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Abstract

Algebra is essential for delving into advanced mathematical topics and STEM courses (Chen,
2013), requiring students to apply various problem-solving strategies to solve algebraic
problems (Common Core, 2010). Yet, many students struggle with learning basic algebraic
concepts (National Mathematics Advisory Panel (NMAP), 2008). Over the years, both
researchers and developers have created a diverse set of educational technology tools and
systems to support algebraic learning, especially in facilitating the acquisition of problem-
solving strategies and procedural pathways. However, there are very few studies that examine
the variable strategies, decisions, and procedural pathways during mathematical problem-
solving that may provide further insight into a student’s algebraic knowledge and thinking.
Such research has the potential to bolster algebraic knowledge and create a more adaptive and
personalized learning environment.

This multi-study project explores the effects of various problem-solving strategies on
students’ future mathematics performance within the gamified algebraic learning platform
From Here to There! (FH2T). Together, these four studies focus on classifying, visualizing,
and predicting the procedural pathways students adopted, transitioning from a start state to a
goal state in solving algebraic problems. By dissecting the nature of these pathways—optimal,
sub-optimal, incomplete, and dead-end—we sought to develop tools and algorithms that could
infer strategic thinking that correlated with post-test outcomes. A striking observation across
studies was that students who frequently engaged in what we term ‘regular dead-ending
behavior’, were more likely to demonstrate higher post-test performance, and conceptual and
procedural knowledge. This finding underscores the potential of exploratory learner behavior
within a low-stakes gamified framework in bolstering algebraic comprehension. The
implications of these findings are twofold: they accentuate the significance of tailoring
gamified platforms to student behaviors and highlight the potential benefits of fostering an
environment that promotes exploration without retribution. Moreover, these insights hint at the
notion that fostering exploratory behavior could be instrumental in cultivating mathematical
flexibility. Additionally, the developed tools and findings from the studies, paired with other
commonly used student performance metrics and visualizations are used to create a
collaborative dashboard—with teachers, for teachers.
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Introduction

Motivation

Over the past year, my role as a Graduate Research Assistant in the MAPLE Learning
Sciences Lab has allowed me to delve deeply into data-driven methodologies, analysis, and
software engineering for education in an applied interdisciplinary setting. Within this capacity
and through working on several NSF and IES funded grants, we have utilized various data
science and computer science techniques, including modeling student behaviors, predicting
student learning outcomes, and creating interactive visualizations to make sense of large-scale
action-level log data as students solve problems in various math technologies. By embracing
an interdisciplinary outlook, we have harnessed the power of data mining and data modeling
within learning analytics research, paving the way for the adoption of more sophisticated
analytical tools in the field. Much of this research has involved leading projects and writing of
conference papers and manuscripts. Since beginning my Masters, we have first-authored two
accepted conference papers (Pradhan et al., 2024a; 2024b), have collaborated on several other
projects, and am currently working on submitting two first-authored manuscripts to journals.
We have also engaged in several other educationally driven research projects, working
alongside teachers, students, data analysts and faculty with varying expertise to broaden my
understanding of learning.

For my thesis, we will focus on a subset of these projects that have guided a majority
of my work. In particular, this thesis will describe the process of building a tool to classify
students’ procedural pathways when solving algebraic problems; developing visualizations for
students' attempts and the respective classifications; and conducting data analyses to explore
whether the choice of procedural pathways predicts differentiated learning outcomes. By using
a data-driven approach we plan on narrowing the gap in educational data mining regarding the
study of students’ variation in procedural pathways.

Thesis Introduction

Algebra is an essential topic for success in advanced mathematical topics and other STEM
courses (Chen, 2013). To be proficient in algebra, students need to have a strong understanding
of algebraic notations, conceptual and procedural knowledge, as well as the ability to use that
knowledge flexibly (Rittle-Johnson et al., 2015; Schoenfeld, 2007). Further, students need to
be able to apply various problem-solving strategies to efficiently solve algebraic problems
(Common Core, 2010). Yet, many students struggle with learning basic algebraic concepts and
applying that knowledge or appropriate problem-solving strategies to unfamiliar problems
(National Mathematics Advisory Panel [NMAP], 2008).

To effectively apply algebraic knowledge to unseen or unfamiliar problems, students
need to develop not only the ability to solve problems accurately but also procedural flexibility
to make strategic choices adaptively (Baroody, 2003; Threlfall, 2009; Verschaffel et al., 2009).
Over the years, both researchers and developers have created a diverse set of tools and systems



to bolster algebraic learning, especially in facilitating the acquisition of problem-solving
strategies. Notably, rule-based approaches have stood out in the development of Intelligent
Tutoring Systems (ITS), with the primary goal of strengthening the acquisition of procedural
knowledge that's pivotal to algebraic comprehension. These approaches find their foundation
largely in the cognitive theories presented in ACT-R (Anderson, 2014). A variety of cognitive
tutors have emerged over time, all aiming to aid learners in achieving mastery across various
subjects (Anderson et al., 1995; Corbett et al., 1997; Ritter & Fancsali, 2016). While these
cognitive tutors are designed to provide learners with adaptive feedback and personalized
guidance (Aleven et al., 2006), the procedural pathways available to students are often
constrained by what the problem creator considers essential for mastering the core concepts
(see Figure 1a).
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Figure 1. Procedural pathways in digital learning systems

In contrast, some ITS have adopted an alternative approach, developing systems that
merely require students to enter their answers to the problems (see Figure 1b), without
demonstrating the procedural comprehension necessary to solve them (Heffernan & Heffernan,
2014). Despite the ambiguity surrounding the procedural pathways chosen by the learner, the
use of such systems has led to better learning outcomes (Murphy et al., 2020) and the
availability of feedback has been observed to be beneficial in enhancing learning (Koedinger
et al., 2010; Mendicino et al., 2009).

Though both approaches effectively facilitate the acquisition of mathematical
knowledge (Murphy et al., 2020; Pane et al., 2014; Steenbergen-Hu & Cooper, 2013), little is
known regarding the various procedural pathways learners might potentially employ in
formulating a solution. With the rapid development in technology and ensuing innovations in
Intelligent Tutoring Systems (ITS), researchers and developers have been investigating the
efficacy of implementing novel methodologies to aid learners in acquiring algebraic



knowledge. A subset of these educational technologies, such as Graspable Math (Weitnauer et
al., 2016) and From Here to  There! (FH2T; freely available at
graspablemath.com/projects/th2t; Ottmar et al., 2015), have embraced dynamic procedural

pathways for teaching algebra. Specifically, FH2T adopts a distinctive gamified and dynamic
procedural approach: learners are presented with an algebraic expression as the starting state
and a transformed version of that expression as the goal state. Students can traverse any
procedural pathway they prefer, with all mathematically valid transformations being
permissible (see Figure Ic). This architecture inherently grants learners the autonomy to
explore various procedural avenues in their exploration of the transformations necessary to
attain the goal state. Such a modality can shed light on the diversity of procedural pathways
chosen by learners.

While most traditional math learning tools guide students towards producing correct
and efficient answers, gamified learning environments such as FH2T, employ a different
approach to help students learn core math concepts and develop procedural flexibility.
Gamified environments have been shown to help students remain engaged as they explore
multiple possible solution paths and practice core mathematical concepts, rather than solely
producing a correct answer (Clark et al., 2016; Jere-Folotiya et al., 2014; Wouters et al., 2013).
Several studies (Chan et al., 2022; Decker-Woodrow et al., 2023; Hussein et al., 2019; Wouters
et al., 2017; Young et al., 2012) have found that gamified math learning applications are more
effective than non-gamified counterparts in improving students’ algebraic learning.
Additionally, various prior studies have reported on their exploration of the efficacy of FH2T’s
gamification model in improving different aspects of the in-game behavior that can predict
better learning outcomes (Chan et al., 2022b; Vanacore et al., 2023). However, to the best of
our knowledge, very little exploration regarding the variation in the procedural pathways
adopted by students in their attempt to reach the goal state has been studied.

Contribution

Our contributions are summarized as follows:

e We developed a novel tool called ‘MathFlowLens’ that classifies the entire procedural
pathway of students as optimal, sub-optimal, incomplete, and dead-end. Subsequently,
the tool uses the classifications and represents students’ procedural pathways as a
sequential network visualization (Study 1).

e We explore the relation between the classifications and the constructs of algebraic
knowledge: conceptual knowledge, procedural knowledge, and procedural flexibility.
Surprisingly, the results indicate that students who have a high average number of dead-
end attempts per problem have higher conceptual and procedural knowledge (Study 2).

e We further dissect the nature of dead-end attempts and reveal that students who exhibit
what we call ‘Regular Dead-ending’ behavior have significantly higher algebraic
knowledge scores (Study 3).

e We develop a data and research-driven interactive dashboard (mathflowlens.com) by
following a co-design methodology and collaborating with teachers. In addition to

using the developed MathFlowLens tool from Study 1, we incorporate various other
visualizations and student performance metrics in the dashboard to provide teachers


http://graspablemath.com/projects/fh2t
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR14
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR26
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR52
http://mathflowlens.com/

with a detailed overview of their students’ performance. This dashboard is
generalizable and usable by any learning platform that logs detailed student
transactional data (Study 4).



Study 1. MathFlowLens: A Classification And
Visualization Tool for Analyzing Students’ Procedural
Pathways.

* This study is part of a paper currently under review in the Journal of Educational
Technology Research and Development. Edits have been made to improve the readability and
flow of the thesis.
Citation: Pradhan, S., Ottmar, E., Gurung, A. & Lee, J. (in review). MathFlowLens: A
Classification And Visualization Tool for Analyzing Students’ Procedural Pathways.
Education Tech Research and Development.

Introduction

Previous studies regarding student learning in gamified learning environments have mainly
examined correlations between in-game behaviors and positive learning outcomes. Students
exhibiting behaviors such as consistent in-game progress (Hulse et al., 2019; Martin et al.,
2015, Shute et al., 2015), longer pause time before problem solving (Chan et al., 2022), higher
propensity to reattempt problems (Chen et al., 2020; Vanacore et al., 2023) and exploratory
behavior (Pradhan et al., 2024a) tend to have better learning outcomes. As students’ in-game
behavioral patterns play a significant role in student learning (Chan et al., 2023), developers of
gamified learning platforms may need to pay close attention to the game design to ensure they
do not penalize more exploratory or creative but less efficient behaviors. Consistently
employing such problem-solving strategies may give students a more nuanced understanding
of mathematical structures and transformations (Pradhan et al., 2024). However, very few
studies have examined how students' variable problem-solving strategies influence the
underlying mechanism of learning and other behaviors when interacting with the game (Hulse
et al., 2019).

While the studies conducted by Lee et al. (2022b; 2022c) partially explored the
variability in students’ solution strategy by examining the efficiency and productivity of the
first step; to the best of our knowledge, there have been no studies that classify the entire
problem-solving pathways from start to finish and explore the variation of strategies in online
learning tools or platforms. This is in part because a majority of educational technologies record
students' entered answers rather than log moment-by-moment mathematical transformations
and expressions that show how students arrive at their solutions. This often results in a lack of
process-based data to explore variability in students’ mathematical ideas and problem-solving
strategies (Lee et al. 2022c). However, documenting and visualizing students’ preferred
solution pathways and the variation in strategy may provide valuable insight into student’s
mathematical thinking and knowledge, particularly compared to binary problem correctness
information.

Furthermore, in order to support students’ algebraic learning and flexibility, it is vital
for teachers to examine the variable strategies, decisions, and behaviors that students exhibit
during problem-solving. However, in traditional learning environments, teachers often have



difficulties keeping track of and monitoring students’ problem-solving strategies and learning
progress (Asquith et al., 2007). Understanding the variation in students' problem-solving
strategies and preferred pathways in gamified learning applications may help teachers identify
students’ common misconceptions and gaps in knowledge. By knowing different student
problem-solving pathways and strategies, teachers may actively compare different solution
strategies with subsequent student discussions to highlight the differences and similarities of
the different pathways.

In sum, by acknowledging the variability in students’ strategies (e.g. creative,
exploratory, and efficient), both teachers and students may stop relying exclusively on a single
procedural pathway over others that are equally effective or more efficient, leading to improved
procedural flexibility (Star et al., 2016). Further, developers and teachers alike could consider
the individual differences in students and their behaviors to create more adaptive and
supportive learning environments.

The current study

In this study, we address this gap in research and practice by leveraging process-level log data
from a digital algebraic learning game. In particular, we introduce a novel tool called
“MathFlowLens” that utilizes graph search algorithms such as A-star or Dijkstra's shortest path
algorithm (Mehlhorn & Sanders, 2007) to reveal problem-solving pathways that are optimal,
sub-optimal, incomplete, and occasionally paths that result in dead-ends. Additionally,
MathFlowLens utilizes these classifications to create interactive network visualizations that
represent students’ paths of algebraic transformations, problem-solving pathways, and solution
strategies in the game. Specifically, the aims of this study are to:
e Development Phase I: Create a tool that can classify various problem-solving pathways
and strategies that students employ while problem-solving.
® Development Phase 2: Create interactive network visualizations of students' problem-
solving pathways and variations in their employed strategies.

Background

Utilizing Log-file data from game-based learning platforms to explore student
problem-solving.

Digital game-based learning is a modern and technologically driven instructional approach for
mathematics learning, in which students may explore content in a more low-stakes and relaxed
setting compared to other math learning technologies, where students solve traditional textbook
problems. Such game-based learning platforms can provide students with multiple learning
pathways, conceptual reinforcement, and cognitive enhancement with the use of sound, image,
and interactivity (Dede, 2009; Gee, 2003). The interactivity and flexibility of game-based
learning environments may prompt students to display exploratory behaviors (Pradhan et al.,
2024a) and encourage re-attempting problems (Chen et al., 2020; Vanacore et al., 2023), both
of which lead to better learning outcomes. Further, these aspects of games help engage students
while practicing mathematical concepts (Clark et al., 2016; Jere-Folotiya et al., 2014; Wouters


https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR14
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR26

et al., 2013), especially those who struggle in a traditional classroom setting (Moses & Cobb,
2002; Kiili et al. 2015).

A systematic literature review (Hussein et al., 2019) comparing game-based learning
with other methods of instruction in K-12 mathematics education revealed that a majority of
studies reported positive outcomes for knowledge acquisition. Similarly, for perceptual and
cognitive skills, and affective, motivational, and behavioral changes, most studies reported
positive outcomes with a game-based intervention. Furthermore, several studies revealed the
effectiveness of the gamified system in decreasing mathematical errors and improving student
understanding (Chan et al., 2022, 2023; Decker-Woodrow et al., 2023; Hulse et al., 2019;
Ottmar et al., 2015).

In addition to improving learning and engagement and decreasing mathematical errors,
click-stream or log-file data collected in gamified learning applications can provide researchers
and developers with a plethora of vital information about students’ problem-solving processes
(Gobert et al., 2013). The fine-grained and detailed log data contains aspects of students’
behaviors and provides researchers the opportunity to explore the relation between interaction
patterns and learning outcomes (Crossley et al., 2019). There is growing research that suggests
log-file data is strongly predictive of short- and long-term engagement, interest, and learning
in mathematics (Ocumpaugh et al., 2016). Most studies in the field of game-based learning
have primarily used log-file data to understand students’ in-game behaviors, or the validation
of the gamified elements (Alonso-Fernandez et al., 2019; Cano et al., 2018). While these
studies provide useful information regarding the relationship between behavioral patterns and
student learning, Hulse et al. (2019) claim that researchers and developers must pay close
attention to the underlying learning mechanisms and behaviors that are triggered when students
interact with the game. Yet, to the best of our knowledge, researchers have rarely used log-file
data to explore variability in student’s problem-solving strategies and pathways. While Lee et
al. (2022b; 2022c) partially achieved this by hand-coding the productivity of the first step to
explore factors leading to higher productive first steps, they did not classify the productivity or
efficiency of the entire solution strategy. Raw log-file data, especially those that record
moment-by-moment transformations and expressions made by students while solving a
problem, may contain valuable information regarding the employed solution strategies and
students’ mathematical thinking. Further, the variation in problem-solving strategies and
pathways employed by students when exploring and reattempting problems in a gamified
learning system may provide valuable insight into students' mathematical knowledge.

Using Data Visualizations to Identify Student Problem-Solving Pathways

Identifying student strategies or problem-solving pathways in online learning environments is
often challenging for researchers or teachers due to the complexity of pathways and the
uncertainty about which patterns to explore in the data (Wang et al., 2017). Applying data
visualizations to student problem-solving pathways can help researchers and teachers quickly
identify what students do, and where they are stuck, and better understand the students’
cognitive process during problem-solving activities.

Several empirical studies have applied data mining and advanced data visualization
techniques to identify student strategies or problem-solving pathways (Hurtig et al., 2022;


https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR52
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Sinha & Aleven, 2015; Wang et al., 2017; Xia et al., 2021). One of the most widely used data
visualization techniques to present students’ learning pathways is the Sankey diagram. For
example, Wang et al. (2017) developed a visualization tool called “PathViewer” to identify the
sequence of students’ problem-solving paths in programming works. They utilized the Sankey
diagrams to depict the students’ problem-solving pathways and natural language processing to
identify the most prevalent sequences and loops. Using PathViewer, they successfully
identified sequential patterns of students' coding and common causes of failure. Similarly, Xia
et al. (2021) created a tool named “QLens” to visualize elementary and middle students’
trajectory data across various steps and stages in an online math learning platform. They also
used Sankey diagrams to depict students’ problem-solving logic, engagement, and difficulties
encountered. The following case studies and interviews showed the usefulness and
effectiveness of QLens in providing information about students’ problem-solving processes
and engagement. As such, while Sankey diagrams are useful for visualizing various problem-
solving pathways, they illustrate the data flowing in only one direction (e.g., start state to goal
state or correct answer). They do not depict multidirectional pathways within the learning
process, for example, how students withdraw their strategy, return to the previous state, correct
errors, and take a more efficient problem-solving pathway.

One alternative way to visualize student problem solving pathways is through
sequential network visualization. Sequential network visualizations illustrate not only the
direction and frequency of the pathway through arrows but also how nodes (e.g., concepts,
events) are interconnected with each other. As an example, Hurtig et al., (2022) investigated
students’ pathways to correct answers in college chemistry classes. They represented students'
attempts, both incorrect and correct, as nodes in a network and visualized how they reached
correct answers. The usability test of this tool with faculty members showed a satisfactory
level, and they found the tool useful for monitoring and better understanding students'
comprehension. In our study, we represented problem-solving steps as nodes in networks and
created sequential network visualizations to illustrate multidirectional student problem-solving
pathways to reach goal states in an online mathematics learning game.

Context of the Study

Game Description

FH2T, a gamified learning platform that was developed by Ottmar and colleagues (2015), is a
dynamic gamified learning application developed based on several learning theories such as
perceptual learning, embodied cognition, and gamification. While traditional algebraic
teaching in school focuses on the memorization of abstract and arbitrary rules, FH2T helps
improve students’ knowledge of arithmetic for algebra learning by helping students identify
the structure of algebraic expressions and think more flexibly about mathematical operations
and properties (Chan et al., 2022). Several empirical studies have shown that FH2T improves
students’ procedural learning, conceptual understanding, understanding of equivalence, and
flexibility in algebra, as well as decreasing mathematical errors (Chan et al., 2022; Decker-
Woodrow et al., 2023; Hulse et al., 2019; Ottmar et al., 2015).



FH2T incorporates interactive virtual objects to represent algebraic equations, allowing
students to apply mathematical principles through dynamic gestures (e.g. tapping or dragging)
in a virtual environment. In doing so, students can realize that mathematical transformations or
steps are dynamic, rather than procedural steps. In particular, students learn algebra through
puzzle-based problems, in which each problem has a starting expression (i.e. ‘start state’) that
needs to be transformed into a predefined and explicit ending expression (i.e. ‘goal state’).
While these two states are mathematically equivalent, they differ perceptually (see Figure 2a).
In Figure 2, one may solve the problem by transforming the start state (i.e. “44+56+a+72+28”)
into the goal state (i.e. “100+a+100") using mathematically valid actions.
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Figure 2. Example solution steps for problem 6 in FH2T

The game also rewards students based on efficiency (i.e. the number of steps a student
took to complete a particular problem). It rewards three clovers to students who solve the
problem with efficient solutions (see Figure 2f). The number of clovers decreases if a student
takes more solution steps than the efficient solution. In addition, the game allows students to
reset at any point while attempting a problem. The game also allows students to reattempt a
completed problem more efficiently.

The game comprises 252 problems organized into 14 ‘worlds’. Each world covers
various mathematical concepts (e.g. addition, multiplication, fraction). The game orders
problems based on difficulty, and only allows students to advance to the next world when they
complete 14 consecutive problems (Lee et al., 2022a).

Dataset Used for MathFlowLens Development

In order to classify students’ problem-solving strategy and create data visualizations, we used
data collected from a large Randomized Control Trial (RCT) comparing student learning from
FH2T to two technological interventions and an active control condition as described by Ottmar
(2023). In the RCT, the authors recruited a total of 4,092 7th-grade students from 11 middle
school students within a large suburban district in the United States from September 2020 to
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April 2021 amidst the COVID-19 pandemic. The results of this RCT are available in Decker-
Woodrow et al. (2023).

In the RCT, researchers randomly assigned 1,649 students to the FH2T condition, out
of which 52.6% were male and 47.4% were female. In terms of racial identity, a majority of
the sample identified as White (49.8%), 24.8% as Asian, and 16.4% as Hispanic/Latino. The
remaining 9% identified with either multiple races or various other racial categories. The racial
distribution of the sample was found to be representative of the school district. On average, the
students attempted 112.57 problems (SD = 55.06) and completed 111.06 problems (SD =
55.05) out of 252 problems in the game.

While the larger dataset from the study contains various levels of aggregation (e.g.
student and problem level), we use the log-file data containing real-time or in-the-moment data
that show how students arrive at their solutions. The FH2T platform records detailed logs of
mathematical expressions or steps logged after each transformation a student made, including
timestamps and the different types of errors made by students. This feature-rich raw log file
data in FH2T enabled us to identify students’ various problem-solving pathways at the fine-
grained level and build network visualizations. The dataset is publicly available for researchers
on OSF after a data-sharing agreement (link: https://osf.io/r3nf2/).



https://osf.io/r3nf2/
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Development of MathFlowLens

In an effort to address a gap in game-based algebraic learning research regarding variability in
students’ solution strategies, we developed a tool, MathFlowLens, which is capable of
identifying and classifying various types of attempts. In the following subsections, we describe
the creation, technical components, and inner workings of this tool.

Development Phase 1: Creation of a classification tool identifying various
problem-solving pathways and strategies.

Solution Steps as a Directed Graph

Each mathematical expression or state in a solution is represented as a node in a network.
Similarly, each transformation from one expression to another is represented as a directed edge
from one node to the other. In doing so, we represent a series of actions (i.e. steps) taken by a
student to solve a problem as a directed graph. For example, for the sequence of steps in Figure
2, the start state (i.e. “44+56+a+72+28”, Fig. 2a), step 1 (i.e. “100+a+72+28”, Fig. 2¢), and
goal state (i.e. “100+a+100”, Fig. 2¢) would each constitute a node in the graph. Similarly, the
transformations: start state to step 1 (i.e. [“44+56+a+72+28” — “100+a+72+28”], see Fig. 2b)
and step 1 to the goal state (i.e. [“100+a+72+28” — “100+a+100"], see Fig. 2d), would
represent directed edges to and from the respective nodes in the graph.

Alternatively, similar to most problems in FH2T, one can solve the example presented
above (see Figure 2) with multiple equally efficient solutions. In the case above, one may
choose to add “72+28” from the start state as a first step to get “44+56+a+100” as step 1 rather
than “100+a+72+28”. Next, one can add “44+56” as the last step to reach the goal state (i.e.
“100+a+100”). The graph structure can represent any number and combination of procedural
pathways, regardless of the solution strategy employed.

After populating a graph with several solution steps (i.e. problem attempts), we used
efficient graph traversal algorithms such as A* or Dijkstra’s shortest path algorithm (DSPA) to
identify all efficient solutions or paths from the start state to the goal state. In our
implementation, we chose DSPA for its ability to calculate weighted distances, providing us
with the flexibility to reward or penalize certain transformations. Such graph traversal
algorithms find the shortest distance between two nodes in a weighted and directed graph
(Mehlhorn & Sanders, 2007).

Creating Graphs for All Problems in FH2T

Using the expressions and transformations recorded in the log data, we created and populated
individual graphs for each problem. The graphs were created in Python 3.11 using NetworkX
(Hagberg, 2008) and pandas (McKinney, 2010) packages. Additionally, as the creation of a
single graph relies solely on raw data from a single problem, we used multi-threading to make
this process scalable and efficient. For each problem, we included all expressions (or steps) in
the log data, including the start state and goal state, as nodes in the graph and the respective
transformations to and from nodes as the directed edges. Furthermore, we recorded the number
of students who made a particular transformation, which allowed us to determine the preferred
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or common solution strategies and transformations. Similarly, we recorded the total number of
errors students made in a particular state to help identify expressions that led to more errors.
This process resulted in 252 graphs, one for each problem in the FH2T application. Note, that
for this initial exploratory study, we assigned equal weights to each transformation to find the
optimal paths using DSPA, and consequently, the minimum number of steps required to reach
the goal state.

Identified Classifications for Solution Steps/Attempts

Based on the graphs created, we identified three types of problem attempts: optimal, sub-
optimal, and incomplete paths. Optimal paths are procedural pathways that use the least number
of steps or transformations to reach the goal state. Similarly, sub-optimal paths are inefficient
pathways that use more steps than the optimal paths to reach the goal state. Conversely,
incomplete paths are attempts that did not reach the goal state. However, we observed two
distinct types of incomplete attempts: 1) incomplete paths that were unique, and no student had
reused them to reach the goal state, and 2) incomplete paths that students had reused to reach
the goal state. We labeled the former as dead-end paths and the latter simply as incomplete
paths. In other words, an incomplete pathway occurs when students stop using the current
procedural pathway and decide to reset, even though that pathway leads to the solution.
Distinctly, a dead-end path represents a pathway in which students cease progress before
completing the problem, unlike incomplete pathways, no student has ever traversed them
successfully to reach the goal state.

For example, in the problem given in Figure 2, if the raw log contains the four problem
attempts from Figure 3, we can create a single graph representing all problem attempts. In
doing so, one can identify the different attempt classifications. The attempt with optimal
classification completes the problem with the least possible number of transformations (i.e.,
two transformations), whereas the sub-optimal attempt is complete but with a greater number
of transformations than the optimal classification (i.e., three transformations). Next, the dead-
end attempt is a unique incomplete attempt (i.e. the path has never been fully traversed to reach
the goal state). Finally, the incomplete attempt makes the same first transformation as sub-
optimal and optimal solutions, however, the attempt is reset before reaching the goal state. Note
that it is this resemblance to a completed attempt that leads this attempt to be classified as
incomplete rather than a dead-end pathway.
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Figure 3. Identified classifications for student pathways

Alternative Classifications Using Binning Factor

As described above, the classifications inherently depend on the attempts that are included or
excluded from the graph. For example, take an incomplete attempt by student A: [‘Start State’
— “Step 1°]. If we populated a graph with the entirety of the sample’s attempts, there may exist
a student B, presumably with higher prior knowledge, who took the same path as student A but
reached the goal state, with the attempt: [‘Start State” — ‘Step 1° — ‘Step 2°— ‘Goal State’].
Based on the definition provided above, the algorithm would classify this path as incomplete.
However, researchers may be interested in defining attempts based on various grouping or
binning factors, for example: pre-knowledge scores, class ID, teacher ID, student ID, etc. By
altering the students included in a particular network, we can constrain or relax the definitions
of the classifications. This flexibility of creating multiple networks for a single problem based
on a binning factor allows us to explore variability in the defined classifications and localize
the definitions to the bins.

Development Phase 2: Applying classifications to create interactive
visualizations of student problem-solving pathways and strategies.

While the graph creation process described above helped us identify four distinct pathways,
the resulting graph data can then be used to create interactive sequential network visualizations,
allowing us to examine students' various solution pathways and strategies. In our
implementation, we used JavaScript and the d3.js library to render the visualizations. Each
node in the visualization is color-coded based on the identified classifications from above. To
distinguish the start and goal states from other states, we color-coded them blue and green,
respectively. Similarly, we color-coded the optimal states and transformations as yellow, sub-
optimal pathways as gray, and dead-end pathways as red (See Figure 4). Note that, students
have reused that pathway in an optimal or sub-optimal manner to reach the goal state based on
the definition of incomplete attempts. As a result, such incomplete attempts can not be
visualized directly.

Furthermore, in the visualization, the thickness of an edge connecting two nodes and the size
of the directional arrow is proportional to the number of attempts that made that transformation.
This allows us to quickly identify the students’ preferred or common transformations and
pathways. An example of this visualization is given in Figure 4, which represents all attempts
in the log-file data for problem 6 in FH2T (start state: 44+56+a+72+28, goal state: 100+a+100).
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In this case, there are two distinct optimal solutions (i.e., paths colored in yellow), which both
require two steps to reach the goal state. The visualization has a small number of pathways
indicating that there was little variation in students’ problem-solving strategies. Additionally,
based on the thickness of the edges and the size of the arrows, most students employed optimal
problem-solving strategies.
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Figure 4. Network visualization for all student attempts for problem 6 in FH2T

Interactive elements of the visualization

An important feature of this visualization is interactivity, which allows users to drill down and
focus on specific pathways or nodes. For example, hovering on the nodes using a mouse
reveals additional information, such as the mathematical expression and the node’s
classification (see Figure 5a). Similarly, users can drag and drop each node, allowing them to
focus on the relevant and interesting pathways. Additionally, researchers and teachers using
this visualization may be interested in knowing what pathways lead to a particular node, or,
conversely, what pathways lead to the goal state from a particular node. By holding the
‘control’ key while clicking a node, the visualization displays all paths that lead to the node
from the start state and all paths that lead to the goal state from that node. Finally, as the
visualization can get cluttered when there are many distinct pathways, users may choose to
only show the optimal pathways and hide the sub-optimal and dead-end pathways (See Figure
5b).
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Figure 5. Demonstration of interactive features of MathFlowLens visualization

Another important feature of the interactive graph is its ability to visualize individual
student attempts. By selecting a student ID and a problem attempt, the graph highlights the
student’s chosen problem-solving pathway in purple. An example of this feature is given in
Table 1, in which we have presented 4 student attempts each belonging to the four identified
attempt classifications: optimal, sub-optimal, dead-end, and incomplete. A live demonstration
of this visualization can be found at mathflowlens.com in the Graph Diagram component.



http://mathflowlens.com/
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Table 1. Visualization of sample student attempts and respective classifications

Student’s Solution Attempt Pathway Visualization
Strategy and Steps

Optimal Attempt

@® 44+56+a+72+28

100 +a + 72 + 28

® 100+a+100

Suboptimal Attempt

@ 14+56+a+72+28

100 +a+ T2+ 28

100+ a + 28 + 72

® 100+a+100

@ Dead-end Attempt
@ 14+56+a+72+28
U 44+484+4+a+T72

L 1284+a+T72
L 200+a .

L a+200

@ ncomplete Attlempt
® 44+564+a+72+28
100+ a+ 72 4 28

100 +a+ 28+ 72

Discussion

Algebra is an essential topic to delve into advanced mathematical topics and other STEM
courses (Chen, 2013), yet most students struggle with basic algebraic concepts (NMAP, 2008).
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Despite widespread acknowledgment regarding the importance of procedural flexibility, and
the facets of algebraic knowledge in general, limited works have prioritized classifying strategy
pathways or explored what type of student’s problem-solving strategies or pathways lead to
improved algebraic learning. Furthermore, previous studies regarding student learning in
gamified learning environments have mainly focused on correlations between in-game
behaviors and positive learning outcomes (Hulse et al., 2019; Martin et al., 2015, Shute et al.,
2015). This study aimed to narrow the gaps in practice by introducing a novel tool,
'MathFlowLens,' to reveal problem-solving pathways, and also to address gaps in research by
exploring students’ problem-solving strategies and the variation in solution pathways.

Classifying and Visualizing Student Problem-Solving Pathways

In this study, we presented the development process of MathFlowLens, which used raw log
data from FH2T to classify each student attempt using graph theory and shortest path finding
algorithms, and subsequently represented students' solution attempts as a sequential network
visualization (Hurtig et al., 2022). While our earlier studies (Lee et al., 2022b; 2022¢) explored
the partial pathways of student problem-solving, this study investigated the entire problem-
solving pathways in the gamified learning application. As noted by Gobert et al. (2013),
clickstream data collected in gamified learning applications indeed provided us with
comprehensive information about students’ mathematical problem-solving processes to build
a visualization tool. The developed tool, MathFlowLens, successfully identified four distinct
classifications for students' problem-solving strategies: optimal, sub-optimal, dead-end, and
incomplete. Our results corroborate the findings of other research (Hurtig et al., 2022; Sinha
& Aleven, 2015; Wang et al., 2017; Xia et al., 2021), which showed visualizing student
problem-solving pathways may help researchers and teachers quickly identify students’
understanding (i.e., best/optimal pathways), where they are stuck (i.e., incomplete pathways),
as well the as the strategies they employ.

Next, in the development Phase 2 of MathFlowLens, we proposed an interactive graph
visualization that showcases the variability in students' problem-solving strategies and provides
an overall summary of a sample's preferred solution pathways. Additionally, the classifications
from Phase 1 were used to color code the nodes and transformations in the Network diagram.
The descriptive statistics of the pathway classifications indicated that there was variability in
students’ problem-solving pathways; the students exhibited a high average frequency of not
only optimal pathways but also incomplete pathways. This suggests that this gamified learning
environment can help students explore multiple possible problem-solving trajectories, not just
reach a single solution (Clark et al., 2016; Jere-Folotiya et al., 2014; Wouters et al., 2013). In
addition, unlike other visualization tools such as “PathViewer” (Wang et al., 2017) and
“QLens” (Xia et al., 2021) mainly used Sankey Diagrams to represent student problem-solving
paths, MathFlowLens uses network diagrams to visualize student pathways. While Sankey
diagrams typically depict the transformations and flow in one direction, we were able to
illustrate multidirectional pathways within problem-solving, for example, how the students
returned to the previous states, corrected errors, and took other problem-solving pathways, as
demonstrated in Hurtig et al.’s study (2022). These approaches, documenting and visualizing
students’ problem-solving pathways and the variation in strategy, may offer valuable insight


https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR14
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR26
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR52
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into students’ mathematical thinking and knowledge, as well as students’ common
misconceptions and gaps in their knowledge.

Practical implications for researchers and developers

Researchers can use MathFlowLens to classify students’ problem attempts to further explore
the complex nature of algebraic learning and student’s problem-solving strategies. Researchers
can also utilize the proposed visualization to gain additional insight into students' mathematical
thinking and problem-solving strategies to inform new methodologies and prompt new research
questions.

This study also has implications for developers of gamified applications and tutoring
platforms. They may choose to implement the presented tool directly into their existing
infrastructure, allowing for real-time attempt classifications and visualizations, along with the
automatic generation of progress reports to further help and inform teachers.

Practical implications for teachers

This work also has direct implications for teachers in several ways. First, the developed tool is
capable of automatically classifying students’ problem-solving strategies and pathways which
are often imperceptible to teachers (Asquith et al., 2007). Having a better understanding of
what strategies a student uses to solve a problem and the variation in the employed solution
pathways may provide teachers with additional insight into the student's current algebraic
knowledge. Next, teachers can utilize the presented graph visualization to quickly identify a
cohort’s preferred problem-solving pathways. The interactive features of this visualization
allow teachers to explore common misconceptions and errors and discover multiple equally
efficient pathways. As such, the proposed visualization can be used to inform and improve
teachers' instruction. Finally, teachers can use the identified pathways to actively compare
problem-solving strategies in the classroom. This side-by-side presentation of solution
strategies coupled with subsequent student discussion to highlight the similarities and
differences among procedural pathways has been shown to improve students' procedural
flexibility (Star et al., 2015).

Limitations and future directions

Several important limitations need to be considered. The presented tool that classifies students'
problem attempts requires highly granular data containing step-by-step student
transformations. However, a majority of educational technologies record students' entered
answers rather than moment-by-moment mathematical transformations and expressions that
show how students arrive at their solutions (Lee et al., 2022c).

While the proposed visualization presents a simplified view of a cohort’s problem-
solving strategies and pathways, its effectiveness and usefulness may depend on the user's
ability to interpret and interact with it. We partially address this by making the visualization
interactive, such as: allowing users to only show optimal pathways in the visualization.
However, more work, such as usability testing for teachers or researchers, needs to be done to
enhance the interpretability and usability of the visualization.
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Overall, we view this work as an initial step towards classifying and understanding
students’ problem-solving strategies and the variation in their employed pathways. Possible
extensions of this study include analyzing the sequence of problem-solving strategies rather
than their frequencies, creating an automatic productivity coder for students’ first steps using
the proposed tool, and creating effective dashboards for teachers using the visualization and
insights from the tool.

Conclusion

In this paper, we presented a classification and visualization tool, called MathFlowLens, that
uses raw log data from FH2T to analyze students’ procedural pathways. The tool classifies the
entire student attempt as either optimal, sub-optimal, dead-end, or incomplete. Subsequently,
MathFlowLens represents students’ procedural pathways as a sequential network visualization.
The findings of the current study demonstrate that MathFlowLens can provide valuable
information regarding the employed solution strategies and students’ mathematical thinking
from raw log data. Additionally, the proposed visualization can be used by researchers and
teachers to quickly identify the variation in a cohort’s problem-solving pathways.
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Study 2. Application of MathFlowLens: Examining the
relations between identified pathways and the facets of
algebraic knowledge.

* This study is part of a paper currently under review in the Journal of Educational
Technology Research and Development. Citation: Pradhan, S., Ottmar, E., Gurung, A. & Lee,
J. (submitted). MathFlowLens: A Classification And Visualization Tool for Analyzing
Students’ Procedural Pathways Education Tech Research Development (submitted).

Specifically, this study was incorporated as a component in the submitted ETRD
manuscript as a potential application example, primarily, to showcase the predictive ability of
the classifications.

Introduction

In the context of educational data mining and learning analytics, machine learning has been
used to make various long-term predictions about student learning and future performance. For
example, Chui et al. (2020) used data collected from a virtual learning environment and
demographic information to predict marginal or at-risk college students. Similarly, Hodges &
Mohan (2019) harnessed neural networks to predict gifted students with high accuracy. Such
classifiers can help answer questions such as “is this an appropriate differentiation strategy” or
“is this child showing need for additional support” (Hodges & Mohan, 2019). This predictive
ability allows educators and teachers to intervene when necessary to facilitate student success.

With the development of the MathFlowLens tool complete, we leveraged the
classifications generated from the tool to test its applicability in data-driven learning analytics
research. In this short exploratory study, we apply the classifications in Study 1 by examining
correlations between the identified classifications and students’ algebraic knowledge. In other
words, we use the classification data to predict the different aspects of students’ algebraic
knowledge. As mentioned above, algebraic knowledge consists of conceptual knowledge,
procedural knowledge, and procedural flexibility.

Research Question

How do the different types of identified problem-solving pathways correlate with the various
facets of algebraic knowledge?

Background

Facets of Algebraic Learning: Procedural and Conceptual Knowledge and
Flexibility.
The mastery of algebra is essential for learning further advanced topics in mathematics

(NMAP, 2008). However, many middle school and high school students struggle with basic
algebraic concepts such as determining valid transformations and decomposing numbers
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(NMAP, 2008), as well as converting simple algebra story problems to mathematically
equivalent equations (Koedinger & Nathan, 2004). Students who struggle with these concepts
may have a difficult time learning more advanced topics, most of which are usually represented
in algebraic form.

For Algebraic proficiency, students require both conceptual and procedural knowledge
and the ability to use this knowledge efficiently and flexibly (Schneider et al., 2011). Rittle-
Johnson et al. (2001) defines conceptual knowledge as students’ verbal and nonverbal
knowledge of algebraic concepts and principles, including familiarity with algebraic symbols
and syntactic conventions. Next, they define procedural knowledge as the understanding of the
rules and procedures for solving an algebraic problem (e.g. the order of steps or transformations
to solve a problem). While conceptual knowledge builds the foundation for procedural
knowledge, students can use procedural practice to develop procedural knowledge as well
(Rittle-Johnson et al., 2001, 2015; Schoenfeld, 2007). The combination of these two types of
knowledge contributes to procedural flexibility—the ability to select the most efficient and
effective solution for a particular problem (Star et al., 2016).

In a systematic review of procedural flexibility, Hong et al. (2023) highlights the
emphasis in both research and practice on procedural flexibility as a learning outcome in
mathematics. Across the globe, including Australia, China, Singapore, and the United States,
educational ministries and committees have highlighted flexibility as an educational goal in
mathematics learning (Australian Education Systems Officials Committee, 2006; Hésto et al.,
2019; Hong et al., 2023; Ministry of Education of Singapore, 2006; Ministry of Education of
the People’s Republic of China, 2022; National Council of Teachers of Mathematics, 2014). In
addition, there has been plenty of evidence demonstrating the importance of procedural
flexibility. Blote et al. (2001) and Rittle-Johnson and Star (2007, 2009) showed that procedural
flexibility facilitates solving unfamiliar problems. Similarly, Rittle-Johnson et al. (2012) found
that it increases conceptual and procedural knowledge in mathematics, the effect of which may
spill over to other STEM domains such as physics and chemistry (Hésto et al., 2019). Various
studies (Robinson et al., 2006; Venkat et al., 2019) suggest that strategic efficiency and
flexibility are significant indicators of a student’s understanding of the inherent mathematical
structures.

Despite the widespread acknowledgment of the importance of mathematical flexibility,
there are few pedagogical recommendations for improving students’ flexibility and most of
them tend to focus mainly on the use of a few strategies, rather than comparing multiple
possible solutions (Verschaffel et al., 2009). Furthermore, to apply procedural flexibility in
different situations, students need to develop a well-connected mental representation of the
core concepts in algebra, such as equivalence, order of operation, and use of parentheses (Knuth
et al. 2006; Ottmar et al. 2012; Welder 2012), allowing them to identify when, how, and which
strategies are effective and applicable (Baroody, 2003; Threlfall, 2009; Verschaffel et al.,
2009). In an effort to assist students in comparing different solution strategies and pathways,
we created a tool that can identify various problem-solving pathways and strategies that
students employ while problem-solving.


https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR23
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR23
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR53
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR54
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR4
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR62
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR64
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR23
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR31
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Method

In the RCT, students took a pre-assessment of their algebraic knowledge (hereafter, pretest
scores) prior to the start of the intervention, and a post-assessment of their algebraic knowledge
(hereafter, posttest scores) after the intervention. Out of the 1,649 students assigned to the
FH2T condition, 1,139 completed the pre-test and only 778 completed both the pre- and post-
test. For this analysis, we omitted students who did not complete both the pre-and post-test,
resulting in an analytical sample of 778 students. For the pretest, students solved each item
sequentially without feedback. Ten multiple-choice items were adapted from a previously
validated measure of algebraic understanding (Star et al., 2015; Cronbach's a = 0.89),
consisting of three sub-constructs: conceptual knowledge (4 items), procedural knowledge (3
items), and procedural flexibility (3 items; see Appendix A). The post-test items replicated the
pretest items but used different equations in the questions and choices. The average pretest
score was 4.71 (SD = 2.68), and the posttest score was 4.50 (SD = 2.93) out of 10. Additional
details about the dataset can be found in Ottmar et al. (2023).

The outcome variables (i.e., conceptual, procedural, and flexibility scores) were at the
student level, hence, we aggregated the one-hot-encoded attempt-level classifications (i.e.,
independent variables) to the student level. First, for each problem, we summed the occurrences
of each attempt type (i.e. total number of optimal, sub-optimal, dead-end, and incomplete
attempts for a problem), resulting in one row for each problem for each student. Next, for each
student, we took the average across problems attempted. Thus the columns in the data represent
the average number of attempts belonging to the respective attempt type. The descriptive
statistics of the outcome variables and the classifications have been given in Table 2. The most
frequent pathways that the students took were optimal, followed by incomplete, sub-optimal,
and dead-end pathways.

To identify what types of pathways (i.e. the identified attempt classifications) led to
better conceptual knowledge, procedural knowledge, and procedural flexibility, we estimated
three linear models. Model 1 predicted the conceptual knowledge scores (i.e. the number of
conceptual items a student got correct in the posttest; see Appendix A) based on the identified
attempt classifications while accounting for pretest scores (mean-centered). Similarly, Model
2 predicted procedural knowledge scores, and Model 3 predicted procedural flexibility scores
after controlling for pretest scores.
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Table 2. Descriptive Statistics for the student-level variables included in the models

Variable Min Median | Mean | Max | SD

Independent variables

Optimal 0.40 0.80 0.84 436 | 0.25
Sub-optimal 0.00 0.33 0.35 2.09 |0.13
Dead-end 0.00 0.11 0.13 2.14 | 0.12
Incomplete 0.00 0.62 0.70 6.79 | 0.44

Dependent variables

Conceptual Score | 0.00 2.00 1.89 4.00 | 1.37
Procedural Score | 0.00 1.00 1.42 3.00 | 1.04
Flexibility Score 0.00 1.00 1.19 3.00 | 1.01

Results

As shown in Table 3, Model 1 explained 39.3% of the variation in conceptual scores (F(5, 772)
= 99.96, p < .0001). Similarly, Model 2 accounted for 30.6% of the variation in procedural
scores (F(5, 772) = 68.22, p < .0001), and Model 3 explained 30.8% of the variation in
flexibility scores (F(5, 772) = 68.64, p < .0001). Surprisingly, students taking dead-end
pathways were positively related to conceptual score (B = 0.84, p =.031) and procedural score
(B=1.01, p=.001), after accounting for pretest scores. These results were surprisingly counter-
intuitive, as we originally hypothesized that dead-ends indicate poor procedural and conceptual
knowledge and would consequently lead to lower procedural and conceptual scores.
Conversely, students taking optimal paths was negatively related to flexibility score (B=-0.58,
p=.021), after controlling for pretest scores. Neither incomplete nor sub-optimal attempts were
significant predictors of conceptual, procedural, or flexibility scores. The results also suggest
that pretest scores, the control variable, was a significant predictor of conceptual (B = 0.31, p
<.001), procedural (B = 0.20, p <.001), and flexibility scores (B = 0.20, p <.001).
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Table 3. Regression results of predicting conceptual, procedural, and flexibility scores from
the identified attempt classifications while accounting for prior algebraic knowledge.

(N=1778) Conceptual Score Procedural Score Flexibility Score

Predictors B CcI p B Ccl P B Ccl P

(Intercept) | 2.02 1.73,2.31 <0.001 | 1.43 1.19,1.66 <0.001 | 1.28 1.05,1.51 <0.001

Optimal -0.28 -0.62,0.05 0.099 |-0.17 -0.44,0.10 0.216 |-0.31 -0.58,-0.05 0.021
Dead-end 0.84 0.08,1.60 0.031 | 1.01 0.39,1.63 0.001 | 043 -0.27,1.03  0.161
Incomplete | -0.17 -0.39,0.05 0.133 | -0.11 -0.29,0.07 0.234 | -0.09 -0.27,0.09  0.315
Sub-optimal | 0.36 -0.33,1.05 0.311 | 0.23 -0.33,0.79 0.414 | 0.52 -0.02,1.06  0.060

Pre Total 0.31 0.28,0.34 <0.001 | 0.20 0.18,0.23 <0.001 | 0.20 0.18,0.23 <0.001
Math Score

R2 0.393 0.306 0.308
R2 Adjusted 0.389 0.302 0.303
Discussion

As a potential research application of MathFlowLens, we examined the relations between the
average frequency of students' solution strategies across problems with the three constructs of
math performance: conceptual knowledge, procedural knowledge, and flexibility scores. The
results indicated that students with frequent dead-end attempts had higher conceptual and
procedural knowledge scores, whereas frequent optimal attempts led to lower flexibility scores.

Dead-ending behavior may represent a form of exploratory play, in which students try
different solution strategies in a low-stakes gamified environment. This exploratory behavior
may help students identify unproductive transformations to avoid, potentially leading to a better
understanding of algebraic knowledge (Pradhan et al., 2024a). This finding is aligned with that
productive failure through exploratory behavior may facilitate learning gains by emphasizing
opportunities to explore the constraints of a problem space (i.e., boundary testing), and testing
multiple solution pathways (Owen et al., 2016).

On the other hand, as indicated by the results, focusing solely on efficient solutions may
lead to a decrease in procedural flexibility. A plausible explanation for this negative correlation
is that forcing students to only take a particular and efficient pathway may limit their
mathematical flexibility and/or the likelihood of learning from mistakes (Francome & Hewitt,
2020).

Furthermore, based on the findings from the linear models, developers of learning
platforms should pay close attention to platform design to ensure exploratory behaviors, such
as frequent dead-end attempts, are not penalized. Such exploratory or creative attempts may be
less efficient but may provide students with a more nuanced understanding of mathematical
structures and operations. By acknowledging the variability in students’ strategies (e.g.
creative, exploratory, and efficient), developers can consider the individual differences in
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students and their behaviors to create more adaptive and supportive learning environments.

Limitations and Future Directions

The analysis using the linear models focused on data derived from one specific context, FH2T.
It is unknown whether these results are generalizable across different platforms. To strengthen
the findings from this study, it would be beneficial for future work to replicate and test the
generalizability of these results. Additionally, future studies could run alternative linear models
with the inclusion of students’ prior individual component scores (i.e. prior conceptual, prior
procedural, and prior flexibility scores) rather than prior algebraic performance. Doing so
would allow researchers to examine the correlation between the frequency of a type of
procedural pathway and the associated increase in score for the individual components of
algebraic knowledge.

Conclusion

In this initial exploratory study, we surprisingly found that students who take dead-end
pathways more frequently have higher conceptual and procedural scores. This result highlights
the need to foster exploratory behavior and creativity to bolster algebraic knowledge. Finally,
students frequently taking optimal pathways have lower procedural flexibility, which
underscores the importance of teaching multiple solution pathways and strategies.
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Study 3. Gamification and Dead-ending: Unpacking
Performance Impacts in Algebraic Learning.

* This study was presented and is published in the proceedings as a paper at the
International Learning Analytics and Knowledge Conference (LAK 2024, Kyoto, Japan). A few
edits have been made to improve the readability and flow of the thesis.

Citation: Pradhan, S., Gurung, A., Ottmar, E. (2024, March). Gamification and Dead-ending:
Unpacking Performance Impacts in Algebraic Learning. In LAK24: [4th International
Learning Analytics and Knowledge Conference.

Introduction

Despite the widespread acknowledgment of the correlation between strong algebraic
knowledge and enhanced performance in future advanced topics, a disconcerting number of
middle school and high school students struggle with fundamental algebraic concepts.
Difficulties making such as valid transformations and decomposition (NMAP, 2008), and
challenges in converting simple story problems into mathematically equivalent equations
(Koedinger & Nathan, 2004), are indicative of the potential struggles these students might face
as they encounter more advanced topics typically expressed in algebraic form.

Solving algebraic problems requires students to utilize a broad spectrum of problem-
solving techniques. These techniques enhance students' ability to synthesize solutions, shape
their mathematical intuition, and reinforce their methodological approaches to problem-
solving. As students’ progress to more advanced mathematical domains, mastering these
foundational strategies becomes paramount. Indeed, proficiency in algebraic concepts is
intimately linked with the acquisition of a wide array of problem-solving techniques (NMAP,
2008). Especially in K-12 mathematics education, efficiency and flexibility in problem-solving
strategies are prioritized (Common Core, 2010), and efficient students often employ fewer
steps or transformations (Xu et al., 2017). This is supported by various studies that suggest that
strategic efficiency is a significant indicator of a student's understanding of the inherent
mathematical structures (Robinson et al., 2006; Venkat et al., 2019).

However, the surprising results from Study 2 suggest that relying solely on efficient
problem-solving strategies and pathways may have a negative effect on students’ procedural
flexibility. Ultimately, this may limit a student’s ability to generate alternative procedural
pathways for unseen and new problems that may be more intuitive and transferable to more
advanced mathematical topics.

Additionally, the underlying mechanisms that prompt students to discontinue their
current procedural approach, leading to dead-end and incomplete pathways, remain unclear.
However, various factors, both positive and negative, can sway a learner's decision to
discontinue. Positive triggers might include realizing that a path will only yield a sub-optimal
outcome or foreseeing a challenging state ahead. Conversely, negative factors could include
frustration from an inability to solve a problem or reaching a genuine impasse where the student
is unable to identify the next state.
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It is important to note that the results from Study 2 gave insight into the relation between
the classifications and the individual constructs of algebra. It is unknown whether the choice
of procedural pathways lead to differentiated algebraic learning outcomes as a whole. To
further investigate the surprising results in Study 2 and unpack the algebraic performance
impacts of the identified classification, this paper aims to explore the implications of
encountering dead-ends within the network of strategic pathways. Accordingly, we explore the
following research questions:

Research Questions

RQ1: Does the choice of procedural pathways in algebraic problem-solving lead to
differentiated learning outcomes?

RQ2: In what ways do dead-end attempts within a gamified environment impact
algebraic learning?

Data

The data and sample in this study were the same as Study 1 and 2, i.e. the FH2T raw log data
from the RCT. Specifically, we used the classification data generated from the MathFlowLens
tool for the analysis.

Results
RQ 1: Exploring what types of attempts lead to better learning outcomes.

To address RQ1 and identify problem-solving strategies that led to better learning outcomes,
we estimate two linear models. Model 1 predicts the post-test scores of students based on the
identified pathways or classifications, while the second model accounts for prior algebraic
knowledge (mean-centered) in addition to the classifications. Table 4 contains the results of
running the linear models. The results of model one suggest that at the student level, neither
classification of optimal (f = -0.38, p = 0.407) nor sub-optimal (§ = 1.46, p = 0.118) was a
significant predictor of post-test scores. In contrast, the classification of incomplete (f =-1.69,
p <0.001) and classification of dead-end (f = 5.17, p <0.001) were significant predictors of
post-test scores. In model two, we observed that higher prior knowledge was correlated with
higher post-test performance (5 =0.72, p <0.001). The optimal path (8 =-0.76, p = 0.028) was
also a significant predictor of post-test scores. Additionally, while the effect decreased, dead-
end (B =2.28, p = 0.004) was still a significant predictor of higher post-test performance.
Overall, the results of these models suggest that after accounting for prior algebraic
knowledge, the average student exhibiting dead-ending behavior is more likely to succeed. On
the other hand, students who exhibit efficient problem-solving behavior tend to perform worse
on the post-test. These findings strengthen and align with our findings from Study 2. The
positive correlation between dead-ending behavior and student post-test performance indicates
the likelihood that the underlying mechanism that results in dead-ending behavior is likely
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positive in nature. Such learners are able to identify that the path will only yield a sub-optimal
path or foresee a challenging state ahead. As such, we posit that a dead-end attempt may, in
fact, be an indicator of ‘exploratory play’, an in-game behavior that potentially leads to a more
nuanced understanding of the transformations to avoid or the ability to identify problematic
states when solving algebraic problems to reach the total state. Consequently, resulting in a
better algebraic post-test performance.

Table 4. Student-level linear regression results predicting post-test score.

Model 1 Model 2

post test math score post test math score
Predictors Estimates  CI (a=0.05) p Estimates  CI (x=0.05) P
(Intercept) 479 (4.02,556]  <0.001 4.70 [4.12,5.29]  <0.001
Class Best -0.38 [-1.27, 0.52] 0.407 -0.76 [-1.44,-0.08] 0.028
Class Incomplete -1.69 [-2.27,-1.11] <0.001 -0.35 [-0.80,0.10]  0.129
Class Sub-optimal 1.46 [-0.37,3.29]  0.118 1.08 [-0.31,2.46]  0.129
Class Dead-end 9.17 [3.17, 7.16] <0.001 2.28 [0.75, 3.81] 0.004
Pre Total Math Score 0.72 [0.66,0.77] <0.001
Observations 774 774
R?/R? adjusted 0.057/0.052 0.459/0.456

RQ 2: Exploring the effect of regular dead-ending on algebraic learning
outcomes.

Building on the results of the exploratory analysis in Study 2 and RQ1, we further investigated
the relationship between dead-ending (or exploratory behavior) and higher post-test scores. We
examined potential variance in the dead-end states across students by constructing individual
networks per student per problem. The data for this analysis was generated using the binning
classification feature of the MathFlowLens tool. Student-level networks were generated to
identify dead-end paths of students that were potentially masked by their peers’ attempts. For
example, if a student had an exploratory attempt (‘start state’ — ‘a’), and another student used
the same path to reach the goal state sub-optimally (‘start state’ — ‘a’ — ‘b’ — ‘goal state’),
the student’s exploratory attempt would be masked and classified as incomplete. By identifying
dead-end paths on student-level networks, we localize the definition of dead-end paths to
individual students’ attempts. It is important to note that this modification does not change the
classification for optimal or sub-optimal attempts, as the optimal paths found from the entire
sample are used for this classification.

Table 5. Summary Statistics of Dead-end Count and Percentage

Statistic Mean St. Dev. 5% Median 95%

Dead-end Count 27.1 16.1 B! 24.5 56
Dead-end Percentage 23.4 7.5 12.05 23.2 35.5
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Next, we examined the frequency of dead-ending behavior per student by examining
the total number of problems in which the student had at least one dead-end attempt. Similarly,
we calculate the percentage of problems with at least one dead-end attempt. These results can
be found in Table 5. Since the dead-end count and percentages were not normally distributed,
and certain students were regularly utilizing the dead-end pathways in comparison to their
peers, we classified the students into ‘regular dead-enders’ and ‘occasional dead-enders’ by
utilizing a cutoff point at the 5th percentile of the dead-ending behavior distribution. We ran a
mixed-effects model at the attempt level, predicting post-test scores while accounting for prior
knowledge (mean-centered), using the student-level network classification and an indicator for
the students’ regular usage of dead-end paths. As the data is at the attempt level, we introduce
random intercepts for the problem ID, attempt number, and pre-test scores.

Table 6. Exploring the correlation between different types of procedural pathways taken by
individual students and their post-test performance.

post test math score

Predictors Estimates  CI (a=0.05) p
(Intercept) 4.90 [4.50, 5.29] <0.001
Attempt Best 0.34 [0.31,0.38] <0.001
Attempt Deadend 0.05 [0.01, 0.08] 0.006
Attempt Sub-optimal 0.07 [0.04,0.11] <0.001
Pre Total Math Score 0.65 [0.53,0.76] <0.001
Regular Deadending 0.24 [0.18,0.31] <0.001
Random Effects

o’ 4.07

Tooproblem id 0.54

Tooattempt number 0.08

Toopre total math score 0.38

ICC 0.20

Nut!empf number 94

Npre total math score 11

Nproblem id 252

Observations 179575

Marginal R? /Conditional R> 0.391/0.512

Table 6 suggests that for a student with an average score on the pretest, the use of
optimal or best paths correlates significantly with higher scores on the post-test (f = 0.33, p <
0.001), especially when compared to the reference category of incomplete paths. This trend is
also seen with sub-optimal paths (f =0.07, p<0.001) and dead-end paths (= 0.05, p = 0.006),
both showing a positive correlation with the students’ post-test scores. Similar to the results of
RQ1, the pre-test score remains a significant predictor of the post-test scores (f = 0.65, p <
0.001). Interestingly, students who regularly adopt dead-ending strategies in their problem-
solving tend to perform better than those who use such strategies less frequently (f =0.24, p <
0.001).
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Discussion

The findings of this study have two major implications. Firstly, the positive effect of gamified
systems on algebraic learning outcomes depends on the behaviors exhibited by the student.
Past studies such as Chan et al. (2022b), Lee et al. (2022a), and Vanacore et al. (2023), have
shown that different in-game behaviors are predictive of algebraic learning outcomes. In
particular, the studies by Chan et al. (2022b) and Lee et al. (2022a) showed that students who
paused before answering tend to perform better in the post-test. Similarly, Vanacore et al.
(2023) showed that students with a higher propensity for persistence benefit more from the
gamified system. In the current study, using log data, we provided additional evidence
suggesting that the effect of gamified platforms on learning outcomes depends on the behaviors
and intentions of the user.

The second major implication is that in-game behaviors exhibited by students may be
the main driving force behind improved algebraic knowledge in gamified systems. Desirable
behaviors, such as the exploratory behavior identified in this study, should not be penalized. If
the results presented in this study are consistent for similar gamified systems, there are
profound impacts on the design of gamified platforms to foster exploration. Additionally, our
results suggest that in order to develop math flexibility, students may need to explore various
procedural pathways. In the long run, this may allow students to develop the important skill of
choosing efficient problem-solving strategies. Overall, the results from this study support, and
further explain the strange results from Study 2.

Limitations and Future Directions

In considering the outcomes of this study, several important caveats should be acknowledged.
To begin with, our analysis was narrowly focused on data derived from the FH2T platform.
This specificity introduces potential limitations on the generalizability of the results. There
remains an open question about the replicability of the observed student behaviors and
interactions across a wider range of platforms that employ similar dynamic procedural
pathways. To strengthen the findings of this study, it would be instructive for subsequent
investigations to explore the generalizability of our findings further. Additionally, the insights
extrapolated here might be more germane to gamified environments rather than to traditional
tutoring platforms such as the Cognitive Tutor (Anderson et al., 1995) and ASSISTments
(Heffernan & Heffernan, 2014) mentioned earlier. These platforms, with varying affordances
regarding procedural requirements, might influence student behavior differently, possibly
reducing the propensity for the kind of exploratory action observed in our analysis.

While this study aimed to identify and understand the implications of various
procedural pathways in solving algebraic problems within a gamified setting, the broader
implications of these classifications must be acknowledged. Future research should investigate
the effects of hints on the paths and explore variations in their effective utilization. Prior
research has underscored the value of using response times as a metric to infer productive hint
usage (Gurung et al., 2021) and the formulation of optimal solutions (Chan et al., 2022b).
Additionally, several studies have highlighted the benefits of providing error-specific feedback
to frequently occurring incorrect answers (Gurung et al., 2023a; 2023b). The models
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established in this research can greatly enhance our understanding of the mechanisms
underlying the procedural pathways that lead to these common errors. Similarly, insights into
these pathways can improve the quality of automated grading and feedback generation for
student responses in open-ended algebraic problems (Baral et al., 2023a; 2023b) by helping
mitigate potential biases (Gurung et al., 2022) by facilitating an objective understanding of the
potential mechanisms influencing the students' responses.

It would also be of academic interest for subsequent studies to investigate the interplay
between these classifications and various demographic or evaluative indicators, such as levels
of math anxiety. Such a focus can illuminate nuanced patterns of interaction across
heterogeneous student groups. By doing so, we can better inform and adapt educational
strategies, aiming to enhance both the inclusivity and efficacy of gamified instructional
methodologies.

Conclusion

In this study, we find that students who exhibit regular dead-ending behavior have a higher
post-test score (i.e. higher learning outcome), than students who are irregular dead-enders. In
other words, students exhibiting regular dead-ending behavior (i.e. exploratory), gain more
from the gamified system. This suggests that students who display regular exploratory (i.e.
dead-ending) behavior may be learning the various algebraic rules and notations in a low-stakes
gamified environment, eventually leading to better algebraic understanding. Such students take
pathways usually deemed incorrect or inefficient but overall, it may lead to a productive
learning process.
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Study 4. MathFlowLens Dashboard: Creating a
collaborative dashboard with teachers, for teachers.

* This study is part of a larger NSF project (CAREER 2142984: PI Ottmar) which
focuses on using Codesign methodology and professional development sessions with teachers
to iteratively design and development MathFlowLens. The manuscript for that project is
currently under preparation to be submitted later this summer. My contributions to that project
were focused on the data processing, data analysis, prototype and UX design based on teachers
input, and software engineering.

Citation: Thompson, T., St. John, J., Pradhan, S., & Ottmar, E. (in preparation). MathFlowLens
Dashboard: Co-Designing Teacher Orchestration Tools to Engage in Discourse Around
Students' Mathematical Strategies.

Introduction

Previous studies revealed the significance of classifying, predicting, and valuing multiple
solution pathways and showed how the identified classifications differentially predicted
learning outcomes. As highlighted in the background, teachers need to be aware of their
students’ performance, their exhibited behaviors (Walkoe et al., 2013), and employ pathways
and understand that variation in pathways. As highlighted by the results in Studies 2 and 3,
even incorrect or inefficient pathways are a productive process for learning. Knowing students’
procedural pathways, common misconceptions, and performance allows teachers to intervene
when necessary, and create a personalized and supportive learning environment. If teachers
were provided with information about students' variations in the problem-solving process,
teachers modify their instruction and make them more aware of their student’s mathematical
processes and knowledge in an online setting.

Teacher orchestration tools and dashboards can aid teachers in identifying and
interpreting relevant information and providing impactful and actionable feedback. For
example, the use of dashboards has the potential to improve teachers' understanding of
students’ knowledge, perceptual and mathematical strategies, and misconceptions (Walkoe et
al., 2013). However, this information about students' mathematical problem solving and
processes is rarely given to teachers. Providing teachers with more information about students'
strategies and behaviors when solving problems may enhance teachers’ pedagogical insights
allowing them to modify their mathematical instruction accordingly (Holstein et al., 2019).
While educators aspire to gain insights into students' thought processes and identify any
misconceptions (Holstein et al., 2019), teachers tend to employ technology platforms primarily
for assessing student performance rather than delving into a nuanced understanding of their
comprehension. This is in part due to the lack of time for teachers to examine individual
students’ problem attempts (Feldon, 2007; Holstein et al., 2017), and the lack of technological
tools and dashboards to convey relevant metrics and visualizations. Further, simply presenting
teachers with dashboards and data is not enough to sufficiently help teachers identify and
interpret relevant information about students’ problem-solving processes. Teacher tools must
prioritize design that helps teachers quickly find relevant information and accurately.
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Tools such as teacher dashboards summarize student learning and performance data to
help teachers monitor and be more aware of their students’ progress, ultimately facilitating
pedagogical decision making (Verbert et al., 2014). Yet, there are disparities between
researchers’ intent for the developed dashboards and their effectiveness and usability for
teachers (Hopfenbeck, 2020; Schwarz et al., 2021). Thus, developing tools using a codesign
methodology—by including teachers in the design and conceptualization of such tools—is
paramount. By working with teachers to better understand their needs and the various
challenges they face in the classroom, researchers may devise tools that are truly supportive
and meaningful for teachers.

Overview of the Codesign Sessions: Understanding What Teachers
Want.

Last summer, two Learning Science graduate students and I, along with Erin Ottmar (PI), led
a 2-day professional development and co-design workshop with five middle and high school
mathematics teachers. Through engaging with these teachers for several sessions, this project
sought to iteratively design and develop a research-based technology dashboard that provided
insights into students' mathematical problem solving, with extensive input from experienced
educators. This project had 3 distinct phases: 1) familiarizing teachers with existing dashboards
and online educational platforms, which allowed teachers to select or request key metrics and
preferred visualizations; 2) iterative and collaborative proof-of-concept designing of tools with
teachers for the various components; and 3) developing and programming the final dashboard.

In the first phase, prior to the first codesign session, we requested the participating
teachers to get familiarized with an online learning platform: Graspable Math (GM; Weitnauer
et al.,, 2016). Like FH2T—the gamified learning platform whose data was used for the
conceptualization of the MathFlowLens tool in Study 1, GM logs moment-by-moment
transactional data that records each step a student makes. This familiarization process was
intended to give teachers a student’s experience while solving problems in the digital platform
and allow them to begin narrowing the insights they would like to gain from a teacher
dashboard. Next, we held a conceptualization and brainstorming session in which we presented
existing visualization techniques—including the developed sequential network visualization
from Study 1-and commonly used student performance metrics. This session allowed us
researchers to better understand what the teachers sought for: the likes and dislikes of the
presented analytical and visual components; factors contributing to cognitive overload that may
lead to unwillingness to use the tool; and the existing tools, both technological and pedagogical,
that teachers used and would want included in a dashboard.

In the second phase, we consolidated the needs of and comments by the teachers in the
first session to prepare prototypes of visualizations and key student performance metrics. Then
we held a final session to present the prototypes and allow teachers to give additional feedback.
In this session, we also allowed teachers to manipulate the layout, placement and inclusion of
the prototypes, giving them complete control over the final appearance of the dashboard.

In the final phase, based on the feedback from teachers, and following the iterative co-
design methodology, we used the prototypes and suggested layout designs to create a web-
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based dashboard that conveys key metrics, including the classifications of strategies, and
overall student performance to teachers (link: mathflowlens.com). The following sections
describe the final phase and the individual components in detail.

Development of the MathFlowLens Dashboard: Developing Tools
that Support Teachers.

One of the main goals of this project was to create a dashboard that is teacher-centric,
interactive, and provides actionable feedback regarding students' performance and solution
strategies. This study also paves the way for future studies to conduct additional user-design
research with teachers to better understand how these classifications and visualizations can be
useful for their mathematics teaching and student learning.

Another principal goal for this project was to make the tool generalizable, thereby
allowing external learning platforms to use and display the strategic information and
visualizations on the developed dashboard. As such, we initially collaborated with and utilized
data from GM to develop the proof-of-concept dashboard and successfully preprocess and
display visualizations and metrics using their externally housed data. Additionally, we
programmed this dashboard to be easily displayed as an iFrame to allow for a more robust
integration with the external learning platform’s infrastructure.

The following sections describe the design process behind the initial prototype and final
implementation of the individual components included in the current dashboard.

Network Component: Utilizing Graph Theory to Visualize and Classify Student
Strategies.

The first step in this development was to generate visualization and categorizations of students'
strategies. To do so, we used the methodologies outlined in Pradhan et. al (2024a) and the
“MathFlowLens” tool developed by Pradhan et. al (under review) to analyze, classify and
visualize students’ problem-solving procedural pathways. By applying graph theory and
shortest path finding algorithms on transactional log data, MathFlowLens classifies the
procedural pathways as optimal, sub-optimal, dead-end, or incomplete. An optimal pathway
occurs when students solve a problem in the least number of steps; conversely, a sub-optimal
pathway occurs when they use more steps than needed, i.e. use an inefficient problem-solving
strategy. While both dead-end and incomplete attempts are unfinished attempts, which
indicates the student reset or restarted the problem, dead-end attempts are unique as there are
no procedural pathways leading to the goal state. On the other hand, incomplete pathways can
eventually be used to reach the goal state. Next, after classifying all student attempts in the raw
data, MathFlowLens uses sequential network visualizations to represent the procedural
pathways (see Figure 6a) using color coding based on the identified classifications. A summary
of the nodes is given in Table 7.


http://mathflowlens.com/
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Table 7. Summary of nodes on the network diagram

Node Color Indicates Description

Blue Start State The initial expression before students begin working.
Gold Optimal Step Efficient steps that lead to an optimal attempt.

Grey Sub-optimal Step | Inefficient steps that lead to a sub-optimal attempt.
Red Dead End Step Nodes that lead to a unique, but incomplete path

(never reaches the goal state).

Green Goal State The final expression that the student transforms the
Start State into.

For the network diagram component of the dashboard, we used the same
implementation as the MathFlowLens tool. Specifically, we used Python 3.11 and the pandas
package for the preprocessing and classifications, and JavaScript and the d3.js library to render
the visualizations. The initial prototype presented to the teachers was static (i.e. no interactivity;
see Figure 6a), as the figure represented an overall view of the variation of pathways. However,
after the initial presentation of this visualization to the teachers, both teachers and researchers
agreed that adding interactivity to drill down on specific attempts and pathways would be
beneficial (see Figure 6b).
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(b) Final Implementation (in fullscreen mode)
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Figure 6. Initial and Final Design of the Sequential Network Visualization

Consequently, in the final implementation of the network diagram component, we
added various interactive features. Users can use their mouse to hover over the nodes for
additional information such as the node's classification and expression (see Figure 7a).
Similarly, users can click on the 'Only Best Path’ button to hide all nodes and pathways besides
those with an optimal classification (see Figure 7b). Next, to allow teachers to isolate a specific
student’s progress and attempt, we implemented a feature that highlights the selected attempt
in the sequential network diagram in purple and lists the individual steps taken by the selected
student in a table (see Figure 7c). Additional interactivity features such as making the

visualization fullscreen, and temporarily disabling interaction were also implemented.
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Figure 7. Interactive elements of the final network component

Treemap Component: Visualizing the frequency of the first step

The initial needs analysis revealed that teachers often prioritize students’ first steps, primarily
because it indicates the overall productivity of the attempt. As a result, we suggested using
treemap diagrams (Johnson & Shneiderman, 1998) in the dashboard to display the various first
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steps taken by students. Treemap diagrams display nested and hierarchical structures as a set
of rectangles, and the size of the rectangles is proportional to their value. In this case, each
rectangle represents a first step taken by a student, and the size of the rectangle is determined
by the number of attempts in which that first step was taken.

This treemap visualization was originally conceived to be separate from the
MathFlowLens’ classifications and sequential network diagram. In other words, us researchers
viewed this component to be isolated from the other components. Hence, the colors of the
nodes were based on its frequency. However, after presenting this version of the diagram to
the teachers in the initial codesign session, the teachers suggested using the same colors (based
on the classifications derived from the MathFlowLens tool: gold, gray, and red) for consistency
and to promote additional discourse in the classroom.

After the first session, based on the feedback of teachers we updated the treemap
component to use consistent color coding. In the second codesign session, the teachers
suggested adding partial interactivity to improve usability. Besides adding interactivity, the
initial prototype and final design of the treemap component was the same. We used Python
3.11 and the pandas package to preprocess the data and JavaScript and Plotly.js library to render
the visualizations. Each rectangle displays the step’s expression and the percentage of attempts
that used that step. Additionally, colors derived from the MathFlowLens tool were used to
indicate the step's classification (see Figure 8). This figure suggests that the two most common
first steps (i.e. “4*5*(-100+1+45+55)/(2*3)*3” and “4*(2+3)*(99+45+55)/(2*3)*3”) both lead
to a sub-optimal attempt.

4%(2+3)*(-100+1+45+55)/5*3

4*(2+3)%(-99+45+55)/(2+3)*3 [

19%

4%5%(-100+1+45+55)/(2+3)*3
38%

(4%2+4%32)%(-100+1+45+55)/(2+3)*3
1%

4*(-100+1+45+55)*3
14%

Figure 8. Initial and Final Design of the Treemap Component

Given that some first steps were used infrequently, the sizes of such rectangles would
be small and hard to interpret. As a potential solution, we added an interactive hovering feature
that displays the expression, percentage, and number of attempts (see Figure 9). Teachers may
also choose to click the rectangle to expand it to make it easier to view.
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Figure 9. Interactive hover feature of the Treemap Component

Attempt Type Percentage Component

To provide a broad overview of the variation in the class’ problem-solving strategies, we
presented teachers with a table denoting the percentages of each of the classifications derived
from the MathFlowLens tool (see Figure 10) to include in the dashboard. Based on the strong
positive feedback of teachers suggesting that this would be especially useful for them in
decision making, this was integrated into the Examples Tables component.

‘ Completed Attempt Type Percentage
Best 2222 %
Sub Optimal 62.22 %
Dead End 15.56 %

Figure 10. Initial Design for Attempt Type Percentage Component

Examples Table Component

The initial needs analysis revealed that teachers wanted to view and compare different types of
student problem-solving strategies and attempts. We suggested and designed an Example Table
component that would display different attempts chosen at random for each attempt
classification.

The initial design consisted of a table with step numbers, and a column for each attempt
classification: optimal, sub-optimal, and dead-end (see Figure 11a). Based on the feedback
from teachers, we integrated the attempt type percentage information in the table header and
added color coding highlighting the classification of the step in the final design (see Figure
11b). The color coding would help teachers identify common misconceptions in the case of
dead-end attempts and steps that lead to inefficiencies in sub-optimal attempts.
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Figure 11. Initial and Final Design of the Examples Table Component

Performance Metrics Table Component

As mentioned above, teachers emphasized the need to see growth over time in key performance
metrics such as the number of steps, time taken to solve a problem, and total number of errors.
Our team decided to present key student performance metrics indicating the overall class
performance. This could be used by teachers to compare students’ performance on similar
problems at different points in time (e.g. start and end of the year). While the contents of the
table did not change across the initial and final design (see Figure 12), we added an interactive
hover feature that provides a short description of the statistic. All measures included in this

component and their respective descriptions have been provided in Appendix B.
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(a) Initial Prototype
Measure Class
Mean
Completions 93.94%
Number of Attempts 2,36
Number of Hints 0.55
Number of Resets 2.18
Number of steps in First Attempt 10.87
Number of steps In Last Attempt 11.06
Efficiency First Attempt 0.68
Efficiency Last Attempt 0.67
Time Taken (sec) 79.07
Pause Time First Attempt (sec) 11.47
Pause Time Last Attempt (sec) 11.22
Number of Total Errors 47
Number of Keypad Errors 0.03
Number of Shaking Errors 3.29
Number of Snapping Errors 1.19
(b) Final Design
Measure Average
Completions 93.94%
Average number of hints requested by students BEE
Number of Hints 0.55
Number of Resets 2.18
Number of steps in First Attempt 10.87
Number of steps in Last Attempt 11.06
Efficiency First Attempt 0.68

Figure 12. Initial and Final Design of the Sample Means Component

Discussion

The iterative codesign session allowed us to design a teacher dashboard that was teacher centric
and truly supportive for the needs of teachers. Their input was paramount to the initial
conceptualization, the iterative improvement of individual components and the placement of
these components in the layout of the web-based dashboard. The final MathFlowLens
Dashboard (accessible through: mathflowlens.com) uses the Vue.js and Vuetify JavaScript
libraries for the main frontend user interface, d3.js and plotly.js for the visualizations, and
utilizes the Django Python web framework for the backend. Data processing is done in the
backend using the Pandas and NetworkX library (same as the MathFlowLens tool).

Currently, when users visit this dashboard they are presented with an interface to
explore historical FH2T data from the RCT. However, as mentioned above, a primary goal was
to make this dashboard generalizable to external learning platforms and their data. Therefore,
by allowing such external platforms to send POST requests containing their raw data, our
system can efficiently preprocess and present the created dashboard in real-time. Depending
on the use case, this dashboard can then be displayed internally using an iFrame, or in a separate
tab or window. This generalizable dashboard can be used by any learning platform that, like
GM and FH2T, logs moment-by-moment student transformations. In doing so, we create a
dashboard that is applicable, teacher-centric, and supportive for real world pedagogical usage.
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Thesis Conclusion

In this multi-study thesis, we iteratively built upon the findings and developed tools to explore
students’ procedural pathways to ultimately bolster and support the acquisition of algebraic
knowledge. First, we developed a novel tool called MathFlowLens for the analysis of students’
procedural pathways while solving problems. This tool is capable of classifying students’
pathways and subsequently representing them using sequential network visualizations. Second,
to test the applicability of the classifications in research and predicting long-term learning gains
such as students’ scores measuring the individual constructs of algebraic knowledge, we
estimated three linear models to seek correlations between the identified classifications and the
conceptual, procedural and flexibility scores. Surprisingly, the results indicated that frequent
use of dead-end pathways, rather than efficient and optimal pathways, resulted in higher
conceptual and procedural scores. In fact, the frequent use of optimal and efficient pathways
led to lower flexibility scores.

Next, we further investigated the surprising results regarding dead-end and optimal
attempts, by creating linear and mixed-effects models predicting students’ overall algebraic
performance. This analysis revealed that students who exhibit what we call ‘Regular Dead-
ending’ behavior have a significantly higher algebraic knowledge score. Finally, we deploy the
developed tool, along with other visualizations and student performance metrics, by following
a co-design methodology with teachers to develop a data and research driven interactive
dashboard (mathflowlens.com). A vital and important feature of the created dashboard and
technological infrastructure is its generalizability. In other words, any learning platform that
logs detailed student transactional data may communicate and display the dashboard. In doing
so, we create a dashboard that is applicable, teacher-centric, and supportive for real world

pedagogical usage.

Future Directions

This work can be extended in many areas. First, it would be of academic interest to further
explore the relations between the generated attempt classifications and algebraic learning
outcomes. In particular, future work can focus on the sequence of pathways a student takes
(e.g. dead-end — sub-optimal — sub-optimal — optimal) which may provide additional insight
into students problem-solving strategies or exhibited behavior in comparison to using the
frequencies of the classifications. Additionally, investigating the interplay between the detected
behaviors or problem-solving strategies with demographic features (e.g. race and sex) and
evaluative measures such as the levels of math anxiety can lead to the development of more
personalized and student-centric learning environments.

Secondly, the developed dashboard should undergo vigorous user-testing, preferably
by teachers, to test its applicability and usefulness in real world pedagogical scenarios.
Consequently, the feedback from the user-testing should be incorporated, with particular focus
on interpretability and cognitive load of the various dashboard components.

Finally, future work can extend the MathFlowLens tool by applying heuristic search
algorithms or rule-based solvers to populate the graph rather than relying on historical raw data.


http://mathflowlens.com/

43

This would allow digital systems to provide contextual hints and allow teachers to monitor
students in real-time while solving problems.
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Appendix A

Item Problem Type | Question Correct Answer
1 Procedural Solve the equation for y. b
5(y-2)=3(y-2)+4
a.1b.5/2c.4d. 10
2 Flexibility Kim solved the problem: 1/3(x +5) =4 d
Kim's first step was: (3) 1/3(x +5) =4(3)
x+5=12
What step did Kim use to get from the first
line to the second line?
a. combine like terms
b. distribute across parentheses
c. add or subtract the same quantity on
both sides
d. multiply or divide the same quantity on
both sides
3 Conceptual 3+4=7 b
1 What does this symbol mean?
a. the total
b. two quantities on either side have the
same value
c. what the answer is
d. the problem has been solved
4 Flexibility Imagine you are taking a timed test. You a
want to use fast (and correct) ways to solve
the problems so you can finish as many as
possible. Which would be the
best way to start the problem
3(x+2)=14?
a. distribute
b. divide both sides
c. multiply both sides
d. subtract both sides
5 Procedural Solve the equation below for x. d
3=(8-6x)2
a.-1/3b.0c.8d. 1/3
6 Conceptual If 10x + 12 = 17, which of the following a

must also be true?
a. 10x+12-12=17-12
b.10x-10+12-10=17




1

c.-10x-12=17
ds5Sx+6=17

7 Conceptual

Which of the following is equivalent to
(thesameas) (n+3)+(n+3)+(n+3)+
(n+3)?

an+12b.4n+3c.nd +12d.4(n+ 3)

8 Procedural

Solve the equation below for n.
12n+3=14n+15-8n
a.0b.2/3¢c.2d.3

9 Flexibility

Imagine you are taking a timed test. You
want to use fast (and correct) ways to solve
the problems so you can finish as many as
possible. Which would be the best way to
start the problem? (Choose the letter for
the best way to start)

1/4 (5x +2)=8

a. distribute first

b. subtract 8 from both sides

c. multiply by 4 on both sides first

d. divide by 4 on both sides first

10 Conceptual

Which of the following is NOT equivalent
to 19(73 - 15)?

a. 19(58)

b. 19(73) - 19(15)

c. 19(15 +73)

d. 19(73) - 15

Appendix A. The items included in the pretest algebraic knowledge assessment (adapted

from Star et al., 2015; 4 conceptual items, 3 procedural items, 3 flexibility items)
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Appendix B

Measure Description
Completions Percentage of students that completed the problem
Number of Attempts Average number of attempts for this problem
Number of Hints Average number of hints requested by students

Number of Resets

Average number of resets (i.e. restart problem to initial
start state)

Number of steps in First Attempt

The average number of steps in students’ first completed
attempt

Number of steps in Last Attempt

The average number of steps in students’ final completed
attempt

Efficiency First Attempt

The average efficiency score in the first completed
attempt

Efficiency Last Attempt

The average efficiency score in the final completed
attempt

Time Taken (sec)

The average time taken in seconds to complete the
problem

Pause Time First Attempt (sec)

The average time students spent thinking about the
problem before making a first step in the first completed
attempt

Pause Time Last Attempt (sec)

The average time students spent thinking about the
problem before making a first step in the final completed
attempt

Number of Total Errors

The average number of errors students made

Number of Keypad Errors

The average number of errors resulting from the incorrect
decomposition of a number

Number of Shaking Errors

The average number of errors resulting from the
combining of unlike terms

Number of Snapping Errors

The average number of errors resulting from incorrect
‘drag-and-drop’ action

Appendix B. All measures and their respective descriptions included in the Performance

Metrics Table




