Diffusion, Density, and Defects on Spheres

John E. Bond, * Alex J. Yeh,* John R. Edison, Michael A. BevanT
Chemical & Biomolecular Engr., Johns Hopkins Univ., Baltimore, MD 21218 USA

Abstract

We simulate and model diffusion of spherical colloids of radius, @, on spherical surfaces
of radius, R, as a function of relative size and surface concentration. Using Brownian Dynamics
simulations, we quantify diffusion and microstructure at different concentrations ranging from
single particles to dense crystalline states. Self-diffusion and structural metrics (pair distribution,
local density, and topological charge) are indistinguishable between spheres and planes for all
concentrations up to dense liquid states. For concentrations approaching and greater than the
freezing transition, smaller spheres with higher curvature show increased diffusivities and
nonuniform density/topological defect distributions, which differ qualitatively from planar
surfaces. The total topological charge varies quadratically with sphere radius for dense liquid states
and linearly with sphere radius for dense crystals with icosahedrally organized grain scars.
Between the dense liquid and dense crystal states on spherical surfaces is a regime of fluctuating
and interacting defect clusters. We show local density governs self-diffusion in dense liquids on
flat and spherical surfaces via the pair distribution. In contrast, dynamic topological defects couple
to finite diffusivities through freezing and in low density crystal states on spherical surfaces, where
neither exist on flat surfaces.

keywords: self-diffusion | colloids | Brownian Dynamics | curvature | topological defects
Introduction

Finding colloidal particles far from any surface is exceedingly rare, and the vast majority
of these surfaces are not flat. In analogy to atoms forming nano- tube and closed ball
morphologies,' or adsorbing to complex pore surfaces,” colloidal species can adsorb and assemble
onto curved surfaces in diverse materials and applications. Assembling nano- and micro- scale
components into or onto spherical surfaces include viral capsids,® vesicles,* cell membranes,’
Pickering emulsion drops,® colloidosomes,’ pollens,® insect eyes,” liquid marbles,'® multicellular
organisms,'! blastula, organoids,'? etc. Examples of other common material applications and
environments with curved surfaces involving adsorbed/assembled colloidal species include
particles in porous media (soil, oil reservoirs, tumor vasculature), tissue surfaces, and bacterial
colonies. In each of these applications, the behaviors and properties of colloidal ensembles depend
on their interactions, dynamics, and structures as they are confined to fixed or often flexible
substrate surfaces with underlying curvature.

While the behavior and properties of spherical colloidal particles on flat surfaces are
generally well understood, many aspects of spherical particles on curved surfaces have yet to be
reported. For example, colloids with short-range repulsion on planar surfaces have quasi-2D phase
behavior well approximated by predictions for 2D hard disks.!*>"'® They exhibit uniform liquid
states below a melting concentration and hexagonal crystals above a freezing concentration.
However, simply trying to wrap a 2D crystal around a sphere is not possible without introducing
defects,® which is a basic example of geometric frustration.!” According to the Euler-Poincaré
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theorem, any hexagonal lattice on a sphere must contain at least twelve 5-coordinated particles
within the otherwise 6-coordinated crystal, however finding specific solutions for equilibrium
particle configurations must involve minimizing the free energy with respect to particle
interactions (e.g. the Thomson and Tammes problems).® The role of curvature in governing
geometrically frustrated equilibrium structures leads naturally towards more general open
problems involving phase behavior, diffusive dynamics, non-equilibrium behavior, and ultimately
emergent properties (e.g., mechanical, electrical, optical, etc.) in curved colloidal systems.

Phase behavior and defect types for spherical colloidal particles on spherical surfaces is
unknown for arbitrary temperatures, interactions, concentrations, and relative dimensions, but
specific problems have been addressed in models and experiments. For a 2D elastic solid at zero
temperature, defects are predicted to organize as twelve grain scars (instead of flat 2D grain
boundaries) distributed with icosahedral symmetry on sphere surfaces (e.g., like soccer balls).
Each of the twelve grain scars consists of chains of connected 5- and 7- coordinated particles with
one excess 5- coordinated particle, which satisfies the Euler-Poincar¢ theorem. These chains’
length depends linearly on the ratio of lattice spacing (2a) to sphere size (R).!® This prediction has
been validated for colloidal particles adsorbed at spherical drop oil-water interfaces with repulsive
dipolar potentials. Such systems visibly forms grains scars whose length depends linearly on
relative dimensions (R/2a)" and whose positions exhibit icosahedral symmetry.?® In contrast,
experiments on colloids with short-range attractive interactions adsorbed to spherical drop interior
surfaces produce dendritic crystals due to elastic instabilities.?! Other simulation studies have
revealed additional defect motifs for particles on spherical surfaces vs. particle number.?? Beyond
the static organization of near-equilibrium low energy crystal state defects, numerous open
questions remain about equilibrium and non-equilibrium structures, defects, and dynamics.

Colloidal diffusion on spherical surfaces has received little attention, whether it be within
equilibrium states or as part of non-equilibrium dynamics. In contrast, 2D diffusion on flat surfaces
is relatively well understood. For example, concentration dependent diffusion in flat colloidal
monolayers®® agrees with established self-diffusion models.?* In brief, diffusion approaches the
2D Stokes-Einstein value at infinite dilution, decreases monotonically with increasing liquid
concentration,”> and decreases more significantly upon crystallization before vanishing with
further densification.?® On flat surfaces, self-diffusion in liquids is coupled to 2D static structural
features.?” Whereas in crystal states, dislocations can enable finite diffusivities.?® The expectation
is that that structural features like curvature mediated defects may impact diffusion on spheres. For
particles on spheres, even single particle diffusion requires a different model to capture 3D
localization,?3! which must be carefully considered before addressing packing effects and defects.
Studies of concentrated particle dynamics on spheres include dislocation dynamics within grain
scars,*? curvature-dependent spatially heterogeneous glassy relaxation,** and melting dynamics
unaffected by grain scars.>* While these latter studies probe how grain scars mediate some
dynamics within crystal states, they do not provide comprehensive characterization of particle
diffusion.

In this work, we measure self-diffusion in Brownian Dynamics (BD) simulations of
spherical colloids on spherical surfaces as a function of relative size and surface concentration
(Fig. 1). We consider short-range screened electrostatic repulsive potentials so that particles
behave as effective 2D hard spheres or hard disks. We compare concentration dependent self-
diffusion on spherical and planar surfaces from infinite dilution through freezing up to dense
crystal states. We then compare measured diffusivities to structural metrics related to density and
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Fig 1. Effective hard spheres on different sized spheres. (top) At low area fractions, there are no
obvious ordered microstructures in liquid states based on tessellations and coloring particles by their
coordination number (see Fig.6C legend for color scheme). (bottom) At high area fractions, hexagonal
crystalline states are obtained with icosahedrally organized grain scars each with one excess 5-coordinated
particle. Note grain scar length is ~3 particles for small sphere and ~10 particles for larger sphere.

topological defects to gain insights into mechanisms controlling particle diffusion in liquid and
crystal states on both spherical and planar surfaces. While findings from these results are intended
to describe colloidal diffusion on spherical surfaces relevant in numerous applications, they are
also generalizable to molecular systems.

Results & Discussion
Self-Diffusion on Planes & Spheres

We use Brownian Dynamics to simulate spherical particles of radius @ on both planar
surfaces and spherical surfaces of varying radii, R, and varying surface concentrations (Fig. 2).
We investigate a screened electrostatic repulsive potential, U(r)=Aexp(-xr), that is very short-
ranged compared to particle dimensions (ka>>1). This short-range potential is realistic for typical
aqueous charged colloids, is easily compatible with BD simulations, and allows us to capture 2D
phase behavior with a by hard disk model using a perturbation theory.*® Practically, we can treat
particles with core radii, a, as having an effective radius, aefr, and effective area fraction based on
the 2D particle number density, #=pmac®. Because system size, area fraction, and spherical
substrate radius are coupled, in the following we choose a range of R/2a values and particle area
fractions of interest, which determine system sizes that we also use as benchmark cases for flat
BD simulations at the same conditions.

We first illustrate how to measure the self-diffusivity, D, from BD trajectories using the
mean squared displacement, {?), vs. time, ¢ on a single spherical surface radius and on a flat surface
with the same particle number (Fig. 2). For all planar and spherical surface concentrations, as t—0,
measured data are well captured by,
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Fig 2. Measuring diffusion from simulated trajectories on spherical and planar surfaces. For particles
on a (A) flat surface with periodic boundary conditions, and (B) a spherical surface with R/2a=8.18,
Euclidean mean squared displacements are shown for area fractions of (top-to-bottom) n =0, 0.3, 0.6, 0.72,
0.8. Insets show the same data on linear scales. Do is obtained in all cases by fitting Eq. (1) to simulated
data as t—0. Dv is obtained for flat surfaces by fitting Eq. (1) to simulated data for £>10<. Dv is obtained for
spherical surfaces by fitting Eq. (2) to simulated data for £>101. (C) Rendered trajectories over 14t are
colored by each particle’s maximum displacement to contrast (blue) mobile particles and (gray) localized
particles.

() =4DAt (1)

where D in this limit is the Stokes-Einstein diffusivity, Do=kT/6rua, where kT is the product of
Boltzmann’s constant and absolute temperature and the medium has viscosity g In the BD
equation of motion we specify that the diffusivity be Do, and so we expect Eq. (1) to recover the
input diffusivity at very short-times. Indeed, we see that Do is the short-time self-diffusivity in all
cases. If we had chosen to include hydrodynamic interactions, the short-time self-diffusivity would
instead be the trace of the multi-body diffusion tensor;>* which manifests as a concentration-
dependent scalar that does not influence diffusion at longer times.

In contrast to the short-time self-diffusion behavior observed on both spherical and planar
surfaces (Fig. 2), at longer times the diffusivity approaches different, concentration-dependent,
values. On the planar surface, the (+%) vs. ¢ data exhibit a well-defined long-time linear region fit
by Eq. (1), where D now refers to the concentration dependent long-time self-diffusivity, DL. On
the spherical surface, 3D confinement yields long-time (+?) vs. ¢ data captured by a different
functional form,?-3!

(r*)=2R" [1 —exp(2DAt/ Rz)] )
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where (%) is calculated using Euclidean displacements. Observe that Eq. (2) approaches Eq (1) as
t—0, as expected. While D=Do accurately captures single particle diffusion (77—0) on spheres
(Fig. 2B), we must fit Eq. (2) to long-time data to obtain DL as a function of concentration. The
results for both planar and spherical substrates show DL decreases as 7 increases. However, the
long-time {#?) vs. ¢ data plateaus for # > 0.7 on planar surfaces but not on spherical surfaces. The
plateau indicates D vanishes with freezing on planar surfaces, just as expected,?® but remains
nonzero on spherical surfaces at the same area fraction and particle number.

Rendered particle trajectories (Fig. 2C) appear indistinguishable for liquid states (7 < 0.7)
on both spherical and planar surfaces. However, the crystal states (# > 0.7) on the spherical
substrate retain significant diffusion over length scales greater than the particle and lattice
dimension. This contrasts heavily with flat systems at the same area fraction which only exhibit
localized lattice motion and no significant diffusion. These observations from the rendered
trajectories confirm the long-time diffusion apparent in the (+?) vs. ¢ data in the spherical vs. planar
substrate results for crystal states (1 > 0.7). The presence of diffusing particles at crystalline area
fractions suggests that surface curvature enables dynamic processes not possible on flat surfaces
at otherwise identical conditions. However, these high-n dynamics are spatially heterogeneous,
and as such are not strictly long-time self-diffusion as it is defined. Therefore, the spatially
averaged long-time diffusivity, DL, measures both the self-diffusive process when 1n<0.7 and
spatially heterogeneous diffusion when n>0.7. To clarify terminology, we will refer to DL as the
apparent diffusivity when it reflects high-n, spatially heterogeneous diffusion.

Analysis of Measured Self-Diffusivities

To investigate how curvature influences colloidal diffusivities, we perform additional BD
simulations and diffusion measurements similar to the results reported in Fig. 2 on a range of
differently sized spherical surfaces and concentrations, as well as on planar surfaces with the same
concentrations and particle numbers. Fig. 3 summarizes measured Dr values normalized by the
short-time diffusivities (i.e., Do) as Di/Do in plots over the full # range, which a focus on the
vicinity where DL vanishes. For reference, we include vertical lines for hard disk melting and
freezing (from very large system size simulations!®) and a horizontal line based on a 2D dynamic
freezing criterion.?® Our data approach the intersection of the vertical freezing/melting lines and
the horizontal dynamic freezing criterion line, although we cannot expect to exactly match the
vertical lines since these are for essentially infinite system sizes. Correspondence of our results
with these independent estimates/constraints indicates consistency with established hard disk
phase behavior and freezing dynamics.

Additionally, our results correspond with a previously verified microstructural description
of long-time self-diffusion in concentrated 2D colloidal liquid states with attractive and repulsive
interaction potentials®* (originally developed for concentrated 3D colloidal dispersions®). This
additional theoretical line in Fig. 3 is given as,

D, /D, =[1+2ng(2a)]" 3)

where g(2a) is the height of the first peak of the pair distribution function (where g(r)=0(r)/{0)).
According to Eq. (3) the ratio of the long-time and short-time diffusivities depends on the product
of the average concentration # and g(2a), which is practically the average first-coordination shell
density. Eq. (3) captures the data well for # < 0.5, above which additional terms are needed for
more concentrated liquids.>® For # < 0.65, the measured diffusivities are the same across five
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Fig 3. Summary of self-diffusion vs. concentration and curvature. (A) Concentration dependent long-
time diffusivity, Di, normalized by short-time value, Do. Dashed lines indicate Eq. (3), (horizontal) dynamic
freezing criterion,?® and (vertical) infinite system size hard-disc freezing/melting transitions.'® (B) High-
density data zoom view of data in panel A. (C) Rendered trajectories colored by maximum Euclidean
displacement over fixed time (gray-blue scale) for different R/2a and 7.

different flat-case system sizes and five different spherical surface sizes. For > 0.65, the flat
surface diffusivities vanish as # approaches the freezing transition, but all spherical surface
apparent diffusivities remain nonzero, and the spectrum color scale indicates higher apparent
diffusivities for spherical surfaces with smaller radii and higher curvatures

With the summary of results in Fig. 3, along with guidance from theoretical expectations,
several key trends emerge. The trend in Di1/Do from infinite dilution up to high density liquid states
is independent of substrate curvature and agrees with established models for 2D self-diffusion.
However, as the system approaches freezing from the dense liquids, the trend in Dr/Do begins to
depend on substrate curvature and persists for spherical surfaces up to very high area fractions (y
~ 0.8). Rendered trajectories (Fig. 3C) show only a subset of particles diffusing past their
neighbors and through their first coordination shell. Furthermore, the spatial organization of
particles with higher diffusivities increasingly takes on the icosahedral symmetry reminiscent of
the grain scar ground state in elastic solids on spherical surfaces. Interestingly, symmetry begins
to emerge at much lower concentrations than we expect to form well-defined grain scars. In the
following sections we focus on understanding the origin of the combined curvature and
concentration dependent diffusion observed in Fig. 3.
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Spatial Density Variations

Given the success of local density for explaining Di/Do in homogeneous dense liquid states
on both flat and curved surfaces (e.g. Eq. (3)), we next examine more closely density variations as
a mechanism for explaining the curvature dependent Di/Do in Fig. 3. The ensemble average pair
distribution function for each curved and flat system (Fig. 4A) shows all cases collapse to
indistinguishable curves for #<0.71, but for higher concentrations there is a curvature-dependence
that is most pronounced in the height of the first peak, g(2a). However, plotting the right-hand side
of Eq. (3) with the measured g(2a) (Fig. 5A) yields a trend where higher curvatures systematically
indicate lower diffusivities, which is opposite to the measured trend (Fig. 3). No simple extension
of Eq. (3) to higher concentrations can resolve this incorrect curvature dependence, which indicates
that ensemble average microstructure, despite having a curvature dependence, does not relate to
diffusivity in the same manner as for concentrated liquid states. Given that particles on spherical
surfaces split into mobile and immobile populations (Fig. 3C), it is perhaps unsurprising that
ensemble averaging does not capture the apparent diffusivity dominated by a small sub-population.

To consider how local density influences diffusivities of sub-populations, we use
tessellation to define the area fraction for each particle, 7i=ma’/4i, where 4i is the area of its
Voronoi polygon. Tessellations on spheres and planes show polygons colored by local area
fraction, #; (Fig. 4C). Time-averaged histograms, p(#i) are, again, curvature independent for liquid
states but show noticeable curvature-dependent distributions for crystal states (Fig. 4B). For
crystal states on spherical surfaces, the distributions are skewed towards higher values, indicating
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Fig 4. Measures of local particle density on flat and spherical surfaces. (A) Pair distribution functions
collapse for all liquid states but show curvature-dependent first peak for crystal states. (B) Local density
histograms for same average concentrations as in panel A collapse for liquid states but have skew towards
higher local densities in crystal states. Points indicate #min defined as time-average of lowest local n; in
every configuration. (C) Visualization of local concentration, n;, for use in panel B using Voronoi tessellation.
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more particles have higher local #i. These same distributions also have a longer low-# tail on
spherical surfaces compared to flat surfaces. These curvature-dependent low- tails are the best-
case scenario for local density as a descriptor of the curvature-dependent diffusivities. We define
the time-average minimum area fraction, #min, to characterize this tail. Because DL is expected to
vanish at a critical concentration as ~(1-77/7c),> we plot (1- #min/0.907) vs. 5 for all flat and
spherical surface cases (Fig. SB) to see if this has a similar scaling to the Dr/Do vs. 5 trends in
Fig. 3. There is a weak system-size dependence in #min for the gray-scale planar data, however,
crystal states on spherical surfaces do not collapse to their flat-case counterparts, and in fact have
a larger spread compared to flat-case data. The larger, less curved spheres have a lower #min that
would appear to suggest higher Dy, but this is again opposite to the trend in Fig. 3B, showing local
low-density fluctuations do not capture the curvature dependent D data.

By locally averaging the density per particle, #i, in a particle-sized area around each point
on the sphere and over a short time window (Fig. SC), spatial variations are captured that are not
obvious from statistical data alone (Fig. 4). As the ensemble average 7 increases, the local # spatial
variations transition from relatively small and random to icosahedrally distributed, persistent, low-
density regions. The low-# regions necessitate that other regions have higher local 7. These high-
n regions are consistent with the skew towards high densities in the curvature-dependent crystal
state g(2a) (Fig. 4A) and density histograms (Fig. 4B). The magnitude and organization of the red
low-7 regions provides a visual cue for #min being relatively lower in more crystalline states with
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Fig 5. Scaling curvature and concentration dependent density metrics. (A) Plotting the right hand side
of Eq. (3) based on measured curvature and concentration dependent pair distribution functions. (B)
Plotting alternate scaling quantity for possible vanishing behavior of Di (see text) based on measured time-
average minimum local area fraction. (C) Local n; time-averaged (14 7) and space-averaged (2.5m[2a]?) to
visualize spatial density variations vs. curvature and concentration
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higher R/2a. Since the most skewed part of the local density distribution (#min) has the wrong
curvature dependence, other properties of the local density distributions like their variance and
skewness logically follow. These collective observations show density variations are insufficient
to explain the curvature-dependent Di/Do, particularly because curvature dependent density trends
are opposite to what is needed to account for the curvature-dependent diffusivity trends. However,
the low-density regions appear to emerge with the icosahedral symmetry expected for crystal state
grain scars (at least for the higher R/2a cases at the highest densities), which suggests we look

more carefully into connections between topological defect metrics and curvature-dependent
D1/Deo.

Curvature & Concentration Dependent Topological Charge

We next quantify topological defects for all cases on flat and spherical surfaces as a
function of concentration. For 2D hexagonal crystals, a topologically defective particle is any
particle whose coordination number is not six. Following convention,® we define each particle’s
topological charge, gi, and an ensemble total charge, O, as,

q,=6-c, Q:2|ql’| 4)

where c¢;, 1s each particle’s coordination number as determined from a Voronoi tessellation (Fig.
6C). From definitions in Eq. (4), the #-dependence of the total charge is shown for both flat (Fig.
6A) and spherical surfaces (Fig. 6B). Results show an expected system size dependence, where
more particles yield more defects. For all cases, at low concentrations (7 < 0.5), there are few
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Fig 6. Coordination number and topological charge vs. concentration and curvature. The total
topological charge, given by Eq. (4) applied to Voronoi tessellations of the (A) plane and (B) sphere, shows
characteristic system-size dependence. (C) Example renderings showing coordination number and
topological charge of each particle for flat and curved systems, in support of visualizing the high-density
trends in panels A and B.
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particles and little order, so coordination number and topological charge are random and Q
increases with increasing concentration. Further increasing concentration (7 =0.5) causes particles
to more closely pack, which causes Q to decrease with increasing positional order as the system
approaches freezing. At the usual freezing condition, Q vanishes for all flat cases but remains
nonzero with a curvature dependence for spherical surfaces.

To support these observations, high-n renderings (Fig. 6C) reveal that spherical crystals
retain clusters of topological charges to capture how Q approaches a nonzero value for those cases.
Furthermore, the spectral spread (Fig. 6B) shows a clear systematic curvature dependence for O
in the high-# limit. Taken together, these observations are reminiscent of the trends in the apparent
long-time diffusive behavior in Fig. 2. Below the freezing transition the spherical and planar cases
behave similarly. Approaching and beyond the freezing transition on the sphere, both QO and Dr.
retain a qualitatively different, nonzero, curvature-dependence in contrast to flat systems.

Normalizing the total charge, O, (Fig. 6) by the particle number, N, accounts for the
aforementioned system size dependence and highlights the similarity between the trends in defect
population and diffusivity (Fig. 7). Plotting O/N collapses all flat and spherical surface cases for
the same area fractions that had identical self-diffusivities (Fig. 7A). While all flat cases collapse
through freezing, spherical cases exhibit curvature-dependence around freezing (Fig. 7B). Time-
and space- averaged renderings of the local charge density, O/N, (Fig. 7C) show low-7 cases have
isotropic defect densities, whereas the onset of crystalline order breaks the spherical rotational
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Fig 7. Summary of ensemble average total topological charge vs. concentration and curvature. (A)
Normalizing total charge (Eq. (4)), Q, by ensemble size, N, collapses for dense liquids to near freezing
conditions (vertical lines). (B) Near and beyond freezing, the flat case charge density vanishes, but the
sphere-case is nonzero and curvature dependent. (C) Renderings of time-averaged (147) and space-
averaged (2.5m[2a]?) local charge density, show charge density is constant and isotropic in liquid states.
Icosahedral symmetry emerges through freezing, before culminating in linearly oriented grain scars.'®
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symmetry so that high charge density regions localize with icosahedral symmetry. The inherent
defect symmetry causes the inhomogeneous # profile (Fig. SC) where 5- and 7- coordinated
particles necessarily pack less efficiently than 6- coordinated particles, thus producing lower local
n. The curvature dependent O/N (Fig. 7A) has the same trend as the curvature dependent Di/Do
(Fig. 3A) at all , including independence for liquid states and higher values for smaller R/2a. This
contrasts with the opposite curvature dependence of local density metrics (Figs. 5A,B) compared
to Di/Do, and suggests that the distribution of topological defects is important for understanding
diffusion in crystal states and near freezing conditions.

Correlating Diffusivity & Defects

Focusing on high-7 states on spheres, particles with the highest diffusivities (Fig. 3) appear
to have the same curvature dependence and spatial organization as particles with the highest charge
density (Fig. 7). These observations, and guidance from results in prior studies,?® ** lead to the
expectation that particles with the highest diffusivities are associated with topological defects.
Consider how curvature dependent Di/Do scales with the fraction of defective particles. In the
limit that only frequently defective particles have nonzero diffusivity and predominantly
crystalline particles have vanishing diffusivity, the ensemble average apparent diffusivity becomes
the fraction of defective particles times their diffusivity. Then, since the average defect fraction
and degree is simply Q/N, the observed Dir/Do should scale with Q/N. Plotting (Dr/Do) from Fig.
3 divided by (Q/N) from Fig. 7 collapses all data onto a curvature independent trend that smoothly
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Fig 8. Correlating curvature and concentration dependent diffusivity and defects. (A) Dividing the
normalized long-time diffusivity, D./Do, by charge density, Q/N, removes curvature dependence, including
(B) zoom view of freezing region, where all other quantities in Figs. 3-7 display curvature dependence. (C)
Overlaying time averaged maximum Euclidean displacements and local charge density for the same time
window reveals the mobile particles generally colocalize with defective crystal regions with exceptions.
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transitions from unity at infinite dilution through freezing and vanishes at high densities (Fig. 8).
The scaling in Fig. 8 is particularly successful at accounting for all curvature dependence in the
freezing region and beyond.

In addition to connecting the common scaling of DL/Do and Q/N (Figs. 8A, B), we also
visually assess the spatial correlations in the two quantities by overlaying (Fig. 8C) for the same
time window the max displacement data (Fig. 3C) and local charge density data (Fig. 7C). At
densities just below freezing (for flat, infinite systems; #=0.69), blue trajectories show that
particles can isotropically escape local nearest-neighbor cages, and these trajectories lay on a
relatively isotropic background charge density. At densities well beyond freezing (#=0.8), the
majority of particles are localized on lattice positions, and the small proportion of particles that
display the largest displacements occur in the high charge density regions. Between these limiting
cases, the longest bluest trajectories consistently lie on top or near the red high charge density
regions (e.g., R/2a=13.1, n=0.75 is especially clear) and localized gray trajectories lie in the white
low charge density regions of perfect crystal. Interestingly, a number of cases show less co-
localization of large diffusive displacements and high charge density, and in some even less
frequent observations capture highly mobile particles between defect-rich regions (e.g., R/2a=8.2,
n=0.73). These observations show that longer-time collective diffusive motion enabled by defect
regions does not imply exact correspondence between the most diffusive and most defective
particles. However, the clear collapse of the data in Figs. 8A,B that captures all curvature
dependent trends indicates a clear mechanistic coupling between the most diffusive and most
defective particles.

Curvature & Concentration Dependent Defects

We explore the curvature dependence of defective particles in different states to better
understand curvature dependent apparent diffusivity via their coupling in Fig. 8. Curvature-
dependent defect populations fall between the limits of isotropic liquid states at low # and dense
crystals with grain scars at high # (Fig. 7). In liquid states, curvature-independent charge density
arises because the defect population is isotropic, such that total charge, 0, is proportional to particle
number and thus sphere surface area. Using the fact that liquid state charge densities are identical
for flat and sphere surfaces (Fig. 7), the curvature dependent total charge for liquid states on the
spheres, Os.iq, 1S given as,

(Q/N)s,, =(Q/N),,, =a(n)
Oso = (1) Ny, = a(n)(n/ﬁaz)(4ﬁR2) = 0{(17)1677(R/2a)2

which has no adjustable parameters, given we can measure the concentration dependent liquid
charge density on flat surfaces, a(7)=(Q/N)r.iq (Fig. 7A). Eq. (5) accurately captures simulated
curvature-dependent total charge for liquid states on different sized spheres (Fig. 9A).

()

In high-5 crystal states, twelve linearly oriented and icosahedrally organized grain scars
arise from balancing curvature-induced lattice deformation against the cost of defect formation.
Each grain scar has a ‘length’ determined by the number of extra 5-7 dislocations attached to each
of the twelve 5-fold disclinations.'® The length in number of dislocations per disclination, np, is
related to the total charge due to scars, Qs scar, and the non-dimensional sphere-particle radii, R/2a,
by (solving for np or Qs scar),
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n, 5(1/2)[(QSW /12)—1] =0.41(R-R.)/2a ©
Qs eor =24(n), +1/2)=24[ 0.41(R- R, )/2a +1/2 ]

where Rc, is a critical radius dependent on the crystal elastic constants. Eq. (6) captures the linear
scaling of QO vs. R/2a at n=0.8 (Fig. 9B). While Eq. (6) is only strictly valid at zero temperature,
additional defects ‘proliferate’ at finite temperature,® '* which manifests as a slightly greater slope
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Fig 9. Quantification of curvature & concentration dependent defects. Total charge, Q, (Eq. (4)) vs.
R/2a from BD simulations for (A) liquid state area fraction of n = 0.6 and model line from Eq. (5), (B) crystal
state area fraction of n = 0.8 and model line from Eq. (6), and (C) all concentrations between n = 0.6-0.8
with model line from Eq. (7) with two adjustable parameters, plotted in (D) showing transition from =0 for
liquids to =1 for static grain scars, critical radius, Rc, values required for x>0. In addition to inset renderings
in panels A and B show representative tessellations and time averaged local charge density, the same
rendering types are shown in (E) for n=0.73 to visualize twelve interacting disclination centers, which
corresponds to non-monotonic peak values of y, Rc, in panel D.
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in Fig. 9B, as previously reported.** Inset renderings in Fig. 9B show anisotropic local charge
density and tessellations, which capture the increasing length of grain scars via additional
dislocations as the sphere radius increases. The time-averaged anisotropic morphology of high-
charge-density regions shows the relatively static localization of grain scars. In this regime, where
grain scars have a static orientation, the motion of dislocations parallel (climb) and perpendicular
(glide) to grain scar corresponds to finite particle diffusivities.*? This contribution to the ensemble-
averaged diffusivity necessarily depends on the number of particles involved in the collective
rearrangements that produce dislocation climb and glide. The collapse in Fig. 8 follows from this
model, however, the same collapse works especially well in the regime where grain scars do not
have a static orientation and dislocation identity and their motion is ambiguous.

With an understanding of diffusion and defect structures in the liquid and dense crystal
limits, we next examine all curvature and concentration dependent charge data (Q vs. R/2a) (Fig.
9C). A systematic transition occurs between the limiting cases (Figs. 9A,B). To develop a model
of intermediate concentrations, we consider several aspects of the grain scar model. Increasing
temperature increases the slope (from 0.41) in Eq. (6) for crystal states of Lennard-Jones particles
on sphere surfaces,*® so concentration may have an analogous role (with a reciprocal dependence).
In addition, Rc is understood to depend on crystal elastic constants (in the zero temperature
continuum model'®), which can also be concentration dependent. However, we cannot expect low
density crystal states of Brownian colloids to behave as a continuous elastic solid. With these
analogies and limitations in mind, we combine Egs. (5) and (6) to model the full # and R
dependence of the total charge.

O(R/2a,m)=a(n)16n(R/2a) + z-24[0.41(R-R.)/2a+1/2] (7)

With only two adjustable parameters, y and Rc, Eq. (7) accurately captures the BD simulated data
(Fig. 9C). Placing y at any other location within the grain scar term in Eq. (7) generally produces
less a satisfactory fit and does not obviously contribute to its physical interpretation.

Several features in the #-dependence of the fit parameters (Fig. 9D) are easily
contextualized by the limiting cases and yet reveal aspects of the intermediate transition. When
x=0, Eq. (7) reduces to the liquid state expression (Eq. (5)), and when o(7) vanishes in crystal
states and y=1, we recover the standard grain scar expression (Eq. (6)). In the fit parameters, y
transitions smoothly from zero to nearly one. Interestingly, this transition is not monotonic and has
a maximum with y>1 at #=0.73, just past freezing. This maximum is indicative of ‘proliferated’
defects that are not part of zero temperature grain scars, nor are they associated with the baseline
isotropic defect distribution, a(7). As already noted, Rc is not a well-defined parameter for hard
discs (and undefinable for y=0). Future studies could investigate the energetic cost of defects in
hard disc crystals to better understand Rc in relation to colloids on spherical surfaces.

To better understand the extra defects reflected in the fit parameter maxima just beyond
freezing (Fig. 9D), we show local charge density renderings at the maximum y value, which occurs
for n=0.73 (Fig. 9E). Compared to grain scars at #=0.8 (Fig. 9B), the morphology of the time-
averaged defect clusters is more rounded and without clear orientation at #=0.73. Since
instantaneous tessellations still show 5-7-5 chains, the time averaged morphology change appears
to occur as the result of fluctuations and motion in icosahedrally organized defect regions. As R/2a
decreases, defect regions get closer together until fluctuations bridge adjacent regions (appearing
as pink spots linking darker red defect regions with icosahedral organization in Fig. 9E). Both the
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fluctuations near freezing and interactions between defect regions appear to be mediated by rapid
formation and annihilation of additional topological charges that account for y>1 in Fig. 9D (and
changing Rc values).

The observed rapid formation and annihilation of individual defects (charges) occurs
because the crystal tessellation is susceptible to particle displacements smaller than the lattice
spacing. This means defects can transition between particle identities on the time scale of
Brownian motion on a lattice site. For #=0.8, the defect number is small enough that defect
dynamics are identifiable as dislocation climb and glide about static grain scars. However, near
n=0.73 the substantial number of short-lived charges makes unambiguously identifying defects
between instantaneous configurations impossible. Furthermore, since grain scars rapidly fluctuate
in shape, orientation, and defect composition, identifying directions for relative defect motion is
similarly ambiguous. Finally, the significant defect fluctuations occurring between grain scars also
makes it difficult to identify icosahedral symmetry in instantaneous configurations. The time-
average local charge density is necessary to see icosahedral symmetry near #=0.73.

These observations together suggest defect-mediated interactions between adjacent defect
regions in crystalline states can break icosahedral symmetry, at least temporarily, and enable
significant diffusion. Fluctuating defect clusters which interact across many particle lengths
provide a compelling explanation for why, in Fig 8C, crystalline particles between the defect
clusters can still exhibit inhomogeneous diffusivity. We expect that these collective fluctuations,
which we characterize with O/N, produce the apparent diffusive dynamics that we measure with
Di/Do. With this context, we see that the effective collapse of (D1/Do)/(Q/N) in Fig 8A,B reflects
the intimate connection between the evolving sub-populations of defects and of highly diffusive
particles. Ultimately, we find that diffusion in crystalline states is curvature dependent because it
connected to defect-mediated dynamics that occur both within and between icosahedral defect
regions (which eventually form grain scars at higher area fractions). However, the idea that
thermally activated defects mediate collective elastic interactions to produce cooperative diffusive
dynamics in spherical crystal states warrants further study of the particle-scale and defect-scale
mechanisms involved.

Conclusions

Brownian dynamic simulations were performed for varying particle concentrations on 2D
flat surfaces and spherical surfaces of varying relative curvature. Particles were modeled with
short-range screened electrostatic repulsive potentials that behave as effective 2D hard spheres or
hard disks, which is relevant for many interfacial colloidal systems. Diffusion was measured at
short- and long- times from ensemble averaged mean squared displacements to capture single
particle diffusion, liquid state self-diffusion, and diffusion through freezing in curved crystal states.

Liquid state self-diffusion is identical on flat and spherical surfaces with a concentration
dependence captured by a simple model based on the first peak in the pair distribution function.
Diffusion vanishes on flat surfaces upon freezing as expected but persists with a concentration and
curvature dependence in crystal states on spherical surfaces. Similarly, the pair distribution
function, local density distributions, and topological defect populations are also identical for liquid
states on flat and spherical surfaces, but systematically vary with curvature upon freezing.

Diffusion in crystalline states on spherical surfaces does not clearly relate to local density
metrics, but both its concentration and curvature dependence are easily captured by topological
charge density. Topological charge density varies continuously between limits for isotropic liquid
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states and dense crystal states with icosahedrally organized grain scars. Renderings and charge
density scaling indicate curvature-dependent diffusivities in crystalline states on spherical surfaces
reflect diffusion mediated by topological defects both within and between icosahedral pre-scar
defect regions. Higher charge densities on higher curvature spheres appears to result from
formation and annihilation of additional topological charges associated with interactions between
fluctuating defect regions. Particles with higher diffusivities that are not necessarily located in
defect regions appear mobile due to cooperative particle-scale mechanisms mediated by
topological defects. Ultimately, understanding self-diffusion and topological defect mediated
diffusion of spherical particles on spherical surfaces provides a basis to explore more complex
cases involving particles with different shapes, interactions, and activities and surfaces with
varying curvature landscapes.

Methods

Flat-case simulations use overdamped Langevin dynamics in HOOMD-blue,*” which
simplifies to standard Brownian dynamics.®® Flat-case simulations use periodic boundary
conditions with box sizes chosen to match the area fractions and particle numbers in corresponding
spherical surface simulations. Spherical simulations use overdamped Langevin dynamics in
LAMMPS* with RATTLE?! to keep particles confined to surfaces while maintaining a consistent
thermostat. In both engines, particles interact via a screened electrostatic potential matched to
spherical silica colloids in water.*> This potential has the form U(r)=6051kTexp(-280r). Each
simulation runs for 3007 in total elapsed time, meaning that multiple-time-origin MSD curves can
cover a maximum of 150z. At least ten independent simulations were run for each case starting
from randomly generated configurations for each combination of sphere radius, area fraction, and
particle number. To remove artifacts from the periodic boundary conditions, flat-case MSD curves
are calculated using the minimum image convention and in the ensemble center-of-mass frame.
Spherical surface MSD curves were corrected for center-of-mass motion by bootstrapping the
center of mass motion of many smaller sectors of particles on sphere surfaces.
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