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Abstract. We demonstrate that in three space dimensions, the scattering be-

haviour of semilinear wave equations with quintic-type nonlinearities uniquely
determines the nonlinearity. The nonlinearity is permitted to depend on both

space and time.

1. Introduction

We consider the semilinear wave equation⎧⎪⎨⎪⎩
(∂tt −∆x)u(t, x) = F (t, x, u(t, x)), (t, x) ∈ R× R3;

u(0, · ) = u0;

∂tu(0, · ) = u1.

(1.1)

Under mild assumptions on the nonlinearity F : R × R3 × R → R, we show that
this equation admits a small-data scattering theory and that the scattering operator
determines the nonlinearity. The specific class of nonlinearities we consider is given
in Definition 1.1 and may be regarded as a generalization of the energy-critical case.
The main inspiration for the problem we study is the paper [12] of Sá Barreto,
Uhlmann, and Wang. Our methods, however, are more strongly influenced by
Killip, Murphy, and Vis,an [6].

The requirements that we impose on the nonlinearity are as follows:

Definition 1.1 (Admissible nonlinearity). A measurable function F : R×R3×R →
R will be called admissible for equation (1.1) if

(i) F (t, x, 0) = 0 for all t, x;
(ii) |F (t, x, u)−F (t, x, v)| ≲ (|u|4+ |v|4)|u−v| for all u, v uniformly in t, x; and
(iii) F (t, x,−u) = −F (t, x, u) for all t, x.

If F (t, x, u) = ±|u|4u, the resulting equation is the defocusing/focusing (de-
pending on the sign of the nonlinearity) energy-critical wave equation. This name
reflects the fact that in this case, the equation enjoys a scaling symmetry

u(t, x) ↦→ uλ(t, x) = λ
1
2u
(︁
λt, λx

)︁
for λ > 0

that preserves the energy of solutions

E(u) =

∫︂
R3

1
2 |∇u(t, x)|2 + 1

2 |∂tu(t, x)|
2 ± 1

6 |u(t, x)|
6 dx.

Accordingly, we will be studying equation (1.1) with initial data (u0, u1) in the

energy space Ḣ
1
(R3)× L2(R3).

1
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Definition 1.2 (Solution). A function u : R × R3 → R is said to be a strong

global solution of equation (1.1) if (u, ∂tu) ∈ C0
t Ḣ

1

x(R × R3) × C0
t L

2
x(R × R3),

u ∈ L5
tL

10
x (K × R3) for all compact sets K ⊆ R, and u satisfies the Duhamel

formula [︃
u(t)
∂tu(t)

]︃
= U(t)

[︃
u0

u1

]︃
+

∫︂ t

0

U(t− s)

[︃
0

F (s)

]︃
ds.

Here U denotes the propagator for the linear wave equation, that is,

U(t) :=

⎡⎢⎣ cos(t|∇|) sin(t|∇|)
|∇|

−|∇| sin(t|∇|) cos(t|∇|)

⎤⎥⎦ .

Here and in what follows we abbreviate u(t, · ) as u(t) and F (t, · , u(t)) as F (t).

For the definitions of the homogeneous Sobolev space Ḣ
1
(R3) and the mixed-

norm spaces above, see Section 1.1. The spaces in Definition 1.2 are chosen to
capture the dispersive behaviour of solutions while matching the criticality of the
problem. The Strichartz estimates in Theorem 2.1 show that solutions to the linear
wave equation also belong to these spaces and allow us to construct solutions to
the semilinear wave equation (1.1) via contraction mapping. In fact, we will prove
that this equation admits a small-data global well-posedness and scattering theory
for admissible nonlinearities.

Theorem 1.3 (Small-data scattering). Let F be an admissible nonlinearity for
equation (1.1). Then there exists an η > 0 such that equation (1.1) has a unique
global solution u satisfying

∥(u, ∂tu)∥L∞
t Ḣ

1
x×L∞

t L2
x
+ ∥u∥L5

tL
10
x

≲ ∥(u0, u1)∥Ḣ1×L2 (1.2)

whenever (u0, u1) ∈ Bη, where

Bη := {(u0, u1) ∈ Ḣ
1
(R3)× L2(R3) : ∥(u0, u1)∥Ḣ1×L2 < η}.

This solution scatters in Ḣ
1
(R3)×L2(R3) as t → ±∞, meaning that there exist

(necessarily unique) asymptotic states (u±
0 , u

±
1 ) ∈ Ḣ

1
(R3)× L2(R3) for which⃦⃦⃦⃦[︃

u(t)
∂tu(t)

]︃
− U(t)

[︃
u±
0

u±
1

]︃⃦⃦⃦⃦
Ḣ

1×L2

→ 0 as t → ±∞. (1.3)

In addition, for all (u−
0 , u

−
1 ) ∈ Bη, there exists a unique global solution u to

equation (1.1) and a unique asymptotic state (u+
0 , u

+
1 ) ∈ Ḣ

1
(R3)× L2(R3) so that

both limits in (1.3) hold.

The map (u0, u1) ↦→ (u+
0 , u

+
1 ) defined implicitly by Theorem 1.3 on the open

ball Bη ⊆ Ḣ
1
(R3)× L2(R3) is the inverse of what is often called the forward wave

operator ; in this paper, we will refer to it simply as the wave operator and we will
denote it by WF . The map (u−

0 , u
−
1 ) ↦→ (u+

0 , u
+
1 ) is the scattering operator and

will be denoted SF . Our principal result is that either operator determines the
nonlinearity completely.

Our hypotheses on the nonlinearity F do not demand any continuity in t or x.
Avoiding such a restriction is important for us as we wish to allow nonlinearities
of the form 1Ω(x)u

5, which model a nonlinear medium (whose shape we wish to
determine) surrounded by vacuum.
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Without a continuity requirement, complete determination of the nonlinearity
means determination at (Lebesgue) almost every spacetime point. We can be very
precise about the spacetime points at which we determine the nonlinearity:

Definition 1.4 (Determinable point). Suppose that F is an admissible nonlinearity
for equation (1.1). A point (t, x) ∈ R×R3 will be called determinable for F if it is
a Lebesgue point of F ( · , · , u) for every rational u. The set of all such points will
be denoted DF .

For each fixed u, the map (t, x) ↦→ F (t, x, u) is bounded and measurable and so
almost every point is a Lebesgue point. The countability of the rational numbers
then guarantees that almost every spacetime point is determinable.

Theorem 1.5. Suppose that F and ˜︁F are admissible nonlinearities for equa-
tion (1.1) and that Bη and B˜︁η are corresponding balls given by Theorem 1.3. If WF
and W˜︁F , or SF and S˜︁F , agree on Bη ∩ B˜︁η (that is, the smaller of the two balls),

then F (t, x, · ) = ˜︁F (t, x, · ) for all (t, x) ∈ DF ∩D˜︁F .
The question of whether the nonlinearity in a dispersive PDE is determined by its

scattering behaviour has been extensively studied [1, 8, 10, 12–16, 18–27]. Usually,
rather strong assumptions are imposed on the nonlinearity in order to obtain a
positive answer.

In contrast, Killip, Murphy, and Vis,an’s deconvolution-based approach [6] en-
abled them to determine power-type nonlinearities in a semilinear Schrödinger equa-
tion with only moderate growth restrictions on the nonlinearities. Their approach
is flexible and technically simple, as demonstrated by its subsequent application
to the determination of coefficients [4, 9] and inhomogeneities [2, 3] of nonlinear
Schrödinger equations.

In this paper, we revisit the setting considered by Sá Barreto, Uhlmann, and
Wang [12], who determined nonlinearities of the form F = F (u) in equation (1.1)
under the following assumptions:

(i) F (u) = h(u)u for some even function h satisfying |h(u)| ≈ |u|4 for all u;
(ii) F ′(u)u ∼ F (u) as u → 0 and as u → ±∞;
(iii) u ↦→

∫︁ u

0
F (v) dv is convex;

(iv) |F (j)(u)| ≲ |u|5−j for each 0 ≤ j ≤ 5; and
(v) F (4)(u) = 0 if and only if u = 0.

By adapting the deconvolution technique of [6] to the setting of the wave equa-
tion, we will prove that even more general nonlinearities of the form F = F (t, x, u)
can be determined under the weaker conditions of Definition 1.1.

Let us now turn to an overview of the paper, the method of [6], and the principal
challenges to be overcome in applying it in the wave equation setting.

Our first task is to establish the existence, uniqueness, and long-time behaviour
of solutions to (1.1) for small initial data and for admissible nonlinearities. This is
Theorem 1.3, which we prove in Section 2.

Following [6], our approach to identifying the nonlinearity is through the small-
data asymptotics of the scattering and wave operators. These are presented in
Corollary 2.2, which gives a precise estimate on the difference between the full
operators and what is known as their Born approximation.

Under the Born approximation, the scattering/wave operators capture the space-
time integral of u(t, x)F (t, x, u(t, x)), where u(t, x) is a solution of the linear wave
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equation. This evidently represents a substantial ‘blurring’ of the nonlinearity
across different values of t, x, and u. If the nonlinearity did not depend on t and
x, then this blurring would take the form of a convolution (over the multiplication
group). By switching to exponential variables, this then would become a convolu-
tion in the traditional sense. In this way, the question of identifying the nonlinearity
reduces to a deconvolution problem. As we will discuss in Section 4, the uniqueness
criterion for such deconvolution problems is the well-known L1 Tauberian theorem
of Wiener; see Theorem 4.1.

To overcome the dependence of the nonlinearity on space and time, we will em-
ploy a solution of the linear wave equation that concentrates tightly at a single
point in spacetime (while also remaining small in scaling-critical norms). As noted
earlier, we do not assume that the nonlinearity is continuous in t or x; consequently,
there are some subtleties to be overcome in localizing the nonlinearity to a single
spacetime point. This is the role of Lemma 3.3. With this hurdle overcome, the
uniqueness question is reduced to the deconvolution problem presented in Proposi-
tion 3.2.

We now arrive at the crux of the matter: we need to find solutions to the
linear wave equation that lead to a deconvolution problem that can actually be
solved. Concretely, we must find a linear solution whose distribution function we
can compute sufficiently explicitly that we will be able to verify the hypotheses of
Wiener’s Tauberian theorem. The distribution function for the solution we choose is
computed in Lemma 3.1. Although we are unable to compute the resulting Fourier
transform precisely, we are nonetheless able to verify that it is nonvanishing (see
Proposition 4.2) and consequently to apply the Tauberian theorem.

Acknowledgments. R.K. was supported by NSF grant DMS-2154022; M.V. was
supported by NSF grant DMS-2054194.

1.1. Notation. Throughout this paper, we employ the standard notation A ≲ B
to indicate that A ≤ CB for some constant C > 0; if A ≲ B and B ≲ A, we write
A ≈ B. Occasionally, we adjoin subscripts to this notation to indicate dependence
of the constant C on other parameters; for instance, we write A ≲α,β B when
A ≤ CB for some constant C > 0 depending on α, β.

The homogeneous Sobolev space Ḣ
1
(R3) is defined as the completion of the

Schwartz space S(R3) with respect to the norm

∥f∥
Ḣ

1
(R3)

:= ∥|ξ| ˆ︁f(ξ)∥L2
ξ(R3) ≈ ∥|∇|f∥L2(R3),

where we use the Fourier transform conventionˆ︁f(ξ) := ∫︂
Rd

f(x)e−iξ·x dx.

We write Lp
tL

q
x(I × R3) for the mixed Lebesgue space on a spacetime region

I × R3 with norm

∥u∥Lp
tL

q
x(I×R3) :=

⃦⃦
∥u(t, x)∥Lq

x(R3)

⃦⃦
Lp

t (I)

(with the understanding that I = R if it is unspecified). Similarly, we define the

mixed-norm space L∞
t Ḣ

1

x(I × R3) with norm

∥u∥
L∞

t Ḣ
1
x(I×R3)

:=
⃦⃦
∥u(t, x)∥

Ḣ
1
x(R3)

⃦⃦
L∞

t (I)
.
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We write C0
t Ḣ

1

x for the subspace of functions that are continuous in time with

values in Ḣ
1
(R3).

2. Small-data scattering

We begin by establishing the small-data scattering theory described in Theo-
rem 1.3. This relies on a standard contraction mapping argument using Strichartz
estimates.

Theorem 2.1 (Strichartz estimates, [5, 11, 17]). If u : R × R3 → R is a global
solution of equation (1.1), then

∥(u, ∂tu)∥L∞
t Ḣ

1
x×L∞

t L2
x
+ ∥u∥L5

tL
10
x

≲ ∥(u0, u1)∥Ḣ1×L2 + ∥F (t, x, u(t, x))∥L1
tL

2
x
.

The contraction mapping argument constructs the solution from the Duhamel
formula [︃

u(t)
∂tu(t)

]︃
= U(t)

[︃
u0

u1

]︃
+

∫︂ t

0

U(t− s)

[︃
0

F (s)

]︃
ds. (2.1)

Similarly, the solution with prescribed asymptotic state (u−
0 , u

−
1 ) as t → −∞ is

constructed from the formula[︃
u(t)
∂tu(t)

]︃
= U(t)

[︃
u−
0

u−
1

]︃
+

∫︂ t

−∞
U(t− s)

[︃
0

F (s)

]︃
ds. (2.2)

Proof of Theorem 1.3. Let

X :=
{︁
u : R× R3 → R :

(u, ∂tu) ∈ C0
t Ḣ

1

x(R× R3)× C0
t L

2
x(R× R3), u ∈ L5

tL
10
x (R× R3),

∥(u, ∂tu)∥L∞
t Ḣ

1
x×L∞

t L2
x
+ ∥u∥L5

tL
10
x

≤ 2C∥(u0, u1)∥Ḣ1×L2

}︁
,

where C is the implicit constant in the Strichartz estimates. Equipping X with the
metric

d(u, v) := ∥(u, ∂tu)− (v, ∂tv)∥L∞
t Ḣ

1
x×L∞

t L2
x
+ ∥u− v∥L5

tL
10
x
,

we obtain a nonempty complete metric space (X, d).
For u ∈ X, we then define

(Φ(u))(t) := cos(t|∇|)u0 +
sin(t|∇|)

|∇|
u1 +

∫︂ t

0

sin((t− s)|∇|)
|∇|

F (s) ds

so that [︃
(Φ(u))(t)
(∂tΦ(u))(t)

]︃
= U(t)

[︃
u0

u1

]︃
+

∫︂ t

0

U(t− s)

[︃
0

F (s)

]︃
ds. (2.3)

To construct the solution of equation (1.1), we will show that Φ is a contraction on
(X, d) whenever (u0, u1) ∈ Bη and η is sufficiently small. The solution sought will
then be the fixed point of Φ whose existence and uniqueness are guaranteed by the
Banach fixed point theorem.

We first verify that Φ maps X into itself. Let CF be a constant such that
|F (t, x, u)| ≤ CF |u|5 for all (t, x) ∈ R × R3. If u ∈ X, then by the Strichartz
estimates, we have

∥(Φ(u), ∂tΦ(u))∥L∞
t Ḣ

1
x×L∞

t L2
x
+ ∥Φ(u)∥L5

tL
10
x

≤ C(∥(u0, u1)∥Ḣ1×L2 + ∥F (t, x, u(t, x))∥L1
tL

2
x
)
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≤ C(∥(u0, u1)∥Ḣ1×L2 + CF ∥u∥5L5
tL

10
x
)

≤ C[1 + CF (2Cη)4(2C)]∥(u0, u1)∥Ḣ1×L2

≤ 2C∥(u0, u1)∥Ḣ1×L2 ,

provided that η is sufficiently small.
To show that (Φ(u))(t) and (∂tΦ(u))(t) are also continuous in t, fix a t0 ∈ R

and consider, without loss of generality, the case when t ≥ t0. The first term on

the right-hand side of formula (2.3) converges to U(t0)(u0, u1) in Ḣ
1×L2 as t → t0

since U(t) is strongly continuous in t. As for the second term, we observe that⃦⃦⃦⃦∫︂ t

0

U(−s)

[︃
0

F (s)

]︃
ds−

∫︂ t0

0

U(−s)

[︃
0

F (s)

]︃
ds

⃦⃦⃦⃦
Ḣ

1×L2

≤
⃦⃦⃦⃦∫︂ t

t0

sin(−s|∇|)
|∇|

F (s) ds

⃦⃦⃦⃦
Ḣ

1

+

⃦⃦⃦⃦∫︂ t

t0

cos(−s|∇|)F (s) ds

⃦⃦⃦⃦
L2

≲
∫︂ t

t0

∥F (s)∥L2 ds

≲ ∥u∥5L5
tL

10
x ([t0,t]×R3) → 0 as t → t0,

by the dominated convergence theorem. Consequently, the second term converges

to U(t0)
∫︁ t0
0

U(−s)(0, F (s)) ds in Ḣ
1×L2 as t → t0 since U(t) is strongly continuous

and uniformly bounded in t. Altogether, this shows that Φ(u) ∈ X as required.
Now if u, v ∈ X, the Strichartz estimates also yield

d(Φ(u),Φ(v)) ≲ ∥F (t, x, u(t, x))− F (t, x, v(t, x))∥L1
tL

2
x

≲ ∥(|u|4 + |v|4)|u− v|∥L1
tL

2
x

≲
(︁
∥u∥4L5

tL
10
x

+ ∥v∥4L5
tL

10
x

)︁
∥u− v∥L5

tL
10
x

≲ [(2Cη)4 + (2Cη)4] d(u, v),

which shows that Φ is a contraction for sufficiently small η.

Next, we prove that the solution u scatters in Ḣ
1 × L2. As U(t) is unitary on

Ḣ
1 × L2, this amounts to showing that the functions U−1(t)(u(t), ∂tu(t)) converge

in Ḣ
1×L2 as t → ±∞. By time reversal symmetry, it suffices to consider t → +∞.

For t2 ≥ t1 ≥ T ,⃦⃦⃦⃦
U−1(t2)

[︃
u(t)
∂tu(t)

]︃
− U−1(t1)

[︃
u(t)
∂tu(t)

]︃⃦⃦⃦⃦
Ḣ

1×L2

=

⃦⃦⃦⃦∫︂ t2

0

U(−s)

[︃
0

F (s)

]︃
ds−

∫︂ t1

0

U(−s)

[︃
0

F (s)

]︃
ds

⃦⃦⃦⃦
Ḣ

1×L2

≲ ∥u∥5L5
tL

10
x ([t1,t2]×R3) → 0 as T → ∞,

by the dominated convergence theorem. We conclude that {U−1(t)(u(t), ∂tu(t))} is

Cauchy in Ḣ
1 × L2 as t → ∞ and therefore convergent.

This completes the construction of the wave operator. The construction of the
scattering operator, using (2.2) in place of (2.1), is entirely analogous. □
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We note that the foregoing argument shows that the wave operator is given by

WF

(︃[︃
u0

u1

]︃)︃
=

[︃
u0

u1

]︃
+

∫︂ ∞

0

U(−t)

[︃
0

F (t)

]︃
dt, (2.4)

where u is the solution of equation (1.1) with initial data (u0, u1). Similarly, the
scattering operator is given by

SF

(︃[︃
u−
0

u−
1

]︃)︃
=

[︃
u−
0

u−
1

]︃
+

∫︂ ∞

−∞
U(−t)

[︃
0

F (t)

]︃
dt, (2.5)

where u is the solution of equation (1.1) that scatters to (u−
0 , u

−
1 ) as t → −∞.

Corollary 2.2 (Small-data asymptotics for the wave and scattering operators).
Suppose that F is an admissible nonlinearity for equation (1.1) and that Bη is a
corresponding ball given by Theorem 1.3. If ulin denotes the solution of the linear

wave equation with initial data (u0, u1) ∈ Bη, then (in Ḣ
1 × L2) we have

WF

(︃[︃
u0

u1

]︃)︃
=

[︃
u0

u1

]︃
+

∫︂ ∞

0

U(−t)

[︃
0

Flin(t)

]︃
dt+O

(︄⃦⃦⃦⃦[︃
u0

u1

]︃⃦⃦⃦⃦9
Ḣ

1×L2

)︄
. (2.6)

Similarly, given (u−
0 , u

−
1 ) ∈ Bη, let u be the solution of equation (1.1) that scatters

to (u−
0 , u

−
1 ) as t → −∞. If ulin denotes the solution of the linear wave equation

with initial data (u0, u1) := (u(0), ∂tu(0)) ∈ Bη, then

SF

(︃[︃
u−
0

u−
1

]︃)︃
=

[︃
u−
0

u−
1

]︃
+

∫︂ ∞

−∞
U(−t)

[︃
0

Flin(t)

]︃
dt+O

(︄⃦⃦⃦⃦[︃
u0

u1

]︃⃦⃦⃦⃦9
Ḣ

1×L2

)︄
. (2.7)

Here Flin(t) is an abbreviation for F (t, · , ulin(t)).

Proof. We will derive the asymptotic expansion (2.7) from formula (2.5) for the
scattering operator; the derivation of (2.6) from formula (2.4) for the wave operator
is similar.

Comparing (2.5) with (2.7), we see that the latter follows from⃦⃦⃦⃦∫︂ ∞

−∞
U(−t)

[︃
0

F (t)− Flin(t)

]︃
dt

⃦⃦⃦⃦
Ḣ

1×L2

≲

⃦⃦⃦⃦[︃
u0

u1

]︃⃦⃦⃦⃦9
Ḣ

1×L2

,

which we will prove by duality. To this end, fix some (v0, v1) ∈ Ḣ
1 × L2 and let

vlin denote the solution of the linear wave equation with initial data (v0, v1). Then⟨︃∫︂ ∞

−∞
U(−t)

[︃
0

F (t)− Flin(t)

]︃
dt,

[︃
v0
v1

]︃⟩︃
Ḣ

1×L2

=

∫︂ ∞

−∞

⟨︃[︃
0

F (t)− Flin(t)

]︃
, U(t)

[︃
v0
v1

]︃⟩︃
Ḣ

1×L2

dt

=

∫︂ ∞

−∞

⟨︃[︃
0

F (t)− Flin(t)

]︃
,

[︃
vlin(t)
∂tvlin(t)

]︃⟩︃
Ḣ

1×L2

dt

=

∫︂ ∞

−∞

⟨︁
F (t)− Flin(t), ∂tvlin(t)

⟩︁
L2 dt.

As a result, it will suffice to show that⃓⃓⃓⃓∫︂ ∞

−∞

⟨︁
F (t)− Flin(t), ∂tvlin(t)

⟩︁
L2 dt

⃓⃓⃓⃓
≲

⃦⃦⃦⃦[︃
u0

u1

]︃⃦⃦⃦⃦9
Ḣ

1×L2

⃦⃦⃦⃦[︃
v0
v1

]︃⃦⃦⃦⃦
Ḣ

1×L2

. (2.8)
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To estimate this integral, we first employ Hölder’s inequality to deduce that⃓⃓⃓⃓∫︂ ∞

−∞

⟨︁
F (t)− Flin(t), ∂tvlin(t)

⟩︁
L2 dt

⃓⃓⃓⃓
≤ ∥F (t, x, u(t, x))− F (t, x, ulin(t, x))∥L1

tL
2
x
· ∥∂tvlin∥L∞

t L2
x

≲
(︁
∥u∥4L5

tL
10
x

+ ∥ulin∥4L5
tL

10
x

)︁
∥u− ulin∥L5

tL
10
x

· ∥∂tvlin∥L∞
t L2

x
. (2.9)

By (1.2) and the Strichartz estimates, we have

∥u∥4L5
tL

10
x

≲ ∥(u0, u1)∥4Ḣ1×L2
,

∥ulin∥4L5
tL

10
x

≲ ∥(u0, u1)∥4Ḣ1×L2
,

∥u− ulin∥L5
tL

10
x

≲ ∥F (t, x, u(t, x))∥L1
tL

2
x
≲ ∥u∥5L5

tL
10
x

≲ ∥(u0, u1)∥5Ḣ1×L2
,

∥∂tvlin∥L∞
t L2

x
≲ ∥(v0, v1)∥Ḣ1×L2 .

Inserting these estimates into (2.9) yields (2.8), completing the proof of the corol-
lary. □

3. Reduction to a convolution equation

The next step is the reduction of the proof of Theorem 1.5 to the consideration
of a convolution equation. As in [6], the central idea is to exploit the Born approx-
imation for well-chosen solutions of the linear wave equation. Indeed, the principal
obstacle to be overcome in implementing that strategy is to find solutions of the
linear wave equation with the key properties we need. Most fundamentally, we
need solutions for which we are not only able to compute the distribution function
(i.e., the measure of spacetime superlevel sets), but can also prove that the Fourier
transform of a certain function w connected with it does not vanish.

Our solutions will be built from the radially symmetric solution

ulin(t, r) :=
f(r − t)− f(r + t)

r

of the linear wave equation (∂tt − ∆x)u(t, x) = 0 on R × R3, where r := |x| and
f(s) := max{1− |s|, 0}. This solution arises from the initial data

u0(x) := ulin(0, |x|) = 0 ∈ Ḣ
1
(R3),

u1(x) := ∂tulin(0, |x|) =

{︄
2
|x| if 0 < |x| ≤ 1,

0 if |x| > 1
∈ L2(R3).

(3.1)

In addition, ulin(t, x) ≥ 0 for t > 0 and ulin(t, x) is odd in t.
The next lemma gives a formula for the distribution function of ulin. The function

w connected with this solution is presented in (3.7). The nonvanishing of the Fourier
transform of w will be demonstrated in Proposition 4.2.

Lemma 3.1. For λ > 0, let

m(λ) :=
⃓⃓
{(t, x) ∈ (0,∞)× R3 : ulin(t, x) > λ}

⃓⃓
.

Then

m(λ) =
4π

3

(︃
1

2λ3
− 2

(λ+ 2)3

)︃
1(0,2)(λ).
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Proof. For t, λ > 0, let

m(t;λ) :=
⃓⃓
{x ∈ R3 : ulin(t, x) > λ}

⃓⃓
so that

m(λ) =

∫︂ ∞

0

m(t;λ) dt. (3.2)

We will evaluate this integral by analyzing ulin on the spacetime regions 0 < t <
1
2 ,

1
2 < t < 1, and t > 1.

On the region 0 < t < 1
2 , we have

ulin(t, r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if 0 < r < t,

2t
r if t ≤ r < 1− t,

1−r+t
r if 1− t ≤ r < 1 + t,

0 otherwise.

Hence, for 0 < t < 1
2 ,

m(t;λ) =
4π

3
·

⎧⎪⎨⎪⎩
( 1+t
1+λ )

3 if 0 < λ < 2t
1−t ,

( 2tλ )
3 if 2t

1−t ≤ λ < 2,

0 otherwise.

Therefore, the contribution of this region to the right-hand side of (3.2) is∫︂ 1
2

0

m(t;λ) dt =

∫︂ 1
2

0

4π

3

(︃
1 + t

1 + λ

)︃3

1{0<λ< 2t
1−t}

(t) dt+

∫︂ 1
2

0

4π

3

(︃
2t

λ

)︃3

1{ 2t
1−t≤λ<2}(t) dt

=

[︄∫︂ 1
2

λ
λ+2

4π

3

(︃
1 + t

1 + λ

)︃3

dt

]︄
1(0,2)(λ) +

[︄∫︂ λ
λ+2

0

4π

3

(︃
2t

λ

)︃3

dt

]︄
1(0,2)(λ)

=
4π

3

(︃
81

64(λ+ 1)3
− 4(λ+ 1)

(λ+ 2)4

)︃
1(0,2)(λ) +

4π

3
· 2λ

(λ+ 2)4
1(0,2)(λ)

=
4π

3

(︃
81

64(λ+ 1)3
− 2

(λ+ 2)3

)︃
1(0,2)(λ). (3.3)

On the region 1
2 < t < 1, we have

ulin(t, r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if 0 < r < 1− t,

1+r−t
r if 1− t ≤ r < t,

1−r+t
r if t ≤ r < 1 + t,

0 otherwise.

Hence, for 1
2 < t < 1,

m(t;λ) =
4π

3
·

⎧⎪⎨⎪⎩
( 1+t
1+λ )

3 if 0 < λ < 1
t ,

( 1−t
λ−1 )

3 if 1
t ≤ λ < 2,

0 otherwise.

Therefore, the contribution of this region to the right-hand side of (3.2) is∫︂ 1

1
2

m(t;λ) dt =

∫︂ 1

1
2

4π

3

(︃
1 + t

1 + λ

)︃3

1{0<λ< 1
t }
(t) dt+

∫︂ 1

1
2

4π

3

(︃
1− t

λ− 1

)︃3

1{ 1
t≤λ<2}(t) dt
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=

[︄∫︂ 1

1
2

4π

3

(︃
1 + t

1 + λ

)︃3

dt

]︄
1(0,1](λ) +

[︄∫︂ 1
λ

1
2

4π

3

(︃
1 + t

1 + λ

)︃3

dt

]︄
1(1,2)(λ)

+

[︄∫︂ 1

1
λ

4π

3

(︃
1− t

λ− 1

)︃3

dt

]︄
1(1,2)(λ)

=
4π

3
· 175

64(λ+ 1)3
1(0,1](λ) +

4π

3

(︃
λ+ 1

4λ4
− 81

64(λ+ 1)3

)︃
1(1,2)(λ)

+
4π

3
· λ− 1

4λ4
1(1,2)(λ)

=
4π

3
· 175

64(λ+ 1)3
1(0,1](λ) +

4π

3

(︃
1

2λ3
− 81

64(λ+ 1)3

)︃
1(1,2)(λ). (3.4)

On the region t > 1, we have

ulin(t, r) =

⎧⎪⎨⎪⎩
1+r−t

r if t− 1 ≤ r < t,

1−r+t
r if t ≤ r < t+ 1,

0 otherwise.

Hence, for t > 1,

m(t;λ) =
4π

3
·

{︄
( t+1
λ+1 )

3 − ( t−1
1−λ )

3 if 0 < λ < 1
t ,

0 otherwise.

Therefore, the contribution of this region to the right-hand side of (3.2) is∫︂ ∞

1

m(t;λ) dt =

∫︂ ∞

1

4π

3

[︄(︃
t+ 1

λ+ 1

)︃3

−
(︃
t− 1

1− λ

)︃3
]︄
1{0<λ< 1

t }
(t) dt

=

{︄∫︂ 1
λ

1

4π

3

[︄(︃
t+ 1

λ+ 1

)︃3

−
(︃
t− 1

1− λ

)︃3
]︄
dt

}︄
1(0,1)(λ)

=
4π

3

(︃
1

2λ3
− 4

(λ+ 1)3

)︃
1(0,1)(λ). (3.5)

Finally, combining (3.2) with (3.3), (3.4), and (3.5) completes the proof of the
lemma. □

To continue, we generate further solutions of the linear wave equation using
the scaling symmetry. Specifically, for positive parameters α and ε, the rescaled
function uα,ε

lin defined as

uα,ε
lin (t, x) := αulin((α/ε)

2t, (α/ε)2x)

solves the linear wave equation with initial data

uα,ε
0 (x) := uα,ε

lin (0, x) = αu0((α/ε)
2x) = 0,

uα,ε
1 (x) := ∂tu

α,ε
lin (0, x) = (α/ε)2αu1((α/ε)

2x).

Under this rescaling, we have ∥uα,ε
0 ∥

Ḣ
1 = ε∥u0∥Ḣ1 and ∥uα,ε

1 ∥L2 = ε∥u1∥L2 , so
from (3.1) we compute that

∥(uα,ε
0 , uα,ε

1 )∥2
Ḣ

1×L2
= ε2∥(u0, u1)∥2Ḣ1×L2

= 16πε2.
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In particular, if F is an admissible nonlinearity for equation (1.1) and Bη is a
corresponding ball given by Theorem 1.3, then (uα,ε

0 , uα,ε
1 ) ∈ Bη for all sufficiently

small ε.
We will also rely on the observation that ulin(t, x) = ∂tvlin(t, x), where vlin is

itself a radially symmetric solution of the linear wave equation on R × R3 with
initial data

v0(x) := vlin(0, x) =

{︄
|x| − 2 if 0 < |x| ≤ 1,

− 1
|x| if |x| > 1

∈ Ḣ
1
(R3),

v1(x) := ∂tvlin(0, x) = 0 ∈ L2(R3).

Thus, uα,ε
lin (t, x) = ∂tv

α,ε
lin (t, x), where the rescaled function vα,εlin defined as

vα,εlin (t, x) := (α/ε)−2αvlin((α/ε)
2t, (α/ε)2x)

solves the linear wave equation with initial data

vα,ε0 (x) := vα,εlin (0, x) = (α/ε)−2αv0((α/ε)
2x),

vα,ε1 (x) := ∂tv
α,ε
lin (0, x) = αv1((α/ε)

2x) = 0.

Under this rescaling, we have

∥(vα,ε0 , vα,ε1 )∥2
Ḣ

1×L2
= (α/ε)−6α2∥(v0, v1)∥2Ḣ1×L2

= 16πε6/3α4.

Proposition 3.2 (Reduction to a convolution equation). Suppose that F and ˜︁F
are admissible nonlinearities for equation (1.1). For (t0, x0) ∈ DF ∩D˜︁F and τ ∈ R,
define

H(τ ; t0, x0) := e−4τ ∂F

∂u
(t0, x0, e

τ ) + e−5τF (t0, x0, e
τ ),

˜︁H(τ ; t0, x0) := e−4τ ∂
˜︁F

∂u
(t0, x0, e

τ ) + e−5τ ˜︁F (t0, x0, e
τ ).

Then H and ˜︁H are bounded and, under the hypotheses of Theorem 1.5, we have

H ∗ w = ˜︁H ∗ w, (3.6)

where

w(τ) :=

(︃
e−3τ − 4e−6τ

(e−τ + 1)3

)︃
1(0,∞)(τ). (3.7)

The proof of this proposition relies on the following result, which shows that in
the Born approximation described in Corollary 2.2, we may replace F (t, x, u) by
F (t0, x0, u) up to acceptable errors.

Lemma 3.3. Suppose that F is an admissible nonlinearity for equation (1.1). Then
for all (t0, x0) ∈ DF , we have∫︂ ∞

−∞

⟨︁
F (t, x, uα,ε

lin (t− t0, x− x0)), u
α,ε
lin (t− t0, x− x0)

⟩︁
L2

x
dt

=

∫︂ ∞

−∞

⟨︁
F (t0, x0, u

α,ε
lin (t− t0, x− x0)), u

α,ε
lin (t− t0, x− x0)

⟩︁
L2

x
dt+ oα(ε

8)

as ε → 0.

We postpone the proof of Lemma 3.3 until after we have completed that of
Proposition 3.2.
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Proof of Proposition 3.2. We only consider the case where the scattering operators
agree, as the wave operators can be treated similarly. By time and space translation
symmetry, it suffices to treat the case (t0, x0) = (0, 0).

Let G(t, x, u) := F (t, x, u)u so that∫︂ ∞

−∞

⟨︁
F (0, 0, ulin(t, x)), ulin(t, x)

⟩︁
L2

x
dt =

∫︂ ∞

−∞

∫︂
R3

G(0, 0, ulin(t, x)) dx dt.

By the fundamental theorem of calculus, Fubini’s theorem, and Lemma 3.1,∫︂ ∞

−∞

∫︂
R3

G(0, 0, ulin(t, x)) dx dt = 2

∫︂ ∞

0

∂G

∂u
(0, 0, λ)m(λ) dλ.

Hence,∫︂ ∞

−∞

⟨︁
F (0, 0, uα,ε

lin (t, x)), uα,ε
lin (t, x)

⟩︁
L2

x
dt = 2(α/ε)−8

∫︂ ∞

0

∂G

∂u
(0, 0, λ)m(λ/α) dλ.

Performing the change of variables λ =: eτ , we obtain∫︂ ∞

−∞

⟨︁
F (0, 0, uα,ε

lin (t, x)), uα,ε
lin (t, x)

⟩︁
L2

x
dt

=
2ε8

α8

∫︂ ∞

−∞

∂G

∂u
(0, 0, eτ )eτm(eτ−logα) dτ

=
2ε8

α8

∫︂ ∞

−∞
H(τ)e6τm(eτ−logα) dτ

=
2ε8

α8
· (2α)

6π

12

∫︂ ∞

−∞
H(τ) · 12

π
e−6(log 2α−τ)m(eτ−logα) dτ

=
32πε8

3α2

∫︂ ∞

−∞
H(τ)w(log 2α− τ) dτ

=
32πε8

3α2
(H ∗ w)(log 2α), (3.8)

where w(τ) = 12
π e−6τm(e−(τ−log 2)) is as given by (3.7).

On the other hand, if Fα,ε
lin (t) := F (t, · , uα,ε

lin (t)), then∫︂ ∞

−∞

⟨︁
Fα,ε
lin (t), uα,ε

lin (t)
⟩︁
L2 dt =

∫︂ ∞

−∞

⟨︁
Fα,ε
lin (t), ∂tv

α,ε
lin (t)

⟩︁
L2 dt

=

∫︂ ∞

−∞

⟨︃[︃
0

Fα,ε
lin (t)

]︃
, U(t)

[︃
vα,ε0

vα,ε1

]︃⟩︃
Ḣ

1×L2

dt

=

⟨︃∫︂ ∞

−∞
U(−t)

[︃
0

Fα,ε
lin (t)

]︃
dt,

[︃
vα,ε0

vα,ε1

]︃⟩︃
Ḣ

1×L2

.

It follows from Corollary 2.2 that agreement of the scattering operators implies that∫︂ ∞

−∞

⟨︁
Fα,ε
lin (t), uα,ε

lin (t)
⟩︁
L2 dt =

∫︂ ∞

−∞

⟨︁ ˜︁Fα,ε
lin (t), uα,ε

lin (t)
⟩︁
L2 dt

+O(∥(uα,ε
0 , uα,ε

1 )∥9
Ḣ

1×L2
) · ∥(vα,ε0 , vα,ε1 )∥

Ḣ
1×L2

=

∫︂ ∞

−∞

⟨︁ ˜︁Fα,ε
lin (t), uα,ε

lin (t)
⟩︁
L2 dt+Oα(ε

12). (3.9)
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Now given a τ0 ∈ R, let α := 1
2e

τ0 so that τ0 = log 2α. Combining Lemma 3.3,
(3.8), and (3.9), we deduce that

(H ∗ w)(τ0) = ( ˜︁H ∗ w)(τ0) + o(1) +O(ε4) as ε → 0.

Taking ε → 0, we arrive at the conclusion. □

Proof of Lemma 3.3. Fix a point (t0, x0) ∈ DF and let

Gα,ε(t, x, u) := F (t0 + (α/ε)−2t, x0 + (α/ε)−2x, u)u

so that ∫︂ ∞

−∞

⟨︁
F (t, x, uα,ε

lin (t− t0, x− x0)), u
α,ε
lin (t− t0, x− x0)

⟩︁
L2

x
dt

= (α/ε)−8

∫︂ ∞

−∞

∫︂
R3

Gα,ε(t, x, αulin(t, x)) dx dt.

Then the conclusion sought can be written as follows: as ε → 0,∫︂ ∞

−∞

∫︂
R3

Gα,ε(t, x, αulin(t, x))−Gα,ε(0, 0, αulin(t, x)) dx dt = oα(1). (3.10)

To prove this, we first recall from the proof of Lemma 3.1 that

ulin(t, x) ≤

{︄
2 · 1{0<|x|<2}(t, x) if 0 < t < 1,

1
t · 1{t−1≤|x|<t+1}(t, x) if t > 1.

Hence∫︂ ∞

−∞

∫︂
R3

|ulin(t, x)|6 dx dt = 2

∫︂ ∞

0

∫︂
R3

|ulin(t, x)|6 dx dt ≲ 1 +

∫︂ ∞

1

(︃
1

t

)︃6

t2 dt < ∞.

Thus, given any η > 0, the dominated convergence theorem guarantees that there
exists an R > 0 (depending on η) so that⃓⃓⃓⃓

⃓
∫︂∫︂

|t|+|x|>R

Gα,ε(t, x, αulin(t, x))−Gα,ε(0, 0, αulin(t, x)) dx dt

⃓⃓⃓⃓
⃓

≲α

∫︂∫︂
|t|+|x|>R

|ulin(t, x)|6 dx dt < η. (3.11)

To estimate the integral in (3.10) over the complementary region |t| + |x| ≤ R,
we partition it into the sets

UR
n := {(t, x) ∈ R×R3 : |t|+ |x| ≤ R and ⌈2α⌉n/N ≤ αulin(t, x) < ⌈2α⌉(n+1)/N},

where N is some large positive integer and |n| ≤ N . For (t, x) ∈ UR
n , we then have

|Gα,ε(t, x, αulin(t, x))−Gα,ε(t, x, ⌈2α⌉n/N)| ≲α 1/N,

|Gα,ε(0, 0, ⌈2α⌉n/N)−Gα,ε(0, 0, αulin(t, x))| ≲α 1/N,

with implicit constants depending only on α. As ⌈2α⌉n/N ∈ Q, replacing the true
values of αulin with these approximations will allow us to exploit the hypothesis
that (t0, x0) is a determinable point. To employ these approximations, we first note
that ⃓⃓⃓⃓

⃓
∫︂∫︂

|t|+|x|≤R

Gα,ε(t, x, αulin(t, x))−Gα,ε(0, 0, αulin(t, x)) dx dt

⃓⃓⃓⃓
⃓
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≲α

∑︂
|n|≤N

∫︂∫︂
UR

n

⃓⃓⃓
Gα,ε(t, x, ⌈2α⌉n/N)−Gα,ε(0, 0, ⌈2α⌉n/N)

⃓⃓⃓
dx dt+

R4

N
.

For each n, a change of variables gives∫︂∫︂
UR

n

⃓⃓⃓
Gα,ε(t, x, ⌈2α⌉n/N)−Gα,ε(0, 0, ⌈2α⌉n/N)

⃓⃓⃓
dx dt

≲α,R ε−8

∫︂∫︂
|t−t0|+|x−x0|≤(α/ε)−2R

⃓⃓⃓
F (t, x, ⌈2α⌉n/N)− F (t0, x0, ⌈2α⌉n/N)

⃓⃓⃓
dx dt,

which tends to zero as ε → 0 because (t0, x0) is a determinable point.
Therefore, choosing N sufficiently large (depending on η) and then ε sufficiently

small (depending on η), we obtain⃓⃓⃓⃓
⃓
∫︂∫︂

|t|+|x|≤R

Gα,ε(t, x, αulin(t, x))−Gα,ε(0, 0, αulin(t, x)) dx dt

⃓⃓⃓⃓
⃓ ≲α η.

Combining this with (3.11) and recalling that η was arbitrary, we deduce (3.10). □

In view of Proposition 3.2, the proof of Theorem 1.5 reduces to showing that the

convolution equation (3.6) implies equality of the nonlinearities F and ˜︁F . We turn
our attention to this task in the next section.

4. Deconvolutional determination of the nonlinearity

The final step in the proof of Theorem 1.5 consists of formally “deconvolving”

both sides of equation (3.6) with w to arrive at H = ˜︁H. This in turn implies that

F (t0, x0, · ) = ˜︁F (t0, x0, · ). The tool that will enable us to do so is a Tauberian
theorem of Wiener [28]. For the following formulation of the Tauberian theorem,
as well as a very elegant proof, see Korevaar [7].

Theorem 4.1 (Wiener’s Tauberian theorem). Let f ∈ L1(R) and g ∈ L∞(R). If

f ∗ g = 0 and ˆ︁f has no zeroes, then g = 0.

Proposition 4.2. Let w be as defined in Proposition 3.2. Then ˆ︁w has no zeroes.

Assuming that this proposition holds (so that Wiener’s Tauberian theorem is
applicable to w), Theorem 1.5 follows immediately, as we demonstrate next.

Proof of Theorem 1.5. Fix a point (t0, x0) ∈ DF ∩ D˜︁F and define H and ˜︁H as

in Proposition 3.2 so that (H − ˜︁H) ∗ w = 0. It follows from Theorem 4.1 and

Proposition 4.2 that H = ˜︁H. In particular,

d
dτ

[︁
eτF (t0, x0, e

τ )− eτ ˜︁F (t0, x0, e
τ )
]︁
= 0,

from which it follows that F (t0, x0, · ) = ˜︁F (t0, x0, · ). □

Proof of Proposition 4.2. We decompose w as w = w0 + w1, where

w0(τ) :=

(︃
e−3τ

2

)︃
1(0,∞)(τ),

w1(τ) :=

(︃
e−3τ

2
− 4e−6τ

(e−τ + 1)3

)︃
1(0,∞)(τ).
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First, we compute that

ˆ︂w0(ξ) =

∫︂ ∞

0

e−3τ

2
· e−iξτ dτ =

1

6 + 2iξ
. (4.1)

As 8e−3τ ≤ (e−τ + 1)3 ≤ 8 for all τ ∈ (0,∞), we also have w1(τ) ≥ 0 and so

|ˆ︂w1(ξ)| ≤
∫︂ ∞

0

e−3τ − e−6τ

2
dτ =

1

12
.

Using the expression (4.1) for ˆ︂w0(ξ), we find that |ˆ︂w0(ξ)| > 1
12 whenever |ξ|2 < 27,

which implies that | ˆ︁w(ξ)| > 0 for all such ξ.
To handle the remaining ξ, we integrate by parts to obtain

ˆ︂w1(ξ) =

∫︂ ∞

0

d

dτ

(︃
e−3τ

2
− 4e−6τ

(e−τ + 1)3

)︃
e−iξτ

iξ
dτ.

It is straightforward to verify that

A(τ) := − d

dτ

(︃
e−3τ

2

)︃
and B(τ) :=

d

dτ

(︃
− 4e−6τ

(e−τ + 1)3

)︃
satisfy 0 ≤ 2

3B(τ) ≤ A(τ) for all τ ∈ (0,∞). Hence

|ˆ︂w1(ξ)| ≤
1

|ξ|

∫︂ ∞

0

|B(τ)−A(τ)| dτ ≤ 1

|ξ|

∫︂ ∞

0

A(τ)− 1

3
B(τ) dτ =

1

3|ξ|
.

Using the expression (4.1) for ˆ︂w0(ξ) again, we find that |ˆ︂w0(ξ)| > 1
3|ξ| whenever

|ξ|2 > 36
5 , which implies that | ˆ︁w(ξ)| > 0 for all such ξ.

As 36
5 < 27, we conclude that ˆ︁w(ξ) ̸= 0 for all ξ ∈ R, as was to be shown. □
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[23] R. Weder. “Lp-Lṕ estimates for the Schrödinger equation on the line and
inverse scattering for the nonlinear Schrödinger equation with a potential”.
J. Funct. Anal. 170.1 (2000), pp. 37–68.

[24] R. Weder. “Inverse scattering on the line for the nonlinear Klein-Gordon
equation with a potential”. J. Math. Anal. Appl. 252.1 (2000), pp. 102–123.

[25] R. Weder. “Inverse scattering for the non-linear Schrödinger equation: recon-
struction of the potential and the non-linearity”. Math. Methods Appl. Sci.
24.4 (2001), pp. 245–254.

[26] R. Weder. “Inverse scattering for the nonlinear Schrödinger equation. II. Re-
construction of the potential and the nonlinearity in the multidimensional
case”. Proc. Amer. Math. Soc. 129.12 (2001), pp. 3637–3645.

[27] R. Weder. “Multidimensional inverse scattering for the nonlinear Klein-
Gordon equation with a potential”. J. Differential Equations 184.1 (2002),
pp. 62–77.

[28] N. Wiener. “Tauberian theorems”. Ann. of Math. (2) 33.1 (1932), pp. 1–100.



REFERENCES 17

Department of Mathematics, UCLA

Email address: njhu@math.ucla.edu

Department of Mathematics, UCLA
Email address: killip@math.ucla.edu

Department of Mathematics, UCLA
Email address: visan@math.ucla.edu


	1. Introduction
	1.1. Notation

	2. Small-data scattering
	3. Reduction to a convolution equation
	4. Deconvolutional determination of the nonlinearity
	References

