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Abstract— Autonomous agents are increasingly popular in
various practical domains, assisting humans in performing
complex tasks. However, coordinating between agents and
humans can be challenging, particularly when communication
is limited or non-existent. This paper proposes a method for
cooperative decision-making by enabling autonomous agents to
infer high-level human intention through their behavioral data.
Human is modeled as a sub-optimal reinforcement learning
agent. A statistical learning method is developed for implicit
probabilistic reasoning of human intentions by accounting for
complex and unpredictable human behavior. The proposed
method computes the exact likelihood and posterior of human
intentions. The method is fully recursive and accounts for
human priorities, making it applicable to various domains.
The agents’ decision-making is achieved using a combination of
the active learning approach and quantified human intentions,
which enables effective coordination of tasks and prevents
duplication of efforts. The proposed method allows agents to
adapt their strategy in real time based on partial knowledge
of human intentions. Our numerical experiments demonstrate
the efficacy of our proposed method in intention inference and
task coordination.

I. INTRODUCTION

Autonomous agents are increasingly prevalent in various
practical domains. Solving most complex tasks requires close
collaboration between humans and artificial intelligence (AI)
agents. However, coordinating between agents and humans
can be challenging, especially when communication between
them is limited or non-existent [1]–[9]. For instance, consider
a rescue team comprising humans and autonomous agents
during or after a natural disaster, where a team of humans
and AI agents are deployed to search for victims, evaluate
areas, and provide medical aid. Human behavior in these
tasks is often too complex to model or predict and is often
influenced by several external factors. For example, humans
may change their plans during operations if they perceive the
task as dangerous or beyond their capabilities.

Several approaches have been developed for coordination
between AI agents and humans [10]–[14], including imita-
tion learning and inverse reinforcement learning (IRL) [15]–
[19]. These techniques assume that human policy and reward
are fixed and aim to learn them from a large number of avail-
able human demonstrations. Intention recognition algorithms
have also been developed to learn the patterns of human be-
havior and infer the high-level human goals (i.e., intentions)
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from these patterns [20]–[24]. These methods, however, rely
on the availability of low-level human actions and a large
amount of human data. In practice, access to human actions
requires direct communication, which is often impossible
or becomes overwhelming for humans. Additionally, human
intentions can change rapidly, making it difficult for agents
to capture and adapt to changes. Furthermore, probabilistic
methods have been developed for inferring human intention
in robot manipulation tasks using human state or state-action
sequences [25]–[28]. However, these methods do not rely
on a human model but rather approximate the likelihoods
with distance-based measures, limiting their applicability to
domains where distance is not measurable or where human
priorities may vary.

This paper presents a statistical learning approach to
infer high-level human intentions through limited observed
human data without direct communication. These high-level
intentions are subtasks that agents or humans might perform
at different times. To address the complexity and uncertainty
in human behavior, humans are modeled as sub-optimal
reinforcement learning agents. This model accounts for the
potential priorities of humans in performing subtasks using
the reward function. Given the availability of a human
state sequence, this paper computes an exact probabilistic
model of possible human intentions. A recursive and ef-
ficient method is introduced for updating the posterior of
human intentions as new information from humans becomes
available. Using the quantified human intention posterior, an
active learning approach is developed to ensure the AI agent
effectively cooperates with the human without duplicating
efforts. We demonstrate that the active learning method
becomes the exact optimal cooperative policy if the posterior
distribution of human intentions peaks over a single subtask.
Through numerical experiments, we have showcased the
performance of the proposed policy in terms of learning
human intents and enhancing the performance of human-AI
collaboration.

II. BACKGROUND - A MARKOV DECISION PROCESS

A Markov decision process (MDP) representing hu-
man and agent collaboration can be defined by a tuple
⟨SA,SH ,AA,AH ,P ,R⟩, where SA and SH are the agent
and human state spaces; AA and AH are the agent and
human action spaces; P is the state transition probability
function where P(s,a, s′) = P (s′ ∣ s,a) represent the prob-
ability that the next agent or human state is s′ if action a is
taken at state s; and R is a cooperative reward function with
a real value outcome such that R(sA, sH ,aA,aH , sA

′

, sH
′

)

encode the reward earned when actions (aH ,aA) are taken
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in state (sA, sH) and the human and agent states move to
(sA

′

, sH
′

). The reward function depends on the actions and
states of the human and agent, which models a cooperative
setting where the human and agent should work together to
ensure the overall coordination of tasks.

III. PROBABILISTIC REASONING OF HUMAN INTENTION

A. High-Level Human Intention

This paper focuses on domains in which a human and an
AI agent work alongside each other without direct commu-
nication. In practice, human behavior can be too complex
to model, and a full understanding of human intentions can
be challenging or impossible. Thus, we aim to enable the
AI agent to probabilistically reason about human intentions
based on human data.

Let T 1, T 2, ..., TN be N subtasks that should be per-
formed by the human or AI agent in a cooperative setting.
We refer to these subtasks as high-level intentions, which
the human and agent might undertake at different times. For
example, consider a rescue operation in which humans and
robots work together to achieve multiple subtasks, such as
searching for victims in specific areas, providing medical
aid to injured people, evacuating unsafe areas, and so on.
Depending on the subtask being performed by the human,
the agent should undertake other subtasks that prevent the
duplication of efforts. For instance, if a human decides to
perform an evacuation instead of providing medical aid, the
agent should capture this and adapt itself to ensure the overall
success of the rescue operation.

Let p0 = [p(T
1), ..., p(TN)] be the prior probability for

human intention, which represents the initial probability
that the human might perform different subtasks. Given
the sequence of human observed states sH0∶k = (s

H
0 , ..., sHk ),

the agent’s understanding of the human’s intention can be
expressed using the following posterior distribution:

pk = [p(T
1
∣ sH0∶k), ..., p(T

N
∣ sH0∶k)]

T . (1)

Note that the human actions that have led to the human
state sequence sH0∶k are often unknown to agents once no
communication exists between them. This is in contrast with
most inverse reinforcement learning and imitation learning
approaches [15]–[19], which require human state-action pairs
to quantify human policy or reward function.

To keep track of human intentions, a recursive computation
of the posterior distribution of human intention is required.
Given that sHk+1 is the new observed human state at time step
k + 1, the new posterior distribution of human intention can
be expressed as:

pk+1(j) = P (T ∗ = T j
∣ sH0∶k+1)

=
P (sHk+1 ∣ s

H
0∶k, T

j)P (T j ∣ sH0∶k)

∑
N
l=1 P (sHk+1 ∣ s

H
0∶k, T l)P (T l ∣ sH0∶k)

=
P (sHk+1 ∣ s

H
0∶k, T

j)pk(j)

∑
N
l=1 P (sHk+1 ∣ s

H
0∶k, T l)pk(l)

,

(2)

for j = 1, ...,N . In the last line of (2), the first term in the
numerator can be further simplified as:

P (sHk+1 ∣ s
H
0∶k, T

j
)

= ∑
aH∈AH

P (sHk+1,a
H
k = a

H
∣ sH0∶k, T

j
)

= ∑
aH∈AH

P (sHk+1 ∣ s
H
0∶k,a

H
k = a

H , T j
)P (aHk = a

H
∣ sH0∶k, T

j
)

= ∑
aH∈AH

P (sHk+1 ∣ s
H
k ,aHk = a

H
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Human Transition

P (aHk = a
H
∣ sH0∶k, T

j
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Human Intention

,

(3)
where the human transition term depends on the stochasticity
in the environment and the human intention term quantifies
the probability that the human takes action aH ∈ AH given
the sequence of states sH0∶k and a known intention T j . One
can see the likelihood function in (3) as the weighted sum
of the human transition terms, where weights representing
human intentions specify the extent to which each action
could be taken by the human.

In domains with multiple subtasks, a binary auxiliary
vector can be used to keep track of performed and un-
performed subtasks. The status of human and AI agent
states and subtasks at time step k can be represented using
a vector [sAk , s

H
k , ηk], where ηk ∈ {0,1}

N expresses the
status of subtasks with the value ηk(j) = 1 and ηk(j) = 0
corresponding to cases where the jth subtask is performed
and not performed, respectively. The element of the subtask
tracker for any subtask that is performed (terminated) turns
to 1 and stays 1, while for unperformed subtasks stays 0.
Thus, one can represent the deterministic transition of the
subtask tracker when the state moves from (sAk , s

H
k , ηk) to

(sAk+1, s
H
k+1) as:

ηk+1(j) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if sAk+1 or sHk+1 = G
j

ηk(j) otherwise
, for j = 1, ...,N,

(4)
where Gj is the terminal state for the jth subtask. Note that
ηk(j) = 0 implies that the jth subtask is not performed by
human and agent up to time step k, represented by Gj ∉ sA0∶k
and Gj ∉ sH0∶k. Meanwhile, as a performed subtask does not
require the human or agent to handle it a second time, the
posterior of the human intention towards subtask T j becomes
0 as soon as it is terminated, which can be expressed by:

pk+1(j)∝
⎧⎪⎪
⎨
⎪⎪⎩

0 if sAk+1 or sHk+1 = G
j

pk(j) otherwise
, for j = 1, ...,N,

(5)
where the elements of pk+1 is sum to 1.

The cooperative reward function can be expressed in-
dividually for the human and AI agent using the subtask
tracker as: R(sA, η,aA, sA

′

, η′) and R(sH , η,aH , sH
′

, η′).
The auxiliary variables ensure that the performed subtasks
by either humans or agents and denoted with non-zero η
values do not contribute multiple times to the accumulated
cooperative rewards.
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B. Quantification of Human Intention

The human objective for taking the subtask T j can be
expressed through the subtask tracker with all elements 1
except for the jth element set to 0, denoted by ej . The
human reward function R(sH , η = ej ,aH , sH

′

, η′) is the
reward value gained by the human if ends up in (sH

′

, η′)
after taking action aH in state (sH , η = ej). This reward
is only defined for the subtask T j , as the current subtask
tracker is set as ej (i.e., T j is the only remaining subtask).

We define a policy πH ∶ SH → AH , which associates an
action to each human state. The optimal policy for human
undertaking subtask T j without considering the agent can be
expressed as:

π∗,H
T j (s

H, η=ej)=argmax
πH

E[
h

∑
t=0
γtR(sHt , ηt,a

H
t , sHt+1, ηt+1) ∣

sH0 = s
H , η0 = e

j ,aH0∶h ∼ π
H
],

(6)
for all sH ∈ SH ; where the maximization is over all
deterministic human policies, γ is a discount factor, and
η0 = e

j ensures that the human will receive a positive reward
only if it achieves the subtask T j . In the finite-horizon case,
the discount factor is typically set to 1, whereas in the
infinite horizon case (h = ∞), the discount factor γ ∈ [0,1)
is included to obtain a finite sum. The optimal solution
for maximization in (6) can be achieved using dynamic
programming approaches for finite state and action spaces
and reinforcement learning techniques for large and complex
state and action spaces.

We model human behavior as a sub-optimal reinforcement
learning (RL) agent, whose imperfectness (i.e., deviation
from the optimal policy) is modeled through the well-known
ϵ-greedy or Boltzmann policy [29]. Let π∗,H

T j be the optimal
human policy for subtask T j obtained in (6). We model
the human decisions according to the following ϵ-greedy
policy [15]:

πH
T j(a

H
∣sH) ∶=P (aH ∣sH , T j

)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

q + 1−q
∣AH ∣ If aH = π∗,H

T j (s
H ,ej)

1−q
∣AH ∣ If aH ≠ π∗,H

T j (s
H ,ej)

,
(7)

for aH ∈ AH , sH ∈ SH , where 0 ≤ q ≤ 1 represents the
confidence of the human, and π∗,H

T j is computed in (6). Values
of q close to 1 represent confident (i.e., rational) humans,
whereas the values close to 0 model humans with random
decision-making behavior.

The Boltzmann policy representing the human policy can
be expressed as:

πH
T j(a

H
∣sH) ∶= P (aH ∣ sH , T j

)

=
exp (β q∗,H

T j (s
H ,ej ,aH))

∑a′∈AH exp (β q∗,H
T j (sH ,ej ,a′))

,
(8)

for aH ∈ AH , sH ∈ SH ; where

q∗,H
T j (s

H , η = ej ,aH) = E[
h

∑
t=0
γtR(sHt , ηt,a

H
t , sHt+1, ηt+1) ∣

sH0 = s
H , η0 = e

j ,aH0 = a
H ,aH1∶h ∼ π

∗,H
T j ],

(9)
is the state-action value function under the optimal pol-
icy for subtask T j , and β > 0 represents the confidence
(rationality level) of the human. Large values of β model
confident humans, whereas smaller values model humans
close to random decision-makers. It should be noted that both
human models in (7) and (8) are widely used in the inverse
reinforcement learning context for modeling the imperfect
behavior of humans [15].

Considering that our problem is within a MDP framework,
we believe that human behavior is determined solely by their
current state and intent, rather than by previous trajectories.
Therefore, according to (7) and (8), the human intention term
in (3) can be expressed as:

P (aHk =a
H
∣ sH0∶k, T

j
)=P (aHk =a

H
∣ sHk , T j

)=πH
T j(a

H
∣sHk ).

(10)
If a subtask is performed by the human or agent at the current
time, we assume that the information is shared with them,
and the human will not follow that subtask in the next steps.
Therefore, the intention probability for the performed subtask
should be set as zero. Replacing (10) into (2) and (3) leads
to the following recursive posterior update of intentions:

pk+1(j)=
∑aH∈AHP (sHk+1 ∣ sHk ,aH

k = aH)πH
T j (aH ∣sHk )1ηk+1(j)=0pk(j)

∑N
l=1∑aH∈AHP (sHk+1 ∣ sHk ,aH

k = aH)πH
T l(aH ∣sHk )1ηk+1(l)=0pk(l)

,

(11)

for j = 1, ...,N ; where the indicator 1ηk+1(j)=0 returns 1 if
the jth subtask has not been performed (i.e., ηk+1(j) = 0),
and 0 otherwise.

IV. INCORPORATING HUMAN INTENTIONS INTO AGENT
POLICY

A. Agent Optimal Policy under Known Human Intention

According to the intention formulation in the previous
section, a known human intention at time step k can be
expressed using pk with a single element corresponding to
the true human intention 1 and others 0. This represents the
case where the agent is fully aware of the human intention.
Given that human is performing subtask T j (i.e., pk(j) = 1),
we define a deterministic policy πA

H=T j ∶ S
A × {0,1}N−1 →

AA as a mapping from the agent state and subtask tracker to
agent action space. The optimal policy for the agent under
human intention T j depends on the unperformed subtasks,
denoted by the subtask tracker η. Therefore, the current state
of agent sA and the status of subtasks η can be used for
defining the optimal policy for the agent under a known

211

Authorized licensed use limited to: Northeastern University. Downloaded on June 02,2025 at 16:09:09 UTC from IEEE Xplore.  Restrictions apply. 



human intention T j as:

π∗,A
H=T j(s

A, η)=argmax
πA

E[
h

∑
t=0
γtR(sAt , ηt,a

A
t , s

A
t+1, ηt+1) ∣

sA0 = s
A, η0 = η, η0(j) = 1,a

A
0∶h ∼ π

A
],

(12)
for all sA ∈ SA and η ∈ {0,1}N−1; where π∗,A

H=T j(s
A, η) is

the optimal agent policy at state (sA, η) given that the human
is performing the subtask T j , and the expectation is with
respect to the stochasticity in the agent transition probability.
Note that the expectation is conditioned on η(j) = 1, which
ensures the agent does not have the incentive to duplicate
subtask T j that the human is performing, rather focusing on
unperformed subtasks indicated by zero elements of η.

B. Agent Policy under Unknown Human Intention

While the solution for optimization in (12) provides the
optimal agent policy when the agent is fully aware of the true
human intention, in practice, under no direct communication,
the agent may not have complete knowledge of the human
intention. The proposed approach described in the previous
section allows for keeping the probabilistic knowledge of
human intention over time. In the following, we describe
how this probabilistic knowledge can be incorporated into
agent policy.

We start with the active learning policy, which, along
with its variations, is a widely used class of techniques for
decision-making under uncertainty [30], [31]. We define the
optimal state-action value function under the agent policy
π∗,A
H=T j defined in (12), when the human is performing the

subtask T j , as:

q∗,A
H=T j(s

A, η,aA)=E[
h

∑
t=0
γtR(sAt , ηt,a

A
t , s

A
t+1, ηt+1) ∣

sA0 = s
A, η0 = η, η0(j) = 1,a

A
0 = a

A,aA1∶h ∼ π
∗,A
H=T j],

(13)
where q∗,A

H=T j(s
A, η,aA) is the expected return if the agent

takes action aA at state (sA, η), then follows policy π∗,A
H=T j .

Depending on the size of the state space, the Q-values
can be obtained offline by employing N parallel dynamic
programming or reinforcement learning algorithms, each
tuned to a specific subtask T ∈ {T 1, ..., TN} that the human
is undertaking. Let sAk be the current agent state, ηk be the
current status of performed subtasks, and pk be the posterior
distribution of the human intention given the information up
to time step k. The agent can take action at time step k
according to the following:

aAk = argmax
aA∈AA

E[q∗,AH=T (s
A
k , ηk,a

A
) ∣ sH0∶k]

= argmax
aA∈AA

Epk
[q∗,AH=T (s

A
k , ηk,a

A
)]

= argmax
aA∈AA

N

∑
j=1

pk(j) q
∗,A
H=T j(s

A
k , ηk,a

A
),

(14)

where the expectation is with respect to the posterior dis-
tribution of human intention. If the uncertainty in human

intention approaches zero, then the active learning policy
in (14) becomes the optimal policy as it yields the exact
Bellman optimality. A large uncertainty in human intention
corresponds to the case where the Q-values associated with
different human subtasks contribute to the active learning
policy. Note that the quantified human intention can be incor-
porated into other policies, such as those relying on a single
most probable human intention [32], [33] or those relying
on samples of possible human intentions (e.g., rollout) [34]–
[36].

The detailed steps of the proposed method are presented
in Algorithm 1. The process of the proposed method in
(14) consists of offline and online steps. In the offline step,
two parallel sets of dynamic programming or reinforcement
learning approaches should be employed; one set learns N
human policies defined over the human state space, each
corresponding to a single human subtask; the second set
learns N agent policies defined over the agent state space
and subtask tracker space, each corresponding to a fixed
human intention. The computed policy can then be used for
the recursive update of human intention as well as adaptive
decision-making for the agent.

V. DISCUSSIONS AND ANALYSES

To investigate the impact of human confidence (or ratio-
nality level) on the posterior of human intention in (11),
we represent the posterior distribution of human intentions
using the prior intention probabilities and the likelihood of
observed human data as:

pk+1(j) =
P (sH0∶k+1 ∣ T

j)p0(j)

∑
N
l=1 P (sH0∶k+1 ∣ T l)p0(l)

, (15)

where

P (sH0∶k+1 ∣ T
j
) =

k

∏
r=0

P (sHr+1 ∣ s
H
0∶r, T

j
)

=
k

∏
r=0

∑
aH∈AH

P (sHr+1,a
H
r = a

H
∣ sH0∶r, T

j
)

=
k

∏
r=0
[ ∑
aH∈AH

P (sHr+1 ∣ s
H
r ,aHr = a

H
)

× [(q +
1 − q

∣AH ∣
) 1aH=π∗,H

Tj (sHr ,ej) +
1 − q

∣AH ∣
1aH≠π∗,H

Tj (sHr ,ej)]],

(16)
where the ϵ-greedy model in (7) is used for representing
human behavior. A confident/rational human can be modeled
with a large confidence parameter, i.e., q = 1. In this case,
the posterior update in (15) can be expressed as:

pk+1(j)∝
k

∏
r=0
[ ∑
aH∈AH

P (sHr+1 ∣ s
H
r ,aHr = a

H
)

× 1aH=π∗,H
Tj (sHr ,ej)]p0(j)

=
k

∏
r=0
[P (sHr+1 ∣ s

H
r ,aHr = π

∗,H
T j (s

H
r ,ej))]p0(j),

(17)
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Algorithm 1 The proposed high-level human intention learning for cooperative decision-making.

1: High-level subtasks {T 1, T 2, ..., TN}; terminal state of subtasks G1, ...,GN ; human confidence q.

Offline Step

2: Run N reinforcement learning algorithms corresponding to all subtasks: π∗,H
T j (sH , η = ej), for sH ∈ SH and j = 1, ...,N .

3: Run N reinforcement learning algorithms corresponding to π∗,A
H=T j (sA, η), for sA ∈ SA, η ∈ {0, 1}N and j = 1, ...,N .

Online Step

4: Set the initial human intention as p0 (e.g., [ 1
N
, ..., 1

N
]N ), and the initial status of subtasks as η0 = [0, ..., 0]T .

5: Set the initial human and agent state as sH0 , sA0 .

6: for k = 0,1,2, ... do /* Until all subtasks are performed */

7: Active learning according to the posterior of human intention:

aA
k = argmax

aA∈AA

N

∑
j=1

pk(j) q∗,AH=T j(s
A
k , ηk,a

A).

8: Agent takes action aA
k , and new states of agent and human are observed, i.e., sAk+1, sHk+1.

9: Update the subtask tracker: ηk+1(j) =
⎧⎪⎪⎨⎪⎪⎩

1 if sAk+1 or sHk+1 = Gj

ηk(j) otherwise
, for j = 1, ...,N .

10: Human intention posterior update:

pk+1(j) =
∑aH∈AH P (sHk+1 ∣ sH0∶k,aH

k = aH)πH
T j (aH ∣ sHk )1ηk+1(j)=0 pk(j)

∑N
l=1∑aH∈AH P (sHk+1 ∣ sH0∶k,aH

k = aH)πH
T l(aH ∣ sHk )1ηk+1(l)=0 pk(l)

.

11: end for

for j = 1, ...,N . The posterior of human intention depends on
the likelihood of state transitions under the actions reflecting
the optimal human policy for any given subtask. In this case,
the true intention is expected to be better recognizable in
the posterior of intentions since the movements of confident
human provide rich information about their intentions.

In contrast, if the human is not confident and acts like a
random decision-maker, its behavior can be modeled using
the confidence parameter q = 0. Replacing this into (16) leads
to:

pk+1(j)∝
1

∣AH ∣

k

∏
r=0
[ ∑
aH∈AH

P (sHr+1 ∣ s
H
r ,aHr = a

H
)],

(18)
for j = 1, ...,N ; where the intention posterior is independent
of subtask T j , meaning that the posterior distribution of
the intention becomes completely indistinguishable in this
condition. In fact, the posterior of human intention remains
unchanged and equal to the prior, no matter how much
human data is observed. Intuitively, this can be interpreted as
a lack of measurable intentions in data from a human with
random behavior, which is also captured by the proposed
method in (18).

VI. NUMERICAL EXPERIMENTS

In this section, we analyze the performance of the pro-
posed policy through a grid problem consisting of a single
human and an agent. The comparison is made with the
following approaches: 1) Baseline policy, which demon-
strates the case where the agent is fully aware of the human
intention, and the agent’s decisions are made according

Fig. 1: The maze environment containing a human and an agent
with 5 subtasks. The blue cell indicates the initial agent and human
state, and the orange cells indicate the terminal states for five
subtasks. The human’s and the agent’s movements are shown by
red and green arrows, respectively.

to this knowledge. The baseline policy represents the best
results that could be achieved with no knowledge about
human intention and limited communication. 2) Distance-
based probabilistic policy [25], [28], which approximates
the likelihood of observing any data using a distance-based
measure (e.g., Euclidean) without accounting for the human
trajectory. Here, we measure the distance by employing
the closest human path from any given state to all sub-
tasks’ terminal states. 3) Non-communicative policy, which
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Fig. 2: The posterior distribution of human intentions for five subtasks computed by the proposed method.

assumes the agent makes isolated actions without accounting
for human intentions and decisions. Note that the non-
communicative policy can be obtained using a reinforcement
learning approach defined over the agent state and subtask
trackers.

Fig. 3: The average accumulated reward obtained by different
policies.

Fig. 1 represents the maze environment containing a single
agent and a human with 5 subtasks, indicated by 1 to 5.
The human and agent can be in one of the 32 possible
cells in the maze and can select one of the four possible
actions AA = AH = {Up, Down, Left, Right} at any given
state and at each step. The human and agent movements are
stochastic; they move to the state at the direction indicated
by the selected action with probability 0.95, and end up in
one of the cross perpendicular cells with 0.025 probability.
The cooperative reward function, according to the subtask
tracker, can be expressed as:

R(s, η,a,s′, η′) = 100 ∣∣η′ − η∣∣1 − 2, (19)

where performing each subtask has a reward of 100, and each
step delay has a reward of −2. Thus, the reward encourages
the agent and human to perform all subtasks as quickly as
possible. It should be noted that the proposed method is
capable of considering the priority of different subtasks by
using distinct rewards for each subtask.

The human is modeled using ϵ-greedy policy in (7), with
the confidence rate q = 0.8. For generating the optimal human
policy, the discount factor is set to γ = 0.95. All average
results are obtained using 100 independent runs with the
standard error mean represented by shadows.

In the first experiment, both the human and the agent start
at the same location on top of the maze, shown in Fig. 1.
The human moves in the environment with the intention

Fig. 4: The average KL-divergence of the true human intention
and the inferred posterior of human intentions.

of performing subtasks 2, 5, 3, and 4, respectively. The
agent movements under the proposed policy are shown in
Fig. 1. Fig. 2 represents the intention probabilities obtained
by the proposed policy, which is obtained using only human
movements. Initially, the human moves towards subtask 2,
which is evident from the higher intention probability for
subtasks 1 and 2 in the early steps. Upon completion of
subtask 2, the human shifts towards subtask 5, rather than
subtask 1, even though it is nearby. This behavior illustrates
the complexity of human behavior, influenced by factors such
as risk, capability, or other external information. One can
observe that the proposed method quickly adapts its policy
and moves toward subtask 1, as soon as it assigns high
probability to the human intention to perform subtask 5. This
adaptability in intention learning and decision-making helps
to prevent task duplication and facilitate cooperation, as it is
evident in the agents’ movements in Fig. 1 and the intention
probabilities in Fig. 2.

The average accumulated reward obtained by different
policies is presented in Fig. 3. The human and the agent
start from the same location, which is randomly selected
in different runs from all the states in the maze except the
terminal states. The order of the subtasks that the human
wants to perform is also generated randomly in each run. As
expected, the baseline yields the highest average accumulated
reward, as the agent can navigate optimally according to the
full knowledge of human intentions (i.e., perfect communi-
cation). The proposed policy yields the best results among
methods that do not rely on knowledge of human intention.
This demonstrates the capability of the proposed policy to
implicitly reason about human intention and incorporate it
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for effective and adaptable decision-making. A worse per-
formance can be seen under the non-communicative policy,
which is due to the inability of this policy to account for hu-
man intention. Finally, the distance-based probabilistic policy
has achieved better performance than the non-communicative
policy but worse than the proposed method. This is due
to the likelihood approximation and distance-based measure
employed by this policy, which makes it oblivious to the
relationship between intention and human trajectory.

Fig. 4 represents the average Kullback-Leibler (KL) di-
vergence between the true human intention and the inferred
posterior of human intention by the proposed policy and
distance-based probabilistic policy. Both methods exhibit a
large initial KL value in the early steps, due to the uniform
initial intention probabilities and the limited observed human
data. As more human data is observed, the KL divergence un-
der the proposed policy quickly approaches zero, indicating a
close match between the inferred and true human intentions.
However, the reduction in the KL value is slower under the
distance-based policy, indicating the challenge of capturing
the true human intention by this method.

Fig. 5: The average probability of the true human intention.

Fig. 5 represents the average probability of the true human
intention under the proposed policy and the distance-based
probabilistic policy, i.e., pk(i∗k), where i∗k is the true human
intention at time step k. A uniform initial intention proba-
bility has led to a small initial probability of the true human
intention by both methods at early steps. However, as more
data are observed, the proposed method has outperformed
the distance-based policy, and the true human intention has
quickly converged to one. This demonstrates the capability of
the proposed policy to better infer the true human intention
implicitly, without any communication or access to human
actions.

The impact of human confidence/rationality on the per-
formance of the proposed policy is also investigated. Fig. 6
shows the average accumulated reward upon termination of
all subtasks when the agent is guided by different policies
alongside the human with the following four confidence
rates: q = 1,0.8,0.6,0.4. The average accumulated reward
decreases for all policies as human confidence decreases. It
can be observed that the proposed policy performs similar
to the baseline in cases with large human confidence rates.

This can be justified given the fact that the intentions of
the confident human are more recognizable; as a human
becomes less confident, actions become less predictable, and
implicit reasoning about the human intention becomes more
challenging. In a particular case of q = 0.4, which represents
a low-confident human, the results of the proposed policy de-
cline sharply and approach those of the non-communicative
policy. The proposed policy outperforms the distance-based
probabilistic policy in all cases, demonstrating the superiority
of the proposed method in accurately capturing the human
intentions.

Fig. 6: The impact of human confidence/rationality on the perfor-
mance of the proposed policy.

VII. CONCLUSION

This paper presents a method for inferring high-level hu-
man intentions within a human-AI team. The objective is to
coordinate tasks among humans and AI agents, especially in
scenarios where limited or no communication exists among
them. Human is modeled as a sub-optimal reinforcement
learning agent, and a recursive statistical learning method
is introduced for implicit probabilistic reasoning of human
intentions. The quantified human knowledge is incorporated
into an active learning approach to allow the agent to make
effective decisions and coordinate tasks without duplicating
efforts. Numerical experiments demonstrate the efficacy of
the proposed method in coordinating tasks. Our future work
will focus on the scalability of the proposed framework to
multiple humans and multiple agents, as well as the extension
to partially observable environments.
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