
MOMENTS OF QUADRATIC TWISTS OF MODULAR

L-FUNCTIONS

XIANNAN LI

Abstract. We prove an asymptotic for the second moment of quadratic twists of a
modular L-function. This was previously known conditionally on GRH by the work
of Soundararajan and Young [22].

1. Introduction

1.1. Background and statement of results. Moments of L-functions are central
objects of study within analytic number theory. Generally, moments contain information
about the distribution of values of L-functions and thus are related to a multitude of
arithmetic objects. One particularly interesting family is that of quadratic twists of
modular L-functions. This family is studied for its own interest and for applications to
elliptic curves and coefficients of half integer weight modular forms.

To be more precise, let f be a modular form of weight » for the full modular group and
suppose that f is a Hecke eigenform. The results we describe below may be extended to
f of arbitrary level with some minor technical modifications. The L-function associated
with f is given by

Lps, fq �
¸
n

¼f pnq
ns

�
¹
p

�
1� ¼f ppq

ps
� 1

p2s


�1

,

for Re s ¡ 1, and can be analytically continued to the entire complex plane. Here ¼f pnq
are the Hecke eigenvalues with ¼f p1q � 1. The completed L-function is given by

Λf ps, fq �
�

1

2Ã


s

Γ

�
s� »� 1

2



Lps, fq,

and satisfies the functional equation

Λf ps, fq � i»Λp1� s, fq.
For d a fundamental discriminant, let Çdp�q �

�
d
�
�
denote the primitive quadratic

character with conductor |d|. Then f b Çd is a primitive Hecke eigenform of level |d|2,
with L-function given by

Lps, f b Çdq �
¸
n

¼f pnqÇdpnq
ns

�
¹
p

�
1� ¼f ppqÇdppq

ps
� Çdppq2

p2s


�1
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for Re s ¡ 1. The completed L-function is

Λps, f b Çdq �
� |d|
2Ã


s

Γ

�
s� »� 1

2



Lps, f b Çdq,

and satisfies the functional equation

(1.1) Λps, f b Çdq � i»ϵpdqΛp1� s, f b Çdq,
where ϵpdq � �

d
�1

� � �1 depending on the sign of d. Note that if i»ϵpdq � �1, then
Lp1{2, f b Çdq � 0.

We let
°* denote a sum over squarefree integers while

¸5
will denote a sum over

fundamental discriminants. For convenience, we restrict the modulus to be of the form
8d where d is odd and squarefree; one can study other discriminants using the same
methods. In this context, it is of high interest to understand moments of the form

Mpkq :�
¸*

0 8d X
pd,2q�1

Lp1{2, f b Ç8dqk.

Keating and Snaith [11] conjectured that

Mpkq � Cpk, fqXplogXq kpk�1q
2 ,

for an explicit constant Cpk, fq. Unconditionally, this was known for the first moment
k � 1 from Iwaniec’s work [8]. Further, based on knowledge of the twisted first moment,

Radziwill and Soundararajan [15] proved that Mpkq ! XplogXq kpk�1q
2 for 0 ¤ k ¤ 1.

The case k � 2 has proved more challenging. The work of Heath-Brown [5] im-
plies that Mp2q ! X1�ϵ. Assuming the Generalized Riemann Hypothesis (GRH), the
work of Soundararajan [20] implies that Mp2q ! XplogXq1�ϵ. Based on ideas from
[20], Soundararajan and Young [22] proved the conjectured asymptotic conditionally,
assuming GRH. Our main result below addresses this unconditionally.

Theorem 1.1. With notation as above, and for » � 0 mod 4¸*

0 8d X
pd,2q�1

Lp1{2, f b Ç8dq2 � CfX logX,

where

Cf � 2

Ã2
Lp1, sym2fq3H2p0, 0q,

where H2pu, vq is an absolutely convergent Euler product in the region Re u, v ¥ �1{4�ϵ,
defined as in Lemma 5.5.

If we include a smooth weight in the sum over d above, the result can be proven with
an error term of quality OpXplogXq1{2�ϵq and improved to OpXplogXqϵq with a little
effort. This is made explicit in §6. Of course, we can prove Theorem 1 with a saving
of a power of log with some care in the choice of smoothing function. It remains an
interesting open problem to prove the full formula with shifts, as that requires precision
on the scale of opXq.
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Our techniques extend to give the expected asymptotic for the fourth moment of
quadratic Dirichlet L-functions unconditionally. For this family, the first and second
moments were computed by Jutila [10], and the third moment by Soundararajan [19].
There were a number of refinements with improved error terms: on the first [23] and
third moments [24] by Young, the second moment by Sono [18] using similar methods,
and a further refinement of the third moment by Diaconu and Whitehead [1] explicating
a power saving secondary term. The fourth moment was computed assuming GRH by
Shen [16], following the approach of Soundararajan and Young [22]. We also mention
the recent work of Florea [2], which gives the expected asymptotic for the analogous
fourth moment over the function field Fqrxs (where the Riemann hypothesis is known)
with the base field Fq fixed and genus going to infinity. Starting with ideas from this
work, the fourth moment of quadratic Dirichlet L-functions over number fields has very
recently been computed by Shen and Stucky in [17].

Previously, the technique of Soundararajan and Young [22] was adapted by Petrow
[14] to prove asymptotics for moments of derivatives of quadratic twists of modular
L-functions, conditionally on GRH. One of Petrow’s results have been proven uncondi-
tionally by Kumar, Mallesham, Sharma and Singh [12] using the key Proposition 3.2 in
this paper.

As mentioned before, this family of L-functions has received special scrutiny because
of its connections to elliptic curves and half integer weight modular forms. Let md be
the order of vanishing of Lps, f b Ç8dq at s � 1{2. In the case when f corresponds to
an elliptic curve, the Birch and Swinnerton-Dyer conjecture relates md to the rank of
the twisted elliptic curve.

For ease of notation, let

RpXq �
¸*

0 8d X
pd,2q�1

md.

Goldfeld [4] proved that RpXq ! X conditionally on GRH. Trivially, RpXq ! X logX,
while the work of Perelli and Pomykala [13] gives the refined bound RpXq � opX logXq.
Our methods yield RpXq ! X log logX proceeding along the same lines; see Theorem
5 of [13] for more details.

1.2. Rough concept. We now briefly discuss the main ideas in the proof. In the rest
of the paper, we let

�
m
n

�
denote the usual Kronecker symbol. After an application of

the approximate functional equation, we morally need to understand sums like¸*

m�X

����� ¸
n!X

apnq
�m
n

	�����
2

,

where apnq � ¼f pnq?
n
. Standard tools like the functional equation and Poisson summation

are not useful in this range, but become useful in the easier range

(1.2)
¸*

m�X

������
¸

n!X{plogA Xq
apnq

�m
n

	������
2

,
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for some large A ¡ 0. Thus, the challenge is to bound sums of the form

S �
¸*

m�X

����� ¸
n�N

apnq
�m
n

	�����
2

,

when N is close to X. The influential work of Heath-Brown [5] implies that S ! X1�ϵ,
but we need a bound as strong as S ! XplogXq¶ for ¶   1 for our application. In fact
we will show that

(1.3)
¸*

m�X

����� ¸
n�N

apnq
�m
n

	�����
2

! X,

which is best possible up to the implied constant. Assuming (1.3), dyadic summation
for X

logA X
¤ N ! X gives the bound

¸*

m�X

������
¸

X{plogA Xq!n!X

apnq
�m
n

	������
2

! XplogXqϵ,

whence it suffices to study the easier quantity in (1.2).
This type of truncation strategy appeared in the work of Soundararajan [21], Soundarara-

jan and Young [22], and some later papers. The main difficulty is proving the bound
(1.3). Indeed the new content in the work of Soundararajan and Young [22] was the
implicit proof that

S ! XplogXq1{2�ϵ

conditionally on GRH. To be more precise, Soundararajan and Young do not explicitly
state this bound but rather proceed via conditional bounds on shifted moments instead,
which is in turn based on important ideas from the work of Soundararajan in [20].

Since the proof of (1.3) is the novel part of this work, we now give a sketch of the
approach. For simplicity, suppose that N � X. Now, fix a large parameter L, and write
for a prime p � ?

L

S �
¸*

m�X

����� ¸
n�X

apnq
�m
n

	�����
2

�
¸*

m�X

�������
¸
n�X
p∤n

apnq
�
mp2

n



�
¸
n�X
p|n

apnq
�m
n

	�������
2

.(1.4)

We may use the Hecke relation to handle the second sum. For this sketch, we focus on

the more illustrative first sum. Letting PpLq �
?
L

logL
be the number of primes in the

interval r?L, 2
?
Ls, we sum over all p P r?L, 2

?
Ls to see that

PpLqS !
¸

?
L¤p¤2

?
L

¸*

m�X

����� ¸
n�X

apnq
�
mp2

n


�����
2

� other

¤
¸

m�4XL

����� ¸
n�X

apnq
�m
n

	�����
2

� other.
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Here, we have used positivity and the fact that when m1 and m2 are squarefree,

(1.5) m1p
2
1 � m2p

2
2

only when p1 � p2 and m1 � m2. We have embedded our original sum over m into
a longer sum, so that it is now advantageous to execute Poisson over m. Note that
discarding the squarefree condition on m can be disastrous for arbitrary coefficients

apnq.1 We therefore expect to crucially use the special properties of apnq � ¼f pnq?
n
.

Opening up the square and applying Poisson summation roughly gives that¸
m�XL

����� ¸
n�X

apnq
�m
n

	�����
2

� CfXL� XL

2

¸
n1,n2�X

¼f pn1q¼f pn2q?
n1n2n1n2

¸
k�0

p�1qkGkpn1n2qW
�

kXL

2n1n2



,

for some constant Cf depending only on f , W a smooth function with rapid decay, and
where the Gauss-like sum Gkpn1n2q is defined in (2.1). The sum over k is essentially
restricted to k ! X2{XL � X{L, so we need to bound

XL

2

¸
k�X{L

¸
n1,n2�X

¼f pn1q¼f pn2q?
n1n2n1n2

Gkpn1n2q.(1.6)

Now we replace Gkpn1n2q by Çkpn1n2q?n1n2, which is generically true for n1n2 square-
free, and restrict our attention to squarefree k, so we hope to replace (1.6) by a quantity
like

XL

X

¸*

k�X{L

����� ¸
n�X

¼f pnqÇkpnq?
n

�����
2

,(1.7)

where we have replaced a factor 1?
n1n2

by its size of 1
X
. Since the conductor k � X{L

has been reduced, it now makes sense to apply the functional equation of Lps, f b Çkq
to transform the sum over n to a sum of length X{L2, which is shorter again than the
length of the sum over k by a factor of L. This suggests that we should succeed if
we continue this procedure by iteratively applying Poisson over k and the functional
equation over n.

The use of prime factors to inflate a sum in the context of a large sieve appeared
in the work of Forti and Viola [3] and notably in the work of Heath-Brown [5]. Our

specific coefficients apnq � ¼f pnq?
n

enboldens us to use prime squares, thereby discarding

primitivity in our character sum. The choice of prime squares has a number of advan-

tages. Indeed, to preserve our coefficients, it is important that
�

p2

n

	
is typically trivial.

Moreover, the uniqueness property from (1.5) allows us to avoid counting multiplicities

and thus avoids losing factors of logX. Here, the squarefree condition on
°*

m helps

1For instance, if apnq � 1?
n
, the contribution from the square values of m alone gives a contribution

" ?
MLX.
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rather than hinders. It guarantees uniqueness in (1.5) and we can entirely discard the
squarefree condition in our situation when convenient. One last important property we
use is that there are a large number of prime squares - the fact that the number of
primes in the interval r?L, 2

?
Ls is large serves to control the loss of constant factors

which accompany our arguments. This is crucial in our inductive step.
In this rough sketch, we have oversimplified many parts of the proof. One place

which is particularly egregious is the replacement of (1.6) by (1.7), since this glosses
over technical complications and hides an important structural feature. To see this, we
expect parts of (1.7) to resemble

L
¸*

k�X{L

������
¸

n�X{L2

¼f pnqÇkpnq?
n

������
2

� CX
¸

n1,n2�X{L2

n1n2�□

¼f pn1q¼f pn2q?
n1n2

� smaller term,

for some constant C. In other words, the ”diagonal” contribution arising from the
terms when n1n2 is a perfect square dominates. However, generically Gkpn1n2q � 0
when n1n2 is not squarefree, so that the same ”diagonal” contribution simply does not
exist in the sum (1.6). This is one of the underlying reason why it requires care and
dexterity to avoid losing factors of logX. In particular, careful analysis of the factors
at prime squares and higher powers is crucial. We refer the reader to §5 for a more
accurate picture.

Since we aim to prove the optimal bound (1.3), there are some uncommon features
in our proof. For instance, in order to control constants which depend on smooth test
functions, we prove our main Proposition 3.2 only for fixed smooth functions F and G.
These functions need to be chosen with some care in Lemma 2.7 and around (2.12). In

particular, the fact that pF is compactly supported and that G may be used to form a
dyadic partition of unity is quite useful in the proof.

In §2, we gather some basic results, and in §3, we state the main Propositions and
provide an outline of the rest of the paper.

Acknowledgement. I would like to thank J. Stucky, N. Ng, M. Young and the anony-
mous referee for helpful editorial remarks. This work was partially supported by Simons
Foundation Collaboration Grants 524790 and 962494, and NSF DMS-2302672.

2. Preliminary results

Here we gather some basic tools. First, we have the standard approximate functional
equation.

Lemma 2.1. For d a fundamental discriminant,

Lps, f b Çdq � Aps, dq � i»ϵpdq
� |d|
2Ã


1�2s
Γp1� sq
Γpsq Ap1� s, dq,
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where

Aps, dq �
¸
n¥1

¼f pnqÇdpnq
ns

Ws

�
n

|d|



and for any c ¡ 0,

Wspxq � 1

2Ãi

»
pcq

Γps� »�1
2
� wq

Γps� »�1
2
q p2Ãxq�w dw

w
.

We refer the reader to Theorem 5.3 of the Iwaniec and Kowalski’s book [9] for the
proof of Lemma 2.1. Now, we define the Gauss like sum

(2.1) Gkpnq �
�
1� i

2
�
��1

n



1� i

2


 ¸
a mod n

�a
n

	
e

�
ak

n



.

The sum Gkpnq appeared in the work of Soundararajan [19] and we record Lemma
2.3 from Soundararajan [19] below.

Lemma 2.2. For m,n relatively prime odd integers, Gkpmnq � GkpmqGkpnq, and for
p³}k (setting ³ � 8 for k � 0), then

Gkpp´q �

$''''''&''''''%

0, if ´ ¤ ³ is odd,

ϕpp´q, if ´ ¤ ³ is even,

�p³, if ´ � ³ � 1 is even,�
kp�³

p

	
p³
?
p, if ´ � ³ � 1 is odd,

0, if ´ ¥ ³ � 2.

As alluded to in §1.2, Gkpnq appears when applying Poisson summation as in Lemma
2.3 below.

Lemma 2.3. Let F be a Schwartz class function over the real numbers and suppose
that n is an odd integer. Then

(2.2)
¸
d

�
d

n



F

�
d

Z



� Z

n

¸
kPZ

Gkpnq qF�kZ

n



,

and

(2.3)
¸

pd,2q�1

�
d

n



F

�
d

Z



� Z

2n

�
2

n


¸
kPZ
p�1qkGkpnq qF�kZ

2n



,

where Gkpnq is defined as in (2.1), and the Fourier-type transform of F is defined to be

qF pyq � » 8

�8
pcosp2Ãxyq � sinp2ÃxyqqF pxqdx.

Further for F even and y � 0,

qF pyq � 2

» 8

0

F pxq cosp2Ãxyqdx(2.4)
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� 2

2Ãi

»
p1{2q

rF p1� sqΓpsq cos
�Ãs
2

	
p2Ã|y|q�sds,

while for F supported on r0,8q,
qF pyq � 1

2Ãi

»
p1{2q

rF p1� sqΓpsqpcos� sgnpyq sinq
�Ãs
2

	
p2Ã|y|q�sds,(2.5)

where rF psq � » 8

0

F pxqxsdx

x

is the usual Mellin transform of F .

Proof. The first assertions in (2.2) and (2.3) are contained in the proof of Lemma 2.6
of [19]. The assertion in (2.4) and (2.5) follows by Mellin inversion, and we refer the
reader to §3.3 of [22] for details. □

For F a Schwartz class function, we write the usual Fourier transform of F as

pF pyq � » 8

�8
ep�xyqF pxqdx.

Note that qF pxq � 1�i
2
pF pxq � 1�i

2
pF p�xq, and if F is even then qF � pF .

Applying Lemma 2.3 gives rise to the ”diagonal” contribution corresponding to k � 0
and the off-diagonal contribution. For convenience, we record some further calculations
here.

Lemma 2.4. Let Hpx, y, zq be a Schwartz class function on R3, H1py, zq �
³8
�8Hpx, y, zqdx,

and rHps, u, vq � » 8

0

» 8

0

» 8

0

Hpx, y, zqxsyuzv
dx

x

dy

y

dz

z
.

Let n1 and n2 be any odd positive integers. Then¸
d

�
d

n1n2



H

�
d

X
, n1, n2



� ¶□pn1n2qXH1pn1, n2q

¹
p|n1n2

�
1� 1

p



(2.6)

�X
¸
kPZ
k�0

Gkpn1n2q
n1n2

Ipk, n1, n2q,

and ¸
pd,2q�1

�
8d

n1n2



H

�
d

X
, n1, n2



� ¶□pn1n2qX

2
H1pn1, n2q

¹
p|n1n2

�
1� 1

p



(2.7)

� X

2

¸
kPZ
k�0

p�1qkGkpn1n2q
n1n2

Ipk, n1, n2q,
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where ¶□pnq � 1 when n is a perfect square and vanishes otherwise. Moreover, if
Hpx, y, zq is supported on R3

�, then

Ipk, n1, n2q � 1

p2Ãiq3
»
pϵq

»
pϵq

»
pϵq
rHp1�s, u, vqn�u

1 n�v
2

�
n1n2

ÃX|k|

s

Γpsqpcos� sgnpyq sinq
�Ãs
2

	
dudvds

and if Hpx, y, zq is supported on R� R2
�, with H even in x, then

Ipk, n1, n2q � 2

p2Ãiq3
»
pϵq

»
pϵq

»
pϵq
rHp1� s, u, vqn�u

1 n�v
2

�
n1n2

ÃX|k|

s

Γpsq cos
�Ãs
2

	
dudvds

Proof. Note that G0pn1n2q � ϕpn1n2q when n1n2 is a perfect square, and vanishes

otherwise. For n1n2 odd,
�

8d
n1n2

	
�
�

2
n1n2

	�
d

n1n2

	
. The lemma follows upon applying

Lemma 2.3 to the left side of (2.6) and (2.7) respectively and taking Mellin transforms
in other variables.

□

After applying Lemmas 2.3 and 2.4, we will be led to examine the Dirichlet series

(2.8) Zp³, ´, µq � Zp³, ´, µ; k1, qq �
¸
k2¥1

¸¸
pn1,2qq�1
pn2,2qq�1

¼f pn1q¼f pn2q
n³
1n

´
2k

2µ
2

Gk1k
2

2
pn1n2q

n1n2

.

The lemma below follows by examining local factors using Lemma 2.2. This is a slight
refinement of Lemma 3.3 of [22], and we provide a proof for the sake of completeness.

Lemma 2.5. Let k1 be squarefree. Let m � k1 if k1 � 1 mod 4 and m � 4k1 for
k1 � 2, 3 mod 4. Then

Zp³, ´, µq � Lp1{2� ³, f b ÇmqLp1{2� ´, f b ÇmqY p³, ´, µ; k1q,
for

Y p³, ´, µ; k1q � Z2p³, ´, µq
·p1� ³ � ´qLp1� 2³, sym2fqLp1� ³ � ´, sym2fqLp1� 2´, sym2fq ,

where Z2p³, ´, µq � Z2p³, ´, µ; k1, qq is analytic in the region Re ³, ´ ¥ �¶{2 and
Re µ ¥ 1{2 � ¶ for any 0   ¶   1{3. Moreover, in the same region, Z2p³, ´, µq ! dpqq
where the implied constant may depend only on ¶ and f .

Proof. By multiplicativity, we write

Zp³, ´, µ; k1, qq �
¹
p

Fppq,

where

Fppq �
¸

n1,n2,k2¥0

¼f ppn1q¼f ppn2q
pn1³pn2´p2k2µ

Gk1p
2k2 ppn1�n2q
pn1�n2

for p ∤ 2q, and

Fppq �
�
1� 1

p2µ


�1

,
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for p|2q. Let
Gpp, sq �

�
1� ¼f ppqÇk1ppq

ps
� Çk1ppq2

p2s


�1

,

where Çk1pnq �
�
k1
n

� � �
m
n

�
for all odd n. Further write Lps, sym2fq � °

n
Apnq
ns . Now

fix 0   ¶   1{3, and suppose that Re µ ¥ 1{2 � ¶ and Re ³,Re ´ ¥ �c for some
0   c ¤ ¶

2
¤ 1{6. Then for p|k1 and p ∤ 2q, we have

Fppq �
¸
k2¥0

1

p2k2µ

��� k2̧

h�0

ϕpp2hq
p2h

¸
i,j

i�j�2h

¼f ppiq¼f ppjq
pi³�j´

� 1

p

��� ¸
i,j

i�j�2k2�2

¼f ppiq¼f ppjq
pi³�j´

��

��


� 1� 1

p

�
¼f pp2q
p2³

� ¼f pp2q
p2´

� ¼f ppq2
p³�´



�O

�
1

p1�2¶�2c



�
�
1� Appq

p

�
1

p2³
� 1

p2´
� 1

p³�´



� 1

p1�³�´
�O

�
1

p3{2�3c




�O

�
1

p1�2¶�2c



When p ∤ 2qk1, we have that

Fppq �
¸
k2¥0

1

p2k2µ

��� k2̧

h�0

ϕpp2hq
p2h

¸
i,j

i�j�2h

¼f ppiq¼f ppjq
pi³�j´

� Çk1ppq?
p

��� ¸
i,j

i�j�2k2�1

¼f ppiq¼f ppjq
pi³�j´

��

��


� 1� ¼f ppqÇk1ppq?
p

�
1

p³
� 1

p´



�O

�
1

p1�2¶�2c



� Gpp, 1{2� ³qGpp, 1{2� ´q

�
�
1� Appq

p

�
1

p2³
� 1

p2´
� 1

p³�´



� 1

p1�³�´
�O

�
1

p3{2�3c




�O

�
1

p1�2¶�2c



.

Since c   1{6, ¹
p|2q

�
1� C0

p1{2�c



! dpqq

for any constant C0. □

One of our basic tools will be to apply the functional equation directly. This is done
in the lemma below.

Lemma 2.6. For m a fundamental discriminant, and G any Schwartz class function,¸
n

¼f pnq
n1{2�z

�m
n

	
G
� n

N

	
� i»ϵpmq

�
2Ã

|m|

2z¸

n

¼f pnq
n1{2�z

�m
n

	

(

G z

�
4Ã2nN

|m|2


,(2.9)

where

(

Gpxq � 1

2Ãi

»
p2q

Γ
�
s� z � »

2

�
Γ
��s� z � »

2

�x�s rGp�sqds,
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and where the root number i»ϵpmq is as in (1.1).

Proof. Let c � |Re pzq| � 1. For rG the Mellin transform of G, we have¸
n

¼f pnq
n1{2�z

�m
n

	
G
� n

N

	
� 1

2Ãi

»
pcq

Lp1{2� z � s, f b ÇmqN s rGpsqds.
Now, shifting the contour of integration to the line Re s � �c, applying the functional
equation (1.1) for Lp1{2� z � s, f b Çmq and a change of variables gives¸

n

¼f pnqÇmpnq?
n

G
� n

N

	
� i»ϵpmq

2Ãi

»
p�cq

� |m|
2Ã


�2ps�zqΓ
�
1
2
� s� z � »�1

2

�
Γ
�
1
2
� s� z � »�1

2

�Lp1{2� s� z, f b ÇmqN s rGpsqds
� i»ϵpmq

2Ãi

»
pcq

� |m|
2Ã


2s�2z Γ
�
s� z � »

2

�
Γ
��s� z � »

2

�Lp1{2� s� z, f b ÇmqN�s rGp�sqds
� i»ϵpmq

�
2Ã

|m|

2z¸

n

¼f pnqÇmpnq
n1{2�z

(

G

�
4Ã2nN

|m|2


,

as desired. □

In applications of Lemma 2.6, we will be interested in understanding the modulus of
the quantity in (2.9), and hence may neglect the root number since |i»ϵpmq| � 1. For

gpsq � Γ
�
s� »

2

�
Γ
��s� »

2

� ,
and s � Ã � it with Ã ¡ 0, Stirling’s formula implies that (see e.g. §5.A.4 [9])

(2.10) gpsq ! p1� |t|q2Ã.
This gives the estimate

(2.11)

(

G itpxq !A

�p1� |t|q2
1� x


A

for any A ¡ 0 upon shifting contours to the right.
It will considerably simplify parts of our argument to use the test function discussed

in the lemma below.

Lemma 2.7. Let c0 and c1 be any fixed positive real numbers. Then there exists a smooth
non-negative even Schwartz class function F such that F pxq ¥ 1 for all x P r�c1, c1s
and pF pxq is even and compactly supported on r�c0, c0s. It follows that qF pxq is also even
and compactly supported on r�c0, c0s.
Proof. We let h0 be a smooth even non-negative function compactly supported on
r�c0{2, c0{2s, and let h � h0 � h0, so that h is smooth, even, non-negative and sup-

ported on r�c0, c0s. Let g � ph so for h0 not identically 0, hp0q ¡ 0, and gp0q ¡ 0 also.
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Since g is non-negative, even and Schwartz class, setting F pxq � C1gpC2xq for some
constants C1 and C2 ¤ 1 produces the desired function. □

We now let G be a smooth real-valued function compactly supported on r3{4, 2s which
satisfies

Gpxq � 1 for all x P r1, 3{2s
Gpxq �Gpx{2q � 1 for all x P r1, 3s.(2.12)

This may be done by starting with Gpxq defined appropriately on p�8, 3{2s, and then
letting Gpxq � 1 � Gpx{2q on p3{2, 2s, using that G is already defined on r3{4, 1s.
Functions like G appear in standard constructions of partitions of unity and we refer
the reader to Warner’s book [25] for more details. It is straightforward to verify that

Gpxq �Gpx{2q � ...�Gpx{2Jq � 1

for x P r1, 3 � 2J�1s and is supported on r3{4, 2J�1s. We fix, once and for all, a function
G with the properties above.

3. Main Propositions

First, we let L0 ¥ 100 be a sufficiently large constant satisfying that the number of

primes in the interval r?L,
?
2Ls exceeds

?
L

2 logL
for all L ¥ L0. Recall that

¸5
denotes

a sum over fundamental discriminants. For convenience, we further let

SpM,N, tq �
¸

M¤|m| 2M

�����¸
n

¼f pnq
n1{2�it

G
� n

N

	�m
n

	�����
2

,

and

S5pM,N, tq �
¸5

M¤|m| 2M

�����¸
n

¼f pnq
n1{2�it

G
� n

N

	�m
n

	�����
2

,

for the fixed G defined in (2.12). We record our inflation lemma below.

Lemma 3.1. Let L1 ¥ L0 and p be any odd prime. With notation as above we have,

SpM,N, tq ! Spp2M,N, tq � 1

p
SpM,N{p, tq � 1

p2
SpM,N{p2, tq,

and

S5pM,N, tq

! logL1?
L1

��SpML1, N, tq � Sp2ML1, N, tq �
¸

?
L1¤p¤?2L1

�
S5pM,N{p, tq

p
� S5pM,N{p2, tq

p2


�
,
where the implied constants are absolute and in particular do not depend on L1.

Next, we state our key Proposition.
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Proposition 3.2. For M,N ¥ 1 and notation as above, there exists a constant L ¥ L0

depending only on f such that

S5pM,N, tq ¤ L2{3p1� |t|q2pM �N logp2�N{Mqq.
We have made no attempt to optimize the dependence on t in Proposition 3.2. When

N is large, applying the functional equation gives a superior bound - see Lemma 5.3
for details. We have stated Proposition 3.2 with a factor of L2{3 as the quantity L will
occur naturally in the proof when applying Lemma 3.1.

3.1. Notation. We will be using an inductive argument to prove Proposition 3.2, so it
is important to ensure that our constant L does not increase with each inductive step.
In what follows, we use the standard big-O and Vinogradov notation with our implied
constants never dependent on L.

3.2. Outline. Lemma 3.1 will be proven in §4. The bulk of the work goes towards
proving Proposition 3.2, which is done in §5. Finally, the remaining details of the proof
of Theorem 1.1 based on Proposition 3.2 are provided in §6.

4. Proof of Lemma 3.1

We write for any odd prime p,�����¸
n

¼f pnq
n1{2�iu

G
� n

N

	�m
n

	�����
2

�

�������
¸
n
p∤n

¼f pnq
n1{2�iu

�
mp2

n



G
� n

N

	
�
¸
p|n

¼f pnq
n1{2�iu

�m
n

	
G
� n

N

	�������
2

¤ 2

�����¸
n

¼f pnq
n1{2�iu

�
mp2

n



G
� n

N

	�����
2

� 2¶pp ∤ mq
�����¸
n

¼f pnpq
pnpq1{2�iu

�m
n

	
G
�np
N

	�����
2

,(4.1)

where ¶pp ∤ mq � 1 if p ∤ m and vanishes otherwise. We have also suppressed the

condition p ∤ n in the first sum, since
�

mp2

n

	
� 0 otherwise. By Hecke multiplicativity,

¼f pnpq � ¼f pnq¼f ppq�¶pp|nq¼f pn{pq where ¶pp|nq � 1 when p|n and vanishes otherwise.
Hence,

�����¸
n

¼f pnpq
pnpq1{2�iu

�m
n

	
G
�np
N

	�����
2

¤ 2|¼f ppq|2
p

�����¸
n

¼f pnq
n1{2�iu

�m
n

	
G
�np
N

	�����
2

� 2

p2

�����¸
n

¼f pnq
n1{2�iu

�m
n

	
G

�
np2

N


�����
2

.

(4.2)

By (4.1) and (4.2), we conclude

SpM,N, uq ! Spp2M,N, uq � 1

p
SpM,N{p, uq � 1

p2
SpM,N{p2, uq,

which proves the first claim.
Further, by (4.1) and (4.2),
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¸
?
L1¤p¤?2L1

S5pM,N, uq !
¸

?
L1¤p¤?2L1

¸5

M¤|m|¤2M

�����¸
n

¼f pnq
n1{2�iu

G
� n

N

	�mp2

n


�����
2

�
¸

?
L1¤p¤?2L1

�
S5pM,N{p, uq

p
� S5pM,N{p2, uq

p2




!
¸

ML1¤|m| 4ML1

�����¸
n

¼f pnq
n1{2�iu

G
� n

N

	�m
n

	�����
2

�
¸

?
L1¤p¤?2L1

�
S5pM,N{p, uq

p
� S5pM,N{p2, uq

p2



.

In the last line, we have used that when m1 and m2 are fundamental discriminants,
m1p

2
1 � m2p

2
2 for odd primes p1, p2 only if p1 � p2. This is because mi is either

squarefree or is four times a squarefree number. For L1 ¥ L0, the number of primes in

the interval r?L1,
?
2L1s is ¥

?
L1

2 logL1

, and the second claim follows.

5. Proof of Proposition 3.2

We proceed by induction on M . The simple lemma below will suffice for our base
case.

Lemma 5.1. For G the fixed function from (2.12), N ¡ 0, and m a fundamental
discriminant, �����¸

n

¼f pnq
n1{2�it

G
� n

N

	�m
n

	����� !aN0 logpN0 � 2q.

where

N0 � min

�
N,

|m|2p1� |t|q2
N



¤ |m|p1� |t|q,

and the implied constant is absolute.

Proof. Note that¸
n

���� ¼f pnq
n1{2�it

G
� n

N

	�m
n

	���� ! ¸
3N{4¤n¤2N

dpnq?
n
!
?
N logpN � 2q.

Let N1 � |m|2p1�|t|q2
N

. When N ¥ |m|p1� |t|q, we apply Lemma 2.6 to see that�����¸
n

¼f pnq
n1{2�it

G
� n

N

	�m
n

	����� ¤
�����¸
n

¼f pnq
n1{2�it

(

G it

�
4Ã2nN

|m|2

�m

n

	�����
!
¸

n¤N1

dpnq
n1{2 �

¸
n¡N1

dpnq
n1{2

�
N1

n


2

,
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by (2.11) with A � 2. The above is ! ?
N1 logpN1 � 2q which suffices. □

Lemma 5.1 implies that

S5pM,N, tq !M2p1� |t|q log2pMp1� |t|q � 2q !M2p1� |t|q2 log2pM � 2q
where the implied constant C 1 is absolute. Thus the base case M ¤ M0 is trivially
true provided that L2{3 ¥ C 1M0 log

2pM0 � 2q. For some fixed M1 ¥ M0, our induction
hypothesis is that for any M ¤M1 that

(5.1) S5pM,N, tq ¤ L2{3p1� |t|q2pM �N logp2�N{Mqq,
and we now proceed to prove (5.1) for M fixed with M1  M ¤M1 � 1.
It will be convenient to proceed by a nested induction argument. To be precise, we

proceed by induction on N . Note that the base case N ¤ 2 is trivial. For clarity, let
us note that our second induction hypothesis is that (5.1) holds for our fixed M , any
|t| and all N ¤ N1 for some N1 ¥ 2. We now fix some N with N1   N ¤ N1 � 1. We
want to prove (5.1) for our fixed N and M .
We first record the following simple lemma. In what follows, we will use the inequal-

ities in the lemma without further explanation.

Lemma 5.2. For any complex numbers a, b we have that

(1) p1� |a|qp1� |b|q ¥ 1� |a| � |b|.
(2) If |a|, |b| " 1, then |a||b| " |a| � |b|.
(3) p1� |a|qp1� |b� a|q ¥ 1� |b|.

Proof. The first statement is clear, and the second statement follows from the first. For
the third, we note that p1 � |a|qp1 � |b � a|q ¥ 1 � |a| � |b � a| ¥ 1 � |b| by triangle
inequality. □

The bound in (5.1) becomes ineffectual when N is very large compared to M . The
lemma below rectifies that situation and will be the form of the induction hypothesis
we most often use.

Lemma 5.3. Suppose that (5.1) holds for all M ¤ M1 and all N and t. Then we also
have that there exists some constant C 1 depending only on f such that

(5.2) S5pM,N, tq ¤ C 1L2{3p1� |t|q3M logp2� |t|q
for all M ¤M1 and all N and t.

Proof. If N ¤ Mp1 � |t|q, then (5.2) follows immediately from (5.1). Now suppose
N ¡Mp1� |t|q, and apply Lemma 2.6 so that

S5pM,N, tq �
¸5

M¤|m| 2M

�����¸
n

¼f pnq
n1{2�it

(

G it

�
4Ã2nN

|m|2

�m

n

	�����
2

.

We have that¸
n

¼f pnq
n1{2�it

(

G it

�
4Ã2nN

|m|2

�m

n

	
(5.3)
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� 1

2Ãi

»
pcq

� |m|
2Ã


2s Γ
�
s� it� »

2

�
Γ
��s� it� »

2

� ¸
n

¼f pnq
n1{2�it�s

�m
n

	
N�s rGp�sqds

�
¸d

N0

1

2Ãi

»
pcq

� |m|
2Ã


2s Γ
�
s� it� »

2

�
Γ
��s� it� »

2

� ¸
n

¼f pnq
n1{2�it�s

�m
n

	
G

�
n

N0



N�s rGp�sqds,

where
¸d

N0

denotes a dyadic sum over N0 � 2l for integer l ¥ 1. Now we let

(5.4) V pxq � Gp2xq �Gpxq �Gpx{2q
for the same fixed G so that V pxq � 1 on r3{4, 2s. Hence¸

n

¼f pnq
n1{2�it�s

�m
n

	
G

�
n

N0



(5.5)

� 1

2Ãi

»
pϵq

¸
n

¼f pnq
n1{2�it�s

�m
n

	
V

�
n

N0


�
N0

n


w rGpwqdw
� 1

2Ãi

»
pϵq

¸
n

¼f pnq
n1{2�it�u

�m
n

	
V

�
n

N0



Nu�s

0
rGpu� sqdu,

using a change of variables u � s� w.

For convenience, let N1 � M2p1�|t|q2
N

. When N0 ¤ N1, we move the contour of inte-
gration in s to Re s � �1, and when N0 ¡ N1, we move to Re s � 4. In both cases,

we also move the integration in u to Re u � 0. Using that rGpsq ! 1
p1�|s|q10 , (2.10) and

Lemma 5.2, we see that the quantity in (5.3) is bounded by Rp¤ N1q �Rp¡ N1q where

Rp¤ N1q �
¸d

N0¤N1

»
p�1q

�
NN0

M2p1� |t|q2

»

p0q

�����¸
n

¼f pnq
n1{2�it�u

�m
n

	
V

�
n

N0


����� 1

|s|8|u� s|10duds

!
¸d

N0¤N1

N0

N1

»
p0q

�����¸
n

¼f pnq
n1{2�it�u

�m
n

	
V

�
n

N0


����� du

p1� |u|q6 ,

and similarly,

Rp¡ N1q !
¸d

N0¡N1

�
N1

N0


4 »
p0q

�����¸
n

¼f pnq
n1{2�it�u

�m
n

	
V

�
n

N0


����� du

p1� |u|q6 .

By Cauchy-Schwarz, the definition of V from (5.4) and the assumption of (5.1), the
contribution of Rp¤ N1q to S5pM,N, tq is

!
¸d

N0¤N1

N0

N1

»
p0q

¸5

M¤|m| 2M

�����¸
n

¼f pnq
n1{2�it�u

�m
n

	
V

�
n

N0


�����
2

du

p1� |u|q6

¤ L2{3 ¸d

N0¤N1

N0

N1

»
p0q
p1� |u| � |t|q2pM �N0 logp2�N0{Mqq du

p1� |u|q6
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! L2{3p1� |t|q2
¸d

N0¤N1

N0

N1

»
p0q
pM �N0 logp2�N0{Mqq du

p1� |u|q4

! L2{3p1� |t|q2pM �N1 logp2�N1{Mqq,
where the implied constant is absolute.

Similarly, the contribution of Rp¡ N1q to S5pM,N, tq is

! L2{3p1� |t|q2
¸d

N0¡N1

�
N1

N0


4 »
p0q
pM �N0 logp2�N0{Mqq du

p1� |u|q4

! L2{3p1� |t|q2pM �N1 logp2�N1{Mqq,
where the implied constant is absolute. Here we have used that N1

N0

logp2 � N0{Mqq !
logp2 � N1{Mq for N1 ¡ N0. Since N ¡ Mp1 � |t|q, N1   Mp1 � |t|q, and the lemma
follows. □

Remark 1. The proof of the lemma above is involved because we have fixed the function
G inside the induction hypothesis (5.1), so it takes some effort to reduce the quantity
in (5.3) to a suitable form. This was done so that we do not need to keep track of
constants which depend on our fixed G in our future arguments.

Now, let

L2 � max

�
Lp1� |t|q3

�
N

M


2

,Lp1� |t|q3
�
,

and

X � L2M,

where recall that L is as in Proposition 3.2 and satisfies

L ¥ L0 ¥ 100

for convenience. For clarity, we record the following useful bounds.

Lemma 5.4. With notation as above, we have that

logL2?
L2

X ! pM �N logp2�N{MqqL3{5p1� |t|q7{4,
where the implied constant is absolute. Moreover,

N2

X
¤ M

Lp1� |t|q3 .

Proof. Suppose L2 � Lp1� |t|q3 so that N ¤M , whence

N2

X
¤ M

Lp1� |t|q3 .

Also in this case, we have that logL2?
L2

X �M
?
Lp1� |t|q3{2 logpLp1� |t|q3q ! L3{5Mp1�

|t|q7{4.
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In the complementary case when L2 � Lp1� |t|q3�N
M

�2
, we have that

N2

X
� N2

L2M
� M

Lp1� |t|q3 .

Also,

logL2?
L2

X �
?
Lp1� |t|q3{2N logL2

! L3{5p1� |t|q7{4N logp2�N{Mq.
□

Applying Lemma 3.1 with L2, we have that

S5pM,N, tq

(5.6)

! logL2?
L2

��SpX,N, tq � Sp2X,N, tq �
¸

?
L2¤p¤?2L2

�
S5pM,N{p, tq

p
� S5pM,N{p2, tq

p2


�

! logL2?

L2

�
SpX,N, tq � Sp2X,N, tq � L2{3pM �N logp2�N{Mqqp1� |t|q2�,

where the implied constant depends only on f and where we have applied the induction
hypothesis in N to see that¸

?
L2¤p¤?2L2

�
S5pM,N{p, tq

p
� S5pM,N{p2, tq

p2



! L2{3pM �N logp2�N{Mqqp1� |t|q2

¸
?
L2¤p¤?2L2

1

p

! L2{3pM �N logp2�N{Mqqp1� |t|q2.
We also have

SpX,N, tq � Sp2X,N, tq �
¸

X¤|m| 4X

�����¸
n

¼f pnq
n1{2�it

G
� n

N

	�m
n

	�����
2

!
¸
k¥0

k � 1

2k{2
¸

X¤|m| 4X

������
¸

pn,2q�1

¼f pnq
n1{2�it

G

�
n2k

N


�m
n

	������
2

,

by Hecke multiplicativity and Cauchy-Schwarz. We now aim to show that

(5.7) S :�
¸

X¤|m| 4X

������
¸

pn,2q�1

¼f pnq
n1{2�it

G
� n

N

	�m
n

	������
2

! Xp1� |t|q1{4 � L2{3Np1� |t|q3�2{5.
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Before proceeding to the proof of (5.7), we first verify that this suffices for Propo-
sition 3.2. Indeed, applying (5.7) with N{2k in place of N immediately implies that
SpX,N, tq � Sp2X,N, tq ! Xp1� |t|q1{4 �L2{3Np1� |t|q2{5. Combining this with (5.6),
we have that there exists some constants C1, C2 dependent only on f such that

S5pM,N, tq ¤ C1 logL2?
L2

�
Xp1� |t|q1{4 � L2{3Np1� |t|q3�2{5 � L2{3pM �N logp2�N{Mqqp1� |t|q2�

¤ C2
�
L3{5�2{3 � L�1{3�L2{3p1� |t|q2pM �N logp2�N{Mqq

¤ L2{3p1� |t|q2pM �N logp2�N{Mqq,
upon choosing L sufficiently large compared to C2. To derive the second line, we have
used Lemma 5.4 to bound logL2?

L2

X and that logL2?
L2

! 1
L1{3p1�|t|q1�2{5 when L2 ¥ Lp1� |t|q3.

Now we proceed to prove (5.7). First, we fix F to be a function satisfying the
conditions in Lemma 2.7 with

(5.8) c0 � 1{16 and c1 � 4

Then by positivity,

S ¤
¸
m

F
�m
X

	������
¸

pn,2q�1

¼f pnq
n1{2�it

G
� n

N

	�m
n

	������
2

� pF p0qX ¸¸
n1n2�□

pn1n2,2q�1

¼f pn1q¼f pn2q
n
1{2�it
1 n

1{2�it
2

¹
p|n1n2

�
1� 1

p



G
�n1

N

	
G
�n2

N

	
(5.9)

�X
¸
k�0

¸¸
n1,n2

pn1n2,2q�1

¼f pn1q¼f pn2q
n
1{2�it
1 n

1{2�it
2

Gkpn1n2q
n1n2

qF� kX

n1n2



G
�n1

N

	
G
�n2

N

	
,

by Lemma 2.4, and where

qF� kX

n1n2



� 2

p2Ãiq
»
pϵq
rF p1� sq

�
n1n2

2ÃX|k|

s

Γpsq cos
�Ãs
2

	
ds,(5.10)

since F is even. The following lemma helps us understand the diagonal contribution.

Lemma 5.5. Let

(5.11) G1pu, vq �
¸¸
n1n2�□

pn1n2,2q�1

¼f pn1q¼f pn2q
n
1{2�u
1 n

1{2�v
2

¹
p|n1n2

�
1� 1

p



,

and

G2pu, vq �
¸¸
n1n2�□

2∤n1n2

¼f pn1q¼f pn2q
n
1{2�u
1 n

1{2�v
2

¹
p|n1n2

�
1� 1

p� 1



.

Then, for i � 1, 2, we have

Gipu, vq � ·p1� u� vqLp1� 2u, sym2fqLp1� 2v, sym2fqLp1� u� v, sym2fqHipu, vq
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where Hipu, vq converges absolutely in the region Re u, v ¥ �1{4� ϵ.

Proof. We prove the assertion for G1, the case for G2 being essentially the same. We
have that

G1pu, vq �
¹
p¡2

�
1�

�
1� 1

p


� 8̧

k�1

¸
i�j�2k

¼f ppiq¼f ppjq
pip1{2�uqpjp1{2�uq

��
,

and the assertion follows upon noting that for Re u, v ¥ �1{4� ϵ,¸
k¥1

¸
i�j�2k

¼f ppiq¼f ppjq
pip1{2�uqpjp1{2�uq �

¼f pp2q
p1�2u

� ¼f pp2q
p1�2v

� ¼f ppq2
p1�u�v

�O

�
1

p1�4ϵ



.

□

By Mellin inversion and (5.11), the first term in (5.9) is

pF p0qX 1

p2Ãiq2
»
pϵq

»
pϵq

G1pu� it, v � itq rGpuq rGpvqNu�vdudv,

for any 1{16 ¡ ϵ ¡ 0. By Lemma 5.5, moving the contour in u to Re u � �2ϵ picks up
a pole at u � �v and gives that the above is

! XN�ϵp1� |t|q4ϵ �X

»
pϵq
|Lp1� 2v � 2it, sym2fqLp1� 2v � 2it, sym2fq rGp�vq rGpvq|dv

! Xp1� |t|q1{4,
(5.12)

where the implied constant depends only on f . In the above, we have used the standard
convexity estimate LpÃ � it, sym2fq ! p1 � |t|q 3

2
p1�Ãq�ϵ for 0 ¤ Ã ¤ 1. It remains to

similarly bound the contribution of k � 0 in (5.9), which we examine in the Proposition
below.

Proposition 5.6. Let

T �
¸
k�0

¸¸
n1,n2

pn1n2,2q�1

¼f pn1q¼f pn2q
n
1{2�it
1 n

1{2�it
2

Gkpn1n2q
n1n2

qF� kX

n1n2



G
�n1

N

	
G
�n2

N

	
.

Then

T ! L2{3N
X
p1� |t|q3�2{5,

where the implied constant may depend only on f .

Note that Proposition 5.6, (5.9) and (5.12) immediately implies (5.7). We prove
Proposition 5.6 below.
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5.1. Proof of Proposition 5.6. By (5.8), qF is supported on r�1{16, 1{16s while G is
supported on r3{4, 2s so that the range for k in T is restricted to

|k| ¤ n1n2

16X
¤ 1

4

N2

X
.

For convenience, we let

(5.13) K � N2

4X
.

Further, we write k � k1k
2
2, where k1 is squarefree, and k2 is positive. Using (5.10)

to separate variables inside qF and the usual Mellin inversion on G we have that

T � 2

p2Ãiq3
»
p1q

»
p2q

»
p2q

�
1

2ÃX|k1|

s rF p1� sqΓpsq cos

�Ãs
2

	 rGpuq rGpvq
�
¸*

|k1|¤K

Zp1{2� it� u� s, 1{2� it� v � s, s; k1, 1qNu�vdudvds,

where recall from (2.8) and Lemma 2.5 that

Zp³, ´, µq � Zp³, ´, µ; k1, qq �
¸
k2¥1

¸¸
pn1,2qq�1
pn2,2qq�1

¼f pn1q¼f pn2q
n³
1n

´
2k

2µ
2

Gk1k
2

2
pn1n2q

n1n2

� Lp1{2� ³, f b ÇmqLp1{2� ´, f b ÇmqY p³, ´, µ; k1q,
where m � mpk1q is the fundamental discriminant satisfying

m �
#
k1 if k1 � 1 mod 4

4k1 if k1 � 2, 3 mod 4.

We may write a multiple Dirichlet series for Y of the form

Y p³, ´, µ; k1q �
¸

r1,r2,r3

Cpr1, r2, r3q
r³1 r

´
2 r

2µ
3

,

since Z is visibly of this form. Thus,

Zp³, ´, µq �
¸

r1,r2,r3

Cpr1, r2, r3q
r³1 r

´
2 r

2µ
3

¸
n1

¼f pn1qÇmpn1q
n
1{2�³
1

¸
n2

¼f pn2qÇmpn2q
n
1{2�´
2

,

so

1

p2Ãiq2
»
p2q

»
p2q

Zp1{2� it� u� s, 1{2� it� v � s, sqNu�v rGpuq rGpvqdudv
�
¸d

R1,R2

¸
r1,r2,r3

Cpr1, r2, r3q
r
1{2�it�s
1 r

1{2�it�s
2 r2s3

G

�
r1

R2



G

�
r2

R2


¸¸
n1,n2

¼f pn1qÇmpn1q
n1�it�s
1

¼f pn2qÇmpn2q
n1�it�s
2

� V

�
n1R1

N



V

�
n2R2

N



G
�r1n1

N

	
G
�r2n2

N

	
,
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where we have applied a partition of unity to the sum over r1, r2. To be more specific¸d

R1,R2

denotes a sum over Ri � 2k for k ¥ 0. Since G
�
rini

N

�
restricts 3

4
N
ri
¤ ni ¤ 2N

ri

while G
�

ri
Ri

	
restricts 3

4
Ri ¤ ri ¤ 2Ri, the above holds for any V which is identically 1

on r9{16, 4s. We set

V pxq � Gpx{4q �Gpx{2q �Gpxq �Gp2xq,
where G is our fixed function satisfying (2.1) so that V is identically 1 on r1{2, 6s.

We once again apply Mellin inversion to separate variables inside G
�
r1n1

N

�
G
�
r2n2

N

�
, so

that

T �
¸d

R1,R2

2

p2Ãiq3
»
p1q

»
p2q

»
p2q

�
1

2ÃX|k1|

s rF p1� sqΓpsq cos

�Ãs
2

	 rGpuq rGpvq
�
¸*

|k1|¤K

¸
r1,r2,r3

Cpr1, r2, r3q
r
1{2�it�s�u
1 r

1{2�it�s�v
2 r2s3

G

�
r1

R2



G

�
r2

R2


¸¸
n1,n2

¼f pn1qÇmpn1q
n1�it�s�u
1

� ¼f pn2qÇmpn2q
n1�it�s�v
2

V

�
n1R1

N



V

�
n2R2

N



Nu�vdudvds.

We now change variables u� s to u and v� s to v. Recalling the definition of V as a
finite sum of values of G and shifting contours, we have that T is a finite sum of terms
of the form¸d

R1,R2

2

p2Ãiq3
»
p3{5q

»
p�1{2q

»
p�1{2q

�
1

ÃX


s rF p1� sqΓpsq cos
�Ãs
2

	
�
¸*

|k1|¤K

1

|k1|s
¸

r1,r2,r3

Cpr1, r2, r3q
r
1{2�u�it
1 r

1{2�v�it
2 r2s3

G

�
r1

R1



G

�
r2

R2


¸
n1

¼f pn1qÇk1pn1q
n1�u�it
1

¸
n2

¼f pn2qÇk1pn2q
n1�v�it
2

�G

�
n1

N1



G

�
n2

N2



Nu�v�2s rGpu� sq rGpv � sqdudvds,

(5.14)

where Ni � N{Ri. We have separated the variables ri from ni. We bound the sum over
ri in the lemma below.

Lemma 5.7. Suppose Re s ¥ 3{5 and write u � �1{2� iµ, v � �1{2� i¿ for real µ, ¿.
We have that����� ¸
r1,r2,r3

Cpr1, r2, r3q
r
1{2�u�it
1 r

1{2�v�it
2 r2s3

G

�
r1

R1



G

�
r2

R2


����� ! p1�|t|q1{5p1�|µ|qp1�|¿|q expp�c1
a
logpR1R2qq

where the implied constant and c1 ¡ 0 may depend only on f .

Proof. We first quote the standard zero free region and lower bound for Lps, sym2fq.
There exists a positive constant c depending only on f such that for s � Ã � it, there
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are no zeros 2 of Lps, sym2fq in the region

(5.15) Ã ¥ 1� c

logp2� |t|q .

We refer the reader to Theorem 5.42 of [9] for the proof. Further, in the same region,
we have the bound

(5.16) Lps, sym2fq "f

1

log2p2� |t|q ,

where the implied constant depends only on f . This follows from the bound Lps, f �
fq "f

1
logp2�|t|q due to Humphries and Brumley [7], and the classical bound ·psq !

logp2�|t|q. For notational convenience, we have assumed that the same zero free region
and the aforementioned bounds holds true with ·psq and Lps, f � fq in the same region
as in (5.15). We further assume that the classical bound

·psq " 1

logp2� |t|q
holds in the region (5.15).

By Mellin inversion,¸
r1,r2,r3

Cpr1, r2, r3q
r
1{2�u�it
1 r

1{2�v�it
2 r2s3

G

�
r1

R1



G

�
r2

R2



� 1

p2Ãiq2
»
p0q

»
p0q

Y pipµ� tq � É1, ip¿ � tq � É2, sqRÉ1

1 RÉ2

2
rGpÉ1q rGpÉ2qdÉ1dÉ2.(5.17)

By Lemma 2.5

Y pipµ� tq � É1, ip¿ � tq � É2, sq
� Z2pipµ� tq � É1, ip¿ � tq � É2, sq·p1� ipµ� ¿q � É1 � É2q�1

� Lp1� ipµ� ¿q � É1 � É2, sym
2fq�1Lp1� 2ipµ� tq � 2É1, sym

2fq�1Lp1� 2ip¿ � tq � 2É2, sym
2fq�1,

where Z2pipµ� tq �É1, ip¿ � tq �É2, sq is analytic and uniformly bounded in the region
Re É1, É2 ¥ �1{20 and Re s ¥ 3{5, upon applying Lemma 2.5 with ¶ � 1

10
.

We note for any non-negative numbers a1, ..., an that

(5.18) logp2� a1 � ...� anq ! logp2� a1q � ...� logp2� anq.
Then within the zero free region where the bound (5.16) holds, we have that

Y pipµ� tq � É1, ip¿ � tq � É2, sq
! log4p2� |t|q log5p2� |µ|q log5p2� |¿|qq log5p2� |É1|q log5p2� |É2|q,(5.19)

where the implied constant depends only on f and we may assume that c is sufficiently
small to force Re É1,Re É2 ¥ � 1

20
in the zero free region.

2Since f is fixed, the presence of a possible exceptional zero does not disturb us. However, it is also
known that Lps, sym2fq does not have Siegel zeros by the work of Hoffstein and Ramakrishnan [6].
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Let T � expp?logR1R2q. If |Im Éi| ¡ T for either i � 1 or i � 2, the boundrGpÉiq !A p1 � |Éi|q�A for any A ¡ 0 implies that this range gives a contribution of
! log4p2� |t|q log5p2� |µ|q log5p2� |¿qq expp�?logR1R2q to (5.17).

Now, suppose that |Im Éi| ¤ T for i � 1 and i � 2. If maxp|t|, |µ|, |¿|q ¤ T , then
we move the contour of integration to Re Éi � � c1

log T
¥ � 1

20
for some 1 ¥ c1 ¡ 0

depending only on f such that (5.19) is satisfied. Such c1 exists by a quick examination
of (5.15), (5.16) and (5.18). The contribution of this is ! log4p2�|t|q log5p2�|µ|q log5p2�
|¿qq expp�c1{2?logR1R2q using the bound rGpÉiq !A p1 � |Éi|q�A to bound the short
horizontal contribution.

Now if maxp|t|, |µ|, |¿|q ¡ T , we do not shift contours and obtain that (5.17) is

! log2p2� |t|q log3p2� |µ|q log3p2� |¿qq
! p1� |t|q1{5p1� |µ|qp1� |¿|q expp�1{6

a
logpR1R2qq.

□

Using that Γpsq cos�Ãs
2

� ! |s|Re s�1{2 and by Lemma 5.7 we have that the quantity in
(5.14) is

! pXq�3{5N1{5p1� |t|q1{5
¸d

R1,R2

expp�c1
a
logpR1R2qq

» 8

�8

» 8

8

�
1

p1� |µ|qp1� |¿|q

10

�
¸*

|k1|¤K

1

|k1|3{5
�����¸
n1

¼f pn1qÇmpn1q
n
1{2�iµ�it
1

¸
n1

¼f pn2qÇmpn2q
n
1{2�i¿�it
2

G

�
n1

N1



G

�
n2

N2


�����dµd¿.(5.20)

We split the sum in k1 into dyadic intervals of the form K1 ¤ |k1|   2K1, and let

T pK1q � T pK1; t, x,N q �
¸*

K1¤|k1| 2K1

�����¸
n

¼f pnqÇmpnq
n1{2�ix�it

G
� n

N

	�����
2

¤
¸5

K1¤|m| 8K1

�����¸
n

¼f pnqÇmpnq
n1{2�ix�it

G
� n

N

	�����
2

! L2{3p1� |t� x|q3K1 logp2� |t� x|qq
! L2{3p1� |t|q3�1{5p1� |x|q4K1

where the implied constant is absolute, and where we may apply the induction hypoth-
esis in the form given by (5.2) since 4K1 ¤ 4K � N2

X
¤ M

L
  M � 1, where the second

last estimate is from Lemma 5.4.
Putting in this estimate, we see by Cauchy-Schwarz and dyadic summation over K1

that ¸*

|k1|¤K

1

|k1|3{5
�����¸
n1

¼f pn1qÇmpn1q
n
1{2�iµ�it
1

¸
n1

¼f pn2qÇmpn2q
n
1{2�i¿�it
2

G

�
n1

N1



G

�
n2

N2


�����
! L2{3p1� |t|q3�1{5p1� |µ|q2p1� |¿|q2K2{5.



MOMENTS OF QUADRATIC TWISTS OF MODULAR L-FUNCTIONS 25

Putting this into (5.20) and recalling from (5.13) that K � N2

4X
gives a bound of

! L2{3N
X
p1� |t|q3�2{5,

where we have estimated
¸d

R1,R2

expp�c1
a
logpR1R2qq �

°
l,k¥0 expp�c1

?
log 2

?
l � kq �°

h¥0ph� 1q expp�c1
?
log 2

?
hq ! 1. This completes the proof of Proposition 5.6.

6. Proof of Theorem 1.1

It suffices to show that
(6.1)¸*

pd,2q�1

Lp1{2, f bÇ8dq2J
�
8d

X



� 2X

Ã2
rJp1qLp1, sym2fq3H2p0, 0q logX�OpXplogXq1{2�ϵq

for any smooth nonnegative function J compactly supported on r1{2, 2s and where H2

is defined as in Lemma 5.5. Recall from Lemma 2.1 that for d odd and squarefree,

Lp1{2, f b Ç8dq � 2
¸
n¥1

¼f pnqÇ8dpnq
n1{2 W1{2

�
n

8|d|


,

where for any c ¡ 0,

W1{2pxq � 1

2Ãi

»
pcq

Γp»
2
� wq

Γp»
2
q p2Ãxq�w dw

w
.

We let N � X
plogXq100 and further let

Ap8dq � Ap8d,N q � 2
¸
n¥1

¼f pnqÇ8dpnq
n1{2 W1{2

� n

N

	
and

Bp8dq � Lp1{2, f b Ç8dq �Ap8dq.
Note that since W1{2pxq is real for all x, Ap8dq and Bp8dq are real as well. Then (6.1)

follows from the Propositions below.

Proposition 6.1. With notation as above,¸*

pd,2q�1

Bp8dq2J
�
8d

X



! Xplog logXq4.

Proposition 6.2. With notation as above,¸*

pd,2q�1

Ap8dq2J
�
8d

X



� 2X

Ã2
rJp1qLp1, sym2fq3H2p0, 0q logX �OpX log logXq.
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Indeed, assuming Propositions 6.1 and 6.2, we have by Cauchy-Schwarz that

(6.2)
¸*

pd,2q�1

Ap8dqBp8dqJ
�
8d

X



! pX logXq1{2X1{2plog logXq2 ! XplogXq1{2�ϵ,

and (6.1) follows. With more care, one can improve the bound in (6.2) by a direct
evaluation similar to the proof of Proposition 6.2, hence improving the error term in
(6.1) to OpXplog logXq4q. Actually, with even more effort, one should be able to slightly
refine the bound in Proposition 6.1 with a more general form of Proposition 3.2. We
now proceed the proofs of Propositions 6.1 and 6.2.

6.1. Proof of Proposition 6.1. For our fixed G with properties as in (2.1), we have
that

Bp8dq �
¸d

N

1

Ãi

»
p1q

Γp»
2
� wq

p2ÃqwΓp»
2
q
p8|d|qw �Nw

w

¸
n¥1

¼f pnqÇ8dpnq
n1{2�w

G
� n

N

	
dw,

where
¸d

N
denotes a sum over N � 2k for k ¥ 0. Now we proceed in a manner similar

to Lemma 5.3. Indeed, by (5.5),¸
n

¼f pnq
n1{2�w

�
8m

n



G
� n

N

	
� 1

2Ãi

»
pϵq

¸
n

¼f pnq
n1{2�u

�
8m

n



V
� n

N

	
Nu�w rGpu� wqdu,

with V as in (5.4).
When N ¤ N , we move the contour in w to Re w � �1, noting that we pass no

poles in the process. For N   N ¤ X, we move the integral in w to Re w � 0, while
for N ¡ X, we move to Re w � 4. In all cases, we move the contour in u to Re u � 0.
By Cauchy-Schwarz, the contribution of those N ¤ N is¸d

N¤N

N

N

»
p�1q

» 8

�8

¸*

pd,2q�1

�����¸
n

¼f pnq
n1{2�it

�
8d

n



V
� n

N

	�����
2

J

�
8d

X



dt

p1� |it� w|q10
dw

p1� |w|q10 .

Note that 8d is a fundamental discriminant when pd, 2q � 1 and d is squarefree. More-
over, V is as in (5.4), so we may apply Proposition 3.2 to see that the above is

!
¸d

N¤N

N

N
pX �N logp2�N{Xqq ! X.

In the range N   N ¤ |8d|, we note that for Re w � 0, p8|d|qw�Nw

w
! log

�
8|d|
N

	
!

log X
N
. Moreover,

¸d

N N¤8|d| 1 ! log X
N
. Thus, similar to the above, this range con-

tributes

log3
X

N

¸d

N N¤8|d|

»
p0q

» 8

�8

¸*

pd,2q�1

�����¸
n

¼f pnq
n1{2�it

�
8m

n



V
� n

N

	�����
2

J

�
8d

X



dt

p1� |it� w|q10
dw

p1� |w|q10
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! Xplog logXq4,
again using Proposition 3.2. Finally, the range N ¡ X contributes¸d

N¡X

�
X

N


4 »
p4q

» 8

�8

¸*

pd,2q�1

�����¸
n

¼f pnq
n1{2�it

�
8d

n



V
� n

N

	�����
2

J

�
8d

X



dt

p1� |it� w|q10
dw

p1� |w|q10

!
¸d

N¡X

�
X

N


4

N logp2�N{Xq

! X.

by Proposition 3.2. In the last line, we have used that X
N
logp2�N{Xq ! 1 for N ¡ X.

6.2. Proof of Proposition 6.2. We have that¸*

pd,2q�1

Ap8dq2J
�
8d

X



�

¸
pd,2q�1

Ap8dq2J
�
8d

X


¸
a2|d

µpaq.

Exchanging the order of summation, we see that¸*

pd,2q�1

Ap8dq2J
�
8d

X




� 4

��� ¸
a¤Y

pa,2q�1

�
¸
a¡Y

pa,2q�1

��
µpaq ¸
pd,2q�1

J

�
8da2

X


������
¸

pn,aq�1

¼f pnq
n1{2 Ç8dpnqW1{2

� n

N

	������
2

,

where for concreteness, we set Y � log20 X.

6.2.1. The contribution of a ¡ Y . We first prove the following lemma.

Lemma 6.3. For any real X , N ¥ 1, real t, and positive integer q

(6.3)
¸

pd,2q�1
d¤X

������
¸

pn,qq�1

¼f pnq
n1{2�it

�
8d

n



G
� n

N

	������
2

! dpqq5X p1� |t|q3 logp2� |t|q

Proof. We first write d � b2m where m is squarefree, so that the left side of (6.3) is

(6.4)
¸
b¥1

¸*

pm,2q�1

m¤X {b2

������
¸

pn,bqq�1

¼f pnq
n1{2�it

�
8m

n



G
� n

N

	������
2

.

We further write ������
¸

pn,bqq�1

¼f pnq
n1{2�it

�
8m

n



G
� n

N

	������
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�
������
¸
c|bq

µpcq
c1{2�it

�
8m

c


¸
n

¼f pncq
n1{2�it

�
8m

n



G
�nc
N

	������
¤
¸
c|bq

¸
e|c

dpc{eq?
ce

�����¸
n

¼f pnq
n1{2�it

�
8m

n



G
�nce
N

	�����.
Combining this with (6.4), applying Cauchy-Schwarz, and crudely bounding the divisor
sums, we see that the left side of (6.3) is bounded by

¸
b¥1

dpbqq3
¸
c|bq

¸
e|c

¸*

pm,2q�1

m¤X {b2

�����¸
n

¼f pnq
n1{2�it

�
8m

n



G
�nce
N

	�����
2

!
¸
b¥1

dpbqq3
¸
c|bq

¸
e|c

X

b2
p1� |t|q3 logp2� |t|q

! dpqq5X p1� |t|q3 logp2� |t|q,
as claimed, where we have used the bound (5.2) and dyadic summation to derive the
second line. □

Similar to the proof of Proposition 6.1 in §6.1,¸
pn,aq�1

¼f pnq
n1{2 Ç8dpnqW1{2

� n

N

	
!
¸d

N

»
p1q

Γp»
2
� wq

p2ÃqwΓp»
2
q
Nw

w

1

2Ãi

»
pϵq

¸
pn,aq�1

¼f pnq
n1{2�u

�
8m

n



V
� n

N

	
Nu�w rGpu� wqdudw,

where
¸d

N
denotes a sum over N � 2k for k ¥ 0. Applying Cauchy-Schwarz, Lemma

6.3 and some calculation similar to that in §6.1 then yields that

¸
pd,2q�1

J

�
8da2

X


������
¸

pn,aq�1

¼f pnq
n1{2 Ç8dpnqW1{2

� n

N

	������
2

! X

a2
dpaq5.

Hence,

¸
a¡Y

pa,2q�1

¸
pd,2q�1

J

�
8da2

X


������
¸

pn,aq�1

¼f pnq
n1{2 Ç8dpnqW1{2

� n

N

	������
2

!ϵ

X

Y 1�ϵ
,

for any ϵ ¡ 0. Recalling that Y � log20 X, this is absorbed into the error term in
Proposition 6.2.
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6.2.2. The contribution of a ¤ Y . The computation is very similar to parts of the proof
of Proposition 3.2 in §5. We have

¸
pd,2q�1

J

�
8da2

X


������
¸

pn,aq�1

¼f pnq
n1{2 Ç8dpnqW1{2

� n

N

	������
2

�
¸

pd,2q�1

J

�
8da2

X


 ¸¸
pn1n2,aq�1

¼f pn1q¼f pn2q
pn1n2q1{2 Ç8dpn1n2qW1{2

�n1

N

	
W1{2

�n2

N

	

�
qJp0qX
16a2

¸¸
n1n2�□

p2a,n1n2q�1

¼f pn1q¼f pn2q
n
1{2
1 n

1{2
2

¹
p|n1n2

�
1� 1

p



W1{2

�n1

N

	
W1{2

�n2

N

	(6.5)

� X

16a2

¸
k�0

p�1qk
¸¸

p2a,n1n2q�1

¼f pn1q¼f pn2q
n
1{2
1 n

1{2
2

Gkpn1n2q
n1n2

qJ� kX

16a2n1n2



W1{2

�n1

N

	
W1{2

�n2

N

	
by Lemma 2.4. We record the contribution of the first term in the lemma below.

Lemma 6.4. For Y ¥ log10 X,

4
¸

pa,2q�1
a¤Y

pJp0qXµpaq
16a2

¸¸
n1n2�□

p2a,n1n2q�1

¼f pn1q¼f pn2q
n
1{2
1 n

1{2
2

¹
p|n1n2

�
1� 1

p



W1{2

�n1

N

	
W1{2

�n2

N

	
(6.6)

� 2J̃p1qX logN

Ã2
Lp1, sym2fq3H2p0, 0q �OpX log logXq

Proof. Note that¸
a¤Y

pa,2n1n2q�1

µpaq
a2

� 1

·p2q
¹

p|2n1n2

�
1� 1

p2


�1

�Op1{Y q � 8

Ã2

¹
p|n1n2

�
1� 1

p2


�1

�Op1{Y q.

Switching the order of summation gives that the left side of (6.6) is

2X

Ã2
rJp1q ¸¸

n1n2�□

p2,n1n2q�1

¼f pn1q¼f pn2q
n
1{2
1 n

1{2
2

¹
p|n1n2

�
1� 1

p� 1



W1{2

�n1

N

	
W1{2

�n2

N

	

�O

�
X

Y

¸¸
n1n2�□

dpn1qdpn2q
n
1{2
1 n

1{2
2

���W1{2
�n1

N

	
W1{2

�n2

N

	����.
The error term inside the big-O is ! X

Y
log10 X by standard methods. The main term is

2X

Ã2
rJp1q� 1

2Ãi


2 »
pϵq

»
pϵq

Γp»
2
� w1q

Γp»
2
q

Γp»
2
� w2q

Γp»
2
q G2pw1, w2q

�
N

2Ã


w1�w2 dw1

w1

dw2

w2

where by Lemma 5.5

G2pw1, w2q � ·p1�w1�w2qLp1�2w1, sym
2fqLp1�2w2, sym

2fqLp1�w1�w2, sym
2fqH2pw1, w2q
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where H2pw1, w2q converges absolutely in the region Re w1, w2 ¥ �1{4� ϵ.
We now shift the contour of integration in w1 to Re w1 � �1{5. We encounter two

poles along the way: w1 � �w2 and w1 � 0. The contribution of the remaining integral
at Re w1 � �1{5 contributes ! XN�1{5�ϵ. The contribution of w1 � �w2 is

! X

»
pϵq

Γp»
2
� w2q

Γp»
2
q

Γp»
2
� w2q

Γp»
2
q Lp1� 2w2, sym

2fqLp1� 2w2, sym
2fqLp1, sym2fqH2p�w2, w2qdw2

w2
2

! X.

Finally, the contribution of w1 � 0 gives

2J̃p1qX
Ã2

Lp1, sym2fq
2Ãi

»
pϵq

Γp»
2
� w2q

Γp»
2
q

� ·p1� w2qLp1� 2w2, sym
2fqLp1� w2, sym

2fqH2p0, w2q
�
N

2Ã


w2 dw2

w2

.

We similarly shift to Re w2 � �1{5, the contour there giving a contribution of !
XN�1{5�ϵ, while the double pole at w2 � 0 gives

2J̃p1qX logN

Ã2
Lp1, sym2fq3H2p0, 0q �OpXq,

which suffices upon noting that logN � logX �Oplog logXq. □

We now study the contribution of the k � 0 terms in (6.5). To be precise, we will
prove that

¸
k�0

p�1qk
¸¸

p2a,n1n2q�1

¼f pn1q¼f pn2q
n
1{2
1 n

1{2
2

Gkpn1n2q
n1n2

qJ� kX

2a2n1n2



W1{2

�n1

N

	
W1{2

�n2

N

	
! a2�ϵN

X
.

(6.7)

This gives a total contribution of
°

a¤Y
aϵN
X

! Y 1�ϵN ! X

log50 X
, which can be absorbed

into the error term in Proposition 6.2.
The proof of (6.7) is very similar to the proof of Proposition 5.6 and we provide a

sketch here. The presence of the factor p�1qk causes some minor issues, which we avoid
by writing the quantity in (6.7) as T0 �

°
l¥1 Tl where Tl is the contribution of those k

with 2l}k. For odd n, G4kpnq � Gkpnq whence G2lk1pnq � G2¶k1pnq where ¶ � ¶plq � 0
if 2|l and ¶ � 1 when 2 ∤ l.
Analogous to Proposition 5.6, we will prove that

T pN1, N2;³, t1, t2q :�
¸

pk,2q�1

¸¸
p2a,n1n2q�1

¼f pn1q¼f pn2q
n
1{2�it1
1 n

1{2�it2
2

G2¶kpn1n2q
n1n2

qJ� kX³

2n1n2



G

�
n1

N1



G

�
n2

N2




! aϵ
?
N1N2

³X
p1� |t1|q2p1� |t2|q2,(6.8)

for any ³ ¡ 0 and ¶ � 0, 1. Actually, following the proof of Proposition 5.6 would give
p1 � |ti|q3{2�1{5 in place of p1 � |ti|q2. Then, to prove (6.7), we first apply (6.8) with
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³ � 2l

a2
along with dyadic summation over Ni and Mellin inversion to see that

Tl !
¸d

N1,N2

�
1� N1

N


�4�
1� N2

N


�4

�
» 8

�8

» 8

�8
|T pN1, N2; 2

la�2, t1, t2q|p1� |t1|q�10p1� |t2|q�10dt1dt2

! a2�ϵN

2lX
,

and so the quantity in (6.7) is T0 �
°

l¥1 Tl ! a2�ϵN

X
.

The proof of (6.8) proceeds along the same lines as the proof of Proposition 5.6 in
the range |k1| ¤ N1N2

³X
with two minor differences. The first is that we now sum over

pk1k2, 2q � 1 with k1k
2
2 � 2¶k and k1 squarefree. When ¶ � 1, we sum 2k1 over even

squarefree numbers, while when ¶ � 0, we have k1 running over odd squarefree numbers.
In both cases we may complete the sum to all squarefrees upon taking absolute values.
The pk2, 2q � 1 condition changes Zp³, ´, µq by a benign factor of 1 � 1

22µ
. The second

difference is that by Lemma 2.5, the condition p2a, n1n2q � 1 changes Zp³, ´, µq by a
finite Euler product over p|a which is ultimately bounded by ! dpaq ! aϵ.
Now, suppose that K1 ¤ |k1|   2K1, with K1 ¥ N1N2

³X
. Then the proof proceeds as

before, with the only difference being that the integral in s is moved to Re s � 6{5,
while the integrals in u and v are still moved to Re u, v � �1{2. This eventually gives
a bound of

! aϵp³Xq�6{5N6{5�1{2
1 N

6{5�1{2
2 K

�1{5
1 p1� |t1|q2p1� |t2|q2,

and dyadic summation over K1 ¥ N1N2

³X
gives the bound

! aϵ
�
N1N2

³X


6{5
pN1N2q�1{2

�
N1N2

³X


�1{5
p1� |t1|q2p1� |t2|q2

! aϵ
?
N1N2

³X
p1� |t1|q2p1� |t2|q2

as desired.
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