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Abstract

We prove an asymptotic formula for the eighth moment of Dirichlet L-functions
averaged over primitive characters y modulo q, over all moduli g < Q, and with a
short average on the critical line. Previously the same result was shown conditionally
on the generalized Riemann hypothesis by the first two authors.

1. Introduction
Moments of L-functions have attracted a great deal of attention. Not only do they
have numerous applications, but they have also their own intrinsic interest. The first
moments studied were naturally those of the Riemann zeta function, which are aver-
ages of the form

L(T) = /()Tjg(% + it)’zk dr.

An asymptotic formula for I (T") was proven for k = 1 by Hardy and Littlewood and
for k = 2 by Ingham (see, e.g., [12, Chapter VII]). Despite considerable effort, such
an asymptotic formula is still not known for any other value of k.

The situation for other L-functions is very similar; asymptotics are only available
for small values of k, and often only when averaged over a suitable family. In case of
Dirichlet L-functions, Conrey, Iwaniec, and Soundararajan [4] have proven an asymp-
totic formula for the sixth moment with an averaging over characters y (mod g), over
all moduli ¢ < Q, and with a short average on the critical line. They stated in the paper
that “A challenging problem is to obtain a similar asymptotic formula...for the eighth
moment.” Later, the first two authors [1] proved an asymptotic formula for the eighth
moment, conditionally on the generalized Riemann hypothesis (GRH). The aim of
this paper is to provide an unconditional proof of this eighth moment result.
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Before stating our result, let us introduce some notation. Let y (mod g) be a
primitive even' Dirichlet character, and let (for Res > 1)

L(s,x) = 2; X’Sj) =T1(1- x(p))—l
n= p

ps

be the Dirichlet L-function associated to it. Then the completed L-function

1 g\s/2_ /1 s 1
Az +ea)=(3) T(3+3)L(5+51)
2+SX) - 4+2) 7 T8

satisfies the functional equation

1 1
A(— s, )zs A(——s,_), 1
S TS A5 X (D
where |e,]| = 1.

Let Z; (mod ¢) denote a sum over primitive even Dirichlet characters with modu-
lus ¢, and let ¢b(q) denote the number of primitive even Dirichlet characters with
modulus ¢g. From [3], one may derive the conjecture that as ¢ — oo with g # 2
(mod 4),

1 b 1 8 (1—21y7 (log q)'6
e 3 ’L(E,X)) ~24024a4]_[(1+%+%+%) e

x (mod g) plq p-

where

1\9 9 9 1

o TT(-2) (1424 %0 L),

1:[ p p P

Toward this conjecture we prove the following asymptotic formula when there is

an additional g-average as well as a f-average which is very short thanks to the rapid

decay of the I"-function. Exactly the same theorem was shown in [1] conditionally on
the GRH.

THEOREM 1.1
Let & > 0, and let ¥ be a smooth function compactly supported in [1,2]. Then

Z\p Z / )A +nx)‘ di

1\7
q I-3)

:24024a4§\11—)]_[ B

Z (Q g LT 5T 2259

Ik

!"The restriction to even characters is only for convenience so that the completed L-function has the same shape
for all characters involved—odd characters could be treated in exactly the same way.
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(logg)'® / ) it
F( ) ‘ dt
P (q)—— o] 5
+ 0:(Q*(log 0)°**). )

Remark 1.2
Note that the main term in the theorem is of the order Q?(log Q)'6, and one obtains
as a corollary that

>y f St X)(gdt

g=<Q x (mod q)
1)7

~24024a421_[( i 2 +%)¢ (q )(lofg!)16 /_Z‘F(%-l—%)‘sdl.

9=0Q plq p:

In the proof of Theorem 1.1, we start by truncating the Dirichlet series arising from
the approximate functional equation. This truncation introduces an error term of size
around Q2(log Q)'>*€. It thus remains an open problem to obtain the lower-order
terms in the asymptotic; in particular, we anticipate that obtaining a power-saving
error term would be a challenging task.

Remark 1.3
In [2], the present authors will remove the f-average from the sixth moment in the
work of Conrey, Iwaniec, and Soundararajan [4]. In particular, we will show that

Y Y )~ s YT g 20

1
g=Q yx (mod q) q<0 plq (1+ + )

where

p

a3:];[(1—pi)(1+ +p 5)-

However, it remains challenging to remove the z-average for the eighth moment.

2. A sketch of the proof
In this section we provide a sketch of the proof where we ignore various technicalities
such as complicated smooth weights, the inclusion-exclusion within the orthogonal-
ity over primitive characters, and a number of coprimality conditions and common
divisors.

Roughly speaking, after applying the approximate functional equation, we need
to understand sums of the form
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oy ¥($) Yy momn ®
q m<Q? n<Q?
m=n (mod q)

where 74(7) =}, nonon, |- Here we were able to make the restriction m, n < 02
instead of just mn < Q* thanks to the 7-average in the theorem.

The diagonal contribution m = n in (3) is fairly easy to understand, and in this
sketch we will concentrate on the non-diagonal contribution. Let 9 > 0 be small but
fixed. Following [1], the sums over m and n in (3) can be truncated to

0
M= oz 0))

using the multiplicative large sieve. Still following [1] (and [4]), we apply in the

m,n <

most critical range the complementary divisor trick. That is, we write m —n = hq
in (3) and replace the congruence condition modulo g with a congruence condition
modulo /. Note that h < N/g is smaller than Q, so we have a reduction in the
arithmetic conductor.

After switching to the complementary divisor, we express the congruence condi-
tion modulo % using characters modulo / so that roughly we want to study

0 % sy ¥ E o (e )

h<2N/Q x (mod h) m,n

4)

where W, is smooth and supported on [0, 1].
The principal characters give a main term contribution. In this sketch we concen-
trate on the nonprincipal characters. The smooth factor

o f|lm—n] m n

h(m,n):= W(W)qjl (ﬁ)‘l’l (ﬁ)

restricts m and n to being within distance 24 Q from each other. Morally, the short

interval type condition |m — n| < 2hQ introduces an archimedean conductor of size

T= % This simplification is not obvious at first sight and requires an optimal treat-

ment of the two-variable Mellin transform of /(m,n) as in Lemma 6.3. This is one of
the main components which allows us to remove the need for GRH.

The hybrid conductor is then AT =< %, and this is still smaller than the origi-

nal conductor Q. It is important that the sums of length N < are long

QZ
. . . exp((log Q)%0)
compared to the hybrid conductor. In particular, applying Fourier analysis to such

a sum with t4(n) as the coefficient produces dual sums of length % = g—i <
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o> d this is shorter than the length of the original sum N o
W , and this 1s shorter than the engt of the original sum = W .

Actually, for technical convenience we use the approximate functional equation rather
2

0
exp(2(log 0)°0)°
which still suffices. This is the main motivation for the more technical arguments that

follow.

than the functional equation, and this gives us sums of length (g)2 =

To be more precise, we will reduce our problem to that of bounding a mean
square of a corresponding Dirichlet series, in the spirit of arithmetic problems on
almost all short intervals (see, e.g., [5, Lemma 9.3]). Indeed, one can show that the
Mellin transform

Bovso = [ [ ey 2 )
o Jo y X
converges for Res; > 0 and satisfies, for Re s; € (0, 100),

H(s1,52) <

(i)k—l 1 N Res1+Res: 6)
Res; -Res, \hQ max{|s1], |s2|}¥]s1 + 52!

for any integers k > 1 and / > 0. In showing this, one can assume |s1| > |s2|, and in
this case (6) follows by applying in (5) first partial integration k times with respect to
x and then substituting y = xz and finally applying partial integration / times with
respect to x. A similar argument with our more complicated weight function can be
found from the proof of Lemma 6.3.

Now by the Mellin inversion, the nonprincipal characters contribute to (4)

4
Q Z ¢( ) /l/2+a) /1/2+e)L(1/2+S17X)

h<2N/Q mod #)
X X0
“L(1/2 + s2.7)* (51, 52) dsy ds3.

Moving the contours close to Res; = 0, plugging in the bound (6) for ;(sl ,82), and
using the inequality xy < |x|? + |y|?, this can be seen to be essentially

<0 2 ¢(>

h )
Q/ \L(1/2+it, p)|* d1.
h<2N/Q dh)

N/(hQ)

Hence our task more or less reduces to showing that, forany H < N/Q and C > 1,
we have

2
o Z > / IL(1/2+it, )| dt<<( % for T = N/(HQ). (7)

C
h~H x (mod h) Q)

Here and later the notation & ~ H in summations means that H < h < 2H . Since
HT = N/Q, the approximate functional equation morally allows us to approximate
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|L(1/2+it, y)|* by | Do n<(N/Q)> x(n)T4(n)n~'/27| (see Proposition 3.2 below for
a rigorous argument), and hence by the large sieve (Lemma 3.1 below) the left-hand
side of (7) can be shown to be

Q2

N
< W(HzT + (g)z)ﬂog N)OW « (QH + N)(log N)°D.

We recall that H < N/Q and N =
forany C > 1.

The current paper has a lot in common with [1] and we freely borrow results from
there, so the reader may want to have [1] at hand. However, if the reader is ready to
take those results for granted or to work them out, the current paper can be read alone.

Throughout the paper, ¢ denotes a small positive real number. Furthermore g
and A will be fixed positive constants that are chosen later.

2 .
iegyay- S0 the above is 0(02/(log 0)°)

3. Large sieve and upper bounds for moments
Let us first recall the hybrid large sieve (see, e.g., [9, Theorem 5.1]).

LEMMA 3.1
Let T, Q > 1. For any complex coefficients an with ¥ o> | |an| < 0o, one has

> ¥ L / Z\ganx(m”

g=<Q x (mod q)

2 o0
<D QT +m)lanl.
n=1
In particular, for any N > 1 and any complex coefficients a,, one has

> Y 50 f_T) S angmn|s < (02T +N) Y lanl?.

g<Q x (mod q) n<N n<N

The following proposition gives an upper bound for the eight moment of Dirichlet
L-functions averaged over y, ¢, and ¢. It will be used in bounding the off-diagonal
terms in Section 6.3.

PROPOSITION 3.2
For Q,T > 3, one has

>y /OT‘L(% e+ it,x)‘gdt < Q2T (log(QT))"*.

g=<Q x (mod q)

whenever 0 < ¢ < 1/100.
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Remark 3.3
In [1] it was shown that conditionally on GRH, one has

T . 8 16+¢
Z /(; ‘L(§+C+lt,)(>‘ dt < qT (log(gT)) . (8)
x (mod q)

The unconditional Proposition 3.2 suffices for us since we will afford to lose a factor
T due to the decay in |s1 4 52| coming from Lemma 6.3 below. On the other hand the
fact that we need an additional average over ¢ in Proposition 3.2 compared to (8) will
cause us some minor technical difficulties (see in particular Remark 6.5).

Proof of Proposition 3.2
The contribution from g = 1 is acceptable by known moment bound for the Riemann
zeta function (see Lemma 3.5 below). Moreover, the part with bounded 7 can be eas-
ily dealt with using the approximate functional equation and the large sieve (see [7,
Theorem 7.34], the proof works just as well with 16 in place of 17).

Hence, by dyadic splitting, it suffices to prove, for Q >3/2 and T > 3,

>y /TZT‘L(%—I-c—i—it,X)‘gdt«Q2T2(log(QT))16. )

q~@Q x (mod q)

As usual, we first reduce to primitive characters; we claim that (9) follows once we
have shown that

2T
1 8
3 Z*f ‘L(E—l—c—kit,)()‘ dt < 02T2(10g(QT))'®.  (10)
4~0x (mod g)° T
Indeed, the left-hand side of (9) is

X ¥ 2 [TpGrernn) 0+ )

r<Qg,~2 x1 (mod g)y plr
Applying (10), this is at most
16 1 I \8 16
0°T?*(log(QT)) Z =) 1_[(1 + m) < 0*T?*(log(QT))
r<@  plr

as claimed. Hence it suffices to prove (10). For y a primitive character mod ¢, by the
approximate functional equation we have morally that

1\ 74(n) x(n) 74(n) % (n)
’L(§+zt,x) ‘<<‘ 3 i }+} > = |
n<K(TQ)? n<&(TQ)?
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If this was true, the claim (10) (for ¢ = 0) would follow from the hybrid large sieve
(Lemma 3.1). However, there is a technical issue that the Dirichlet polynomials in the
approximation depend mildly on ¢ and g. To proceed rigorously, we use a method of
Ramachandra [8].

Let us concentrate on the sum in (10) over even characters, the odd characters
being handled similarly. By the functional equation (1), we have

L(5+50) =F(5+5)(3-57)
— +3, =F(<z+s)L(=-s,
T A 2 2 A

with

1 asT (L = 5)4

P2 as)meg(Z) RG220

2 q/ T(z+3)
where |e,| = 1. For further convenience, let us record here Stirling’s formula which
gives, for | Arg(z)| < 7 — ¢,

T ZNz 7|Rez—1/2

[(z) =, —(—) (1+0(1/2) <« ||Texp(—Imz-Arg(z)). (12)
z \e e

In particular, for Res € [—1,1/3] and | Ims| > 10, we have

F(3—3) _ exp(Re(—7 — §)log|g — 5| —Im(F) Arg(3 — 3))

F(% +3) " exp(Re —% + %)log& + 31 —Im(%)Arg(% +3)

(13)
and
1 s
log‘z + 5‘ =log(|s| + 1) + O(1) and

(g 3) = ae(23) + 0 (577

Noticing that the left-hand side of (13) stays bounded when Res € [—1,1/3] and
| Im s| < 10, we obtain that, for any s with Res € [—1,1/3],

1
F(Z_ % —Res

rarsy € exp(—Re(s) log(|s| + 1)) =< (Is| + 1) (14)

The starting point in the proof of (10) is the following lemma.
LEMMA 3.4

Let 0 < ¢ <1/100, let y be an even primitive Dirichlet character of modulus q € N,
and let t € R. Then for all X > 0,
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L(l +c +it,)()4

t4(n) x(n)e™/ 1 . T4(n) Y (n)
- Z nl/2+c+it + F(E Tet ”) Z nl/2—c—it
n<X
1 1 X
- F(—+c+it+w)(z M)r(w)xww
i (—3/4) 2 —= nl/2—w—c—it
1 1 ) t4(n)x(n) w
“ i e F(E +c+it+ w) (r;( W)F(W)X dw
1
~lgmi Res  T@)X¢*(5+c+it+w), (15)
w=1/2—c—it 2

where 141 is 1 if ¢ = 1, and 0 otherwise.

Proof
This follows similarly to [8, Theorem 2]: Notice first that by Mellin inversion (since
I"(s) is the Mellin transform of the function e™)

° -n/X
4 (n) x(n)e ™/ 1 1 . 4
ZWZE (2)L(§ +C+lf+w,)() F(w)X" dw.

n=1

We shift the integral to the line Rew = 4, collecting a residue from the pole at
w = 0 and in case ¢ = 1 also from a pole at w = 1/2 — ¢ — it. Applying also the

functional equation to the integral on the line Rew = —%, we see that
0 -n/X
wyme™X 1
ZW _L<§ +c+zz,x)
n=1

+1;,=1 Res I‘(w)X“’Z“( +c+1t+w>
w=1/2—c—it

1

+— F(l+c+it+w x)L(l—c—it—w 7)4F(w)X“’dw-
27i J3/a) 2

Writing on the last line

1 . 4 ()7 (n) 74(n) % (n)
L(E—c—lt—wﬂ)() => 2w T > 1/ 2—c—it—w’
n<X n>X

the claim of the lemma reduces to the claim that
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L L oti T ()
F(— +c+it+w, ) BRI o xXw
2mi J(—3/4) et WX ng):{ nl/2—c—it—w (w) w
L L eti T (M7 () y
" 27 (1/4) F(E et w,)() Z mr(w)){ dw
n<X
1 : T4 (n)x(n)
— F<§ +c+ zt,)() Z Yy

n<X

But this is immediate from shifting the integration line, picking up a residue from a
pole at w = 0. O

Let us now return to (10) for even characters. Recall Q > 3/2 and T > 3. We
take X = (QT)? and apply Lemma 3.4, writing (15) as L( + ¢ +it, p)* = (J1 +
Jo — J3 — J4)(c,t, y) (the fifth term in (15) always vanishes as ¢ > 2, so we do not
need to include it). Then it suffices to show that

b 2T 5 ’ 16
> 3 [ el ar <@y (osn)

g~Q x (mod q) r

for k = 1,2, 3, 4. First, by the large sieve (Lemma 3.1), we have

by p2T )
Z Z / |J1(c,t,)()} dt

q~Q x (mod q)

) 2,—2n/(Q%T?)
2 T4(n)"e
<O T +m =

n=1
2
<01* Y Taln” + ) a(n)2e=2n/(Q7T%)
n<Q2T2 " n>Q2T2
< Q2T?(log(QT))"°.

Furthermore, noting that, by (14), |F(% +c+it)| < (q(1+ |t]))~4, the large sieve
(Lemma 3.1) implies that

2T 2
>y f (et 7 de < QT 3 ;“fi)c
4~Q x (mod q)” T n<Q2T2

< 02T?(log(0T))"°.

To deal with the remaining two cases we notice that, by (14) and (12), we have,
for Rew € {—3/4,1/4},
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—4Rew—4c
and

1
‘F(E +it+c+ w)‘ L g WA (T4 |1 + Imw])
T (w)| < e~ Hmwl,

Splitting into cases according to whether | Im w| < %|t| or not, we see that

‘F(%“*”JFLU)F(H))(QT)Z“’ & (QT)2Rew4c =3 ltmul

Hence by the Cauchy—Schwarz inequality, noting the rapid decay in Im w, and using
the large sieve (Lemma 3.1), we have

> Z / | J3(c,t, )| di

g~Q x (mod q)

<orrey Y[ X uwrn,

q~Q x (mod q) Q2T2

2T -
<<(QT)3_scm51xZ Zb/ | Z %2

4~Q x (mod 0)" T n>Q2T?2

2
M2 ) dr

dt

2
€I Y (T 4w < (0T (l0g(0T)) "

n>Q2T2

Similarly

> Z / | Ja(e,t, )| dt

q~Q x (mod q)

<<(QT)lscmaXZ Z / ‘Z %2

q~Q x (mod q) n<Q2T2

dt

T4 (”)

QTR+ QT Y s < (QT)(log(QT))"

nso2r2"!

In case of the Riemann zeta function, a better upper bound is available, and it will
be helpful in evaluating the main terms.

LEMMA 3.5
Let T > 3. Then



3464 CHANDEE, LI, MATOMAKI, and RADZIWIEL

T
/T{g(l/z +e+in)| di < T¥?(logT)?'/? (16)
forany ¢ > 0.

Proof
Let us first consider the case ¢ = 0. By the Cauchy—Schwarz inequality,

f_j|€(1/2 +in|Pdr <« (/_:IZ(I/z + it)|4dz)1/2(/_j|g‘(1/2 + it)}lzdt)l/z.

Applying upper bounds for the fourth and twelfth power moments of the Riemann
zeta function (see, e.g., [12, formula (7.6.3)] for the fourth moment and see [6] for the
twelfth moment), this is

< (T(ogT)*)'? - (T2(1og T)'7) '/,

and the claim follows in case ¢ = 0. In case ¢ > 1 the left-hand side of (106) is trivially
bounded by O(T). In the remaining case ¢ € (0, 1) the claim follows from a convexity
argument (see [12, Section 7.8]). O

Let us here also record orthogonality relations for characters. There and later
when + appears only on one side of an equation, both options are summed.

LEMMA 3.6
If m, n are integers with (mn,q) = 1, then

YU =Y wd)d(r).

x (mod q) g=dr
r|(m—n)
and
b B 1
2o I =5 3 ().
x (mod g) g=dr
r|(m=xn)
Proof

The first claim follows from the orthogonality of all characters and M&bius inver-

sion, while the second claim follows from the first by detecting even characters with
55—
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4. The approximate functional equation and truncation
Writing
s it s it
Gls.0)=T4(5 +5)r*(5 - ).
(s.0) )
we would like to find an approximation to
* 1 8 & 1 1 1
/ )A(— +it,x)‘ dt =/ G(—,I)L4(— + it,)()L“(— —it,y) dt.
oo 2 oo 2 2 2

Note that, for Re(s) > 1, we have

Letinptis—inn= Y %0z (L)

n\it
" .

m,n=1

For stating an approximate functional equation for the eighth moment, we need
the weight function V': Ri — C defined by

00 i 4
AT AL
VE nn) = = 4 1) dt 17
Com= [ (3)w(H) (7)
with W: Ry x C — C defined by

1 d
W(x,t):= —/ G(1/2—|—s,t)x_s—s. (18)

2mi Jq s

For the short proof of the following proposition, see [1, Lemma 2.1] (but note that in
the definition of P(y,t), we are missing a factor (n/m)"").

LEMMA 4.1
Let y be an even primitive character (mod q). Then

[ Inarsipffay=2 Y MO mzmyonaig. 19

m,n=1

The integration in y gives rise to V(m,n;q) on the right-hand side of (19) which
makes the essential support of m and n sums more restricted; from the following

lemma, we see that the main contribution comes from when m, n are both at most
2+e¢
q-Te.

LEMMA 4.2

The weight function W(x,t) defined in (18) is a smooth function of x € (0, 00). Fur-
thermore the function V (€, n; w) defined in (17) satisfies, for any &, n, u > 0 and any
nonnegative integers vi, vV, V3,
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dvldvzdl)3 1/2

d%—vl dnlz'2 duv_v,

max(§, 1)
n

) : 20)

V(E. nip) K, V2,13 eXp(_ ) EVigapv3 ’

Proof

The proof is essentially the same as [4, Proof of Lemma 1] but for completeness we
prove (20) here. Without loss of generality, we can assume that n > £. By definition,
for any ¢ > 0,

oo

V(E,n:u)=/

—00

(g)ti /(C) G(1/2+ s,z)(SZZ‘l)_s? dr.

Substituting it = z, we obtain

VE 1) = —% /_Z:(g)z /(C) G(1/2+s, _iz)(gzjf)_s? N

We move the z-integration to the line Re z = —c. Writingz = —c+itands = c+iu,
we obtain
V(. n: )
1 S —c+it [ 4\ —c—iu
_ (ﬁ) [ G(l/2+c+iu,t—ic)(§nn ) " ar.
2 J_oo \E oo ut c+iu

Taking derivatives, we see that

d1d»d"

mwg, n i)

1 00 o] ) ) 7]1/2 —4c¢
<<v1,l)2,1)3 W/_oo/_oo|G(]/2+c+lu,t_lc)|(7'[7)

e ul"2e +iu—1)] e +iul

dt.
lef + ful

When 1'/2 /. < 10, we take ¢ = 2, and the result follows immediately. Otherwise we
choose ¢ = 1'/2/u > 10. Then, by Stirling’s formula (12),

1/2
(G(1/2+ ¢ +iut+io)|(x1—) ¥
W

_ I u+i\4_ /1 U —1\4 —4c
—‘F(Z-f—l > )F(Z+c+l > )‘(nc)

|%+c+i"T_’|4C

< exp(—|u +1]) e

exp(—2|u —t| arctan<2|cu+—_1t/|2)). 2n

If [u —t| <2c, then (21) s
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(20)40
(emc)*e

On the other hand, if |u —¢| > 2¢, then (21) is

< exp(—|u +1]) L exp(—|u +t| —4c) K exp(—|u +t| — [u —t| — 2¢).

L l4c
< exp(—|u +t|)H

1 |ju—t u—t
<<exp(—|u—|—t|—|u—t|)exp(—c(4log(en)+§~| . |—4log| . |))

exp<—2|u —t- %)

<L exp(—|u + 1| —u—1t] —2c).
Hence in any case
dvidvadvs
dgvl dn”2 du\{%

¢ 00 oo 1
SRR W/w /mexp(_§(|u +t+ |u —l|)) dudt,

and the claim follows. O

Vi, nw

Let us make some initial reductions to the left-hand side of our claim (2). First,
by Lemma 4.1,

Z\y Z [ +ly X)(gdy=2A(qJ,Q),
x (mod q)

where

a(m)Ta(n)
AW, 0) =3 Y TV (m.nig).
q (Q))((modq)mn 1

The next step is to slightly truncate the sums over m and n in A(¥, Q). This trun-
cation will allow us to apply the complementary divisor trick to reduce the conductor
in Section 6. For the truncation, let g > 0 and define

Qo := exp((log 0)*°) (22)
and
~ b 4\ = Ta(m)Ta(n) q
AV, 0) = v ——F—x(m)x(n)V .
261:)((§<;q) (Q)m§=:1 W ( QO)

Note that we expect (and will later show) that A(W, Q) < Q?(log Q)'¢. In this
section, we recall from [1] that A(W, Q) is a sufficiently close approximation to
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A(W, Q). This type of procedure has previously appeared in the contexts of moments
also in other situations (see, e.g., the works of Soundararajan [10] and Soundararajan
and Young [11]).

PROPOSITION 4.3
With the above notation,

AW, Q) — A(¥, Q) <o 02 (log Q)7+,

Proof

This follows as [1, Proof of Proposition 3.1]. The key ingredient in the proof is the
large sieve. In [1] one has (log Q)% in place of Qg, but the same proof works by
replacing every occurrence of (log Q)% by Q¢—our choice of Qy is sufficiently small
since in the critical case of [1, Proof of Proposition 3.1] where Q?/ Q(z) <M,N <
0? the parameters M and N are each summed over < log Q¢ < (log Q)% dyadic
intervals. O

5. Splitting A(¥, Q)
Now, by Proposition 4.3 and orthogonality of characters (see Lemma 3.6), it is suffi-
cient to consider

~ > d d
Aw.0)=3 Y %W%(") > @ ( 5 ) (mon. 50)-

m,n=1 ,r
(dr,mn)=1
rim=+n

Let D = (log Q)20 for some Ay to be determined later and split
A(Y, Q) = D(V, Q) + $1(¥, Q) + O (¥, Q),

where the diagonal term D (W, Q) consists of the terms with m = n, the term
81(¥, Q) consists of the remaining terms with d > D, and @ (¥, Q) consists of the
remaining terms with d < D.

The first two terms D(¥, Q) and &, (W, Q) were handled in [1, Propositions
4.1 and 5.1], with (log Q)% in place of Q. The same arguments give the following
asymptotic formulas.

LEMMA 5.1
Let ¢ > 0, and let ¥ be the Mellin transform of U, which is defined by

U(s) = / - \IJ(u)usd—u. (23)
0 u
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Then
_ 65202 Q) A ! L1 1
D, 0) =270 16! \IJ(2)2 1;[(1 p)(1+ D@p(p p2 p3))
o0
/ G(1/2.1)dt + 0s(0*(log 0)15+%),
—00
where
oo 2/ r
_ 7, (p") _ 116
D@,,_; - and A_l:[i)’p(l p)
LEMMA 5.2
Let ¢ > 0. There exists an absolute constant C such that
2 lo )C
$1(%.0) = M3,(,0) + 0,( LLELT),
where
T4(m)4(n) q q
MEL(W.Q):i=— > = Y (=) (DY u@)V(moan ).
m,n=1 mn (g,mn)=1 (Q)(dr=q ) ( QO)
m#n d<D

In [1] the remaining term @ (W, Q) was treated by the complementary divisor
trick. In doing this, the first step is to replace the arithmetic factor ¢ (r) by a smooth
function, which can be done by writing ¢(r) = > ;_, n(a)l so that

oY, Q):% 3 Talm)za(m) 3 u(a)u(d)zxp(ﬂ)v(m,n,@).

maml VM i<D, 0 Qo
m#n a,l
(dal,mn)=1
allm=*n

It turns out that we can only use the complementary divisor trick when a is not too
large (this is ultimately due to Proposition 3.2 involving a g-average, as explained in
Remark 6.5 below). Accordingly, we write

OV, 0)=%(¥,0)+9(V.0),

where 8, (W, Q) consists of the terms with a > 4 := exp((log Q)%°/?) and §(¥, Q)
consists of the terms with a < A.
To handle 8, (W, Q), we prove the following lemma.
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LEMMA 5.3
Let ¢ > 0. One has
2 e/3
82(V. Q) = M8,(V. Q) + os(Q eXp(f,ng Q) )),

where
ME2(V, Q)

=y nln®) p@u(@)l 4

'_mél Vmn (qrr%;1 (Q)< a;q p(al) )V(m,n, Q0>'

njtaén ’ asaadn

Proof

The proof mostly follows the proof of [I, Proposition 5.1] (i.e., the proof of
Lemma 5.2). Recall that

$5(0.0) = + 3 Talm)za(n) 3 (a)u(d)zm(“dl)v(m,n,ﬂ).

2 N
m,n=1 mn a>A,d<D,l>1 Q QO
ms#n (dal,mn)=1
allm=*n

We express the condition a/|m % n using the even characters y (mod al). Hence

8,(W, 0) = Zﬂ(a)ﬂ(d)l (ddl) Z Z x(m)x(n)ta(m)4(n)
a>A,

¢( l) x (mod al) m,n=1 vimn
d=<D, x(—D=1  m#n
I>1 (mn,d)=1

adl
-V (m, n, —)
Qo
The principal character y = yo gives the claimed main term, so we can concentrate
on the contribution of the nonprincipal characters.

Reintroducing the terms with m = n leads to (here our treatment is simpler than
that in [ 1, Proof of Proposition 5.1]) an error at most

P L (I
d<D,i>1

(dal,n)=1

The support of W is contained in [1,2], so by Lemma 4.2,
1/2 1

25 T Gl g« T ool <

n>Q3

d<D,l>1
(dal,n)=1
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so the quantity in (24) is

< Z T4(n) Z Z Z l+ Q (IOEQ)IG

n<Q3 A<a=<2Q d<Dl<2Q

Hence it suffices to bound the sum

8LV, 0) = Zﬂ(a)ﬂ(d)l (adl) Z Z x(m) 7 (n)t4(m)T4(n)

a>A, ¢(al) x (mod al) m,n=1 mn
d<D, x(=1D)=1 (mn,d)=1
I=1 X#xo0

-V(m,n, aQiol).

Arguing similarly to the proof of Proposition 5.1 in [1] but with a/ in place of r, with
not reducing to primitive characters, and with an additional factor w(a)l/¢(al) K

log Q/¢(a), we get that

50,0 < 100 Y a [ [ expl-lnl ~ ) qu() Z

d<D a>A
8
> Li L ting |
ot al{ (2 log O )
x(=1)=1
XFX0
+‘L(1 + ! + it )‘ }dt dt (25)
P I
P 1 gQ 2, X 1 2-

Now, writing al =r,

5,0, 2 Y

1<2Q/(ad) r§2Q/d alr
a>A

a>A

Here

logQ logQ
Z (ll) As/3 Zal 8/3 Ae/3 l_[( 1 8/3)

plr
a>A

1 1
,(4)1%/g [1 ( Pl 8/3) < jli/g exp((log 0)°"7). (26)

p=logQ

Using this and Proposition 3.2 in (25), we get
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3 e/3 0o
5&(‘1‘7 0) <, exp(z(log Q") Z dé maX / CXP(—|11|)

3
Ae/ = R<— .
T ¥ G "
— — +ity, X)‘ 11
r~R x mod r Q
x(=1)=1
exp(3 (log Q)*/?) . 2 16
. YEE > d max, R (log ©)
d<D =7d

2 2(1 e/3
< 0~ exp(2(log Q) )’
A¢e/3

as claimed. O

Remark 5.4
The bound (26) is the reason we need to make a rather large choice like A4 =
exp((log ©)#9/2), which in turn in the treatment of § (¥, Q) will force a choice like

Qo = exp((log Q)%°).
Combining the previous two lemmas we obtain the following.

PROPOSITION 5.5
Let ¢ > 0. There exists an absolute constant C such that

0%(log )¢ 02exp(2(log Q)S“))

$1(3.0) + 82(. 0) = MS(¥. 0) + O

D1—¢ A5/3
where
o 4(m)74(n) w(a)u(d)l
M. 0):= Z;l Jmn 2 (Q>( 2 #(al) )
m,n= (g,mn)=1 adl=q
m#n a<A,d<D
V(m n; Qo) @7
Proof

Writing the sum over d in M&, (Y, Q) as

e J )l @)
> ud) = Z u(d) Yy ) Z @)
d<D

dr=q r=al
d<D d<D

we see that
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:/"{81(\1}7 Q) + :/"{82(\1}’ Q) = MS(\I}7 Q)a

so the claim follows from Lemmas 5.2 and 5.3. O

We have now understood D (¥, Q) and 81 (¥, Q) + 82(¥, Q), and we will turn
our attention to § (W, Q) in the following section.

6. Treatment of (¥, Q)

6.1. The complementary divisor
Recall that

g(V¥, Q):l Z M Z M(d)ﬂ(d)l‘lf(adl)

mn=1 vmn a<A,d<D,l>1 Q
m#n (dal,mn)=1
allm=tn
dl
-V(m,n,a—). (28)
Qo

We write g = (m,n) and m = gM,n = gN, so that (M, N) = 1. Note that the con-
dition (al,mn) = 1 can be replaced by (al,g) = 1 since al | m £ n. Necessarily
al | M £ N, and we write |M + N| = alh. We want to replace the condition modulo
al with a condition modulo ak, which will be small when [ is large. To do so, we
express the condition (/,g) = 1 by Zbl(l,g) w(b). Writing [ = bk, the inner sum in
(28) becomes

Yo Y p@Y et Y bk\ll(daQbk)

d<D a<A blg k>1

(d.gMN)=1 (a.g)=1 |M+N=abkh

k

v (gM.gn, T94PKY
g§M. g
Qo
Substituting k = IA/;:bt}fV | and rearranging, this equals
@) (b)p(d)
c X Tr X i
a<A

, gMN) 1(a,g)= 1 M :FN (rnoda)bh
dIM £+ N d|M £+ N dM £+ N
( | I)\p( | | | |>‘
Oh Oh hQo

For nonnegative real numbers u, x, y and for each choice of sign, we define

)V (gM, oN; (29)

WE(x, y;u) =u|x + YW (ulx £ y)V(x, ysulx £ y|), 30)
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and
W(x,y;u)= 'W+(x,y;u) + W (x, y;u).

It is immediate from the definition of V(m,n; u) that, for any ¢ > 0,

4

(%)Hw<%,t) dt = V(m,n; ). 31)

[e.¢]

V(em,cn:/cq) =/

—0o0

Thus

gV, 0)= = Z Z T4(m)74(n)

+ m,n=1 ﬁ
m;én
pla)w(b)pu(d)
LoD n Ta

d.gMN)=1(a,g)= 1 M :FN (moda)bh

gMQg gNQG . 0d
.fwzl:< on’ on’ghQ(%)’

where ), indicates the sum over both choices of signs +. Note that since (M, N) =
1, necessarily (M N,abh) = 1.

We express the condition M = FN (mod a)bh using characters y (mod a)bh.
We then separate the principal character contribution, which is the main term. Specif-

ically, we write

G(¥, Q) =MF(V, Q)+ (V. Q).

where
0 o~ Ta(m)T4(n)
MEW, Q) :==
XY
@) (b)u(d)
Z ; Z Z ad¢(abh)

blg
(dgMN) 1(a,.gMN)=1(b,MN)= 1(hMN) 1

Wi(gMQo gNQo. do )

, ; 32
02’ Q2 ' ghQ} 42

and
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2y v mmnm)

ms#n
(@) (b)pu(d)
dg (;4 Z Z adgb (abh)

blg
(d,geMN)=1(a,gMN)=1 (b ,MN)=1(h, MN) 1

_ MQ32 gNQ3 dQ
M)F(FEN)yWwE (8220 2% . (33
x %a)bhﬂ ZEN) WE( o gth) (33)
XF X0

6.2. Mellin transforms of W*
To evaluate ME (¥, Q) and §6(¥, Q), we will write W*(x, y;u) in terms of its
Mellin transforms. We will consider three different types of Mellin transforms. They
come from taking Mellin transforms in the variable ¥ when we need to sum over the
modulus /, the variables x and y when we need to sum over M and N, and in all
three variables when we need to sum over M, N, and /. (In the description above, we
have neglected to mention the conceptually less important sums over d, a, b, and g.)
We collect the properties of the various Mellin transforms in the following three
lemmas. The first lemma is from [1, Section 6.2] and the proof is the same as in [4,
Section 7], but using the bounds of Lemma 4.2 in place of [4, Lemma 1].

LEMMA 6.1
Given positive real numbers x and y, define

=4 ot cdu
Wi (x,y;z) = | W=(x, y;u)u R

Then the functions 'Wli (x, y;z) are analytic for all z € C. For any ¢ € R, we have the
Mellin inversion formula

1 —
WEGe i = 5 [ Wiz
Tl (c)

For any nonnegative integer v, any real numbers x,y > 0, and any z € C, one has

v
| Wi (x.y:2)| <o Jx £ 378 [ ] |z + /17" exp(—c1 max(x, y)'/*)
j=1

for some absolute constant c.
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The next lemma is similar to [1, Lemma 6.3], but we include a bound for the
error resulting from truncating the integrals over s; and s,. In both [1] and [4], the
truncation was not explained. We include it here for completeness.

LEMMA 6.2
Define

~ 00 00 OO du dx d
W;:(SI’SZ;Z):/ / / W:t(x,y;u)uzxslys2_u_x_y
o Jo Jo u Xy

and
Wa(s1,52:2) = Wi (s1.52:2) + W3 (s1.2:2).

Let = 85272 qnd £ = $122%2 For Re(s1),Re(s2) > 0, and |Re(sy —s2)| <
Re(z) < 1, we have

V(1 + 4o + 2)

Wals1.2:2) = —— =2

[oo J(E - it,z)G(% n a),t) dt, (34

where U is defined in (23), and

P _I'wlw—u) Twld-v) Tw-u)ld-v)
@.v) = =50, T(l+u—v) T(—u)
i TEreresn
INE=SINENEE

(35)

Let x #y and T > QF. For any c1,c¢3 > 0 with |c1 — c2| < ¢ < 1, one has the
truncated Mellin inversion formulas

1 c1+iT pea+iT
W, yiu)=——= / / / Ws(s1,52;2)u “x Ly ™2 ds, ds dz
(27”) (c) Jer—iT Jer—iT

u=Cx €1y
o(L X Y ) 36
+ (Tl—v|1og(§)|) (36)

Moreover, let "Wl(x,y;z) = 'Wf’(x,y;z) + "Wl_(x,y;z). Then for Rez = c,
~ 1 c1+iT pex+iT
Wix,y:z) = —2/ / Ws(s1,52:2)x 1y 2 ds, dsy
(27[1) c1—iT cr—iT

X1y
* O(Tl—vuog(gn(l ) oD
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for any A > 0. Finally, for Re(s1),Re(s2) > 0, and |Re(s; — s2)| < Re(z) < 1, the
Mellin transform W5(s1, s2; z) satisfies the bound

Re(z)—1

| Wa(s1,52:2)] < (14 120) 4 (1 + o)~ (1 + I€)) (38)

forany A > 0.

Proof
All claims but (36) and (37) are from [4, Lemma 6]. By symmetry we can assume that
x < y. By (34), Mellin inversion, and a change of variables,

1 o ~ X\ ~W
W(x,y;u):—.3/ / / u Wl +4s +2) J((w,z)(—) dw
2ri)> Jy) Jeey )00 ®3) y

1 y—s—z-i-itx—s—tt ds
G(E +S,t)TdtdZ? (39)
In the above, note that the integral in w does not converge absolutely, and we interpret
this as a symmetrical limit (see (41) for the precise expression). Taking the Mellin
transform of (39) as a function of u and using the definition of ‘W in Lemma 6.1, we
obtain

W (x,y;2)= ! f /Oo lAI—’J(1—|—4s—|—Z)/ H(w z)(x)_wdw
R 2ri)? Jpy) J—co s Y

—s—z+it .—s—it
G(%ﬂ,z)%dr%. (40)

We now give a proof of the truncated Mellin inversion formula (36), with the
proof of (37) following by the same lines. Here, we note that the rapid decay in z in the
error term in (37) follows from the presence of the factor lAIJJ(I + 4s + Z)G(% +s,1).

Note that the integrals over ¢, z, and s decay rapidly along vertical lines due to
the factors W and G(% + s,1). The integrals over ¢, z, and s can thus be truncated to
short integrals of length 7'/2 > Q¢/2, up to an error of

M_Cx_b3_bl y—b1—6+b3

7100

On the other hand, the integral in w requires more care as it is not absolutely
convergent and should be interpreted as a symmetrical limit. To be more precise,

1 b3+iT

X\~ X
— H(w,z) — dw = lim F(w,z)| — dw. 41
271 J(bs) ( )(y) T—o00 Jps—iT ( )(y)

Now, consider z fixed with |Imz| < Q%2 and x < y. By Stirling’s formula for
Gamma functions in # (w, z), for Re z = ¢, we have that
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‘([b_cx?ﬂT+/_b3_i_T)e7€(w,z)(§)_ dw‘ < 7z /_l:(g)_a @

3+iT oco—iT

—b3 ybs
_— 42
€ T log(®)] @
In the above, whenever A = v it with |t| > 100 is not within the region allowed by
Stirling’s formula, we write |['(1)| = |F(1—A;Tsin(nx)| = e”‘f‘|I}(1—A)\ and apply Stir-
ling’s formula to I'(1 — A) instead. This and (41) give that

1 —-w
— Jf(w,z)(i) dw
2mi (b3) y
b3+iT —oc0+iT b3—iT X\ —w
— lim (/ +/ +/ )Jé’(w,z)(—) dw.  (43)
T—oo\Jps—iT b3+iT —00—iT y

Moreover, by (35),

b3 +iT —oco+iT b3—iT
O B B

(/bb3+iT /b—oo+zT+/b3 TN T (w)T(z —w) " Fw)rd —z)

3—iT 3+iT co— lT F(Z) F(l +w —Z)
ey
T
y

upon summing the residues of the integrand within the region bounded by our contour
of integration. Here, we have noted that the integrand above goes to zero as Rew —
—oo since x < y and by Stirling’s formula. Note that this is independent of T for
T > Q€ and so (43) gives that

b3+iT —oco+iT b3—iT _
(/1;3—17 +/b3+iT +/— —i )%(w,z)(%) de

oo—iT
1

X —w
— J(’(w,z)(—) dw. (44)
27Tl (b3) y

Inserting the above and (42) into (39), we obtain that, for x < y and 0 < b3 <
c<l,

—c,,—b1 +b3—cx—b1 —b3

Y
T1=[log(¥)]

W(x,y;u) :J(x,y,u;T)—l—O< ), (45)
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where
1 b3+iT/2 poo -
J(x,y,u;T) = —3/ / / / u PW(l +4s +z2)H(w,z)
Q2ri)? o) o) Jbs—iT/2 S0
1 y—s+it+w—zx—s—it—w ds
-G(E—i—s,t) s dtdwdzT.

Now we change the variable s; =5 + if + w and s, =5 —if — w + z. Recall
that 7 > Q°. Let w and £ be defined as in the statement of the lemma. We then have
for |[c; — 2] < ¢,

1 c1+iT pea+iT
W(x,y;u) =—,3/ / / Ws(s1,82:2)u” 2y *2x "V ds, dsy dz
Qi) JeyJey—it Jes—iT

u—cy—czx—cl )

0 —1000
+0(07" + Tl

as desired. O

The following lemma is of crucial importance when we remove the need for GRH
(in [1], [4] the decay in |s; + s2| was not noticed or utilized).
LEMMA 6.3
Given a positive real number u, we define
~ Rl e dx d
Wzi(sl,sz;u)zj / Wi(x,y;u)xs‘y”——y.
o Jo Xy

Then the functions 'W;E (s1, $2;u) are analytic in the region Resi,Re sy > 0. We have
the Mellin inversion formula

W (x, yiu) =

W (s LS u)x Sy ™2 ds, dsy,
(2ﬂf)2/(c1> (c2) 2 (o1 530)% 7y 2

when ¢y and ¢, are positive. For any integers k > 1, [ > 0 and any s1,s2 € C with
0 < Resy, Resy <100, one has

(14 u)k!

. ex _c/u—1/4 46
Res; -Ress max{|s1|v|52|}k|S1+S2|l p( ) (46)

| W3 (51,525 )| iy
for some constant ¢’ > 0.

Proof
Apart from (46) the claims go back to [4] (and are easy to prove). In the proof of (46),
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we can assume by symmetry that |sq| > |s2|. The proof is based on partial integration,
and for this we first study the derivatives of W*(x, y;u).

To simplify the notation, we write in this proof Vi, V,,... for unspecified
functions V;: Ri — C that satisfy (20) and W=, Wzi, ... for unspecified func-
tions Wji: Ri — C that are of the form Wji(x,y;u) =ulx £ y|¥(ulx +
yDV;i(x,y;u|x £ y|) for some such V;.

By Lemma 4.2 and the chain rule,

d 1
—V(x.yiulx £y]) = ;Vl(x,y;ulx + y]) +u Va(x, ysulx £ yl)

dx .u|x:|:y|

so that, in the region u|x £ y| € [1,2], we have, for any j > 0,

d’ 1 .
d—]V(x yiulx £ y|) = (;+u’)V3(x,y;u|xﬂ:y|)
and

d/ . 1 .
“ . _(__ J .
T w (x,y,ulx + yl) = (xf +u )Wl(x,y,u|x :|:y|).
Note that we avoid the non-differentiable point of |x & y| due to the support of .
Hence by partial integration k times, we see that
dx d
| Wi (51,525 u)| << s ‘/ f (1 + ux) Wit (e, yiu)xt ys2 — yy

Now we substitute x = w and y = wz so that

dwdz

w oz |
(47)

’W (S],Sz,M)‘ < |k‘/ / (1+uu))le (w, wz; u)wS1+S2 s 4

Next we perform partial integration with respect to w. For this note that, by
Lemma 4.2 and the chain rule,

d
aV(w,wz,uwH +z|)

1 1
= —Va(w,wz,uw|l £z|) + z- —Vs(w, wz, uw|l £ z|)
w wz

+ull £z Ve(w, wz, uw|l £ z|)

1
uwl|l + z|

= lV7(w,wz,uw|1 +z|).
w
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Note also that

uw
1+uw’

d 1
— (1 +uw) == +uw) -k
dw w

Using similar bounds for higher-order derivatives and considering other terms as well,
we see that

dl

1
W((l +uw) WiEw, wziu)) = E(l + uw)* WE (w, wz:u).

Hence, by applying partial integration / times to the right-hand side of (47), we obtain

\'V’Vzi(sl,sz;uﬂ
1 R e dz dw
< —‘/ / w2252 (1 4 yw) Wit (w, wz; u)——
Is1[¥ls1 +s20" 1o Jo ’ w
Substituting back w = x and z = y/x, we see that the above integral is

[ / xS1y$2(1 +ux)kWi(x Vi u)—y—x (48)
0 0 X

Recall that k > 1 and Res; > 0 and that W;E(x, y;u) is supported on u|x £ y| € [1,2]
and satisfies W3jE (x, y;u) < exp(—2¢ max{x, y}'/*) for some ¢ > 0.

In the part of (48) with x > 10/u, we have y < x and y is restricted to an inter-
val of length 1/u (depending on x). Hence the contribution of x > 10/u to (48) is
bounded by

-1 [ Res|+Ress .k 1/4 dx
u by xtexp(—=2cx ") —
10/u X

1 1
k—1 e —1/4
< Res; +Resy +k —1 <uResl+ResZ+k—1 + 1) exp(—2cu™ ")

k—1

- - _a,—1/4
Res; -Ress exp(—cu™7).

<Lu
In the part of (48) with x < 10/u, we have y < 12/u and max{x, y} > 1/(2u) (since
|x &+ y| € [1/u,2/u]), so the contribution of this part is bounded by

10/u 12/u dx dy
/ / Liaxte, )21/ X R [W5E (x, y; “)|

1 1
u ResI=Res2 oxpy(—2cu™ 1/4) L —

[ —1/4)
Res; Res, Res; Res, '

exp(—cu
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6.3. Bounding the error term §§ (W, Q)
The aim of this section is to prove the following.

LEMMA 6.4
Let £ (W, Q) be as in (33) with

A = exp((log 0)%/?), D = (log )%, and
Qo = exp((log 0)*°),
where we recall that ey and Ag are fixed positive constants to be chosen later. Then

Q2
(log Q)€

(49)

€5V, 0) K¢
forany C > 1.

Proof
Following [1, Proof of Lemma 7.1] until [1, (25)], we see that £§ (W, Q) is

3 3
152 Z Z Z Z 3(d)t(g)Ta(g)
< Q(log Q) adgp(abh)
+ a<A x (mod a)bh
bh>0" y#xo blg (ag) 1(dg) 1

S o [ (L2251 02472 452,50 + 530)|
(225) J (2%

Wzi (sl,sz; W)‘dsl ds,. (50)
0

Notice first that Lemma 6.3 implies that, for any k > 1,

3(9)73(8) 3(d) = do
Xg: g4 Z ‘ sl,Sz,gh—Q(%)‘
blg

(1+ -22,)k1(log 0)?
bhQ3 (log D) Y (9)7(g) exp(_c/(ghQ%)l/“)

max{[si|, [s2[}¥[s1 + 52| P g oD
blg
k—1 0x (1)
< I+ thz) (log 0)"* RAQIHG)
max{[s1| + 1, [s2| + 1}¥(|s1 + 52| + 1)3 b
bhQ3\1/4
-exp(—c’( QIQ)O) ) (51D
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Let us write £ = abh in (50) and split into dyadic blocks £ ~ L and max{|s1| +
1,|s2| + 1} ~ T. Note that ¢ (abh) > abh/loglog(abh) and bh > L/A. Using also

the inequality xy < x2 + y2, the contribution of such a dyadic block to (50) is

1+ ADQ \k— 11 L
< 0(log 0)°D min 0 LQZ) R exp —c/( L0 )1/4)
kef1,4} LTk ADQ

(X PO 5[ (1 [+ e ira)

{~L abh Z x (mod £)
b h>0 XFX0

where the second integral in (50) is bounded by 1 due to the factor
it suffices to make a rough estimate

> &Z“() AH(I—I— )<<logA-1ogL
abh={ a plL

a<A

b,h>0
so that, by Proposition 3.2, the second line of (52) is at most
L2T2(10g(10L.0T)) ™.
By (51), (52), and (54) above, (50) is bounded by

Q(log Q)O(l) Z min L

k—2
LTl ke{1,4} T
L=24 T=2V
LQ2 \1/4
X _ 0
exp( ¢ (ADQ) )
Takingk =1when T <1+ ig% and k = 4 otherwise, we see that this is
0
LQ32\1/4
o(1) 7 0
<o 2 L1+ 0) oz "O(L.Q)exp C(ADQ) )
L>1
L=2u
ADQ?(log 0)°M 2
< al fQ) <Lc 9 C
oh (log )

for any C > 1. Hence the claim follows.

1
(Is1+s2/+1D)3"

(52)

Here

(53)

(54)
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Remark 6.5

In [1] the conditional bound (8) was used instead of Proposition 3.2. Since (8) does
not require averaging over the modulus, in [1] it was possible to utilize averaging over
£ when bounding the left-hand side of (53). Due to this, the restriction a < A (which
is in place to make (53) hold) was not needed in the definition of §(W¥, Q) in [1]. In
our case, we needed to separate the terms with a > A and treat them by a variant of
the treatment of the case d > D in [1].

7. Evaluating M8 (¥, Q) + ME (¥, Q)

We recall that M8 (¥, Q) and MG (W, Q) are defined in (27) and (32), respectively.
We evaluate MS (¥, Q) + ME (¥, Q) following [1, Section 8], but the details are
somewhat different since we have the restriction ¢ < A in our sums.

Similarly to [1, Section 8], we use the Mellin transform of Wli (from Lemma 6.1)
to write MG (W, Q) in terms of a contour integral with Rez = —e < 0 and shift the
contour to Re(z) = & > 0. Here we pick up poles at z = 0 whose residue essentially
cancels with M & (W, Q). This process is recorded in the following lemma.

LEMMA 7.1
Let C > 1. Let M8 (Y, Q) and MG (Y, Q) be as in (27) and (32) with parameters as
in (49). Once Ay is large enough in terms of C, one has

ME(D, Q) + MG (D, Q)

Q i r4(m)f4(n)i/()wl(mQ5 nQg . )

T2 T Jmn om 02 02°°
m#n
((1=2)F(~z,8. MN) ;1 Q \—= 02
Tiraeeivinzer) “tmae) O
where
1
¢(r,s) = 1——s
10
and
! 1
F(s.q, MN) = ¢(MN, s + 1)p+£n[N(1 ~ o=t T 1))
1 1 1
[T (1= == 50)

rlg
PIMN
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Proof
Write
1 gMQG gNQG . dQ
S(a,b,d,g, M,N) := wE 0 0.
(a.b.d.g.M.N) ; I;) @b (Q2 hE gth)
(h,MN)=1
so that
Mg(\p’ Q) Z 14(m)r4(n)
mmr;é—nl
byu(d
XY X Hesesdemnn
d=< a<A blg

(dgMN) 1(a,gMN)=1(b,MN)=1

where as usual g := (m,n), M —m/g,andN =n/g.
Using the Mellin transform of "Wi given in Lemma 6.1 with ¢ = —e < 0, we
obtain that

S(a,b,d,g,M,N)

. (gMQ} gNQ3 \ dQ \
_Z Z (albmﬁ/(_s)wf(ggz°’g22";2)(ghgg) dz.

(h, MN) 1

(56)

We can interchange the sum and the integral since the sum over / is absolutely conver-
gent for Re(z) < 0. Writing out the Euler product, we obtain that, for (ab, MN) =1
and Re(s) > 0, one has

o0

1
}; ¢(abh)hs
(h,MN)=1
1 1
—C(s+1) 1+ —-—-—7). (&7
¢( b) pll;IN( Pt )M};LN( r’ p(p—l))
Therefore

d
S(a,b,d, g, M, N)_sz /( ) glngo’gJ;go,z)é(l— )( QQO)

¢(ab) [ (- pm) TT (14 55) ¢

ptabM N
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Next we move the integration line to Re z = ¢. We encounter a pole at z = 0, leading
to a main term —(Residue at z = 0) that equals

~. (gMQ} gNO} 1 ¢(MN) 1
Wl( on’ Q20’0>¢(ab) MN WELN(l*m)'

Here, by first substituting #’ = u|x % y| in the definition of 'Wli and then using (31),

Wli(glng", gf;go 0) = /0°° W)V (glngé’ glz)g%,@ Ju

:/:O\IJ(M)V(gM gN, QQ)du

Therefore, writing M & 1(¥, Q) for the contribution of the residue term at z = 0, we
obtain

MGV, Q) = MG (¥, Q) + MG (Y, Q), (58)
where
. T4(m)t4(n) p(MN)
MG (P, Q) := Qm;ZI T MN
m#n
wu(d) p(a)pu(b)

E) d ; bzlg: agp(ab)

(d,mn)=1 (a,mn)=1((b,MN)=1
! uo

pm];[m(wp( _1))/ \I/(u)V<gM,gN, QO)du, (59)

where we have changed the factor of Q /2 to Q due to summing over . Moreover,

Mgy 0)= 2y W)

m,n=1 vinn
m#n
@) (b)p(d)
'Zm /(;) dgl:) (;4 Z ap(ab)d1+2

(d,gMN)=1(a,mn)= l(bMN) 1

_,Wl(gMQo,gNQo, )5(1—2)( Y )—Z I (1_ 1 )

0: 0 03/ U5
pZ
I1 <l+m)dz, (60)

ptabM N
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where we recall that "WIJF + "Wl_ = W;. We will first show that

2 o(1)
MEL(W, Q) + MS (W, Q) = 0(%). 61)
By definition (27),
T4(m)T4(n)
MS(W, Q) = — Talmjratn)
m%él v mn

dl d)l dl
) > l(l,g)=1‘1’(%)%V(m,n;aQ—).
a<A,d<D >0 0
(ad,mn)=1U,MN)=1

Writing 1, ¢)=1 = D_j_p p|g #(D), We see that

T4(m)T4(n)
ME(W, Q) =— —
m%; Jmn

abdk~ pu(@)ub)u(d)bk _abdk
X2 ) g e, )

a<A,d<D b|g,k>0

(ad,mn)=1 (bk,MN)=1
Writing U(m,n,u) = V(m,n,u/Qo¢)¥(u/Q) and using Mellin inversion, we see
that

Ta(m)za(n) @) (b)u(d)bk
MS(,0)=— Y D
’”;1 Vmn as§5D bXIg: k2>(:) ¢labk)

m+#n (ad,mn)=1(b,MN)=1(k,MN)=1
1 ‘lj(m,n,z)
C— ———dz,
2ri (1+¢) (abdk)z

where
o0
U(m,n,z) = / ‘l,((m,n,u)uzd—u.
0 u

Noting that the sum over k above is absolutely convergent for Rez > 1, we can inter-
change the order of summation and integration. Recalling (57), we see that
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MS(V, Q) = — Z 74(m)74(n) Z L

moe1 vmn bla 2mi
m#n (b,MN)=1
/' M(a)ﬂ(b)u(d)bg(z)
(+e) ,_47p Plab)abd)?
(aa,rr’m)_=1
. 1_[ (1—%) 1_[ (1+%-(;_1)>?7(m,n,z)dz.
pIMN p ptabM N p pip

Next we move the integration to the line Rez = 1/log Q. Since
_ uQ
‘l,((m n,1)= Q/ lI-'(u)V(m n; 0 )du

the residue from the pole at z = 1 equals — M & (¥, Q), and the remaining integral
can be included in the error term in (61) since ﬂ(m, n; z) decays rapidly when m or
nis > 0?/Qo (due to Lemma 4.2) or | Im z| grows.

Therefore (61) holds, and the remaining main term of M& (¥, Q) + MS (Y, Q)
is MG, (W, Q) defined by (60). We shift the contour in (60) to Re(z) =1 — logl ok
The sums over a and d can be extended to all positive integers with an error <
02/(log Q)€ using Lemma 6.1 when Ay is large enough depending on C. For the
d -sum, this was done in [1, Proof of Lemma 8.1], and one can argue similarly for the
a-sum. Hence, apart from an acceptable error, MG, (¥, Q) equals

( - 2 2 -z
0 Z u(m)r; D Loy PG ) -0 ()
=)

m;én

pul@)p(b)pu(d)
Z Z Z a¢(ab)d1+z |11\—4[N(
(dgMN) l(amn) l(bMN) 1

z

I1 (l+ﬁ)d

ptabM N
Writing r = ab, the second line equals
_ u(d)p(r)(r.g)
- Z Z r¢(r)d1+z l_[ (1 -

d> r>0 PIMN
d, gMN) 1(r,MN)=1

1 14
—) 1 (1 +—0).
P Z>p+,MN r(p 1))
Careful calculation with the Euler products reveals that this equals
F(—z,g,MN)
(1 +2)p(gMN,1+z)’
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and thus
w.0)=2 ¥ e | (1= 2)F (2.8, MN)
7 ey Vmn 270 Jas1jig0) §(1 4+ 2)¢(gMN, 1 4 2)
m;én
M N -z 2
(MR NG Y2y o @y
Q Q £90 (log Q)
Now the Lemma follows from moving the contour back to Rez = ¢ along with (58)
and (61). O

Next we will prove the following proposition which evaluates the main term in
Lemma 7.1. In [1] this proposition was conditional on the Lindelof hypothesis, but
here we prove it unconditionally.

PROPOSITION 7.2
Let M8(¥, Q) and MG (Y, Q) be as in (27) and (32) with parameters as in (49).
Once Ay is large enough, one has

ME(WY, Q) + MG (Y, Q)

_—53524 , 16\1}(2) K331
1o Qe Q) ol B
+0(Q%(10g 0)"),

with K (s1, 52; z) implicitly defined below Equation (38) in [1].

Proof
First we apply (37) from Lemma 6.2 to (55) to obtain that

ME(V, Q) + ME(V, Q)

Q 74(m)f4(n) 1 LietriT pltetiT _ '
> @ni)? /(>/ Jyrosy Porsso

moan=1 Vmn +e—iT Ji+e—iT
m;én
{(1=2)F (2,6, MN) ( O \~2( Q% \si/ 0% \s2
. dsydsy d
z<1+z)¢(gMN,1+z)(gQ§) (mgg) (nQ?)) 2o
033 X n(m)ra(n) 1
Tl—e m1+en1+s|10g(%)|

m,n=1

m#n

+ 0( ) +0(0?), (62)
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where the integration over z gives a factor < 1 in the error term due to the rapid decay
in z in (37). We choose the height 7 := Q5/4. Let us first consider the error term. We
divide the sum over m and n into two ranges. The first case is when |m — n| > %n. In
this case, [log(“})| > 1, and thus the contribution to the error term in (62) is

< Qitse 3 ;t,(nn;))?g) < Qitse,

mn=1
For the other range |m — n| < %n, we have

Im —n|

()] 2

Thus the contribution from this range to the error term in (62) is

o0
7 74(n) 4(m) n
< zt5¢
Q ; nlte mZyéﬂ mlte |m _nl

%nfmg%n

o0
T4\Nn
< Qi+se Z n41(+8) Z < 0¥t

n=1 /—1

Before we move the contour integral, we reinsert the terms m = n to the main
term of (62). The contribution of this addition is

. 1 .
Q (n) 1 2+e+zT stet+iT '
EZ n @ni) /(8)/ / - Wils1.82:2)

+e—iT %+s—zT

(1 =2)F (=z,n,1) 1 Q =2/ Q% \sits2

. ( 3 ) ( > ) dsydsydz.
{1+ 2)p(n,1+2) \nQg nQq

Let us now show that this contribution is acceptable. We can move the contour integral

over 51 and s; to Re(s;) = &. We encounter no poles, and the sum over 7 is absolutely

convergent. The resulting vertical integral is bounded by Q!*3¢, and by (38), the
contribution from horizontal integrals is bounded by

Q3+4s
Tl—s

<« Q%+65.

Hence, apart from an acceptable error, (62) equals

1/24+e+iT 1/24+e+iT _ é'(l —Z) Q2s1+2s2—z
/ / / Wi (s1,52;2)
() J1

J2te—iT J1/24e—iT t(1+z) g2tsitsa—a)

- d(s1,82:2)dsadsy dz, (63)

2 (27i)3
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where

ta(m)tg(n) g*?F (—z,g,MN)

o0
Fls1.52:2) = Z m\/2+sig1/2+s2 §(gMN,1 +2)

m,n=1

As in [, Proof of Proposition 9.1], writing out the Euler product, one can see that

F(s1,82:2)
§4(% +S1)§4(% +52)
§'4(% + 51 —Z)§4(% +52—2)

={2-2) EO + 51+ 52— 2) K (51,52:2),

where K (s1,52;2) =[] » Kp(s1,52; ) is absolutely convergent when
Re(sy) > 0, Re(sz) > 0, Re(s; + 52) >Re(z) —1/2
and
Re(z) € (0,3/2), and Rez <1+ Res;.

Now we move the lines of integration in (63) to Re(s;) = Re(sy) = 2¢, encoun-
tering poles of order four at s; = 1/2 and s, = 1/2. By the Weyl bound (see, e.g.,
[12, Theorem 5.12]) and the Phragmen-Lindel6f principle, one has, for o > 0,

/240 +in| < max{0,1/6-0/3}+e

so that, using also (38), the horizontal integrals contribute

T8 max{0,1/6—c/3}+8¢ Q 40

1+e
max
Q 2e<o<1/2+¢ T1-¢
4(1/2+8)T98 Q 40
< 146 @ e 96 T1/3( )
=0 T +0 2327215)(1/2 T2/3
— 0(Q7/4+208).

Furthermore, using again (38), the integrals over Res; = 2¢ contribute to (63)

1 T g
14¢ .
< 1sn}géTQ e /;T/|§(1/2+2/10gQ +it)|" dt.

By Lemma 3.5, this is

1
1+¢ 13/2+¢ 1+4e1/2 7/4
KO max T KO THT K0T
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Finally by the definition of 'W3 (51, $2; z) in (34), the main contribution of the residues

is
2271” /(e) W;i—_zzz)—(/_:%(g—it,z)G(% lgz,t)dz)

-2
(1 +z )Z( B )'K( )

( Res 045 + 5085 +52)8 (1 + 51+ 52— 2) Q2s1+2s2_z)
s1=52=1/2 (51 + § — Z)é""(% + 51— Z)C4(% + 55 —2) QS(SH_SZ_Z)

Then we follow the residue calculation of Proposition 9.1 in [1] and obtain the main
term. O

Now we have handled unconditionally all the terms involved, and Theorem 1.1
follows as in [1, Section 10].
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