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Abstract 
 
Algebra is essential for delving into advanced mathematical topics and STEM courses (Chen, 
2013), requiring students to apply various problem-solving strategies to solve algebraic 
problems (Common Core, 2010). Yet, many students struggle with learning basic algebraic 
concepts (National Mathematics Advisory Panel (NMAP), 2008). Over the years, both 
researchers and developers have created a diverse set of educational technology tools and 
systems to support algebraic learning, especially in facilitating the acquisition of problem-
solving strategies and procedural pathways. However, there are very few studies that examine 
the variable strategies, decisions, and procedural pathways during mathematical problem-
solving that may provide further insight into a student’s algebraic knowledge and thinking. 
Such research has the potential to bolster algebraic knowledge and create a more adaptive and 
personalized learning environment.  

This multi-study project explores the effects of various problem-solving strategies on 
students’ future mathematics performance within the gamified algebraic learning platform 
From Here to There! (FH2T). Together, these four studies focus on classifying, visualizing, 
and predicting the procedural pathways students adopted, transitioning from a start state to a 
goal state in solving algebraic problems. By dissecting the nature of these pathways—optimal, 
sub-optimal, incomplete, and dead-end—we sought to develop tools and algorithms that could 
infer strategic thinking that correlated with post-test outcomes. A striking observation across 
studies was that students who frequently engaged in what we term ‘regular dead-ending 
behavior’, were more likely to demonstrate higher post-test performance, and conceptual and 
procedural knowledge. This finding underscores the potential of exploratory learner behavior 
within a low-stakes gamified framework in bolstering algebraic comprehension. The 
implications of these findings are twofold: they accentuate the significance of tailoring 
gamified platforms to student behaviors and highlight the potential benefits of fostering an 
environment that promotes exploration without retribution. Moreover, these insights hint at the 
notion that fostering exploratory behavior could be instrumental in cultivating mathematical 
flexibility. Additionally, the developed tools and findings from the studies, paired with other 
commonly used student performance metrics and visualizations are used to create a 
collaborative dashboard–with teachers, for teachers.  
  



ii 
 

Acknowledgements 
I would like to express my sincere gratitude to my advisor, Professor Erin Ottmar, for leading, 
supporting, and entrusting me with this research. I believe my work would not have been 
complete without her continuous support and feedback for my research and thesis work. I thank 
her for taking time out of her busy schedule to revise and improve my thesis. 

I am very grateful to Professor Roee Shraga for his valuable time advising me and 
reading my thesis, which helped me to improve the quality and readability of this thesis. 

I also thank all the members in the WPI MAPLE lab and my peers in the larger LST 
community for sharing their valuable experiences and insights. Many thanks to Kirk Vanacore, 
who mentored me and introduced me to academic research, and Ashish Gurung, my guru, for 
his invaluable guidance in the initial phases of my thesis.  

Additionally, the research reported here was supported by the Institute of Education 
Sciences, U.S. Department of Education, through an Efficacy and Replication Grant 
(R305A180401) and an NSF CAREER Grant (2142984) to Worcester Polytechnic Institute. 
The opinions expressed are those of the authors and do not represent the views of the Institute 
or the U.S. Department of Education.  

Finally, I want to dedicate this work to my beloved family, who offer me selfless 
support and unconditional love. Get well soon Mama. 

 
– Sid (April 2024)  



iii 
 

Table of Contents 
Acknowledgements .................................................................................................................... ii 
Table of Contents ..................................................................................................................... iii 
List of Figures ............................................................................................................................ v 

List of Tables ............................................................................................................................ vi 
Introduction ................................................................................................................................ 1 

Motivation .............................................................................................................................. 1 

Thesis Introduction ................................................................................................................ 1 

Contribution ........................................................................................................................... 3 

Study 1. MathFlowLens: A Classification And Visualization Tool for Analyzing Students’ 
Procedural Pathways. ................................................................................................................. 5 

Introduction ............................................................................................................................ 5 

The current study ............................................................................................................... 6 

Background ............................................................................................................................ 6 

Utilizing Log-file data from game-based learning platforms to explore student problem-
solving. ............................................................................................................................... 6 

Using Data Visualizations to Identify Student Problem-Solving Pathways ...................... 7 

Context of the Study .............................................................................................................. 8 

Game Description .............................................................................................................. 8 

Dataset Used for MathFlowLens Development ................................................................. 9 

Development of MathFlowLens .......................................................................................... 11 

Development Phase 1: Creation of a classification tool identifying various problem-
solving pathways and strategies. ...................................................................................... 11 

Development Phase 2: Applying classifications to create interactive visualizations of 
student problem-solving pathways and strategies............................................................ 13 

Discussion ............................................................................................................................ 16 

Classifying and Visualizing Student Problem-Solving Pathways ................................... 17 

Practical implications for researchers and developers ..................................................... 18 

Practical implications for teachers ................................................................................... 18 

Limitations and future directions ......................................................................................... 18 

Conclusion ........................................................................................................................... 19 

Study 2. Application of MathFlowLens: Examining the relations between identified pathways 
and the facets of algebraic knowledge. .................................................................................... 20 

Introduction .......................................................................................................................... 20 

Research Question ........................................................................................................... 20 

Background .......................................................................................................................... 20 

Facets of Algebraic Learning: Procedural and Conceptual Knowledge and Flexibility. 20 



iv 
 

Method ................................................................................................................................. 22 

Results .................................................................................................................................. 23 

Discussion ............................................................................................................................ 24 

Limitations and Future Directions ....................................................................................... 25 

Conclusion ........................................................................................................................... 25 

Study 3. Gamification and Dead-ending: Unpacking Performance Impacts in Algebraic 
Learning. .................................................................................................................................. 26 

Introduction .......................................................................................................................... 26 

Research Questions .......................................................................................................... 27 

Data ...................................................................................................................................... 27 

Results .................................................................................................................................. 27 

RQ 1: Exploring what types of attempts lead to better learning outcomes. .................... 27 

RQ 2: Exploring the effect of regular dead-ending on algebraic learning outcomes. ..... 28 

Discussion ............................................................................................................................ 30 

Limitations and Future Directions ....................................................................................... 30 

Conclusion ........................................................................................................................... 31 

Study 4. MathFlowLens Dashboard: Creating a collaborative dashboard with teachers, for 
teachers. ................................................................................................................................... 32 

Introduction .......................................................................................................................... 32 

Overview of the Codesign Sessions: Understanding What Teachers Want. ....................... 33 

Development of the MathFlowLens Dashboard: Developing Tools that Support Teachers.
.............................................................................................................................................. 34 

Network Component: Utilizing Graph Theory to Visualize and Classify Student 
Strategies. ......................................................................................................................... 34 

Treemap Component: Visualizing the frequency of the first step ................................... 37 

Attempt Type Percentage Component ............................................................................. 39 

Examples Table Component ............................................................................................ 39 

Performance Metrics Table Component .......................................................................... 40 

Discussion ............................................................................................................................ 41 

Thesis Conclusion .................................................................................................................... 42 

Future Directions ................................................................................................................. 42 

References ................................................................................................................................ 44 

 
 
  



v 
 

List of Figures 
Figure 1. Procedural pathways in digital learning systems ....................................................... 2 

Figure 2. Example solution steps for problem 6 in FH2T ........................................................ 9 

Figure 3. Identified classifications for student pathways ........................................................ 13 

Figure 4. Network visualization for all student attempts for problem 6 in FH2T .................. 14 

Figure 5. Demonstration of interactive features of MathFlowLens visualization .................. 15 

Figure 6. Initial and Final Design of the Sequential Network Visualization .......................... 36 

Figure 7. Interactive elements of the final network component ............................................. 37 

Figure 8. Initial and Final Design of the Treemap Component .............................................. 38 

Figure 9. Interactive hover feature of the Treemap Component ............................................. 39 

Figure 10. Initial Design for Attempt Type Percentage Component ...................................... 39 

Figure 11. Initial and Final Design of the Examples Table Component................................. 40 

Figure 12. Initial and Final Design of the Sample Means Component ................................... 41 

 
  



vi 
 

List of Tables 
Table 1. Visualization of sample student attempts and respective classifications .................. 16 

Table 2. Descriptive Statistics for the student-level variables included in the models ........... 23 

Table 3. Regression results of predicting conceptual, procedural, and flexibility scores from 
the identified attempt classifications while accounting for prior algebraic knowledge. .......... 24 

Table 4. Student-level linear regression results predicting post-test score. ............................ 28 

Table 5. Summary Statistics of Dead-end Count and Percentage ........................................... 28 

Table 6. Exploring the correlation between different types of procedural pathways taken by 
individual students and their post-test performance. ............................................................... 29 

Table 7. Summary of nodes on the network diagram ............................................................. 35 

 



1 
 

Introduction 

Motivation 
Over the past year, my role as a Graduate Research Assistant in the MAPLE Learning 

Sciences Lab has allowed me to delve deeply into data-driven methodologies, analysis, and 
software engineering for education in an applied interdisciplinary setting. Within this capacity 
and through working on several NSF and IES funded grants, we have utilized various data 
science and computer science techniques, including modeling student behaviors, predicting 
student learning outcomes, and creating interactive visualizations to make sense of large-scale 
action-level log data as students solve problems in various math technologies. By embracing 
an interdisciplinary outlook, we have harnessed the power of data mining and data modeling 
within learning analytics research, paving the way for the adoption of more sophisticated 
analytical tools in the field. Much of this research has involved leading projects and writing of 
conference papers and manuscripts. Since beginning my Masters, we have first-authored two 
accepted conference papers (Pradhan et al., 2024a; 2024b), have collaborated on several other 
projects, and am currently working on submitting two first-authored manuscripts to journals. 
We have also engaged in several other educationally driven research projects, working 
alongside teachers, students, data analysts and faculty with varying expertise to broaden my 
understanding of learning.  

For my thesis, we will focus on a subset of these projects that have guided a majority 
of my work. In particular, this thesis will describe the process of building a tool to classify 
students’ procedural pathways when solving algebraic problems; developing visualizations for 
students' attempts and the respective classifications; and conducting data analyses to explore 
whether the choice of procedural pathways predicts differentiated learning outcomes. By using 
a data-driven approach we plan on narrowing the gap in educational data mining regarding the 
study of students’ variation in procedural pathways.  

Thesis Introduction 
Algebra is an essential topic for success in advanced mathematical topics and other STEM 
courses (Chen, 2013). To be proficient in algebra, students need to have a strong understanding 
of algebraic notations, conceptual and procedural knowledge, as well as the ability to use that 
knowledge flexibly (Rittle-Johnson et al., 2015; Schoenfeld, 2007). Further, students need to 
be able to apply various problem-solving strategies to efficiently solve algebraic problems 
(Common Core, 2010). Yet, many students struggle with learning basic algebraic concepts and 
applying that knowledge or appropriate problem-solving strategies to unfamiliar problems 
(National Mathematics Advisory Panel [NMAP], 2008).  

To effectively apply algebraic knowledge to unseen or unfamiliar problems, students 
need to develop not only the ability to solve problems accurately but also procedural flexibility 
to make strategic choices adaptively (Baroody, 2003; Threlfall, 2009; Verschaffel et al., 2009). 
Over the years, both researchers and developers have created a diverse set of tools and systems 
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to bolster algebraic learning, especially in facilitating the acquisition of problem-solving 
strategies. Notably, rule-based approaches have stood out in the development of Intelligent 
Tutoring Systems (ITS), with the primary goal of strengthening the acquisition of procedural 
knowledge that's pivotal to algebraic comprehension. These approaches find their foundation 
largely in the cognitive theories presented in ACT-R (Anderson, 2014). A variety of cognitive 
tutors have emerged over time, all aiming to aid learners in achieving mastery across various 
subjects (Anderson et al., 1995; Corbett et al., 1997; Ritter & Fancsali, 2016). While these 
cognitive tutors are designed to provide learners with adaptive feedback and personalized 
guidance (Aleven et al., 2006), the procedural pathways available to students are often 
constrained by what the problem creator considers essential for mastering the core concepts 
(see Figure 1a). 

 

 
Figure 1. Procedural pathways in digital learning systems 

 In contrast, some ITS have adopted an alternative approach, developing systems that 
merely require students to enter their answers to the problems (see Figure 1b), without 
demonstrating the procedural comprehension necessary to solve them (Heffernan & Heffernan, 
2014). Despite the ambiguity surrounding the procedural pathways chosen by the learner, the 
use of such systems has led to better learning outcomes (Murphy et al., 2020) and the 
availability of feedback has been observed to be beneficial in enhancing learning (Koedinger 
et al., 2010; Mendicino et al., 2009).  

Though both approaches effectively facilitate the acquisition of mathematical 
knowledge (Murphy et al., 2020; Pane et al., 2014; Steenbergen-Hu & Cooper, 2013), little is 
known regarding the various procedural pathways learners might potentially employ in 
formulating a solution. With the rapid development in technology and ensuing innovations in 
Intelligent Tutoring Systems (ITS), researchers and developers have been investigating the 
efficacy of implementing novel methodologies to aid learners in acquiring algebraic 
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knowledge. A subset of these educational technologies, such as Graspable Math (Weitnauer et 
al., 2016) and From Here to There! (FH2T; freely available at 
graspablemath.com/projects/fh2t; Ottmar et al., 2015), have embraced dynamic procedural 
pathways for teaching algebra. Specifically, FH2T adopts a distinctive gamified and dynamic 
procedural approach: learners are presented with an algebraic expression as the starting state 
and a transformed version of that expression as the goal state. Students can traverse any 
procedural pathway they prefer, with all mathematically valid transformations being 
permissible (see Figure 1c). This architecture inherently grants learners the autonomy to 
explore various procedural avenues in their exploration of the transformations necessary to 
attain the goal state. Such a modality can shed light on the diversity of procedural pathways 
chosen by learners.  

While most traditional math learning tools guide students towards producing correct 
and efficient answers, gamified learning environments such as FH2T, employ a different 
approach to help students learn core math concepts and develop procedural flexibility. 
Gamified environments have been shown to help students remain engaged as they explore 
multiple possible solution paths and practice core mathematical concepts, rather than solely 
producing a correct answer (Clark et al., 2016; Jere-Folotiya et al., 2014; Wouters et al., 2013). 
Several studies (Chan et al., 2022; Decker-Woodrow et al., 2023; Hussein et al., 2019; Wouters 
et al., 2017; Young et al., 2012) have found that gamified math learning applications are more 
effective than non-gamified counterparts in improving students’ algebraic learning. 
Additionally, various prior studies have reported on their exploration of the efficacy of FH2T’s 
gamification model in improving different aspects of the in-game behavior that can predict 
better learning outcomes (Chan et al., 2022b; Vanacore et al., 2023). However, to the best of 
our knowledge, very little exploration regarding the variation in the procedural pathways 
adopted by students in their attempt to reach the goal state has been studied.  

Contribution  
Our contributions are summarized as follows: 

● We developed a novel tool called ‘MathFlowLens’ that classifies the entire procedural 
pathway of students as optimal, sub-optimal, incomplete, and dead-end. Subsequently, 
the tool uses the classifications and represents students’ procedural pathways as a 
sequential network visualization (Study 1). 

● We explore the relation between the classifications and the constructs of algebraic 
knowledge: conceptual knowledge, procedural knowledge, and procedural flexibility. 
Surprisingly, the results indicate that students who have a high average number of dead-
end attempts per problem have higher conceptual and procedural knowledge (Study 2). 

● We further dissect the nature of dead-end attempts and reveal that students who exhibit 
what we call ‘Regular Dead-ending’ behavior have significantly higher algebraic 
knowledge scores (Study 3). 

● We develop a data and research-driven interactive dashboard (mathflowlens.com) by 
following a co-design methodology and collaborating with teachers. In addition to 
using the developed MathFlowLens tool from Study 1, we incorporate various other 
visualizations and student performance metrics in the dashboard to provide teachers 

http://graspablemath.com/projects/fh2t
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR14
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR26
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR52
http://mathflowlens.com/
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with a detailed overview of their students’ performance. This dashboard is 
generalizable and usable by any learning platform that logs detailed student 
transactional data (Study 4).  
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Study 1. MathFlowLens: A Classification And 
Visualization Tool for Analyzing Students’ Procedural 
Pathways. 

* This study is part of a paper currently under review in the Journal of Educational 
Technology Research and Development. Edits have been made to improve the readability and 
flow of the thesis. 
Citation: Pradhan, S., Ottmar, E., Gurung, A. & Lee, J. (in review). MathFlowLens: A 
Classification And Visualization Tool for Analyzing Students’ Procedural Pathways. 
Education Tech Research and Development. 

Introduction 
Previous studies regarding student learning in gamified learning environments have mainly 
examined correlations between in-game behaviors and positive learning outcomes. Students 
exhibiting behaviors such as consistent in-game progress (Hulse et al., 2019; Martin et al., 
2015, Shute et al., 2015), longer pause time before problem solving (Chan et al., 2022), higher 
propensity to reattempt problems (Chen et al., 2020; Vanacore et al., 2023) and exploratory 
behavior (Pradhan et al., 2024a) tend to have better learning outcomes. As students’ in-game 
behavioral patterns play a significant role in student learning (Chan et al., 2023), developers of 
gamified learning platforms may need to pay close attention to the game design to ensure they 
do not penalize more exploratory or creative but less efficient behaviors. Consistently 
employing such problem-solving strategies may give students a more nuanced understanding 
of mathematical structures and transformations (Pradhan et al., 2024). However, very few 
studies have examined how students' variable problem-solving strategies influence the 
underlying mechanism of learning and other behaviors when interacting with the game (Hulse 
et al., 2019).  

While the studies conducted by Lee et al. (2022b; 2022c) partially explored the 
variability in students’ solution strategy by examining the efficiency and productivity of the 
first step; to the best of our knowledge, there have been no studies that classify the entire 
problem-solving pathways from start to finish and explore the variation of strategies in online 
learning tools or platforms. This is in part because a majority of educational technologies record 
students' entered answers rather than log moment-by-moment mathematical transformations 
and expressions that show how students arrive at their solutions. This often results in a lack of 
process-based data to explore variability in students’ mathematical ideas and problem-solving 
strategies (Lee et al. 2022c). However, documenting and visualizing students’ preferred 
solution pathways and the variation in strategy may provide valuable insight into student’s 
mathematical thinking and knowledge, particularly compared to binary problem correctness 
information.  

Furthermore, in order to support students’ algebraic learning and flexibility, it is vital 
for teachers to examine the variable strategies, decisions, and behaviors that students exhibit 
during problem-solving. However, in traditional learning environments, teachers often have 
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difficulties keeping track of and monitoring students’ problem-solving strategies and learning 
progress (Asquith et al., 2007). Understanding the variation in students' problem-solving 
strategies and preferred pathways in gamified learning applications may help teachers identify 
students’ common misconceptions and gaps in knowledge. By knowing different student 
problem-solving pathways and strategies, teachers may actively compare different solution 
strategies with subsequent student discussions to highlight the differences and similarities of 
the different pathways.  

In sum, by acknowledging the variability in students’ strategies (e.g. creative, 
exploratory, and efficient), both teachers and students may stop relying exclusively on a single 
procedural pathway over others that are equally effective or more efficient, leading to improved 
procedural flexibility (Star et al., 2016). Further, developers and teachers alike could consider 
the individual differences in students and their behaviors to create more adaptive and 
supportive learning environments.  

The current study 
In this study, we address this gap in research and practice by leveraging process-level log data 
from a digital algebraic learning game. In particular, we introduce a novel tool called 
“MathFlowLens” that utilizes graph search algorithms such as A-star or Dijkstra's shortest path 
algorithm (Mehlhorn & Sanders, 2007) to reveal problem-solving pathways that are optimal, 
sub-optimal, incomplete, and occasionally paths that result in dead-ends. Additionally, 
MathFlowLens utilizes these classifications to create interactive network visualizations that 
represent students’ paths of algebraic transformations, problem-solving pathways, and solution 
strategies in the game. Specifically, the aims of this study are to: 

● Development Phase 1: Create a tool that can classify various problem-solving pathways 
and strategies that students employ while problem-solving. 

● Development Phase 2: Create interactive network visualizations of students' problem-
solving pathways and variations in their employed strategies. 

Background 

Utilizing Log-file data from game-based learning platforms to explore student 
problem-solving. 
Digital game-based learning is a modern and technologically driven instructional approach for 
mathematics learning, in which students may explore content in a more low-stakes and relaxed 
setting compared to other math learning technologies, where students solve traditional textbook 
problems. Such game-based learning platforms can provide students with multiple learning 
pathways, conceptual reinforcement, and cognitive enhancement with the use of sound, image, 
and interactivity (Dede, 2009; Gee, 2003). The interactivity and flexibility of game-based 
learning environments may prompt students to display exploratory behaviors (Pradhan et al., 
2024a) and encourage re-attempting problems (Chen et al., 2020; Vanacore et al., 2023), both 
of which lead to better learning outcomes. Further, these aspects of games help engage students 
while practicing mathematical concepts (Clark et al., 2016; Jere-Folotiya et al., 2014; Wouters 

https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR14
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR26


7 
 

et al., 2013), especially those who struggle in a traditional classroom setting (Moses & Cobb, 
2002; Kiili et al. 2015).   

A systematic literature review (Hussein et al., 2019) comparing game-based learning 
with other methods of instruction in K-12 mathematics education revealed that a majority of 
studies reported positive outcomes for knowledge acquisition. Similarly, for perceptual and 
cognitive skills, and affective, motivational, and behavioral changes, most studies reported 
positive outcomes with a game-based intervention. Furthermore, several studies revealed the 
effectiveness of the gamified system in decreasing mathematical errors and improving student 
understanding (Chan et al., 2022, 2023; Decker-Woodrow et al., 2023; Hulse et al., 2019; 
Ottmar et al., 2015). 

In addition to improving learning and engagement and decreasing mathematical errors, 
click-stream or log-file data collected in gamified learning applications can provide researchers 
and developers with a plethora of vital information about students’ problem-solving processes 
(Gobert et al., 2013). The fine-grained and detailed log data contains aspects of students’ 
behaviors and provides researchers the opportunity to explore the relation between interaction 
patterns and learning outcomes (Crossley et al., 2019). There is growing research that suggests 
log-file data is strongly predictive of short- and long-term engagement, interest, and learning 
in mathematics (Ocumpaugh et al., 2016). Most studies in the field of game-based learning 
have primarily used log-file data to understand students’ in-game behaviors, or the validation 
of the gamified elements (Alonso-Fernandez et al., 2019; Cano et al., 2018). While these 
studies provide useful information regarding the relationship between behavioral patterns and 
student learning, Hulse et al. (2019) claim that researchers and developers must pay close 
attention to the underlying learning mechanisms and behaviors that are triggered when students 
interact with the game. Yet, to the best of our knowledge, researchers have rarely used log-file 
data to explore variability in student’s problem-solving strategies and pathways. While Lee et 
al. (2022b; 2022c) partially achieved this by hand-coding the productivity of the first step to 
explore factors leading to higher productive first steps, they did not classify the productivity or 
efficiency of the entire solution strategy. Raw log-file data, especially those that record 
moment-by-moment transformations and expressions made by students while solving a 
problem, may contain valuable information regarding the employed solution strategies and 
students’ mathematical thinking. Further, the variation in problem-solving strategies and 
pathways employed by students when exploring and reattempting problems in a gamified 
learning system may provide valuable insight into students' mathematical knowledge.  

Using Data Visualizations to Identify Student Problem-Solving Pathways  
Identifying student strategies or problem-solving pathways in online learning environments is 
often challenging for researchers or teachers due to the complexity of pathways and the 
uncertainty about which patterns to explore in the data (Wang et al., 2017). Applying data 
visualizations to student problem-solving pathways can help researchers and teachers quickly 
identify what students do, and where they are stuck, and better understand the students’ 
cognitive process during problem-solving activities. 

Several empirical studies have applied data mining and advanced data visualization 
techniques to identify student strategies or problem-solving pathways (Hurtig et al., 2022; 

https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR52
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR30
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Sinha & Aleven, 2015; Wang et al., 2017; Xia et al., 2021). One of the most widely used data 
visualization techniques to present students’ learning pathways is the Sankey diagram. For 
example, Wang et al. (2017) developed a visualization tool called “PathViewer” to identify the 
sequence of students’ problem-solving paths in programming works. They utilized the Sankey 
diagrams to depict the students’ problem-solving pathways and natural language processing to 
identify the most prevalent sequences and loops. Using PathViewer, they successfully 
identified sequential patterns of students' coding and common causes of failure. Similarly, Xia 
et al. (2021) created a tool named “QLens” to visualize elementary and middle students’ 
trajectory data across various steps and stages in an online math learning platform. They also 
used Sankey diagrams to depict students’ problem-solving logic, engagement, and difficulties 
encountered. The following case studies and interviews showed the usefulness and 
effectiveness of QLens in providing information about students’ problem-solving processes 
and engagement. As such, while Sankey diagrams are useful for visualizing various problem-
solving pathways, they illustrate the data flowing in only one direction (e.g., start state to goal 
state or correct answer). They do not depict multidirectional pathways within the learning 
process, for example, how students withdraw their strategy, return to the previous state, correct 
errors, and take a more efficient problem-solving pathway.  

One alternative way to visualize student problem solving pathways is through 
sequential network visualization. Sequential network visualizations illustrate not only the 
direction and frequency of the pathway through arrows but also how nodes (e.g., concepts, 
events) are interconnected with each other. As an example, Hurtig et al., (2022) investigated 
students’ pathways to correct answers in college chemistry classes. They represented students' 
attempts, both incorrect and correct, as nodes in a network and visualized how they reached 
correct answers. The usability test of this tool with faculty members showed a satisfactory 
level, and they found the tool useful for monitoring and better understanding students' 
comprehension. In our study, we represented problem-solving steps as nodes in networks and 
created sequential network visualizations to illustrate multidirectional student problem-solving 
pathways to reach goal states in an online mathematics learning game.  

Context of the Study 

Game Description 
FH2T, a gamified learning platform that was developed by Ottmar and colleagues (2015), is a 
dynamic gamified learning application developed based on several learning theories such as 
perceptual learning, embodied cognition, and gamification. While traditional algebraic 
teaching in school focuses on the memorization of abstract and arbitrary rules, FH2T helps 
improve students’ knowledge of arithmetic for algebra learning by helping students identify 
the structure of algebraic expressions and think more flexibly about mathematical operations 
and properties (Chan et al., 2022). Several empirical studies have shown that FH2T improves 
students’ procedural learning, conceptual understanding, understanding of equivalence, and 
flexibility in algebra, as well as decreasing mathematical errors (Chan et al., 2022; Decker-
Woodrow et al., 2023; Hulse et al., 2019; Ottmar et al., 2015).  
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FH2T incorporates interactive virtual objects to represent algebraic equations, allowing 
students to apply mathematical principles through dynamic gestures (e.g. tapping or dragging) 
in a virtual environment. In doing so, students can realize that mathematical transformations or 
steps are dynamic, rather than procedural steps. In particular, students learn algebra through 
puzzle-based problems, in which each problem has a starting expression (i.e. ‘start state’) that 
needs to be transformed into a predefined and explicit ending expression (i.e. ‘goal state’). 
While these two states are mathematically equivalent, they differ perceptually (see Figure 2a). 
In Figure 2, one may solve the problem by transforming the start state (i.e. “44+56+a+72+28”) 
into the goal state (i.e. “100+a+100”) using mathematically valid actions.  
 

 
Figure 2. Example solution steps for problem 6 in FH2T 

 
The game also rewards students based on efficiency (i.e. the number of steps a student 

took to complete a particular problem). It rewards three clovers to students who solve the 
problem with efficient solutions (see Figure 2f). The number of clovers decreases if a student 
takes more solution steps than the efficient solution. In addition, the game allows students to 
reset at any point while attempting a problem. The game also allows students to reattempt a 
completed problem more efficiently.  

The game comprises 252 problems organized into 14 ‘worlds’. Each world covers 
various mathematical concepts (e.g. addition, multiplication, fraction). The game orders 
problems based on difficulty, and only allows students to advance to the next world when they 
complete 14 consecutive problems (Lee et al., 2022a). 

Dataset Used for MathFlowLens Development  
In order to classify students’ problem-solving strategy and create data visualizations, we used 
data collected from a large Randomized Control Trial (RCT) comparing student learning from 
FH2T to two technological interventions and an active control condition as described by Ottmar 
(2023). In the RCT, the authors recruited a total of 4,092 7th-grade students from 11 middle 
school students within a large suburban district in the United States from September 2020 to 
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April 2021 amidst the COVID-19 pandemic. The results of this RCT are available in Decker-
Woodrow et al. (2023). 

In the RCT, researchers randomly assigned 1,649 students to the FH2T condition, out 
of which 52.6% were male and 47.4% were female. In terms of racial identity, a majority of 
the sample identified as White (49.8%), 24.8% as Asian, and 16.4% as Hispanic/Latino. The 
remaining 9% identified with either multiple races or various other racial categories. The racial 
distribution of the sample was found to be representative of the school district. On average, the 
students attempted 112.57 problems (SD = 55.06) and completed 111.06 problems (SD = 
55.05) out of 252 problems in the game. 

While the larger dataset from the study contains various levels of aggregation (e.g. 
student and problem level), we use the log-file data containing real-time or in-the-moment data 
that show how students arrive at their solutions. The FH2T platform records detailed logs of 
mathematical expressions or steps logged after each transformation a student made, including 
timestamps and the different types of errors made by students. This feature-rich raw log file 
data in FH2T enabled us to identify students’ various problem-solving pathways at the fine-
grained level and build network visualizations. The dataset is publicly available for researchers 
on OSF after a data-sharing agreement (link: https://osf.io/r3nf2/).  

https://osf.io/r3nf2/
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Development of MathFlowLens  
In an effort to address a gap in game-based algebraic learning research regarding variability in 
students’ solution strategies, we developed a tool, MathFlowLens, which is capable of 
identifying and classifying various types of attempts. In the following subsections, we describe 
the creation, technical components, and inner workings of this tool. 

Development Phase 1: Creation of a classification tool identifying various 
problem-solving pathways and strategies. 

Solution Steps as a Directed Graph 

Each mathematical expression or state in a solution is represented as a node in a network. 
Similarly, each transformation from one expression to another is represented as a directed edge 
from one node to the other. In doing so, we represent a series of actions (i.e. steps) taken by a 
student to solve a problem as a directed graph. For example, for the sequence of steps in Figure 
2, the start state (i.e. “44+56+a+72+28”, Fig. 2a), step 1 (i.e. “100+a+72+28”, Fig. 2c), and 
goal state (i.e. “100+a+100”, Fig. 2e) would each constitute a node in the graph. Similarly, the 
transformations: start state to step 1 (i.e. [“44+56+a+72+28” → “100+a+72+28”], see Fig. 2b) 
and step 1 to the goal state (i.e. [“100+a+72+28” → “100+a+100”], see Fig. 2d), would 
represent directed edges to and from the respective nodes in the graph.  

Alternatively, similar to most problems in FH2T, one can solve the example presented 
above (see Figure 2) with multiple equally efficient solutions. In the case above, one may 
choose to add “72+28” from the start state as a first step to get “44+56+a+100” as step 1 rather 
than “100+a+72+28”. Next, one can add “44+56” as the last step to reach the goal state (i.e. 
“100+a+100”).  The graph structure can represent any number and combination of procedural 
pathways, regardless of the solution strategy employed. 

After populating a graph with several solution steps (i.e. problem attempts), we used 
efficient graph traversal algorithms such as A* or Dijkstra’s shortest path algorithm (DSPA) to 
identify all efficient solutions or paths from the start state to the goal state. In our 
implementation, we chose DSPA for its ability to calculate weighted distances, providing us 
with the flexibility to reward or penalize certain transformations. Such graph traversal 
algorithms find the shortest distance between two nodes in a weighted and directed graph 
(Mehlhorn & Sanders, 2007). 

Creating Graphs for All Problems in FH2T 
Using the expressions and transformations recorded in the log data, we created and populated 
individual graphs for each problem. The graphs were created in Python 3.11 using NetworkX 
(Hagberg, 2008) and pandas (McKinney, 2010) packages. Additionally, as the creation of a 
single graph relies solely on raw data from a single problem, we used multi-threading to make 
this process scalable and efficient. For each problem, we included all expressions (or steps) in 
the log data, including the start state and goal state, as nodes in the graph and the respective 
transformations to and from nodes as the directed edges. Furthermore, we recorded the number 
of students who made a particular transformation, which allowed us to determine the preferred 
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or common solution strategies and transformations. Similarly, we recorded the total number of 
errors students made in a particular state to help identify expressions that led to more errors. 
This process resulted in 252 graphs, one for each problem in the FH2T application. Note, that 
for this initial exploratory study, we assigned equal weights to each transformation to find the 
optimal paths using DSPA, and consequently, the minimum number of steps required to reach 
the goal state.  

Identified Classifications for Solution Steps/Attempts 

Based on the graphs created, we identified three types of problem attempts: optimal, sub-
optimal, and incomplete paths. Optimal paths are procedural pathways that use the least number 
of steps or transformations to reach the goal state. Similarly, sub-optimal paths are inefficient 
pathways that use more steps than the optimal paths to reach the goal state. Conversely, 
incomplete paths are attempts that did not reach the goal state. However, we observed two 
distinct types of incomplete attempts: 1) incomplete paths that were unique, and no student had 
reused them to reach the goal state, and 2) incomplete paths that students had reused to reach 
the goal state. We labeled the former as dead-end paths and the latter simply as incomplete 
paths. In other words, an incomplete pathway occurs when students stop using the current 
procedural pathway and decide to reset, even though that pathway leads to the solution. 
Distinctly, a dead-end path represents a pathway in which students cease progress before 
completing the problem, unlike incomplete pathways, no student has ever traversed them 
successfully to reach the goal state. 

For example, in the problem given in Figure 2, if the raw log contains the four problem 
attempts from Figure 3, we can create a single graph representing all problem attempts. In 
doing so, one can identify the different attempt classifications. The attempt with optimal 
classification completes the problem with the least possible number of transformations (i.e., 
two transformations), whereas the sub-optimal attempt is complete but with a greater number 
of transformations than the optimal classification (i.e., three transformations). Next, the dead-
end attempt is a unique incomplete attempt (i.e. the path has never been fully traversed to reach 
the goal state). Finally, the incomplete attempt makes the same first transformation as sub-
optimal and optimal solutions, however, the attempt is reset before reaching the goal state. Note 
that it is this resemblance to a completed attempt that leads this attempt to be classified as 
incomplete rather than a dead-end pathway.  
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Figure 3. Identified classifications for student pathways 

Alternative Classifications Using Binning Factor 
As described above, the classifications inherently depend on the attempts that are included or 
excluded from the graph. For example, take an incomplete attempt by student A: [‘Start State’ 
→ ‘Step 1’]. If we populated a graph with the entirety of the sample’s attempts, there may exist 
a student B, presumably with higher prior knowledge, who took the same path as student A but 
reached the goal state, with the attempt: [‘Start State’ → ‘Step 1’ → ‘Step 2’→ ‘Goal State’]. 
Based on the definition provided above, the algorithm would classify this path as incomplete. 
However, researchers may be interested in defining attempts based on various grouping or 
binning factors, for example: pre-knowledge scores, class ID, teacher ID, student ID, etc. By 
altering the students included in a particular network, we can constrain or relax the definitions 
of the classifications. This flexibility of creating multiple networks for a single problem based 
on a binning factor allows us to explore variability in the defined classifications and localize 
the definitions to the bins.  

Development Phase 2: Applying classifications to create interactive 
visualizations of student problem-solving pathways and strategies. 
While the graph creation process described above helped us identify four distinct pathways, 
the resulting graph data can then be used to create interactive sequential network visualizations, 
allowing us to examine students' various solution pathways and strategies. In our 
implementation, we used JavaScript and the d3.js library to render the visualizations. Each 
node in the visualization is color-coded based on the identified classifications from above. To 
distinguish the start and goal states from other states, we color-coded them blue and green, 
respectively. Similarly, we color-coded the optimal states and transformations as yellow, sub-
optimal pathways as gray, and dead-end pathways as red (See Figure 4). Note that, students 
have reused that pathway in an optimal or sub-optimal manner to reach the goal state based on 
the definition of incomplete attempts. As a result, such incomplete attempts can not be 
visualized directly. 
Furthermore, in the visualization, the thickness of an edge connecting two nodes and the size 
of the directional arrow is proportional to the number of attempts that made that transformation. 
This allows us to quickly identify the students’ preferred or common transformations and 
pathways. An example of this visualization is given in Figure 4, which represents all attempts 
in the log-file data for problem 6 in FH2T (start state: 44+56+a+72+28, goal state: 100+a+100). 
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In this case, there are two distinct optimal solutions (i.e., paths colored in yellow), which both 
require two steps to reach the goal state. The visualization has a small number of pathways 
indicating that there was little variation in students’ problem-solving strategies. Additionally, 
based on the thickness of the edges and the size of the arrows, most students employed optimal 
problem-solving strategies. 

 

 
Figure 4. Network visualization for all student attempts for problem 6 in FH2T 

Interactive elements of the visualization 

An important feature of this visualization is interactivity, which allows users to drill down and 
focus on specific pathways or nodes.  For example, hovering on the nodes using a mouse 
reveals additional information, such as the mathematical expression and the node’s 
classification (see Figure 5a). Similarly, users can drag and drop each node, allowing them to 
focus on the relevant and interesting pathways. Additionally, researchers and teachers using 
this visualization may be interested in knowing what pathways lead to a particular node, or, 
conversely, what pathways lead to the goal state from a particular node. By holding the 
‘control’ key while clicking a node, the visualization displays all paths that lead to the node 
from the start state and all paths that lead to the goal state from that node. Finally, as the 
visualization can get cluttered when there are many distinct pathways, users may choose to 
only show the optimal pathways and hide the sub-optimal and dead-end pathways (See Figure 
5b). 
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Figure 5. Demonstration of interactive features of MathFlowLens visualization 

Another important feature of the interactive graph is its ability to visualize individual 
student attempts. By selecting a student ID and a problem attempt, the graph highlights the 
student’s chosen problem-solving pathway in purple. An example of this feature is given in 
Table 1, in which we have presented 4 student attempts each belonging to the four identified 
attempt classifications: optimal, sub-optimal, dead-end, and incomplete. A live demonstration 
of this visualization can be found at mathflowlens.com in the Graph Diagram component.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://mathflowlens.com/
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Table 1. Visualization of sample student attempts and respective classifications 

Student’s Solution 
Strategy and Steps 

Attempt Pathway Visualization 
 

  

  

 

 

  

Discussion 
Algebra is an essential topic to delve into advanced mathematical topics and other STEM 
courses (Chen, 2013), yet most students struggle with basic algebraic concepts (NMAP, 2008). 



17 
 

Despite widespread acknowledgment regarding the importance of procedural flexibility, and 
the facets of algebraic knowledge in general, limited works have prioritized classifying strategy 
pathways or explored what type of student’s problem-solving strategies or pathways lead to 
improved algebraic learning. Furthermore, previous studies regarding student learning in 
gamified learning environments have mainly focused on correlations between in-game 
behaviors and positive learning outcomes (Hulse et al., 2019; Martin et al., 2015, Shute et al., 
2015). This study aimed to narrow the gaps in practice by introducing a novel tool, 
'MathFlowLens,' to reveal problem-solving pathways, and also to address gaps in research by 
exploring students’ problem-solving strategies and the variation in solution pathways. 

Classifying and Visualizing Student Problem-Solving Pathways 
In this study, we presented the development process of MathFlowLens, which used raw log 
data from FH2T to classify each student attempt using graph theory and shortest path finding 
algorithms, and subsequently represented students' solution attempts as a sequential network 
visualization (Hurtig et al., 2022). While our earlier studies (Lee et al., 2022b; 2022c) explored 
the partial pathways of student problem-solving, this study investigated the entire problem-
solving pathways in the gamified learning application. As noted by Gobert et al. (2013), 
clickstream data collected in gamified learning applications indeed provided us with 
comprehensive information about students’ mathematical problem-solving processes to build 
a visualization tool. The developed tool, MathFlowLens, successfully identified four distinct 
classifications for students' problem-solving strategies: optimal, sub-optimal, dead-end, and 
incomplete.  Our results corroborate the findings of other research (Hurtig et al., 2022; Sinha 
& Aleven, 2015; Wang et al., 2017; Xia et al., 2021), which showed visualizing student 
problem-solving pathways may help researchers and teachers quickly identify students’ 
understanding (i.e., best/optimal pathways), where they are stuck (i.e., incomplete pathways), 
as well the as the strategies they employ.  

Next, in the development Phase 2 of MathFlowLens, we proposed an interactive graph 
visualization that showcases the variability in students' problem-solving strategies and provides 
an overall summary of a sample's preferred solution pathways. Additionally, the classifications 
from Phase 1 were used to color code the nodes and transformations in the Network diagram. 
The descriptive statistics of the pathway classifications indicated that there was variability in 
students’ problem-solving pathways; the students exhibited a high average frequency of not 
only optimal pathways but also incomplete pathways. This suggests that this gamified learning 
environment can help students explore multiple possible problem-solving trajectories, not just 
reach a single solution (Clark et al., 2016; Jere-Folotiya et al., 2014; Wouters et al., 2013). In 
addition, unlike other visualization tools such as “PathViewer” (Wang et al., 2017) and 
“QLens” (Xia et al., 2021) mainly used Sankey Diagrams to represent student problem-solving 
paths, MathFlowLens uses network diagrams to visualize student pathways. While Sankey 
diagrams typically depict the transformations and flow in one direction, we were able to 
illustrate multidirectional pathways within problem-solving, for example, how the students 
returned to the previous states, corrected errors, and took other problem-solving pathways, as 
demonstrated in Hurtig et al.’s study (2022). These approaches, documenting and visualizing 
students’ problem-solving pathways and the variation in strategy, may offer valuable insight 

https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR14
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR26
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR52
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into students’ mathematical thinking and knowledge, as well as students’ common 
misconceptions and gaps in their knowledge. 

Practical implications for researchers and developers 
Researchers can use MathFlowLens to classify students’ problem attempts to further explore 
the complex nature of algebraic learning and student’s problem-solving strategies. Researchers 
can also utilize the proposed visualization to gain additional insight into students' mathematical 
thinking and problem-solving strategies to inform new methodologies and prompt new research 
questions.  

This study also has implications for developers of gamified applications and tutoring 
platforms. They may choose to implement the presented tool directly into their existing 
infrastructure, allowing for real-time attempt classifications and visualizations, along with the 
automatic generation of progress reports to further help and inform teachers.  

Practical implications for teachers 
This work also has direct implications for teachers in several ways. First, the developed tool is 
capable of automatically classifying students’ problem-solving strategies and pathways which 
are often imperceptible to teachers (Asquith et al., 2007). Having a better understanding of 
what strategies a student uses to solve a problem and the variation in the employed solution 
pathways may provide teachers with additional insight into the student's current algebraic 
knowledge. Next, teachers can utilize the presented graph visualization to quickly identify a 
cohort’s preferred problem-solving pathways. The interactive features of this visualization 
allow teachers to explore common misconceptions and errors and discover multiple equally 
efficient pathways. As such, the proposed visualization can be used to inform and improve 
teachers' instruction. Finally, teachers can use the identified pathways to actively compare 
problem-solving strategies in the classroom. This side-by-side presentation of solution 
strategies coupled with subsequent student discussion to highlight the similarities and 
differences among procedural pathways has been shown to improve students' procedural 
flexibility (Star et al., 2015). 

Limitations and future directions 
Several important limitations need to be considered. The presented tool that classifies students' 
problem attempts requires highly granular data containing step-by-step student 
transformations. However, a majority of educational technologies record students' entered 
answers rather than moment-by-moment mathematical transformations and expressions that 
show how students arrive at their solutions (Lee et al., 2022c).  

While the proposed visualization presents a simplified view of a cohort’s problem-
solving strategies and pathways, its effectiveness and usefulness may depend on the user's 
ability to interpret and interact with it. We partially address this by making the visualization 
interactive, such as: allowing users to only show optimal pathways in the visualization. 
However, more work, such as usability testing for teachers or researchers, needs to be done to 
enhance the interpretability and usability of the visualization.  
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 Overall, we view this work as an initial step towards classifying and understanding 
students’ problem-solving strategies and the variation in their employed pathways. Possible 
extensions of this study include analyzing the sequence of problem-solving strategies rather 
than their frequencies, creating an automatic productivity coder for students’ first steps using 
the proposed tool, and creating effective dashboards for teachers using the visualization and 
insights from the tool.   

Conclusion 
In this paper, we presented a classification and visualization tool, called MathFlowLens, that 
uses raw log data from FH2T to analyze students’ procedural pathways. The tool classifies the 
entire student attempt as either optimal, sub-optimal, dead-end, or incomplete. Subsequently, 
MathFlowLens represents students’ procedural pathways as a sequential network visualization. 
The findings of the current study demonstrate that MathFlowLens can provide valuable 
information regarding the employed solution strategies and students’ mathematical thinking 
from raw log data. Additionally, the proposed visualization can be used by researchers and 
teachers to quickly identify the variation in a cohort’s problem-solving pathways.  
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Study 2. Application of MathFlowLens: Examining the 
relations between identified pathways and the facets of 
algebraic knowledge. 

*  This study is part of a paper currently under review in the Journal of Educational 
Technology Research and Development. Citation: Pradhan, S., Ottmar, E., Gurung, A. & Lee, 
J. (submitted). MathFlowLens: A Classification And Visualization Tool for Analyzing 
Students’ Procedural Pathways Education Tech Research Development (submitted). 

Specifically, this study was incorporated as a component in the submitted ETRD 
manuscript as a potential application example, primarily, to showcase the predictive ability of 
the classifications.  

Introduction 
In the context of educational data mining and learning analytics, machine learning has been 
used to make various long-term predictions about student learning and future performance. For 
example, Chui et al. (2020) used data collected from a virtual learning environment and 
demographic information to predict marginal or at-risk college students. Similarly, Hodges & 
Mohan (2019) harnessed neural networks to predict gifted students with high accuracy. Such 
classifiers can help answer questions such as “is this an appropriate differentiation strategy” or 
“is this child showing need for additional support” (Hodges & Mohan, 2019). This predictive 
ability allows educators and teachers to intervene when necessary to facilitate student success. 

With the development of the MathFlowLens tool complete, we leveraged the 
classifications generated from the tool to test its applicability in data-driven learning analytics 
research. In this short exploratory study, we apply the classifications in Study 1 by examining 
correlations between the identified classifications and students’ algebraic knowledge. In other 
words, we use the classification data to predict the different aspects of students’ algebraic 
knowledge. As mentioned above, algebraic knowledge consists of conceptual knowledge, 
procedural knowledge, and procedural flexibility.  

Research Question 
How do the different types of identified problem-solving pathways correlate with the various 
facets of algebraic knowledge? 

Background 

Facets of Algebraic Learning: Procedural and Conceptual Knowledge and 
Flexibility. 
The mastery of algebra is essential for learning further advanced topics in mathematics 
(NMAP, 2008). However, many middle school and high school students struggle with basic 
algebraic concepts such as determining valid transformations and decomposing numbers 
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(NMAP, 2008), as well as converting simple algebra story problems to mathematically 
equivalent equations (Koedinger & Nathan, 2004). Students who struggle with these concepts 
may have a difficult time learning more advanced topics, most of which are usually represented 
in algebraic form. 

For Algebraic proficiency, students require both conceptual and procedural knowledge 
and the ability to use this knowledge efficiently and flexibly (Schneider et al., 2011). Rittle-
Johnson et al. (2001) defines conceptual knowledge as students’ verbal and nonverbal 
knowledge of algebraic concepts and principles, including familiarity with algebraic symbols 
and syntactic conventions. Next, they define procedural knowledge as the understanding of the 
rules and procedures for solving an algebraic problem (e.g. the order of steps or transformations 
to solve a problem). While conceptual knowledge builds the foundation for procedural 
knowledge, students can use procedural practice to develop procedural knowledge as well 
(Rittle-Johnson et al., 2001, 2015; Schoenfeld, 2007). The combination of these two types of 
knowledge contributes to procedural flexibility–the ability to select the most efficient and 
effective solution for a particular problem (Star et al., 2016). 

In a systematic review of procedural flexibility, Hong et al. (2023) highlights the 
emphasis in both research and practice on procedural flexibility as a learning outcome in 
mathematics. Across the globe, including Australia, China, Singapore, and the United States, 
educational ministries and committees have highlighted flexibility as an educational goal in 
mathematics learning (Australian Education Systems Officials Committee, 2006; Hästö et al., 
2019; Hong et al., 2023; Ministry of Education of Singapore, 2006; Ministry of Education of 
the People’s Republic of China, 2022; National Council of Teachers of Mathematics, 2014). In 
addition, there has been plenty of evidence demonstrating the importance of procedural 
flexibility. Blöte et al. (2001) and Rittle-Johnson and Star (2007, 2009) showed that procedural 
flexibility facilitates solving unfamiliar problems. Similarly, Rittle-Johnson et al. (2012) found 
that it increases conceptual and procedural knowledge in mathematics, the effect of which may 
spill over to other STEM domains such as physics and chemistry (Hästö et al., 2019). Various 
studies (Robinson et al., 2006; Venkat et al., 2019) suggest that strategic efficiency and 
flexibility are significant indicators of a student’s understanding of the inherent mathematical 
structures. 

Despite the widespread acknowledgment of the importance of mathematical flexibility, 
there are few pedagogical recommendations for improving students’ flexibility and most of 
them tend to focus mainly on the use of a few strategies, rather than comparing multiple 
possible solutions (Verschaffel et al., 2009). Furthermore, to apply procedural flexibility in 
different situations, students need to develop a well-connected mental representation of the 
core concepts in algebra, such as equivalence, order of operation, and use of parentheses (Knuth 
et al. 2006;  Ottmar et al. 2012; Welder 2012), allowing them to identify when, how, and which 
strategies are effective and applicable (Baroody, 2003; Threlfall, 2009; Verschaffel et al., 
2009). In an effort to assist students in comparing different solution strategies and pathways, 
we created a tool that can identify various problem-solving pathways and strategies that 
students employ while problem-solving. 

https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR23
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR23
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR53
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR54
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR4
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR62
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR64
https://link.springer.com/article/10.1007/s10648-023-09825-2#ref-CR23
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR31
https://link.springer.com/article/10.1007/s11423-019-09653-8#ref-CR51
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Method 
In the RCT, students took a pre-assessment of their algebraic knowledge (hereafter, pretest 
scores) prior to the start of the intervention, and a post-assessment of their algebraic knowledge 
(hereafter, posttest scores) after the intervention. Out of the 1,649 students assigned to the 
FH2T condition, 1,139 completed the pre-test and only 778 completed both the pre- and post-
test. For this analysis, we omitted students who did not complete both the pre-and post-test, 
resulting in an analytical sample of 778 students. For the pretest, students solved each item 
sequentially without feedback. Ten multiple-choice items were adapted from a previously 
validated measure of algebraic understanding (Star et al., 2015; Cronbach's α = 0.89), 
consisting of three sub-constructs: conceptual knowledge (4 items), procedural knowledge (3 
items), and procedural flexibility (3 items; see Appendix A). The post-test items replicated the 
pretest items but used different equations in the questions and choices. The average pretest 
score was 4.71 (SD = 2.68), and the posttest score was 4.50 (SD = 2.93) out of 10. Additional 
details about the dataset can be found in Ottmar et al. (2023).  

The outcome variables (i.e., conceptual, procedural, and flexibility scores) were at the 
student level, hence, we aggregated the one-hot-encoded attempt-level classifications (i.e., 
independent variables) to the student level. First, for each problem, we summed the occurrences 
of each attempt type (i.e. total number of optimal, sub-optimal, dead-end, and incomplete 
attempts for a problem), resulting in one row for each problem for each student. Next, for each 
student, we took the average across problems attempted. Thus the columns in the data represent 
the average number of attempts belonging to the respective attempt type. The descriptive 
statistics of the outcome variables and the classifications have been given in Table 2. The most 
frequent pathways that the students took were optimal, followed by incomplete, sub-optimal, 
and dead-end pathways.  

To identify what types of pathways (i.e. the identified attempt classifications) led to 
better conceptual knowledge, procedural knowledge, and procedural flexibility, we estimated 
three linear models. Model 1 predicted the conceptual knowledge scores (i.e. the number of 
conceptual items a student got correct in the posttest; see Appendix A) based on the identified 
attempt classifications while accounting for pretest scores (mean-centered). Similarly, Model 
2 predicted procedural knowledge scores, and Model 3 predicted procedural flexibility scores 
after controlling for pretest scores.  
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Table 2. Descriptive Statistics for the student-level variables included in the models 

Variable Min Median Mean Max SD 

Independent variables 

Optimal 0.40 0.80 0.84 4.36 0.25 

Sub-optimal 0.00 0.33 0.35 2.09 0.13 

Dead-end 0.00 0.11 0.13 2.14 0.12 

Incomplete 0.00 0.62 0.70 6.79 0.44 

Dependent variables 

Conceptual Score 0.00 2.00 1.89 4.00 1.37 

Procedural Score 0.00 1.00 1.42 3.00 1.04 

Flexibility Score 0.00 1.00 1.19 3.00 1.01 

 

Results  
As shown in Table 3, Model 1 explained 39.3% of the variation in conceptual scores (F(5, 772) 
= 99.96, p < .0001). Similarly, Model 2 accounted for 30.6% of the variation in procedural 
scores (F(5, 772) = 68.22, p < .0001), and Model 3 explained 30.8% of the variation in 
flexibility scores (F(5, 772) = 68.64, p < .0001). Surprisingly, students taking dead-end 
pathways were positively related to conceptual score (B = 0.84, p = .031) and procedural score 
(B = 1.01, p = .001), after accounting for pretest scores. These results were surprisingly counter-
intuitive, as we originally hypothesized that dead-ends indicate poor procedural and conceptual 
knowledge and would consequently lead to lower procedural and conceptual scores. 
Conversely, students taking optimal paths was negatively related to flexibility score (B= -0.58, 
p = .021), after controlling for pretest scores. Neither incomplete nor sub-optimal attempts were 
significant predictors of conceptual, procedural, or flexibility scores. The results also suggest 
that pretest scores, the control variable, was a significant predictor of conceptual (B = 0.31, p 
< .001), procedural (B = 0.20, p < .001), and flexibility scores (B = 0.20, p < .001).  
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Table 3. Regression results of predicting conceptual, procedural, and flexibility scores from 
the identified attempt classifications while accounting for prior algebraic knowledge. 

(N = 778) Conceptual Score Procedural Score Flexibility Score 

Predictors B CI p B CI p B CI p 

(Intercept) 2.02 1.73, 2.31 <0.001 1.43 1.19, 1.66 <0.001 1.28 1.05, 1.51 <0.001 

Optimal -0.28 -0.62, 0.05 0.099 -0.17 -0.44, 0.10 0.216 -0.31 -0.58, -0.05 0.021 

Dead-end 0.84 0.08, 1.60 0.031 1.01 0.39, 1.63 0.001 0.43 -0.27, 1.03 0.161 

Incomplete -0.17 -0.39, 0.05 0.133 -0.11 -0.29, 0.07 0.234 -0.09 -0.27, 0.09 0.315 

Sub-optimal 0.36 -0.33, 1.05 0.311 0.23 -0.33, 0.79 0.414 0.52 -0.02, 1.06 0.060 

Pre Total 
Math Score 

0.31 0.28, 0.34 <0.001 0.20 0.18, 0.23 <0.001 0.20 0.18, 0.23 <0.001 

R2 
R2 Adjusted 

0.393 
0.389 

0.306 
0.302 

0.308 
0.303 

Discussion 
As a potential research application of MathFlowLens, we examined the relations between the 
average frequency of students' solution strategies across problems with the three constructs of 
math performance: conceptual knowledge, procedural knowledge, and flexibility scores. The 
results indicated that students with frequent dead-end attempts had higher conceptual and 
procedural knowledge scores, whereas frequent optimal attempts led to lower flexibility scores.  

Dead-ending behavior may represent a form of exploratory play, in which students try 
different solution strategies in a low-stakes gamified environment. This exploratory behavior 
may help students identify unproductive transformations to avoid, potentially leading to a better 
understanding of algebraic knowledge (Pradhan et al., 2024a). This finding is aligned with that 
productive failure through exploratory behavior may facilitate learning gains by emphasizing 
opportunities to explore the constraints of a problem space (i.e., boundary testing), and testing 
multiple solution pathways (Owen et al., 2016).  

On the other hand, as indicated by the results, focusing solely on efficient solutions may 
lead to a decrease in procedural flexibility. A plausible explanation for this negative correlation 
is that forcing students to only take a particular and efficient pathway may limit their 
mathematical flexibility and/or the likelihood of learning from mistakes (Francome & Hewitt, 
2020). 

Furthermore, based on the findings from the linear models, developers of learning 
platforms should pay close attention to platform design to ensure exploratory behaviors, such 
as frequent dead-end attempts, are not penalized. Such exploratory or creative attempts may be 
less efficient but may provide students with a more nuanced understanding of mathematical 
structures and operations. By acknowledging the variability in students’ strategies (e.g. 
creative, exploratory, and efficient), developers can consider the individual differences in 
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students and their behaviors to create more adaptive and supportive learning environments. 
  

Limitations and Future Directions 
The analysis using the linear models focused on data derived from one specific context, FH2T. 
It is unknown whether these results are generalizable across different platforms. To strengthen 
the findings from this study, it would be beneficial for future work to replicate and test the 
generalizability of these results. Additionally, future studies could run alternative linear models 
with the inclusion of students’ prior individual component scores (i.e. prior conceptual, prior 
procedural, and prior flexibility scores) rather than prior algebraic performance. Doing so 
would allow researchers to examine the correlation between the frequency of a type of 
procedural pathway and the associated increase in score for the individual components of 
algebraic knowledge. 

Conclusion 
In this initial exploratory study, we surprisingly found that students who take dead-end 
pathways more frequently have higher conceptual and procedural scores. This result highlights 
the need to foster exploratory behavior and creativity to bolster algebraic knowledge. Finally, 
students frequently taking optimal pathways have lower procedural flexibility, which 
underscores the importance of teaching multiple solution pathways and strategies. 
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Study 3. Gamification and Dead-ending: Unpacking 
Performance Impacts in Algebraic Learning. 
 * This study was presented and is published in the proceedings as a paper at the 
International Learning Analytics and Knowledge Conference (LAK 2024, Kyoto, Japan). A few 
edits have been made to improve the readability and flow of the thesis.  
Citation: Pradhan, S., Gurung, A., Ottmar, E. (2024, March). Gamification and Dead-ending: 
Unpacking Performance Impacts in Algebraic Learning. In LAK24: 14th International 
Learning Analytics and Knowledge Conference. 

Introduction 
Despite the widespread acknowledgment of the correlation between strong algebraic 
knowledge and enhanced performance in future advanced topics, a disconcerting number of 
middle school and high school students struggle with fundamental algebraic concepts. 
Difficulties making such as valid transformations and decomposition (NMAP, 2008), and 
challenges in converting simple story problems into mathematically equivalent equations 
(Koedinger & Nathan, 2004), are indicative of the potential struggles these students might face 
as they encounter more advanced topics typically expressed in algebraic form.  

Solving algebraic problems requires students to utilize a broad spectrum of problem-
solving techniques. These techniques enhance students' ability to synthesize solutions, shape 
their mathematical intuition, and reinforce their methodological approaches to problem-
solving. As students’ progress to more advanced mathematical domains, mastering these 
foundational strategies becomes paramount. Indeed, proficiency in algebraic concepts is 
intimately linked with the acquisition of a wide array of problem-solving techniques (NMAP, 
2008). Especially in K-12 mathematics education, efficiency and flexibility in problem-solving 
strategies are prioritized (Common Core, 2010), and efficient students often employ fewer 
steps or transformations (Xu et al., 2017). This is supported by various studies that suggest that 
strategic efficiency is a significant indicator of a student's understanding of the inherent 
mathematical structures (Robinson et al., 2006; Venkat et al., 2019).  

However, the surprising results from Study 2 suggest that relying solely on efficient 
problem-solving strategies and pathways may have a negative effect on students’ procedural 
flexibility. Ultimately, this may limit a student’s ability to generate alternative procedural 
pathways for unseen and new problems that may be more intuitive and transferable to more 
advanced mathematical topics.  

Additionally, the underlying mechanisms that prompt students to discontinue their 
current procedural approach, leading to dead-end and incomplete pathways, remain unclear. 
However, various factors, both positive and negative, can sway a learner's decision to 
discontinue. Positive triggers might include realizing that a path will only yield a sub-optimal 
outcome or foreseeing a challenging state ahead. Conversely, negative factors could include 
frustration from an inability to solve a problem or reaching a genuine impasse where the student 
is unable to identify the next state.  



27 
 

It is important to note that the results from Study 2 gave insight into the relation between 
the classifications and the individual constructs of algebra. It is unknown whether the choice 
of procedural pathways lead to differentiated algebraic learning outcomes as a whole. To 
further investigate the surprising results in Study 2 and unpack the algebraic performance 
impacts of the identified classification, this paper aims to explore the implications of 
encountering dead-ends within the network of strategic pathways. Accordingly, we explore the 
following research questions: 

Research Questions 
RQ1: Does the choice of procedural pathways in algebraic problem-solving lead to 
differentiated learning outcomes? 
RQ2: In what ways do dead-end attempts within a gamified environment impact 
algebraic learning? 

Data 
The data and sample in this study were the same as Study 1 and 2, i.e. the FH2T raw log data 
from the RCT. Specifically, we used the classification data generated from the MathFlowLens 
tool for the analysis. 

Results 

RQ 1: Exploring what types of attempts lead to better learning outcomes. 
 
To address RQ1 and identify problem-solving strategies that led to better learning outcomes, 
we estimate two linear models. Model 1 predicts the post-test scores of students based on the 
identified pathways or classifications, while the second model accounts for prior algebraic 
knowledge (mean-centered) in addition to the classifications. Table 4 contains the results of 
running the linear models. The results of model one suggest that at the student level, neither 
classification of optimal (𝛽 = -0.38, p = 0.407) nor sub-optimal (𝛽 = 1.46, p = 0.118) was a 
significant predictor of post-test scores. In contrast, the classification of incomplete (𝛽 = -1.69, 
p <0.001) and classification of dead-end (𝛽 = 5.17, p <0.001) were significant predictors of 
post-test scores. In model two, we observed that higher prior knowledge was correlated with 
higher post-test performance (𝛽 = 0.72, p <0.001). The optimal path (𝛽 = -0.76, p = 0.028) was 
also a significant predictor of post-test scores. Additionally, while the effect decreased, dead-
end (𝛽 = 2.28, p = 0.004) was still a significant predictor of higher post-test performance.  

Overall, the results of these models suggest that after accounting for prior algebraic 
knowledge, the average student exhibiting dead-ending behavior is more likely to succeed. On 
the other hand, students who exhibit efficient problem-solving behavior tend to perform worse 
on the post-test. These findings strengthen and align with our findings from Study 2. The 
positive correlation between dead-ending behavior and student post-test performance indicates 
the likelihood that the underlying mechanism that results in dead-ending behavior is likely 
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positive in nature. Such learners are able to identify that the path will only yield a sub-optimal 
path or foresee a challenging state ahead. As such, we posit that a dead-end attempt may, in 
fact, be an indicator of ‘exploratory play’, an in-game behavior that potentially leads to a more 
nuanced understanding of the transformations to avoid or the ability to identify problematic 
states when solving algebraic problems to reach the total state. Consequently, resulting in a 
better algebraic post-test performance.  

 
Table 4. Student-level linear regression results predicting post-test score. 

 

RQ 2: Exploring the effect of regular dead-ending on algebraic learning 
outcomes. 
Building on the results of the exploratory analysis in Study 2 and RQ1, we further investigated 
the relationship between dead-ending (or exploratory behavior) and higher post-test scores. We 
examined potential variance in the dead-end states across students by constructing individual 
networks per student per problem. The data for this analysis was generated using the binning 
classification feature of the MathFlowLens tool. Student-level networks were generated to 
identify dead-end paths of students that were potentially masked by their peers’ attempts. For 
example, if a student had an exploratory attempt (‘start state’ → ‘a’), and another student used 
the same path to reach the goal state sub-optimally (‘start state’ → ‘a’ → ‘b’ → ‘goal state’), 
the student’s exploratory attempt would be masked and classified as incomplete. By identifying 
dead-end paths on student-level networks, we localize the definition of dead-end paths to 
individual students’ attempts. It is important to note that this modification does not change the 
classification for optimal or sub-optimal attempts, as the optimal paths found from the entire 
sample are used for this classification.  

 
Table 5. Summary Statistics of Dead-end Count and Percentage 
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Next, we examined the frequency of dead-ending behavior per student by examining 
the total number of problems in which the student had at least one dead-end attempt. Similarly, 
we calculate the percentage of problems with at least one dead-end attempt. These results can 
be found in Table 5. Since the dead-end count and percentages were not normally distributed, 
and certain students were regularly utilizing the dead-end pathways in comparison to their 
peers, we classified the students into ‘regular dead-enders’ and ‘occasional dead-enders’ by 
utilizing a cutoff point at the 5th percentile of the dead-ending behavior distribution. We ran a 
mixed-effects model at the attempt level, predicting post-test scores while accounting for prior 
knowledge (mean-centered), using the student-level network classification and an indicator for 
the students’ regular usage of dead-end paths. As the data is at the attempt level, we introduce 
random intercepts for the problem ID, attempt number, and pre-test scores. 
 
Table 6. Exploring the correlation between different types of procedural pathways taken by 

individual students and their post-test performance. 

  
 
Table 6 suggests that for a student with an average score on the pretest, the use of 

optimal or best paths correlates significantly with higher scores on the post-test (𝛽 = 0.33, p < 
0.001), especially when compared to the reference category of incomplete paths. This trend is 
also seen with sub-optimal paths (𝛽 = 0.07, p < 0.001) and dead-end paths (𝛽= 0.05, p = 0.006), 
both showing a positive correlation with the students’ post-test scores. Similar to the results of 
RQ1, the pre-test score remains a significant predictor of the post-test scores (𝛽 = 0.65, p < 
0.001). Interestingly, students who regularly adopt dead-ending strategies in their problem-
solving tend to perform better than those who use such strategies less frequently (𝛽 = 0.24, p < 
0.001). 
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Discussion 
The findings of this study have two major implications. Firstly, the positive effect of gamified 
systems on algebraic learning outcomes depends on the behaviors exhibited by the student. 
Past studies such as Chan et al. (2022b), Lee et al. (2022a), and Vanacore et al. (2023), have 
shown that different in-game behaviors are predictive of algebraic learning outcomes. In 
particular, the studies by Chan et al. (2022b) and Lee et al. (2022a) showed that students who 
paused before answering tend to perform better in the post-test. Similarly, Vanacore et al. 
(2023) showed that students with a higher propensity for persistence benefit more from the 
gamified system. In the current study, using log data, we provided additional evidence 
suggesting that the effect of gamified platforms on learning outcomes depends on the behaviors 
and intentions of the user. 

The second major implication is that in-game behaviors exhibited by students may be 
the main driving force behind improved algebraic knowledge in gamified systems. Desirable 
behaviors, such as the exploratory behavior identified in this study, should not be penalized. If 
the results presented in this study are consistent for similar gamified systems, there are 
profound impacts on the design of gamified platforms to foster exploration. Additionally, our 
results suggest that in order to develop math flexibility, students may need to explore various 
procedural pathways. In the long run, this may allow students to develop the important skill of 
choosing efficient problem-solving strategies. Overall, the results from this study support, and 
further explain the strange results from Study 2.  

Limitations and Future Directions 
In considering the outcomes of this study, several important caveats should be acknowledged. 
To begin with, our analysis was narrowly focused on data derived from the FH2T platform. 
This specificity introduces potential limitations on the generalizability of the results. There 
remains an open question about the replicability of the observed student behaviors and 
interactions across a wider range of platforms that employ similar dynamic procedural 
pathways. To strengthen the findings of this study, it would be instructive for subsequent 
investigations to explore the generalizability of our findings further. Additionally, the insights 
extrapolated here might be more germane to gamified environments rather than to traditional 
tutoring platforms such as the Cognitive Tutor (Anderson et al., 1995) and ASSISTments 
(Heffernan & Heffernan, 2014) mentioned earlier. These platforms, with varying affordances 
regarding procedural requirements, might influence student behavior differently, possibly 
reducing the propensity for the kind of exploratory action observed in our analysis. 

While this study aimed to identify and understand the implications of various 
procedural pathways in solving algebraic problems within a gamified setting, the broader 
implications of these classifications must be acknowledged. Future research should investigate 
the effects of hints on the paths and explore variations in their effective utilization. Prior 
research has underscored the value of using response times as a metric to infer productive hint 
usage (Gurung et al., 2021) and the formulation of optimal solutions (Chan et al., 2022b). 
Additionally, several studies have highlighted the benefits of providing error-specific feedback 
to frequently occurring incorrect answers (Gurung et al., 2023a; 2023b). The models 
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established in this research can greatly enhance our understanding of the mechanisms 
underlying the procedural pathways that lead to these common errors. Similarly, insights into 
these pathways can improve the quality of automated grading and feedback generation for 
student responses in open-ended algebraic problems (Baral et al., 2023a; 2023b) by helping 
mitigate potential biases (Gurung et al., 2022) by facilitating an objective understanding of the 
potential mechanisms influencing the students' responses. 

It would also be of academic interest for subsequent studies to investigate the interplay 
between these classifications and various demographic or evaluative indicators, such as levels 
of math anxiety. Such a focus can illuminate nuanced patterns of interaction across 
heterogeneous student groups. By doing so, we can better inform and adapt educational 
strategies, aiming to enhance both the inclusivity and efficacy of gamified instructional 
methodologies. 

Conclusion 
In this study, we find that students who exhibit regular dead-ending behavior have a higher 
post-test score (i.e. higher learning outcome), than students who are irregular dead-enders. In 
other words, students exhibiting regular dead-ending behavior (i.e. exploratory), gain more 
from the gamified system. This suggests that students who display regular exploratory (i.e. 
dead-ending) behavior may be learning the various algebraic rules and notations in a low-stakes 
gamified environment, eventually leading to better algebraic understanding. Such students take 
pathways usually deemed incorrect or inefficient but overall, it may lead to a productive 
learning process. 
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Study 4. MathFlowLens Dashboard: Creating a 
collaborative dashboard with teachers, for teachers. 
 * This study is part of a larger NSF project (CAREER 2142984: PI Ottmar) which 
focuses on using Codesign methodology and professional development sessions with teachers 
to iteratively design and development MathFlowLens. The manuscript for that project is 
currently under preparation to be submitted later this summer. My contributions to that project 
were focused on the data processing, data analysis, prototype and UX design based on teachers 
input, and software engineering.  
Citation: Thompson, T., St. John, J., Pradhan, S., & Ottmar, E. (in preparation). MathFlowLens 
Dashboard: Co-Designing Teacher Orchestration Tools to Engage in Discourse Around 
Students' Mathematical Strategies.  

Introduction 
Previous studies revealed the significance of classifying, predicting, and valuing multiple 
solution pathways and showed how the identified classifications differentially predicted 
learning outcomes. As highlighted in the background, teachers need to be aware of their 
students’ performance, their exhibited behaviors (Walkoe et al., 2013), and employ pathways 
and understand that variation in pathways. As highlighted by the results in Studies 2 and 3, 
even incorrect or inefficient pathways are a productive process for learning. Knowing students’ 
procedural pathways, common misconceptions, and performance allows teachers to intervene 
when necessary, and create a personalized and supportive learning environment. If teachers 
were provided with information about students' variations in the problem-solving process, 
teachers modify their instruction and make them more aware of their student’s mathematical 
processes and knowledge in an online setting. 
 Teacher orchestration tools and dashboards can aid teachers in identifying and 
interpreting relevant information and providing impactful and actionable feedback. For 
example, the use of dashboards has the potential to improve teachers' understanding of 
students’ knowledge, perceptual and mathematical strategies, and misconceptions (Walkoe et 
al., 2013). However, this information about students' mathematical problem solving and 
processes is rarely given to teachers. Providing teachers with more information about students' 
strategies and behaviors when solving problems may enhance teachers’ pedagogical insights 
allowing them to modify their mathematical instruction accordingly (Holstein et al., 2019). 
While educators aspire to gain insights into students' thought processes and identify any 
misconceptions (Holstein et al., 2019), teachers tend to employ technology platforms primarily 
for assessing student performance rather than delving into a nuanced understanding of their 
comprehension. This is in part due to the lack of time for teachers to examine individual 
students’ problem attempts (Feldon, 2007; Holstein et al., 2017), and the lack of technological 
tools and dashboards to convey relevant metrics and visualizations. Further, simply presenting 
teachers with dashboards and data is not enough to sufficiently help teachers identify and 
interpret relevant information about students’ problem-solving processes. Teacher tools must 
prioritize design that helps teachers quickly find relevant information and accurately. 
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Tools such as teacher dashboards summarize student learning and performance data to 
help teachers monitor and be more aware of their students’ progress, ultimately facilitating 
pedagogical decision making (Verbert et al., 2014). Yet, there are disparities between 
researchers’ intent for the developed dashboards and their effectiveness and usability for 
teachers (Hopfenbeck, 2020; Schwarz et al., 2021). Thus, developing tools using a codesign 
methodology–by including teachers in the design and conceptualization of such tools–is 
paramount. By working with teachers to better understand their needs and the various 
challenges they face in the classroom, researchers may devise tools that are truly supportive 
and meaningful for teachers.   

Overview of the Codesign Sessions: Understanding What Teachers 
Want. 
Last summer, two Learning Science graduate students and I, along with Erin Ottmar (PI), led 
a 2-day professional development and co-design workshop with five middle and high school 
mathematics teachers. Through engaging with these teachers for several sessions, this project 
sought to iteratively design and develop a research-based technology dashboard that provided 
insights into students' mathematical problem solving, with extensive input from experienced 
educators. This project had 3 distinct phases: 1) familiarizing teachers with existing dashboards 
and online educational platforms, which allowed teachers to select or request key metrics and 
preferred visualizations; 2) iterative and collaborative proof-of-concept designing of tools with 
teachers for the various components; and 3) developing and programming the final dashboard.  

In the first phase, prior to the first codesign session, we requested the participating 
teachers to get familiarized with an online learning platform: Graspable Math (GM; Weitnauer 
et al., 2016). Like FH2T–the gamified learning platform whose data was used for the 
conceptualization of the MathFlowLens tool in Study 1, GM logs moment-by-moment 
transactional data that records each step a student makes. This familiarization process was 
intended to give teachers a student’s experience while solving problems in the digital platform 
and allow them to begin narrowing the insights they would like to gain from a teacher 
dashboard. Next, we held a conceptualization and brainstorming session in which we presented 
existing visualization techniques–including the developed sequential network visualization 
from Study 1–and commonly used student performance metrics. This session allowed us 
researchers to better understand what the teachers sought for: the likes and dislikes of the 
presented analytical and visual components; factors contributing to cognitive overload that may 
lead to unwillingness to use the tool; and the existing tools, both technological and pedagogical, 
that teachers used and would want included in a dashboard. 

In the second phase, we consolidated the needs of and comments by the teachers in the 
first session to prepare prototypes of visualizations and key student performance metrics. Then 
we held a final session to present the prototypes and allow teachers to give additional feedback. 
In this session, we also allowed teachers to manipulate the layout, placement and inclusion of 
the prototypes, giving them complete control over the final appearance of the dashboard. 

In the final phase, based on the feedback from teachers, and following the iterative co-
design methodology, we used the prototypes and suggested layout designs to create a web-
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based dashboard that conveys key metrics, including the classifications of strategies, and 
overall student performance to teachers (link: mathflowlens.com). The following sections 
describe the final phase and the individual components in detail. 

Development of the MathFlowLens Dashboard: Developing Tools 
that Support Teachers. 
One of the main goals of this project was to create a dashboard that is teacher-centric, 
interactive, and provides actionable feedback regarding students' performance and solution 
strategies. This study also paves the way for future studies to conduct additional user-design 
research with teachers to better understand how these classifications and visualizations can be 
useful for their mathematics teaching and student learning.  

Another principal goal for this project was to make the tool generalizable, thereby 
allowing external learning platforms to use and display the strategic information and 
visualizations on the developed dashboard. As such, we initially collaborated with and utilized 
data from GM to develop the proof-of-concept dashboard and successfully preprocess and 
display visualizations and metrics using their externally housed data. Additionally, we 
programmed this dashboard to be easily displayed as an iFrame to allow for a more robust 
integration with the external learning platform’s infrastructure.  

The following sections describe the design process behind the initial prototype and final 
implementation of the individual components included in the current dashboard.  

Network Component: Utilizing Graph Theory to Visualize and Classify Student 
Strategies.  
 
The first step in this development was to generate visualization and categorizations of students' 
strategies. To do so, we used the methodologies outlined in Pradhan et. al (2024a) and the 
“MathFlowLens” tool developed by Pradhan et. al (under review) to analyze, classify and 
visualize students’ problem-solving procedural pathways. By applying graph theory and 
shortest path finding algorithms on transactional log data, MathFlowLens classifies the 
procedural pathways as optimal, sub-optimal, dead-end, or incomplete. An optimal pathway 
occurs when students solve a problem in the least number of steps; conversely, a sub-optimal 
pathway occurs when they use more steps than needed, i.e. use an inefficient problem-solving 
strategy. While both dead-end and incomplete attempts are unfinished attempts, which 
indicates the student reset or restarted the problem, dead-end attempts are unique as there are 
no procedural pathways leading to the goal state. On the other hand, incomplete pathways can 
eventually be used to reach the goal state. Next, after classifying all student attempts in the raw 
data, MathFlowLens uses sequential network visualizations to represent the procedural 
pathways (see Figure 6a) using color coding based on the identified classifications. A summary 
of the nodes is given in Table 7.  
 
 

 

http://mathflowlens.com/
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Table 7. Summary of nodes on the network diagram 

Node Color Indicates Description 

Blue Start State The initial expression before students begin working. 

Gold Optimal Step Efficient steps that lead to an optimal attempt. 

Grey Sub-optimal Step Inefficient steps that lead to a sub-optimal attempt. 

Red Dead End Step Nodes that lead to a unique, but incomplete path 
(never reaches the goal state). 

Green Goal State The final expression that the student transforms the 
Start State into. 

 
For the network diagram component of the dashboard, we used the same 

implementation as the MathFlowLens tool. Specifically, we used Python 3.11 and the pandas 
package for the preprocessing and classifications, and JavaScript and the d3.js library to render 
the visualizations. The initial prototype presented to the teachers was static (i.e. no interactivity; 
see Figure 6a), as the figure represented an overall view of the variation of pathways. However, 
after the initial presentation of this visualization to the teachers, both teachers and researchers 
agreed that adding interactivity to drill down on specific attempts and pathways would be 
beneficial (see Figure 6b).  
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(a) Initial Prototype 

 

(b) Final Implementation (in fullscreen mode) 

 

Figure 6. Initial and Final Design of the Sequential Network Visualization 

 
 
Consequently, in the final implementation of the network diagram component, we 

added various interactive features. Users can use their mouse to hover over the nodes for 
additional information such as the node's classification and expression (see Figure 7a). 
Similarly, users can click on the 'Only Best Path’ button to hide all nodes and pathways besides 
those with an optimal classification (see Figure 7b). Next, to allow teachers to isolate a specific 
student’s progress and attempt, we implemented a feature that highlights the selected attempt 
in the sequential network diagram in purple and lists the individual steps taken by the selected 
student in a table (see Figure 7c). Additional interactivity features such as making the 
visualization fullscreen, and temporarily disabling interaction were also implemented. 
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(a) Hovering on a node 

 

(b) Clicking on the ‘Only Best Path’ Button 

 
(c) Selecting a specific student’s attempt 

 

 
Figure 7. Interactive elements of the final network component 

Treemap Component: Visualizing the frequency of the first step 
The initial needs analysis revealed that teachers often prioritize students’ first steps, primarily 
because it indicates the overall productivity of the attempt. As a result, we suggested using 
treemap diagrams (Johnson & Shneiderman, 1998) in the dashboard to display the various first 
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steps taken by students. Treemap diagrams display nested and hierarchical structures as a set 
of rectangles, and the size of the rectangles is proportional to their value. In this case, each 
rectangle represents a first step taken by a student, and the size of the rectangle is determined 
by the number of attempts in which that first step was taken.  

This treemap visualization was originally conceived to be separate from the 
MathFlowLens’ classifications and sequential network diagram. In other words, us researchers 
viewed this component to be isolated from the other components. Hence, the colors of the 
nodes were based on its frequency. However, after presenting this version of the diagram to 
the teachers in the initial codesign session, the teachers suggested using the same colors (based 
on the classifications derived from the MathFlowLens tool: gold, gray, and red) for consistency 
and to promote additional discourse in the classroom. 

After the first session, based on the feedback of teachers we updated the treemap 
component to use consistent color coding. In the second codesign session, the teachers 
suggested adding partial interactivity to improve usability. Besides adding interactivity, the 
initial prototype and final design of the treemap component was the same. We used Python 
3.11 and the pandas package to preprocess the data and JavaScript and Plotly.js library to render 
the visualizations. Each rectangle displays the step’s expression and the percentage of attempts 
that used that step. Additionally, colors derived from the MathFlowLens tool were used to 
indicate the step's classification (see Figure 8). This figure suggests that the two most common 
first steps (i.e. “4*5*(-100+1+45+55)/(2*3)*3” and “4*(2+3)*(99+45+55)/(2*3)*3”) both lead 
to a sub-optimal attempt.  

 

 
Figure 8. Initial and Final Design of the Treemap Component 

 
 
Given that some first steps were used infrequently, the sizes of such rectangles would 

be small and hard to interpret. As a potential solution, we added an interactive hovering feature 
that displays the expression, percentage, and number of attempts (see Figure 9). Teachers may 
also choose to click the rectangle to expand it to make it easier to view.  
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Figure 9. Interactive hover feature of the Treemap Component 

Attempt Type Percentage Component 
To provide a broad overview of the variation in the class’ problem-solving strategies, we 
presented teachers with a table denoting the percentages of each of the classifications derived 
from the MathFlowLens tool (see Figure 10) to include in the dashboard. Based on the strong 
positive feedback of teachers suggesting that this would be especially useful for them in 
decision making, this was integrated into the Examples Tables component.  
 

 
Figure 10. Initial Design for Attempt Type Percentage Component 

Examples Table Component 
The initial needs analysis revealed that teachers wanted to view and compare different types of 
student problem-solving strategies and attempts. We suggested and designed an Example Table 
component that would display different attempts chosen at random for each attempt 
classification. 

The initial design consisted of a table with step numbers, and a column for each attempt 
classification: optimal, sub-optimal, and dead-end (see Figure 11a). Based on the feedback 
from teachers, we integrated the attempt type percentage information in the table header and 
added color coding highlighting the classification of the step in the final design (see Figure 
11b). The color coding would help teachers identify common misconceptions in the case of 
dead-end attempts and steps that lead to inefficiencies in sub-optimal attempts. 
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(a) Initial Prototype 

 

(b) Final Design 

 
Figure 11. Initial and Final Design of the Examples Table Component 

Performance Metrics Table Component 
As mentioned above, teachers emphasized the need to see growth over time in key performance 
metrics such as the number of steps, time taken to solve a problem, and total number of errors. 
Our team decided to present key student performance metrics indicating the overall class 
performance. This could be used by teachers to compare students’ performance on similar 
problems at different points in time (e.g. start and end of the year). While the contents of the 
table did not change across the initial and final design (see Figure 12), we added an interactive 
hover feature that provides a short description of the statistic. All measures included in this 
component and their respective descriptions have been provided in Appendix B. 
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(a) Initial Prototype 

 

(b) Final Design 

 
Figure 12. Initial and Final Design of the Sample Means Component 

Discussion 
The iterative codesign session allowed us to design a teacher dashboard that was teacher centric 
and truly supportive for the needs of teachers. Their input was paramount to the initial 
conceptualization, the iterative improvement of individual components and the placement of 
these components in the layout of the web-based dashboard. The final MathFlowLens 
Dashboard (accessible through: mathflowlens.com) uses the Vue.js and Vuetify JavaScript 
libraries for the main frontend user interface, d3.js and plotly.js for the visualizations, and 
utilizes the Django Python web framework for the backend. Data processing is done in the 
backend using the Pandas and NetworkX library (same as the MathFlowLens tool). 

Currently, when users visit this dashboard they are presented with an interface to 
explore historical FH2T data from the RCT. However, as mentioned above, a primary goal was 
to make this dashboard generalizable to external learning platforms and their data. Therefore, 
by allowing such external platforms to send POST requests containing their raw data, our 
system can efficiently preprocess and present the created dashboard in real-time. Depending 
on the use case, this dashboard can then be displayed internally using an iFrame, or in a separate 
tab or window.  This generalizable dashboard can be used by any learning platform that, like 
GM and FH2T, logs moment-by-moment student transformations. In doing so, we create a 
dashboard that is applicable, teacher-centric, and supportive for real world pedagogical usage. 

http://mathflowlens.com/
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Thesis Conclusion 
In this multi-study thesis, we iteratively built upon the findings and developed tools to explore 
students’ procedural pathways to ultimately bolster and support the acquisition of algebraic 
knowledge. First, we developed a novel tool called MathFlowLens for the analysis of students’ 
procedural pathways while solving problems. This tool is capable of classifying students’ 
pathways and subsequently representing them using sequential network visualizations. Second, 
to test the applicability of the classifications in research and predicting long-term learning gains 
such as students’ scores measuring the individual constructs of algebraic knowledge, we 
estimated three linear models to seek correlations between the identified classifications and the 
conceptual, procedural and flexibility scores. Surprisingly, the results indicated that frequent 
use of dead-end pathways, rather than efficient and optimal pathways, resulted in higher 
conceptual and procedural scores. In fact, the frequent use of optimal and efficient pathways 
led to lower flexibility scores.  
 Next, we further investigated the surprising results regarding dead-end and optimal 
attempts, by creating linear and mixed-effects models predicting students’ overall algebraic 
performance. This analysis revealed that students who exhibit what we call ‘Regular Dead-
ending’ behavior have a significantly higher algebraic knowledge score. Finally, we deploy the 
developed tool, along with other visualizations and student performance metrics, by following 
a co-design methodology with teachers to develop a data and research driven interactive 
dashboard (mathflowlens.com). A vital and important feature of the created dashboard and 
technological infrastructure is its generalizability. In other words, any learning platform that 
logs detailed student transactional data may communicate and display the dashboard. In doing 
so, we create a dashboard that is applicable, teacher-centric, and supportive for real world 
pedagogical usage. 

Future Directions 
This work can be extended in many areas. First, it would be of academic interest to further 
explore the relations between the generated attempt classifications and algebraic learning 
outcomes. In particular, future work can focus on the sequence of pathways a student takes 
(e.g. dead-end → sub-optimal → sub-optimal → optimal) which may provide additional insight 
into students problem-solving strategies or exhibited behavior in comparison to using the 
frequencies of the classifications. Additionally, investigating the interplay between the detected 
behaviors or problem-solving strategies with demographic features (e.g. race and sex) and 
evaluative measures such as the levels of math anxiety can lead to the development of more 
personalized and student-centric learning environments. 
 Secondly, the developed dashboard should undergo vigorous user-testing, preferably 
by teachers, to test its applicability and usefulness in real world pedagogical scenarios. 
Consequently, the feedback from the user-testing should be incorporated, with particular focus 
on interpretability and cognitive load of the various dashboard components. 

Finally, future work can extend the MathFlowLens tool by applying heuristic search 
algorithms or rule-based solvers to populate the graph rather than relying on historical raw data. 

http://mathflowlens.com/
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This would allow digital systems to provide contextual hints and allow teachers to monitor 
students in real-time while solving problems. 
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Appendix A 
 

Item Problem Type Question Correct Answer 

1 Procedural Solve the equation for y. 
5 (y - 2) = 3 (y - 2) + 4 
a. 1 b. 5/2 c. 4 d. 10 

b 

2 Flexibility Kim solved the problem: 1/3(x + 5) = 4 
Kim's first step was: (3) 1/3(x + 5) = 4(3) 
x + 5 = 12 
What step did Kim use to get from the first 
line to the second line? 
a. combine like terms 
b. distribute across parentheses 
c. add or subtract the same quantity on 
both sides 
d. multiply or divide the same quantity on 
both sides 

d 

3 Conceptual 3+4=7 
      ↑ What does this symbol mean? 
a. the total 
b. two quantities on either side have the 
same value 
c. what the answer is 
d. the problem has been solved 
 
 

b 

4 Flexibility Imagine you are taking a timed test. You 
want to use fast (and correct) ways to solve 
the problems so you can finish as many as 
possible. Which would be the 
best way to start the problem  
3(x + 2) = 14? 
a. distribute 
b. divide both sides 
c. multiply both sides 
d. subtract both sides 

a 

5 Procedural Solve the equation below for x. 
3 = (8 - 6x)/2 
a. -1/3 b. 0 c. 8 d. 1/3 

d 

6 Conceptual If 10x + 12 = 17, which of the following 
must also be true? 
a. 10x + 12 - 12 = 17 - 12 
b. 10x - 10 + 12 - 10 = 17 

a 



ii 
 

c. -10x - 12 = 17 
d. 5x + 6 = 17 

7 Conceptual Which of the following is equivalent to 
(the same as) (n + 3) + (n + 3) + (n + 3) + 
(n + 3)? 
a. n + 12 b. 4n + 3 c. n4 + 12 d. 4(n + 3) 

d 

8 Procedural Solve the equation below for n. 
12n + 3 = 14n + 15 - 8n 
a. 0 b. 2/3 c. 2 d. 3 

c 

9 Flexibility Imagine you are taking a timed test. You 
want to use fast (and correct) ways to solve 
the problems so you can finish as many as 
possible. Which would be the best way to 
start the problem? (Choose the letter for 
the best way to start)  
1/4 (5x + 2) = 8 
a. distribute first 
b. subtract 8 from both sides 
c. multiply by 4 on both sides first 
d. divide by 4 on both sides first 

c 

10 Conceptual Which of the following is NOT equivalent 
to 19(73 - 15)? 
a. 19(58) 
b. 19(73) - 19(15) 
c. 19(15 + 73) 
d. 19(73) - 15 

d 

Appendix A. The items included in the pretest algebraic knowledge assessment (adapted 
from Star et al., 2015; 4 conceptual items, 3 procedural items, 3 flexibility items)  
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Appendix B 
 

Measure Description 

Completions Percentage of students that completed the problem 

Number of Attempts Average number of attempts for this problem 

Number of Hints Average number of hints requested by students 

Number of Resets Average number of resets (i.e. restart problem to initial 
start state) 

Number of steps in First Attempt The average number of steps in students’ first completed 
attempt 

Number of steps in Last Attempt The average number of steps in students’ final completed 
attempt 

Efficiency First Attempt The average efficiency score in the first completed 
attempt 

Efficiency Last Attempt The average efficiency score in the final completed 
attempt 

Time Taken (sec) The average time taken in seconds to complete the 
problem 

Pause Time First Attempt (sec) The average time students spent thinking about the 
problem before making a first step in the first completed 
attempt 

Pause Time Last Attempt (sec) The average time students spent thinking about the 
problem before making a first step in the final completed 
attempt 

Number of Total Errors The average number of errors students made 

Number of Keypad Errors The average number of errors resulting from the incorrect 
decomposition of a number 

Number of Shaking Errors The average number of errors resulting from the 
combining of unlike terms 

Number of Snapping Errors The average number of errors resulting from incorrect 
‘drag-and-drop’ action 

Appendix B. All measures and their respective descriptions included in the Performance 
Metrics Table 


