MOMENTS OF QUADRATIC TWISTS OF MODULAR
L-FUNCTIONS

XIANNAN LI

ABSTRACT. We prove an asymptotic for the second moment of quadratic twists of a
modular L-function. This was previously known conditionally on GRH by the work
of Soundararajan and Young [22].

1. INTRODUCTION

1.1. Background and statement of results. Moments of L-functions are central
objects of study within analytic number theory. Generally, moments contain information
about the distribution of values of L-functions and thus are related to a multitude of
arithmetic objects. One particularly interesting family is that of quadratic twists of
modular L-functions. This family is studied for its own interest and for applications to
elliptic curves and coefficients of half integer weight modular forms.

To be more precise, let f be a modular form of weight « for the full modular group and
suppose that f is a Hecke eigenform. The results we describe below may be extended to
f of arbitrary level with some minor technical modifications. The L-function associated
with f is given by

for Re s > 1, and can be analytically continued to the entire complex plane. Here Af(n)
are the Hecke eigenvalues with A¢(1) = 1. The completed L-function is given by

A0 = (5) T(s+ 55 e,

and satisfies the functional equation

Ag(s, f) = "A(L =5, ).
For d a fundamental discriminant, let y4(-) = (El) denote the primitive quadratic

character with conductor |d|. Then f ® xq is a primitive Hecke eigenform of level |d|?,
with L-function given by

d A J -1
5, f © xa) 2 Ar()xa(n) —H(l— f<p;§<> xp(25>)

p
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for Re s > 1. The completed L-function is

Mt = (B o5+ 55 )2 s @ v

27
and satisfies the functional equation
(]‘]‘) A(57f®Xd) = ZHE(d)A(]. _Saf®xd)7

where €(d) = (_il) = +1 depending on the sign of d. Note that if i"¢(d) = —1, then
L(1/2,f ®xa) = 0.

We let Z* denote a sum over squarefree integers while Zb will denote a sum over
fundamental discriminants. For convenience, we restrict the modulus to be of the form

8d where d is odd and squarefree; one can study other discriminants using the same
methods. In this context, it is of high interest to understand moments of the form

M(k) := E L(1/2, f ® xs4)*.
0<8d<X
(d,2)=1

Keating and Snaith [11] conjectured that
M(k) ~ C(k, f)X (log X)

for an explicit constant C'(k, f). Unconditionally, this was known for the first moment

k = 1 from Iwaniec’s work [8]. Further, based on knowledge of the twisted first moment,
k(k—1)

Radziwill and Soundararajan [15] proved that M (k) « X(log X) =z for 0 <k < 1.

The case k = 2 has proved more challenging. The work of Heath-Brown [5] im-
plies that M(2) « X', Assuming the Generalized Riemann Hypothesis (GRH), the
work of Soundararajan [20] implies that M (2) « X (log X)'*¢. Based on ideas from
[20], Soundararajan and Young [22] proved the conjectured asymptotic conditionally,
assuming GRH. Our main result below addresses this unconditionally.

k(k—1)
2
)

Theorem 1.1. With notation as above, and for k = 0 mod 4

D1 L(1/2, f®xsa)” ~ CpX log X,

0<8d<X
(d,2)=1

where
2
Cp = = L(Lsym*f)*H2(0,0),

where Ho(u,v) is an absolutely convergent Euler product in the region Re u,v = —1/4+e,
defined as in Lemma 5.5.

If we include a smooth weight in the sum over d above, the result can be proven with
an error term of quality O(X (log X)/2*¢) and improved to O(X (log X)) with a little
effort. This is made explicit in §6. Of course, we can prove Theorem 1 with a saving
of a power of log with some care in the choice of smoothing function. It remains an
interesting open problem to prove the full formula with shifts, as that requires precision
on the scale of o(X).
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Our techniques extend to give the expected asymptotic for the fourth moment of
quadratic Dirichlet L-functions unconditionally. For this family, the first and second
moments were computed by Jutila [10], and the third moment by Soundararajan [19].
There were a number of refinements with improved error terms: on the first [23] and
third moments [24] by Young, the second moment by Sono [18] using similar methods,
and a further refinement of the third moment by Diaconu and Whitehead [1] explicating
a power saving secondary term. The fourth moment was computed assuming GRH by
Shen [16], following the approach of Soundararajan and Young [22]. We also mention
the recent work of Florea [2], which gives the expected asymptotic for the analogous
fourth moment over the function field Fy[z] (where the Riemann hypothesis is known)
with the base field F, fixed and genus going to infinity. Starting with ideas from this
work, the fourth moment of quadratic Dirichlet L-functions over number fields has very
recently been computed by Shen and Stucky in [17].

Previously, the technique of Soundararajan and Young [22] was adapted by Petrow
[14] to prove asymptotics for moments of derivatives of quadratic twists of modular
L-functions, conditionally on GRH. One of Petrow’s results have been proven uncondi-
tionally by Kumar, Mallesham, Sharma and Singh [12] using the key Proposition 3.2 in
this paper.

As mentioned before, this family of L-functions has received special scrutiny because
of its connections to elliptic curves and half integer weight modular forms. Let mgy be
the order of vanishing of L(s, f ® xsq) at s = 1/2. In the case when f corresponds to
an elliptic curve, the Birch and Swinnerton-Dyer conjecture relates my to the rank of
the twisted elliptic curve.

For ease of notation, let

R(X ) = Z my.

0<8d<X
(d,2)=1

Goldfeld [4] proved that R(X) « X conditionally on GRH. Trivially, R(X) « X log X,
while the work of Perelli and Pomykala [13] gives the refined bound R(X) = o(X log X).
Our methods yield R(X) « X loglog X proceeding along the same lines; see Theorem
5 of [13] for more details.

1.2. Rough concept. We now briefly discuss the main ideas in the proof. In the rest
of the paper, we let (%) denote the usual Kronecker symbol. After an application of
the approximate functional equation, we morally need to understand sums like

> at(2)]

n&X

*

2

m=X

Y

where a(n) = ’\-\f/%). Standard tools like the functional equation and Poisson summation
are not useful in this range, but become useful in the easier range

2

*

(1:2) Y| Y am(2)).

m=X|n«X/(log* X)
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for some large A > 0. Thus, the challenge is to bound sums of the form

s 3|3 (@)

m=X [n=N

when N is close to X. The influential work of Heath-Brown [5] implies that S « X1T¢,
but we need a bound as strong as S « X (log X)? for § < 1 for our application. In fact
we will show that

9

2

*

(1.3) >

m=X

2 (%)

n=N

& X,

which is best possible up to the implied constant. Assuming (1.3), dyadic summation

for log%X < N « X gives the bound

2

*

3 N a) (%) « X (log X",

m=X|X/(log? X)«n«X

whence it suffices to study the easier quantity in (1.2).

This type of truncation strategy appeared in the work of Soundararajan [21], Soundarara-
jan and Young [22], and some later papers. The main difficulty is proving the bound
(1.3). Indeed the new content in the work of Soundararajan and Young [22] was the
implicit proof that

S « X (log X)V/?+e
conditionally on GRH. To be more precise, Soundararajan and Young do not explicitly
state this bound but rather proceed via conditional bounds on shifted moments instead,
which is in turn based on important ideas from the work of Soundararajan in [20].

Since the proof of (1.3) is the novel part of this work, we now give a sketch of the
approach. For simplicity, suppose that N = X. Now, fix a large parameter L, and write
for a prime p = /L

% e (5)

n=X

2

SIS o) (msz) +§ a(n)(%)

m=X [n=X
pin

(14) S= Z

m=X

pln
We may use the Hecke relation to handle the second sum. For this sketch, we focus on
the more illustrative first sum. Letting P(L) = % be the number of primes in the

interval [v/L,2v/L], we sum over all p € [v/L,2v/L] to see that

P(L)S « Z Z* 2 a(n) (msz) 2

VL<p<2VL m=X |n=X

< 25 a(3)

m=4XL|n=X

+ other

2

+ other.
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Here, we have used positivity and the fact that when m; and my are squarefree,

(1.5) mipt = map;

only when p; = py and m; = my. We have embedded our original sum over m into

a longer sum, so that it is now advantageous to execute Poisson over m. Note that

discarding the squarefree condition on m can be disastrous for arbitrary coefficients

a(n).! We therefore expect to crucially use the special properties of a(n) = ’\fT(:)
Opening up the square and applying Poisson summation roughly gives that

3 |3 aon(@)]

m=XL|n=X

_exn+ AL XL Z Ap(ni)Ap(na) Z(—l)ka(nmg)W( kXL )’

2 N1NeNIN 2nin
n1,no=X ittt 20 1M2

for some constant C; depending only on f, W a smooth function with rapid decay, and
where the Gauss-like sum Gg(ninsy) is defined in (2.1). The sum over k is essentially
restricted to k « X?/XL = X/L, so we need to bound

XL >\f T )\f ng)
1.6 ———— == Gr(niny).
(1.6) ;/m;)( e k(nanz)

Now we replace G(nins2) by xx(nins)s/ning, which is generically true for nny square-
free, and restrict our attention to squarefree k, so we hope to replace (1.6) by a quantity
like

2

XL Z Ar(n)xi(n)

n=X \/ﬁ

wﬁ by its size of )—1( Since the conductor k = X/L

has been reduced, it now makes sense to apply the functional equation of L(s, f ® xx)
to transform the sum over n to a sum of length X/L? which is shorter again than the
length of the sum over k by a factor of L. This suggests that we should succeed if
we continue this procedure by iteratively applying Poisson over k& and the functional
equation over n.

The use of prime factors to inflate a sum in the context of a large sieve appeared

in the work of Forti and Viola [3] and notably in the work of Heath-Brown [5]. Our
Ar(n)
o

(1.7)

k=X/L

where we have replaced a factor

specific coefficients a(n) = enboldens us to use prime squares, thereby discarding
primitivity in our character sum. The choice of prime squares has a number of advan-
tages. Indeed, to preserve our coefficients, it is important that (”5) is typically trivial.
Moreover, the uniqueness property from (1.5) allows us to avoid counting multiplicities

and thus avoids losing factors of log X. Here, the squarefree condition on Z*m helps

For instance, if a(n) = ﬁ, the contribution from the square values of m alone gives a contribution

> VMLX.
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rather than hinders. It guarantees uniqueness in (1.5) and we can entirely discard the
squarefree condition in our situation when convenient. One last important property we
use is that there are a large number of prime squares - the fact that the number of
primes in the interval [v/L,2+v/L] is large serves to control the loss of constant factors
which accompany our arguments. This is crucial in our inductive step.

In this rough sketch, we have oversimplified many parts of the proof. One place
which is particularly egregious is the replacement of (1.6) by (1.7), since this glosses
over technical complications and hides an important structural feature. To see this, we
expect parts of (1.7) to resemble

2

I Z Z M =CX Z M + smaller term,
k=X/L|n=X/L? vn nino=X/L? Vi

nino=0

for some constant C'. In other words, the ”diagonal” contribution arising from the
terms when njng is a perfect square dominates. However, generically Gg(ning) = 0
when nins is not squarefree, so that the same ”diagonal” contribution simply does not
exist in the sum (1.6). This is one of the underlying reason why it requires care and
dexterity to avoid losing factors of log X. In particular, careful analysis of the factors
at prime squares and higher powers is crucial. We refer the reader to §5 for a more
accurate picture.

Since we aim to prove the optimal bound (1.3), there are some uncommon features
in our proof. For instance, in order to control constants which depend on smooth test
functions, we prove our main Proposition 3.2 only for fixed smooth functions F' and G.
These functions need to be chosen with some care in Lemma 2.7 and around (2.12). In
particular, the fact that Fis compactly supported and that G may be used to form a
dyadic partition of unity is quite useful in the proof.

In §2, we gather some basic results, and in §3, we state the main Propositions and
provide an outline of the rest of the paper.

Acknowledgement. I would like to thank J. Stucky, N. Ng, M. Young and the anony-
mous referee for helpful editorial remarks. This work was partially supported by Simons
Foundation Collaboration Grants 524790 and 962494, and NSF DMS-2302672.

2. PRELIMINARY RESULTS

Here we gather some basic tools. First, we have the standard approximate functional
equation.

Lemma 2.1. For d a fundamental discriminant,

L(s, f®@xa) = Als,d) +i"€e(d) (g) ) S%A(l —s,d),
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where

Als, d) = ZMWS(TL)

= di

and for any ¢ > 0,

Wi(x)

- T
o (27z)

1 f [(s + 5% 4+ w) dw
o Tls+5) w

We refer the reader to Theorem 5.3 of the Iwaniec and Kowalski’s book [9] for the
proof of Lemma 2.1. Now, we define the Gauss like sum

o o= ( (D)) 2 0

a mod n

The sum Gg(n) appeared in the work of Soundararajan [19] and we record Lemma
2.3 from Soundararajan [19] below.

Lemma 2.2. For m,n relatively prime odd integers, Gp(mn) = Gr(m)Gg(n), and for
p*||k (setting a = oo for k =0), then

(0, if 5 <« is odd,

o(p?), if § <« is even,
Gr(p?) = { —p%, if 5 =a+1is even,
(M%)paﬁ, if 5 =a+1is odd,

As alluded to in §1.2, G(n) appears when applying Poisson summation as in Lemma
2.3 below.

Lemma 2.3. Let F' be a Schwartz class function over the real numbers and suppose
that n 1s an odd integer. Then

(2.2) ;(2>F(%) - %Z Gk(n)ﬁ<%z),

keZ
and

(2.3) 3 (%)F(%) = %(%) Z(—l)ka(n)ﬁ(%)

(d,2)=1 keZ

where G(n) is defined as in (2.1), and the Fourier-type transform of F' is defined to be

F(y) = JOO (cos(2may) + sin(2rzy)) F(x)dx.

—0

Further for F even and y # 0,

(2.4) F(y) =2 foo F(z) cos(2mzy)dx
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2 ~
= — F(1—s)'(s cos( )27Ty *ds,
527 ), PO =90 con () )
while for F supported on [0, c0),

- 1 o
(2.5) F(y) = — F(1 —s)I'(s)(cos +sgn(y) sm)( )(27T|y|) ds,
271 (1/2) 2
where
e}
~ d
(s) = f Py
0 x
1s the usual Mellin transform of F.

Proof. The first assertions in (2.2) and (2.3) are contained in the proof of Lemma 2.6
of [19]. The assertion in (2.4) and (2.5) follows by Mellin inversion, and we refer the
reader to §3.3 of [22] for details. O

For F' a Schwartz class function, we write the usual Fourier transform of F' as
oo
) = | el-epPla)ds
—Q0

Note that F'(z) = %F( x)+ %ﬁ(—m), and if F is even then F = F.

Applying Lemma 2.3 gives rise to the "diagonal” contribution corresponding to k = 0
and the off-diagonal contribution. For convenience, we record some further calculations
here.

Lemma 2.4. Let H(x,y, 2) be a Schwartz class function on R®, H,(y, z) = Siooo H(z,y,z)dx,

and
dr dyd
H(s,u,v) J J J H(z,y,z :L'Sy“z”—x—y—z

Let ny and no be any odd positive integers. Then

(2.6) Z(nflw)fl(%,nl,m) = b(nina) X Hy(nymg) [ (1 - 1)

d

+x ) Gelmna) pe ),

kez, Tan2
k#0
and
&d d X 1
2.7 H| — =0 —H 1—-
( ) (d§=1(n1n2> <X’n1’n2) D(nan) 9 1(”1,n2)p|1;£2< p)

G
—Z K n1n2)[(k,n1,n2),
keZ e
k#0
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where op(n) = 1 when n is a perfect square and vanishes otherwise. Moreover, if
H(z,y,z) is supported on R3 | then

_ o (72 ) (TS
I(k,ny,ng) = 2ri) f J f H(1—s,u,v)n7"n; (7TX|I<:|> F(s)(cos—i—sgn(y)sm)(2)dudvds

and if H(z,y, z) is supported on R x R2, with H even in x, then

_ ning °
I(k,ny, H(1— v (102 ) p ( )d dvd
(k,ny,mg) = e f(e) f(e) " (1 —s,u,v)ny; “n,y (7TX|]€|) (s) cos 5 )dudvds
Proof. Note that Go(nins) = ¢(ninz) when niny is a perfect square, and vanishes

otherwise. For nins odd, ( 8d ) = ( 2 )( d > The lemma follows upon applying

ning ning ninz
Lemma 2.3 to the left side of (2.6) and (2.7) respectively and taking Mellin transforms
in other variables.

O

After applying Lemmas 2.3 and 2.4, we will be led to examine the Dirichlet series
Ar(n1)Af(ng) lekQ(n1n2)
(28) Z(a7577) :Z(aﬁﬁa’y;kla
kél (T;Q(;l nny 1{727 N1
(n2,2q)=1
The lemma below follows by examining local factors using Lemma 2.2. This is a slight
refinement of Lemma 3.3 of [22], and we provide a proof for the sake of completeness.

Lemma 2.5. Let k; be squarefree. Let m = ki if ky = 1 mod 4 and m = 4k, for
ki1 =2,3mod 4. Then

Z(a, B,7) = L(1/2 + o, f @ Xm) L(1/2 + B, f @ xm)Y (@, B, 7; K1),

for
Zo(a, B,
Y(Oﬁﬁ?fy; kl) = 2 2( B 7) 2 2 9
C1+a+B)L(1+ 2a,sym?f)L(1 + a + ,sym?f)L(1 + 23, sym? f)
where Zy(a, B,7v) = Zao(a, B,7;k1,q) is analytic in the region Re o, = —06/2 and
Revy>=1/2+6 for any 0 < § < 1/3. Moreover, in the same region, Zs(a, 5,7) < d(q)
where the implied constant may depend only on d and f.

Proof. By multiplicativity, we write

Z(a, B,y krq) = | [ F(p)

where

F(p) = Z A (pm)/\f (p™) Glﬂp%? (pmt72)

2k
o= pmapmﬁp 27y pn1+n2

F(p) = (1 - ]%>_1,

for p 1 2¢, and
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for p|2q. Let
\ —1
G(p.s) = <1_ f(p)fkl(p) xklgf) > |
p p
where xy, (n) = (&) = (2) for all odd n. Further write L(s,sym?f) = Y, Aés) Now

fix 0 < 5 < 1/3, and suppose that Rey > 1/2 + § and Re o,Re f = —c for some
0<e< i < 1/6. Then for p|k; and p t 2¢, we have

1 [ & e AN () 1 Ar(P)Ap(P7)
F(p) = kéo p2kay };} p2h ZZ} pio-tiB - 2_9 ZZ} pia+ip
itj=2h it j=Skot2

LM M MO o)
D p2a p2ﬂ pa+6 p1+25720

Ap) (111 1 ! e
:<1_T ]%JFWJFWW _p1+°‘+5+0 p32=3¢ o plrao-ee

When p 1 2gk;, we have that

2 i j i ;

Ar()A (@) Xk (D) Ar(P)As ()

Flp e + —_—

( ) kQZZO p2k2’y Z h % pza-i-jﬁ \/ﬁ ; pzoﬁ-]ﬂ
itj=2h itj=2ko+1

o M) (L1 1
=1+ \/]3 (pa + pﬂ) + O(p1+26—2c)
=G(p,1/2+a)G(p,1/2 + B)

Alp) (1 1 1 1 1 1
‘ <1 N p 1% " W - paJ“B B lerOlJrﬁ +0 p3/2*30 +0 p1+2572c :

Since ¢ < 1/6,

H(l + pli ) « d(q)

pl2q

for any constant Cj. O

One of our basic tools will be to apply the functional equation directly. This is done
in the lemma below.

Lemma 2.6. For m a fundamental discriminant, and G any Schwartz class function,

oo SR (E)e(E) -ron(fn) SR (TR

where

e _ 1 (s—z+%)

, 275G (—s ds,
i T(srerg) OO




MOMENTS OF QUADRATIC TWISTS OF MODULAR L-FUNCTIONS 11
and where the root number i*e¢(m) is as in (1.1).

Proof. Let ¢ = |Re ()| + 1. For G the Mellin transform of G, we have

; if/(ﬁ) (T)G (%) = L2+ 2t s F @ xw) NG (s)ds.

n 21 (c)

Now, shifting the contour of integration to the line Re s = —¢, applying the functional
equation (1.1) for L(1/2 4+ z + s, f ® xim) and a change of variables gives

an Af(n\)/xﬁm(n) G(%)

ie(m) [ (Im[\*I0(G = s — 2+ 55 .
- o L(1/2 — s — AN*CGi(s)d
2mi JC)(%) T(+s+2+ 50 (1/2 =5 — 2, [ @ Xm)N"G(s)ds

_i%e(m) im|\* "% I(s—z+%) e
o 2mi J (E) F(—s+Z+25)L(1/2+3_Z’f®Xm)N G(—s)ds

- e (f7) SR ()

as desired. 0

In applications of Lemma 2.6, we will be interested in understanding the modulus of
the quantity in (2.9), and hence may neglect the root number since |i*e(m)| = 1. For

I'(s+ 5
o9 = gt
2
and s = o + it with o > 0, Stirling’s formula implies that (see e.g. §5.A.4 [9])
(2.10) g(s) < (1 +]t))*.

This gives the estimate

(2.11) G () «a (M)A

1+z

for any A > 0 upon shifting contours to the right.

It will considerably simplify parts of our argument to use the test function discussed
in the lemma below.

Lemma 2.7. Let ¢y and ¢, be any fixed positive real numbers. Then there exists a smooth
non-negative even Schwartz class function F such that F(x) = 1 for all x € [—cy, 1]

and F(z) is even and compactly supported on [—co, co]. It follows that F(z) is also even
and compactly supported on [—co, co].

Proof. We let hg be a smooth even non-negative function compactly supported on
[—co/2,c0/2], and let h = hg = hg, so that h is smooth, even, non-negative and sup-
ported on [—cq, co]. Let g = h so for hy not identically 0, 2(0) > 0, and g(0) > 0 also.
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Since g is non-negative, even and Schwartz class, setting F(x) = C1g(Cex) for some
constants C7 and Cy < 1 produces the desired function. O

We now let G be a smooth real-valued function compactly supported on [3/4, 2] which

satisfies
G(z) =1 for all z € [1,3/2]

(2.12) G(z) + G(x/2) =1 for all z € [1, 3].
This may be done by starting with G(z) defined appropriately on (—o0,3/2], and then
letting G(z) = 1 — G(x/2) on (3/2,2], using that G is already defined on [3/4,1].
Functions like G' appear in standard constructions of partitions of unity and we refer
the reader to Warner’s book [25] for more details. It is straightforward to verify that

G(x) + G(2/2) + ... + G(z/27) = 1
for x € [1,3-2771] and is supported on [3/4,27]. We fix, once and for all, a function
G with the properties above.

3. MAIN PROPOSITIONS

First, we let £y = 100 be a sufficiently large constant satisfying that the number of

b
primes in the interval [v/£,v/2L] exceeds 21\£gZL for all £ = L. Recall that 2 denotes

a sum over fundamental discriminants. For convenience, we further let

saLvn= 3 S AR5 (%)

M<|m|<2M| n

Y

and
2

sorNy = Y S R6(E) (5]

M<|m|<2M| n

for the fixed G defined in (2.12). We record our inflation lemma below.

Lemma 3.1. Let £y = Ly and p be any odd prime. With notation as above we have,

S(M,N,t) < S(*M, N, 1) + %S(M N/p.t) + §S<M7 N/p,0),

and
S"(M, N, t)
1 "(M, N /p,t (M, N /p?.t
< ifﬁﬁl S(MLy, N, t) + S@MLy, N, )+ ). (S( N/pt) | S ’2/p’ )) :
1 VI <p<vILT p p

where the implied constants are absolute and in particular do not depend on L.

Next, we state our key Proposition.
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Proposition 3.2. For M, N = 1 and notation as above, there exists a constant L = L
depending only on f such that

S (M, N,t) < L1 + |t])*(M + Nlog(2 + N/M)).

We have made no attempt to optimize the dependence on ¢ in Proposition 3.2. When
N is large, applying the functional equation gives a superior bound - see Lemma 5.3
for details. We have stated Proposition 3.2 with a factor of £/ as the quantity £ will
occur naturally in the proof when applying Lemma 3.1.

3.1. Notation. We will be using an inductive argument to prove Proposition 3.2, so it
is important to ensure that our constant £ does not increase with each inductive step.
In what follows, we use the standard big-O and Vinogradov notation with our implied
constants never dependent on L.

3.2. Outline. Lemma 3.1 will be proven in §4. The bulk of the work goes towards
proving Proposition 3.2, which is done in §5. Finally, the remaining details of the proof
of Theorem 1.1 based on Proposition 3.2 are provided in §6.

4. PROOF OF LEMMA 3.1

We write for any odd prime p,
Ar(n) ny /m
IEEEOIE

(4.1) <2

Y

S ()e() Ve () ()

where d(p f m) = 1 if p f m and vanishes otherwise. We have also suppressed the

+25(ptm)

condition p { n in the first sum, since (msz) = 0 otherwise. By Hecke multiplicativity,

Ar(np) = Ap(n)Af(p)—0(p|n)As(n/p) where 6(p|n) = 1 when p|n and vanishes otherwise.
Hence,

(4.2)
2
oA (2)a(2) < AL 2 (2)e(2)

By (4.1) and (4.2), we conclude

1 1
S(M,N,U) K S(p2M7N7u) + §S(M7N/p7u) +ES(M,N/]?2,U),

which proves the first claim.
Further, by (4.1) and (4.2),
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Y soanae 35 SR (%)

VEi<p<v2Ly VL1 <p<y/2L;M<|m|<2M| n
S*(M,N/p,u) S"(M,N/p*u
Ly (( [p.) | SO NJp >)
VEI<p<A2L4 P p

2

<Y Se(E)(®)

M£1<|m|<4M£1 n

S*(M,N/p,u) S°(M,N/p*u
+Z((/p)+(2/p).
VEL1<p<V2L1 P p
In the last line, we have used that when m; and msy are fundamental discriminants,
mip? = mgp3 for odd primes py,ps only if p; = py,. This is because m; is either

squarefree or is four times a squarefree number. For £, > L, the number of primes in

the interval [v/L1,1/2L4] is > 2@1, and the second claim follows.

5. PROOF OF PROPOSITION 3.2

We proceed by induction on M. The simple lemma below will suffice for our base
case.

Lemma 5.1. For G the fized function from (2.12), N > 0, and m a fundamental

discriminant,
m
‘Z A0 () ()] </ oo + 2.
where
2 1 t 2
Ny = min(N, w) < m|(1+ [t]),

and the implied constant is absolute.

Proof. Note that

Let Ny = M When N = |m|(1 + |t]), we apply Lemma 2.6 to see that
m A(n) = [47*nN

‘Z n1/2+2t )(ﬁ) S Z nl/2—it Gi < RE )(E)

d(n) { N1 \°

« Z 1/2 Z nl/2 (7) )

n<Ny n>Ny

Af_@g<ﬁ> (@)‘ & Z M < \/Nlog(N + 2).

1/24it N
n n n
3N/4<n<2N Vn
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by (2.11) with A = 2. The above is « v/N; log(/N; + 2) which suffices. O
Lemma 5.1 implies that
S (M, N,t) « M*(1 + |t]) log® (M (1 + |t]) + 2) « M>(1 + |t])*log*(M + 2)

where the implied constant C’ is absolute. Thus the base case M < M, is trivially
true provided that £23 > C'Mjlog*(My + 2). For some fixed M; = My, our induction
hypothesis is that for any M < M; that

(5.1) S"(M,N,t) < L¥3(1 + [t|)*(M + Nlog(2 + N/M)),

and we now proceed to prove (5.1) for M fixed with M; < M < M; + 1.

It will be convenient to proceed by a nested induction argument. To be precise, we
proceed by induction on N. Note that the base case N < 2 is trivial. For clarity, let
us note that our second induction hypothesis is that (5.1) holds for our fixed M, any
|t| and all N < N; for some N; = 2. We now fix some N with Ny < N < Ny + 1. We
want to prove (5.1) for our fixed N and M.

We first record the following simple lemma. In what follows, we will use the inequal-
ities in the lemma without further explanation.

Lemma 5.2. For any complex numbers a,b we have that

(1) (14 |a))(1 +16]) = 1+ |a|] + 0]

(2) If |al,|b] » 1, then |a||b| > |a| + |b|.

(3) (1+|a])(1+1]b—al) =1+ b|.
Proof. The first statement is clear, and the second statement follows from the first. For
the third, we note that (1 + |a|)(1 +|b—a|]) = 1+ |a| + |b —a] = 1 + |b| by triangle
inequality. 0

The bound in (5.1) becomes ineffectual when N is very large compared to M. The

lemma below rectifies that situation and will be the form of the induction hypothesis
we most often use.

Lemma 5.3. Suppose that (5.1) holds for all M < M, and all N and t. Then we also
have that there exists some constant C' depending only on f such that

(5.2) S (M, N,t) < C'L¥3(1 + |t|)> M log(2 + |t]|)
for all M < My and all N and t.

Proof. If N < M(1 + |t|), then (5.2) follows immediately from (5.1). Now suppose
N > M(1 + |t|), and apply Lemma 2.6 so that

2
A ~ [4m*nN
S e () @)

n

S’ (M, N,t) = Zb

M<|m|<2M

We have that
A(n) = [(47*nNY\ /m
(5:3) Zn: nl/2-it G”( m)? (Z)
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1 Im| 2s F(s—it—i—g) Ae(n) my o
b L(%) F(—s+z’t+g);n1/2zt+s (%) N C(-s)as
- ol H’Hf) () my (1 gy
- N omi J@( —s4it+ & )Zn: n1/24t+s(n>G N, N7°G(—s)ds,

d
where Z N denotes a dyadic sum over Ny = 2! for integer [ = 1. Now we let
0

(5.4) V(z) = G(2z) + G(x) + G(z/2)
for the same fixed G so that V(z) = 1 on [3/4,2]. Hence

B
sz()Z = zt+s )V(Nio) (f)wé(w)dw
2mﬁ)2 1/2— zt+u( )V(NEO)NGLSCN?(U—S)du,

using a change of variables u = s 4+ w.
For convenience, let N; = w When Ny < N;, we move the contour of inte-
gration in s to Re s = —1, and when Ny > N;, we move to Re s = 4. In both cases,
we also move the integration in u to Re u = 0. Using that G(s) < W, (2.10) and

Lemma 5.2, we see that the quantity in (5.3) is bounded by R(< Ny) + R(> N;) where

N;Nl f 1) (%) n?/;—% (%)v(%)

d NO m n du
1/2 it+u (g)v(ﬁo) (1 + |u])®’

1

—|s|8|u — 8|10duds

N0<N1

and similarly,

B> N« 3 (%)4J<o>

No>Np 0

du
(L + |ul)s

()2

By Cauchy-Schwarz, the definition of V' from (5.4) and the assumption of (5.1), the
contribution of R(< Ny) to S*(M, N, t) is

TR, 3 SR ()

No<N; () < |m|<2M
d N
< [ Z Yo J 1+ |u| + [t))*(M + Nolog(2 + No/M))
N0<N1

n

du
(1 + [ul)®
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du

d N
LM T |0 ol N M)
1 Joy

No<N1
< L2+ |t)*(M + Nylog(2 + Ny /M)),

where the implied constant is absolute.
Similarly, the contribution of R(> N;) to S*(M, N, t) is

< L1+ |t))? Zd (%)4 LO)(M + Nolog(2 + No/M))

N0>N1 0
& LY+ |t)2(M + Nylog(2 + Ny /M),

du
(1 + ful)t

where the implied constant is absolute. Here we have used that %—; log(2 + No/M)) «
log(2 + Ni/M) for Ny > Ny. Since N > M(1+ |t|), Ny < M(1 + |t|), and the lemma
follows. O

Remark 1. The proof of the lemma above is involved because we have fixed the function
G inside the induction hypothesis (5.1), so it takes some effort to reduce the quantity
in (5.3) to a suitable form. This was done so that we do not need to keep track of
constants which depend on our fixed G in our future arguments.

Ly = max (C(l + |t|)3(%> L L(1+ |t|)3>7

X =LoM,
where recall that £ is as in Proposition 3.2 and satisfies
L > ﬁo > 100

for convenience. For clarity, we record the following useful bounds.

Now, let

and

Lemma 5.4. With notation as above, we have that
log £2
— 22X « (M + Nlog(2 + N/M) LY (1 + |t])74,
N/ ( ( /M))LP(L+ [t])
where the implied constant is absolute. Moreover,
N? M
X L1+ t)?
Proof. Suppose Lo = L(1 + [¢])® so that N < M, whence
N? M
X L+ t)?
Also in this case, we have that %X = Mv/L(1+ |t])*?log(L(1 + |t])?) « L5 M(1 +
[t
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In the complementary case when Ly = £(1 + |t|)3(%)2, we have that
N N2 M
X LoM L1+ [t)3

Also,
o8 L2 X _ VE( + 12N log £
N> ?
« L1+ [t)*Nlog(2 + N/M).
O
Applying Lemma 3.1 with Lo, we have that
(5.6)
S*(M, N, t)
] "(M, N (M, N /p?
« OgLEQ S(X,N.t) + S@X, Nty + <S (M, N/p.t) | SM, 2/p ’t))
V2 VEa<pev/iLs b b
1
« %2 (S(X,N,t) + S(2X, N, t) + L¥3(M + Nlog(2 + N/M))(1 + [t])?),
2

where the implied constant depends only on f and where we have applied the induction
hypothesis in NV to see that

S (M,N/p,t) S*(M,N/p?t
D ( (M,N/p,t) S5 (M,N/p )>

2

VL2<p</2L p p
1
« LM + Nlog(2 + N/M)(1+|t))> > =

N/ETEN T
« L2B3(M + Nlog(2 + N/M))(1 + [t])2.

3 A G (™)

n

We also have
2

S(X,N,t) + S2X, N, t) = >

X<|m|<4X

2

k+1 A 2k
«<Thr XY e ®)

k=0 X<|m|<4X|(n,2)=1

by Hecke multiplicativity and Cauchy-Schwarz. We now aim to show that

2

CURCEEDIE DY %G(ﬁ)(%) « X(1+ |t + LPBN(L + [t])*+25,

N
X<|m|<4X |(n,2)=1
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Before proceeding to the proof of (5.7), we first verify that this suffices for Propo-
sition 3.2. Indeed, applying (5.7) with N/2% in place of N immediately implies that
S(X,N,t) + S(2X,N,t) « X(1+ [th)* + L>3N(1 + |t[)>°. Combining this with (5.6),
we have that there exists some constants Cy,Cy dependent only on f such that
Cylog L,

VL,
Co(L¥5723 1 LT3 L23(1 + |t))*(M + Nlog(2 + N/M))

£2/3(1 + |t|)2(M + Nlog(2 + N/M)),

upon choosing £ sufficiently large compared to Cy. To derive the second line, we have

used Lemma 5.4 to bound %X and that 1%2 « W when Lo = L(1+ |t])?.

Now we proceed to prove (5.7). First, we fix F' to be a function satisfying the
conditions in Lemma 2.7 with

(5.8) co=1/16 and ¢; =4
Then by positivity,

S (M,N,t) < (XX + )Y+ LN(L+ [¢))*25 + L23(M + Nlog(2 + N/M))(1 + [t])?)

<
<

2

¢ <2F(§) > me(F) (%)

(n,2)=1
)\f n )\f TLQ) 1 ni N2
(5.9) ZZ V2t 12t 1/2 it H == G(W)G(ﬁ)
ning=0 ]. p|n1n2 p

(n1ng,2)=1

Ar(n)Ap(ne) Gi(ning) ~ [ kX ny N

X o )6 (3)6(F)
+ ’;&0 Zn;; 1/2+n 1/2 it i nqno N N
(n1n2,2)=1

by Lemma 2.4, and where

(5.10) ﬁ(ﬁi) - (272m') ﬁe)ﬁ(l—s)(%)sF(s) cos(%s)ds,

since F' is even. The following lemma helps us understand the diagonal contribution.

Lemma 5.5. Let

Ar(ng)Ag( 1
611 - N3 MR (1))

p
ning=0 nin
(n11n222) . plning
and
Ar(np)As(n 1
- D MM T (1- 17 )
ning=0 ny US) plning
2fning

Then, fori = 1,2, we have
Gi(u,v) = C(1 +u+v)L(1 4+ 2u, sym? ) L(1 4 2v,sym*f) L(1 + u + v, sym? f)H;(u, v)
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where H;(u,v) converges absolutely in the region Re u,v = —1/4 + €.

Proof. We prove the assertion for G;, the case for G, being essentially the same. We

have that
()
Gi(u,v) = n< (1 — —> (Z Z p1(1/2+u l/2+u))>
p>2 k 12+] 2k

and the assertion follows upon noting that for Re u,v > —1/4 + ¢,

Ty M) M@ A AL
z(l/2+up](1/2+u) p1+2u p1+2v p1+u+v p1+4e ’

k=1i+j=2k p

By Mellin inversion and (5.11), the first term in (5.9) is

F(0)X J J Gi(u + it, v — it)G(u) G(v) N“*dudv,

(27rz

for any 1/16 > € > 0. By Lemma 5.5, moving the contour in u to Re u = —2e¢ picks up
a pole at © = —v and gives that the above is

K XN L+t + X | |LQ =20+ 2it, sym®f)L(1 + 20 — 2it, sym? ) G(—v)G(v)|dv
(e)
(5.12)

« X(1+ [t

where the implied constant depends only on f. In the above, we have used the standard
convexity estimate L(o + it, sym2f) « (1 + [¢[)2(=*¢ for 0 < ¢ < 1. It remains to
similarly bound the contribution of k # 0 in (5.9), which we examine in the Proposition
below.

Proposition 5.6. Let
Ar(ny)Af(ng) G -~ kX
P B3 M p( 1 o(2)o ()

E#£0 71,12
(n1n2 2)= 1

Then
2/3 E 342/5
T<«L (1+1¢) :
X
where the implied constant may depend only on f.

Note that Proposition 5.6, (5.9) and (5.12) immediately implies (5.7). We prove
Proposition 5.6 below.
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5.1. Proof of Proposition 5.6. By (5.8), F' is supported on [—1/16,1/16] while G is
supported on [3/4, 2] so that the range for k in T is restricted to

n1n2 1 N2

16X 4 X

k| <

For convenience, we let
N2
4X°

Further, we write k = kjk3, where k; is squarefree, and k, is positive. Using (5.10)
to separate variables inside F' and the usual Mellin inversion on G we have that

o o o o ) Ft - reres(F) i

X Z Z(1)2+ it +u—s,1/2 —it + v —s,s; ki, 1) N dudvds,

|k1|<K

(5.13) K =

where recall from (2.8) and Lemma 2.5 that

Ap(n1) A (ng) Grarg (mans)
Z(, B.7) = Z(o, B, 7 k1, q) = > ZZ () Ap(n) Gryrg(mana

2y
nin
k2>1 (n1,2q)= ny n2k 17e2
(n2,2q)=

= L(1/2+q, f® Xim)L(1/2 + B, f @ xim)Y (a, B,7; k1),

where m = m(k;) is the fundamental discriminant satisfying

_{kl if ky = 1 mod 4

4k, if ky = 2,3 mod 4.
We may write a multiple Dirichlet series for Y of the form

C(ri,ra,r
Y(avﬂaﬂy;kl) = Z (ITQQ,Y?))a

T1,12,T3 711 ToT3

since Z is visibly of this form. Thus,

Zapmy= 5, CUnrrs) $2 A () s Arlrahn(n)

71,72,73 /rl r T3 ni 1 n9 2

SO

1 ~ o~
—J J Z(1)2+it +u—s,1/2—it+v—s,)N"""G(u)G(v)dudv
2mi)2 (2) J(2)

C(ri,r2,13) A (1) Xm (11) A (n2) Xim (122)
- Z Z 1/2+zt s 1/2 it—s 2SG( ) ( )ZZ 1+1t s n% it—s
ni,ng

R1,R2 71,72,73 T Ty

(Y (Yo e ),
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where we have applied a partition of unity to the sum over r1,r,. To be more specific

d . :
Z denotes a sum over R; = 2* for k > 0. Since G(M) restricts 2& < n; < 2
R1,R2 N 4r; r

while G(%) restricts %RZ- < r; < 2R;, the above holds for any V' which is identically 1
on [9/16,4]. We set

V(z) = G(z/4) + G(z/2) + G(z) + G(2x),

where G is our fixed function satisfying (2.1) so that V' is identically 1 on [1/2,6].
We once again apply Mellin inversion to separate variables inside G(””l)G(”](,”), SO
that

TS\ ~, ~
T R% SR f L) L (%X'kl ) F(1 = 5)P(s) cos( ) G) o)
C(ry,72,73) A (1) xm (1)
Z Z 1/2+2t s+u 1/2 it—s+v QSG( ) ( )ZZ 1+zt s+u

|k1|<K T1,72,73 T

y /\f(n2)Xm(n2) Vv (anl ) 1% (n2R2 ) N""dudvds.

n%—zt—s+v N N

We now change variables u — s to v and v + s to v. Recalling the definition of V" as a
finite sum of values of G and shifting contours, we have that 7" is a finite sum of terms
of the form

R Re (2mi)? J(3/5 f (—1/2) f 1/2)(7TX> (1_8)P(8)COS(%S)

C(ry1,73,73) T ra Ar (1) X (111) o Ap(n2) X, (n2)
x Z s Z 12+utit, 1/2+v it QSG Rl G E Z ni+u+it Z T+o—it

k1<K |k1| ri,r2,r3 1 n2 g
(5.14)
X G(%)G(Ng) N 253G (4 + 5)G(v + s)dududs,

where N; = N/R;. We have separated the variables r; from n;. We bound the sum over
r; in the lemma below.

Lemma 5.7. Suppose Re s = 3/5 and write u = —1/2+ iy, v = —1/2+iv for real p, v
We have that

C(Tl)r27r3) 7"1 "2
Z 1/2+u+zt 1/24+v—it 25G Rl ¢ R2

r1,r2,r3 ' 1 2

< (L+E) P (L ) (1+|v]) exp(—c1v/log(Ri Re))

where the implied constant and ¢, > 0 may depend only on f.

Proof. We first quote the standard zero free region and lower bound for L(s,sym?f).
There exists a positive constant ¢ depending only on f such that for s = o + t, there
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are no zeros 2 of L(s,sym?f) in the region
c
T g+ 1)
We refer the reader to Theorem 5.42 of [9] for the proof. Further, in the same region,
we have the bound

(5.15) oc=1

5.16 L(s,sym?f) » —s——,
( ) ( Yy f) f 10g2(2+|t|)

where the implied constant depends only on f. This follows from the bound L(s, f x
f) > m due to Humphries and Brumley [7], and the classical bound ((s) «

log(2+1t|). For notational convenience, we have assumed that the same zero free region
and the aforementioned bounds holds true with ((s) and L(s, f x f) in the same region
as in (5.15). We further assume that the classical bound

1
> @+ 1)

holds in the region (5.15).
By Mellin inversion,

3 Clrirars) (11 o 72
1/24utit_1/24v—it_og
71,72,7'3 Ty Ty T3 Rl R2

1 : : W1 s ~
(517): W J;O) J;(]) Y(Z([L + t) + wq, Z(l/ - t) + wa, 8)R11R2 G(wl)G(wg)dwldWQ.

By Lemma 2.5

Y(i(p+1t) +wp,i(v—1t) +ws,s)

= Zo(i(u + 1) + w1, i(v —t) + wa, 8)C(1 +i(p + v) + wp + wy) ™

x L(1+i(p+ v) + wy + wy,sym?f) " L(1 + 2i(pu + t) + 2wy, sym? £) T L(1 + 2i(v — t) + 2wy, sym? f) ™1

where Zo(i(p +t) +wy,i(v —t) + we, s) is analytic and uniformly bounded in the region
Re wi,wy > —1/20 and Re s = 3/5, upon applying Lemma 2.5 with § = 1.
We note for any non-negative numbers a4, ..., a,, that

(5.18) log(2 4 ay + ... + a,) <1og(2 + ay) x ... x log(2 + ay).

Then within the zero free region where the bound (5.16) holds, we have that
Y(i(p+1t) +wp,i(v—1t) + ws,s)

(5.19) < log*(2 + |t]) log®(2 + |u]) log®(2 + |v])) log®(2 + |wi|) log®(2 + |wal),

where the implied constant depends only on f and we may assume that c is sufficiently

small to force Re wq, Re wy > —2—10 in the zero free region.

2Since f is fixed, the presence of a possible exceptional zero does not disturb us. However, it is also
known that L(s,sym?f) does not have Siegel zeros by the work of Hoffstein and Ramakrishnan [6].
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Let T = exp(v/log R Ry). If |Im w;| > T for either ¢ = 1 or i = 2, the bound
G(w;) «a (1 + |w;])™ for any A > 0 implies that this range gives a contribution of
« logh(2 + [t]) 1og®(2 + |u|) log®(2 + |v)) exp(—+/Tog R1 Ry) to (5.17).

Now, suppose that [Im w;| < T for ¢ = 1 and i = 2. If max(|t|, |p|, |v|) < T, then

. . J
we move the contour of integration to Re w; = < —% for some 1 = ¢ > 0

logT ~
depending only on f such that (5.19) is satisfied. Sucﬁ ¢’ exists by a quick examination
of (5.15), (5.16) and (5.18). The contribution of this is « log*(2+t|) log”® (24 |u|) log® (2 +
V) exp(—c'/2+/log R1R3) using the bound G(w;) «4 (1 + |w;|)™ to bound the short
horizontal contribution.

Now if max(|t], |u|, |v]) > T, we do not shift contours and obtain that (5.17) is

« log?(2 + [t]) log? (2 + |u]) log*(2 + 1))
< (L DY (1+ |u) (1 + |v]) exp(~1/6y/Tog (R Ra))
O

Using that I'(s) cos(%) « |s[* ¢/ and by Lemma 5.7 we have that the quantity in
(5.14) is

« (X)TPNY(L 4 |t])? Zd exp(—c1y/log (R Rz)) foooo f:( 1 1+ |V|)>10

Py CEP
=1 Ar(n1)xm(na) <o Ap(n2)Xm(n2) (m n2
<5-2@)k§|;[( AEE ; n}/?-‘riu-‘rit ; é/Q—&-iu—it G N G N, dpdy.

We split the sum in k; into dyadic intervals of the form Iy < |k1| < 2K, and let

5 MOl (2)

n

TG = Tkt e N) = S

/C1§‘k1|<21C1

 [5 Adhnto) G(g)r

1/2+iz+it
/C1<|m|<81C1 n / N
< L2+ |t + z])*Kilog(2 + |t + )
& L2+ [t)>HP(1 + |z Ky
where the implied constant is absolute, and where we may apply the induction hypoth-
esis in the form given by (5.2) since 4K; < 4K = N72 < 8 < M — 1, where the second
last estimate is from Lemma 5.4.

Putting in this estimate, we see by Cauchy-Schwarz and dyadic summation over X,
that

N

n

Z |k‘ |3/5 Z 1/2+ip+it Z 1/2+iv—it G N_ G F
lk1|<K ! n1 ny ny 2 1 2

< L) P+ [ul)? (1 + [v]) 2K,
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Putting this into (5.20) and recalling from (5.13) that K = g gives a bound of

N
& £2/3}(1 + |t|)3+2/5,

d

where we have estimated Z ok exp(—ciy/10g(R1R2)) = X, pop exp(—c1vIog 2vI + k) =
1,472 e

Yok + 1) exp(—ci4/log 2v/h) « 1. This completes the proof of Proposition 5.6.

6. PROOF OF THEOREM 1.1

It suffices to show that
(6.1)

* d 2X
) L<1/27f®x8d)2J(8y) = 5 J(DL(L sym* ) H(0,0) log X + O(X (log X) /")
(d,2)=1

for any smooth nonnegative function J compactly supported on [1/2,2] and where H,
is defined as in Lemma 5.5. Recall from Lemma 2.1 that for d odd and squarefree,

Ar(n)x n

L(1/2, f ®xsa) =2 ) s 1/§d Wl/z(w)
n=1

where for any ¢ > 0,

1 (% + w) _dw

W = | =2 .
1/2(37) 27T’L (c) F(g) w

We let N = W and further let

A(8d) = A(8d, ) = 2 Z MWI/Q(%)

and
B(8d) = L(1/2, f ® xsa) — A(8d).

Note that since Wi, (x) is real for all z, A(8d) and B(8d) are real as well. Then (6.1)
follows from the Propositions below.

Proposition 6.1. With notation as abowve,
8d
Z B(8d)* (—) « X (loglog X)*.
(d,2)=
Proposition 6.2. With notation as abowve,

Z A(8d)? ( ) = 2Xj( 1)L(1, sym? £)>H(0,0) log X + O(X loglog X).
(d,2)=
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Indeed, assuming Propositions 6.1 and 6.2, we have by Cauchy-Schwarz that

62 > A(8d)B(8d)J(8yd) « (X log X)2X2(loglog X)? « X (log X )2+,
(d,2)=1

and (6.1) follows. With more care, one can improve the bound in (6.2) by a direct

evaluation similar to the proof of Proposition 6.2, hence improving the error term in

(6.1) to O(X (loglog X)*). Actually, with even more effort, one should be able to slightly

refine the bound in Proposition 6.1 with a more general form of Proposition 3.2. We

now proceed the proofs of Propositions 6.1 and 6.2.

6.1. Proof of Proposition 6.1. For our fixed G with properties as in (2.1), we have
that
1[0 D5+ w) )~ N Arln)xsaln)
B(8d) Z i J ) w Z nl/2+w G(N)dw’

E
2 nz1

=

where Z N denotes a sum over N = 2* for k > 0. Now we proceed in a manner similar
to Lemma 5.3. Indeed, by (5.5),

TRl
[ S () Gt
with V as in (5.4).

When N < N, we move the contour in w to Re w = —1, noting that we pass no
poles in the process. For N < N < X, we move the integral in w to Re w = 0, while
for N > X, we move to Re w = 4. In all cases, we move the contour in v to Re u = 0.
By Cauchy-Schwarz, the contribution of those N < N is

zxl. 1.2 * {3- nl/g*’)f<%)v(%) QJ(SYCZ)<1+|ijiw|>1o<1+dffu|>10'

Note that 8d is a fundamental discriminant when (d,2) = 1 and d is squarefree. More-
over, V' is as in (5.4), so we may apply Proposition 3.2 to see that the above is

« Z X+Nlog(2+N/X)) « X.
N<N

In the range N' < N < |8d|, we note that for Re w = 0, W « log(8|d|) «

d
log % Moreover, Z 1 « log % Thus, similar to the above, this range con-

N<N<8|d|
tributes

S A (5 ()]

7 8_d dt dw
X ) (1 + it —w|)0 (1 + |w|)0

n

log J J
N<N<8\d\ (0) (d,2)=1
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« X (loglog X)*,

again using Proposition 3.2. Finally, the range N > X contributes

M( ) JoI. Z) [ L) (®) J<8Yd> TR T T
« ) ( ) Nlog(2+ N/X)

N>X
< X.

by Proposition 3.2. In the last line, we have used that % log(2 + N/X) « 1 for N > X.

6.2. Proof of Proposition 6.2. We have that

ST A(8dy ( > > A(8d) (X)Z p(a).

(d,2)=1 (d,2)=1 a?|d
Exchanging the order of summation, we see that

2 A(8d)? ( )

(d,2)=
2

8da? Ar(n n
=4l >+ D) | > J(7> > %XSd(n)Wl/Z(ﬁ) :
a<Y a>Y (d,2)=1 (n,a)=1

(a,2)=1 (a,2)=1
where for concreteness, we set Y = log® X.
6.2.1. The contribution of a > Y. We first prove the following lemma.

Lemma 6.3. For any real X, N = 1, real t, and positive integer q
2

(6.3) D %(ﬁi)c;(%) « (@)X (L + [t])* log(2 + [t])

n
(d,2)=1|(n,q)=1
d<X

Proof. We first write d = b*m where m is squarefree, so that the left side of (6.3) is

2
* Af(n) (8m n
(6.4 >3y ()
b=1 (m,2)=1|(n,bg)=1
m<X /b2

We further write
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() Do () (§)

clbg
SRR (e

Combining this with (6.4), applying Cauchy-Schwarz, and crudely bounding the divisor
sums, we see that the left side of (6.3) is bounded by

Zd bq) ZZ Z 1/2+zt <877>G<%) 2

b=1 clbg elc (m,2)=
« Y d(bg) ZZ (1 + [t])* log(2 + |t])

m<X/b2
b=1 clbg e|c

< d(@)°X (1 + [t])®log(2 + |t]),

as claimed, where we have used the bound (5.2) and dyadic summation to derive the
second line. O

Similar to the proof of Proposition 6.1 in §6.1,

. A;f;?xm)wﬂz(%)

d L5+ n N
V(=N g . dud
< %: J(l) (27T) % w 27TZ JE) ( Z n1/2+u ( ) (N) (u w) uaw,

d
where Z denotes a sum over N = 2* for k > 0. Applying Cauchy-Schwarz, Lemma
6.3 and some calculation similar to that in §6.1 then yields that

2

2 J(Si?) 3 Aff/2>xsd< )Wl/z(/%)

(d,2)=1 (n,a)=1

Hence,

E : z: 8da2) )\f(n) n X
J W — . 7
(@5 (BD=1 ( X (n,%l , iz Xealm) 1/2<N> e yie

for any € > 0. Recalling that ¥ = log® X, this is absorbed into the error term in
Proposition 6.2.
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6.2.2. The contribution of a <Y . The computation is very similar to parts of the proof
of Proposition 3.2 in §5. We have
2

> J(&;??) ( >, )\fl(/2)X8d( n)Wiy (%)

(d,2)=1 na) 1
8da? ) ZZ )\f n1)Ar(ng) ny No

= XSd(n1n2)W1/2 — )\Wipl -

(d,2)=1 < (ninz.a)=1 nln 1/2 <N) <N)

(6.5)
/\f 1 )\f nz) 1 ny U
- 16a2 ZZD 1/2 1/2 H 1_}_) Wl/Q(JT[)Wl/2(JT/)
(2amynz)=1 plnina

X )\f ny )\f TLQ) Gk(nlng) kX (nl) (TLQ)

+ 1602 1; (zgg X 1/2 1/2 n1na J 1642114 W1/2 N W1/2 N

by Lemma 2.4. We record the contribution of the first term in the lemma below.

Lemma 6.4. ForY > logloX

ot Y, SO yis A ”Jff/zm) [T (1 5)me () me ()

(a,2)=1 ning=0 plning
agsyY (2a,n1n2)=1
2J(1)X log N
- ()—QOgL(L sym® f)*H5(0,0) + O(X loglog X)
T

Proof. Note that

2 u{ig) Zﬁ 11 (1—;)_1+01/Y =% 171 (1——)_1+O(1/Y).

a<syY p|2ning
(a,2n1n2)=1

Switching the order of summation gives that the left side of (6.6) is

2X~ Ar(na)As( 1
DD Ti}g {/an) [ (“m)wl/?(%)ww(%)

ning=0 p\mnz
(2,n1n2)=1

( S5 i (5] )

ning=0

The error term inside the big—O is « = loglo X by standard methods. The main term is

2X~ J J +U)1 ( +w2)g( ) ﬁ w1+w2%%
271'2 (e) J(© 5 F(Q) 2\, W 2 w1 Wa

2

where by Lemma 5.5
Go (wl, lUQ) = C(l-i—wl +’LU2)L(1+21U1, symzf)L(1+2w2, symzf)L(l—Irwl +wa, symzf)”;'-lg (wl, wg)
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where Ha(wy, ws) converges absolutely in the region Re wy,wy = —1/4 + €.

We now shift the contour of integration in w; to Re w; = —1/5. We encounter two
poles along the way: w; = —ws and w; = 0. The contribution of the remaining integral
at Re w; = —1/5 contributes « X N~/5+¢_ The contribution of w; = —w, is
<« X PG —w) TG +ws) L(1 — 2wy, sym® f) L(1 + 2ws, sym? f) L(1, sym? f ) Ha(—ws, w2)@
o L(5) I'(%) w3
« X.

Finally, the contribution of w; = 0 gives

2j(1)XL(1,sym2f)J I'(5 + w,)
(©

2 2mi I'(5)

2 N\ 2 dwsy
X C(l + 'LUQ)L(l + 2’(1)2, Sym f)L(l + wa, SYym f)HQ(O U)Q) 27T w—
2
We similarly shift to Re we = —1/5, the contour there giving a contribution of «
X N~/5+¢ while the double pole at wy, = 0 gives
2J(1)X log N/ f
TL(L sym? £)3H,(0,0) + O(X),
which suffices upon noting that log /' = log X + O(loglog X). 0

We now study the contribution of the k # 0 terms in (6.5). To be precise, we will
prove that

(67)
)\f nq /\f 712) Gk(nlng) kX ny Mo a2t N
;J (2aznnz ny*ny? n1Ms / 2a2n1ny Wl/z(/\/)wl/z(/v) CTx

This gives a total contribution of > _, ¢ N« YI*N «

~ which can be absorbed

lo 50X’
into the error term in Proposition 6.2.

The proof of (6.7) is very similar to the proof of Proposition 5.6 and we provide a
sketch here. The presence of the factor (—1)* causes some minor issues, which we avoid
by writing the quantity in (6.7) as To — -, T1 where T} is the contribution of those &k
with 2'|k. For odd n, Gu(n) = Gi(n) whence Goys(n) = Gosp(n) where 6 = (1) =
if 2|l and 6 = 1 when 21 1.

Analogous to Proposition 5.6, we will prove that

)\f T )\f ng) Ggék(nl’ng) v kX« nq N9
T (N1, No; o, ty,t9) == J G| — |G| —
( 1, IVo; @y 17,4 2 (k; (2(;117; 1/2+1t1 1/2+zt2 ninsy 2NN N, N,

VNN
(6.8) « L (L )L+ [l

for any a > 0 and § = 0,1. Actually, following the proof of Proposition 5.6 would give
(1 + [t;])¥**1/5 in place of (1 + [t;])2. Then, to prove (6.7), we first apply (6.8) with
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a = 3—; along with dyadic summation over N; and Mellin inversion to see that

4 4
T, « Zd(u%) (1+%>

N1,N2
0 0
X f f |T(N1, NQ, 21a72,t1,t2)|(1 + |t1|)710(1 + |t2|)710dt1dt2
—o0 J—w©

a2+6 N

20X 7
and so the quantity in (6.7) is Ty — >, 11 < “HTEN

The proof of (6.8) proceeds along the same lines as the proof of Proposition 5.6 in
the range |ki| < 2282 with two minor differences. The first is that we now sum over
(k1ks,2) = 1 with k1k2 = 2%k and k; squarefree. When 6 = 1, we sum 2k; over even
squarefree numbers, while when ¢ = 0, we have k; running over odd squarefree numbers.
In both cases we may complete the sum to all squarefrees upon taking absolute values.
The (k2,2) = 1 condition changes Z(«, 3,7) by a benign factor of 1 — 5. The second
difference is that by Lemma 2.5, the condition (2a,niny) = 1 changes Z(«, 3,7) by a
finite Euler product over p|a which is ultimately bounded by « d(a) « a.

«

Now, suppose that K; < |k1| < 2K, with Ky = % Then the proof proceeds as
before, with the only difference being that the integral in s is moved to Re s = 6/5,
while the integrals in u and v are still moved to Re u,v = —1/2. This eventually gives

a bound of
« af(aX) OANIBTRNEEARKe B L )21 + [ta))?,

and dyadic summation over Ky > % gives the bound

N, N. 6/5 N N. -1/5
<<a€( ;XQ) (N1N2)1/2<%) (1+ [0a])* (1 + [ta])?

VNN,
aX

La (14 [t1])*(1 + [t2])?

as desired.
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