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Abstract 

We simulate and model diffusion of spherical colloids of radius, a, on spherical surfaces 
of radius, R, as a function of relative size and surface concentration. Using Brownian Dynamics 
simulations, we quantify diffusion and microstructure at different concentrations ranging from 
single particles to dense crystalline states. Self-diffusion and structural metrics (pair distribution, 
local density, and topological charge) are indistinguishable between spheres and planes for all 
concentrations up to dense liquid states. For concentrations approaching and greater than the 
freezing transition, smaller spheres with higher curvature show increased diffusivities and 
nonuniform density/topological defect distributions, which differ qualitatively from planar 
surfaces. The total topological charge varies quadratically with sphere radius for dense liquid states 
and linearly with sphere radius for dense crystals with icosahedrally organized grain scars. 
Between the dense liquid and dense crystal states on spherical surfaces is a regime of fluctuating 
and interacting defect clusters. We show local density governs self-diffusion in dense liquids on 
flat and spherical surfaces via the pair distribution. In contrast, dynamic topological defects couple 
to finite diffusivities through freezing and in low density crystal states on spherical surfaces, where 
neither exist on flat surfaces. 

keywords: self-diffusion | colloids | Brownian Dynamics | curvature | topological defects 

Introduction 

Finding colloidal particles far from any surface is exceedingly rare, and the vast majority 
of these surfaces are not flat. In analogy to atoms forming nano- tube and closed ball 
morphologies,1 or adsorbing to complex pore surfaces,2 colloidal species can adsorb and assemble 
onto curved surfaces in diverse materials and applications. Assembling nano- and micro- scale 
components into or onto spherical surfaces include viral capsids,3 vesicles,4 cell membranes,5 
Pickering emulsion drops,6 colloidosomes,7 pollens,8 insect eyes,9 liquid marbles,10 multicellular 
organisms,11 blastula, organoids,12 etc. Examples of other common material applications and 
environments with curved surfaces involving adsorbed/assembled colloidal species include 
particles in porous media (soil, oil reservoirs, tumor vasculature), tissue surfaces, and bacterial 
colonies. In each of these applications, the behaviors and properties of colloidal ensembles depend 
on their interactions, dynamics, and structures as they are confined to fixed or often flexible 
substrate surfaces with underlying curvature. 

While the behavior and properties of spherical colloidal particles on flat surfaces are 
generally well understood, many aspects of spherical particles on curved surfaces have yet to be 
reported. For example, colloids with short-range repulsion on planar surfaces have quasi-2D phase 
behavior well approximated by predictions for 2D hard disks.13-16 They exhibit uniform liquid 
states below a melting concentration and hexagonal crystals above a freezing concentration. 
However, simply trying to wrap a 2D crystal around a sphere is not possible without introducing 
defects,8 which is a basic example of geometric frustration.17 According to the Euler-Poincarè 
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theorem, any hexagonal lattice on a sphere must contain at least twelve 5-coordinated particles 
within the otherwise 6-coordinated crystal, however finding specific solutions for equilibrium 
particle configurations must involve minimizing the free energy with respect to particle 
interactions (e.g. the Thomson and Tammes problems).8 The role of curvature in governing 
geometrically frustrated equilibrium structures leads naturally towards more general open 
problems involving phase behavior, diffusive dynamics, non-equilibrium behavior, and ultimately 
emergent properties (e.g., mechanical, electrical, optical, etc.) in curved colloidal systems. 

Phase behavior and defect types for spherical colloidal particles on spherical surfaces is 
unknown for arbitrary temperatures, interactions, concentrations, and relative dimensions, but 
specific problems have been addressed in models and experiments. For a 2D elastic solid at zero 
temperature, defects are predicted to organize as twelve grain scars (instead of flat 2D grain 
boundaries) distributed with icosahedral symmetry on sphere surfaces (e.g., like soccer balls). 
Each of the twelve grain scars consists of chains of connected 5- and 7- coordinated particles with 
one excess 5- coordinated particle, which satisfies the Euler-Poincarè theorem. These chains’ 
length depends linearly on the ratio of lattice spacing (2a) to sphere size (R).18 This prediction has 
been validated for colloidal particles adsorbed at spherical drop oil-water interfaces with repulsive 
dipolar potentials. Such systems visibly forms grains scars whose length depends linearly on 
relative dimensions (R/2a)19 and whose positions exhibit icosahedral symmetry.20 In contrast, 
experiments on colloids with short-range attractive interactions adsorbed to spherical drop interior 
surfaces produce dendritic crystals due to elastic instabilities.21 Other simulation studies have 
revealed additional defect motifs for particles on spherical surfaces vs. particle number.22 Beyond 
the static organization of near-equilibrium low energy crystal state defects, numerous open 
questions remain about equilibrium and non-equilibrium structures, defects, and dynamics. 

Colloidal diffusion on spherical surfaces has received little attention, whether it be within 
equilibrium states or as part of non-equilibrium dynamics. In contrast, 2D diffusion on flat surfaces 
is relatively well understood. For example, concentration dependent diffusion in flat colloidal 
monolayers23 agrees with established self-diffusion models.24 In brief, diffusion approaches the 
2D Stokes-Einstein value at infinite dilution, decreases monotonically with increasing liquid 
concentration,25 and decreases more significantly upon crystallization before vanishing with 
further densification.26 On flat surfaces, self-diffusion in liquids is coupled to 2D static structural 
features.27 Whereas in crystal states, dislocations can enable finite diffusivities.28 The expectation 
is that that structural features like curvature mediated defects may impact diffusion on spheres. For 
particles on spheres, even single particle diffusion requires a different model to capture 3D 
localization,29-31 which must be carefully considered before addressing packing effects and defects. 
Studies of concentrated particle dynamics on spheres include dislocation dynamics within grain 
scars,32 curvature-dependent spatially heterogeneous glassy relaxation,33 and melting dynamics 
unaffected by grain scars.34 While these latter studies probe how grain scars mediate some 
dynamics within crystal states, they do not provide comprehensive characterization of particle 
diffusion. 

In this work, we measure self-diffusion in Brownian Dynamics (BD) simulations of 
spherical colloids on spherical surfaces as a function of relative size and surface concentration 
(Fig. 1). We consider short-range screened electrostatic repulsive potentials so that particles 
behave as effective 2D hard spheres or hard disks. We compare concentration dependent self-
diffusion on spherical and planar surfaces from infinite dilution through freezing up to dense 
crystal states. We then compare measured diffusivities to structural metrics related to density and 
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topological defects to gain insights into mechanisms controlling particle diffusion in liquid and 
crystal states on both spherical and planar surfaces. While findings from these results are intended 
to describe colloidal diffusion on spherical surfaces relevant in numerous applications, they are 
also generalizable to molecular systems. 

Results & Discussion 

Self-Diffusion on Planes & Spheres 

We use Brownian Dynamics to simulate spherical particles of radius a on both planar 
surfaces and spherical surfaces of varying radii, R, and varying surface concentrations (Fig. 2). 
We investigate a screened electrostatic repulsive potential, U(r)=Aexp(-κr), that is very short-
ranged compared to particle dimensions (κa>>1). This short-range potential is realistic for typical 
aqueous charged colloids, is easily compatible with BD simulations, and allows us to capture 2D 
phase behavior with a by hard disk model using a perturbation theory.35 Practically, we can treat 
particles with core radii, a, as having an effective radius, aeff, and effective area fraction based on 
the 2D particle number density, η=πaeff

2. Because system size, area fraction, and spherical 
substrate radius are coupled, in the following we choose a range of R/2a values and particle area 
fractions of interest, which determine system sizes that we also use as benchmark cases for flat 
BD simulations at the same conditions. 

We first illustrate how to measure the self-diffusivity, D, from BD trajectories using the 
mean squared displacement, r2, vs. time, t on a single spherical surface radius and on a flat surface 
with the same particle number (Fig. 2). For all planar and spherical surface concentrations, as t→0, 
measured data are well captured by, 

 
 
Fig 1. Effective hard spheres on different sized spheres. (top) At low area fractions, there are no 
obvious ordered microstructures in liquid states based on tessellations and coloring particles by their 
coordination number (see Fig.6C legend for color scheme). (bottom) At high area fractions, hexagonal 
crystalline states are obtained with icosahedrally organized grain scars each with one excess 5-coordinated 
particle. Note grain scar length is ~3 particles for small sphere and ~10 particles for larger sphere. 
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 2 4 Δr D t  (1) 

where D in this limit is the Stokes-Einstein diffusivity, D0=kT/6πμa, where kT is the product of 
Boltzmann’s constant and absolute temperature and the medium has viscosity . In the BD 
equation of motion we specify that the diffusivity be D0, and so we expect Eq. (1) to recover the 
input diffusivity at very short-times. Indeed, we see that D0 is the short-time self-diffusivity in all 
cases. If we had chosen to include hydrodynamic interactions, the short-time self-diffusivity would 
instead be the trace of the multi-body diffusion tensor;24 which manifests as a concentration-
dependent scalar that does not influence diffusion at longer times.  

In contrast to the short-time self-diffusion behavior observed on both spherical and planar 
surfaces (Fig. 2), at longer times the diffusivity approaches different, concentration-dependent, 
values. On the planar surface, the r2 vs. t data exhibit a well-defined long-time linear region fit 
by Eq. (1), where D now refers to the concentration dependent long-time self-diffusivity, DL. On 
the spherical surface, 3D confinement yields long-time r2 vs. t data captured by a different 
functional form,29-31  

  2 2 22 1 exp 2 /r R D t R   
   (2) 

 
 

Fig 2. Measuring diffusion from simulated trajectories on spherical and planar surfaces. For particles 
on a (A) flat surface with periodic boundary conditions, and (B) a spherical surface with R/2a=8.18, 
Euclidean mean squared displacements are shown for area fractions of (top-to-bottom) η = 0, 0.3, 0.6, 0.72, 
0.8. Insets show the same data on linear scales. D0 is obtained in all cases by fitting Eq. (1) to simulated 
data as t→0. DL is obtained for flat surfaces by fitting Eq. (1) to simulated data for t>10. DL is obtained for 
spherical surfaces by fitting Eq. (2) to simulated data for t>10. (C) Rendered trajectories over 14 are 
colored by each particle’s maximum displacement to contrast (blue) mobile particles and (gray) localized 
particles. 
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where r2 is calculated using Euclidean displacements. Observe that Eq. (2) approaches Eq (1) as 
t→0, as expected. While D=D0 accurately captures single particle diffusion (→0) on spheres 
(Fig. 2B), we must fit Eq. (2) to long-time data to obtain DL as a function of concentration. The 
results for both planar and spherical substrates show DL decreases as η increases. However, the 
long-time r2 vs. t data plateaus for η > 0.7 on planar surfaces but not on spherical surfaces. The 
plateau indicates DL vanishes with freezing on planar surfaces, just as expected,26 but remains 
nonzero on spherical surfaces at the same area fraction and particle number.  

Rendered particle trajectories (Fig. 2C) appear indistinguishable for liquid states (η < 0.7) 
on both spherical and planar surfaces. However, the crystal states (η > 0.7) on the spherical 
substrate retain significant diffusion over length scales greater than the particle and lattice 
dimension. This contrasts heavily with flat systems at the same area fraction which only exhibit 
localized lattice motion and no significant diffusion. These observations from the rendered 
trajectories confirm the long-time diffusion apparent in the r2 vs. t data in the spherical vs. planar 
substrate results for crystal states (η > 0.7). The presence of diffusing particles at crystalline area 
fractions suggests that surface curvature enables dynamic processes not possible on flat surfaces 
at otherwise identical conditions. However, these high-η dynamics are spatially heterogeneous, 
and as such are not strictly long-time self-diffusion as it is defined. Therefore, the spatially 
averaged long-time diffusivity, DL, measures both the self-diffusive process when η<0.7 and 
spatially heterogeneous diffusion when η>0.7. To clarify terminology, we will refer to DL as the 
apparent diffusivity when it reflects high-η, spatially heterogeneous diffusion. 

Analysis of Measured Self-Diffusivities 

To investigate how curvature influences colloidal diffusivities, we perform additional BD 
simulations and diffusion measurements similar to the results reported in Fig. 2 on a range of 
differently sized spherical surfaces and concentrations, as well as on planar surfaces with the same 
concentrations and particle numbers. Fig. 3 summarizes measured DL values normalized by the 
short-time diffusivities (i.e., D0) as DL/D0 in plots over the full η range, which a focus on the 
vicinity where DL vanishes. For reference, we include vertical lines for hard disk melting and 
freezing (from very large system size simulations16) and a horizontal line based on a 2D dynamic 
freezing criterion.26 Our data approach the intersection of the vertical freezing/melting lines and 
the horizontal dynamic freezing criterion line, although we cannot expect to exactly match the 
vertical lines since these are for essentially infinite system sizes. Correspondence of our results 
with these independent estimates/constraints indicates consistency with established hard disk 
phase behavior and freezing dynamics. 

Additionally, our results correspond with a previously verified microstructural description 
of long-time self-diffusion in concentrated 2D colloidal liquid states with attractive and repulsive 
interaction potentials24 (originally developed for concentrated 3D colloidal dispersions25). This 
additional theoretical line in Fig. 3 is given as, 

   1

0 1 2 2LD D g a


     (3) 

where g(2a) is the height of the first peak of the pair distribution function (where g(r)=(r)/). 
According to Eq. (3) the ratio of the long-time and short-time diffusivities depends on the product 
of the average concentration η and g(2a), which is practically the average first-coordination shell 
density. Eq. (3) captures the data well for η < 0.5, above which additional terms are needed for 
more concentrated liquids.36 For η < 0.65, the measured diffusivities are the same across five 
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different flat-case system sizes and five different spherical surface sizes. For η > 0.65, the flat 
surface diffusivities vanish as η approaches the freezing transition, but all spherical surface 
apparent diffusivities remain nonzero, and the spectrum color scale indicates higher apparent 
diffusivities for spherical surfaces with smaller radii and higher curvatures 

With the summary of results in Fig. 3, along with guidance from theoretical expectations, 
several key trends emerge. The trend in DL/D0 from infinite dilution up to high density liquid states 
is independent of substrate curvature and agrees with established models for 2D self-diffusion. 
However, as the system approaches freezing from the dense liquids, the trend in DL/D0 begins to 
depend on substrate curvature and persists for spherical surfaces up to very high area fractions (η 
~ 0.8). Rendered trajectories (Fig. 3C) show only a subset of particles diffusing past their 
neighbors and through their first coordination shell. Furthermore, the spatial organization of 
particles with higher diffusivities increasingly takes on the icosahedral symmetry reminiscent of 
the grain scar ground state in elastic solids on spherical surfaces. Interestingly, symmetry begins 
to emerge at much lower concentrations than we expect to form well-defined grain scars. In the 
following sections we focus on understanding the origin of the combined curvature and 
concentration dependent diffusion observed in Fig. 3. 

 

 

 
 

Fig 3. Summary of self-diffusion vs. concentration and curvature. (A) Concentration dependent long-
time diffusivity, DL, normalized by short-time value, D0. Dashed lines indicate Eq. (3), (horizontal) dynamic 
freezing criterion,26 and (vertical) infinite system size hard-disc freezing/melting transitions.16 (B) High-
density data zoom view of data in panel A. (C) Rendered trajectories colored by maximum Euclidean 
displacement over fixed time (gray-blue scale) for different R/2a and . 



 

Bond et al. Page 7 of 19 

Spatial Density Variations 

Given the success of local density for explaining DL/D0 in homogeneous dense liquid states 
on both flat and curved surfaces (e.g. Eq. (3)), we next examine more closely density variations as 
a mechanism for explaining the curvature dependent DL/D0 in Fig. 3. The ensemble average pair 
distribution function for each curved and flat system (Fig. 4A) shows all cases collapse to 
indistinguishable curves for η<0.71, but for higher concentrations there is a curvature-dependence 
that is most pronounced in the height of the first peak, g(2a). However, plotting the right-hand side 
of Eq. (3) with the measured g(2a) (Fig. 5A) yields a trend where higher curvatures systematically 
indicate lower diffusivities, which is opposite to the measured trend (Fig. 3). No simple extension 
of Eq. (3) to higher concentrations can resolve this incorrect curvature dependence, which indicates 
that ensemble average microstructure, despite having a curvature dependence, does not relate to  
diffusivity in the same manner as for concentrated liquid states. Given that particles on spherical 
surfaces split into mobile and immobile populations (Fig. 3C), it is perhaps unsurprising that 
ensemble averaging does not capture the apparent diffusivity dominated by a small sub-population. 

To consider how local density influences diffusivities of sub-populations, we use 
tessellation to define the area fraction for each particle, ηi=πa2/Ai, where Ai is the area of its 
Voronoi polygon. Tessellations on spheres and planes show polygons colored by local area 
fraction, ηi (Fig. 4C). Time-averaged histograms, p(ηi) are, again, curvature independent for liquid 
states but show noticeable curvature-dependent distributions for crystal states (Fig. 4B). For 
crystal states on spherical surfaces, the distributions are skewed towards higher values, indicating 

 
 

Fig 4. Measures of local particle density on flat and spherical surfaces. (A) Pair distribution functions 
collapse for all liquid states but show curvature-dependent first peak for crystal states. (B) Local density 
histograms for same average concentrations as in panel A collapse for liquid states but have skew towards 
higher local densities in crystal states. Points indicate min defined as time-average of lowest local ηi in 
every configuration. (C) Visualization of local concentration, ηi, for use in panel B using Voronoi tessellation. 
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more particles have higher local ηi. These same distributions also have a longer low-η tail on 
spherical surfaces compared to flat surfaces. These curvature-dependent low-η tails are the best-
case scenario for local density as a descriptor of the curvature-dependent diffusivities. We define 
the time-average minimum area fraction, ηmin, to characterize this tail. Because DL is expected to 
vanish at a critical concentration as ~(1-/C),25 we plot (1- ηmin/) vs. η for all flat and 
spherical surface cases (Fig. 5B) to see if this has a similar scaling to the  DL/D0 vs. η trends in 
Fig. 3. There is a weak system-size dependence in ηmin for the gray-scale planar data, however, 
crystal states on spherical surfaces do not collapse to their flat-case counterparts, and in fact have 
a larger spread compared to flat-case data. The larger, less curved spheres have a lower ηmin that 
would appear to suggest higher DL, but this is again opposite to the trend in Fig. 3B, showing local 
low-density fluctuations do not capture the curvature dependent DL data. 

By locally averaging the density per particle, ηi, in a particle-sized area around each point 
on the sphere and over a short time window (Fig. 5C), spatial variations are captured that are not 
obvious from statistical data alone (Fig. 4). As the ensemble average η increases, the local η spatial 
variations transition from relatively small and random to icosahedrally distributed, persistent, low-
density regions. The low-η regions necessitate that other regions have higher local η. These high-
η regions are consistent with the skew towards high densities in the curvature-dependent crystal 
state g(2a) (Fig. 4A) and density histograms (Fig. 4B). The magnitude and organization of the red 
low-η regions provides a visual cue for ηmin being relatively lower in more crystalline states with 

 
 

Fig 5. Scaling curvature and concentration dependent density metrics. (A) Plotting the right hand side 
of Eq. (3) based on measured curvature and concentration dependent pair distribution functions. (B) 
Plotting alternate scaling quantity for possible vanishing behavior of DL (see text) based on measured time-
average minimum local area fraction. (C) Local ηi time-averaged (14) and space-averaged (2.5π[2a]2) to 
visualize spatial density variations vs. curvature and concentration  
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higher R/2a. Since the most skewed part of the local density distribution (ηmin) has the wrong 
curvature dependence, other properties of the local density distributions like their variance and 
skewness logically follow. These collective observations show density variations are insufficient 
to explain the curvature-dependent DL/D0, particularly because curvature dependent density trends 
are opposite to what is needed to account for the curvature-dependent diffusivity trends. However, 
the low-density regions appear to emerge with the icosahedral symmetry expected for crystal state 
grain scars (at least for the higher R/2a cases at the highest densities), which suggests we look 
more carefully into connections between topological defect metrics and curvature-dependent 
DL/D0. 

Curvature & Concentration Dependent Topological Charge 

We next quantify topological defects for all cases on flat and spherical surfaces as a 
function of concentration. For 2D hexagonal crystals, a topologically defective particle is any 
particle whose coordination number is not six. Following convention,8 we define each particle’s 
topological charge, qi , and an ensemble total charge, Q, as, 

 ,   6i i iq c Q q     (4)  

where ci, is each particle’s coordination number as determined from a Voronoi tessellation (Fig. 
6C). From definitions in Eq. (4), the η-dependence of the total charge is shown for both flat (Fig. 
6A) and spherical surfaces (Fig. 6B). Results show an expected system size dependence, where 
more particles yield more defects. For all cases, at low concentrations (η ≲ 0.5), there are few 

 
 

Fig 6. Coordination number and topological charge vs. concentration and curvature. The total 
topological charge, given by Eq. (4) applied to Voronoi tessellations of the (A) plane and (B) sphere, shows 
characteristic system-size dependence. (C) Example renderings showing coordination number and 
topological charge of each particle for flat and curved systems, in support of visualizing the high-density 
trends in panels A and B. 
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particles and little order, so coordination number and topological charge are random and Q 
increases with increasing concentration. Further increasing concentration (η ≳0.5) causes particles 
to more closely pack, which causes Q to decrease with increasing positional order as the system 
approaches freezing. At the usual freezing condition, Q vanishes for all flat cases but remains 
nonzero with a curvature dependence for spherical surfaces. 

To support these observations, high-η renderings (Fig. 6C) reveal that spherical crystals 
retain clusters of topological charges to capture how Q approaches a nonzero value for those cases. 
Furthermore, the spectral spread (Fig. 6B) shows a clear systematic curvature dependence for Q 
in the high-η limit. Taken together, these observations are reminiscent of the trends in the apparent 
long-time diffusive behavior in Fig. 2. Below the freezing transition the spherical and planar cases 
behave similarly. Approaching and beyond the freezing transition on the sphere, both Q and DL 
retain a qualitatively different, nonzero, curvature-dependence in contrast to flat systems. 

Normalizing the total charge, Q, (Fig. 6) by the particle number, N, accounts for the 
aforementioned system size dependence and highlights the similarity between the trends in defect 
population and diffusivity (Fig. 7). Plotting Q/N collapses all flat and spherical surface cases for 
the same area fractions that had identical self-diffusivities (Fig. 7A). While all flat cases collapse 
through freezing, spherical cases exhibit curvature-dependence around freezing (Fig. 7B). Time- 
and space- averaged renderings of the local charge density, Q/N, (Fig. 7C) show low-η cases have 
isotropic defect densities, whereas the onset of crystalline order breaks the spherical rotational 

 
 

Fig 7. Summary of ensemble average total topological charge vs. concentration and curvature. (A) 
Normalizing total charge (Eq. (4)), Q, by ensemble size, N, collapses for dense liquids to near freezing 
conditions (vertical lines). (B) Near and beyond freezing, the flat case charge density vanishes, but the 
sphere-case is nonzero and curvature dependent. (C) Renderings of time-averaged (14) and space-
averaged (2.5π[2a]2) local charge density, show charge density is constant and isotropic in liquid states. 
Icosahedral symmetry emerges through freezing, before culminating in linearly oriented grain scars.18  
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symmetry so that high charge density regions localize with icosahedral symmetry. The inherent 
defect symmetry causes the inhomogeneous η profile (Fig. 5C) where 5- and 7- coordinated 
particles necessarily pack less efficiently than 6- coordinated particles, thus producing lower local 
η. The curvature dependent Q/N (Fig. 7A) has the same trend as the curvature dependent DL/D0 
(Fig. 3A) at all η, including independence for liquid states and higher values for smaller R/2a. This 
contrasts with the opposite curvature dependence of local density metrics (Figs. 5A,B) compared 
to DL/D0, and suggests that the distribution of topological defects is important for understanding 
diffusion in crystal states and near freezing conditions. 

Correlating Diffusivity & Defects 

Focusing on high-η states on spheres, particles with the highest diffusivities (Fig. 3) appear 
to have the same curvature dependence and spatial organization as particles with the highest charge 
density (Fig. 7). These observations, and guidance from results in prior studies,28, 32 lead to the 
expectation that particles with the highest diffusivities are associated with topological defects. 
Consider how curvature dependent DL/D0 scales with the fraction of defective particles. In the 
limit that only frequently defective particles have nonzero diffusivity and predominantly 
crystalline particles have vanishing diffusivity, the ensemble average apparent diffusivity becomes 
the fraction of defective particles times their diffusivity. Then, since the average defect fraction 
and degree is simply Q/N, the observed DL/D0 should scale with Q/N. Plotting (DL/D0) from Fig. 
3 divided by (Q/N) from Fig. 7 collapses all data onto a curvature independent trend that smoothly 

 
 

Fig 8. Correlating curvature and concentration dependent diffusivity and defects. (A) Dividing the 
normalized long-time diffusivity, DL/D0, by charge density, Q/N, removes curvature dependence, including 
(B) zoom view of freezing region, where all other quantities in Figs. 3-7 display curvature dependence. (C) 
Overlaying time averaged maximum Euclidean displacements and local charge density for the same time 
window reveals the mobile particles generally colocalize with defective crystal regions with exceptions. 
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transitions from unity at infinite dilution through freezing and vanishes at high densities (Fig. 8). 
The scaling in Fig. 8 is particularly successful at accounting for all curvature dependence in the 
freezing region and beyond. 

In addition to connecting the common scaling of DL/D0 and Q/N (Figs. 8A, B), we also 
visually assess the spatial correlations in the two quantities by overlaying (Fig. 8C) for the same 
time window the max displacement data (Fig. 3C) and local charge density data (Fig. 7C). At 
densities just below freezing (for flat, infinite systems; η=0.69), blue trajectories show that 
particles can isotropically escape local nearest-neighbor cages, and these trajectories lay on a 
relatively isotropic background charge density. At densities well beyond freezing (η=0.8), the 
majority of particles are localized on lattice positions, and the small proportion of particles that 
display the largest displacements occur in the high charge density regions. Between these limiting 
cases, the longest bluest trajectories consistently lie on top or near the red high charge density 
regions (e.g., R/2a=13.1, η=0.75 is especially clear) and localized gray trajectories lie in the white 
low charge density regions of perfect crystal. Interestingly, a number of cases show less co-
localization of large diffusive displacements and high charge density, and in some even less 
frequent observations capture highly mobile particles between defect-rich regions (e.g., R/2a=8.2, 
η=0.73). These observations show that longer-time collective diffusive motion enabled by defect 
regions does not imply exact correspondence between the most diffusive and most defective 
particles. However, the clear collapse of the data in Figs. 8A,B that captures all curvature 
dependent trends indicates a clear mechanistic coupling between the most diffusive and most 
defective particles. 

Curvature & Concentration Dependent Defects 

We explore the curvature dependence of defective particles in different states to better 
understand curvature dependent apparent diffusivity via their coupling in Fig. 8. Curvature-
dependent defect populations fall between the limits of isotropic liquid states at low η and dense 
crystals with grain scars at high η (Fig. 7). In liquid states, curvature-independent charge density 
arises because the defect population is isotropic, such that total charge, Q, is proportional to particle 
number and thus sphere surface area. Using the fact that liquid state charge densities are identical 
for flat and sphere surfaces (Fig. 7), the curvature dependent total charge for liquid states on the 
spheres, QS,liq, is given as,  
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 (5) 

which has no adjustable parameters, given we can measure the concentration dependent liquid 
charge density on flat surfaces, ()=(Q/N)F,liq (Fig. 7A). Eq. (5) accurately captures simulated 
curvature-dependent total charge for liquid states on different sized spheres (Fig. 9A). 

In high-η crystal states, twelve linearly oriented and icosahedrally organized grain scars 
arise from balancing curvature-induced lattice deformation against the cost of defect formation. 
Each grain scar has a ‘length’ determined by the number of extra 5-7 dislocations attached to each 
of the twelve 5-fold disclinations.18 The length in number of dislocations per disclination, nD, is 
related to the total charge due to scars, QS,scar, and the non-dimensional sphere-particle radii, R/2a, 
by (solving for nD or QS,scar), 
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 (6) 

where RC, is a critical radius dependent on the crystal elastic constants. Eq. (6) captures the linear 
scaling of Q vs. R/2a at η=0.8 (Fig. 9B). While Eq. (6) is only strictly valid at zero temperature, 
additional defects ‘proliferate’ at finite temperature,8, 18 which manifests as a slightly greater slope 

 

 
 

Fig 9. Quantification of curvature & concentration dependent defects. Total charge, Q, (Eq. (4)) vs. 
R/2a from BD simulations for (A) liquid state area fraction of η = 0.6 and model line from Eq. (5), (B) crystal 
state area fraction of η = 0.8 and model line from Eq. (6), and (C) all concentrations between η = 0.6-0.8 
with model line from Eq. (7) with two adjustable parameters, plotted in (D) showing transition from =0 for 
liquids to =1 for static grain scars, critical radius, RC, values required for >0. In addition to inset renderings 
in panels A and B show representative tessellations and time averaged local charge density, the same 
rendering types are shown in (E) for η=0.73 to visualize twelve interacting disclination centers, which 
corresponds to non-monotonic peak values of , RC, in panel D. 
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in Fig. 9B, as previously reported.33 Inset renderings in Fig. 9B show anisotropic local charge 
density and tessellations, which capture the increasing length of grain scars via additional 
dislocations as the sphere radius increases. The time-averaged anisotropic morphology of high-
charge-density regions shows the relatively static localization of grain scars. In this regime, where 
grain scars have a static orientation, the motion of dislocations parallel (climb) and perpendicular 
(glide) to grain scar corresponds to finite particle diffusivities.32 This contribution to the ensemble-
averaged diffusivity necessarily depends on the number of particles involved in the collective 
rearrangements that produce dislocation climb and glide. The collapse in Fig. 8 follows from this 
model, however, the same collapse works especially well in the regime where grain scars do not 
have a static orientation and dislocation identity and their motion is ambiguous. 

With an understanding of diffusion and defect structures in the liquid and dense crystal 
limits, we next examine all curvature and concentration dependent charge data (Q vs. R/2a) (Fig. 
9C). A systematic transition occurs between the limiting cases (Figs. 9A,B). To develop a model 
of intermediate concentrations, we consider several aspects of the grain scar model. Increasing 
temperature increases the slope (from 0.41) in Eq. (6) for crystal states of Lennard-Jones particles 
on sphere surfaces,33 so concentration may have an analogous role (with a reciprocal dependence). 
In addition, RC is understood to depend on crystal elastic constants (in the zero temperature 
continuum model18), which can also be concentration dependent. However, we cannot expect low 
density crystal states of Brownian colloids to behave as a continuous elastic solid. With these 
analogies and limitations in mind, we combine Eqs. (5) and (6) to model the full η and R 
dependence of the total charge.  

        2
/ 2 , 16 24 0.41 2 1 22 cRQ R a R R aa             (7) 

With only two adjustable parameters, and RC, Eq. (7) accurately captures the BD simulated data 
(Fig. 9C). Placing  at any other location within the grain scar term in Eq. (7) generally produces 
less a satisfactory fit and does not obviously contribute to its physical interpretation. 

Several features in the η-dependence of the fit parameters (Fig. 9D) are easily 
contextualized by the limiting cases and yet reveal aspects of the intermediate transition. When 
χ=0, Eq. (7) reduces to the liquid state expression (Eq. (5)), and when () vanishes in crystal 
states and χ=1, we recover the standard grain scar expression (Eq. (6)). In the fit parameters, χ 
transitions smoothly from zero to nearly one. Interestingly, this transition is not monotonic and has 
a maximum with χ>1 at η=0.73, just past freezing. This maximum is indicative of ‘proliferated’ 
defects that are not part of zero temperature grain scars, nor are they associated with the baseline 
isotropic defect distribution, (). As already noted, RC is not a well-defined parameter for hard 
discs (and undefinable for χ=0). Future studies could investigate the energetic cost of defects in 
hard disc crystals to better understand RC in relation to colloids on spherical surfaces. 

To better understand the extra defects reflected in the fit parameter maxima just beyond 
freezing (Fig. 9D), we show local charge density renderings at the maximum χ value, which occurs 
for η=0.73 (Fig. 9E). Compared to grain scars at η=0.8 (Fig. 9B), the morphology of the time-
averaged defect clusters is more rounded and without clear orientation at η=0.73. Since 
instantaneous tessellations still show 5-7-5 chains, the time averaged morphology change appears 
to occur as the result of fluctuations and motion in icosahedrally organized defect regions. As R/2a 
decreases, defect regions get closer together until fluctuations bridge adjacent regions (appearing 
as pink spots linking darker red defect regions with icosahedral organization in Fig. 9E). Both the 
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fluctuations near freezing and interactions between defect regions appear to be mediated by rapid 
formation and annihilation of additional topological charges that account for χ>1 in Fig. 9D (and 
changing RC values). 

The observed rapid formation and annihilation of individual defects (charges) occurs 
because the crystal tessellation is susceptible to particle displacements smaller than the lattice 
spacing. This means defects can transition between particle identities on the time scale of 
Brownian motion on a lattice site. For η=0.8, the defect number is small enough that defect 
dynamics are identifiable as dislocation climb and glide about static grain scars. However, near 
η=0.73 the substantial number of short-lived charges makes unambiguously identifying defects 
between instantaneous configurations impossible. Furthermore, since grain scars rapidly fluctuate 
in shape, orientation, and defect composition, identifying directions for relative defect motion is 
similarly ambiguous. Finally, the significant defect fluctuations occurring between grain scars also 
makes it difficult to identify icosahedral symmetry in instantaneous configurations. The time-
average local charge density is necessary to see icosahedral symmetry near η=0.73. 

These observations together suggest defect-mediated interactions between adjacent defect 
regions in crystalline states can break icosahedral symmetry, at least temporarily, and enable 
significant diffusion. Fluctuating defect clusters which interact across many particle lengths 
provide a compelling explanation for why, in Fig 8C, crystalline particles between the defect 
clusters can still exhibit inhomogeneous diffusivity. We expect that these collective fluctuations, 
which we characterize with Q/N, produce the apparent diffusive dynamics that we measure with 
DL/D0. With this context, we see that the effective collapse of (DL/D0)/(Q/N) in Fig 8A,B reflects 
the intimate connection between the evolving sub-populations of defects and of highly diffusive 
particles. Ultimately, we find that diffusion in crystalline states is curvature dependent because it 
connected to defect-mediated dynamics that occur both within and between icosahedral defect 
regions (which eventually form grain scars at higher area fractions). However, the idea that 
thermally activated defects mediate collective elastic interactions to produce cooperative diffusive 
dynamics in spherical crystal states warrants further study of the particle-scale and defect-scale 
mechanisms involved. 

Conclusions 

Brownian dynamic simulations were performed for varying particle concentrations on 2D 
flat surfaces and spherical surfaces of varying relative curvature. Particles were modeled with 
short-range screened electrostatic repulsive potentials that behave as effective 2D hard spheres or 
hard disks, which is relevant for many interfacial colloidal systems. Diffusion was measured at 
short- and long- times from ensemble averaged mean squared displacements to capture single 
particle diffusion, liquid state self-diffusion, and diffusion through freezing in curved crystal states.  

Liquid state self-diffusion is identical on flat and spherical surfaces with a concentration 
dependence captured by a simple model based on the first peak in the pair distribution function. 
Diffusion vanishes on flat surfaces upon freezing as expected but persists with a concentration and 
curvature dependence in crystal states on spherical surfaces. Similarly, the pair distribution 
function, local density distributions, and topological defect populations are also identical for liquid 
states on flat and spherical surfaces, but systematically vary with curvature upon freezing.  

Diffusion in crystalline states on spherical surfaces does not clearly relate to local density 
metrics, but both its concentration and curvature dependence are easily captured by topological 
charge density. Topological charge density varies continuously between limits for isotropic liquid 
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states and dense crystal states with icosahedrally organized grain scars. Renderings and charge 
density scaling indicate curvature-dependent diffusivities in crystalline states on spherical surfaces 
reflect diffusion mediated by topological defects both within and between icosahedral pre-scar 
defect regions. Higher charge densities on higher curvature spheres appears to result from 
formation and annihilation of additional topological charges associated with interactions between 
fluctuating defect regions. Particles with higher diffusivities that are not necessarily located in 
defect regions appear mobile due to cooperative particle-scale mechanisms mediated by 
topological defects. Ultimately, understanding self-diffusion and topological defect mediated 
diffusion of spherical particles on spherical surfaces provides a basis to explore more complex 
cases involving particles with different shapes, interactions, and activities and surfaces with 
varying curvature landscapes. 

Methods 

Flat-case simulations use overdamped Langevin dynamics in HOOMD-blue,37 which 
simplifies to standard Brownian dynamics.38 Flat-case simulations use periodic boundary 
conditions with box sizes chosen to match the area fractions and particle numbers in corresponding 
spherical surface simulations. Spherical simulations use overdamped Langevin dynamics in 
LAMMPS39 with RATTLE31 to keep particles confined to surfaces while maintaining a consistent 
thermostat. In both engines, particles interact via a screened electrostatic potential matched to 
spherical silica colloids in water.35 This potential has the form U(r)=6051kTexp(-280r). Each 
simulation runs for 300τ in total elapsed time, meaning that multiple-time-origin MSD curves can 
cover a maximum of 150τ. At least ten independent simulations were run for each case starting 
from randomly generated configurations for each combination of sphere radius, area fraction, and 
particle number. To remove artifacts from the periodic boundary conditions, flat-case MSD curves 
are calculated using the minimum image convention and in the ensemble center-of-mass frame. 
Spherical surface MSD curves were corrected for center-of-mass motion by bootstrapping the 
center of mass motion of many smaller sectors of particles on sphere surfaces. 
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