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Abstract

We prove an asymptotic formula for the eighth moment of Dirichlet L-functions

averaged over primitive characters � modulo q, over all moduli q � Q, and with a

short average on the critical line. Previously the same result was shown conditionally

on the generalized Riemann hypothesis by the first two authors.

1. Introduction

Moments of L-functions have attracted a great deal of attention. Not only do they

have numerous applications, but they have also their own intrinsic interest. The first

moments studied were naturally those of the Riemann zeta function, which are aver-

ages of the form

Ik.T / WD
Z T

0

ˇ̌
ˇ�

�1

2
C i t

�ˇ̌
ˇ
2k

dt:

An asymptotic formula for Ik.T / was proven for k D 1 by Hardy and Littlewood and

for k D 2 by Ingham (see, e.g., [12, Chapter VII]). Despite considerable effort, such

an asymptotic formula is still not known for any other value of k.

The situation for other L-functions is very similar; asymptotics are only available

for small values of k, and often only when averaged over a suitable family. In case of

Dirichlet L-functions, Conrey, Iwaniec, and Soundararajan [4] have proven an asymp-

totic formula for the sixth moment with an averaging over characters � .mod q/, over

all moduli q � Q, and with a short average on the critical line. They stated in the paper

that “A challenging problem is to obtain a similar asymptotic formula...for the eighth

moment.” Later, the first two authors [1] proved an asymptotic formula for the eighth

moment, conditionally on the generalized Riemann hypothesis (GRH). The aim of

this paper is to provide an unconditional proof of this eighth moment result.
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Before stating our result, let us introduce some notation. Let � .mod q/ be a

primitive even1 Dirichlet character, and let (for Re s > 1)

L.s;�/ WD
1X

nD1

�.n/

ns
D

Y

p

�
1 � �.p/

ps

��1

be the Dirichlet L-function associated to it. Then the completed L-function

ƒ
�1

2
C s;�

�
WD

� q

�

�s=2

�
�1

4
C s

2

�
L

�1

2
C s;�

�

satisfies the functional equation

ƒ
�1

2
C s;�

�
D "�ƒ

�1

2
� s;�

�
; (1)

where j"�j D 1.

Let
P[

� .mod q/ denote a sum over primitive even Dirichlet characters with modu-

lus q, and let �[.q/ denote the number of primitive even Dirichlet characters with

modulus q. From [3], one may derive the conjecture that as q ! 1 with q ¤ 2

.mod 4/,

1

�[.q/

X[

� .mod q/

ˇ̌
ˇL

�1

2
;�

�ˇ̌
ˇ
8

� 24024 a4

Y

pjq

.1 � 1
p

/7

.1 C 9
p

C 9
p2 C 1

p3 /

.log q/16

16Š
;

where

a4 WD
Y

p

�
1 � 1

p

�9�
1 C 9

p
C 9

p2
C 1

p3

�
:

Toward this conjecture we prove the following asymptotic formula when there is

an additional q-average as well as a t -average which is very short thanks to the rapid

decay of the �-function. Exactly the same theorem was shown in [1] conditionally on

the GRH.

THEOREM 1.1

Let " > 0, and let ‰ be a smooth function compactly supported in Œ1; 2�. Then

X

q

‰
� q

Q

� X[

� .mod q/

Z 1

�1

ˇ̌
ˇƒ

�1

2
C i t; �

�ˇ̌
ˇ
8

dt

D 24024a4

X

q

‰
� q

Q

�Y

pjq

.1 � 1
p

/7

.1 C 9
p

C 9
p2 C 1

p3 /

1The restriction to even characters is only for convenience so that the completed L-function has the same shape

for all characters involved—odd characters could be treated in exactly the same way.
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� �[.q/
.log q/16

16Š

Z 1

�1

ˇ̌
ˇ�

�1

4
C i t

2

�ˇ̌
ˇ
8

dt

C O"

�
Q2.log Q/15C"

�
: (2)

Remark 1.2

Note that the main term in the theorem is of the order Q2.log Q/16, and one obtains

as a corollary that

X

q�Q

X[

� .mod q/

Z 1

�1

ˇ̌
ˇƒ

�1

2
C i t; �

�ˇ̌
ˇ
8

dt

� 24024a4

X

q�Q

Y

pjq

.1 � 1
p

/7

.1 C 9
p

C 9
p2 C 1

p3 /
�[.q/

.log q/16

16Š

Z 1

�1

ˇ̌
ˇ�

�1

4
C i t

2

�ˇ̌
ˇ
8

dt:

In the proof of Theorem 1.1, we start by truncating the Dirichlet series arising from

the approximate functional equation. This truncation introduces an error term of size

around Q2.log Q/15C� . It thus remains an open problem to obtain the lower-order

terms in the asymptotic; in particular, we anticipate that obtaining a power-saving

error term would be a challenging task.

Remark 1.3

In [2], the present authors will remove the t -average from the sixth moment in the

work of Conrey, Iwaniec, and Soundararajan [4]. In particular, we will show that

X

q�Q

X[

� .mod q/

ˇ̌
ˇL

�1

2
;�

�ˇ̌
ˇ
6

� 42a3

X

q�Q

Y

pjq

.1 � 1
p

/5

.1 C 4
p

C 1
p2 /

�[.q/
.log q/9

9Š
;

where

a3 D
Y

p

�
1 � 1

p4

��
1 C 4

p
C 1

p2

�
:

However, it remains challenging to remove the t -average for the eighth moment.

2. A sketch of the proof

In this section we provide a sketch of the proof where we ignore various technicalities

such as complicated smooth weights, the inclusion-exclusion within the orthogonal-

ity over primitive characters, and a number of coprimality conditions and common

divisors.

Roughly speaking, after applying the approximate functional equation, we need

to understand sums of the form
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Q
X

q

‰
� q

Q

� X

m�Q2

X

n�Q2

m�n .mod q/

�4.m/�4.n/p
mn

; (3)

where �4.n/ D
P

nDn1n2n2n4
1. Here we were able to make the restriction m;n � Q2

instead of just mn � Q4 thanks to the t -average in the theorem.

The diagonal contribution m D n in (3) is fairly easy to understand, and in this

sketch we will concentrate on the non-diagonal contribution. Let "0 > 0 be small but

fixed. Following [1], the sums over m and n in (3) can be truncated to

m;n � N WD Q2

exp..log Q/"0/

using the multiplicative large sieve. Still following [1] (and [4]), we apply in the

most critical range the complementary divisor trick. That is, we write m � n D hq

in (3) and replace the congruence condition modulo q with a congruence condition

modulo h. Note that h � N=q is smaller than Q, so we have a reduction in the

arithmetic conductor.

After switching to the complementary divisor, we express the congruence condi-

tion modulo h using characters modulo h so that roughly we want to study

Q
X

h�2N=Q

1

�.h/

X

� .mod h/

X

m;n

�4.m/�4.n/�.m/�.n/p
mn

‰
� jm � nj

hQ

�
‰1

� m

N

�
‰1

� n

N

�
;

(4)

where ‰1 is smooth and supported on Œ0; 1�.

The principal characters give a main term contribution. In this sketch we concen-

trate on the nonprincipal characters. The smooth factor

h.m;n/ WD ‰
� jm � nj

hQ

�
‰1

� m

N

�
‰1

� n

N

�

restricts m and n to being within distance 2hQ from each other. Morally, the short

interval type condition jm � nj � 2hQ introduces an archimedean conductor of size

T D N
hQ

. This simplification is not obvious at first sight and requires an optimal treat-

ment of the two-variable Mellin transform of h.m;n/ as in Lemma 6.3. This is one of

the main components which allows us to remove the need for GRH.

The hybrid conductor is then hT � N
Q

, and this is still smaller than the origi-

nal conductor Q. It is important that the sums of length N � Q2

exp..log Q/"0 /
are long

compared to the hybrid conductor. In particular, applying Fourier analysis to such

a sum with �4.n/ as the coefficient produces dual sums of length
.N=Q/4

N
� N 3

Q4 �
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Q2

exp.3.log Q/"0 /
, and this is shorter than the length of the original sum N D Q2

exp..log Q/"0 /
.

Actually, for technical convenience we use the approximate functional equation rather

than the functional equation, and this gives us sums of length .N
Q

/2 � Q2

exp.2.log Q/"0 /
,

which still suffices. This is the main motivation for the more technical arguments that

follow.

To be more precise, we will reduce our problem to that of bounding a mean

square of a corresponding Dirichlet series, in the spirit of arithmetic problems on

almost all short intervals (see, e.g., [5, Lemma 9.3]). Indeed, one can show that the

Mellin transform

eh.s1; s2/ D
Z 1

0

Z 1

0

h.x;y/xs1ys2
dy

y

dx

x
(5)

converges for Re si > 0 and satisfies, for Re si 2 .0; 100/,

eh.s1; s2/ � 1

Re s1 � Re s2

� N

hQ

�k�1 1

max¹js1j; js2jºkjs1 C s2jl
N Re s1CRe s2 (6)

for any integers k � 1 and l � 0. In showing this, one can assume js1j � js2j, and in

this case (6) follows by applying in (5) first partial integration k times with respect to

x and then substituting y D xz and finally applying partial integration l times with

respect to x. A similar argument with our more complicated weight function can be

found from the proof of Lemma 6.3.

Now by the Mellin inversion, the nonprincipal characters contribute to (4)

Q
X

h�2N=Q

1

�.h/

X

� .mod h/
�¤�0

Z

.1=2C"/

Z

.1=2C"/

L.1=2 C s1; �/4

� L.1=2 C s2; �/4eh.s1; s2/ ds1 ds2:

Moving the contours close to Re si D 0, plugging in the bound (6) for eh.s1; s2/, and

using the inequality xy � jxj2 C jyj2, this can be seen to be essentially

� Q
X

h�2N=Q

1

�.h/

X

� .mod h/

hQ

N

Z N=.hQ/

�N=.hQ/

ˇ̌
L.1=2 C i t; �/

ˇ̌8
dt:

Hence our task more or less reduces to showing that, for any H � N=Q and C � 1,

we have

Q2

N

X

h�H

X

� .mod h/

Z T

�T

ˇ̌
L.1=2 C i t; �/

ˇ̌8
dt � Q2

.log Q/C
for T D N=.HQ/: (7)

Here and later the notation h � H in summations means that H < h � 2H . Since

HT D N=Q, the approximate functional equation morally allows us to approximate
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jL.1=2C i t; �/j4 by j
P

n�.N=Q/2 �.n/�4.n/n�1=2�it j (see Proposition 3.2 below for

a rigorous argument), and hence by the large sieve (Lemma 3.1 below) the left-hand

side of (7) can be shown to be

� Q2

N

�
H 2T C

�N

Q

�2�
.log N /O.1/ � .QH C N /.log N /O.1/:

We recall that H � N=Q and N D Q2

exp..log Q/"0 /
, so the above is O.Q2=.log Q/C /

for any C � 1.

The current paper has a lot in common with [1] and we freely borrow results from

there, so the reader may want to have [1] at hand. However, if the reader is ready to

take those results for granted or to work them out, the current paper can be read alone.

Throughout the paper, " denotes a small positive real number. Furthermore "0

and 	0 will be fixed positive constants that are chosen later.

3. Large sieve and upper bounds for moments

Let us first recall the hybrid large sieve (see, e.g., [9, Theorem 5.1]).

LEMMA 3.1

Let T;Q � 1. For any complex coefficients an with
P1

nD1 janj < 1, one has

X

q�Q

X�

� .mod q/

q

�.q/

Z T

�T

ˇ̌
ˇ

1X

nD1

an�.n/nit
ˇ̌
ˇ
2

�
1X

nD1

.Q2T C n/janj2:

In particular, for any N � 1 and any complex coefficients an, one has

X

q�Q

X�

� .mod q/

q

�.q/

Z T

�T

ˇ̌
ˇ
X

n�N

an�.n/nit
ˇ̌
ˇ
2

� .Q2T C N /
X

n�N

janj2:

The following proposition gives an upper bound for the eight moment of Dirichlet

L-functions averaged over �, q, and t . It will be used in bounding the off-diagonal

terms in Section 6.3.

PROPOSITION 3.2

For Q;T � 3, one has

X

q�Q

X

� .mod q/

Z T

0

ˇ̌
ˇL

�1

2
C c C i t; �

�ˇ̌
ˇ
8

dt � Q2T 2
�
log.QT /

�16
;

whenever 0 � c � 1=100.



THE EIGHTH MOMENT OF DIRICHLET L-FUNCTIONS II 3459

Remark 3.3

In [1] it was shown that conditionally on GRH, one has

X

� .mod q/

Z T

0

ˇ̌
ˇL

�1

2
C c C i t; �

�ˇ̌
ˇ
8

dt � qT
�
log.qT /

�16C"
: (8)

The unconditional Proposition 3.2 suffices for us since we will afford to lose a factor

T due to the decay in js1 C s2j coming from Lemma 6.3 below. On the other hand the

fact that we need an additional average over q in Proposition 3.2 compared to (8) will

cause us some minor technical difficulties (see in particular Remark 6.5).

Proof of Proposition 3.2

The contribution from q D 1 is acceptable by known moment bound for the Riemann

zeta function (see Lemma 3.5 below). Moreover, the part with bounded t can be eas-

ily dealt with using the approximate functional equation and the large sieve (see [7,

Theorem 7.34], the proof works just as well with 16 in place of 17).

Hence, by dyadic splitting, it suffices to prove, for Q � 3=2 and T � 3,

X

q�Q

X

� .mod q/

Z 2T

T

ˇ̌
ˇL

�1

2
C c C i t; �

�ˇ̌
ˇ
8

dt � Q2T 2
�
log.QT /

�16
: (9)

As usual, we first reduce to primitive characters; we claim that (9) follows once we

have shown that

X

q�Q

X�

� .mod q/

Z 2T

T

ˇ̌
ˇL

�1

2
C c C i t; �

�ˇ̌
ˇ
8

dt � Q2T 2
�
log.QT /

�16
: (10)

Indeed, the left-hand side of (9) is

�
X

r�Q

X

q1� Q
r

X�

�1 .mod q/1

Z 2T

T

ˇ̌
ˇL

�1

2
C c C i t; �1

�ˇ̌
ˇ
8 Y

pjr

�
1 C 1

p1=2

�8

dt: (11)

Applying (10), this is at most

Q2T 2
�
log.QT /

�16
X

r�Q

1

r2

Y

pjr

�
1 C 1

p1=2

�8

� Q2T 2
�
log.QT /

�16

as claimed. Hence it suffices to prove (10). For � a primitive character mod q, by the

approximate functional equation we have morally that

ˇ̌
ˇL

�1

2
C i t; �

�4ˇ̌
ˇ �

ˇ̌
ˇ

X

n�.TQ/2

�4.n/�.n/

n1=2Cit

ˇ̌
ˇ C

ˇ̌
ˇ

X

n�.TQ/2

�4.n/�.n/

n1=2�it

ˇ̌
ˇ:
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If this was true, the claim (10) (for c D 0) would follow from the hybrid large sieve

(Lemma 3.1). However, there is a technical issue that the Dirichlet polynomials in the

approximation depend mildly on t and q. To proceed rigorously, we use a method of

Ramachandra [8].

Let us concentrate on the sum in (10) over even characters, the odd characters

being handled similarly. By the functional equation (1), we have

L
�1

2
C s;�

�4

D F
�1

2
C s

�
L

�1

2
� s;�

�4

with

F
�1

2
C s

�
WD "4

�

��

q

�4s �.1
4

� s
2
/4

�.1
4

C s
2
/4

;

where j"�j D 1. For further convenience, let us record here Stirling’s formula which

gives, for j Arg.z/j < � � ",

�.z/ D
r

2�

z

�z

e

�z�
1 C O.1=z/

�
� jzjRe z�1=2

eRe z
exp

�
� Im z � Arg.z/

�
: (12)

In particular, for Re s 2 Œ�1; 1=3� and j Im sj � 10, we have

�.1
4

� s
2
/

�.1
4

C s
2
/

�
exp.Re.�1

4
� s

2
/ log j1

4
� s

2
j � Im.�s

2
/ Arg.1

4
� s

2
//

exp.Re.�1
4

C s
2
/ log j1

4
C s

2
j � Im. s

2
/ Arg.1

4
C s

2
//

(13)

and

log

ˇ̌
ˇ1

4
˙ s

2

ˇ̌
ˇ D log

�
jsj C 1

�
C O.1/ and

Arg
�1

4
˙ s

2

�
D Arg

�
˙ s

2

�
C O

� 1

jsj C 1

�
:

Noticing that the left-hand side of (13) stays bounded when Re s 2 Œ�1; 1=3� and

j Im sj < 10, we obtain that, for any s with Re s 2 Œ�1; 1=3�,

�.1
4

� s
2
/

�.1
4

C s
2
/

� exp
�
� Re.s/ log

�
jsj C 1

��
�

�
jsj C 1

�� Re s
: (14)

The starting point in the proof of (10) is the following lemma.

LEMMA 3.4

Let 0 � c � 1=100, let � be an even primitive Dirichlet character of modulus q 2 N,

and let t 2 R. Then for all X > 0,
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L
�1

2
C c C i t; �

�4

D
1X

nD1

�4.n/�.n/e�n=X

n1=2CcCit
C F

�1

2
C c C i t

� X

n�X

�4.n/�.n/

n1=2�c�it

� 1

2�i

Z

.�3=4/

F
�1

2
C c C i t C w

��X

n>X

�4.n/�.n/

n1=2�w�c�it

�
�.w/Xw dw

� 1

2�i

Z

.1=4/

F
�1

2
C c C i t C w

��X

n�X

�4.n/�.n/

n1=2�c�w�it

�
�.w/Xw dw

� 1qD1 Res
wD1=2�c�it

�.w/Xw�4
�1

2
C c C i t C w

�
; (15)

where 1qD1 is 1 if q D 1, and 0 otherwise.

Proof

This follows similarly to [8, Theorem 2]: Notice first that by Mellin inversion (since

�.s/ is the Mellin transform of the function e�x)

1X

nD1

�4.n/�.n/e�n=X

n1=2CcCit
D 1

2�i

Z

.2/

L
�1

2
C c C i t C w;�

�4

�.w/Xw dw:

We shift the integral to the line Re w D �3
4

, collecting a residue from the pole at

w D 0 and in case q D 1 also from a pole at w D 1=2 � c � i t . Applying also the

functional equation to the integral on the line Re w D �3
4

, we see that

1X

nD1

�4.n/�.n/e�n=X

n1=2CcCit
D L

�1

2
C c C i t; �

�4

C 1qD1 Res
wD1=2�c�it

�.w/Xw�4
�1

2
C c C i t C w

�

C 1

2�i

Z

.�3=4/

F
�1

2
C c C i t C w;�

�
L

�1

2
� c � i t � w;�

�4

�.w/Xw dw:

Writing on the last line

L
�1

2
� c � i t � w;�

�4

D
X

n�X

�4.n/�.n/

n1=2�c�it�w
C

X

n>X

�4.n/�.n/

n1=2�c�it�w
;

the claim of the lemma reduces to the claim that
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1

2�i

Z

.�3=4/

F
�1

2
C c C i t C w;�

� X

n�X

�4.n/�.n/

n1=2�c�it�w
�.w/Xw dw

D 1

2�i

Z

.1=4/

F
�1

2
C c C i t C w;�

� X

n�X

�4.n/�.n/

n1=2�c�it�w
�.w/Xw dw

� F
�1

2
C c C i t; �

� X

n�X

�4.n/�.n/

n1=2�c�it
:

But this is immediate from shifting the integration line, picking up a residue from a

pole at w D 0.

Let us now return to (10) for even characters. Recall Q � 3=2 and T � 3. We

take X D .QT /2 and apply Lemma 3.4, writing (15) as L.1
2

C c C i t; �/4 D .J1 C
J2 � J3 � J4/.c; t; �/ (the fifth term in (15) always vanishes as q � 2, so we do not

need to include it). Then it suffices to show that

X

q�Q

X[

� .mod q/

Z 2T

T

ˇ̌
Jk.c; t; �/

ˇ̌2
dt � .QT /2

�
log.QT /

�16

for k D 1; 2; 3; 4. First, by the large sieve (Lemma 3.1), we have

X

q�Q

X[

� .mod q/

Z 2T

T

ˇ̌
J1.c; t; �/

ˇ̌2
dt

�
1X

nD1

.Q2T C n/
�4.n/2e�2n=.Q2T 2/

n1C2c

� Q2T 2
X

n�Q2T 2

�4.n/2

n
C

X

n>Q2T 2

�4.n/2e�2n=.Q2T 2/

� Q2T 2
�
log.QT /

�16
:

Furthermore, noting that, by (14), jF.1
2

C c C i t/j � .q.1 C jt j//�4c , the large sieve

(Lemma 3.1) implies that

X

q�Q

X[

� .mod q/

Z 2T

T

ˇ̌
J2.c; t; �/

ˇ̌2
dt � .QT /2�8c

X

n�Q2T 2

�4.n/2

n1�2c

� Q2T 2
�
log.QT /

�16
:

To deal with the remaining two cases we notice that, by (14) and (12), we have,

for Re w 2 ¹�3=4; 1=4º,
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ˇ̌
ˇF

�1

2
C i t C c C w

�ˇ̌
ˇ � q�4 Re w�4c �

�
1 C jt C Im wj

��4 Re w�4c
and

ˇ̌
�.w/

ˇ̌
� e�j Im wj:

Splitting into cases according to whether j Im wj � 1
2
jt j or not, we see that

ˇ̌
ˇF

�1

2
C c C i t C w

�
�.w/.QT /2w

ˇ̌
ˇ � .QT /�2 Re w�4ce� 1

2 j Im wj:

Hence by the Cauchy–Schwarz inequality, noting the rapid decay in Im w, and using

the large sieve (Lemma 3.1), we have

X

q�Q

X[

� .mod q/

Z 2T

T

ˇ̌
J3.c; t; �/

ˇ̌2
dt

� .QT /3�8c
X

q�Q

X[

� .mod q/

Z 2T

T

�Z 1

�1

ˇ̌
ˇ

X

n>Q2T 2

�4.n/�.n/

n5=4�c�it�iu

ˇ̌
ˇe�juj=2 du

�2

dt

� .QT /3�8c max
u

X

q�Q

X[

� .mod q/

Z 2T

T

ˇ̌
ˇ

X

n>Q2T 2

�4.n/�.n/

n5=4�c�it�iu

ˇ̌
ˇ
2

dt

� .QT /3�8c
X

n>Q2T 2

.Q2T C n/
�4.n/2

n5=2�2c
� .QT /2

�
log.QT /

�16
:

Similarly

X

q�Q

X[

� .mod q/

Z 2T

T

ˇ̌
J4.c; t; �/

ˇ̌2
dt

� .QT /�1�8c max
u

X

q�Q

X[

� .mod q/

Z 2T

T

ˇ̌
ˇ

X

n�Q2T 2

�4.n/�.n/

n1=4�c�it�iu

ˇ̌
ˇ
2

dt

� .QT /�1�8c.Q2T C Q2T 2/
X

n�Q2T 2

�4.n/2

n1=2�2c
� .QT /2

�
log.QT /

�16
:

In case of the Riemann zeta function, a better upper bound is available, and it will

be helpful in evaluating the main terms.

LEMMA 3.5

Let T � 3. Then
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Z T

�T

ˇ̌
�.1=2 C c C i t/

ˇ̌8
dt � T 3=2.log T /21=2 (16)

for any c � 0.

Proof

Let us first consider the case c D 0. By the Cauchy–Schwarz inequality,

Z T

�T

ˇ̌
�.1=2 C i t/

ˇ̌8
dt �

�Z T

�T

ˇ̌
�.1=2 C i t/

ˇ̌4
dt

�1=2�Z T

�T

ˇ̌
�.1=2 C i t/

ˇ̌12
dt

�1=2

:

Applying upper bounds for the fourth and twelfth power moments of the Riemann

zeta function (see, e.g., [12, formula (7.6.3)] for the fourth moment and see [6] for the

twelfth moment), this is

�
�
T .log T /4

�1=2 �
�
T 2.log T /17

�1=2
;

and the claim follows in case c D 0. In case c � 1 the left-hand side of (16) is trivially

bounded by O.T /. In the remaining case c 2 .0; 1/ the claim follows from a convexity

argument (see [12, Section 7.8]).

Let us here also record orthogonality relations for characters. There and later

when ˙ appears only on one side of an equation, both options are summed.

LEMMA 3.6

If m, n are integers with .mn;q/ D 1, then

X�

� .mod q/

�.m/�.n/ D
X

qDdr
r j.m�n/


.d/�.r/;

and

X[

� .mod q/

�.m/�.n/ D 1

2

X

qDdr
r j.m˙n/


.d/�.r/:

Proof

The first claim follows from the orthogonality of all characters and Möbius inver-

sion, while the second claim follows from the first by detecting even characters with
1C�.�1/

2
.
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4. The approximate functional equation and truncation

Writing

G.s; t/ WD �4
� s

2
C i t

2

�
�4

� s

2
� i t

2

�
;

we would like to find an approximation to

Z 1

�1

ˇ̌
ˇƒ

�1

2
C i t; �

�ˇ̌
ˇ
8

dt D
Z 1

�1

G
�1

2
; t

�
L4

�1

2
C i t; �

�
L4

�1

2
� i t; �

�
dt:

Note that, for Re.s/ > 1, we have

L4.s C i t; �/L4.s � i t; �/ D
1X

m;nD1

�4.m/�4.n/

msns
�.m/�.n/

� n

m

�it

:

For stating an approximate functional equation for the eighth moment, we need

the weight function V W R3
C ! C defined by

V.�; �I
/ WD
Z 1

�1

��

�

�it

W
����4


4
; t

�
dt (17)

with W W RC 	C ! C defined by

W.x; t/ WD 1

2�i

Z

.1/

G.1=2 C s; t/x�s ds

s
: (18)

For the short proof of the following proposition, see [1, Lemma 2.1] (but note that in

the definition of P.�; t/, we are missing a factor .n=m/it ).

LEMMA 4.1

Let � be an even primitive character .mod q/. Then

Z 1

�1

ˇ̌
ƒ.1=2 C iy;�/

ˇ̌8
dy D 2

1X

m;nD1

�4.m/�4.n/p
mn

�.m/�.n/V .m;nIq/: (19)

The integration in y gives rise to V.m;nIq/ on the right-hand side of (19) which

makes the essential support of m and n sums more restricted; from the following

lemma, we see that the main contribution comes from when m, n are both at most

q2C".

LEMMA 4.2

The weight function W.x; t/ defined in (18) is a smooth function of x 2 .0;1/. Fur-

thermore the function V.�; �I
/ defined in (17) satisfies, for any �; �;
 > 0 and any

nonnegative integers 
1, 
2, 
3,
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d �1d �2d �3

d��1 d��2 d
�3
V.�; �I
/ ��1;�2;�3

exp
�
�max.�; �/1=2




�
� 1

��1��2
�3
: (20)

Proof

The proof is essentially the same as [4, Proof of Lemma 1] but for completeness we

prove (20) here. Without loss of generality, we can assume that � � � . By definition,

for any c > 0,

V.�; �I
/ D
Z 1

�1

��

�

�it 1

2�i

Z

.c/

G.1=2 C s; t/
����4


4

��s ds

s
dt:

Substituting i t D z, we obtain

V.�; �I
/ D � 1

2�

Z i1

�i1

��

�

�z
Z

.c/

G.1=2 C s;�iz/
����4


4

��s ds

s
dz:

We move the z-integration to the line Re z D �c. Writing z D �c C i t and s D c C iu,

we obtain

V.�; �I
/

D 1

2�

Z 1

�1

��

�

��cCit
Z 1

�1

G.1=2 C c C iu; t � ic/
����4


4

��c�iu du

c C iu
dt:

Taking derivatives, we see that

d �1d �2d �3

d��1 d��2 d
�3
V.�; �I
/

��1;�2;�3

1

��1��2
�3

Z 1

�1

Z 1

�1

ˇ̌
G.1=2 C c C iu; t � ic/

ˇ̌�
�

�1=2




��4c

� jt C uj�1
ˇ̌
2c C i.u � t /

ˇ̌�2 jc C iuj�3
du

jcj C juj dt:

When �1=2=
 � 10, we take c D 2, and the result follows immediately. Otherwise we

choose c D �1=2=
 > 10. Then, by Stirling’s formula (12),

ˇ̌
G.1=2 C c C iu; t C ic/

ˇ̌�
�

�1=2




��4c

D
ˇ̌
ˇ�

�1

4
C i

u C t

2

�4

�
�1

4
C c C i

u � t

2

�4 ˇ̌
ˇ.�c/�4c

� exp
�
�ju C t j

� j1
4

C c C i u�t
2

j4c

.e�c/4c
exp

�
�2ju � t j arctan

� ju � t j
2c C 1=2

��
: (21)

If ju � t j � 2c, then (21) is
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� exp
�
�ju C t j

� .2c/4c

.e�c/4c
� exp

�
�ju C t j � 4c

�
� exp

�
�ju C t j � ju � t j � 2c

�
:

On the other hand, if ju � t j > 2c, then (21) is

� exp
�
�ju C t j

� ju � t j4c

.e�c/4c
exp

�
�2ju � t j � 3

4

�

� exp
�
�ju C t j � ju � t j

�
exp

�
�c

�
4 log.e�/ C 1

2
� ju � t j

c
� 4 log

ju � t j
c

��

� exp
�
�ju C t j � ju � t j � 2c

�
:

Hence in any case

d �1d �2d �3

d��1 d��2 d
�3
V.�; �I
/

��1;�2;�3

e�c

��1��2
�3

Z 1

�1

Z 1

�1

exp
�
�1

2

�
ju C t j C ju � t j

��
dudt;

and the claim follows.

Let us make some initial reductions to the left-hand side of our claim (2). First,

by Lemma 4.1,

X

q

‰
� q

Q

� X[

� .mod q/

Z 1

�1

ˇ̌
ˇƒ

�1

2
C iy;�

�ˇ̌
ˇ
8

dy D 2	.‰;Q/;

where

	.‰;Q/ D
X

q

‰
� q

Q

� X[

� .mod q/

1X

m;nD1

�4.m/�4.n/p
mn

�.m/�.n/V .m;nIq/:

The next step is to slightly truncate the sums over m and n in 	.‰;Q/. This trun-

cation will allow us to apply the complementary divisor trick to reduce the conductor

in Section 6. For the truncation, let "0 > 0 and define

Q0 WD exp
�
.log Q/"0

�
(22)

and

e	.‰;Q/ D
X

q

X[

� .mod q/

‰
� q

Q

� 1X

m;nD1

�4.m/�4.n/p
mn

�.m/�.n/V
�
m;nI q

Q0

�
:

Note that we expect (and will later show) that 	.‰;Q/ � Q2.log Q/16. In this

section, we recall from [1] that e	.‰;Q/ is a sufficiently close approximation to
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	.‰;Q/. This type of procedure has previously appeared in the contexts of moments

also in other situations (see, e.g., the works of Soundararajan [10] and Soundararajan

and Young [11]).

PROPOSITION 4.3

With the above notation,

	.‰;Q/ � e	.‰;Q/ �˛ Q2.log Q/15C"0 :

Proof

This follows as [1, Proof of Proposition 3.1]. The key ingredient in the proof is the

large sieve. In [1] one has .log Q/˛ in place of Q0, but the same proof works by

replacing every occurrence of .log Q/˛ by Q0—our choice of Q0 is sufficiently small

since in the critical case of [1, Proof of Proposition 3.1] where Q2=Q2
0 � M , N �

Q2 the parameters M and N are each summed over � log Q0 � .log Q/"0 dyadic

intervals.

5. Splitting e	.‰;Q/

Now, by Proposition 4.3 and orthogonality of characters (see Lemma 3.6), it is suffi-

cient to consider

e	.‰;Q/ D 1

2

1X

m;nD1

�4.m/�4.n/p
mn

X

d;r
.dr;mn/D1

r jm˙n

�.r/
.d/‰
�dr

Q

�
V

�
m;n;

dr

Q0

�
:

Let D D .log Q/�0 for some 	0 to be determined later and split

e	.‰;Q/ D D.‰;Q/ C S1.‰;Q/ C O.‰;Q/;

where the diagonal term D.‰;Q/ consists of the terms with m D n, the term

S1.‰;Q/ consists of the remaining terms with d > D, and O.‰;Q/ consists of the

remaining terms with d � D.

The first two terms D.‰;Q/ and S1.‰;Q/ were handled in [1, Propositions

4.1 and 5.1], with .log Q/˛ in place of Q0. The same arguments give the following

asymptotic formulas.

LEMMA 5.1

Let " > 0, and let e‰ be the Mellin transform of ‰, which is defined by

e‰.s/ D
Z 1

0

‰.u/us du

u
: (23)
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Then

D.‰;Q/ D 216Q2 .log Q/16

16Š
e‰.2/

A

2

Y

p

�
1 � 1

p

��
1 C 1

Bp

� 1

p
� 1

p2
� 1

p3

��

�
Z 1

�1

G.1=2; t/ dt C O"

�
Q2.log Q/15C"

�
;

where

Bp D
1X

rD0

�2
4 .pr/

pr
and A D

Y

p

Bp

�
1 � 1

p

�16

:

LEMMA 5.2

Let " > 0. There exists an absolute constant C such that

S1.‰;Q/ D MS1.‰;Q/ C O"

�Q2.log Q/C

D1�"

�
;

where

MS1.‰;Q/ WD �
X

m;nD1
m¤n

�4.m/�4.n/p
mn

X

.q;mn/D1

‰
� q

Q

�� X

drDq
d�D


.d/
�
V

�
m;nI q

Q0

�
:

In [1] the remaining term O.‰;Q/ was treated by the complementary divisor

trick. In doing this, the first step is to replace the arithmetic factor �.r/ by a smooth

function, which can be done by writing �.r/ D
P

alDr 
.a/l so that

O.‰;Q/ D 1

2

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

X

d�D;
a;l

.dal;mn/D1
al jm˙n


.a/
.d/l‰
�adl

Q

�
V

�
m;n;

adl

Q0

�
:

It turns out that we can only use the complementary divisor trick when a is not too

large (this is ultimately due to Proposition 3.2 involving a q-average, as explained in

Remark 6.5 below). Accordingly, we write

O.‰;Q/ D S2.‰;Q/ C G .‰;Q/;

where S2.‰;Q/ consists of the terms with a > A WD exp..log Q/"0=2/ and G .‰;Q/

consists of the terms with a � A.

To handle S2.‰;Q/, we prove the following lemma.



3470 CHANDEE, LI, MATOMÄKI, and RADZIWIŁŁ

LEMMA 5.3

Let " > 0. One has

S2.‰;Q/ D MS2.‰;Q/ C O"

�Q2 exp.2.log Q/"=3/

A"=3

�
;

where

MS2.‰;Q/

WD
X

m;nD1
m¤n

�4.m/�4.n/p
mn

X

.q;mn/D1

‰
� q

Q

�� X

adlDq
a>A;d�D


.a/
.d/l

�.al/

�
V

�
m;nI q

Q0

�
:

Proof

The proof mostly follows the proof of [1, Proposition 5.1] (i.e., the proof of

Lemma 5.2). Recall that

S2.‰;Q/ D 1

2

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

X

a>A;d�D;l�1
.dal;mn/D1

al jm˙n


.a/
.d/l‰
�adl

Q

�
V

�
m;n;

adl

Q0

�
:

We express the condition al jm ˙ n using the even characters � .mod al/. Hence

S2.‰;Q/ D
X

a>A;
d�D;
l�1


.a/
.d/l

�.al/
‰

�adl

Q

� X

� .mod al/
�.�1/D1

1X

m;nD1
m¤n

.mn;d/D1

�.m/�.n/�4.m/�4.n/p
mn

� V
�
m;n;

adl

Q0

�
:

The principal character � D �0 gives the claimed main term, so we can concentrate

on the contribution of the nonprincipal characters.

Reintroducing the terms with m D n leads to (here our treatment is simpler than

that in [1, Proof of Proposition 5.1]) an error at most

1X

nD1

�2
4 .n/

n

X

a>A
d�D;l�1
.dal;n/D1

l‰
�adl

Q

�ˇ̌
ˇV

�
n;n;

adl

Q0

�ˇ̌
ˇ: (24)

The support of ‰ is contained in Œ1; 2�, so by Lemma 4.2,

X

n>Q3

�2
4 .n/

n

X

a>A
d�D;l�1
.dal;n/D1

l‰
�adl

Q

�ˇ̌
ˇV

�
n;n;

adl

Q0

�ˇ̌
ˇ � Q2

X

n>Q3

exp
��n1=2

2Q

�
� 1

Q
;
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so the quantity in (24) is

�
X

n�Q3

�2
4 .n/

n

X

A<a�2Q

X

d�D

X

l� 2Q
ad

l C 1

Q
� Q2.log Q/16

A
:

Hence it suffices to bound the sum

S 0
2.‰;Q/ D

X

a>A;
d�D;
l�1


.a/
.d/l

�.al/
‰

�adl

Q

� X

� .mod al/
�.�1/D1

�¤�0

1X

m;nD1
.mn;d/D1

�.m/�.n/�4.m/�4.n/p
mn

� V
�
m;n;

adl

Q0

�
:

Arguing similarly to the proof of Proposition 5.1 in [1] but with al in place of r , with

not reducing to primitive characters, and with an additional factor 
.a/l=�.al/ �
log Q=�.a/, we get that

S 0
2.‰;Q/ �" .log Q/2

X

d�D

d "

Z 1

�1

Z 1

�1

exp
�
�jt1j � jt2j

� X

a>A

1

�.a/

X

l� 2Q
ad

1

�
X

� mod al
�.�1/D1

�¤�0

°ˇ̌
ˇL

�1

2
C 1

log Q
C i t1; �

�ˇ̌
ˇ
8

C
ˇ̌
ˇL

�1

2
C 1

log Q
C i t2; �

�ˇ̌
ˇ
8±

dt1 dt2: (25)

Now, writing al D r ,

X

a>A

1

�.a/

X

l�2Q=.ad/

1 �
X

r�2Q=d

X

ajr
a>A

1

�.a/
:

Here

X

ajr
a>A

1

�.a/
� log Q

A"=3

X

ajr

1

a1�"=3
� log Q

A"=3

Y

pjr

�
1 C 1

p1�"=3

�

� log Q

A"=3

Y

p�log Q

�
1 C 1

p1�"=3

�
� log Q

A"=3
exp

�
.log Q/"=3

�
: (26)

Using this and Proposition 3.2 in (25), we get
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S 0
2.‰;Q/ �"

exp.3
2
.log Q/"=3/

A"=3

X

d�D

d " max
R� 2Q

d

Z 1

�1

exp
�
�jt1j

�

�
X

r�R

X

� mod r
�.�1/D1

ˇ̌
ˇL

�1

2
C 1

log Q
C i t1; �

�ˇ̌
ˇ
8

dt1

�"

exp.3
2
.log Q/"=3/

A"=3

X

d�D

d " max
R� 2Q

d

R2.log Q/16

� Q2 exp.2.log Q/"=3/

A"=3
;

as claimed.

Remark 5.4

The bound (26) is the reason we need to make a rather large choice like A D
exp..log Q/"0=2/, which in turn in the treatment of G .‰;Q/ will force a choice like

Q0 D exp..log Q/"0/.

Combining the previous two lemmas we obtain the following.

PROPOSITION 5.5

Let " > 0. There exists an absolute constant C such that

S1.‰;Q/ C S2.‰;Q/ D MS.‰;Q/ C O"

�Q2.log Q/C

D1�"
C Q2 exp.2.log Q/"=3/

A"=3

�
;

where

MS.‰;Q/ WD �
X

m;nD1
m¤n

�4.m/�4.n/p
mn

X

.q;mn/D1

‰
� q

Q

�� X

adlDq
a�A;d�D


.a/
.d/l

�.al/

�

� V
�
m;nI q

Q0

�
: (27)

Proof

Writing the sum over d in MS1.‰;Q/ as

X

drDq
d�D


.d/ D
X

drDq
d�D


.d/
X

rDal


.a/l

�.r/
D

X

adlDq
d�D


.a/
.d/l

�.al/
;

we see that
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MS1.‰;Q/ C MS2.‰;Q/ D MS.‰;Q/;

so the claim follows from Lemmas 5.2 and 5.3.

We have now understood D.‰;Q/ and S1.‰;Q/ C S2.‰;Q/, and we will turn

our attention to G .‰;Q/ in the following section.

6. Treatment of G .‰;Q/

6.1. The complementary divisor

Recall that

G .‰;Q/ D 1

2

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

X

a�A;d�D;l�1
.dal;mn/D1

al jm˙n


.a/
.d/l‰
�adl

Q

�

� V
�
m;n;

adl

Q0

�
: (28)

We write g D .m;n/ and m D gM , n D gN , so that .M;N / D 1. Note that the con-

dition .al;mn/ D 1 can be replaced by .al; g/ D 1 since al j m ˙ n. Necessarily

al j M ˙ N , and we write jM ˙ N j D alh. We want to replace the condition modulo

al with a condition modulo ah, which will be small when l is large. To do so, we

express the condition .l; g/ D 1 by
P

bj.l;g/ 
.b/. Writing l D bk, the inner sum in

(28) becomes

X

d�D
.d;gMN /D1


.d/
X

a�A
.a;g/D1


.a/
X

bjg


.b/
X

k�1
jM ˙N jDabkh

bk‰
�dabk

Q

�

� V
�
gM;gN;

dabk

Q0

�
:

Substituting k D jM ˙N j
abh

and rearranging, this equals

Q
X

d�D
.d;gMN /D1

X

a�A
.a;g/D1

X

bjg

X

h>0
M �	N .mod a/bh


.a/
.b/
.d/

ad

�
�d jM ˙ N j

Qh

�
‰

�d jM ˙ N j
Qh

�
V

�
gM;gN I d jM ˙ N j

hQ0

�
: (29)

For nonnegative real numbers u, x, y and for each choice of sign, we define

W˙.x; yIu/ D ujx ˙ yj‰
�
ujx ˙ yj

�
V

�
x;yIujx ˙ yj

�
; (30)
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and

W.x; yIu/ D WC.x; yIu/ C W�.x; yIu/:

It is immediate from the definition of V.m;nI
/ that, for any c > 0,

V.cm; cnI
p

c
/ D
Z 1

�1

� n

m

�it

W
�mn�4


4
; t

�
dt D V.m;nI
/: (31)

Thus

G .‰;Q/ D Q

2

X

˙

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

�
X

d�D
.d;gMN /D1

X

a�A
.a;g/D1

X

bjg

X

h>0
M �	N .mod a/bh


.a/
.b/
.d/

ad

� W˙
�gMQ2

0

Q2
;
gNQ2

0

Q2
I Qd

ghQ2
0

�
;

where
P

˙ indicates the sum over both choices of signs ˙. Note that since .M;N / D
1, necessarily .MN;abh/ D 1.

We express the condition M 
 �N .mod a/bh using characters � .mod a/bh.

We then separate the principal character contribution, which is the main term. Specif-

ically, we write

G .‰;Q/ D MG .‰;Q/ C EG .‰;Q/;

where

MG .‰;Q/ WD Q

2

X

˙

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

�
X

d�D
.d;gMN /D1

X

a�A
.a;gMN /D1

X

bjg
.b;MN /D1

X

h>0
.h;MN /D1


.a/
.b/
.d/

ad�.abh/

� W˙
�gMQ2

0

Q2
;
gNQ2

0

Q2
I dQ

ghQ2
0

�
(32)

and
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EG .‰;Q/ WD Q

2

X

˙

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

�
X

d�D
.d;gMN /D1

X

a�A
.a;gMN /D1

X

bjg
.b;MN /D1

X

h>0
.h;MN /D1


.a/
.b/
.d/

ad�.abh/

�
X

� .mod a/bh
�¤�0

�.M/�.�N /W˙
�gMQ2

0

Q2
;
gNQ2

0

Q2
I dQ

ghQ2
0

�
: (33)

6.2. Mellin transforms of W˙

To evaluate MG .‰;Q/ and EG .‰;Q/, we will write W˙.x; yIu/ in terms of its

Mellin transforms. We will consider three different types of Mellin transforms. They

come from taking Mellin transforms in the variable u when we need to sum over the

modulus h, the variables x and y when we need to sum over M and N , and in all

three variables when we need to sum over M , N , and h. (In the description above, we

have neglected to mention the conceptually less important sums over d , a, b, and g.)

We collect the properties of the various Mellin transforms in the following three

lemmas. The first lemma is from [1, Section 6.2] and the proof is the same as in [4,

Section 7], but using the bounds of Lemma 4.2 in place of [4, Lemma 1].

LEMMA 6.1

Given positive real numbers x and y, define

eW˙
1 .x; yI z/ D

Z 1

0

W˙.x; yIu/uz du

u
:

Then the functions eW˙
1 .x; yI z/ are analytic for all z 2 C. For any c 2 R, we have the

Mellin inversion formula

W˙.x; yIu/ D 1

2�i

Z

.c/

eW˙
1 .x; yI z/u�z dz:

For any nonnegative integer 
, any real numbers x;y > 0, and any z 2 C, one has

ˇ̌ eW˙
1 .x; yI z/

ˇ̌
�� jx ˙ yj� Re z

�Y

j D1

jz C j j�1 exp
�
�c1 max.x; y/1=4

�

for some absolute constant c1.
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The next lemma is similar to [1, Lemma 6.3], but we include a bound for the

error resulting from truncating the integrals over s1 and s2. In both [1] and [4], the

truncation was not explained. We include it here for completeness.

LEMMA 6.2

Define

eW˙
3 .s1; s2I z/ D

Z 1

0

Z 1

0

Z 1

0

W˙.x; yIu/uzxs1ys2
du

u

dx

x

dy

y

and

eW3.s1; s2I z/ D eWC
3 .s1; s2I z/ C eW�

3 .s1; s2I z/:

Let ! D s1Cs2�z
2

and � D s1�s2Cz
2

. For Re.s1/; Re.s2/ > 0, and j Re.s1 � s2/j <

Re.z/ < 1, we have

eW3.s1; s2I z/ D
e‰.1 C 4! C z/

2!�4!

Z 1

�1

H .� � i t; z/G
�1

2
C !; t

�
dt; (34)

where e‰ is defined in (23), and

H .u; v/ D �.u/�.v � u/

�.v/
C �.u/�.1 � v/

�.1 C u � v/
C �.v � u/�.1 � v/

�.1 � u/

D �1=2
�.u

2
/�.1�v

2
/�.v�u

2
/

�.1�u
2

/�.v
2
/�.1�vCu

2
/
: (35)

Let x ¤ y and T � Q". For any c1; c2 > 0 with jc1 � c2j < c < 1, one has the

truncated Mellin inversion formulas

W.x; yIu/ D 1

.2�i/3

Z

.c/

Z c1CiT

c1�iT

Z c2CiT

c2�iT

eW3.s1; s2I z/u�zx�s1y�s2 ds2 ds1 dz

C O
� u�cx�c1y�c2

T 1�cj log. x
y

/j

�
: (36)

Moreover, let eW1.x; yI z/ D eWC
1 .x; yI z/ C eW�

1 .x; yI z/. Then for Re z D c,

eW1.x; yI z/ D 1

.2�i/2

Z c1CiT

c1�iT

Z c2CiT

c2�iT

eW3.s1; s2I z/x�s1y�s2 ds2 ds1

C O
� x�c1y�c2

T 1�cj log. x
y

/j.1 C jzj/A

�
(37)
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for any A > 0. Finally, for Re.s1/; Re.s2/ > 0, and j Re.s1 � s2/j < Re.z/ < 1, the

Mellin transform eW3.s1; s2I z/ satisfies the bound

ˇ̌ eW3.s1; s2I z/
ˇ̌
�

�
1 C jzj

��A�
1 C j!j

��A�
1 C j�j

�Re.z/�1
(38)

for any A > 0.

Proof

All claims but (36) and (37) are from [4, Lemma 6]. By symmetry we can assume that

x < y. By (34), Mellin inversion, and a change of variables,

W.x; yIu/ D 1

.2�i/3

Z

.b1/

Z

.c/

Z 1

�1

u�ze‰.1 C 4s C z/

Z

.b3/

H .w; z/
�x

y

��w

dw

� G
�1

2
C s; t

�y�s�zCitx�s�it

�4s
dt dz

ds

s
: (39)

In the above, note that the integral in w does not converge absolutely, and we interpret

this as a symmetrical limit (see (41) for the precise expression). Taking the Mellin

transform of (39) as a function of u and using the definition of eW1 in Lemma 6.1, we

obtain

eW1.x; yI z/ D 1

.2�i/2

Z

.b1/

Z 1

�1

e‰.1 C 4s C z/

Z

.b3/

H .w; z/
�x

y

��w

dw

� G
�1

2
C s; t

�y�s�zCitx�s�it

�4s
dt

ds

s
: (40)

We now give a proof of the truncated Mellin inversion formula (36), with the

proof of (37) following by the same lines. Here, we note that the rapid decay in z in the

error term in (37) follows from the presence of the factor e‰.1 C 4s C z/G.1
2

C s; t/.

Note that the integrals over t , z, and s decay rapidly along vertical lines due to

the factors e‰ and G.1
2

C s; t/. The integrals over t , z, and s can thus be truncated to

short integrals of length T 1=2 � Q"=2, up to an error of

u�cx�b3�b1y�b1�cCb3

T 100
:

On the other hand, the integral in w requires more care as it is not absolutely

convergent and should be interpreted as a symmetrical limit. To be more precise,

1

2�i

Z

.b3/

H .w; z/
�x

y

��w

dw D lim
T !1

Z b3CiT

b3�iT

H .w; z/
�x

y

��w

dw: (41)

Now, consider z fixed with j Im zj � Q"=2 and x < y. By Stirling’s formula for

Gamma functions in H .w; z/, for Re z D c, we have that
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ˇ̌
ˇ
�Z �1CiT

b3CiT

C
Z b3�iT

�1�iT

�
H .w; z/

�x

y

��w

dw
ˇ̌
ˇ � 1

T 1�c

Z b3

�1

�x

y

���

d�

� x�b3yb3

T 1�cj log. x
y

/j : (42)

In the above, whenever � D 
 ˙ i� with j� j � 100 is not within the region allowed by

Stirling’s formula, we write j�.�/j D �
j�.1�	/ sin.�	/j

� 1

e�j�jj�.1�	/j
and apply Stir-

ling’s formula to �.1 � �/ instead. This and (41) give that

1

2�i

Z

.b3/

H .w; z/
�x

y

��w

dw

D lim
T !1

�Z b3CiT

b3�iT

C
Z �1CiT

b3CiT

C
Z b3�iT

�1�iT

�
H .w; z/

�x

y

��w

dw: (43)

Moreover, by (35),

�Z b3CiT

b3�iT

C
Z �1CiT

b3CiT

C
Z b3�iT

�1�iT

�
H .w; z/

�x

y

��w

dw

D
�Z b3CiT

b3�iT

C
Z �1CiT

b3CiT

C
Z b3�iT

�1�iT

�h�.w/�.z � w/

�.z/
C �.w/�.1 � z/

�.1 C w � z/

C �.z � w/�.1 � z/

�.1 � w/

i�x

y

��w

dw

D
ˇ̌
ˇ1 C x

y

ˇ̌
ˇ
�z

C
ˇ̌
ˇ1 � x

y

ˇ̌
ˇ
�z

upon summing the residues of the integrand within the region bounded by our contour

of integration. Here, we have noted that the integrand above goes to zero as Re w !
�1 since x < y and by Stirling’s formula. Note that this is independent of T for

T � Q� and so (43) gives that

�Z b3CiT

b3�iT

C
Z �1CiT

b3CiT

C
Z b3�iT

�1�iT

�
H .w; z/

�x

y

��w

dw

D 1

2�i

Z

.b3/

H .w; z/
�x

y

��w

dw: (44)

Inserting the above and (42) into (39), we obtain that, for x < y and 0 < b3 <

c < 1,

W.x; yIu/ DI.x; y;uIT / C O
�u�cy�b1Cb3�cx�b1�b3

T 1�cj log. x
y

/j

�
; (45)
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where

I.x; y;uIT / D 1

.2�i/3

Z

.b1/

Z

.c/

Z b3CiT=2

b3�iT=2

Z 1

�1

u�ze‰.1 C 4s C z/H .w; z/

� G
�1

2
C s; t

�y�sCitCw�zx�s�it�w

�4s
dt dw dz

ds

s
:

Now we change the variable s1 D s C i t C w and s2 D s � i t � w C z. Recall

that T � Q". Let ! and � be defined as in the statement of the lemma. We then have

for jc1 � c2j < c,

W.x; yIu/ D 1

.2�i/3

Z

.c/

Z c1CiT

c1�iT

Z c2CiT

c2�iT

eW3.s1; s2I z/u�zy�s2x�s1 ds2 ds1 dz

C O
�
Q�1000 C u�cy�c2x�c1

T 1�cj log. x
y

/j

�
;

as desired.

The following lemma is of crucial importance when we remove the need for GRH

(in [1], [4] the decay in js1 C s2j was not noticed or utilized).

LEMMA 6.3

Given a positive real number u, we define

eW˙
2 .s1; s2Iu/ D

Z 1

0

Z 1

0

W˙.x; yIu/xs1ys2
dx

x

dy

y
:

Then the functions eW˙
2 .s1; s2Iu/ are analytic in the region Re s1; Re s2 > 0. We have

the Mellin inversion formula

W˙.x; yIu/ D 1

.2�i/2

Z

.c1/

Z

.c2/

eW˙
2 .s1; s2Iu/x�s1y�s2 ds2 ds1;

when c1 and c2 are positive. For any integers k � 1, l � 0 and any s1; s2 2 C with

0 < Re s1, Re s2 � 100, one has

ˇ̌ eW˙
2 .s1; s2Iu/

ˇ̌
�k;l

1

Re s1 � Re s2

� .1 C u/k�1

max¹js1j; js2jºkjs1 C s2jl
exp.�c0u�1=4/ (46)

for some constant c0 > 0.

Proof

Apart from (46) the claims go back to [4] (and are easy to prove). In the proof of (46),
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we can assume by symmetry that js1j � js2j. The proof is based on partial integration,

and for this we first study the derivatives of W˙.x; yIu/.

To simplify the notation, we write in this proof V1; V2; : : : for unspecified

functions Vj W R3
C ! C that satisfy (20) and W ˙

1 ;W ˙
2 ; : : : for unspecified func-

tions W ˙
j W R

3
C ! C that are of the form W ˙

j .x; yIu/ D ujx ˙ yj‰.ujx ˙
yj/Vj .x; yIujx ˙ yj/ for some such Vj .

By Lemma 4.2 and the chain rule,

d

dx
V

�
x;yIujx ˙ yj

�
D 1

x
V1

�
x;yIujx ˙ yj

�
C u � 1

ujx ˙ yjV2

�
x;yIujx ˙ yj

�

so that, in the region ujx ˙ yj 2 Œ1; 2�, we have, for any j � 0,

d j

dxj
V

�
x;yIujx ˙ yj

�
D

� 1

xj
C uj

�
V3

�
x;yIujx ˙ yj

�

and

d j

dxj
W˙

�
x;yIujx ˙ yj

�
D

� 1

xj
C uj

�
W1

�
x;yIujx ˙ yj

�
:

Note that we avoid the non-differentiable point of jx ˙ yj due to the support of ‰.

Hence by partial integration k times, we see that

ˇ̌ eW˙
2 .s1; s2Iu/

ˇ̌
� 1

js1jk
ˇ̌
ˇ
Z 1

0

Z 1

0

.1 C ux/kW ˙
1 .x; yIu/xs1ys2

dx

x

dy

y

ˇ̌
ˇ:

Now we substitute x D w and y D wz so that

ˇ̌ eW˙
2 .s1; s2Iu/

ˇ̌
� 1

js1jk
ˇ̌
ˇ
Z 1

0

Z 1

0

.1 C uw/kW ˙
1 .w;wzIu/ws1Cs2zs2

dw

w

dz

z

ˇ̌
ˇ:

(47)

Next we perform partial integration with respect to w. For this note that, by

Lemma 4.2 and the chain rule,

d

dw
V

�
w;wz;uwj1 ˙ zj

�

D 1

w
V4

�
w;wz;uwj1 ˙ zj

�
C z � 1

wz
V5

�
w;wz;uwj1 ˙ zj

�

C uj1 ˙ zj 1

uwj1 ˙ zjV6

�
w;wz;uwj1 ˙ zj

�

D 1

w
V7

�
w;wz;uwj1 ˙ zj

�
:
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Note also that

d

dw
.1 C uw/k D 1

w
.1 C uw/k � k

uw

1 C uw
:

Using similar bounds for higher-order derivatives and considering other terms as well,

we see that

d l

dwl

�
.1 C uw/kW ˙

1 .w;wzIu/
�

D 1

wl
.1 C uw/kW ˙

2 .w;wzIu/:

Hence, by applying partial integration l times to the right-hand side of (47), we obtain

ˇ̌ eW˙
2 .s1; s2Iu/

ˇ̌

� 1

js1jkjs1 C s2jl
ˇ̌
ˇ
Z 1

0

Z 1

0

ws1Cs2zs2.1 C uw/kW ˙
3 .w;wzIu/

dz

z

dw

w

ˇ̌
ˇ:

Substituting back w D x and z D y=x, we see that the above integral is

Z 1

0

Z 1

0

xs1ys2.1 C ux/kW ˙
3 .x; yIu/

dy

y

dx

x
: (48)

Recall that k � 1 and Re si > 0 and that W ˙
3 .x; yIu/ is supported on ujx ˙yj 2 Œ1; 2�

and satisfies W ˙
3 .x; yIu/ � exp.�2c max¹x;yº1=4/ for some c > 0.

In the part of (48) with x > 10=u, we have y � x and y is restricted to an inter-

val of length 1=u (depending on x). Hence the contribution of x > 10=u to (48) is

bounded by

uk�1

Z 1

10=u

xRe s1CRe s2xk exp.�2cx1=4/
dx

x2

� uk�1 1

Re s1 C Re s2 C k � 1

� 1

uRe s1CRe s2Ck�1
C 1

�
exp.�2cu�1=4/

� uk�1 1

Re s1 � Re s2

exp.�cu�1=4/:

In the part of (48) with x � 10=u, we have y � 12=u and max¹x;yº � 1=.2u/ (since

jx ˙ yj 2 Œ1=u; 2=u�), so the contribution of this part is bounded by

Z 10=u

0

Z 12=u

0

1max¹x;yº�1=.2u/x
Re s1yRe s2

ˇ̌
W ˙

3 .x; yIu/
ˇ̌dx

x

dy

y

� 1

Re s1

1

Re s2

u� Re s1�Re s2 exp.�2cu�1=4/ � 1

Re s1

1

Re s2

exp.�cu�1=4/:
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6.3. Bounding the error term EG .‰;Q/

The aim of this section is to prove the following.

LEMMA 6.4

Let EG .‰;Q/ be as in (33) with

A D exp
�
.log Q/"0=2

�
; D D .log Q/�0 ; and

Q0 D exp
�
.log Q/"0

�
;

(49)

where we recall that "0 and 	0 are fixed positive constants to be chosen later. Then

EG .‰;Q/ �C

Q2

.log Q/C

for any C � 1.

Proof

Following [1, Proof of Lemma 7.1] until [1, (25)], we see that EG .‰;Q/ is

� Q.log Q/16
X

˙

X

a�A
b;h>0

X

� .mod a/bh
�¤�0

X

g
bjg;.a;g/D1

X

d�D
.d;g/D1

�3.d/�3.g/�4.g/

adg�.abh/

�
Z

. 100
log Q /

Z

. 100
log Q /

�ˇ̌
L4.1=2 C s1; �/L4.1=2 C s2; �/

ˇ̌
C �2

4 .g/
�ˇ̌
ˇ

� eW˙
2

�
s1; s2I dQ

ghQ2
0

�ˇ̌
ˇds1 ds2: (50)

Notice first that Lemma 6.3 implies that, for any k � 1,

X

g
bjg

�3.g/�3
4 .g/

g

X

d�D

�3.d/

d

ˇ̌
ˇ eW˙

2

�
s1; s2;

dQ

ghQ2
0

�ˇ̌
ˇ

�
.1 C QD

bhQ2
0

/k�1.log Q/2

max¹js1j; js2jºkjs1 C s2j3
.log D/8

X

g
bjg

�3.g/�3
4 .g/

g
exp

�
�c0

�ghQ2
0

QD

�1=4�

�
.1 C QD

bhQ2
0

/k�1.log Q/Ok.1/

max¹js1j C 1; js2j C 1ºk.js1 C s2j C 1/3
� �3.b/�3

4 .b/

b

� exp
�
�c0

�bhQ2
0

QD

�1=4�
: (51)
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Let us write ` D abh in (50) and split into dyadic blocks ` � L and max¹js1j C
1; js2j C 1º � T . Note that �.abh/ � abh= log log.abh/ and bh � L=A. Using also

the inequality xy � x2 C y2, the contribution of such a dyadic block to (50) is

� Q.log Q/O.1/ min
k2¹1;4º

.1 C ADQ

LQ2
0

/k�1 log".L/

LT k
exp

�
�c0

� LQ2
0

ADQ

�1=4�

�
X

`�L

� X

abhD`
a�A

b;h>0

�3.b/�3
4 .b/

ab

� X

� .mod `/
�¤�0

Z T

�T

�
1 C

ˇ̌
ˇL8

�1

2
C 100

log Q
C i t; �

�ˇ̌
ˇ
�

dt;

(52)

where the second integral in (50) is bounded by 1 due to the factor 1
.js1Cs2jC1/3 . Here

it suffices to make a rough estimate

X

abhD`
a�A

b;h>0

�3.b/�3
4 .b/

ab
� log A

Y

pj`

�
1 C 29

p

�
� log A � log L (53)

so that, by Proposition 3.2, the second line of (52) is at most

L2T 2
�
log.10LQT /

�O.1/
: (54)

By (51), (52), and (54) above, (50) is bounded by

Q.log Q/O.1/
X

L;T �1
LD2u;T D2v

min
k2¹1;4º

L
.1 C ADQ

LQ2
0

/k�1 logO.1/.LT /

T k�2

� exp
�
�c0

� LQ2
0

ADQ

�1=4�
:

Taking k D 1 when T � 1 C ADQ

LQ2
0

and k D 4 otherwise, we see that this is

� Q
X

L�1
LD2u

L
�
1 C ADQ

LQ2
0

�
logO.1/.LQ/ exp

�
�c0

� LQ2
0

ADQ

�1=4�

� ADQ2.log Q/O.1/

Q2
0

�C

Q2

.log Q/C

for any C � 1. Hence the claim follows.



3484 CHANDEE, LI, MATOMÄKI, and RADZIWIŁŁ

Remark 6.5

In [1] the conditional bound (8) was used instead of Proposition 3.2. Since (8) does

not require averaging over the modulus, in [1] it was possible to utilize averaging over

` when bounding the left-hand side of (53). Due to this, the restriction a � A (which

is in place to make (53) hold) was not needed in the definition of G .‰;Q/ in [1]. In

our case, we needed to separate the terms with a > A and treat them by a variant of

the treatment of the case d > D in [1].

7. Evaluating MS.‰;Q/ C MG .‰;Q/

We recall that MS.‰;Q/ and MG .‰;Q/ are defined in (27) and (32), respectively.

We evaluate MS.‰;Q/ C MG .‰;Q/ following [1, Section 8], but the details are

somewhat different since we have the restriction a � A in our sums.

Similarly to [1, Section 8], we use the Mellin transform of eW˙
1 (from Lemma 6.1)

to write MG .‰;Q/ in terms of a contour integral with Re z D �" < 0 and shift the

contour to Re.z/ D " > 0. Here we pick up poles at z D 0 whose residue essentially

cancels with MS.‰;Q/. This process is recorded in the following lemma.

LEMMA 7.1

Let C � 1. Let MS.‰;Q/ and MG .‰;Q/ be as in (27) and (32) with parameters as

in (49). Once 	0 is large enough in terms of C , one has

MS.ˆ;Q/ C MG .ˆ;Q/

D Q

2

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

1

2�i

Z

."/

eW1

�mQ2
0

Q2
;
nQ2

0

Q2
I z

�

� �.1 � z/F .�z;g;MN /

�.1 C z/�.gMN;1 C z/

� Q

gQ2
0

��z

dz C O
� Q2

.log Q/C

�
; (55)

where

�.r; s/ D
Y

pjr

�
1 � 1

ps

�

and

F .s; g;MN / D �.MN; s C 1/
Y

p�g mN

�
1 � 1

p.p � 1/
C 1

p1Cs.p � 1/

�

�
Y

pjg
p�MN

�
1 � 1

p1Cs
� 1

p � 1

�
1 � 1

ps

��
:
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Proof

Write

S.a; b; d; g;M;N / WD
X

˙

X

h>0
.h;MN /D1

1

�.abh/
W˙

�gMQ2
0

Q2
;
gNQ2

0

Q2
I dQ

ghQ2
0

�

so that

MG .‰;Q/ D Q

2

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

�
X

d�D
.d;gMN /D1

X

a�A
.a;gMN /D1

X

bjg
.b;MN /D1


.a/
.b/
.d/

ad
S.a; b; d; g;M;N /;

where as usual g WD .m;n/, M WD m=g, and N WD n=g.

Using the Mellin transform of eW˙
1 given in Lemma 6.1 with c D �" < 0, we

obtain that

S.a; b; d; g;M;N /

D
X

˙

1X

hD1
.h;MN /D1

1

�.abh/

1

2�i

Z

.�"/

eW˙
1

�gMQ2
0

Q2
;
gNQ2

0

Q2
I z

�� dQ

ghQ2
0

��z

dz:

(56)

We can interchange the sum and the integral since the sum over h is absolutely conver-

gent for Re.z/ < 0. Writing out the Euler product, we obtain that, for .ab;MN / D 1

and Re.s/ > 0, one has

1X

hD1
.h;MN /D1

1

�.abh/hs

D 1

�.ab/
�.s C 1/

Y

pjMN

�
1 � 1

psC1

� Y

p�abMN

�
1 C 1

ps
� 1

p.p � 1/

�
: (57)

Therefore

S.a; b; d; g;M;N / D
X

˙

1

2�i

Z

.�"/

eW˙
1

�gMQ2
0

Q2
;
gNQ2

0

Q2
I z

�
�.1 � z/

� dQ

gQ2
0

��z

� 1

�.ab/

Y

pjMN

�
1 � 1

p1�z

� Y

p�abMN

�
1 C pz

p.p � 1/

�
dz:
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Next we move the integration line to Re z D ". We encounter a pole at z D 0, leading

to a main term �.Residue at z D 0/ that equals

eW˙
1

�gMQ2
0

Q2
;
gNQ2

0

Q2
I0

� 1

�.ab/

�.MN /

MN

Y

p�abMN

�
1 C 1

p.p � 1/

�
:

Here, by first substituting u0 D ujx ˙ yj in the definition of eW˙
1 and then using (31),

eW˙
1

�gMQ2
0

Q2
;
gNQ2

0

Q2
I0

�
D

Z 1

0

‰.u/V
�gMQ2

0

Q2
;
gNQ2

0

Q2
; u

�
du

D
Z 1

0

‰.u/V
�
gM;gN;

uQ

Q0

�
du:

Therefore, writing MG 1.‰;Q/ for the contribution of the residue term at z D 0, we

obtain

MG .‰;Q/ D MG 1.‰;Q/ C MG 2.‰;Q/; (58)

where

MG 1.‰;Q/ WD Q
X

m;nD1
m¤n

�4.m/�4.n/p
mn

�.MN /

MN

�
X

d�D
.d;mn/D1


.d/

d

X

a�A
.a;mn/D1

X

bjg
.b;MN /D1


.a/
.b/

a�.ab/

�
Y

p�abMN

�
1 C 1

p.p � 1/

�Z 1

0

‰.u/V
�
gM;gN;

uQ

Q0

�
du; (59)

where we have changed the factor of Q=2 to Q due to summing over ˙. Moreover,

MG 2.‰;Q/ WD Q

2

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

� 1

2�i

Z

."/

X

d�D
.d;gMN /D1

X

a�A
.a;mn/D1

X

bjg
.b;MN /D1


.a/
.b/
.d/

a�.ab/d 1Cz

� eW1

�gMQ2
0

Q2
;
gNQ2

0

Q2
I z

�
�.1 � z/

� Q

gQ2
0

��z Y

pjMN

�
1 � 1

p1�z

�

�
Y

p�abMN

�
1 C pz

p.p � 1/

�
dz; (60)
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where we recall that eWC
1 C eW�

1 D eW1. We will first show that

MG 1.‰;Q/ C MS.‰;Q/ D O
�DQ2.log Q/O.1/

Q0

�
: (61)

By definition (27),

MS.‰;Q/ D �
X

m;nD1
m¤n

�4.m/�4.n/p
mn

�
X

a�A;d�D
.ad;mn/D1

X

l>0
.l;MN /D1

1.l;g/D1‰
�adl

Q

�
.a/
.d/l

�.al/
V

�
m;nI adl

Q0

�
:

Writing 1.l;g/D1 D
P

lDbk;bjg 
.b/, we see that

MS.‰;Q/ D �
X

m;nD1
m¤n

�4.m/�4.n/p
mn

�
X

a�A;d�D
.ad;mn/D1

X

bjg;k>0
.bk;MN /D1

‰
�abdk

Q

�
.a/
.b/
.d/bk

�.abk/
V

�
m;nI abdk

Q0

�
:

Writing U.m;n;u/ D V.m;n;u=Q0/‰.u=Q/ and using Mellin inversion, we see

that

MS.‰;Q/ D �
X

m;nD1
m¤n

�4.m/�4.n/p
mn

X

a�A;d�D
.ad;mn/D1

X

bjg
.b;MN /D1

X

k>0
.k;MN /D1


.a/
.b/
.d/bk

�.abk/

� 1

2�i

Z

.1C"/

eU.m;n; z/

.abdk/z
dz;

where

eU.m;n; z/ D
Z 1

0

U.m;n;u/uz du

u
:

Noting that the sum over k above is absolutely convergent for Re z > 1, we can inter-

change the order of summation and integration. Recalling (57), we see that
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MS.‰;Q/ D �
X

m;nD1
m¤n

�4.m/�4.n/p
mn

X

bjg
.b;MN /D1

1

2�i

�
Z

.1C"/

X

a�A;d�D
.ad;mn/D1


.a/
.b/
.d/b

�.ab/.abd/z
�.z/

�
Y

pjMN

�
1 � 1

pz

� Y

p�abMN

�
1 C 1

pz�1
� 1

p.p � 1/

�
eU.m;n; z/dz:

Next we move the integration to the line Re z D 1= log Q. Since

eU.m;n; 1/ D Q

Z 1

0

‰.u/V
�
m;nI uQ

Q0

�
du;

the residue from the pole at z D 1 equals �MG 1.‰;Q/, and the remaining integral

can be included in the error term in (61) since eU.m;nI z/ decays rapidly when m or

n is � Q2=Q0 (due to Lemma 4.2) or j Im zj grows.

Therefore (61) holds, and the remaining main term of MG .‰;Q/ C MS.‰;Q/

is MG 2.‰;Q/ defined by (60). We shift the contour in (60) to Re.z/ D 1 � 1
log Q

.

The sums over a and d can be extended to all positive integers with an error �
Q2=.log Q/C using Lemma 6.1 when 	0 is large enough depending on C . For the

d -sum, this was done in [1, Proof of Lemma 8.1], and one can argue similarly for the

a-sum. Hence, apart from an acceptable error, MG 2.‰;Q/ equals

Q

2

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

1

2�i

Z

.1�1= log Q/

eW1

�gMQ2
0

Q2
;
gNQ2

0

Q2
I z

�
�.1 � z/

� Q

gQ2
0

��z

�
X

d>0
.d;gMN /D1

X

a>0
.a;mn/D1

X

bjg
.b;MN /D1


.a/
.b/
.d/

a�.ab/d 1Cz

Y

pjMN

�
1 � 1

p1�z

�

�
Y

p�abMN

�
1 C pz

p.p � 1/

�
dz:

Writing r D ab, the second line equals

D
X

d>0
.d;gMN /D1

X

r>0
.r;MN /D1


.d/
.r/.r; g/

r�.r/d 1Cz

Y

pjMN

�
1 � 1

p1�z

� Y

p�rMN

�
1 C pz

p.p � 1/

�
:

Careful calculation with the Euler products reveals that this equals

F .�z;g;MN /

�.1 C z/�.gMN;1 C z/
;
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and thus

MG 2.‰;Q/ D Q

2

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

1

2�i

Z

.1�1= log Q/

�.1 � z/F .�z;g;MN /

�.1 C z/�.gMN;1 C z/

� eW1

�gMQ2
0

Q2
;
gNQ2

0

Q2
I z

�� Q

gQ2
0

��z

dz C O
� Q2

.log Q/C

�
:

Now the Lemma follows from moving the contour back to Re z D " along with (58)

and (61).

Next we will prove the following proposition which evaluates the main term in

Lemma 7.1. In [1] this proposition was conditional on the Lindelöf hypothesis, but

here we prove it unconditionally.

PROPOSITION 7.2

Let MS.‰;Q/ and MG .‰;Q/ be as in (27) and (32) with parameters as in (49).

Once 	0 is large enough, one has

MS.‰;Q/ C MG .‰;Q/

D �53524

16Š
Q2.log Q/16

e‰.2/

2

K.1
2
; 1

2
I1/

�.2/

Z 1

�1

G
�1

2
; t

�
dt

C O
�
Q2.log Q/15

�
;

with K.s1; s2I z/ implicitly defined below Equation (38) in [1].

Proof

First we apply (37) from Lemma 6.2 to (55) to obtain that

MS.‰;Q/ C MG .‰;Q/

D Q

2

1X

m;nD1
m¤n

�4.m/�4.n/p
mn

1

.2�i/3

Z

."/

Z 1
2 C"CiT

1
2 C"�iT

Z 1
2 C"CiT

1
2 C"�iT

eW3.s1; s2I z/

� �.1 � z/F .�z;g;MN /

�.1 C z/�.gMN;1 C z/

� Q

gQ2
0

��z� Q2

mQ2
0

�s1
� Q2

nQ2
0

�s2

ds2 ds1 dz

C O
�Q3C3"

T 1�"

1X

m;nD1
m¤n

�4.m/�4.n/

m1C"n1C"

1

j log.m
n

/j

�
C O.Q2/; (62)
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where the integration over z gives a factor � 1 in the error term due to the rapid decay

in z in (37). We choose the height T WD Q5=4. Let us first consider the error term. We

divide the sum over m and n into two ranges. The first case is when jm � nj > 1
4
n. In

this case, j log.m
n

/j � 1, and thus the contribution to the error term in (62) is

� Q
7
4 C5"

1X

m;nD1

�4.m/�4.n/

.mn/1C"
� Q

7
4 C5":

For the other range jm � nj � 1
4
n, we have

ˇ̌
ˇlog

�m

n

�ˇ̌
ˇ � jm � nj

n
:

Thus the contribution from this range to the error term in (62) is

� Q
7
4 C5"

1X

nD1

�4.n/

n1C"

X

m¤n
3
4 n�m� 5

4 n

�4.m/

m1C"

n

jm � nj

� Q
7
4 C5"

1X

nD1

�4.n/

n1C"

nX

j D1

1

j
� Q

7
4 C5":

Before we move the contour integral, we reinsert the terms m D n to the main

term of (62). The contribution of this addition is

Q

2

1X

nD1

�2
4 .n/

n

1

.2�i/3

Z

."/

Z 1
2 C"CiT

1
2 C"�iT

Z 1
2 C"CiT

1
2 C"�iT

eW3.s1; s2I z/

� �.1 � z/F .�z;n; 1/

�.1 C z/�.n; 1 C z/

� Q

nQ2
0

��z� Q2

nQ2
0

�s1Cs2

ds2 ds1 dz:

Let us now show that this contribution is acceptable. We can move the contour integral

over s1 and s2 to Re.si / D ". We encounter no poles, and the sum over n is absolutely

convergent. The resulting vertical integral is bounded by Q1C3", and by (38), the

contribution from horizontal integrals is bounded by

Q3C4"

T 1�"
� Q

7
4 C6":

Hence, apart from an acceptable error, (62) equals

Q

2

1

.2�i/3

Z

."/

Z 1=2C"CiT

1=2C"�iT

Z 1=2C"CiT

1=2C"�iT

eW3.s1; s2I z/
�.1 � z/

�.1 C z/

Q2s1C2s2�z

Q
2.s1Cs2�z/
0

� J.s1; s2I z/ds2 ds1 dz; (63)
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where

J.s1; s2I z/ D
1X

m;nD1

�4.m/�4.n/

m1=2Cs1n1=2Cs2

gzF .�z;g;MN /

�.gMN;1 C z/
:

As in [1, Proof of Proposition 9.1], writing out the Euler product, one can see that

J.s1; s2I z/

D �.2 � z/
�4.1

2
C s1/�4.1

2
C s2/

�4.3
2

C s1 � z/�4.3
2

C s2 � z/
�16.1 C s1 C s2 � z/K.s1; s2I z/;

where K.s1; s2I z/ D
Q

p Kp.s1; s2I z/ is absolutely convergent when

Re.s1/ > 0; Re.s2/ > 0; Re.s1 C s2/ > Re.z/ � 1=2

and

Re.z/ 2 .0; 3=2/; and Re z < 1 C Re si :

Now we move the lines of integration in (63) to Re.s1/ D Re.s2/ D 2", encoun-

tering poles of order four at s1 D 1=2 and s2 D 1=2. By the Weyl bound (see, e.g.,

[12, Theorem 5.12]) and the Phragmen–Lindelöf principle, one has, for � � 0,

ˇ̌
�.1=2 C � C i t/

ˇ̌
� T max¹0;1=6��=3ºC"

so that, using also (38), the horizontal integrals contribute

Q1C" max
2"���1=2C"

T 8 max¹0;1=6��=3ºC8"Q4�

T 1�"

� Q1C" Q4.1=2C"/T 9"

T
C Q1C"T 9" max

2"���1=2
T 1=3

� Q

T 2=3

�4�

D O.Q7=4C20"/:

Furthermore, using again (38), the integrals over Re si D 2" contribute to (63)

� max
1�T 0�T

Q1C" 1

T 01�"

Z T 0

�T 0

ˇ̌
�.1=2 C 2= log Q C i t/

ˇ̌8
dt:

By Lemma 3.5, this is

� Q1C" max
1�T 0�T

1

T 01�"
T 03=2C" � Q1C4"T 1=2 � Q7=4:



3492 CHANDEE, LI, MATOMÄKI, and RADZIWIŁŁ

Finally by the definition of eW3.s1; s2I z/ in (34), the main contribution of the residues

is

Q

2

1

2�i

Z

.�/

e‰.3 � z/

�2�2z

�Z 1

�1

H
�z

2
� i t; z

�
G

�1

2
C 1 � z

2
; t

�
dt

�

� �.1 � z/

�.1 C z/
�.2 � z/K

�1

2
;
1

2
I z

�

�
�

Res
s1Ds2D1=2

�4.1
2

C s1/�4.1
2

C s2/�16.1 C s1 C s2 � z/

.s1 C s2 � z/�4.3
2

C s1 � z/�4.3
2

C s2 � z/

Q2s1C2s2�z

Q
2.s1Cs2�z/
0

�
dz:

Then we follow the residue calculation of Proposition 9.1 in [1] and obtain the main

term.

Now we have handled unconditionally all the terms involved, and Theorem 1.1

follows as in [1, Section 10].
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