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ABSTRACT. We show that curve complex distance is coarsely equal to electric distance
in hyperbolic manifolds associated to Kleinian surface groups, up to errors that are
polynomial in the complexity of the underlying surface. We then use this to control the
quasi-isometry constants of maps between curve complexes induced by finite covers
of surfaces. This makes effective previously known results, in the sense that the
error terms are explicitly determined, and allows us to give several applications. In
particular, we effectively relate the electric circumference of a fibered manifold to the
curve complex translation length of its monodromy, and we give quantitative bounds
on virtual specialness for cube complexes dual to curves on surfaces.

1. INTRODUCTION

Let S be an orientable surface of finite type with negative Euler characteristic. The
curve graph C(S) of S is the graph whose vertices are homotopy classes of essential
simple closed curves and whose edges correspond to pairs of homotopy classes that
admit disjoint representatives. A finite-sheeted cover p: § — S induces a (coarse)
map p*: C(S) — C(S) sending a vertex v of C(S) to its full preimage p~(7) < S. In
[RS09], Rafi-Schleimer show that the map p* is a C—quasi-isometric embedding, with
C' depending only on deg(p), the degree of p, and on x(S). Their result roughly implies
that “pairs of simple closed curves do not detangle very much under pull-back by finite
covers of small degree,” leading us to pose the following question:

Questlon 1. Given simple closed curves o and [ on S, what is the ‘minimal degree of
a cover S — S for which some components of the preimages & and ﬁ are disjoint?
Unfortunately, this question cannot be answered using Rafi-Schleimer [RS09] as their

techniques do not pin down how the constant C' depends on deg(p) and x(.S). Therefore,
our approach to Question 1 is to prove the following theorem:

Theorem (7.1). Let p: S Sbea finite covering map between non-sporadic surfaces.
Then for any a and [ distinct essential simple closed curves on S,

degs) (@, ) o
doz) - A (@) < Qe W (@), 77 () < degsy (@ ),

where As is the polynomial Az(x) = 80 e rx'® when S is closed.
When S has punctures,

de(s)(a, B)
deg(p)® - As(|x(5)])

< dc(§)<p*(a)7p*(ﬁ)> < dc(5)<05,ﬂ),
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where As is the polynomial Az(x) = 416 e Tr3723.

Moreover, the linear dependence on deg(p) in the first bound of Theorem 7.1 is sharp.
See Remark 7.3 for more details.
The polynomial Aj is a product A; - Ay of polynomials

20 etz 10 for S closed,
Al (QZ) {

104 e2*730239  otherwise

4 ez for S closed,
As(x) = { 23,78 -
4e otherwise,
which arise independently of one another (e.g., see Theorem 4.1 below) and we will
refer to them often in what follows.

The main ingredient in proving Theorem 7.1 is the following theorem regarding
the relationship between curve graph distance and electric distance in hyperbolic 3-
manifolds. Throughout the paper, we use the same notation for a simple closed curve,
its corresponding vertex of the curve graph, and its geodesic representative in a 3-
manifold whenever it is clear from context which is meant. In Section 3 we deﬁne a
constant eg > 0 which is bounded from below by a polynomial of degree 2 in NG ( 9 when

S is closed and degree 6 in I in general. This is used in the following theorem.

I(S

Theorem (4.1). Let o and 8 be essential simple closed curves in S and let M be a com-
plete hyperbolic structure on S xR without accidental parabolics such that Cy(a), p(5) <
e€g. Then

-
Ar([x(9)])

where the polynomials Ay and A are as in Equation (1), and dy; is the metric obtained
from the hyperbolic metric dy; by electrifying the es-thin part of M.

~degsy(a, B) < dyj(a, B) < Ax(|x(S)]) - degsy(a, B),

In [Tan12], Tang used the original, non-effective (i.e. where the dependence on |x(.9)]
was not explicit) version of Theorem 4.1 to reprove the Rafi-Schleimer result, and we
follow his argument to obtain Theorem 7.1 from Theorem 4.1.

The non-effective version of Theorem 4.1 is originally due to Bowditch [Bow11, The-
orem 5.4]. (See also the statement of Theorem 4.1 in Biringer-Souto [BS15].) As
Biringer—Souto state in reference to Theorem 4.1, “credit should also be given to Yair
Minsky, since [the theorem| is implicit in the development of the model manifolds of
[Min10], and to Brock-Bromberg [BB11], who prove a closely related result.” How-
ever, it is important to note that all of the proofs of these results rely on compactness
arguments, which cannot be made effective in a way that is necessary for our ap-
plications. Thus, the main contribution of Theorem 4.1 is that it gives the explicit
relationship between curve complex and electric distance. Instead of relying on com-
pactness arguments using geometric limits, we argue using 1-Lipschitz sweepouts in M
(see Theorem 2.1 in Section 2).
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Indeed, although there are by now many results relating geometric invariants of hy-
perbolic manifolds to combinatorial invariants of curves on surfaces, almost none of
these can quantify or estimate the exact dependence on the complexity of the under-
lying surface. Moreover, even when such dependence has been estimated, it is usually
(at least) exponential in |y(S)|. For example, Brock’s theorems relating volumes of
hyperbolic manifolds to distances in the pants graph [Bro03a, Bro03b] are prime ex-
amples of important results relating geometry to combinatorics where dependence on
the surface was left completely undetermined. However, in forthcoming work of the
first and third author with Webb [ATW18], this dependence is bounded using a careful
analysis of Masur-Minsky hierarchies [MMO00], but the bound produced is on the order
of |x ()X Hence, one major novelty of Theorem 4.1 is that our error terms are
explicit and depend polynomially on |x(S)|. To our knowledge, the only other such
results are due to Futer—Schleimer [FS14] who estimate the cusp area of a hyperbolic
manifold in terms of translation length in the arc complex.

Using Theorem 7.1 we address Question 1 by giving a lower bound on deg(a, 3), the

minimal degree of a cover necessary to have disjoint components @, [ of the preimages
of a, [, respectively. We emphasize again that this application requires the effective
statement of Theorem 7.1 proven here.

Corollary 1.1. For two simple closed curves a and 5 on a surface S,
de(s) (@, B)
C(Ix(9)))
where C(x) = 3A1(x)As(x) with Ay and As as in Equation (1). When S is closed,

a =1, and in general a = 5.

< deg(a, §)°,

In Section 8, we provide an application of this corollary to certain virtually special
cube complexes. Given a sufficiently complicated collection I' of curves on a closed
surface S, Sageev’s construction [Sag95] gives rise to a dual CAT(0) cube complex on
which 7 (S) acts freely and properly discontinuously. The quotient of the complex
under this action is a non-positively curved cube complex €p. It is well known by
the work of Haglund—Wise [HWO08| that €r is virtually special, meaning that it has a
finite degree cover whose fundamental group embeds nicely into a right-angled Artin
group. The following theorem quantifies this statement by estimating the degree of the
required cover in the case that I' is a pair of curves:

Theorem (8.3). Suppose that o and [ are two simple closed curves that together fill a
closed surface S. Let degC€r be the minimal degree of a special cover of the dual cube
complex Cr to the curve system I' = au 5. Then

de(sy (e, B)
CIx(5)D

where C'(x) = 3A1(x)As(x) is a polynomial of degree 13.
Theorem 8.3 is related to work of M. Chu [Chu20] and J. Deblois, N. Miller, and

the second author [DMP20] on quantifying virtual specialness for various hyperbolic
manifolds.

< degCr,
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As a second application, we use Theorem 4.1 to effectively relate the electric cir-
cumference of a fibered manifold M, to the curve graph translation length ¢5(¢) of its
monodromy ¢: S — S. (For definitions, see Section 9.)

Theorem (9.1). If p: S — S is a pseudo-Anosov homeomorphism of a closed surface

S, then

: i < )
A ) < ciree (M) < As(x(S)) - (E5(0) +2),

where the polynomials Ay and Ay are as in Equation (1)

The outline of the paper is as follows. In Section 2 we give the necessary back-
ground on curve graphs, Margulis tubes in hyperbolic manifolds, pleated surfaces and
sweepouts. We then prove various lemmas regarding curves on surfaces and Margulis
tubes in 3—manifolds in Section 3 before proving Theorem 4.1 in Sections 4, 5, and 6
and Theorem 7.1 in Section 7. In Section 8 we prove the application regarding cube
complexes and in Section 9 we give the application to fibered manifolds.
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2. BACKGROUND

Given an orientable surface S with genus g > 0, n > 0 punctures, and without
boundary, define its complezity as w(S) := 3g + n — 4. We call such a surface S non-
sporadic if w(S) > 0. In order to avoid trivial cases in what follows, we will assume
that all surfaces are non-sporadic.

2.1. Curves on surfaces. Recall that a simple curve is essential if it is neither null-
homotopic nor peripheral (i.e. it does not bound a disk or once punctured disk on S).
As is usual in the subject, we will generally refer to a vertex a € C(S)® as a curve.
We reserve the term loop to refer to an embedded circle in S. With these conventions,
a curve is represented by a loop.

Given curves a, 3 € C(S)©, their geometric intersection number, denoted i(a, 3), is

defined as
(2) i(a, 8) = min {|a N b[},

where the minimum is taken over loop representatives a and b of o and 3, respectively.
A surgery argument due to Hempel [Hem01] (see [Sch11] for the general case) yields the
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following upper bound on distance in C(S) in terms of geometric intersection number:

3) degs) (0, ) < 2logy(i(a, 7)) +2.

In particular, this shows that C(S) is connected.

More recently, Bowditch [Bow14] proved a stronger version of Equation (3) which is
sensitive to the topology of the underlying surface, and which we will need in subsequent
sections. We reformulate Corollary 2.2 of [Bow14] as follows:

log(i(a, 8)/2)
log((Ix(9)] = 2)/2)’
so long as the denominator is well-defined and positive, which is the case for all S with
IX(S)| = 5.

2.2. Hyperbolic manifolds and Margulis tubes. Here we review some basic back-
ground on hyperbolic surfaces and 3-manifolds.

Let S be a finite area hyperbolic surface and let p be a puncture of S. A peripheral
curve about p corresponds to a parabolic element of m1(S). A horodisk in H? based
at a lift p of the puncture p will project to a neighborhood of p in S. There exists a
horocycle Qp such that the quotient of Qp by stab(ﬁ) < 7r1(S ) is not embedded, and

that for any horocycle H based at p separating Qp from p, H /stab(p) is embedded. We

(4) dc(s)(Oé, ﬂ) <242

call @p the mazimal horocycle for p. The open region of S facing p and bounded by
the quotient @), of @, is called the mazimal cusp neighborhood of p.

There is another horocycle I;Tp based at p which projects to an embedded loop of
length 2. The open region bounded between this loop and p is called a standard
cusp neighborhood of p. The standard cusp neighborhood is isometric to the cylinder
(—o0,log2) x S* equipped with the metric
(5) dz® + e**db?,
where —o0 < 2 < log(2) and 0 € S = [0,1]/(0 ~ 1) (see pages 110-112 of [Bus10]).

A key feature of hyperbolic geometry is that the volume of an n-dimensional ball
of radius r, denoted Vol,(r), grows exponentially as a function of r. In subsequent

sections we will need explicit formulae for this volume in low dimensions, so we record
that information here:

(6) Voly(r) = 4msinh?(r/2), Vols(r) = m(sinh(2r) — 2r).
In particular,

(7) Voly(r) = O(e"), Vols(r) = O(e*"),

and the following limits exist:

. Voly(r) Vols(r)

(8) =5
Given a hyperbolic manifold M and § > 0, the d-thin part of M, denoted by M s),
is the set of points in M with injectivity radius less than §/2. Similarly, the J§-thick
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part, Misq, consists of all points with injectivity radius at least §/2. Any hyperbolic
manifold M is of course the union of its d-thick and J-thin parts.

For n > 2, there exists a largest €, > 0 called the n-dimensional Margulis constant so
that the €,-thin part of any hyperbolic n-manifold M decomposes into a disjoint union
of cusps and subsets of the form T,,, T,,, ..., T,, where T, is a tubular neighborhood of
the closed geodesic a;. Thus, the es-thin part of a hyperbolic surface is homeomorphic
to a disjoint union of annuli, and the e3-thin part of a hyperbolic 3-manifold decomposes
as a disjoint union of solid tori and cusps.

Meyerhoff [Mey87] demonstrated the following lower bound for ez, which we will
subsequently need:

(9) 0.104 < €s.

Given 6 < €3, we denote by To(d) the component of M4 containing the geodesic
«. This is called the Margulis tube for a. We note that T,(0) can be empty if the
length of « is greater than d. Furthermore, there is a definite distance between T, (6)
and 0T, (e3), which goes to infinity as 6 — 0. A concrete estimate of this growth was
obtained recently by Futer—Purcell-Schleimer [FPS19]. We will require this estimate
in Section 3 and so we record it there in detail.

We now briefly discuss hyperbolic 3-manifolds M = H?/T’ homeomorphic to S x R, as
these manifolds are the focus of this paper. Here and throughout, we always consider
such a manifold with a fixed homotopy equivalence ¢: S — M, called a marking, which
allows us to identify homotopy classes of curves in S with those in M. Further, we will
only consider hyperbolic structures M on S x R without accidental parabolics meaning
that for each essential curve o in S, ¢(«) has a unique geodesic representative, whose
length we denote by /().

Associated to any such manifold M without accidental parabolics is a pair of end
invariants (A~, A\T), each of which is either:

(1) (non-degenerate) a point in the Teichmiiller space of S, namely a pair (f, o)
where o is a complete hyperbolic metric on S and f : S — o is a (homotopy
class of) homeomorphism;

(2) (degenerate) a filling lamination on S.

End invariants describe the behavior of the geometry of M = H3/T" as one exits out
of each of the two topological ends £7,ET of M. In the non-degenerate case, an end
& of M is foliated by surfaces S; equipped with induced metrics that converge (after a
re-scaling) to a hyperbolic metric on S.

In the degenerate case, Thurston [Thu78] proved that there exists a sequence of
simple closed curves on S whose geodesic representatives exit £, and which converge,
in the proper sense, to a lamination on S. That an end, in general, behaves in exactly
one of the above two ways follows from work of Bonahon [Bon86] and Canary [Can93],
and ultimately the proof of the Tameness conjecture by Agol [Ago04] and Calegari—
Gabai [CGO06].

The celebrated Ending Lamination Theorem, proved by Minsky [Min10] and Brock-
Canary-Minsky [BCM12], asserts that the end invariants (A", A7) associated to E*, &,
respectively, determine the hyperbolic manifold M.
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2.3. Pleated surfaces and sweepouts. Fixing a hyperbolic 3-manifold M, a topo-
logical surface S, and a lamination A on S, a A-pleated surface is a map F': S — M so
that:

(1) F is proper, and hence sends cusps to cusps,
(2) for each leaf [ of A, F(I) € M is a geodesic,
(3) for each component R of S\ A, F(R) is totally geodesic.

The map F' induces via pull-back a complete hyperbolic metric on the surface S.
With respect to this metric, F' is a 1-Lipschitz map of hyperbolic manifolds. Pleated
surfaces arise very naturally in the study of hyperbolic 3-manifolds. For example, the
convex core of a quasi-Fuchsian hyperbolic 3-manifold is always bounded by the image
of a pair of pleated surfaces. Moreover, if M is homeomorphic to S x R, work of
Thurston [Thu78] implies that if all leaves of A can be realized as geodesics in M, there
exists a A-pleated surface into M.

Given a surface S and a hyperbolic 3-manifold M, a I1-Lipschitz sweepout is a homo-
topy fi : Xy = (S, g1) — M, where g; is a hyperbolic metric on S and f; is a 1-Lipschitz
map for each t. Whenever M is homeomorphic to S x R, we only consider 1-Lipschitz
maps homotopic to our fixed marking. An important result of Canary [Can96] yields
the existence of 1-Lipschitz sweepouts interpolating between geodesics in M.

Theorem 2.1 (Canary). Let M = H?*/T' be a hyperbolic 3-manifold homeomorphic
to S x R without accidental parabolics. Let o, 8 be a pair of essential simple closed
curves on S with geodesic representatives o™, * in M. Then there exists a 1-Lipschitz
sweepout fi: Xy — M,0 <t <1, so that

o* < fo(Xo) and B* < fi(Xy).

Theorem 2.1 follows from Canary’s work on simplicial hyperbolic surfaces [Can96].
These are path-isometric mappings into M of singular hyperbolic surfaces with cone
points coinciding with vertices of a geodesic triangulation. More specifically, Canary
[Can96, Section 5] shows the existence of 1-Lipschitz sweepouts, where g; is a simplicial
hyperbolic surface, between any pair of useful simplicial hyperbolic surfaces, i.e. ones
with a single vertex and a distinguished edge that maps to a closed geodesic. This
formulation also appears in [Bro03a, Theorem 4.6]. Brock [Bro03a] (see also [BBI11,
Theorem 6.7]) reformulates Canary’s construction by uniformizing, replacing each g,
with the unique non-singular hyperbolic metric in its conformal class and using a result
of Ahlfors [Ahl38] to ensure that the resulting maps are still 1-Lipschitz. We refer the
reader to the proof of Lemma 4.2 in [Bro03a] where the complete details are given.

3. HYPERBOLIC SURFACES AND 3-MANIFOLDS

In this section we cover some fairly basic results in hyperbolic geometry. While
nothing here will be surprising to experts, care must be taken in order to keep track of
how the constants involved depend on the underlying parameters.

For a hyperbolic surface .9, let S5 denote the compact subset of S obtained by deleting
neighborhoods of each cusp consisting of points with injectivity radius at most /2.
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Lemma 3.1. Let S be a non-sporadic surface. Then for any 6 = 0 there is a constant
Lgss = 0 such that for any finite area hyperbolic structure on S and any x in Ss, there
s an essential loop in S through x of length less than Lg.

For the reader’s convenience, an upper bound for Lg is recorded in Remark 3.2.

Proof. Let T be any lift of x to the universal cover S = M2, and let 7 : H?> — S denote
the universal covering map. Let B be a lift of a maximal embedded open ball centered
at x. By maximality, there must be a pair of points z,y on the boundary of B which lie
in the same fiber over S. Then if [a, b] represents the geodesic segment with endpoints

a,be H?
pi=m([Z, 2]) = w([y, z])
is a loop p representing a non-trivial element of 7 (S, p).
Recall that the area of a hyperbolic disk of radius 7 > 0 is 47 sinh®(r/2), and therefore
by the Gauss-Bonnet theorem the radius of B is at most

2 sinh ( ()] /2) .

Hence the length of p is at most

(10) s i=4sinh™ (VIX(S)]/2) = 4log (vIXS)I2 + T+ [X(9)]/2)

When S is closed, this concludes the proof. When S has cusps, the above argument
gives us the desired loop unless p is a peripheral loop that circles a puncture p of S.
In this case, recall that @), (resp. H,) denotes the quotient of a maximal horocycle @,

(resp. a standard horocycle H,,).

Suppose first that z lies in the standard cusp neighborhood. Since z € Sy, (5) implies
that the distance dg(z, H,) between = and H, satisfies

(11) ds(z, Hp) < log(2/9).

Let N, be the subset of the maximal cusp neighborhood bounded by @, and H,,.
Since the area of the neighborhood of a cusp is equal to the length of its boundary, by
the Gauss-Bonnet theorem we have that @), has length at most 27|x(S)|. The region N,

can be lifted to a rectangle ],\7; in the upper half-plane model which is (up to isometry)
of the form

~

sz{(y,z)eHQ:0<y<a,0<r<z<b},
for some positive a, b and r.
Then H, lifts to the top edge of NV, and @), lifts to the bottom edge. Therefore,

UH) =T =2 Q) == <2r|x(9)|
Hence a = 2b and so r = b/7|x(S5)|, and this 1mphes
(12) ds(Hy, @p) < log(m[x(S)]).

By maximality, a fundamental domain of Stab(ép) — C~2p will project to a graph I’
on S which is not a loop but has a well defined tangent line at each point since the
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image of @p in S meets itself tangentially. Moreover, each edge of I" has a well defined
normal direction pointing into the cusp corresponding to p. Hence, we may pick a point
of tangency v (i.e. vertex of ') and consider the immersed subpaths p; and p, each
beginning and ending on one of the sides of v, whose union is I'. Considered as loops of
S, each p; is homotopic to a simple closed curve of S and is nontrivial in 7 (.S). (This
last fact follows since neither p; lifts to a loop in H?). Further, it can not be that both
p; are peripheral, since then S would be a 3-punctured sphere. We conclude that either
p1 O py is an essential simple closed curve.

Moreover, we may homotope p; to a simple loop of length at most 2log(7|x(S)|) + 2
by replacing arcs in @p with the corresponding arcs in ]T.lp and using (12). In S, this
amounts to following a geodesic arc to H), from the basepoint of p;, traversing a portion
of H,, and then following a geodesic arc back to the basepoint of p;. Again abusing
notation, we refer to these based representatives as p;, po and we note also that p; is
contained completely within E and p; meets H,.

Since x lies within distance log(2/d) from H,, it must be within a distance of at most
1+log(2/d) < 2+1log(1/0) from each p;, and therefore there is an essential loop through
x of length at most

2(2 +log(1/9)) + 2log(m|x(S)|) + 2.

If x € N, it can be at most log(w|x(S)|) + 2 from each p; and thus there is an essential
loop through = of length at most

2(log(w[x(5)]) + 2) + 2log(w[x(5)]) + 2 = 4log(m|x(S)]) + 6.

It remains to consider the case that x is separated from the puncture by ),. Recall the
simple loop p constructed in the first part of the argument, and that we are assuming
that p is peripheral. We claim that p must meet @Q,. Indeed, let p' € 0,,H? denote a
lift of the puncture p and let @Vp be the horocycle based at p projecting to @,. Since p
is peripheral, there is a lift p bounded by lifts 7, 5 of x so that x7 and 75 are on the
same horocycle R based at p. By maximality of @;, there is another lift @;/ of (), that
is tangent to @; and which intersects R at two points (see Figure 1).

Letting g € m1(S) be the parabolic element corresponding to the peripheral loop p,
all translates of 27 under the action of g on H? lie along R and lie outside of all lifts
of the horoball @, bounded by @, since x is separated from p by Q,. Therefore there

exists a lift p’ of p with endpoints T3 and 7, that lie along R such that Qp v Qp separate
73 and 7, (again see Figure 1). Thus, p/ must intersect Qp U Q’ so that p meets @),,.

Since the length of p is at most ég, it follows that x must be a distance of at most
ls/2 from @,, and hence from the region N,. Thus, there is an essential simple loop
through z of length at most ¢g + 4log(m|x(S)|) + 6, and so in all three cases the loop
constructed has length at most

(13) Lgs = 2log(1/6) + ls + 4log(m|x(5)]) + 6.
U

Remark 3.2 (Bounds on Lgs and Lg). We use the proof of Lemma 3.1 to give an
upper bound on Lgs that will be useful in subsequent sections. First we use (10) to
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FIGURE 1. When p is separated from p by (),, it must touch Q.

give the following upper bound on fg:

(14) ls < 4log(24/[x(S)]) = 4log(2) + 2log(Ix(5)]) < 3 + 2log([x(5)])-

Note the proof of Lemma 3.1 is much simpler when S is closed and we can use fg in
place of Lgs in this case. Combining (14) and the definition of Lgs (Equation 13), we
have that in general

(15) Lgs < 2log(1/6) + 6log(m|x(S)]) + 9.

Additionally, when S has punctures, we let Lg denote Lg,,, which using (9) is at
most

6 log(m|x(S)]) + 14.
When S is closed we set Lg = {g, which by (14) is at most

21og([x(5)]) + 4.

Lemma 3.3. Given a non-sporadic surface S there is a constant 0 < €g < €3 satisfying
the following: Let M be a hyperbolic manifold with M =~ S x R, and let « be a curve
on S. If f: S — M is a m—injective, 1-Lipschitz map such that f(S) n Ty(es) # &,
then fs(a) < Lg.

Further, there is a loop in the isotopy class of a whose length is less than Lg in S
and whose image in M is contained in T, (e3).

Explicit bounds for the constant eg are recorded in Remark 3.4.

Proof. Given a positive u < €3 and a non-empty p-tube T, (), let F,(u) denote the
distance between the boundary of the Margulis tube 0T,,(x) and T, (x). The function
F, is decreasing in u, and Theorem 1.1 of Futer—Purcell-Schleimer [FPS19] states that

(16) Folp) = F(u) := arCCOShTETgE)Qu —.0424.
Let eg = F1(Lg/2) for Lg as in Remark 3.2. Hence (16) implies
€3

F(es) = Lg/2 = arccoshm

— 0424,
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and thus,

(17) €s

€

 7.256 - cosh? (Lg/2 + .0424)”

If f(x) € To(u) for o < €3, then x € S., since the es-thin part of any cusp neigh-
borhood must map via f into the es-thin part of a cusp neighborhood of M, and any
Margulis tube in M is disjoint from all e3-thin cusp neighborhoods in M. Thus by
Lemma 3.1 there is an essential simple loop p through z of length at most Lg = Lg,.

Now suppose that f(z) € T,(es) as in the statement of the lemma. Since the map is
1-Lipschitz, the loop f(p) has length less than Lg and meets T, (es). Hence, any point
on f(p) has distance at most Lg/2 from T,(es), and so by construction f(p) < T,(e3).

As f induces an isomorphism on 7, f(p) is homotopic to some power of . But, p
is a simple curve on S and so we must have that p is in the isotopy class of a on .S and
the proof is complete. O

Remark 3.4 (Bounds on €g). Applying the upper bounds on Lg obtained at the end
of Remark 3.2 and the lower bound on €3 from (9) to the definition of eg (see Equation
17), we see that

€2 1
s = 2 ST 2
8 - cosh® (log(|x(S)[) +2) ~ €2~ [x(5)]
when S is closed, and

(18) €

2
> . 5 > ! ,

8 - cosh? (3log(7|x(9)|) +7) ~ €276 - [x(9)[6
when S has punctures.

Also, notice in the proof that eg is chosen small enough in comparison to €3 so

that the distance between the eg-tube and the boundary of the es-tube is at least
]:(65) = LS/2 = 2.

(19) €s

Lemma 3.5. There is a universal constant D > 0 so that if v, and v, are curves on a
hyperbolic surface S with length less than Lg, then de(sy(v1,72) < D.

The proof will show that

(20)

- 20 for S closed,
= 1104 otherwise.

Following the proof, we give a much smaller bound on D, when |x(S)| is sufficiently
large.

Proof. By the collar lemma, v; has an embedded annular neighborhood of width at
least

log(coth(¢(v1))/4) =: ¢(mn).
Since log(coth(z/4)) — o as x — 0 and decays to 0 as x — oo, there is some positive
constant ¢ so that

¢/2 = log(coth(c/4)).
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By inspection we see that ¢ < 2.
We first present a proof in the special case that S is closed, as in this setting the
argument is more conceptual.

S is closed: First assume that 7; is the shortest closed geodesic on S, and let NV(71)
denote a maximal collar neighborhood of ~;. Let B denote the boundary of a lift of
N (1) to the universal cover. By maximality, there is a pair of points T,7 € B which
project to the same point on the boundary of A/(y1) but are not identified by Stab(g).
Let 77 be the lift of v; corresponding to B and let ¥ and ¥’ be the points on 7, nearest
to T and 7, respectively. If necessary, we place y to minimize the distance between
2" and ¥’ so that the subarc a of 4; between them has length strictly between 0 and
¢(~1)/2. Hence, the path p which is the concatenation of the geodesic arcs [Z,7], a,
and [, 7] has length at most £(;)/2 plus the width of N ().

Let p be the loop which is the projection p to S. By construction, p is neither
homotopically trivial nor homotopic to a. Since 7, is the shortest closed geodesic in S,
we conclude that width of AV(y;) must be at least £(v1)/2.

Thus, 71 must admit a collar neighborhood of width at least ¢(;)/2. Therefore,

i(2, 1) < minf20(y2)/€(7), £(72)/¢(n)]

< Lg - min[2/¢(y1), 1/e(y)]-
Thus, if £(y1) > 2, i(y1,72) < Lg, and if £(y1) < 2, ¢(71) > 1/2, so we have i(y1,72) <
2Ls.
Consider the case where |x(S)| = 5. Using (4), we note that if de(s)(71,72) = 6,

then ~; and 7, must intersect at least w times. Using the fact that Lg <

2log(|x(9)]) + 4 (see Remark 3.2 when S is closed), it follows that des)(71,72) < 5 so

long as |x(5)| = 8 since

(z —2)
2

For the finite list of remaining surfaces, we use the fact that on any surface 9,

dc(s)(Oé, ﬂ) < 210g2(7;<057 5)) + 2.
Note that if |x(5)| < 8, i(y1,72) < 2Lg < 16.32, so we must have

> 2 (2log(x) + 4).

r>=8=

deesy(71,72) < 10.

In general, let o represent the systole of S; 7; need not coincide with «, but the
above argument shows that

dc<s>(%,a)<{ IX(5)|

5 [x(9)=8
and so by applying the same argument to v, and then using the triangle inequality,

20 [x(S) <38

d, , <

The non-closed case:
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As for the general case where S is not necessarily closed, we use the collar lemma
and argue that vy, v, each have embedded collar neighborhoods of width at least

log(coth(Lg/4)),
which, applying (15), is at least

log (coth (g log(r|x(S)]) + g)) |

i 6log(m|x(S)|) + 14
S N E G )

_ Glog(m|x(S)) +14 W
IOg <e77r3|x(S)\3+1> )

eTm3|x(9)3 -1

It follows that

(21)

We compute directly that

Ws <2 [x(8)*log(Ix(9)])-
Assuming that |x(S)| = 10 and using (4), we conclude that

log (2%|x(5)* log(Ix(S)])
log (([x(9)] = 2)/2)
cas 78 8 - log [x(5)]
log([x(S)| =2) =1 log(|x(S)] —2) =1
As we are assuming that |x(S)| = 10, this is in turn at most

2+ 7234+ 17.06 < 92.
On the other hand, if |x(S)| < 10, W is bounded from above and applying (3) yields
de(sy(71,72) < 104

desy(71,72) <2+ 2-

=:2+ A+ B.

In conclusion,
104 |x(9)| < 10

d <
C(S)('717'72) {92 |X(S)|>10,

O

In reference to the conclusion of the previous proof, we note that as |x(S)| — oo,
A — 0, B — 8 and thus for sufficiently large Euler characteristic, we obtain the much
smaller bound of 11. Moreover, using a stronger version of (4) due to the first author
[Aoul3], one can conclude that for all S with |x(S)| sufficiently large,

de(s) (71, 72) < 6.

However, we will not make use of these improvements here since they do not produce
completely explicit constants.
We conclude this section with the following lemma.
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Lemma 3.6. Let 0 <6 <1 and L > 1. Fiz x € Mis). Then the number of homotopy
classes of loops of length less than L based at x is less than

P(L,8) := —Vo\lfo(lf (;) ).

Proof. The argument is standard, but we provide it for the reader’s convenience.

Let H3® — M be the universal covering and let T be a fixed lift of . Let B’ be the
ball of radius L about ¥ so that the based homotopy classes of loops of length less than
L at x in M correspond to the translates of 2 in H contained in B’. Since x € M),
the d—balls about these translates are all disjoint, and since they are contained in the
ball B of radius L + ¢ about Z, we see that the number of such points is bounded by

Vols (L+6) .
Volg(8) 7 85 required. O

Remark 3.7. Using (6), (7), and (8), we have that
Vol3(L +0)  sinh(2(L + 9)) — 2(L + 9)

(22) POy = —mm ~ sinh(20) — 26

For large L and small ¢,
sinh(2(L + 0)) — 2(L + 9) _ sinh(2(L + 0))

B M e T e ) - S

4. ELECTRIC DISTANCE

For a hyperbolic manifold M, let dj; denote distance in the hyperbolic metric. Fixing
0 < & < e3, let M denote the manifold obtained from M by removing d-thin cusps.
Of course, when M has no cusps, M = M;. For two points z,y € Mj, their d-electric
distance is defined as

d5;(x,y) = inf{length(p N Mis.0))}

where p varies over all paths with image contained in Mj, joining z and y. When M has
no cusps, this is the length of the portion of the shortest hyperbolic geodesic joining x
and y that occurs outside of the d-tubes of M. Our main technical result is an explicit
inequality relating distance in the curve graph of S with electric distance in M.

Theorem 4.1. Let o and 8 be curves in a non-sporadic surface S and let M =~ S xR be
a hyperbolic manifold without accidental parabolics such that €y(), by () < €s. Then

L A(IX()) - degs) (@, ) < dii (e, B) < Ao([x(S)]) - degs) (@, B),

where the polynomials Ay and Ay are as in Equation (1).

The proof will be completed over the next several sections.

The idea behind the following proposition is simple and well-known to experts.

Proposition 4.2. Let 0 <n < W Then for any curves a and 8 in S,

/

By(0.8) < T o 0, 5)
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Remark 4.3. When S is closed, n need only be less than the Margulis constant e3.
This fact will be used in the proof of Theorem 7.1.

Proof. Let a = g, aq,...,a, = B be a curve graph geodesic from « to 5. For each i,
let fi: X; = (S,9;) — M be a pleated surface through «; U a;;1. In particular, f; maps
each of the geodesic representatives of «o; and «; 1 in X; to its geodesic representative
in M. For clarity, we denote the geodesic representative of «; in M by a.

For each i, pick a point m; € «f, and let x; and y; be points along the geodesic
representatives of «; and ;1 in X, respectively, so that f;(z;) = m; and f;(y;) = mi 1.
Finally, let p; be the shortest path in X; from x; to y;. The bounded diameter lemma
of Thurston and Bonahon gives that length(p; n (X)) < w. Indeed, following
[Can96, Lemma 4.5], if p] = p; 0 (X;)p,00), then the 7/2-neighborhood C; of p} is
embedded in X; and so

n/2 - Ux,(p!) < Area(C;) < 27|x(9)].

Since f; is 1-Lipschitz, it maps n-thin parts of X; to n-thin parts of M and so
length(fi(pi) N Mpy,«)) < £x,(p]). When M has no cusps, this immediately gives that
dyr(mi, mis) < Ox,(p7)-

In the presence of cusps, we argue as follows: First, we claim that p; cannot enter
any horocyclic cusp neighborhood in X; whose boundary has length 2/e. To see this,
begin with the standard fact that simple closed geodesics on X; do not enter any
standard cusp neighborhoods. So for any cusp of X;, the endpoints of p; lie outside of
its standard cusp neighborhood. Since p; is embedded, the length of any component
of its intersection with a standard cusp neighborhood is no more than 2. Hence, its
deepest point in the standard cusp neighborhood has distance no more than 1 from the
horocycle boundary. This means that it does not cross the horocycle for that cusp of
length 2/e.

Now suppose that there is some z € p; such that f;(2) lies in an n-cusp of M. Then
any nontrivial loop based at z whose length is less than 2log(e3/n) must be peripheral.
This is because the image of such a loop is entirely contained in the corresponding
es-cusp of M and so the loop must represent a peripheral element of 71S. But since

eS(mx(9)])?*’

we see that every loop of length no more than 6 log(m|x(S)|)+12 based at z is peripheral.
However, the fact that p; does not enter any horocyclic cusp neighborhood in X; whose
boundary has length 2/e, together with Lemma 3.1 and Equation (15), implies that
every point along p; is the basepoint of some essential (i.e. nonperipheral) loop of
length no more than 6log(w|x(S)]) + 11, a contradiction. Here we are using the fact
that the injectivity radius along p; is at least 1/e so we set 6 = 1/e in (15).

We conclude that f;(p;) does not enter any n-cups of M. Hence, just as in the case
without cusps, we conclude that d7,(m;,m;11) < lx,(p)).



16 TARIK AOUGAB, PRIYAM PATEL, SAMUEL J. TAYLOR

Finally, using the fact that f; maps the n-thin part of X; to the n-thin part of M,
we obtain

n—1

(e, B) < Z dy(mi, mis1)
B
N
i=0
< w ~degs) (o, B). O
We label the coefficient at the end of the proof above by
24) Atan) = .
Thus, (24) and (18) yield the inequality
(25) A(IX(9)] es) < Az([x(5))),
for
= UCE Wi

as in Equation (1). We note that in the non-closed case A(z, e5) < 4 e*n72", and that
the discrepancy between this polynomial and As(x) arises from the retract Lipschitz
constant from Lemma 7.2.

Hence, we can complete the proof of the upper bound in Theorem 4.1 using Propo-
sition 4.2 with 1 = e€g so that

(27) dyi (e, B) < A(IX(5)], €s) - degs) (v, B)
< A(IX(S)]) - degs) (@, B).
Note that for this upper bound there is no requirement on the lengths of «a, 3.

The main idea for the other direction is contained in the following lemma. Roughly,
the lemma says that as long as we can find a sweepout between the geodesics a and
[ which separates o from [ at all times, then we obtain the desired bound on curve
graph distance in terms of electric distance in M. The fact that we can find such a
sweepout will be proved in the next section.

Lemma 4.4. Let a and § be curves in a non-sporadic surface S and let M =~ S x R be
a hyperbolic manifold without accidental parabolics such that (), by (8) < es. Let p
be a path in M joining T, (es) and Tg(es) and suppose that
(1) pis contained in My ),
(2) there is a 1-Lipschitz sweepout (f;: Xy = (S, gt) = M)ieo,1] such that f:(S)np #
& for all t € [0,1], and
(3) fo(S) nTales) # & and fi(S) N Tp(es) # .
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Then

des)(a, B) < Au(Ix(9)]) - ar(p)
for Ai(x) as in Equation (1).

Proof. Note that by Lemma 3.3, {x,(o) < Lg and x, () < Lg. For each curve v on
S, we consider the following closed subset of [0, 1]:

I(y) = {te[0,1]: £x, () < Ls}-

Here +, is the shortest loop over all representatives of v on S with the property that
fi(7p) passes through the geodesic p. By (2) (and Lemma 3.1), these closed subsets
cover [0,1]. Moreover, by Lemma 3.5, if I(71) n I(72) # &, then de(s)(71,72) < D,
where D is the universal constant from Lemma 3.5. Finally, that same lemma gives
that de(s)(a,y) < D whenever 0 € I(y) and de(sy(5,7) < D whenever 1 € I(y).

We use this information to build a graph G whose vertices are the curves 7 such that
I() # & together with o and . Two vertices y; and 2 of G are joined by an edge
in G if either I(vy) N I(y2) # &, or 1 = a and 0 € I(7,), or 73 = B and 1 € I(72).
The first paragraph of the proof immediately implies that the graph G is connected
and that adjacent curves have curve complex distance at most D.

The proof will be completed by giving a bound on the number of vertices of G in
terms of y/(p). For this, first note that every vertex of G can be realized in M as a
loop meeting the path p with length no more than Lg.

Break p up into N segments py, ... py, the first NV —1 of which have length 1 and the
last of which has length less than 2 so that N = |{3,(p)]. (By Remark 3.4, {5/(p) = 4.)
Let S; be the set curves on S that can be realized in M as loops meeting the segment p;
with length no more than Lg. By the above paragraph, the vertices of GG are contained
in UZL S; and so the number of vertices of G is no more than Zfil #S;.

By criterion (1), Lemma 3.6, and Remark 3.7,

VOlg(LS + €g + 2) - SiHh(Z(LS + €g + 2)) - e2(Lstes+2)

= 3 = 3

VOlg(ES) €g €s

#S; <

Furthermore,
62(L5+65+2) < 62L5+6 < 66 . 6410g(|x(5)\)+8
14 4
= e X9,

when S is closed, and

e2(Lstes+2) < o6 . 12log(n|x(S))+28
- Py(9)]”,
when S has punctures. Along with the lower bounds on eg established in (18) and (19)
this implies,
et|x(S)[*0 for S closed
e (S)3°  otherwise.

#S¢<SZ={
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Putting everything together, there is a path from « to 5 in G whose length is less
than the total number of vertices of G. Since each of these vertices is contains in some
S; and adjacent vertices have distance at most D in C(S),

N
degs) (@, 8) < D - ) #S;
=1

< D-s-Ly(p).

By the proof of Lemma 3.5 (see (20), D < 20 when S is closed and D < 104 in
general, so that setting

(28)

104 24730230 otherwise

20 e*g10 for S closed
Al(I> = {

as in Equation (1) gives us

degs) (@, B) < Ar([x(9)]) - Lar(p).
This completes the proof. 0

5. SEPARATING SWEEPOUTS

In what follows, let T, be shorthand for the tube T,(es). Let f;: S — M, t € [a,b]
be a 1-Lipschitz sweepout and let 3; = f;(S). For a given time ¢, we say that ¥, is to
the left of T, if T, lies in the component of M\¥; containing the A™ end of M, and %;
lies to the right of T, if T, lies in the component of M\X, containing the A~ end of
M. We say that ¥, is weakly to the left (resp. weakly to the right) of T, if ¥, is to the
left (resp. right) of T, or 3 intersects T,

In order to find sweepouts satisfying the conditions of Lemma 4.4, we require the
following:

Proposition 5.1. Let a, 3 be intersecting curves on S whose lengths in M are no more
than eg. Let f;: S — M, t € [a,b] be a 1-Lipschitz sweepout such that ¥, lies weakly to
the left of T, and Tp and 3y lies weakly to the right of T, and Tgs, where ¥y = f;(5).
Then there is a subinterval [c,d]| < |a,b] such that

(1) Both T, and Tg meet X, U Xq4,
(2) Neither T, nor Tg meet X fort e (c,d), and
(3) X separates T, from T for each t € (c,d).

The proof requires some notation. Let m, < [a,b] be the set of times the sweepout

meets T,:
me = {t €[a,b]: X n Ty # T}

Define mg similarly, and note that m,, and mg are disjoint closed subsets of [a, b], since
no 1-Lipschitz map can meet both T, and Tgz. This follows from the fact that if >,
meets both T, and Tps, then by Lemma 3.3 there are representative loops a and b on
S such that f;(a) = T, and fi(b) < Tp, and so a and b are disjoint. This contradicts
the assumption that o and S intersect.
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The components of [a, b]\m, are open in the interval [a,b], and each is a subset of
one of three disjoint subsets of [a,b], denoted [, 74, b, and defined as follows. Define
l, to consist of those times when ¥, is to the left of T,. Similarly, let r, be those times
for which »; lies to the right of T,, and let b; be those time when T, lies in a bounded
component of M\Y;. Since ¥; always separates M, [a,b]\m, = l, U by U 4. Define
lg,bs, s in the analogous way. We will think of each point in [a, b]\m, (or [a,b]\mp)
as being colored by the subset they are in — each such point gets an « (resp. ) color.

With this terminology, we claim that the following lemma immediately proves Propo-
sition 5.1.

Lemma 5.2. There is a closed interval I < [a,b] whose interior is a component of
[a,b]\(mq U mg) such that

(1) I has one endpoint in m, and one endpoint in mg, and
(2) for each t in the interior of I, its « color is different from its 3 color.

Proposition 5.1 follows from the fact that if ¢ gets a different « color and 3 color (the
colors being either [, r, b) then T, and T lie in different components of M\X;.

We now turn to finding the desired subinterval of [a, b]. Let us begin by making a few
observations. First, m, and mg are closed and disjoint, so components of one cannot
accumulate onto a component of the other. Hence, if we are at a component of (say) m,,
it makes sense to talk about the component of mg immediately after or before it in the
time interval. Second, outside of the endpoints a and b, we only consider components
of m, U mg which have nonempty interior. We call such components thick. Note that
by continuity of the sweepout, the « color (or 5 color) can change only across a thick
me component and we call such a component color changing. More accurately, if two
points in [a, b] are not separated by a thick component of m,, then they have the same
a color. Finally, call an interval in [a, b]\(ma v mg) switching if it has one endpoint in
mq and one endpoint in mg. It is clear that a switching interval must exist: otherwise
we can construct a sequence of nested intervals Iy © I; © ... each with one endpoint
in m, and one endpoint in mg such that NI = {x}. Since we would necessarily have
that = € m, N mg, this is a contradiction.

Proof of Lemma 5.2. We first prove the lemma under the strengthened assumption that
2, lies to the left of T, and Ty and Y, lies to the right of T,, and Tg. Note that, in
this case, a € [, nlg and b € 7, N 3. We assume that all m, and mg components
discussed in this proof are thick. There are only finitely many color changing m, and
mg components. (This is because any point ¢ in the topological boundary of, say, m,
can be colored depending on what side of >; the geodesic representative of a lives
on, and nearby points of [a,b]\int(m,) must have the same color.) Now choose an
interval [ag, by] < [a,b] that has the smallest number of total color changing m, and
mg components, such that the o color and the [ color agree at each of ag and by,
but that these colors are not the same. Note that [a,b] satisfies the criteria by the
strengthened assumption, but it is not necessarily the smallest such interval.

As we sweep from ag to by, we will change the o and  colors in some order. Here
we are using the fact that the a and § colors change between a and b. Let us suppose,
without loss of generality, that the first to change is the a color. As we continue to
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sweep, the a color can continue to change or remain the same, but eventually we reach
the first mg component, which we call my, for which the 3 color changes. We claim that
the closure [¢, d] of any switching interval (¢, d) between m;, and the color changing m,,
component directly preceding it will be the required interval. Assume it is not. Then
there exists a time t € (¢,d) at which the a and § colors must agree, and therefore,
must also agree with the o and [ color at ag because the § color does not change before
myp. Then [t, by] is an interval satisfying all of the relevant criteria with at least one less
color changing m,, component, contradicting the minimality of [ao, by].

Now if 3, lies weakly to the left of T, Ts, but not to the left of both T,, Ts, then
¥, intersects T, or Ts, but not both. Assume it intersects T,. Then, we replace [a, b]
with a larger interval [da/,b] where ¢/ < a” < a, [d/,a”) is colored with ¢,, [a”,a] is
added to m,, and [d’, a] is colored with (g. If instead ¥, intersects Ty and lies to the
left of T,, [a’,a”) is colored with (3, [a”,a] is added to mg, and [d, a] is colored with
l,. Note that we are enlarging the interval and extending the coloring but not altering
the sweepout itself.

We analogously extend the right side of the interval to obtain [a, V'] if ¥ lies weakly
to the right of T,, T, but not to the right of both T,, Tz. We run the combinatorial
argument above with the new interval [a’,0'] and note that o’ € [, nlg and V' € r, N 75
as required. Additionally, the desired switching interval (¢, d) must lie in the original
interval [a, b] that the sweepout is defined on. This follows from the fact that the first
possible color changing interval is [a”, a] so that the definition of the switching interval
shows that the smallest possible value for ¢ is a. Similarly, the last possible switching
interval is [b, b”] so that the largest possible value for d is b. Thus, [c,d] is the desired
subinterval of [a,b] and the proof is complete. O

Another method for proving Lemma 5.1 was suggested to the authors by Dave Futer.
In short, one uses a result of Otal [Ota95, Ota03], which guarantees that short curves
in M are unlinked, to topologically order the short v; and the 1-Lipschitz surfaces they
meet. Rather than attempt to make effective this technique, we chose instead to employ
the direct combinatorial argument found above.

6. FINISHING THE PROOF OF THEOREM 4.1

Recall that Ay(|x(S)|) is obtained by setting n = €g in (24), giving us the upper
bound in Theorem 4.1

£ o ) < ZX0S)

i ~des)(a, B) = Ag([x(S)]) - degsy (e, B).

For the lower bound, suppose that o and  are given and let p be a path in Mes
minimizing the eg-electric distance between the geodesic representatives of a to 3 in
M. Here ]\7[65 is the manifold obtained by removing the eg-thin cusps of M, which are
disjoint from the €3 tubes in M. (Recall that by assumption ¢ (a), €y () < €5.) Let S
be the set of curves v in S such that p meets T., = T, (es) in M and index S = {v;},
according to the order in which these tubes are met by p. (Set v = o and yy,1 = 5.)
Note that this ordering makes sense since these tubes are disjoint, and by Remark 3.4

the distance between two such tubes is at least 4.
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Let p; be the subarc of p between the last point of p n T,, and the first point of
pnT Then these subarcs are disjoint and p N M, o) = |, pi since p is contained

Yi+1-
in M., by assumption.

Lemma 6.1. There exists a 1-Lipschitz sweepout f;: S — M, t € [a,b] such that
Yo = [u(S) lies weakly to the left of a, B,7; and Xy = f,(S) lies weakly to the right of
o, B, foralll <i< N.

Proof. Let € denote a fixed end of M, i.e. £ = E*. If £ is degenerate, then [Can96, The
Filling Theorem]| gives a sequence of useful simplicial hyperbolic surfaces that exit £.
In particular, such surfaces are eventually to the left (right) of any finite set of geodesics
when £ = £~ (resp. = £T). If £ is non-degenerate, then it corresponds to a component
of the boundary of the convex core core(M), which we denote by d4core(M) when
E = &*. We recall that d;core(M) is itself a pleated surface and the lemma will follow
from that fact that it can be uniformly approximated by useful simplicial hyperbolic
surfaces, as in the following claim:

Claim 1. Let f: S — M be the pleated surface that represents a boundary component
of the convex core of M. Then there are simplicial hyperbolic surfaces f;: S — M such
that f; — f uniformly on compact sets.

The proof is essentially well-known to experts but doesn’t appear to be explicitly
written in the literature. Before sketching the details, let us see how it completes the
proof. For each end £%, let f* be a sequence of useful simplicial hyperbolic surfaces
that exit that end or accumulate on the associated convex core boundary, depending
on whether the end of degenerate or not. Then the 1-Lipschitz sweepout from f; to
f;7 given by Theorem 2.1 eventually has the desired form since all closed geodesic of
M are contained in core(M).

It remains to prove the claim. The proof is almost exactly the same as the one used
to prove [FS14, Theorem A.1]. To make the argument as direct as possible, we use
notation and refer to references from their Appendix A.

Sketch of proof of claim. The proof follows from two facts. The first is that f is the
uniform limit of pleated surfaces g;: S — M whose pleating locus L; is maximal (i.e.
all complementary regions are ideal triangles) and has the special property that it has
a unique closed leave ¢; and all other leaves spiral around ¢; in a consistent direction
(or exit a cusp). Indeed, one can first take any sequence of simple closed geodesics ¢;
whose Hausdorff limit (or limit in the Chabauty topology, in the presence of cusps; see
[F'S14, Definition A.2]) is a lamination containing L. See, for example, the proof of
[FS14, Lemma A.6]. Then complete each ¢; to a lamination L; of the required form;
after passing to a subsequence, the L; limit to a lamination I’ > L. Compactness of the
space of pleated surfaces ([CEGS87, Proposition 5.2.18]), applied exactly as in [FS14,
Lemma A.7], then implies that after passing to a subsequence, the pleated surfaces g;
pleated along L; converge to f in the compact-open topology.

The second fact is that each g; as above, is itself a limit of useful simplicial hyperbolic
surfaces. Indeed, this fact appears in Thurston’s notes ([Thu78, Section 8.39]) and
follows by observing that L; can be obtained by starting with a triangulation of .S with
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a single vertex along ¢;, with ¢; appearing as an edge of the triangulation, and ‘spiraling’
the other edges around ¢; by isotoping the vertex around the geodesic representative of
¢;. The resulting simplicial hyperbolic surfaces in turn converge to the pleated surface
g;- Taken together, we obtain useful simplicial hyperbolic surfaces that limit to the
pleated surface f, as required. O

O

Next, our analysis breaks into two cases, depending on whether v; and ~;,; intersect
as curves on S. If not, then de(s)(7s,7i+1) < 1 and we can only say that £(p;) > 4 by
Remark 3.4.

Now suppose that v; and 7,4 are such that de(s)(7s,7i+1) = 2. In this case, apply
Proposition 5.1 to obtain (up to reversing the time parameter) a sub-sweepout (f;: X; =
(S, 9t) = M )iefa; p,] With the following properties:

(1) 2a; N T%’ # (J and 2p; O T'Yi+1 # J,
(2) Xy np; #  for all t € [ay, b;],
(3) pi is contained in M, o).
Note that we are using that X, cannot meet both T, and T,,,, and that since X,

separates ~; from ~;,1, it must meet p;. Hence, we may apply Lemma 4.4 to conclude
that

deesy(Vis Yie1) < A1(Ix(9)]) - €ar(ps),
and thus,

deesy(o, ) < Z decsy(Vis Yie1)
Al ’X ZgM pl

< Au([x(9)]) - d?vsf( ,B)
as wanted. This completes the proof of Theorem 4.1.

7. COVERS AND THE CURVE COMPLEX

In this section, we follow Tang [Tanl2] and apply Theorem 4.1 to analyze maps
between curve graphs induced by covering maps of surfaces.

Ifp: S — Sisa covering map, there is a coarsely well-defined map p*: C(S) — C (§ )
induced by p; given an essential simple closed curve v on S, define p* () to be the full

pre-image p— (7) c S. This will be a multi-curve on S corresponding to a complete
subgraph of C(S). Given o and 8 vertices of C(S), we can then define the distance in
C(S) between p*(a) and p*(/3) to be the diameter of their union:

de(z) (™ (), p*(B)) := diam(p*(ar) U p*(5)).
With this setup, we prove the following:



COVERS OF SURFACES, KLEINIAN GROUPS, AND THE CURVE COMPLEX 23

Theorem 7.1. Let p: S — S bea finite covering map between non-sporadic surfaces.
Then for any «, B distinct essential simple closed curves on S,

de(s) (@, ) L
dez(p) - Axe sy < %ed P (@): 7 (B)) < degs) (@, B),

where As is the polynomial Asz(x) = 80 e>rx'® when S is closed.
When S has punctures,

de(sy (e, B)

deg(p)® - As(|x(5)])
where As is the polynomial Az(z) = 416 e 7737238,

Recall that Az(z) = A;(x) - Az(x) for Ay, Ay as in Equation 1.

< dc(§)<p*(a)7p*(ﬁ)> < dc(5)<05,ﬁ>,

Proof. Given 7,7, disjoint essential simple closed curves on S, p*(;) will be disjoint
from p*(,). Applying this to the vertices along a geodesic from « to § proves the
upper bound on d;, 3 (p*(a),p*(B)) in Theorem 7.1.

For the lower bound, we choose a hyperbolic manifold M =~ S x R so that {y;(«)
and £y;(f) are at most e€g. Constructing such a manifold is standard; for example, see
[Kap10, Chapter 8]. Thus, the first inequality of Theorem 4.1 implies that

(29) des) (e, B) < Ar(Ix(9)]) - diji (ev, ).

The covering map p gives rise to a covering of 3-manifolds p*M — M. Let p*a, p*f3
also denote the geodesic representatives in p* M of the lifts p~!(a), p~ (), respectively,
and let v be a path in p* M from any component of p*« to any component of p*3. Then
~ maps to a path in M from « to (.

When there are no cusps, since a covering map is distance non-increasing and sends
the thin part into the thin part, it follows that

where the right hand side is defined to be the minimum electric distance between a
tube about any component of p*a and a tube about any component of p*5. Combining
this observation with (29) yields

(30) des)(a, B) < Ar(IX(S)]) - dpips (P, ).

When S is closed, the upper bound on 7 in Proposition 4.2 is simply €3, the Margulis
constant. Thus, applying Proposition 4.2 to the right hand side of (30) with n = €5 we
obtain

~

degs)(a; B) < Au(IX(9)]) - A(Ix(S)]; €5) - deg) (P, ).

Recall that A([x(5)],€5) = deg(p) - A([x(5)], €s) < deg(p) - A2(|x(S)]) by (25), which
yields the lower bound in the closed case.
In order to apply Proposition 4.2 to the right hand side of (30) when S is not closed,
it is necessary to choose
€3

TS S ERGP
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and when the degree of p: S Sis large we note that €g is not small enough to satisfy

the above inequality. Hence, we set 7 = min {QQOWG‘IX GG (gl‘;(()g)lﬁ }, where W

is the lower bound on eg from (19) and 0.104 is a lower bound on €.

Moreover, it is possible that the projection of the n-electric geodesic in p* M between
p*a and p*f is not an n-electric path in M. Indeed, denoting the n-electric geodesic
in p*M by 7, p(v) might penetrate an n-thin cusp. On the other hand, p(y) can not
penetrate any 7n/deg(p)-cusps. To address this possibility, we use the following which
appears as Lemma 3 of [Tan12]):

Lemma 7.2. Given d < n, let r denote the natural retract from Ms to Mn corresponding
to nearest point projection with respect to the d-electric and n-electric metrics on the
domain and target, respectively. Then r is K-Lipschitz, for K = sinh(n)/sinh(d).

It follows that

sinh(n) . x
G B) < Ftmjaeg(py) @ P

Suppose first that deg(p) > (0.104)"/3-¢/3.7|x (S|, so that n = 0.104/(e% (7| x (S)])?).
Using this 7 and that deg(p) = X5 " we have

x(5)
: 0.104
sinh(y) ~_ sinh <66ﬂ3|x(§)\3)
sinh(n/deg(p : 0.104-[x(S)|'\
(n/des(®) - sinn (GG

Since the hyperbolic sine function is monotonically increasing, we can take this quan-
tity to be at most
sinh (—6 0.104 >
eSm3|x(S)? &
=: SH)).
(i) F(x(3))
eSm3|x (S)|*
Let g(x) = f(1/z), and note that given C, D > 0, if z - |g(z)] < C on (0, D], then

|f(z)] <C-xon [1/D,x0).
Plotting x - g(x) with any standard computer algebra system reveals that on (0, 1/2],

r-lg(a)) <2

Since the absolute value of the Euler characteristic of a surface covering a hyperbolic
surface is at least 2, we therefore obtain the bound

(o, B) < 2X(S)] - dlpr(p*r, p*B).

Since n < eg,

dyi(a, ) < dy (e, B),
and given the inequality above we have that

dii(a, B) < diy(er, B) < 2AX(S)] - dyepy ("0, *B).
Now starting with (29) and applying Proposition 4.2 with this 7 yields
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des)(a, B) < A(IX(9)]) - 2[x(9)] - A(IX ()], m) - dez) (v, p*B),
where N N
2x(S)] - A(Ix(S)],m) = deg(p)” - 8e"m*(Ix(S)])°,
which is less than deg(p)® - As(|x(9)|), giving the desired result.
Finally, in the case where deg(p) < (0.104)Y/3 - !4/3 . 7|x(S)], so that n =
using the monotonicity of hyperbolic sine we have that

sinh(n) sinh <62°7T6|1x(5_)|6> B
Sinh(ﬂ/deg(p)) N sinh ( L >

(0.104)1/3674/37T7|X(S)|7

1
e2076]x(S)[6

r(Ix(9)])-

As in the first case, we perform a change of variable and set u(x) := r(1/z). Similarly
to the first case we plot x - u(x), and obtain an upper bound of 158 over the interval
(0,1]. An upper bound on the above quotient of 158 - |x(.5)| follows.

Running the argument from the above paragraph with this in place of 2|x(5)| and
using the fact that 2 < deg(p), we see that 158 - [x(9)| - A(|x(S)|,n) < deg(p)®
As(|x(S)]). This completes the proof. O

Corollary 1.1 is immediate from Theorem 7.1 after noting that if

de(z) (P o, p*B) = 4
then every lift of « intersects every lift of (.

Remark 7.3. We conclude this section by showing that the linear dependence on
deg(p) in Theorem 7.1 is sharp in the closed case.

Let S = S, (g9 = 2) be a fixed closed surface with curves a and 3 such that « is
nonseparating, f is separating, and a and g fill S. Set I = i(«, 5) and let S, be the
n-fold cyclic cover of S built as follows: Take n copies of X = S\«a, Xp....X,,_1 and
glue them cyclically along their boundaries. That is, if we let 0X = o' U o, then we
glue af to al  for each i mod n. Rename the resulting curve of = al,, by &;. These
are the preimages of « in §n

We note that §n is the cover corresponding to the kernel of the homomorphism
¢: m(S) — Z/nZ taking a loop to its algebraic intersection number with «, mod n.
Hence, 8 has n lifts to the cover §n and any such lift intersects no more than I of the
@;. In particular, each lift of £ lives in X; U X;41 u ... U X;,; for some 0 < i < n.

Now set [ = 74 7., which is pseudo-Anosov by Thurston’s criterion ([Thu88]).

Hence, there is a £ > 0 (depending only on S) such that de(s) (e, f7(a)) = 7 ((MM99],
[GTll]) Since both 7, and 75 fix the homology class of « (recall that 5 is a separatmg

curve), so does f. Thus, f fixes the kernel of ¢ and hence lifts to a map f n — S
Indeed, if we denote by & and 6 the full preimage of a and 3, one such lift is f = TE Lrs,

a composition of multitwists.
But then, we must have
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where [ is a multicurve consisting of components of B that meet &;. Hence, from our
observation above, 3, and therefore f(&l) is supported in X ;uX_u...uX;.
Therefore, so long as n > 21 + 1, we have that d g (4, Fla)) < 2.

This construction can be iterated by choosmg n 2 271 + 1, and considering fj(&l)
This curve is contained in Y; := X_;; U X; 11 U...UXj;, which is a proper subsurface of
S,,. Indeed the Euler characteristic of Y is 2jx(S), which, in absolute value, is strictly
less than |y(S,)| under the assumption that n > 2j1 + 1. Hence, de 3, (@, (@) <2
forn > 291 + 1.

Now since fi(d;) < fi(a) = %, we can set v; = f7(a) to see that we have
produced curves v and «y; on S that have distance at least xj and a degree n = 21 +1
cover S, such that de (a ;) < 2. Informally, we have untangled curves with a cover
whose degree is hnear 111 curve graph distance.

8. APPLICATION TO QUANTIFIED VIRTUAL SPECIALNESS

In this section we give an application of Theorem 7.1 to dual cube complexes for
collections of curves on closed surfaces and their special covers.

8.1. Dual cube complexes and Sageev’s construction. Given a finite and filling
collection I' of simple closed curves on a closed surface S, Sageev’s construction [Sag95]
gives rise to a dual CAT(0) cube complex a, on which 7.5 acts freely, properly dis-
continuously, and cocompactly. The quotient of &Vp by this action is a non-positively
curved cube complex €, which can be thought of as a cubulation of the surface S since
™S =~ mCr. N

The construction of € roughly goes as follows. In the language of Wise [Wis00],
the full preimage I' of T in the universal cover S of S is a union of elevations, which
each split S into two half-spaces. A labelling of I is a choice of half-space for each
elevation in f‘, and the admissible labelings form the vertex set for a (For more
details on admissible labellings see [Sag95].) Two labellings are joined by an edge when
they differ on the choice of a half-space for exactly one elevation. The unique CAT(0)
cube complex defined by this 1-skeleton is a, and there is an intersection preserving
identification of the curves in the system I' with the hyperplanes of Q:[‘ The action

of mS on S permutes the elevations, inducing an isometry of (’Zp We note that this
construction of cube complexes Works in a far more general setting. We summarize
Sageev’s construction with the following theorem:

Theorem 8.1 (Sageev). Suppose I is a finite, filling collection of curves on S. Then the
dual cube complex CNF is CAT(0) and there is an intersection preserving identification
of the curves in I' with the hyperplanes of 8{ The group ™S acts freely, properly
discontinously, and cocompactly on a

8.2. Virtual specialness. It is well known that there exists a finite cover € of €p
which is special [HWO08]. Here € is called special because its hyperplanes avoid three
key pathologies (self-intersecton, direct self-osculation, and inter-osculation). There is
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an algebraic characterization of specialness [HWO08]: that 7€ embeds in a particular
right-angled Artin group (RAAG). The defining graph of this RAAG is the crossing
graph of €r. The crossing graph of € is the simplicial graph whose vertices are hy-
perplanes of € and whose edges connect distinct, intersecting hyperplanes. Thus,
Theorem 8.1 implies that the specialness of a cube complex dual to a collection of
curves on a surface is determined by the intersection pattern of the underlying curves.

Suppose that I' consists of two simple closed curves, o and 3, that together fill the
surface S. Consider a finite-degree covering map p : S-S , and as in Section 7 let
p* : C(S) — C(S) be the induced map between their curve complexes.

There is also an induced covering map on the level of dual cube complexes p, : € —
¢ where € is the dual complex to the curve system IV = p~(a) U p~*(8) on S and
is also the cover of € corresponding to the subgroup 7r1§ < mS = m€r. We record
the following lemma as an obstruction to the specialness of €p.

Lemma 8.2. Suppose that o and B are two simple closed curves that together fill a
surface S, and that p : S —Sisa finite degree covering map. If every lift of a to S
intersects every lift of 5 to §, then the cover €r of € corresponding to ™S < mS =
m&r cannot be special.

Proof. Following [Wis12], € is special if and only if it admits a local isometry into
the Salvetti complex of a particular right-angled Artin group. Indeed, one considers
the crossing graph T of €, whose vertices correspond to hyperplanes of & and whose
edges correspond to pairs of hyperplanes that cross. Associated to Z is the right-angled
Artin group Rz generated by the vertices, and with commuting relations for each edge.
Applying Theorem 4.4 in [Wisl2] to our context yields that € is special only if it
admits a local isometry into the Salvetti complex for Rz.

Note that the lifts of o U 8 to S will correspond to the hyperplanes of €, and thus
the vertices of the crossing graph Z correspond to these lifts. Since no two lifts of
« (resp. () can cross in S, Z is triangle-free, and thus the Salvetti complex for the
associated right-angled Artin group is a square complex.

Now, if every lift of « intersects every lift of 5, then Z is the join of two sets of non-
adjacent vertices. Thus, Ry = F,, x F,, is the product of two free groups. Since a local
isometry induces an injection on the level of fundamental groups, m (&), a surface
group, must embed in Rz. However, a surface group cannot embed in the product of
two free groups [BR84]. O

Note that if de(3) (p*a, p*5) = 4, then every lift of « intersects every lift of 3. Thus,
Theorem 7.1 gives us the following:

Theorem 8.3. Suppose that o and [ are two simple closed curves that together fill a
closed surface S. Let degC€r be the minimal degree of a special cover of the dual cube
complex Cr to the curve system I' = au 3. Then

des) (e, B)
C(S)
where C(S) is a polynomial in |x(S)| of degree 13.

< degCrp,
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Proof. Suppose that p: S — $ is a finite degree cover of the surface S and that
P+ € — €p is the induced cover of cube complexes. Additionally, assume that € is
special. Theorem 7.1 gives us that

de(s) (@, ) P
deg(p) - A (x(S)) - A < Ye@ (@ p7(0):
Given that S is closed, A;(|x(S)]) is a polynomial of degree 10 in |x(S)| and As(|x(S)])

is a polynomial of degree 3 in |x(S)| (see Equation (1)). Lemma 8.2 shows that €
cannot be special unless d; g (p*(c), p*(8)) < 3. Combining these results and solving

for deg(p) gives

deesy(a, B) < deg(p)

where C(S) = 3A1(Ix(5)]) A2(Ix(9)])- m

9. THE CIRCUMFERENCE OF A FIBERED MANIFOLD

The methods developed above generalize to effectively relate the electric circumfer-
ence of a fibered manifold to the curve graph translation length of its monodromy.
The noneffective version of this relation has proven useful, for example, in work of
Biringer—-Souto on the rank of the fundamental group of such manifolds [BS15]. As in
the previous section, we restrict to the case where S' is closed.

Let ¢ € Mod(S) be pseudo-Anosov and denote its mapping torus by M. For 0 < <
€3, denote the hyperbolic circumference and 6 -electric circumference of My, by circ(My)
and circs(My), respectively. That is, circ(My) is the minimum geodesic length of a
loop in M which is not in the kernel of the associated map 1 (M,) — Z, and similarly
circs(My) is the minimum J-electric length of a loop in M which is not in the kernel
the map. Let ¢5(¢) be the stable translation length of ¢ in C(S); for any curve «,

ls(¢) = lim M.

n—0o0 n

Theorem 9.1. If ¢: S — S is a pseudo-Anosov homeomorphism of a closed surface

S, then ,
@ @) < circes (M) < Aa(x(S))) - (£s(6) +2),

where the polynomials Ay and As are as in Equation (1).

Our argument follows the outline from Brock in [Bro03b]. There, Brock extends his
theorem on volumes of quasi-fuchsian manifolds to volumes of hyperbolic mapping tori.
Similarly, we deduce Theorem 9.1 from the tools we used to prove Theorem 4.1.

Proof. Let M = M, and let N be the infinite cyclic cover of M corresponding to S.
The inclusion ¢: S — M lifts to a marking 7: S — N. Let ® denote the (isometric)
deck transformation of N such that 7o ¢ is homotopic to ® o 7. Following the proof
of [Bro03b, Theorem 1.1] there is a 1-Lipschitz map f: X = (S, g) — N homotopic to
7 and a 1-Lipschitz sweepout f;: X; = (S,g;) — N from fo = fto fi = ®o fop L
(The hyperbolic structure X; on S agrees with that of X under ¢, up to isotopy.) As
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in Theorem 2.1, this sweepout has the property that there is some curve « in .S such
that the geodesic representative of o in NV is in the image of f. Hence, the geodesic
representative of ¢(«) lies in the image of f;.

Let H: S x [0,1] — N be the homotopy given by H(z,t) = f;(x) and set X; to be
the image of f;. Finally, fix an embedding h: S — N homotopic to 7 which lies to the
left of the image of H. Note that there is some ng > 1 such that ®"0A(S) lies to the
right of the image of H.

For n > 0, define a function s,: [n,n + 1] — [0,1] by s,(z) = = — n and let
H": S x [0,n] - N denote the homotopy formed by gluing together

H ®oHo(¢p txsy), ..., O loHo(p ™Y xs, )

to form a sweepout from f to ®" o fo¢~™. (Note that H" is indeed continuous since
the functions agree on their overlap.) Also, extend the definition of ¥, for ¢ € [0, n] to
be the image of H"(-,t), so that in particular ¥, = ®"(X;). Note that the image of
H™ is contained in the compact region C,, between h(S) and ®"*"0(h(S)).

To prove the first inequality, let p : [0,1] — M be the shortest loop in M which
realizes circ. (M ). Note that p cannot be eg—short itself. Otherwise, since the image
of f under the covering N — M necessarily meets p, the argument in Lemma 3.3 would
produce an essential loop in S which is mapped into the Margulis tube about p. This
would imply that p represents an element of the kernel of m;(M,) — Z, a contradiction.

Denote by p the preimage of p in N (joining the ends of N) and let p, = p n C,,.
Since C,, is the union of n + ny fundamental domains of @,

U5 (Pn) = (n+ no) - £33 (p).
By choice of h(S) and ng, each ¥, separates the boundary components of C,, (which
are h(S) and ®"*"0h(S)) for t € [0,n]. Hence, each such ¥, intersects p,. Now pick any

curve [ that is Lg-short on X and observe that ¢"(3) is Lg-short on X,, = ¢"X. Then,
using Proposition 5.1 and Lemma 4.4 as in the proof of Theorem 4.1, we conclude that

des) (8, 9"(8)) < Ar(Ix(9)]) - Les (Pn)
< A(IxX(9)]) - (n +no) - €3 (p).

Hence, diving both sides by n and taking n — oo shows that

ls(9) < A(Ix(9)]) - 37 (p),

proving the first inequality.

For the second inequality, let &, be the shortest electric geodesic in N joining the
geodesic representatives of a and ¢™(«), where « is as above. Apply Proposition 4.2 to
these curves to obtain

03 (&) < A2(IX(9))) - des) (e, ¢" ().

Alter &, to a new path w, as follows: for 0 < j < n, choose some z; € &, N ¥;, and
connect z; to ®7p(0) € X, by a shortest electric path v; in ¥;. For j = 0 and j = n,
define v; to be a shortest electric path in XJ; starting at the initial and terminal points
of &, and ending at lifts xg and z,, of p(0) in 3y and X,,, respectively. Then define w, to
be the path obtained from &, by inserting ~; *7; ! after z; for each 0 < j < n, and by
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inserting 7, ' at the beginning and 7, at the end. Using the bounded diameter lemma
(as in the proof of Proposition 4.2), we have that

(55 (wn) < £55(62) + 2n - 27X
€s

< LR (&) + 2n - Ao(IX(S)])-

Let w,[j — 1, j] denote the portion of w, between ®/~15(0) and ®75(0). Since wy,[j —
1, 7] descends to a loop in M which is not in the kernel of 7 (M) — Z, we have

hence

n - £3(p) < U5 (&) + 2n - Ax(|x(S)))
< A2 ([X(9)]) - degs) (e, @ () + 2n - As(|x(5)])-
Dividing through by n and taking a limit as n — oo produces the second inequality. [
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