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Abstract. We show that curve complex distance is coarsely equal to electric distance
in hyperbolic manifolds associated to Kleinian surface groups, up to errors that are
polynomial in the complexity of the underlying surface. We then use this to control the
quasi-isometry constants of maps between curve complexes induced by finite covers
of surfaces. This makes effective previously known results, in the sense that the
error terms are explicitly determined, and allows us to give several applications. In
particular, we effectively relate the electric circumference of a fibered manifold to the
curve complex translation length of its monodromy, and we give quantitative bounds
on virtual specialness for cube complexes dual to curves on surfaces.

1. Introduction

Let S be an orientable surface of finite type with negative Euler characteristic. The
curve graph CpSq of S is the graph whose vertices are homotopy classes of essential
simple closed curves and whose edges correspond to pairs of homotopy classes that

admit disjoint representatives. A finite-sheeted cover p : rS Ñ S induces a (coarse)

map p˚ : CpSq Ñ CprSq sending a vertex γ of CpSq to its full preimage p´1pγq Ă rS. In
[RS09], Rafi–Schleimer show that the map p˚ is a C–quasi-isometric embedding, with
C depending only on degppq, the degree of p, and on χpSq. Their result roughly implies
that “pairs of simple closed curves do not detangle very much under pull-back by finite
covers of small degree,” leading us to pose the following question:

Question 1. Given simple closed curves α and β on S, what is the minimal degree of

a cover rS Ñ S for which some components of the preimages rα and rβ are disjoint?

Unfortunately, this question cannot be answered using Rafi–Schleimer [RS09] as their
techniques do not pin down how the constant C depends on degppq and χpSq. Therefore,
our approach to Question 1 is to prove the following theorem:

Theorem (7.1). Let p : rS Ñ S be a finite covering map between non-sporadic surfaces.
Then for any α and β distinct essential simple closed curves on S,

dCpSqpα, βq

degppq ¨ A3p|χpSq|q
ď dCprSqpp

˚
pαq, p˚pβqq ď dCpSqpα, βq,

where A3 is the polynomial A3pxq “ 80 e54πx13 when S is closed.
When S has punctures,

dCpSqpα, βq

degppq5 ¨ A3p|χpSq|q
ď dCprSqpp

˚
pαq, p˚pβqq ď dCpSqpα, βq,

1
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where A3 is the polynomial A3pxq “ 416 e117π37x38.

Moreover, the linear dependence on degppq in the first bound of Theorem 7.1 is sharp.
See Remark 7.3 for more details.

The polynomial A3 is a product A1 ¨ A2 of polynomials

A1pxq “

#

20 e44x10 for S closed,

104 e94π30x30 otherwise

and(1)

A2pxq “

#

4 e10πx3 for S closed,

4 e23π7x8 otherwise,

which arise independently of one another (e.g., see Theorem 4.1 below) and we will
refer to them often in what follows.

The main ingredient in proving Theorem 7.1 is the following theorem regarding
the relationship between curve graph distance and electric distance in hyperbolic 3-
manifolds. Throughout the paper, we use the same notation for a simple closed curve,
its corresponding vertex of the curve graph, and its geodesic representative in a 3-
manifold whenever it is clear from context which is meant. In Section 3 we define a
constant εS ą 0 which is bounded from below by a polynomial of degree 2 in 1

|χpSq|
when

S is closed and degree 6 in 1
|χpSq|

in general. This is used in the following theorem.

Theorem (4.1). Let α and β be essential simple closed curves in S and let M be a com-
plete hyperbolic structure on SˆR without accidental parabolics such that `Mpαq, `Mpβq ď
εS. Then

1

A1p|χpSq|q
¨ dCpSqpα, βq ď dεSMpα, βq ď A2p|χpSq|q ¨ dCpSqpα, βq,

where the polynomials A1 and A2 are as in Equation (1), and dεSM is the metric obtained
from the hyperbolic metric dM by electrifying the εS-thin part of M .

In [Tan12], Tang used the original, non-effective (i.e. where the dependence on |χpSq|
was not explicit) version of Theorem 4.1 to reprove the Rafi-Schleimer result, and we
follow his argument to obtain Theorem 7.1 from Theorem 4.1.

The non-effective version of Theorem 4.1 is originally due to Bowditch [Bow11, The-
orem 5.4]. (See also the statement of Theorem 4.1 in Biringer–Souto [BS15].) As
Biringer–Souto state in reference to Theorem 4.1, “credit should also be given to Yair
Minsky, since [the theorem] is implicit in the development of the model manifolds of
[Min10], and to Brock–Bromberg [BB11], who prove a closely related result.” How-
ever, it is important to note that all of the proofs of these results rely on compactness
arguments, which cannot be made effective in a way that is necessary for our ap-
plications. Thus, the main contribution of Theorem 4.1 is that it gives the explicit
relationship between curve complex and electric distance. Instead of relying on com-
pactness arguments using geometric limits, we argue using 1-Lipschitz sweepouts in M
(see Theorem 2.1 in Section 2).
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Indeed, although there are by now many results relating geometric invariants of hy-
perbolic manifolds to combinatorial invariants of curves on surfaces, almost none of
these can quantify or estimate the exact dependence on the complexity of the under-
lying surface. Moreover, even when such dependence has been estimated, it is usually
(at least) exponential in |χpSq|. For example, Brock’s theorems relating volumes of
hyperbolic manifolds to distances in the pants graph [Bro03a, Bro03b] are prime ex-
amples of important results relating geometry to combinatorics where dependence on
the surface was left completely undetermined. However, in forthcoming work of the
first and third author with Webb [ATW18], this dependence is bounded using a careful
analysis of Masur–Minsky hierarchies [MM00], but the bound produced is on the order
of |χpSq||χpSq|. Hence, one major novelty of Theorem 4.1 is that our error terms are
explicit and depend polynomially on |χpSq|. To our knowledge, the only other such
results are due to Futer–Schleimer [FS14] who estimate the cusp area of a hyperbolic
manifold in terms of translation length in the arc complex.

Using Theorem 7.1 we address Question 1 by giving a lower bound on degpα, βq, the

minimal degree of a cover necessary to have disjoint components rα, rβ of the preimages
of α, β, respectively. We emphasize again that this application requires the effective
statement of Theorem 7.1 proven here.

Corollary 1.1. For two simple closed curves α and β on a surface S,

dCpSqpα, βq

Cp|χpSq|q
ď degpα, βqa,

where Cpxq “ 3A1pxqA2pxq with A1 and A2 as in Equation (1). When S is closed,
a “ 1, and in general a “ 5.

In Section 8, we provide an application of this corollary to certain virtually special
cube complexes. Given a sufficiently complicated collection Γ of curves on a closed
surface S, Sageev’s construction [Sag95] gives rise to a dual CAT(0) cube complex on
which π1pSq acts freely and properly discontinuously. The quotient of the complex
under this action is a non-positively curved cube complex CΓ. It is well known by
the work of Haglund–Wise [HW08] that CΓ is virtually special, meaning that it has a
finite degree cover whose fundamental group embeds nicely into a right-angled Artin
group. The following theorem quantifies this statement by estimating the degree of the
required cover in the case that Γ is a pair of curves:

Theorem (8.3). Suppose that α and β are two simple closed curves that together fill a
closed surface S. Let degCΓ be the minimal degree of a special cover of the dual cube
complex CΓ to the curve system Γ “ α Y β. Then

dCpSqpα, βq

Cp|χpSq|q
ď degCΓ,

where Cpxq “ 3A1pxqA2pxq is a polynomial of degree 13.

Theorem 8.3 is related to work of M. Chu [Chu20] and J. Deblois, N. Miller, and
the second author [DMP20] on quantifying virtual specialness for various hyperbolic
manifolds.
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As a second application, we use Theorem 4.1 to effectively relate the electric cir-
cumference of a fibered manifold Mφ to the curve graph translation length `Spφq of its
monodromy φ : S Ñ S. (For definitions, see Section 9.)

Theorem (9.1). If φ : S Ñ S is a pseudo-Anosov homeomorphism of a closed surface
S, then

1

A1p|χpSq|q
¨ `Spφq ď circεSpMφq ď A2p|χpSq|q ¨

`

`Spφq ` 2
˘

,

where the polynomials A1 and A2 are as in Equation (1)

The outline of the paper is as follows. In Section 2 we give the necessary back-
ground on curve graphs, Margulis tubes in hyperbolic manifolds, pleated surfaces and
sweepouts. We then prove various lemmas regarding curves on surfaces and Margulis
tubes in 3–manifolds in Section 3 before proving Theorem 4.1 in Sections 4, 5, and 6
and Theorem 7.1 in Section 7. In Section 8 we prove the application regarding cube
complexes and in Section 9 we give the application to fibered manifolds.
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2. Background

Given an orientable surface S with genus g ě 0, n ě 0 punctures, and without
boundary, define its complexity as ωpSq :“ 3g ` n ´ 4. We call such a surface S non-
sporadic if ωpSq ą 0. In order to avoid trivial cases in what follows, we will assume
that all surfaces are non-sporadic.

2.1. Curves on surfaces. Recall that a simple curve is essential if it is neither null-
homotopic nor peripheral (i.e. it does not bound a disk or once punctured disk on S).
As is usual in the subject, we will generally refer to a vertex α P CpSqp0q as a curve.
We reserve the term loop to refer to an embedded circle in S. With these conventions,
a curve is represented by a loop.

Given curves α, β P CpSqp0q, their geometric intersection number, denoted ipα, βq, is
defined as

(2) ipα, βq “ min t|aX b|u ,

where the minimum is taken over loop representatives a and b of α and β, respectively.
A surgery argument due to Hempel [Hem01] (see [Sch11] for the general case) yields the
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following upper bound on distance in CpSq in terms of geometric intersection number:

(3) dCpSqpα, βq ď 2 log2pipα, βqq ` 2.

In particular, this shows that CpSq is connected.
More recently, Bowditch [Bow14] proved a stronger version of Equation (3) which is

sensitive to the topology of the underlying surface, and which we will need in subsequent
sections. We reformulate Corollary 2.2 of [Bow14] as follows:

(4) dCpSqpα, βq ă 2` 2 ¨
logpipα, βq{2q

logpp|χpSq| ´ 2q{2q
,

so long as the denominator is well-defined and positive, which is the case for all S with
|χpSq| ě 5.

2.2. Hyperbolic manifolds and Margulis tubes. Here we review some basic back-
ground on hyperbolic surfaces and 3-manifolds.

Let S be a finite area hyperbolic surface and let p be a puncture of S. A peripheral
curve about p corresponds to a parabolic element of π1pSq. A horodisk in H2 based
at a lift rp of the puncture p will project to a neighborhood of p in S. There exists a

horocycle rQp such that the quotient of rQp by stabprpq ă π1pSq is not embedded, and

that for any horocycle rH based at rp separating rQp from rp, rH{stabprpq is embedded. We

call rQp the maximal horocycle for rp. The open region of S facing p and bounded by

the quotient Qp of rQp is called the maximal cusp neighborhood of p.

There is another horocycle rHp based at rp which projects to an embedded loop of
length 2. The open region bounded between this loop and p is called a standard
cusp neighborhood of p. The standard cusp neighborhood is isometric to the cylinder
p´8, log 2q ˆ S1 equipped with the metric

(5) dx2
` e2xdθ2,

where ´8 ď x ď logp2q and θ P S1 “ r0, 1s{p0 „ 1q (see pages 110-112 of [Bus10]).
A key feature of hyperbolic geometry is that the volume of an n-dimensional ball

of radius r, denoted Volnprq, grows exponentially as a function of r. In subsequent
sections we will need explicit formulae for this volume in low dimensions, so we record
that information here:

(6) Vol2prq “ 4π sinh2
pr{2q, Vol3prq “ πpsinhp2rq ´ 2rq.

In particular,

(7) Vol2prq “ Operq, Vol3prq “ Ope2r
q,

and the following limits exist:

(8) lim
rÑ0

Vol2prq

r2
,
Vol3prq

r3
.

Given a hyperbolic manifold M and δ ą 0, the δ-thin part of M , denoted by Mp0,δq,
is the set of points in M with injectivity radius less than δ{2. Similarly, the δ-thick
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part, Mrδ,8q, consists of all points with injectivity radius at least δ{2. Any hyperbolic
manifold M is of course the union of its δ-thick and δ-thin parts.

For n ě 2, there exists a largest εn ą 0 called the n-dimensional Margulis constant so
that the εn-thin part of any hyperbolic n-manifold M decomposes into a disjoint union
of cusps and subsets of the form Tα1 ,Tα2 , ...,Tαn where Tαi

is a tubular neighborhood of
the closed geodesic αi. Thus, the ε2-thin part of a hyperbolic surface is homeomorphic
to a disjoint union of annuli, and the ε3-thin part of a hyperbolic 3-manifold decomposes
as a disjoint union of solid tori and cusps.

Meyerhoff [Mey87] demonstrated the following lower bound for ε3, which we will
subsequently need:

(9) 0.104 ă ε3.

Given δ ď ε3, we denote by Tαpδq the component of Mp0,δq containing the geodesic
α. This is called the Margulis tube for α. We note that Tαpδq can be empty if the
length of α is greater than δ. Furthermore, there is a definite distance between Tαpδq
and BTαpε3q, which goes to infinity as δ Ñ 0. A concrete estimate of this growth was
obtained recently by Futer–Purcell–Schleimer [FPS19]. We will require this estimate
in Section 3 and so we record it there in detail.

We now briefly discuss hyperbolic 3-manifolds M “ H3{Γ homeomorphic to SˆR, as
these manifolds are the focus of this paper. Here and throughout, we always consider
such a manifold with a fixed homotopy equivalence ι : S ÑM , called a marking, which
allows us to identify homotopy classes of curves in S with those in M . Further, we will
only consider hyperbolic structures M on S ˆR without accidental parabolics meaning
that for each essential curve α in S, ιpαq has a unique geodesic representative, whose
length we denote by `Mpαq.

Associated to any such manifold M without accidental parabolics is a pair of end
invariants pλ´, λ`q, each of which is either:

(1) (non-degenerate) a point in the Teichmüller space of S, namely a pair pf, σq
where σ is a complete hyperbolic metric on S and f : S Ñ σ is a (homotopy
class of) homeomorphism;

(2) (degenerate) a filling lamination on S.

End invariants describe the behavior of the geometry of M “ H3{Γ as one exits out
of each of the two topological ends E´, E` of M . In the non-degenerate case, an end
E of M is foliated by surfaces St equipped with induced metrics that converge (after a
re-scaling) to a hyperbolic metric on S.

In the degenerate case, Thurston [Thu78] proved that there exists a sequence of
simple closed curves on S whose geodesic representatives exit E , and which converge,
in the proper sense, to a lamination on S. That an end, in general, behaves in exactly
one of the above two ways follows from work of Bonahon [Bon86] and Canary [Can93],
and ultimately the proof of the Tameness conjecture by Agol [Ago04] and Calegari–
Gabai [CG06].

The celebrated Ending Lamination Theorem, proved by Minsky [Min10] and Brock-
Canary-Minsky [BCM12], asserts that the end invariants pλ`, λ´q associated to E`, E´,
respectively, determine the hyperbolic manifold M .
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2.3. Pleated surfaces and sweepouts. Fixing a hyperbolic 3-manifold M , a topo-
logical surface S, and a lamination λ on S, a λ-pleated surface is a map F : S ÑM so
that:

(1) F is proper, and hence sends cusps to cusps,
(2) for each leaf l of λ, F plq ĂM is a geodesic,
(3) for each component R of S z λ, F pRq is totally geodesic.

The map F induces via pull-back a complete hyperbolic metric on the surface S.
With respect to this metric, F is a 1-Lipschitz map of hyperbolic manifolds. Pleated
surfaces arise very naturally in the study of hyperbolic 3-manifolds. For example, the
convex core of a quasi-Fuchsian hyperbolic 3-manifold is always bounded by the image
of a pair of pleated surfaces. Moreover, if M is homeomorphic to S ˆ R, work of
Thurston [Thu78] implies that if all leaves of λ can be realized as geodesics in M , there
exists a λ-pleated surface into M .

Given a surface S and a hyperbolic 3-manifold M , a 1-Lipschitz sweepout is a homo-
topy ft : Xt “ pS, gtq ÑM , where gt is a hyperbolic metric on S and ft is a 1-Lipschitz
map for each t. Whenever M is homeomorphic to S ˆR, we only consider 1-Lipschitz
maps homotopic to our fixed marking. An important result of Canary [Can96] yields
the existence of 1-Lipschitz sweepouts interpolating between geodesics in M .

Theorem 2.1 (Canary). Let M “ H3{Γ be a hyperbolic 3-manifold homeomorphic
to S ˆ R without accidental parabolics. Let α, β be a pair of essential simple closed
curves on S with geodesic representatives α˚, β˚ in M . Then there exists a 1-Lipschitz
sweepout ft : Xt ÑM, 0 ď t ď 1, so that

α˚ Ă f0pX0q and β˚ Ă f1pX1q.

Theorem 2.1 follows from Canary’s work on simplicial hyperbolic surfaces [Can96].
These are path-isometric mappings into M of singular hyperbolic surfaces with cone
points coinciding with vertices of a geodesic triangulation. More specifically, Canary
[Can96, Section 5] shows the existence of 1-Lipschitz sweepouts, where gt is a simplicial
hyperbolic surface, between any pair of useful simplicial hyperbolic surfaces, i.e. ones
with a single vertex and a distinguished edge that maps to a closed geodesic. This
formulation also appears in [Bro03a, Theorem 4.6]. Brock [Bro03a] (see also [BB11,
Theorem 6.7]) reformulates Canary’s construction by uniformizing, replacing each gt
with the unique non-singular hyperbolic metric in its conformal class and using a result
of Ahlfors [Ahl38] to ensure that the resulting maps are still 1-Lipschitz. We refer the
reader to the proof of Lemma 4.2 in [Bro03a] where the complete details are given.

3. Hyperbolic surfaces and 3-manifolds

In this section we cover some fairly basic results in hyperbolic geometry. While
nothing here will be surprising to experts, care must be taken in order to keep track of
how the constants involved depend on the underlying parameters.

For a hyperbolic surface S, let Ŝδ denote the compact subset of S obtained by deleting
neighborhoods of each cusp consisting of points with injectivity radius at most δ{2.
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Lemma 3.1. Let S be a non-sporadic surface. Then for any δ ě 0 there is a constant
LS,δ ě 0 such that for any finite area hyperbolic structure on S and any x in Ŝδ, there
is an essential loop in S through x of length less than LS,δ.

For the reader’s convenience, an upper bound for LS,δ is recorded in Remark 3.2.

Proof. Let rx be any lift of x to the universal cover rS “ H2, and let π : H2 Ñ S denote

the universal covering map. Let rB be a lift of a maximal embedded open ball centered

at x. By maximality, there must be a pair of points z, y on the boundary of rB which lie
in the same fiber over S. Then if ra, bs represents the geodesic segment with endpoints
a, b P H2,

rρ :“ πprrx, zsq ˚ πpry, rxsq

is a loop ρ representing a non-trivial element of π1pS, pq.
Recall that the area of a hyperbolic disk of radius r ą 0 is 4π sinh2

pr{2q, and therefore

by the Gauss-Bonnet theorem the radius of rB is at most

2 sinh´1
´

a

|χpSq|{2
¯

.

Hence the length of rρ is at most

(10) `S :“ 4 sinh´1
´

a

|χpSq|{2
¯

“ 4 log
´

a

|χpSq|{2`
a

1` |χpSq|{2
¯

.

When S is closed, this concludes the proof. When S has cusps, the above argument
gives us the desired loop unless ρ is a peripheral loop that circles a puncture p of S.

In this case, recall that Qp (resp. Hp) denotes the quotient of a maximal horocycle rQp

(resp. a standard horocycle ĂHp).

Suppose first that x lies in the standard cusp neighborhood. Since x P Ŝδ, (5) implies
that the distance dSpx,Hpq between x and Hp satisfies

(11) dSpx,Hpq ď logp2{δq.

Let Np be the subset of the maximal cusp neighborhood bounded by Qp and Hp.
Since the area of the neighborhood of a cusp is equal to the length of its boundary, by
the Gauss-Bonnet theorem we have that Qp has length at most 2π|χpSq|. The region Np

can be lifted to a rectangle ĂNp in the upper half-plane model which is (up to isometry)
of the form

ĂNp “
 

py, zq P H2 : 0 ď y ă a, 0 ă r ď z ď b
(

,

for some positive a, b and r.

Then Hp lifts to the top edge of ĂNp and Qp lifts to the bottom edge. Therefore,

`pHpq “
a

b
“ 2; `pQpq “

a

r
ď 2π|χpSq|.

Hence a “ 2b and so r ě b{π|χpSq|, and this implies

(12) dSpHp, Qpq ď logpπ|χpSq|q.

By maximality, a fundamental domain of Stabp rQpq ñ rQp will project to a graph Γ
on S which is not a loop but has a well defined tangent line at each point since the
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image of rQp in S meets itself tangentially. Moreover, each edge of Γ has a well defined
normal direction pointing into the cusp corresponding to p. Hence, we may pick a point
of tangency v (i.e. vertex of Γ) and consider the immersed subpaths ρ1 and ρ2 each
beginning and ending on one of the sides of v, whose union is Γ. Considered as loops of
S, each ρi is homotopic to a simple closed curve of S and is nontrivial in π1pSq. (This
last fact follows since neither ρi lifts to a loop in H2). Further, it can not be that both
ρi are peripheral, since then S would be a 3-punctured sphere. We conclude that either
ρ1 or ρ2 is an essential simple closed curve.

Moreover, we may homotope ρi to a simple loop of length at most 2 logpπ|χpSq|q ` 2

by replacing arcs in rQp with the corresponding arcs in rHp and using (12). In S, this
amounts to following a geodesic arc to Hp from the basepoint of ρi, traversing a portion
of Hp, and then following a geodesic arc back to the basepoint of ρi. Again abusing
notation, we refer to these based representatives as ρ1, ρ2 and we note also that ρi is
contained completely within Np and ρi meets Hp.

Since x lies within distance logp2{δq from Hp, it must be within a distance of at most
1` logp2{δq ă 2` logp1{δq from each ρi, and therefore there is an essential loop through
x of length at most

2p2` logp1{δqq ` 2 logpπ|χpSq|q ` 2.

If x P Np, it can be at most logpπ|χpSq|q` 2 from each ρi and thus there is an essential
loop through x of length at most

2plogpπ|χpSq|q ` 2q ` 2 logpπ|χpSq|q ` 2 “ 4 logpπ|χpSq|q ` 6.

It remains to consider the case that x is separated from the puncture by Qp. Recall the
simple loop ρ constructed in the first part of the argument, and that we are assuming
that ρ is peripheral. We claim that ρ must meet Qp. Indeed, let rp P B8H2 denote a

lift of the puncture p and let ĂQp be the horocycle based at rp projecting to Qp. Since ρ
is peripheral, there is a lift rρ bounded by lifts rx1, rx2 of x so that rx1 and rx2 are on the

same horocycle R based at rp. By maximality of ĂQp, there is another lift ĂQp

1

of Qp that

is tangent to ĂQp and which intersects R at two points (see Figure 1).
Letting g P π1pSq be the parabolic element corresponding to the peripheral loop ρ,

all translates of rx1 under the action of g on H2 lie along R and lie outside of all lifts
of the horoball Qp bounded by Qp since x is separated from p by Qp. Therefore, there

exists a lift rρ1 of ρ with endpoints rx3 and rx4 that lie along R such that ĂQpYĂQp

1

separate

rx3 and rx4 (again see Figure 1). Thus, rρ1 must intersect rQp Y rQ1p so that ρ meets Qp.
Since the length of ρ is at most `S, it follows that x must be a distance of at most

`S{2 from Qp, and hence from the region Np. Thus, there is an essential simple loop
through x of length at most `S ` 4 logpπ|χpSq|q ` 6, and so in all three cases the loop
constructed has length at most

LS,δ “ 2 logp1{δq ` `S ` 4 logpπ|χpSq|q ` 6.(13)

�

Remark 3.2 (Bounds on LS,δ and LS). We use the proof of Lemma 3.1 to give an
upper bound on LS,δ that will be useful in subsequent sections. First we use (10) to
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Ăx1

Ăx2

Ăx4

Ăx3

ĂQp ĂQ1p

R

Figure 1. When ρ is separated from p by Qp, it must touch Qp.

give the following upper bound on `S:

(14) `S ď 4 logp2
a

|χpSq|q “ 4 logp2q ` 2 logp|χpSq|q ď 3` 2 logp|χpSq|q.

Note the proof of Lemma 3.1 is much simpler when S is closed and we can use `S in
place of LS,δ in this case. Combining (14) and the definition of LS,δ (Equation 13), we
have that in general

(15) LS,δ ď 2 logp1{δq ` 6 logpπ|χpSq|q ` 9.

Additionally, when S has punctures, we let LS denote LS,ε3 , which using (9) is at
most

6 logpπ|χpSq|q ` 14.

When S is closed we set LS “ `S, which by (14) is at most

2 logp|χpSq|q ` 4.

Lemma 3.3. Given a non-sporadic surface S there is a constant 0 ă εS ă ε3 satisfying
the following: Let M be a hyperbolic manifold with M – S ˆ R, and let α be a curve
on S. If f : S Ñ M is a π1–injective, 1–Lipschitz map such that fpSq X TαpεSq ‰ H,
then `Spαq ď LS.

Further, there is a loop in the isotopy class of α whose length is less than LS in S
and whose image in M is contained in Tαpε3q.

Explicit bounds for the constant εS are recorded in Remark 3.4.

Proof. Given a positive µ ă ε3 and a non-empty µ-tube Tαpµq, let Fαpµq denote the
distance between the boundary of the Margulis tube BTε3pµq and Tαpµq. The function
Fα is decreasing in µ, and Theorem 1.1 of Futer–Purcell–Schleimer [FPS19] states that

(16) Fαpµq ě Fpµq :“ arccosh
ε3

?
7.256µ

´ .0424.

Let εS “ F´1pLS{2q for LS as in Remark 3.2. Hence (16) implies

FpεSq “ LS{2 “ arccosh
ε3

?
7.256εS

´ .0424,
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and thus,

εS “
ε23

7.256 ¨ cosh2
pLS{2` .0424q

.(17)

If fpxq P Tαpµq for µ ă ε3, then x P Ŝε3 since the ε3-thin part of any cusp neigh-
borhood must map via f into the ε3-thin part of a cusp neighborhood of M , and any
Margulis tube in M is disjoint from all ε3-thin cusp neighborhoods in M . Thus by
Lemma 3.1 there is an essential simple loop ρ through x of length at most LS “ LS,ε3 .

Now suppose that fpxq P TαpεSq as in the statement of the lemma. Since the map is
1–Lipschitz, the loop fpρq has length less than LS and meets TαpεSq. Hence, any point
on fpρq has distance at most LS{2 from TαpεSq, and so by construction fpρq Ă Tαpε3q.

As f induces an isomorphism on π1, fpρq is homotopic to some power of α. But, ρ
is a simple curve on S and so we must have that ρ is in the isotopy class of α on S and
the proof is complete. �

Remark 3.4 (Bounds on εS). Applying the upper bounds on LS obtained at the end
of Remark 3.2 and the lower bound on ε3 from (9) to the definition of εS (see Equation
17), we see that

(18) εS ě
ε23

8 ¨ cosh2
plogp|χpSq|q ` 2q

ě
1

e10 ¨ |χpSq|2

when S is closed, and

(19) εS ě
ε23

8 ¨ cosh2
p3 logpπ|χpSq|q ` 7q

ě
1

e20π6 ¨ |χpSq|6
,

when S has punctures.
Also, notice in the proof that εS is chosen small enough in comparison to ε3 so

that the distance between the εS-tube and the boundary of the ε3-tube is at least
FpεSq “ LS{2 ě 2.

Lemma 3.5. There is a universal constant D ě 0 so that if γ1 and γ2 are curves on a
hyperbolic surface S with length less than LS, then dCpSqpγ1, γ2q ď D.

The proof will show that

D ď

#

20 for S closed,

104 otherwise.
(20)

Following the proof, we give a much smaller bound on D, when |χpSq| is sufficiently
large.

Proof. By the collar lemma, γ1 has an embedded annular neighborhood of width at
least

logpcothp`pγ1qq{4q “: cpγ1q.

Since logpcothpx{4qq Ñ 8 as x Ñ 0 and decays to 0 as x Ñ 8, there is some positive
constant c so that

c{2 “ logpcothpc{4qq.
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By inspection we see that c ă 2.
We first present a proof in the special case that S is closed, as in this setting the

argument is more conceptual.

S is closed: First assume that γ1 is the shortest closed geodesic on S, and let N pγ1q

denote a maximal collar neighborhood of γ1. Let rB denote the boundary of a lift of

N pγ1q to the universal cover. By maximality, there is a pair of points rx, ry P rB which

project to the same point on the boundary of N pγ1q but are not identified by stabp rBq.
Let rγ1 be the lift of γ1 corresponding to rB and let rx1 and ry1 be the points on rγ1 nearest
to rx and ry, respectively. If necessary, we place ry to minimize the distance between
rx1 and ry1 so that the subarc a of rγ1 between them has length strictly between 0 and
`pγ1q{2. Hence, the path rρ which is the concatenation of the geodesic arcs rrx, rx1s, a,
and rry1, rys has length at most `pγ1q{2 plus the width of N pγ1q.

Let ρ be the loop which is the projection rρ to S. By construction, ρ is neither
homotopically trivial nor homotopic to α. Since γ1 is the shortest closed geodesic in S,
we conclude that width of N pγ1q must be at least `pγ1q{2.

Thus, γ1 must admit a collar neighborhood of width at least `pγ1q{2. Therefore,

ipγ2, γ1q ď minr2`pγ2q{`pγ1q, `pγ2q{cpγ1qs

ď LS ¨minr2{`pγ1q, 1{cpγ1qs.

Thus, if `pγ1q ą 2, ipγ1, γ2q ď LS, and if `pγ1q ă 2, cpγ1q ą 1{2, so we have ipγ1, γ2q ď

2LS.
Consider the case where |χpSq| ě 5. Using (4), we note that if dCpSqpγ1, γ2q ě 6,

then γ1 and γ2 must intersect at least p|χpSq|´2q2

2
times. Using the fact that LS ď

2 logp|χpSq|q ` 4 (see Remark 3.2 when S is closed), it follows that dCpSqpγ1, γ2q ď 5 so
long as |χpSq| ě 8 since

x ě 8 ñ
px´ 2q2

2
ą 2 ¨ p2 logpxq ` 4q.

For the finite list of remaining surfaces, we use the fact that on any surface S,

dCpSqpα, βq ď 2 log2pipα, βqq ` 2.

Note that if |χpSq| ă 8, ipγ1, γ2q ď 2LS ă 16.32, so we must have

dCpSqpγ1, γ2q ď 10.

In general, let α represent the systole of S; γ1 need not coincide with α, but the
above argument shows that

dCpSqpγ1, αq ď

#

10 |χpSq| ă 8

5 |χpSq| ě 8

and so by applying the same argument to γ2 and then using the triangle inequality,

dCpSqpγ1, γ2q ď

#

20 |χpSq| ă 8

10 |χpSq| ě 8.

The non-closed case:
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As for the general case where S is not necessarily closed, we use the collar lemma
and argue that γ1, γ2 each have embedded collar neighborhoods of width at least

logpcothpLS{4qq,

which, applying (15), is at least

log

ˆ

coth

ˆ

3

2
logpπ|χpSq|q `

7

2

˙˙

.

It follows that

ipγ1, γ2q ď
6 logpπ|χpSq|q ` 14

log
`

coth
`

3
2

logpπ|χpSq|q ` 7
2

˘˘

(21) “
6 logpπ|χpSq|q ` 14

log
´

e7π3|χpSq|3`1
e7π3|χpSq|3´1

¯ “: WS.

We compute directly that

WS ď 240
¨ |χpSq|3 logp|χpSq|q.

Assuming that |χpSq| ě 10 and using (4), we conclude that

dCpSqpγ1, γ2q ď 2` 2 ¨
log p239|χpSq|3 logp|χpSq|qq

log pp|χpSq| ´ 2q{2q

ď 2`
78

logp|χpSq| ´ 2q ´ 1
`

8 ¨ log |χpSq|

logp|χpSq| ´ 2q ´ 1
“: 2` A`B.

As we are assuming that |χpSq| ě 10, this is in turn at most

2` 72.3` 17.06 ă 92.

On the other hand, if |χpSq| ă 10, WS is bounded from above and applying (3) yields

dCpSqpγ1, γ2q ď 104.

In conclusion,

dCpSqpγ1, γ2q ď

#

104 |χpSq| ă 10

92 |χpSq| ě 10.

�

In reference to the conclusion of the previous proof, we note that as |χpSq| Ñ 8,
A Ñ 0, B Ñ 8 and thus for sufficiently large Euler characteristic, we obtain the much
smaller bound of 11. Moreover, using a stronger version of (4) due to the first author
[Aou13], one can conclude that for all S with |χpSq| sufficiently large,

dCpSqpγ1, γ2q ă 6.

However, we will not make use of these improvements here since they do not produce
completely explicit constants.

We conclude this section with the following lemma.
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Lemma 3.6. Let 0 ď δ ď 1 and L ě 1. Fix x PMrδ,8q. Then the number of homotopy
classes of loops of length less than L based at x is less than

P pL, δq :“
Vol3pL` δq

Vol3pδq
.

Proof. The argument is standard, but we provide it for the reader’s convenience.
Let H3 Ñ M be the universal covering and let rx be a fixed lift of x. Let B1 be the

ball of radius L about rx so that the based homotopy classes of loops of length less than
L at x in M correspond to the translates of rx in H contained in B1. Since x P Mrδ,8q,
the δ–balls about these translates are all disjoint, and since they are contained in the
ball B of radius L ` δ about rx, we see that the number of such points is bounded by
Vol3pL`δq

Vol3pδq
, as required. �

Remark 3.7. Using (6), (7), and (8), we have that

(22) P pL, δq “
Vol3pL` δq

Vol3pδq
“

sinhp2pL` δqq ´ 2pL` δq

sinhp2δq ´ 2δ
,

For large L and small δ,

(23) P pL, δq “
sinhp2pL` δqq ´ 2pL` δq

`

2δ ` 1
6
p2δq3 ` 1

120
p2δq5 ` ...q

˘

´ 2δ
ď

sinhp2pL` δqq

δ3
.

4. Electric distance

For a hyperbolic manifold M , let dM denote distance in the hyperbolic metric. Fixing
0 ă δ ď ε3, let M̌δ denote the manifold obtained from M by removing δ-thin cusps.
Of course, when M has no cusps, M “ M̌δ. For two points x, y P M̌δ, their δ-electric
distance is defined as

dδMpx, yq “ inftlengthppXMrδ,8qqu

where p varies over all paths with image contained in M̌δ, joining x and y. When M has
no cusps, this is the length of the portion of the shortest hyperbolic geodesic joining x
and y that occurs outside of the δ-tubes of M . Our main technical result is an explicit
inequality relating distance in the curve graph of S with electric distance in M .

Theorem 4.1. Let α and β be curves in a non-sporadic surface S and let M – SˆR be
a hyperbolic manifold without accidental parabolics such that `Mpαq, `Mpβq ď εS. Then

1{A1p|χpSq|q ¨ dCpSqpα, βq ď dεSMpα, βq ď A2p|χpSq|q ¨ dCpSqpα, βq,

where the polynomials A1 and A2 are as in Equation (1).

The proof will be completed over the next several sections.

The idea behind the following proposition is simple and well-known to experts.

Proposition 4.2. Let 0 ă η ď ε3
e6pπ|χpSq|q3

. Then for any curves α and β in S,

dηMpα, βq ď
4π|χpSq|

η
¨ dCpSqpα, βq.
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Remark 4.3. When S is closed, η need only be less than the Margulis constant ε3.
This fact will be used in the proof of Theorem 7.1.

Proof. Let α “ α0, α1, . . . , αn “ β be a curve graph geodesic from α to β. For each i,
let fi : Xi “ pS, giq ÑM be a pleated surface through αiYαi`1. In particular, fi maps
each of the geodesic representatives of αi and αi`1 in Xi to its geodesic representative
in M . For clarity, we denote the geodesic representative of αi in M by α˚i .

For each i, pick a point mi P α
˚
i , and let xi and yi be points along the geodesic

representatives of αi and αi`1 in Xi, respectively, so that fipxiq “ mi and fipyiq “ mi`1.
Finally, let pi be the shortest path in Xi from xi to yi. The bounded diameter lemma

of Thurston and Bonahon gives that lengthppiX pXiqrη,8qq ď
4π|χpSq|

η
. Indeed, following

[Can96, Lemma 4.5], if pηi “ pi X pXiqrη,8q, then the η{2–neighborhood Ci of pηi is
embedded in Xi and so

η{2 ¨ `Xi
ppηi q ď AreapCiq ď 2π|χpSq|.

Since fi is 1-Lipschitz, it maps η-thin parts of Xi to η-thin parts of M and so
lengthpfippiq XMrη,8qq ď `Xi

ppηi q. When M has no cusps, this immediately gives that
dηMpmi,mi`1q ď `Xi

ppηi q.
In the presence of cusps, we argue as follows: First, we claim that pi cannot enter

any horocyclic cusp neighborhood in Xi whose boundary has length 2{e. To see this,
begin with the standard fact that simple closed geodesics on Xi do not enter any
standard cusp neighborhoods. So for any cusp of Xi, the endpoints of pi lie outside of
its standard cusp neighborhood. Since pi is embedded, the length of any component
of its intersection with a standard cusp neighborhood is no more than 2. Hence, its
deepest point in the standard cusp neighborhood has distance no more than 1 from the
horocycle boundary. This means that it does not cross the horocycle for that cusp of
length 2{e.

Now suppose that there is some z P pi such that fipzq lies in an η-cusp of M . Then
any nontrivial loop based at z whose length is less than 2 logpε3{ηq must be peripheral.
This is because the image of such a loop is entirely contained in the corresponding
ε3-cusp of M and so the loop must represent a peripheral element of π1S. But since

η ď
ε3

e6pπ|χpSq|q3
,

we see that every loop of length no more than 6 logpπ|χpSq|q`12 based at z is peripheral.
However, the fact that pi does not enter any horocyclic cusp neighborhood in Xi whose
boundary has length 2{e, together with Lemma 3.1 and Equation (15), implies that
every point along pi is the basepoint of some essential (i.e. nonperipheral) loop of
length no more than 6 logpπ|χpSq|q ` 11, a contradiction. Here we are using the fact
that the injectivity radius along pi is at least 1{e so we set δ “ 1{e in (15).

We conclude that fippiq does not enter any η-cups of M . Hence, just as in the case
without cusps, we conclude that dηMpmi,mi`1q ď `Xi

ppηi q.
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Finally, using the fact that fi maps the η-thin part of Xi to the η-thin part of M ,
we obtain

dηMpα, βq ď
n´1
ÿ

i“0

dηMpmi,mi`1q

ď

n´1
ÿ

i“0

`Xi
ppηi q

ď
4π|χpSq|

η
¨ dCpSqpα, βq. �

We label the coefficient at the end of the proof above by

(24) Apx, ηq “ 4πx

η
.

Thus, (24) and (18) yield the inequality

Ap|χpSq|, εSq ď A2p|χpSq|q,(25)

for

(26) A2pxq “

#

4 e10πx3 for S closed

4 e23π7x8 otherwise,

as in Equation (1). We note that in the non-closed case Apx, εSq ď 4 e20π7x7, and that
the discrepancy between this polynomial and A2pxq arises from the retract Lipschitz
constant from Lemma 7.2.

Hence, we can complete the proof of the upper bound in Theorem 4.1 using Propo-
sition 4.2 with η “ εS so that

dεSMpα, βq ď Ap|χpSq|, εSq ¨ dCpSqpα, βq(27)

ď A2p|χpSq|q ¨ dCpSqpα, βq.

Note that for this upper bound there is no requirement on the lengths of α, β.

The main idea for the other direction is contained in the following lemma. Roughly,
the lemma says that as long as we can find a sweepout between the geodesics α and
β which separates α from β at all times, then we obtain the desired bound on curve
graph distance in terms of electric distance in M . The fact that we can find such a
sweepout will be proved in the next section.

Lemma 4.4. Let α and β be curves in a non-sporadic surface S and let M – SˆR be
a hyperbolic manifold without accidental parabolics such that `Mpαq, `Mpβq ď εS. Let p
be a path in M joining TαpεSq and TβpεSq and suppose that

(1) p is contained in MrεS ,8q,
(2) there is a 1-Lipschitz sweepout pft : Xt “ pS, gtq ÑMqtPr0,1s such that ftpSqXp ‰

H for all t P r0, 1s, and
(3) f0pSq X TαpεSq ‰ H and f1pSq X TβpεSq ‰ H.
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Then

dCpSqpα, βq ď A1p|χpSq|q ¨ `Mppq

for A1pxq as in Equation (1).

Proof. Note that by Lemma 3.3, `X0pαq ď LS and `X1pβq ď LS. For each curve γ on
S, we consider the following closed subset of r0, 1s:

Ipγq “ tt P r0, 1s : `Xtpγpq ď LSu.

Here γp is the shortest loop over all representatives of γ on S with the property that
ftpγpq passes through the geodesic p. By p2q (and Lemma 3.1), these closed subsets
cover r0, 1s. Moreover, by Lemma 3.5, if Ipγ1q X Ipγ2q ‰ H, then dCpSqpγ1, γ2q ď D,
where D is the universal constant from Lemma 3.5. Finally, that same lemma gives
that dCpSqpα, γq ď D whenever 0 P Ipγq and dCpSqpβ, γq ď D whenever 1 P Ipγq.

We use this information to build a graph G whose vertices are the curves γ such that
Ipγq ‰ H together with α and β. Two vertices γ1 and γ2 of G are joined by an edge
in G if either Ipγ1q X Ipγ2q ‰ H, or γ1 “ α and 0 P Ipγ2q, or γ1 “ β and 1 P Ipγ2q.
The first paragraph of the proof immediately implies that the graph G is connected
and that adjacent curves have curve complex distance at most D.

The proof will be completed by giving a bound on the number of vertices of G in
terms of `Mppq. For this, first note that every vertex of G can be realized in M as a
loop meeting the path p with length no more than LS.

Break p up into N segments p1, . . . pN , the first N ´1 of which have length 1 and the
last of which has length less than 2 so that N “ t`Mppqu. (By Remark 3.4, `Mppq ě 4.)
Let Si be the set curves on S that can be realized in M as loops meeting the segment pi
with length no more than LS. By the above paragraph, the vertices of G are contained
in

ŤN
i“1 Si and so the number of vertices of G is no more than

řN
i“1 #Si.

By criterion p1q, Lemma 3.6, and Remark 3.7,

#Si ď
Vol3pLS ` εS ` 2q

Vol3pεSq
ď

sinhp2pLS ` εS ` 2qq

ε3S
ď
e2pLS`εS`2q

ε3S
.

Furthermore,

e2pLS`εS`2q
ď e2LS`6

ď e6
¨ e4 logp|χpSq|q`8

“ e14
|χpSq|4,

when S is closed, and

e2pLS`εS`2q
ď e6

¨ e12 logpπ|χpSq|q`28

“ e34π12
|χpSq|12,

when S has punctures. Along with the lower bounds on εS established in (18) and (19)
this implies,

#Si ď s :“

#

e44|χpSq|10 for S closed

e94π30|χpSq|30 otherwise.
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Putting everything together, there is a path from α to β in G whose length is less
than the total number of vertices of G. Since each of these vertices is contains in some
Si and adjacent vertices have distance at most D in CpSq,

dCpSqpα, βq ď D ¨
N
ÿ

i“1

#Si

ď D ¨ s ¨ `Mppq.

By the proof of Lemma 3.5 (see (20), D ď 20 when S is closed and D ď 104 in
general, so that setting

(28) A1pxq “

#

20 e44x10 for S closed

104 e94π30x30 otherwise

as in Equation (1) gives us

dCpSqpα, βq ď A1p|χpSq|q ¨ `Mppq.

This completes the proof. �

5. Separating sweepouts

In what follows, let Tα be shorthand for the tube TαpεSq. Let ft : S Ñ M , t P ra, bs
be a 1-Lipschitz sweepout and let Σt “ ftpSq. For a given time t, we say that Σt is to
the left of Tα if Tα lies in the component of MzΣt containing the λ` end of M , and Σt

lies to the right of Tα if Tα lies in the component of MzΣt containing the λ´ end of
M . We say that Σt is weakly to the left (resp. weakly to the right) of Tα if Σt is to the
left (resp. right) of Tα or Σt intersects Tα.

In order to find sweepouts satisfying the conditions of Lemma 4.4, we require the
following:

Proposition 5.1. Let α, β be intersecting curves on S whose lengths in M are no more
than εS. Let ft : S ÑM , t P ra, bs be a 1-Lipschitz sweepout such that Σa lies weakly to
the left of Tα and Tβ and Σb lies weakly to the right of Tα and Tβ, where Σt “ ftpSq.
Then there is a subinterval rc, ds Ă ra, bs such that

(1) Both Tα and Tβ meet Σc Y Σd,
(2) Neither Tα nor Tβ meet Σt for t P pc, dq, and
(3) Σt separates Tα from Tβ for each t P pc, dq.

The proof requires some notation. Let mα Ă ra, bs be the set of times the sweepout
meets Tα:

mα “ tt P ra, bs : Σt X Tα ‰ Hu.
Define mβ similarly, and note that mα and mβ are disjoint closed subsets of ra, bs, since
no 1-Lipschitz map can meet both Tα and Tβ. This follows from the fact that if Σt

meets both Tα and Tβ, then by Lemma 3.3 there are representative loops a and b on
S such that ftpaq Ă Tα and ftpbq Ă Tβ, and so a and b are disjoint. This contradicts
the assumption that α and β intersect.
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The components of ra, bszmα are open in the interval ra, bs, and each is a subset of
one of three disjoint subsets of ra, bs, denoted lα, rα, bα and defined as follows. Define
lα to consist of those times when Σt is to the left of Tα. Similarly, let rα be those times
for which Σt lies to the right of Tα, and let bt be those time when Tα lies in a bounded
component of MzΣt. Since Σt always separates M , ra, bszmα “ lα Y bα Y rα. Define
lβ, bβ, rβ in the analogous way. We will think of each point in ra, bszmα (or ra, bszmβq

as being colored by the subset they are in – each such point gets an α (resp. β) color.
With this terminology, we claim that the following lemma immediately proves Propo-

sition 5.1.

Lemma 5.2. There is a closed interval I Ă ra, bs whose interior is a component of
ra, bszpmα Ymβq such that

(1) I has one endpoint in mα and one endpoint in mβ, and
(2) for each t in the interior of I, its α color is different from its β color.

Proposition 5.1 follows from the fact that if t gets a different α color and β color (the
colors being either l, r, b) then Tα and Tβ lie in different components of MzΣt.

We now turn to finding the desired subinterval of ra, bs. Let us begin by making a few
observations. First, mα and mβ are closed and disjoint, so components of one cannot
accumulate onto a component of the other. Hence, if we are at a component of (say) mα

it makes sense to talk about the component of mβ immediately after or before it in the
time interval. Second, outside of the endpoints a and b, we only consider components
of mα Ymβ which have nonempty interior. We call such components thick. Note that
by continuity of the sweepout, the α color (or β color) can change only across a thick
mα component and we call such a component color changing. More accurately, if two
points in ra, bs are not separated by a thick component of mα, then they have the same
α color. Finally, call an interval in ra, bszpmαYmβq switching if it has one endpoint in
mα and one endpoint in mβ. It is clear that a switching interval must exist: otherwise
we can construct a sequence of nested intervals I0 Ą I1 Ą . . . each with one endpoint
in mα and one endpoint in mβ such that XIk “ txu. Since we would necessarily have
that x P mα Xmβ, this is a contradiction.

Proof of Lemma 5.2. We first prove the lemma under the strengthened assumption that
Σa lies to the left of Tα and Tβ and Σb lies to the right of Tα and Tβ. Note that, in
this case, a P lα X lβ and b P rα X rβ. We assume that all mα and mβ components
discussed in this proof are thick. There are only finitely many color changing mα and
mβ components. (This is because any point t in the topological boundary of, say, mα

can be colored depending on what side of Σt the geodesic representative of α lives
on, and nearby points of ra, bszintpmαq must have the same color.) Now choose an
interval ra0, b0s Ď ra, bs that has the smallest number of total color changing mα and
mβ components, such that the α color and the β color agree at each of a0 and b0,
but that these colors are not the same. Note that ra, bs satisfies the criteria by the
strengthened assumption, but it is not necessarily the smallest such interval.

As we sweep from a0 to b0, we will change the α and β colors in some order. Here
we are using the fact that the α and β colors change between a and b. Let us suppose,
without loss of generality, that the first to change is the α color. As we continue to
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sweep, the α color can continue to change or remain the same, but eventually we reach
the first mβ component, which we call mb, for which the β color changes. We claim that
the closure rc, ds of any switching interval pc, dq between mb and the color changing mα

component directly preceding it will be the required interval. Assume it is not. Then
there exists a time t P pc, dq at which the α and β colors must agree, and therefore,
must also agree with the α and β color at a0 because the β color does not change before
mb. Then rt, b0s is an interval satisfying all of the relevant criteria with at least one less
color changing mα component, contradicting the minimality of ra0, b0s.

Now if Σa lies weakly to the left of Tα,Tβ, but not to the left of both Tα,Tβ, then
Σa intersects Tα or Tβ, but not both. Assume it intersects Tα. Then, we replace ra, bs
with a larger interval ra1, bs where a1 ă a2 ă a, ra1, a2q is colored with `α, ra2, as is
added to mα, and ra1, as is colored with `β. If instead Σa intersects Tβ and lies to the
left of Tα, ra1, a2q is colored with `β, ra2, as is added to mβ, and ra1, as is colored with
`α. Note that we are enlarging the interval and extending the coloring but not altering
the sweepout itself.

We analogously extend the right side of the interval to obtain ra1, b1s if Σb lies weakly
to the right of Tα,Tβ, but not to the right of both Tα,Tβ. We run the combinatorial
argument above with the new interval ra1, b1s and note that a1 P lαX lβ and b1 P rαX rβ
as required. Additionally, the desired switching interval pc, dq must lie in the original
interval ra, bs that the sweepout is defined on. This follows from the fact that the first
possible color changing interval is ra2, as so that the definition of the switching interval
shows that the smallest possible value for c is a. Similarly, the last possible switching
interval is rb, b2s so that the largest possible value for d is b. Thus, rc, ds is the desired
subinterval of ra, bs and the proof is complete. �

Another method for proving Lemma 5.1 was suggested to the authors by Dave Futer.
In short, one uses a result of Otal [Ota95, Ota03], which guarantees that short curves
in M are unlinked, to topologically order the short γi and the 1-Lipschitz surfaces they
meet. Rather than attempt to make effective this technique, we chose instead to employ
the direct combinatorial argument found above.

6. Finishing the proof of Theorem 4.1

Recall that A2p|χpSq|q is obtained by setting η “ εS in (24), giving us the upper
bound in Theorem 4.1

dεSMpα, βq ď
2π|χpSq|

εS
¨ dCpSqpα, βq “ A2p|χpSq|q ¨ dCpSqpα, βq.

For the lower bound, suppose that α and β are given and let p be a path in M̌εS

minimizing the εS-electric distance between the geodesic representatives of α to β in
M . Here M̌εS is the manifold obtained by removing the εS-thin cusps of M , which are
disjoint from the ε3 tubes in M . (Recall that by assumption `Mpαq, `Mpβq ď εS.) Let S
be the set of curves γ in S such that p meets Tγ “ TγpεSq in M and index S “ tγiuNi“1

according to the order in which these tubes are met by p. (Set γ0 “ α and γN`1 “ β.)
Note that this ordering makes sense since these tubes are disjoint, and by Remark 3.4
the distance between two such tubes is at least 4.
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Let pi be the subarc of p between the last point of p X Tγi and the first point of
pX Tγi`1

. Then these subarcs are disjoint and pXMrεS ,8q “
Ť

i pi since p is contained

in M̌εS by assumption.

Lemma 6.1. There exists a 1-Lipschitz sweepout ft : S Ñ M , t P ra, bs such that
Σa “ fapSq lies weakly to the left of α, β, γi and Σb “ fbpSq lies weakly to the right of
α, β, γi for all 1 ď i ď N .

Proof. Let E denote a fixed end of M , i.e. E “ E˘. If E is degenerate, then [Can96, The
Filling Theorem] gives a sequence of useful simplicial hyperbolic surfaces that exit E .
In particular, such surfaces are eventually to the left (right) of any finite set of geodesics
when E “ E´ (resp. “ E`). If E is non-degenerate, then it corresponds to a component
of the boundary of the convex core corepMq, which we denote by B˘corepMq when
E “ E˘. We recall that B˘corepMq is itself a pleated surface and the lemma will follow
from that fact that it can be uniformly approximated by useful simplicial hyperbolic
surfaces, as in the following claim:

Claim 1. Let f : S Ñ M be the pleated surface that represents a boundary component
of the convex core of M . Then there are simplicial hyperbolic surfaces fi : S ÑM such
that fi Ñ f uniformly on compact sets.

The proof is essentially well-known to experts but doesn’t appear to be explicitly
written in the literature. Before sketching the details, let us see how it completes the
proof. For each end E˘, let f˘i be a sequence of useful simplicial hyperbolic surfaces
that exit that end or accumulate on the associated convex core boundary, depending
on whether the end of degenerate or not. Then the 1-Lipschitz sweepout from f´i to
f`i given by Theorem 2.1 eventually has the desired form since all closed geodesic of
M are contained in corepMq.

It remains to prove the claim. The proof is almost exactly the same as the one used
to prove [FS14, Theorem A.1]. To make the argument as direct as possible, we use
notation and refer to references from their Appendix A.

Sketch of proof of claim. The proof follows from two facts. The first is that f is the
uniform limit of pleated surfaces gi : S Ñ M whose pleating locus Li is maximal (i.e.
all complementary regions are ideal triangles) and has the special property that it has
a unique closed leave ci and all other leaves spiral around ci in a consistent direction
(or exit a cusp). Indeed, one can first take any sequence of simple closed geodesics ci
whose Hausdorff limit (or limit in the Chabauty topology, in the presence of cusps; see
[FS14, Definition A.2]) is a lamination containing L. See, for example, the proof of
[FS14, Lemma A.6]. Then complete each ci to a lamination Li of the required form;
after passing to a subsequence, the Li limit to a lamination L1 Ą L. Compactness of the
space of pleated surfaces ([CEG87, Proposition 5.2.18]), applied exactly as in [FS14,
Lemma A.7], then implies that after passing to a subsequence, the pleated surfaces gi
pleated along Li converge to f in the compact-open topology.

The second fact is that each gi as above, is itself a limit of useful simplicial hyperbolic
surfaces. Indeed, this fact appears in Thurston’s notes ([Thu78, Section 8.39]) and
follows by observing that Li can be obtained by starting with a triangulation of S with
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a single vertex along ci, with ci appearing as an edge of the triangulation, and ‘spiraling’
the other edges around ci by isotoping the vertex around the geodesic representative of
ci. The resulting simplicial hyperbolic surfaces in turn converge to the pleated surface
gi. Taken together, we obtain useful simplicial hyperbolic surfaces that limit to the
pleated surface f , as required. �

�

Next, our analysis breaks into two cases, depending on whether γi and γi`1 intersect
as curves on S. If not, then dCpSqpγi, γi`1q ď 1 and we can only say that `Mppiq ě 4 by
Remark 3.4.

Now suppose that γi and γi`1 are such that dCpSqpγi, γi`1q ě 2. In this case, apply
Proposition 5.1 to obtain (up to reversing the time parameter) a sub-sweepout pft : Xt “

pS, gtq ÑMqtPrai,bis with the following properties:

(1) Σai X Tγi ‰ H and Σbi X Tγi`1
‰ H,

(2) Σt X pi ‰ H for all t P rai, bis,
(3) pi is contained in MrεS ,8q.

Note that we are using that Σt cannot meet both Tγi and Tγi`1
and that since Σt

separates γi from γi`1, it must meet pi. Hence, we may apply Lemma 4.4 to conclude
that

dCpSqpγi, γi`1q ď A1p|χpSq|q ¨ `Mppiq,

and thus,

dCpSqpα, βq ď
ÿ

i

dCpSqpγi, γi`1q

ď A1p|χpSq|q ¨
ÿ

i

`Mppiq

ď A1p|χpSq|q ¨ d
εS
Mpα, βq

as wanted. This completes the proof of Theorem 4.1.

7. Covers and the curve complex

In this section, we follow Tang [Tan12] and apply Theorem 4.1 to analyze maps
between curve graphs induced by covering maps of surfaces.

If p : rS Ñ S is a covering map, there is a coarsely well-defined map p˚ : CpSq Ñ CprSq
induced by p; given an essential simple closed curve γ on S, define p˚pγq to be the full

pre-image p´1pγq Ď rS. This will be a multi-curve on rS corresponding to a complete

subgraph of CprSq. Given α and β vertices of CpSq, we can then define the distance in

CprSq between p˚pαq and p˚pβq to be the diameter of their union:

dCprSqpp
˚
pαq, p˚pβqq :“ diampp˚pαq Y p˚pβqq.

With this setup, we prove the following:
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Theorem 7.1. Let p : rS Ñ S be a finite covering map between non-sporadic surfaces.
Then for any α, β distinct essential simple closed curves on S,

dCpSqpα, βq

degppq ¨ A3p|χpSq|q
ď dCprSqpp

˚
pαq, p˚pβqq ď dCpSqpα, βq,

where A3 is the polynomial A3pxq “ 80 e54πx13 when S is closed.
When S has punctures,

dCpSqpα, βq

degppq5 ¨ A3p|χpSq|q
ď dCprSqpp

˚
pαq, p˚pβqq ď dCpSqpα, βq,

where A3 is the polynomial A3pxq “ 416 e117π37x38.

Recall that A3pxq “ A1pxq ¨ A2pxq for A1, A2 as in Equation 1.

Proof. Given γ1, γ2 disjoint essential simple closed curves on S, p˚pγ1q will be disjoint
from p˚pγ2q. Applying this to the vertices along a geodesic from α to β proves the
upper bound on dCprSqpp

˚pαq, p˚pβqq in Theorem 7.1.

For the lower bound, we choose a hyperbolic manifold M – S ˆ R so that `Mpαq
and `Mpβq are at most εS. Constructing such a manifold is standard; for example, see
[Kap10, Chapter 8]. Thus, the first inequality of Theorem 4.1 implies that

(29) dCpSqpα, βq ď A1p|χpSq|q ¨ d
εS
Mpα, βq.

The covering map p gives rise to a covering of 3-manifolds p˚M ÑM . Let p˚α, p˚β
also denote the geodesic representatives in p˚M of the lifts p´1pαq, p´1pβq, respectively,
and let γ be a path in p˚M from any component of p˚α to any component of p˚β. Then
γ maps to a path in M from α to β.

When there are no cusps, since a covering map is distance non-increasing and sends
the thin part into the thin part, it follows that

dεSMpα, βq ď dεSp˚Mpp
˚α, p˚βq,

where the right hand side is defined to be the minimum electric distance between a
tube about any component of p˚α and a tube about any component of p˚β. Combining
this observation with (29) yields

(30) dCpSqpα, βq ď A1p|χpSq|q ¨ d
εS
p˚Mpp

˚α, p˚βq.

When S is closed, the upper bound on η in Proposition 4.2 is simply ε3, the Margulis
constant. Thus, applying Proposition 4.2 to the right hand side of (30) with η “ εS we
obtain

dCpSqpα, βq ď A1p|χpSq|q ¨Ap|χprSq|, εSq ¨ dCprSqpp
˚α, p˚βq.

Recall that Ap|χprSq|, εSq “ degppq ¨Ap|χpSq|, εSq ď degppq ¨ A2p|χpSq|q by (25), which
yields the lower bound in the closed case.

In order to apply Proposition 4.2 to the right hand side of (30) when S is not closed,
it is necessary to choose

η ď
ε3

e6pπ|χprSq|q3
,
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and when the degree of p : rS Ñ S is large we note that εS is not small enough to satisfy
the above inequality. Hence, we set η “ min

 

1
e20π6|χpSq|6

, 0.104

e6pπ|χprSq|q3

(

, where 1
e20π6|χpSq|6

is the lower bound on εS from (19) and 0.104 is a lower bound on ε3.
Moreover, it is possible that the projection of the η-electric geodesic in p˚M between

p˚α and p˚β is not an η-electric path in M . Indeed, denoting the η-electric geodesic
in p˚M by γ, ppγq might penetrate an η-thin cusp. On the other hand, ppγq can not
penetrate any η{degppq-cusps. To address this possibility, we use the following which
appears as Lemma 3 of [Tan12]):

Lemma 7.2. Given δ ă η, let r denote the natural retract from M̌δ to M̌η corresponding
to nearest point projection with respect to the δ-electric and η-electric metrics on the
domain and target, respectively. Then r is K-Lipschitz, for K “ sinhpηq{ sinhpδq.

It follows that

dηMpα, βq ď
sinhpηq

sinhpη{degppqq
¨ dηp˚Mpp

˚α, p˚βq.

Suppose first that degppq ě p0.104q1{3¨e14{3¨π|χpSq|, so that η “ 0.104{pe6pπ|χprSq|q3q.

Using this η and that degppq “ χpS̃q
χpSq

, we have

sinhpηq

sinhpη{degppqq
“

sinh
´

0.104

e6π3|χprSq|3

¯

sinh
´

0.104¨|χpSq|

e6π3|χprSq|4

¯ .

Since the hyperbolic sine function is monotonically increasing, we can take this quan-
tity to be at most

sinh
´

0.104

e6π3|χprSq|3

¯

sinh
´

0.104

e6π3|χprSq|4

¯ “: fp|χpS̃q|q.

Let gpxq “ fp1{xq, and note that given C,D ą 0, if x ¨ |gpxq| ă C on p0, Ds, then
|fpxq| ă C ¨ x on r1{D,8q.

Plotting x ¨ gpxq with any standard computer algebra system reveals that on p0, 1{2s,

x ¨ |gpxq| ă 2.

Since the absolute value of the Euler characteristic of a surface covering a hyperbolic
surface is at least 2, we therefore obtain the bound

dηMpα, βq ď 2|χprSq| ¨ dηp˚Mpp
˚α, p˚βq.

Since η ď εS,

dεSMpα, βq ď dηMpα, βq,

and given the inequality above we have that

dεSMpα, βq ď dηMpα, βq ď 2|χprSq| ¨ dηp˚Mpp
˚α, p˚βq.

Now starting with (29) and applying Proposition 4.2 with this η yields
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dCpSqpα, βq ď A1p|χpSq|q ¨ 2|χprSq| ¨Ap|χprSq|, ηq ¨ dCprSqpp
˚α, p˚βq,

where
2|χprSq| ¨Ap|χprSq|, ηq “ degppq5 ¨ 8e9π4

p|χpSq|q5,

which is less than degppq5 ¨ A2p|χpSq|q, giving the desired result.
Finally, in the case where degppq ă p0.104q1{3 ¨ e14{3 ¨ π|χpSq|, so that η “ 1

e20π6|χpSq|6
,

using the monotonicity of hyperbolic sine we have that

sinhpηq

sinhpη{degppqq
ď

sinh
´

1
e20π6|χpSq|6

¯

sinh
´

1
p0.104q1{3e74{3π7|χpSq|7

¯ “: rp|χpSq|q.

As in the first case, we perform a change of variable and set upxq :“ rp1{xq. Similarly
to the first case we plot x ¨ upxq, and obtain an upper bound of 158 over the interval
p0, 1s. An upper bound on the above quotient of 158 ¨ |χpSq| follows.

Running the argument from the above paragraph with this in place of 2|χprSq| and

using the fact that 2 ď degppq, we see that 158 ¨ |χpSq| ¨ Ap|χprSq|, ηq ď degppq5 ¨
A2p|χpSq|q. This completes the proof. �

Corollary 1.1 is immediate from Theorem 7.1 after noting that if

dCprSqpp
˚α, p˚βq ě 4,

then every lift of α intersects every lift of β.

Remark 7.3. We conclude this section by showing that the linear dependence on
degppq in Theorem 7.1 is sharp in the closed case.

Let S “ Sg pg ě 2q be a fixed closed surface with curves α and β such that α is

nonseparating, β is separating, and α and β fill S. Set I “ ipα, βq and let rSn be the
n-fold cyclic cover of S built as follows: Take n copies of X “ Szα, X0. . . . Xn´1 and
glue them cyclically along their boundaries. That is, if we let BX “ αl Y αr, then we
glue αri to αli`1 for each i mod n. Rename the resulting curve αri “ αli`1 by rαi. These

are the preimages of α in rSn.

We note that rSn is the cover corresponding to the kernel of the homomorphism
φ : π1pSq Ñ Z{nZ taking a loop to its algebraic intersection number with α, mod n.

Hence, β has n lifts to the cover rSn and any such lift intersects no more than I of the
rαi. In particular, each lift of β lives in Xi YXi`1 Y . . .YXi`I for some 0 ď i ď n.

Now set f “ τ´1
β τα, which is pseudo-Anosov by Thurston’s criterion ([Thu88]).

Hence, there is a κ ą 0 (depending only on S) such that dCpSqpα, f
jpαqq ě κj ([MM99],

[GT11]). Since both τα and τβ fix the homology class of α (recall that β is a separating

curve), so does f . Thus, f fixes the kernel of φ and hence lifts to a map rf : rSn Ñ rSn.

Indeed, if we denote by rα and rβ the full preimage of α and β, one such lift is rf “ τ´1
rβ
τ
rα,

a composition of multitwists.
But then, we must have

rfprα1q “ τ´1
rβ
prα1q “ τ´1

β
prα1q,
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where β is a multicurve consisting of components of rβ that meet rα1. Hence, from our

observation above, β, and therefore rfprα1q, is supported in X´I Y X´I`1 Y . . . Y XI .

Therefore, so long as n ě 2I ` 1, we have that dCprSnq
prα1, rfprα1qq ď 2.

This construction can be iterated by choosing n ě 2jI ` 1, and considering rf jprα1q

This curve is contained in Yj :“ X´jIYXi`1Y . . .YXjI , which is a proper subsurface of
rSn. Indeed the Euler characteristic of Yj is 2jχpSq, which, in absolute value, is strictly

less than |χpĂSnq| under the assumption that n ě 2jI ` 1. Hence, dCprSnq
prα1, rf

jprα1qq ď 2
for n ě 2jI ` 1.

Now since rf jprα1q Ă
rf jprαq “ Čf jpαq, we can set γj “ f jpαq to see that we have

produced curves α and γj on S that have distance at least κj and a degree n “ 2jI ` 1

cover rSn such that dCprSnq
prα, rγjq ď 2. Informally, we have untangled curves with a cover

whose degree is linear in curve graph distance.

8. Application to quantified virtual specialness

In this section we give an application of Theorem 7.1 to dual cube complexes for
collections of curves on closed surfaces and their special covers.

8.1. Dual cube complexes and Sageev’s construction. Given a finite and filling
collection Γ of simple closed curves on a closed surface S, Sageev’s construction [Sag95]

gives rise to a dual CATp0q cube complex ĂCΓ, on which π1S acts freely, properly dis-

continuously, and cocompactly. The quotient of ĂCΓ by this action is a non-positively
curved cube complex CΓ, which can be thought of as a cubulation of the surface S since
π1S – π1CΓ.

The construction of ĂCΓ roughly goes as follows. In the language of Wise [Wis00],

the full preimage rΓ of Γ in the universal cover rS of S is a union of elevations, which

each split rS into two half-spaces. A labelling of rΓ is a choice of half-space for each

elevation in rΓ, and the admissible labelings form the vertex set for ĂCΓ. (For more
details on admissible labellings see [Sag95].) Two labellings are joined by an edge when
they differ on the choice of a half-space for exactly one elevation. The unique CAT(0)

cube complex defined by this 1-skeleton is ĂCΓ, and there is an intersection preserving

identification of the curves in the system rΓ with the hyperplanes of ĂCΓ. The action

of π1S on rS permutes the elevations, inducing an isometry of ĂCΓ. We note that this
construction of cube complexes works in a far more general setting. We summarize
Sageev’s construction with the following theorem:

Theorem 8.1 (Sageev). Suppose Γ is a finite, filling collection of curves on S. Then the

dual cube complex ĂCΓ is CAT(0) and there is an intersection preserving identification

of the curves in Γ with the hyperplanes of ĂCΓ. The group π1S acts freely, properly

discontinously, and cocompactly on ĂCΓ.

8.2. Virtual specialness. It is well known that there exists a finite cover CΓ of CΓ

which is special [HW08]. Here CΓ is called special because its hyperplanes avoid three
key pathologies (self-intersecton, direct self-osculation, and inter-osculation). There is
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an algebraic characterization of specialness [HW08]: that π1CΓ embeds in a particular
right-angled Artin group (RAAG). The defining graph of this RAAG is the crossing
graph of CΓ. The crossing graph of CΓ is the simplicial graph whose vertices are hy-
perplanes of CΓ and whose edges connect distinct, intersecting hyperplanes. Thus,
Theorem 8.1 implies that the specialness of a cube complex dual to a collection of
curves on a surface is determined by the intersection pattern of the underlying curves.

Suppose that Γ consists of two simple closed curves, α and β, that together fill the

surface S. Consider a finite-degree covering map p : rS Ñ S, and as in Section 7 let

p˚ : CpSq Ñ CprSq be the induced map between their curve complexes.
There is also an induced covering map on the level of dual cube complexes p˚ : CΓ1 Ñ

CΓ where CΓ1 is the dual complex to the curve system Γ1 “ p´1pαq Y p´1pβq on rS and

is also the cover of CΓ corresponding to the subgroup π1
rS ă π1S – π1CΓ. We record

the following lemma as an obstruction to the specialness of CΓ1 .

Lemma 8.2. Suppose that α and β are two simple closed curves that together fill a

surface S, and that p : rS Ñ S is a finite degree covering map. If every lift of α to rS

intersects every lift of β to rS, then the cover CΓ1 of CΓ corresponding to π1
rS ă π1S –

π1CΓ cannot be special.

Proof. Following [Wis12], CΓ1 is special if and only if it admits a local isometry into
the Salvetti complex of a particular right-angled Artin group. Indeed, one considers
the crossing graph I of CΓ1 , whose vertices correspond to hyperplanes of CΓ1 and whose
edges correspond to pairs of hyperplanes that cross. Associated to I is the right-angled
Artin group RI generated by the vertices, and with commuting relations for each edge.
Applying Theorem 4.4 in [Wis12] to our context yields that CΓ1 is special only if it
admits a local isometry into the Salvetti complex for RI .

Note that the lifts of αY β to S̃ will correspond to the hyperplanes of CΓ1 , and thus
the vertices of the crossing graph I correspond to these lifts. Since no two lifts of
α (resp. β) can cross in S̃, I is triangle-free, and thus the Salvetti complex for the
associated right-angled Artin group is a square complex.

Now, if every lift of α intersects every lift of β, then I is the join of two sets of non-
adjacent vertices. Thus, RI “ FnˆFm is the product of two free groups. Since a local
isometry induces an injection on the level of fundamental groups, π1pCΓ1q, a surface
group, must embed in RI . However, a surface group cannot embed in the product of
two free groups [BR84]. �

Note that if dCprSqpp
˚α, p˚βq ě 4, then every lift of α intersects every lift of β. Thus,

Theorem 7.1 gives us the following:

Theorem 8.3. Suppose that α and β are two simple closed curves that together fill a
closed surface S. Let degCΓ be the minimal degree of a special cover of the dual cube
complex CΓ to the curve system Γ “ α Y β. Then

dCpSqpα, βq

CpSq
ď degCΓ,

where CpSq is a polynomial in |χpSq| of degree 13.
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Proof. Suppose that p : rS Ñ S is a finite degree cover of the surface S and that
p˚ : CΓ1 Ñ CΓ is the induced cover of cube complexes. Additionally, assume that CΓ1 is
special. Theorem 7.1 gives us that

dCpSqpα, βq

degppq ¨ A1p|χpSq|q ¨ A2p|χpSq|q
ď dCprSqpp

˚
pαq, p˚pβqq.

Given that S is closed, A1p|χpSq|q is a polynomial of degree 10 in |χpSq| and A2p|χpSq|q
is a polynomial of degree 3 in |χpSq| (see Equation (1)). Lemma 8.2 shows that CΓ1

cannot be special unless dCprSqpp
˚pαq, p˚pβqq ď 3. Combining these results and solving

for degppq gives
dCpSqpα, βq

CpSq
ď degppq,

where CpSq “ 3A1p|χpSq|qA2p|χpSq|q. �

9. The circumference of a fibered manifold

The methods developed above generalize to effectively relate the electric circumfer-
ence of a fibered manifold to the curve graph translation length of its monodromy.
The noneffective version of this relation has proven useful, for example, in work of
Biringer–Souto on the rank of the fundamental group of such manifolds [BS15]. As in
the previous section, we restrict to the case where S is closed.

Let φ P ModpSq be pseudo-Anosov and denote its mapping torus by Mφ. For 0 ă δ ă
ε3, denote the hyperbolic circumference and δ–electric circumference of Mφ by circpMφq

and circδpMφq, respectively. That is, circpMφq is the minimum geodesic length of a
loop in M which is not in the kernel of the associated map π1pMφq Ñ Z, and similarly
circδpMφq is the minimum δ-electric length of a loop in M which is not in the kernel
the map. Let `Spφq be the stable translation length of φ in CpSq; for any curve α,

`Spφq “ lim
nÑ8

dCpSqpα, φ
nαq

n
.

Theorem 9.1. If φ : S Ñ S is a pseudo-Anosov homeomorphism of a closed surface
S, then

1

A1p|χpSq|q
¨ `Spφq ď circεSpMφq ď A2p|χpSq|q ¨

`

`Spφq ` 2
˘

,

where the polynomials A1 and A2 are as in Equation (1).

Our argument follows the outline from Brock in [Bro03b]. There, Brock extends his
theorem on volumes of quasi-fuchsian manifolds to volumes of hyperbolic mapping tori.
Similarly, we deduce Theorem 9.1 from the tools we used to prove Theorem 4.1.

Proof. Let M “ Mφ and let N be the infinite cyclic cover of M corresponding to S.
The inclusion ι : S Ñ M lifts to a marking rι : S Ñ N . Let Φ denote the (isometric)
deck transformation of N such that rι ˝ φ is homotopic to Φ ˝ rι. Following the proof
of [Bro03b, Theorem 1.1] there is a 1-Lipschitz map f : X “ pS, gq Ñ N homotopic to
rι and a 1-Lipschitz sweepout ft : Xt “ pS, gtq Ñ N from f0 “ f to f1 “ Φ ˝ f ˝ φ´1.
(The hyperbolic structure X1 on S agrees with that of X under φ, up to isotopy.) As
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in Theorem 2.1, this sweepout has the property that there is some curve α in S such
that the geodesic representative of α in N is in the image of f . Hence, the geodesic
representative of φpαq lies in the image of f1.

Let H : S ˆ r0, 1s Ñ N be the homotopy given by Hpx, tq “ ftpxq and set Σt to be
the image of ft. Finally, fix an embedding h : S Ñ N homotopic to rι which lies to the
left of the image of H. Note that there is some n0 ě 1 such that Φn0hpSq lies to the
right of the image of H.

For n ą 0, define a function sn : rn, n ` 1s Ñ r0, 1s by snpxq “ x ´ n and let
Hn : S ˆ r0, ns Ñ N denote the homotopy formed by gluing together

H, Φ ˝H ˝ pφ´1
ˆ s1q, . . . , Φn´1

˝H ˝ pφ´pn´1q
ˆ sn´1q

to form a sweepout from f to Φn ˝ f ˝ φ´n. (Note that Hn is indeed continuous since
the functions agree on their overlap.) Also, extend the definition of Σt for t P r0, ns to
be the image of Hnp¨, tq, so that in particular Σn “ ΦnpΣ0q. Note that the image of
Hn is contained in the compact region Cn between hpSq and Φn`n0phpSqq.

To prove the first inequality, let ρ : r0, ls Ñ M be the shortest loop in M which
realizes circεSpMq. Note that ρ cannot be εS´short itself. Otherwise, since the image
of f under the covering N ÑM necessarily meets ρ, the argument in Lemma 3.3 would
produce an essential loop in S which is mapped into the Margulis tube about ρ. This
would imply that ρ represents an element of the kernel of π1pMφq Ñ Z, a contradiction.

Denote by rρ the preimage of ρ in N (joining the ends of N) and let rρn “ rρ X Cn.
Since Cn is the union of n` n0 fundamental domains of Φ,

`εSN prρnq “ pn` n0q ¨ `
εS
Mpρq.

By choice of hpSq and n0, each Σt separates the boundary components of Cn (which
are hpSq and Φn`n0hpSq) for t P r0, ns. Hence, each such Σt intersects rρn. Now pick any
curve β that is LS-short on X and observe that φnpβq is LS-short on Xn “ φnX. Then,
using Proposition 5.1 and Lemma 4.4 as in the proof of Theorem 4.1, we conclude that

dCpSqpβ, φ
n
pβqq ď A1p|χpSq|q ¨ `εSprρnq

ď A1p|χpSq|q ¨ pn` n0q ¨ `
εS
N pρq.

Hence, diving both sides by n and taking nÑ 8 shows that

`Spφq ď A1p|χpSq|q ¨ `
εS
Mpρq,

proving the first inequality.
For the second inequality, let ξn be the shortest electric geodesic in N joining the

geodesic representatives of α and φnpαq, where α is as above. Apply Proposition 4.2 to
these curves to obtain

`εSN pξnq ď A2p|χpSq|q ¨ dCpSqpα, φ
n
pαqq.

Alter ξn to a new path ωn as follows: for 0 ă j ă n, choose some xj P ξn X Σj, and
connect xj to Φj

rρp0q P Σj by a shortest electric path γj in Σj. For j “ 0 and j “ n,
define γj to be a shortest electric path in Σj starting at the initial and terminal points
of ξn and ending at lifts x0 and xn of ρp0q in Σ0 and Σn, respectively. Then define ωn to
be the path obtained from ξn by inserting γj ˚ γ

´1
j after xj for each 0 ă j ă n, and by
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inserting γ´1
0 at the beginning and γn at the end. Using the bounded diameter lemma

(as in the proof of Proposition 4.2), we have that

`εSN pωnq ď `εSN pξnq ` 2n ¨
4π|χpSq|

εS
ď `εSN pξnq ` 2n ¨ A2p|χpSq|q.

Let ωnrj´ 1, js denote the portion of ωn between Φj´1
rρp0q and Φj

rρp0q. Since ωnrj´
1, js descends to a loop in M which is not in the kernel of π1pMq Ñ Z, we have

`εSMpρq ď `εSN pωnrj ´ 1, jsq @j,

hence

n ¨ `εSMpρq ď `εSN pξnq ` 2n ¨ A2p|χpSq|q

ď A2p|χpSq|q ¨ dCpSqpα, φ
n
pαqq ` 2n ¨ A2p|χpSq|q.

Dividing through by n and taking a limit as nÑ 8 produces the second inequality. �
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