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Abstract— Gene Regulatory Networks (GRNs) are pivotal in
governing diverse cellular processes, such as stress response,
DNA repair, and mechanisms associated with complex diseases
like cancer. The interventions in GRNs aim to restore the
system state to its normal condition by altering gene activities
over time. Unlike most intervention approaches that rely on
the direct observability of the system state and assume no
response of the cell against intervention, this paper models
the fight between intervention and cell dynamic response
using a partially observed zero-sum Markov game with binary
state variables. The paper derives a stochastic intervention
policy under partial state observability of genes. The optimal
Nash equilibrium intervention policy is first obtained for the
underlying system. To overcome the challenges of partial state
observability, the paper employs the optimal minimum mean-
square error (MMSE) state estimator to estimate the system
state, given all available information. The proposed intervention
policy utilizes the optimal Nash intervention policy associated
with the optimal MMSE state estimator. The performance of
the proposed method is examined using numerical experiments
on the melanoma regulatory network observed through gene-
expression data.

I. INTRODUCTION

Recent advancements in genomics technology have al-
lowed for a better understanding of complex biological
systems, particularly gene regulatory networks (GRNs) [1]–
[5]. These networks are composed of interacting genes
that control ecosystem functioning and cellular processes
such as DNA repair, stress response, and complex diseases
like cancer [6]. A critical goal in genomics is to develop
effective intervention strategies to alter the undesirable be-
havior of GRNs, particularly those associated with chronic
diseases [7], [8].

Several intervention strategies have been developed for
GRNs [9]–[12]. These include dynamic perturbations, which
provide time-dependent interventions [13], and structural
interventions, which make a single-time change in gene
interactions to properly shift their dynamics [14], [15]. The
majority of existing intervention methods consider cells as
isolated and non-responsive entities [16]. However, cells are
highly dynamic and intelligent, often fighting back against
interventions or therapies through internal stimuli.

The impact of dynamic cell responses on the performance
of existing dynamic intervention methods is studied in [17].
These intervention methods rely on the stationarity of the in-
tervention process, wherein cells do not respond to therapies.
Lack of consideration of cell responses often leads to early
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success of existing methods in shifting the system’s unde-
sirable behaviors, followed by the recurrence of unhealthy
conditions at a later time. This comes from the deterministic
nature of these policies, which allows cells, as intelligent and
dynamic entities, to find ways to fight against interventions
through their internal stimuli. In practice, direct access to
cell responses during the intervention is not achievable;
rather, noisy gene-expression data, which provides partial
knowledge about the state of the genes, should be utilized
for making intervention decisions.

This paper models the intervention process in GRNs using
a partially observed two-player zero-sum Markov game with
binary state variables. The underlying model represents a
two-player zero-sum game in which the two players are the
cell and the intervention, each with opposing objectives [18].
This model accounts for realistic conditions regarding no
access to cell responses and partial access to the system
state. A recursive Bayesian approach is derived to capture
the posterior distribution of the state based on the available
gene-expression data. The optimal minimum mean square
error (MMSE) state estimator is used to recursively esti-
mate the genes’ state, given the state posterior distribution.
The proposed intervention method utilizes the optimal Nash
intervention policy corresponding to the estimated state, as
the true state is unknwon, during the intervention process.
This process resembles a state-feedback controller scheme,
where the optimal solution of the zero-sum game serves as
a controller, and the optimal MMSE state estimator acts as
an state estimator.

This paper demonstrates the empirical convergence of
the proposed policy to the optimal Nash policy associated
with the true state. Analytical results are used to investigate
the shortcomings of existing dynamic intervention methods.
Meanwhile, we measure the distance of the proposed inter-
vention policy, which is a stochastic policy, with the optimal
Nash policy. We show that the expected error of state esti-
mation can be computed and used as a confidence measure
to assess the deviation of the proposed intervention policy
from the optimal Nash policy. The numerical results using
the well-known melanoma regulatory network demonstrate
the superiority of the performance of the proposed method
compared to several existing intervention policies.

II. BACKGROUND

This paper models gene regulatory networks using the par-
tially observed Boolean dynamical systems (POBDS) [19]–
[24]. The POBDS is a generalization of Boolean network
models [25], [26], where the genes’ activity is modeled
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through the binary state process, and the uncertainty in the
gene-expression data is modeled through the measurement
process.

The state vector of a GRN, consisting d genes at time
step k, can be expressed as xk ∈ {0,1}d, where xk(i) = 0
and xk(i) = 1 represent the inactivation and activation of the
ith gene at time step k, respectively. The genes’ state gets
updated according to the following model:

xk = f(xk−1) ⊕ ak−1 ⊕ uk−1 ⊕ nk, k = 1,2, . . . , (1)

where {ak;k = 0,1, ...} denotes a set of external interven-
tions or therapies, while {uk;k = 0,1, ...} represents internal
cell stimuli. The variable nk ∈ {0,1}d characterizes process
noise at the time step k. The symbol “⊕” indicates element-
wise modulo-2 addition, and f stands for the network func-
tion. If nk(j) = 0, the state of the jth gene at time k
is determined by the network function, while nk(j) = 1
alters the jth gene value predicted by the network function.
We assume the noise process nk comprises independent
components coming from a Bernoulli distribution with a
parameter 0 ≤ p ≤ 0.5. This parameter p determines the level
of “stochasticity” within the Boolean state process. Larger p
values model more chaotic systems, whereas smaller p values
indicate nearly deterministic systems/processes.

The measurement process, in a most general form, can be
expressed as:

yk = h(xk,vk), k = 1,2, . . . , (2)

where h(.) is the observation function and vk is the mea-
surement noise. The observation function varies depending
on the types of genomics data. Assuming the measurements
are from cDNA microarrays [27] or live-cell imaging-based
assays [28], the measurement process can be expressed using
the following Gaussian model:

yk(j) =m + δxk(j) + vk(j), k = 1,2, . . . , (3)

for j = 1, . . . , d, where vk(j) ∼N (0, σ2) represents a sample
from Gaussian noise with a mean of zero and a variance of
σ2. In this scenario, m denotes the baseline expression for
the inactivated genes, and δ represents the magnitude of the
differential expression. The differential expression parameter
determines how much genes are expressed differently in the
measurements in inactivated and activated states.

III. PROPOSED INTERVENTION POLICY

A. Intervention as Two-Player Zero-Sum Game

We model the fight between the cell and intervention as
a two-player zero-sum game. This scenario is characterized
by a tuple denoted by ⟨X ,A,U ,Ra,P⟩, where X = {0,1}d
represents the state space, A corresponds to the intervention
space, U is the cell stimuli space, Ra is the intervention
reward function, and P stands for state transition probability
function. The p(x′ ∣ x,a,u) indicates the probability of
transitioning from state x to state x′ given the external
intervention a and the internal cell input u. Additionally,
Ra(x,a,u,x′) represents the immediate intervention reward

gained after moving from state x to state x′, upon performing
the intervention a and the internal cell input u.

The intervention aims at deviating the system from un-
healthy conditions (e.g., slowing down cell proliferation),
whereas the cell aims at enhancing uncontrolled cell pro-
liferation and keeping the system in unhealthy conditions.
Consequently, the cell’s reward function Ru is the neg-
ative of the intervention reward function, expressed as
Ru(x,a,u,x′) = −Ra(x,a,u,x′). This creates a give-
and-take scenario, where what benefits the intervention is
against the cell’s interests. This study focuses on stationary
Markov Nash equilibria within GRNs, as modeled through
the infinite-horizon discounted Markov game framework. Let
πa(a ∣ x) be an intervention policy, which determines the
probability of taking interventions a ∈ A at a given state
x ∈ X . Similarly, πu(u ∣ x) represents the cell’s policy,
indicating the probability of the cell input u ∈ U at state
x ∈ X . We define the state value function for the intervention
under the joint stochastic policy (πa, πu) as:

V a
πa,πu(x) = E[

∞
∑
t=0

γtRa(xt,at,ut,xt+1) ∣ a0∶∞ ∼ πa,

u0∶∞ ∼ πu,x0 = x],
(4)

for x ∈ X , with 0 < γ < 1 representing a discount factor
signifying the relative importance of rewards at early stages
compared to future ones. According to (4), the state values
of the cell and the intervention are intertwined. In reality, the
solution to a Markov game differs from a Markov Decision
Process (MDP) due to the fact that the optimal performance
of each agent is influenced not solely by its individual policy
but also by the decisions of both cell and intervention within
the game.

The solution of a Markov game yields a Nash equilibrium
policy denoted by π∗ = (πa

∗ , π
u
∗). This policy, for any

combination of joint strategies π = (πa, πu) and any state
x ∈ X , satisfies the following condition:

V a
πa
∗
,πu
∗

(x) ≥ V a
πa,πu

∗

(x), and V a
πa
∗
,πu
∗

(x) ≤ V a
πa
∗
,πu(x). (5)

where the optimal Nash equilibrium policy corresponds to
a case where neither the cell nor the intervention finds
any incentive to deviate from their individual strategies.
Employing the min-max theorem in the matrix form of zero-
sum games results in the following expression of the optimal
Nash equilibrium policy [29]:

(πa
∗ , π

u
∗) = argmin

πu
argmax

πa
V a
πa,πu(x), for x ∈ X , (6)

where the space of πa contains 2d simplexes of size A and
πu space is 2d simplex of size U . A systematic approach to
calculating the Nash policy is provided in the next section.

B. Optimal MMSE State Estimator

Since the true system state (e.g., xk) is unknown, directly
performing the optimal Nash equilibrium policy in (6) ac-
cording to the observed gene-expression data is impossible.
Thus, this paper builds the intervention policy according
to the best estimate of the system state. Let a0∶k−1 =
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(a0, ...,ak−1) be the sequence of performed interventions,
and y1∶k = (y1, ...,yk) be the observed gene-expression data
up to time step k. The sequence of cell stimuli u0∶k−1 =
(u0, ...,uk−1) is not directly observable. If the true system
state xk at time step k was known, then the optimal policy
in (6) could be implemented as ak ∼ πa

∗(. ∣ xk), which
guarantees the best intervention outcome. Our objective is
to find the state estimator x̂k∣k of the true state xk by
minimizing a criterion measuring the difference between the
estimated and true unobserved state. The following theorem
characterizes the exact optimal minimum mean-square error
(MMSE) solution [19], [30]:

Theorem 1: Given a0∶k−1 and y1∶k be the set of performed
interventions and observed measurements up to time step k,
the optimal MMSE state estimator at time step k can be
obtained as:

x̂MS
k∣k = E [xk ∣ a0∶k−1,y1∶k] , (7)

where v is a nonlinear operator mapping the vector elements
greater than 1/2 to 1 and others to 0. The expected error of
the optimal estimator can be computed as:

CMS
k∣k =

d

2
−

d

∑
i=1
∣E [xk(i) ∣ a0∶k−1,y1∶k] −

1

2
∣ . (8)

The error takes in 0 ≤ CMS
k∣k ≤ d/2, where small values close

to 0 represent accurate state estimator, whereas expected
errors close to d/2 indicate less accurate estimation. See [19],
for the proof of the Theorem.

The optimal state estimator yields the exact MMSE op-
timality and the best estimate of the system state given all
available information (i.e., a0∶k−1,y1∶k). One can select the
intervention at time step k by replacing the true system state
xk with the optimal MMSE state estimator as:

ak ∼ πa
∗ (. ∣ x̂MS

k∣k ) , (9)

where πa
∗ is the optimal Nash intervention policy for the

underlying system computed in (6).

The proposed intervention in (9) requires the computation
of the state estimator as a new intervention is performed and
a new measurement is observed. Let p(xk ∣ a0∶k−1,y1∶k) be
the state posterior distribution given the information up to
time step k. The expectation in (7) can be expressed using
the posterior distribution of state as:

E[xk ∣ a0∶k−1,y1∶k] =
2d

∑
i=1

xi p(xk = xi ∣ a0∶k−1,y1∶k), (10)

where {x1 = [0, . . . , 0]T , . . . ,x2d = [1, . . . , 1]T } are all the
possible system states. Upon performing a new intervention
ak and observing a new measurement yk+1, the optimal
MMSE state estimator computations require recursive com-
putation of the posterior of the system state at time step k+1.

This can be expressed as:

p(xk+1 = xi ∣ a0∶k,y1∶k+1)

= p(yk+1,xk+1 = xi ∣ a0∶k,y1∶k)
∑2d

l=1 p(yk+1,xk+1 = xl ∣ a0∶k,y1∶k)

= p(yk+1 ∣ xk+1 = xi)p(xk+1 = xi ∣ a0∶k,y1∶k)
∑2d

l=1 p(yk+1 ∣ xk+1 = xl)p(xk+1 = xl ∣ a0∶k,y1∶k)
,

(11)

where in the last expression, the first term in the numerator
represents the measurement model, and the second term can
be further expanded as:

p(xk+1 = xi ∣ a0∶k,y1∶k)

=
2d

∑
j=1

p(xk+1 = xi,xk = xj ∣ a0∶k,y1∶k)

=
2d

∑
j=1

p(xk+1 = xi ∣ a0∶k,y1∶k,xk = xj)p(xk = xj ∣ a0∶k,y1∶k).

(12)
The second part of the last expression in (12) is the jth
element of the state posterior distribution at time step k, and
the first term can be expanded through the marginalization
over the unobserved/unmeasured cell action as:

p(xk+1 = xi ∣ a0∶k,y1∶k,xk = xj)
= ∑

u∈U
p(xk+1 = xi,uk = u ∣ a0∶k,y1∶k,xk = xj)

= ∑
u∈U

p(xk+1 = xi ∣ a0∶k,y1∶k,xk = xj ,uk = u)

× p(uk = u ∣ a0∶k,y1∶k,xk = xj)
= ∑

u∈U
p(xk+1 = xi ∣ ak,xk = xj ,uk = u)

× p(uk = u ∣ xk = xj)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

πu
∗
(u∣xj)

,

(13)
where the first term of the last expression is obtained
according to Markov properties of the state process, and the
second term p(uk = u ∣ xk = xj) represents the probability
that the cell action/response would be uk = u if the system
state is xk = xj . Note that assuming the cell follows the
optimal Nash equilibrium policy, the last term is replaced by
πu
∗(u ∣ xj). This assumption is valid for an intelligent cell,

as it yields the best results for the cell when the intervention
is close to the optimal Nash intervention policy.

Replacing (12) and (13) into (11) leads to the recursive
posterior update of the system state required for computation
of the optimal MMSE state estimator. The details of the
computation of the proposed method are expressed in the
next section.

IV. MATRIX-FORM COMPUTATION OF PROPOSED
INTERVENTION POLICY

This section outlines a matrix-form procedure for efficient
computation of the proposed intervention policy, involving
offline Nash policy computation and online state estimation.
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A. Offline Step
We describe a dynamic programming technique for com-

puting the optimal Nash equilibrium policy for a two-player
zero-sum game. Let V = [V(1), ...,V(2d)]T be the state
value vector associated with a given cell and intervention
policy. We define the intervention joint state-action value
function, known as Q-function, associated with the state
vector V as:

Qa
V(x,a,u) = Ex′∣x,a,u [Ra(x,a,u,x′) + γV(x′)] , (14)

for x ∈ X ,a ∈ A and u ∈ U , where Qa
V(x, ., .) can be seen

as a matrix in R∣A∣×∣U ∣, and the expectation is with respect to
the next system state. The Q-value identifies the anticipated
intervention rewards when the joint actions (a,u) are chosen
at state x, and subsequently, the policy corresponding to the
state value function V is followed.

For cell and intervention actions (a,u), we define the
corresponding transition matrix as:

(M(a,u))ij = P (xk = xj ∣ xk−1 = xi,ak−1 = a,uk−1 = u)

= p∣∣f(x
i)⊕a⊕u⊕xj ∣∣1(1 − p)d−∣∣f(x

i)⊕a⊕u⊕xj ∣∣1 ,
(15)

for i, j = 1, . . . , 2d, a ∈ A, and u ∈ U , where ∣∣.∣∣1 represents
the L-1 norm of a vector. In the absence of noise, f(xi) ⊕
a⊕u would represent the genes’ state in the next time step.
Therefore, ∣∣f(xi)⊕a⊕u⊕xj ∣∣1 counts the number of flips in
genes activities caused by noise when the system transitions
from state xi to state xj .

Let Ra
a,u = [Ra(x1,a,u), ...,Ra(x2d ,a,u)]T be the vec-

tor for the expected intervention reward, with ith element
represented as:

Ra(xi,a,u) = Ex′∣x,a,u[Ra(xi,a,u,x′)]

=
2d

∑
j=1

Ra(xi,a,u,xj)

× P (xk = xj ∣ xk−1 = xi,ak−1 = a,uk−1 = u)

=
2d

∑
j=1

Ra(xi,a,u,xj) (M(a,u))ij .

(16)

The Q-values in (14) can be expressed according to the
controlled transition matrix M(a,u) and the vector-form
expected reward function Ra

a,u as:

⎡⎢⎢⎢⎢⎢⎢⎣

Qa
V(x1,a,u)

⋮
Qa

V(x2d ,a,u)

⎤⎥⎥⎥⎥⎥⎥⎦

= Ra
a,u + γM(a,u)V, for a ∈ A,u ∈ U .

(17)
We define the Bellman operator T ∗ for any x ∈ X as:

(T ∗[V])(x) = Value[Qa
V(x, ., .)]

=max
πa

min
πu
∑
a∈A
∑
u∈U

πa(a∣x)πu(u∣x)Qa
V(x,a,u),

(18)
which should satisfy the condition ∑a∈A πa(a∣x) =
∑u∈U π

u(u∣x) = 1. Linear programming techniques can be
employed to calculate Value[Qa

V(x, ., .)] in (18).

Since the Bellman operator serves as a γ-contraction
mapping for any arbitrary Markov game, we can start with
an initial V0 and successively apply Vt+1 = T ∗[Vt] for
t = 0,1, ... until a fixed vector is obtained. The fixed-point
solution V∗ corresponds to the optimal state value vector and
the optimal Nash equilibrium policy (πa

∗ , π
u
∗). The optimal

Nash policy corresponding to V∗ can be obtained as:

(πa
∗(.∣x), πu

∗(.∣x))
= argmax

πa
argmin

πu
∑
a∈A
∑
u∈U

πa(a∣x)πu(u∣x)Qa
V∗(x,a,u).

(19)
for x ∈ X , where Qa

V∗ can be computed by using V∗ in
(17).

B. Online Step
This section provides a recursive computation method

for the optimal MMSE state estimator. Consider a matrix
S = [x1 = [0, . . . , 0]T , . . . ,x2d = [1, . . . , 1]T ] of size d × 2d,
containing all possible system states. We define the vector
form of the state posterior distribution at time step k, given
the information available up to time step k, as:

Πk∣k(i) = p(xk = xi ∣ a0∶k−1,y1∶k), for i = 1, . . . , 2d.
(20)

According to (7), (10) and (20), the optimal MMSE state
estimator can be computed as:

x̂MS
k∣k = E [xk ∣ a0∶k−1,y1∶k] = SΠk∣k. (21)

We also define the predictive state posterior distribution
vector as Πk+1∣k = p(xk+1 = xi ∣ a0∶k,y1∶k). This vector
specifies the probability distribution of state at time step k+1
given the information up to time step k. Using (13) and the
controlled transition matrix in (15), the predictive posterior
can be calculated as:

Πk+1∣k = ∑
u∈U
(M(ak,u)Πk∣k) ○ pu, (22)

where pu = [πu
∗(u ∣ x1), ..., πu

∗(u ∣ x2d)]T is a vector of size
2d × 1 with the i’th element equal to the probability of cell
action u at state xi in the optimal Nash equilibrium policy,
and ○ is the component-wise multiplication of two vectors.

We define update vector T (yk+1), given the observation
vector yk+1, as:

(T (yk+1))i = p(yk+1 ∣ xk+1 = xi), i = 1, . . . , 2d. (23)

According to the measurement model described in (3), the
i’th element of the update vector can be calculated as:

(T (yk+1))i =
d

∏
l=1

1√
2πσ2

exp
⎛
⎜
⎝
−
(yk+1(l) −m − δxi(l))2

2σ2

⎞
⎟
⎠
,

(24)
Finally, according to (11) and (24), the new posterior distri-
bution, Πk+1∣k+1, can be recursively computed as [31], [32]:

Πk+1∣k+1 =
T (yk+1) ○ (∑u∈U (M(ak,u)Πk∣k) ○ pu)

∣∣T (yk+1) ○ (∑u∈U (M(ak,u)Πk∣k) ○ pu) ∣∣1
.

(25)
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Using the posterior distribution of state, the next intervention
policy in (9) can be expressed as:

ak+1 ∼ πa
∗(. ∣ SΠk+1∣k+1). (26)

The online process has a complexity of order O(22d× ∣U ∣)
due to the involvement of the controlled transition matrix
and summation over cell actions. A major computational
complexity occurs during the offline computation of the Nash
intervention policy before the intervention begins.

V. COMPARISON WITH STATE-OF-ART METHODS

This section analyzes the performance of the proposed
intervention policy within a well-known class of intervention
policies [33]–[36]. These methods rely on the stationary
assumption of the intervention process, where cells do not
respond to interventions. This can be expressed using the cell
space U = {}, where the Markov game can be represented
as an MDP with a single player, i.e., intervention. The inter-
vention policy is deterministic in this case, as no competition
with the cell is considered in deriving the intervention. This
deterministic policy can be expressed as:

µa(x) = argmax
µ

E[
∞
∑
t=0

γtRa(xt,at,ut = 0,xt+1) ∣

x0 = x,a0∶∞ ∼ µ],
(27)

where the maximization is over all deterministic action
policies, i.e., (A)2d . The cell’s aggressive response to the
stationary and deterministic intervention policy in (27) can
be expressed as:

µu(x) = argmin
µ

E[
∞
∑
t=0

γtRa(xt,at,ut,xt+1) ∣ x0 = x,

a0∶∞ ∼ µa,u0∶∞ ∼ µ].
(28)

According to equation (5), one can observe that the
stationary policy µa deviates from the optimal Nash policy
πa, which has caused the cell to change its policy in order
to achieve higher accumulated rewards. The deviation from
the optimal Nash intervention policy leads to the dominance
of the cell. The difference between the stationary and the
optimal Nash policies in terms of the expected discounted
rewards, if the system starts at state x ∈ X , can be expressed
as:

V∗µa,µu
(x) −V∗πa

∗
,πu
∗

(x) ≤ 0, for x ∈ X , (29)

where the inequality might become equality if and only if
the optimal Nash policy is deterministic.

Let p(xk = xi ∣ a0∶k−1,y1∶k) be the posterior distribution
of the state at time step k, and x̂MS

k∣k be the optimal MMSE
state estimator. The deviation of the optimal Nash policy
from the proposed policy can be expressed using the Kull-
back–Leibler (KL) divergence as:

KL(πa
∗(.∣xk) ∣∣πa

∗(.∣x̂MS
k∣k )) . (30)

The KL value becomes zero for the case where xk =
x̂MS
k∣k . One can see that the proposed intervention policy is

stochastic, and its performance relies on the accuracy of
the state estimation. The probability that the MMSE state
estimator might not be the true state can be expressed using
the posterior distribution of the state as 1 − P (xk = x̂MS

k∣k ∣
a0∶k−1,y1∶k). Meanwhile, the expected error of the optimal
MMSE state estimator in terms of mean square error can
be computed using (8). Therefore, these two metrics can be
used to measure the confidence in the MMSE state estimator
and, consequently, the closeness of the proposed policy to the
optimal Nash policy.

VI. NUMERICAL EXPERIMENTS

The performance of the proposed intervention policy is
evaluated in this section using a well-known melanoma
regulatory network [37], [38]. This network is associated
with a dangerous type of skin cancer called melanoma, which
grows and spreads on a molecular level. The relationships
between the genes in this network are shown in Fig. 1. The
network consists of the following 10 genes: WNT5A, pirin,
S100P, RET1, MMP3, PHOC, MART1, HADHB, synuclein,
and STC2. 10 genes in this network leads to 210 = 1,024
possible system states. The network function representing
the system dynamics in (1) can be expressed as [37], [38]:

f(xk) = [f1(xk), f2(xk), ..., f10(xk)]
T
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(S100P ∧MMP3 ∧ ¬PHOC) ∨ (¬MMP3 ∧ PHOC)
(¬WNT5A ∧ ¬S100P ∧MMP3) ∨ (WNT5A ∧ ¬S100P ∧ ¬MMP3)

MART1
(¬WNT5A ∧ pirin ∧ RET1) ∨ (¬pirin ∧ RET1)

(RET1 ∧ synuclein) ∨ ¬synuclein
(¬RET1 ∧ ¬MART1) ∨ (RET1 ∧MART1 ∧ STC2)

MART1
(WNT5A ∧MMP3)∨(¬MMP3∧¬synuclein)∨(WNT5A∧¬MMP3∧synuclein)
(¬RET1∧¬MART1∧¬STC2)∨(RET1∧¬MART1∧STC2)∨MART1

¬S100P

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where ∧ and ∨ represent AND and OR operators, and ¬
indicates negation.

Fig. 1: The melanoma regulatory network containing 10 genes.

The increase in activation of WNT5A and pirin activation
is shown to be associated with the metastasis state [37]. Thus,
the intervention needs to decrease these genes activations,
which can be expressed using the following intervention
reward function:

Ra(x,a,u,x′) = 2 − x′(1) − x′(2). (31)
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where the maximum reward is 2 occurs when both WNT5A
and prin stay inactivated, and the minimum is 0 when both
genes are in an activated state. The following intervention
space is considered: A = {a1,a2,a3,a4}, where a1 cor-
responds to no control, and a2, a3 and a4 correspond to
an intervention over the pirin, RET1 and PHOC genes,
respectively (e.g., a2 = [0,1,0,0,0,0,0,0,0,0]T ). The space
for internal cell stimuli is considered as: U = {u1,u2}, where
u1 and u2 indicate stimuli altering the state value of the
MMP3 and MART1 genes, respectively.

The results of the proposed method are compared with
two state-of-the-art intervention policies: the stationary in-
tervention policy [33], [39], which assumes cell as a non-
responsive entity, and robust intervention policy [36], [40],
which considers the cell responses as part of stochasticity
in the intervention process. We also compare the proposed
method with a random intervention policy as well as the
baseline policy. The baseline represents the optimal Nash
policy for the system under direct state observability, which
corresponds to the best intervention results that can be
achieved for the system under partial state observability.
The parameters used for our experiments are as follows:
p = 0.05, γ = 0.95, ϵ = 0.01, m = 30, δ = 20, σ2 = 10,
Π0∣0(i) = 1/210, for i = 1, ..., 210. The results are averaged
over 100 independent runs, and the standard error of the
mean is presented for the average results.

Fig. 2 shows the average intervention reward over time
for various intervention policies. As expected, the baseline
policy yields the highest average reward, representing the
optimal intervention results achievable under intelligent cell
responses. The proposed policy outperforms other methods
relying on partial state observability. For large time steps,
the performance of the proposed policy and the baseline
becomes close, due to the fading of the uniform initial state
distribution leading to more accurate state estimation. In
contrast, the stationary intervention policy and the random
policy exhibit poor performance due to their inability to
consider cell responses in deriving interventions. The robust
intervention policy outperforms the stationary policy, as it
considers the non-stationarity caused by cell responses in
decision-making. However, the robust policy’s performance
still falls short of the proposed policy, partly from a lack
of consideration of the cell’s responses in the long term for
deriving interventions.

Fig. 3 represents the average error of state estimation
obtained by the MMSE state estimator for the trajectories
obtained under the proposed intervention policy. The state
estimation error is computed as ∑10

i=1 ∣xk(i)−x̂MS
k∣k (i)∣, which

measures the number of genes with wrong estimated status.
One can see that the error is initially large due to the uniform
initial state distribution. However, as more data is observed,
the estimation error becomes small and close to 0. It should
be noted that the state estimation near zero ensures the
proposed policy’s closeness to the optimal Nash policy.

Fig. 4 represents the average Kullback-Leibler divergence
between the optimal Nash policy (i.e., baseline policy) and
different intervention policies. One can observe that the

Fig. 2: The average reward obtained by different policies.

Fig. 3: The average state estimation error for trajectories obtained
under the proposed policy.

proposed policy has the smallest average KL values in
comparison to the other two policies. In particular, the
initial deviation is larger due to the large state estimation
error, while the values become smaller as more data are
observed. Interestingly, the stationary policy has the highest
deviation among all methods (including the random policy),
which results from the lack of consideration of the cell
responses. The robust policy has less KL distance compared
to others, but its values are still larger than the proposed
policy. This is due to the deterministic nature of this policy,
despite considering the non-stationarity coming from the cell
responses.

The performance of the proposed policy with respect to the
measurement noise (representing noise in gene expression
data) is investigated in this part. Fig. 5 shows the average
reward per step obtained by different policies under four
different measurement noise levels. The proposed policy’s
results are close to the baseline policy under a small noise
intensity (i.e., σ2 = 5). This is due to a good state esti-
mation performance and, consequently, the closeness of the
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Fig. 4: The average KL-divergence between the optimal Nash
policy (baseline) and other intervention policies.

proposed policy to the Nash policy. On the other hand, as
measurement noise intensity increases, the performance of
the proposed policy decreases. This is due to the fact that
the true system state becomes indistinguishable under high
measurement noise, which impacts both the state estimation
and the intervention performances. One can also see that the
proposed policy outperforms all competing methods for all
noise values.

Fig. 5: The impact of the measurement noise on the performance
of the proposed policy.

Finally, this section investigates the impact of the stochas-
tic state process on the performance of the proposed
method. We considered four process noise intensities, p =
0.005,0.05,0.15,0.3, where larger values represent more
chaotic systems. Table I represents the average reward ob-
tained by all policies. It can be seen that the closest per-
formance to the baseline policy is achieved by the proposed
policy. The robust intervention policy yields the second-best
results, and the stationary policy holds the worst results. One
can observe that the increase in process noise has led to a
reduction in average reward. In particular, for chaotic systems

corresponding to p = 0.3, the results of all methods become
similar, as the control or intervention, in this case, has less
power to impact the system. However, for smaller noise
intensity, the proposed method outperforms other competing
methods.

TABLE I: Impact of process noise on the performance of the
proposed policy.

Process Noise (p)
Policy 0.005 0.05 0.15 0.3

Baseline 1.54 ± 0.11 1.49 ± 0.13 1.40 ± 0.11 1.22 ± 0.06
Proposed 1.46 ± 0.14 1.42 ± 0.15 1.35 ± 0.11 1.21 ± 0.07
Robust 1.39 ± 0.09 1.37 ± 0.12 1.33 ± 0.10 1.21 ± 0.06

Stationary 1.03 ± 0.03 1.07 ± 0.07 1.11 ± 0.04 1.16 ± 0.03

VII. CONCLUSION

This paper introduces a stochastic intervention policy for
gene regulatory networks (GRNs) with partial state observ-
ability. It models GRNs observed through gene-expression
data using a two-player zero-sum game with binary state
variables. A recursive approach is derived to compute the
posterior distribution of genes’ state, given the unmeasured
cell stimuli and the available gene-expression data. The
optimal minimum mean square error (MMSE) is obtained
according to the posterior distribution of the state. The pro-
posed intervention policy employs the optimal Nash policy
associated with the MMSE state estimator at each time.
This state-feedback control procedure ensures the stochas-
ticity of the intervention policy, in contrast to most existing
intervention policies that are deterministic. Our analytical
and numerical results demonstrate a comparison between the
proposed methods and existing approaches, as well as the
empirical convergence of the proposed policy to the optimal
Nash policy.
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