0.110
0.8 1.000 ± 0.000 0.260 ± 0.238 1.000 ± 0.000 0.756 ± 0.172
0.9 1.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 0.597 ± 0.085
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Figure 4. Mean bootstrapped sensitivity and specificity at different decision threshold cutoffs across

9 participants, each denoted by distinct colors.

Table 6. Specificity and sensitivity tradeoff for participants 14 and 18. Bold values indicate prioritized

metric for each threshold.

Participants ID Threshold
Train Performance Test Performance

Model Type
Specificity Sensitivity Specificity Mean Sensitivity Mean

18 0.63 0.863 0.700 0.873 ± 0.115 0.55 ± 0.384 CNN
18 0.66 0.915 0.516 0.915 ± 0.071 0.5 ± 0.5 SSL
18 0.36 0.579 0.974 0.578 ± 0.176 1 CNN
18 0.36 0.614 0.946 0.558 ± 0.214 1 SSL
14 0.66 0.904 0.539 0.897 ± 0.086 0.644 ± 0.387 CNN
14 0.65 0.926 0.625 0.901 ± 0.092 0.636 ± 0.322 SSL
14 0.31 0.499 0.980 0.506 ± 0.156 0.821 ± 0.361 CNN
14 0.31 0.543 0.969 0.534 ± 0.171 0.896 ± 0.248 SSL

5. Discussion

5.1. Implications

With modest AUC scores, we were able to choose thresholds that minimize either
false positives or false negatives. For example, for most participants, we were able to
choose a threshold with low sensitivity but high specificity, minimizing false positives. This
approach is beneficial in contexts where it is essential to minimize false alarms, such as
in contexts where the triggered intervention would be costly to the healthcare provider.
By contrast, when setting a threshold that favors high sensitivity with low specificity, the
model effectively detects most potential drug use instances, albeit at the cost of more false
positives. This configuration can ensure that most if not all drug use cases are detected,
which is useful for low-cost interventions that can be deployed even when a participant
is not necessarily using drugs. The choice of an ideal threshold depends on the desired
translational use case.

Overall, the SSL models tended to reach slightly higher average AUC scores than
their supervised equivalents, though the improvements in sensitivity and specificity were
not consistent across participants and across model thresholds. Therefore, we consider
the evaluation of personalized SSL to have essentially yielded a negative result. This
might be due to low-quality data resulting from participant non-compliance [42], as often
occurred in our study. For example, lifestyle changes and privacy concerns led ID 12 to
participate inconsistently and omit frequent EMAs, which compromised the reliability of
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data collection. Conversely, ID 19 and 20, who are both graduate students, demonstrated
the highest degree of performance improvements with the SSL model over the baseline
model. These qualitative observations reinforce the importance of data collection quality
and suggest that more thorough procedures are needed in future work to ensure participant
compliance. In addition, we need more data to thoroughly evaluate the SSL model using
quantitative measures of data quality and model performance.

Additionally, the evaluation results exhibit high standard deviations, pointing to
significant variability in the models’ performance across different time segments. This
inconsistency in the models’ performance across the test data highlights the challenge in
working with real-world biosensor data from a study population using substances.

5.2. Future Steps and Limitations

Our study has some notable limitations. One significant limitation is the relatively
small sample size, which may limit the generalizability of our findings to broader popu-
lations. This constraint could result in overfitting, where the model performs well on the
specific dataset used for training and testing but may struggle to maintain its accuracy
across diverse or larger populations. The small data sample also restricts our ability to use
more robust model architectures, such as self-attention-based models, since complex mod-
els with more parameters are likely to overfit a small dataset. To address this limitation in
future work, we will collect more data from more participants and conduct a more compre-
hensive examination using quantitative measures of data quality and model performance.
Furthermore, the models’ performance exhibited high within-person variation, indicating
the need for more data for each participant and noise-reducing data collection procedures.
Another major limitation is the frequent occurrence of low-quality data collection due to
participant non-compliance. To compound this issue, Fitbit can introduce measurement
errors, which may limit the accuracy of the collected biometric data. Additionally, certain
substances are associated with an increase in HR, while others may lower it, leading to
physiological states that differ significantly from the baseline. Furthermore, the interaction
between different substances could compound or alter these effects, adding complexity
to HR monitoring. This variation and interaction in HR response could significantly in-
fluence the model’s ability to detect drug use consistently across different substances,
potentially leading to discrepancies in detection accuracy. Such variability highlights the
importance of developing models that can adapt to or account for the diverse and interact-
ing impacts of various substances on HR to ensure robust and reliable performance across
different contexts.

Supplementary Materials: The following supporting information can be downloaded at: https://

www.mdpi.com/article/10.3390/ai5040131/s1. This includes the test results for all participants across

various thresholds.

Author Contributions: Conceptualization, P.W. and K.T.P.; methodology, S.L., C.F., A.K., Y.S., C.S.,

A.J., R.M.B., K.T.P. and P.W.; software, S.L., C.F., A.K. and C.S.; validation, S.L., C.F., A.K. and

A.J.; investigation, P.W., K.T.P. and R.M.B.; resources, P.W.; data curation, Y.S., C.S., A.K. and A.J.;

writing—original draft preparation, S.L., C.F. and A.K.; writing—review and editing, S.L., C.F., A.K.,

Y.S., C.S., A.J., R.M.B., K.T.P. and P.W.; visualization, S.L. and C.F.; supervision, P.W., R.M.B. and

K.T.P.; project administration, P.W.; funding acquisition, P.W. and K.T.P. All authors have read and

agreed to the published version of the manuscript.

Funding: The research received support from award number 2406251 from the National Science

Foundation (NSF) under the Smart Health and Biomedical Research in the Era of Artificial Intelligence

and Advanced Data Science program. It also received funding by grant U54GM138062 from the

National Institute of General Medical Sciences (NIGMS), a component of the National Institutes

of Health (NIH), and its contents are solely the responsibility of the author and do not necessarily

represent the official view of NIGMS or NIH.



AI 2024, 5 2737

Institutional Review Board Statement: We conducted the research in accordance with the Declaration

of Helsinki, and received approval by the Institutional Review Board of University of Hawaii (protocol

number 2022-01030, approved 22 March 2023).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Fully de-identified raw data are available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Substance Abuse and Mental Health Services Administration. Key Substance Use and Mental Health Indicators in the United States:

Results from the 2022 National Survey on Drug Use and Health; HHS Publication No. PEP23-07-01-006, NSDUH Series H-58;

Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration: Rockville, MD,

USA, 2023.

2. Chandrasekaran, R.; Katthula, V.; Moustakas, E. Patterns of Use and Key Predictors for the Use of Wearable Health Care Devices

by US Adults: Insights from a National Survey. J. Med. Internet Res. 2020, 22, e22443. [CrossRef] [PubMed]

3. Goldfine, C.; Lai, J.T.; Lucey, E.; Newcomb, M.; Carreiro, S. Wearable and wireless mHealth technologies for substance use

disorder. Curr. Addict. Rep. 2020, 7, 291–300. [CrossRef] [PubMed]

4. Rumbut, J.; Fang, H.; Carreiro, S.; Smelson, D.; Boyer, E. An overview of wearable biosensor systems for real-time substance use

detection. IEEE Internet Things J. 2022, 9, 23405–23415. [CrossRef]

5. Islam, T.; Washington, P. Non-Invasive Biosensing for Healthcare Using Artificial Intelligence: A Semi-Systematic Review.

Biosensors 2024, 14, 183. [CrossRef]

6. Ferreri, F.; Bourla, A.; Mouchabac, S.; Karila, L. e-Addictology: An overview of new technologies for assessing and intervening in

addictive behaviors. Front. Psychiatry 2018, 9, 51. [CrossRef]

7. Jacobson, N.C.; Bhattacharya, S. Digital biomarkers of anxiety disorder symptom changes: Personalized deep learning models

using smartphone sensors accurately predict anxiety symptoms from ecological momentary assessments. Behav. Res. Ther. 2022,

149, 104013. [CrossRef]

8. Tutunji, R.; Kogias, N.; Kapteijns, B.; Krentz, M.; Krause, F.; Vassena, E.; Hermans, E.J. Detecting Prolonged Stress in Real Life

Using Wearable Biosensors and Ecological Momentary Assessments: Naturalistic Experimental Study. J. Med. Internet Res. 2023,

25, e39995. [CrossRef]

9. Phillips, K.T.; Phillips, M.M.; Lalonde, T.L.; Stein, M.D. Momentary Craving, Craving Variability, and Cannabis Use: Associations

With THC Concentrates and Sex. J. Stud. Alcohol Drugs 2023, 84, 530–534. [CrossRef]

10. Phillips, K.T.; Phillips, M.M.; Lalonde, T.L.; Prince, M.A. Does social context matter? An ecological momentary assessment study

of marijuana use among college students. Addict. Behav. 2018, 83, 154–159. [CrossRef]

11. Phillips, K.T.; Prince, M.A.; Phillips, M.M.; Lalonde, T.L.; Stein, M.D. Momentary patterns of alcohol and cannabis co-use in

college students: Assessing the temporal association with anxiety. Cannabis 2022, 5, 42. [CrossRef]

12. Shiffman, S. Ecological momentary assessment (EMA) in studies of substance use. Psychol. Assess. 2009, 21, 486–497. [CrossRef]

[PubMed]

13. Carreiro, S.; Fang, H.; Zhang, J.; Wittbold, K.; Weng, S.; Mullins, R.; Smelson, D.; Boyer, E.W. iMStrong: Deployment of a biosensor

system to detect cocaine use. J. Med. Syst. 2015, 39, 1–8. [CrossRef] [PubMed]

14. Carreiro, S.; Smelson, D.; Ranney, M.; Horvath, K.J.; Picard, R.W.; Boudreaux, E.D.; Hayes, R.; Boyer, E.W. Real-time mobile

detection of drug use with wearable biosensors: A pilot study. J. Med. Toxicol. 2015, 11, 73–79. [CrossRef] [PubMed]

15. Carreiro, S.; Chintha, K.; Shrestha, S.; Chapman, B.; Smelson, D.; Indic, P. Wearable sensor-based detection of stress and craving

in patients during treatment for substance use disorder: A mixed methods pilot study. Drug Alcohol Depend. 2020, 209, 107929.

[CrossRef]

16. Sundaravadivel, P.; Fitzgerald, A.; Indic, P. i-SAD: An Edge-Intelligent IoT-Based Wearable for Substance Abuse Detection. In

Proceedings of the 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India,

16–18 December 2019; pp. 117–122. [CrossRef]

17. Suffoletto, B.; Gharani, P.; Chung, T.; Karimi, H. Using phone sensors and an artificial neural network to detect gait changes

during drinking episodes in the natural environment. Gait Posture 2018, 60, 116–121. [CrossRef] [PubMed] [PubMed Central]

18. Natarajan, A.; Parate, A.; Gaiser, E.; Angarita, G.; Malison, R.; Marlin, B.; Ganesan, D. Detecting cocaine use with wearable

electrocardiogram sensors. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, Zurich, Switzerland, 8–12 September 2013; pp. 123–132. [CrossRef]

19. Mahmud, M.; Fang, H.; Wang, H.; Carreiro, S.; Boyer, E. Automatic detection of opioid intake using wearable biosensor. In

Proceedings of the International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8 March

2018; pp. 1–6. [CrossRef]

20. Gullapalli, B.T.; Carreiro, S.; Chapman, B.P.; Ganesan, D.; Sjoquist, J.; Rahman, T. OpiTrack: A Wearable-Based Clinical Opioid

Use Tracker with Temporal Convolutional Attention Networks. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5,

1–29. [CrossRef]



AI 2024, 5 2738

21. Rumbut, J.; Singh, D.; Fang, H.; Wang, H.; Carreiro, S.; Boyer, E. Poster abstract: Detecting kratom intoxication in wearable

biosensor data. In Proceedings of the IEEE/ACM International Conference on Connected Health: Applications, Systems and

Engineering Technologies (CHASE), Arlington, VA, USA, 25–27 September 2019; pp. 1–2. [CrossRef]

22. Singh, R.; Lewis, B.; Chapman, B.; Carreiro, S.; Venkatasubramanian, K. A Machine Learning-based Approach for Collaborative

Non-Adherence Detection during Opioid Abuse Surveillance using a Wearable Biosensor. Biomed. Eng. Syst. Technol. Int. Jt. Conf.

BIOSTEC Revis. Sel. Pap. 2019, 5, 310–318. [CrossRef]

23. Wang, J.; Fang, H.; Carreiro, S.; Wang, H.; Boyer, E. A New Mining Method to Detect Real Time Substance Use Events

from Wearable Biosensor Data Stream. In Proceedings of the International Conference on Computing, Networking, and

Communications, Valley, CA, USA, 26–29 January 2017; pp. 465–470. [CrossRef]

24. Li, J.; Washington, P. A comparison of personalized and generalized approaches to emotion recognition using consumer wearable

devices: Machine learning study. JMIR AI 2024, 3, e52171. [CrossRef]

25. Islam, T.; Washington, P. Personalized Prediction of Recurrent Stress Events Using Self-Supervised Learning on Multimodal

Time-Series Data. In Proceedings of the International Conference on Machine Learning (ICML) 2023 Workshop on Artificial

Intelligence & Human Computer Interaction, Honolulu, HI, USA, 23–29 July 2023.

26. Kargarandehkordi, A.; Slade, C.; Washington, P. Personalized AI-Driven Real-Time Models to Predict Stress-Induced Blood

Pressure Spikes Using Wearable Devices: Proposal for a Prospective Cohort Study. JMIR Res. Protoc. 2024, 13, e55615. [CrossRef]

27. Sun, Y.; Kargarandehkordi, A.; Slade, C.; Jaiswal, A.; Busch, G.; Guerrero, A.; Phillips, K.T.; Washington, P. Personalized Deep

Learning for Substance Use in Hawaii: Protocol for a Passive Sensing and Ecological Momentary Assessment Study. JMIR Res.

Protoc. 2024, 13, e46493. [CrossRef]

28. Shi, R.; Chen, Z.; Wang, H.; Sun, P.; Trull, T.; Shang, Y. mAAS—A mobile ambulatory assessment system for alcohol craving

studies. In Proceedings of the IEEE 39th Annual Computer Software and Applications Conference, Taichung, Taiwan, 1–5 July

2015; pp. 1100–1105. [CrossRef]

29. Kennedy, A.P.; Epstein, D.H.; Jobes, M.L.; Agage, D.; Tyburski, M.; Phillips, K.A.; Ali, A.A.; Bari, R.; Hossain, S.M.; Hovsepian, K.;

et al. Continuous in-the-field measurement of heart rate: Correlates of drug use, craving, stress, and mood in polydrug users.

Drug Alcohol Depend. 2015, 151, 159–166. [CrossRef] [PubMed]

30. Wang, K.; Luo, J.; Zhang, T.; Ouyang, Y.; Zhou, C.; Lu, Y. Effect of physical activity on drug craving of women with substance use

disorder in compulsory isolation: Mediating effect of internal inhibition. Front. Psychol. 2019, 10, 1928. [CrossRef] [PubMed]

31. Zhang, T.; Wang, K.; Li, N.; Hurr, C.; Luo, J. The relationship between different amounts of physical exercise, internal inhibition,

and drug craving in individuals with substance-use disorders. Int. J. Environ. Res. Public Health 2021, 18, 12436. [CrossRef]

[PubMed]

32. Bhutta, B.S.; Alghoula, F.; Berim, I. Hypoxia. StatPearls [Internet]. 2022. Available online: https://www.ncbi.nlm.nih.gov/

books/NBK482316/ (accessed on 25 October 2024).

33. Berro, L.F.; España, R.A.; Mong, J.A.; Gould, R.W. Editorial: Sleep and circadian rhythm disruptions associated with substance

use disorders. Front. Neurosci. 2023, 17, 1165084. [CrossRef]

34. Puig, S.; Xue, X.; Salisbury, R.; Shelton, M.A.; Kim, S.M.; Hildebr, M.A.; Glausier, J.R.; Freyberg, Z.; Tseng, G.C.; Yocum, A.K.

Circadian rhythm disruptions associated with opioid use disorder in synaptic proteomes of human dorsolateral prefrontal cortex

and nucleus accumbens. Mol. Psychiatry 2023, 28, 4777–4792. [CrossRef]

35. Angarita, G.A.; Emadi, N.; Hodges, S.; Morgan, P.T. Sleep abnormalities associated with alcohol, cannabis, cocaine, and opiate

use: A comprehensive review. Addict. Sci. Clin. Pract. 2016, 11, 9. [CrossRef]

36. Guo, Q.; Wang, J.; Liu, H.; Wu, D.; Liao, S. Nicotine Ingestion Reduces Heart Rate Variability in Young Healthy Adults. BioMed

Res. Int. 2022, 2022, 4286621. [CrossRef]

37. Sjoberg, N.; Saint, D.A. A single 4 mg dose of nicotine decreases heart rate variability in healthy nonsmokers: Implications for

smoking cessation programs. Nicotine Tob. Res. 2011, 13, 369–372. [CrossRef]

38. D’Souza, J.M.; Wardle, M.; Green, C.E.; Lane, S.D.; Schmitz, J.M.; Vujanovic, A.A. Resting Heart Rate Variability: Exploring

Associations With Symptom Severity in Adults With Substance Use Disorders and Posttraumatic Stress. J. Dual Diagn. 2019,

15, 2–7. [CrossRef]

39. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. TensorFlow: A

system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16), Savannah, Georgia, 2–4 November 2016; pp. 265–283.

40. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

42. Eom, S.; Eom, S.; Washington, P. SIM-CNN: Self-supervised individualized multimodal learning for stress prediction on nurses

using biosignals. In Proceedings of the Workshop on Machine Learning for Multimodal Healthcare Data, Honolulu, HI, USA,

29 July 2023; Springer: Cham, Switzerland, 2023; pp. 155–171.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Wearable Biosensors for Substance Detection
	SSL and Personalization

	Materials and Methods
	Biometric Features
	EMA Labels
	Data Processing
	Model Architecture and Training
	Convolutional Neural Network Architectures
	Supervised Learning Framework
	Optimization and Training

	Experiments
	Evaluation

	Results
	Discussion
	Implications
	Future Steps and Limitations

	References

