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Abstract

Subsampling is an effective approach to address computational challenges associated

with massive datasets. However, existing subsampling methods do not consider model

uncertainty. In this paper, we investigate the subsampling technique for the Akaike

information criterion (AIC) and extend the subsampling method to the smoothed AIC

model-averaging framework in the context of generalized linear models. By correcting

the asymptotic bias of the maximized subsample objective function used to approximate

the Kullback–Leibler divergence, we derive the form of the AIC based on the subsample.

We then provide a subsampling strategy for the smoothed AIC model-averaging esti-

mator and study the corresponding asymptotic properties of the loss and the resulting

estimator. A practically implementable algorithm is developed, and its performance is

evaluated through numerical experiments on both real and simulated datasets.

Keywords: Big Data, Information Criterion, Nonuniform Subsampling, Smoothed AIC

1



1 Introduction
Subsampling is a popular method to address big data challenges imposed by exponentially

growing data volumes. In many areas of analysis, it successfully alleviates the computational

burden brought by large-scale datasets. There are two basic approaches in current research

investigations. One approach is to find the most representative data points for the entire

dataset, which is model-free. Typical examples include Latin-hypercube-design-based sub-

sampling (Zhao et al., 2018; He et al., 2024), uniform-design-based subsampling (Shi and

Tang, 2021; Zhang et al., 2023; Zhou et al., 2023), and support-points-based subsampling

(Mak and Joseph, 2018; Joseph and Mak, 2021; Joseph and Vakayil, 2022). Another ap-

proach is model-assisted subsampling, which aims to find the most informative data points to

improve estimation efficiency for specific models. Important works include, but are not lim-

ited to, leverage score subsampling (Ma et al., 2015, 2022), Lowcon (Meng et al., 2021), and

information-based optimal subsampling (Wang et al., 2019; He et al., 2024) for linear mod-

els; local case-control subsampling (Fithian and Hastie, 2014; Han et al., 2020) and optimal

subsampling motivated by the A-optimality criterion (OSMAC, Wang et al., 2018) for logistic

regression; and optimal subsampling methods for other more complicated models (Wang and

Ma, 2021; Ai et al., 2021; Yu et al., 2022, 2024; Ye et al., 2024).

The aforementioned investigations focus on estimating the unknown parameters with a

given model. In practice, the true data-generating model is always unknown, and multiple

candidate models are often plausible. For example, in high-energy physics, scientists are

interested in determining if a process produces supersymmetric particles or not (Baldi et al.,

2014). The supersymmetric benchmark dataset1 in the UCI machine learning repository

was created to study the two classes of processes. Each record in the dataset represents

a hypothetical collision between particles with eight kinematic properties features such as

energy levels and momenta, along with some high-level features derived by physicists to help

distinguish the two classes. Researchers may build multiple candidate models with the eight

kinematic features, together with higher-order features, and possibly additional features such

as interactions among the eight kinematic features. Model averaging is usually regarded as

a powerful tool to achieve the smallest risk in estimation among the candidate models. See

1https://doi.org/10.24432/C54606
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Buckland et al. (1997); Hjort and Claeskens (2003); Hansen (2014); Yuan and Yang (2005);

Claeskens et al. (2008); Liang et al. (2011); Zhang (2015); Peng and Yang (2022), among

others, for the advantages of model averaging. Finding model averaging estimators with

massive data can be daunting due to the computing costs in both parameter estimation and

weight determination for all candidate models. To alleviate the computation burden, we

investigate the subsampling strategy for model averaging.

Compared to existing approaches, designing an efficient subsampling strategy for model

averaging estimators meets the following three challenges. Firstly, as shown in Wang (2019),

if the model is misspecified, then “optimal” subsampling probabilities are no longer optimal

and may even reduce the estimation efficiency. Thus, the basic question becomes how to

design subsampling probabilities that benefit the estimation of the candidate models with

larger model weights. This is unknown in the literature of subsampling. Secondly, due to

the non-uniform and data-dependent sampling approach, the selected subdata and the entire

data often have different distributions. Consequently, a model that is good for describing the

selected subdata may fail to summarize the entire data well. Subsample-based model weights

should reflect the model information distilled for the entire data. Thirdly, one may want to

explore a larger number of candidate models with a larger sample size, so it is necessary to

let the number of predictors and the number of candidate models grow with the subsample

size. In the language of asymptotic analysis, they are allowed to diverge as the subsample size

increases. Although some investigations, such as Wang et al. (2019); Ma et al. (2022), have

tried to address the challenges caused by a diverging number of predictors, their studies are

on linear models using least squares estimators with explicit expressions. Their results cannot

be easily extended to generalized linear models due to multiple technical difficulties, e.g., no

explicit forms of the estimators and multiple candidate models to consider simultaneously.

We address the aforementioned issues and study the subsampling strategy of the AIC-

based model averaging approach for generalized linear models. We opt to use smoothed

AIC (S-AIC) weights (Buckland et al., 1997) because they are computationally more efficient

than other weighted averaging methods, such as Mallows model averaging (Hansen, 2007;

Wan et al., 2010), optimal mean squared error averaging (Liang et al., 2011; Zhang et al.,
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2016), and the jackknife model averaging (Hansen and Racine, 2012). In addition, the AIC

and S-AIC enjoy the asymptotic efficiency property that achieves the smallest estimation

loss/risk among all the candidate models (Claeskens et al., 2008, Chapter 4). To improve the

performance of the model averaging estimator, we propose amini-max asymptotic uncertainty

subsampling strategy (MASS). We derive the form of the subsampled AIC by correcting the

asymptotic bias in approximating a Kullback-Leibler type divergence caused by non-uniform

subsampling (9), and use it to define the subsample smoothed AIC model averaging estimator.

We also establish the uniform consistency of the subsample-based estimators to the full-data-

based estimator across candidate models with diverging dimensions for generalized linear

models (Proposition 1 and Theorem 4). The relative information loss of the subsample-based

estimator to the full-data estimator is studied (Theorem 3). To the best of our knowledge,

this has not been studied in the literature.

The rest of the paper is organized as follows. Section 2 describes the model setup of our

investigation. Section 3 derives the expression of the subsample-based AIC and shows its

asymptotic property in model selection. We introduce the subsample model averaging esti-

mator together with a subsampling strategy in Section 4, and derive its theoretical properties.

In Section 5, we present numerical studies on both simulated and real datasets. Technical

proofs are relegated to the Supplementary Material.

2 Preliminaries

2.1 Model Setup and Notations

Consider response distributions from the one-parameter natural exponential family with the

following density:

f(y|θ) = h(y) exp(yθ − ψ(θ))dµ(y), (1)

where θ satisfies that
∫
h(y) exp(yθ − ψ(θ))dµ(y) < ∞ under the dominating measure µ.

Suppose we have n independent observations {(yi,xT
i )

T, i = 1, . . . , n}, where yi’s ∈ R are the

responses and xi’s ∈ Rq are the covariates. The conditional distribution of yi given xi is linked

in the working model through the natural parameter θ in (1) by

θi = xT

i β, for i = 1, . . . , n. (2)
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Consider a set of m candidate models M1, . . . ,Mm which are used to capture the rela-

tionship between x and y through (2). Here, the kth candidate model Mk includes some (or

all) of variables in x.

To facilitate the presentation, let X = (x1, . . . ,xn)
T, Y = (y1, . . . , yn)

T, Fn = (X,Y ),

and qk be the number of parameters in model Mk. Let Pk ∈ Rqk×q be a selection (projection)

matrix associated with Mk such that Pk = (ej1 , . . . , ejqk
)T, where 1 ≤ j1 < · · · < jqk ≤ q are

a subset of the column indices of the model matrix X and ej ∈ Rq is a unit vector with the

jth element being one. With this notation, we can write βk = Pkβ. Motivated by the “bet

on sparsity” principle (Hastie et al., 2009), the largest number of features to consider in a

candidate model is not necessarily q. To distinguish the largest number of parameters for the

models in the candidate pool and the number of the features in X, we use q(L) to denote the

largest dimension of the candidate models among M1, . . . ,Mm.

Using the above notations, the kth candidate model Mk can be written as

fk(y|βk,x) = h(y) exp (yβT

kPkx− ψ(βT

kPkx)) , (3)

and the full-data-based maximum likelihood estimator β̂k with Fn under model Mk is the

maximizer of the log-likelihood function

ℓk(βk) =
1

n

n∑
i=1

(yiβ
T

kPkxi − ψ(βT

kPkxi)) . (4)

2.2 General Subsampling Framework

Let πi be the sampling probability for the ith data point in one sampling draw and de-

note π = (π1, π2, . . . , πn). Here the π may depend on the observed data. The subsample

{(y∗i ,x∗T
i , π

∗
i )

T, i = 1, . . . , r} is constructed by sampling with replacement for r times accord-

ing to the sampling distribution π. Here y∗i , x
∗
i , and π

∗
i denote the response, predictor, and

sampling probability of the ith data point in the subsample, respectively. Based on the sub-

sample, the quasi-likelihood estimator β̃k under model Mk is the maximizer of the following

objective function:

ℓ∗k(βk) =
1

nr

r∑
i=1

1

π∗i
(y∗i β

T
kPkx

∗
i − ψ(βT

kPkx
∗
i )) . (5)
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For ease of presentation, we call (5) a subsample-based log-likelihood function throughout this

paper, since it is an unbiased estimator of the full-data-based log-likelihood function under

model Mk.

To ensure the consistency and asymptotic normality of the resultant estimator β̃k with

respect to the full-data-based estimator under each candidate model, we assume the following

regularity conditions.

Assumption 1. For each candidate model Mk, the parameter βk lies in Λk = {βk : ∥βk∥ ≤ C},

and the full-data-based estimator β̂k is an inner point of Λk with probability one. Here C is a

constant and ∥ · ∥ denotes the l2 norm for a vector.

Assumption 2. Let ψ̇, ψ̈, and
...
ψ be the first, second, and third derivatives of ψ, respectively.

There exist integrable functions gl(x) for l = 0, . . . , 3, such that ψ2(
∑m

k=1 ωkβ
T
kPkx) < g0(x),

ψ̇6(
∑m

k=1 ωkβ
T
kPkx) < g1(x), ψ̈

6(
∑m

k=1 ωkβ
T
kPkx) < g2(x), and

...
ψ

2
(
∑m

k=1 ωkβ
T
kPkx) < g3(x).

Further assume that sup∥u∥=1E(∥uTx∥9) < ∞ and E(y6) < ∞. Here ωk ∈ [0, 1] denotes the

weight of the kth model, and
∑m

k=1 ωk = 1.

Assumption 3. Denote λmin(·) as the smallest eigenvalue and ∥A∥s as the spectral norm

of a matrix A (the largest eigenvalue for a non-negative definite matrix). Let A(βk) =

n−1
∑n

i=1 ψ̈(β
T
kPkxi)Pkxix

T
i P

T
k , and B(βk) = n−1

∑n
i=1(yi − ψ̇(βT

kPkxi))
2Pkxix

T
i P

T
k . With

probability one, it holds that 0 < limn→∞ infk,βk
λmin(A(βk)) ≤ limn→∞ supk,βk

∥A(βk)∥s <

∞, 0 < limn→∞ infk,βk
λmin(B(βk)) ≤ limn→∞ supk,βk

∥B(βk)∥s <∞.

Assumption 4. For δ ∈ (0, 1/2), the subsampling probabilities satisfy
∑n

i=1(n
2+δπ1+δ

i )−1y6i =

OP (1), sup∥u∥=1

∑n
i=1(n

2+δπ1+δ
i )−1∥uTxi∥9 = OP (1), and

∑n
i=1(n

2+δπ1+δ
i )−1gl(xi) = OP (1),

for l = 0, . . . , 3, where gl(xi)’s are defined in Assumption 2 and OP (1) means bounded in

probability.

Assumption 5. For some κ ∈ (0,∞),

sup
∥u∥=1

max
1≤i≤n

|uTxi|6 ∨ 1

nlogκ(n)πi
= OP (1), sup

k
max
1≤i≤n

ψ(β̂T
kPkxi)

nlogκ(n)πi
= OP (1),

where a ∨ b = max(a, b).
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Assumption 1 is often assumed for the maximum likelihood estimator such as in White

(1982). Assumption 2 imposes some moment conditions. Similar conditions are also assumed

in Ando et al. (2017). Assumption 3 indicates that the log-likelihood function is convex and

ensures that the maximum likelihood estimator is unique (Lv and Liu, 2014). Some tail

behaviors of the data are required in Assumptions 4 and 5 which mitigate the inflation of

the sampling variance. More precisely, it is used to ensure that the Hessian matrix of (5)

concentrates around −A(βk) (Chen et al., 2012), which implies that the ℓ∗k(βk) is concave and

the resultant estimator β̃k is unique for M1, . . . ,Mm. These assumptions are not restrictive.

Taking the logistic regression as an example, Assumptions 2, 4 and 5 are naturally satisfied

when the covariate distribution is sub-Gaussian for the proposed subsampling method and

the uniform subsampling method.

To capture the uniform convergence rate of the subsample-based estimator, we derive the

following proposition.

Proposition 1. If Assumptions 1–5 hold and (log(m) + q(L) log(q)) log
2κ(n)/r → 0 as n, r →

∞, then for any ϵ > 0, there exists a finite ∆ϵ and rϵ, such that for all r > rϵ,

pr

(
sup
k

∥β̃k − β̂k∥ ≥
√
q(L)log

κ(n) log(q)/r∆ϵ

∣∣∣Fn

)
< ϵ, (6)

with probability approaching one.

3 Subsample-based Information Criteria
In this section, we propose an appropriate definition of the AIC in the subsampling framework.

Let ftrue(y|x) be the true data generating conditional density of y given x and fk(y|βk,x) be a

parametric approximation under model Mk. We assume that the distribution of x is ancillary

to the regression parameter. The Kullback–Leibler (KL) divergence between the true model

ftrue(y|x) and candidate model Mk with fk(y|βk,x) is

KL (ftrue(y|x), fk(y|βk,x))

=

∫∫
log (ftrue(y|x)) ftrue(y|x)dydFx −

∫∫
log (fk(y|βk,x)) ftrue(y|x)dydFx, (7)

where dFx means the integration with respect to the marginal distribution of x. Let fk(y|βk,pop,x)

with βk,pop = argminβk
KL(ftrue(y|x), fk(y|βk,x)) be the least false approximating model,
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which achieves the smallest KL divergence under Mk. As mentioned in Sin and White

(1996), one primary purpose of information criteria is to select the model Mk with the small-

est KL(ftrue(y|x), fk(y|βk,pop,x)). We call this model the best model and denote it as MB.

If there are multiple models that achieve the minimum KL divergence, we define MB to be

the model with the fewest parameters, and we assume that MB is unique throughout this

paper. When the true data-generating model is included in the candidate pool, MB is the

true model. We call a model an underfitted model if it does not include all the predictors

of MB, and use U to denote the set of underfitted models. If the smallest model is the best

model, then U is empty; if the largest model is the best model, then U contains m−1 models.

Since βk,pop is unknown, it is estimated via the maximum likelihood estimator β̂k. The

AIC aims to select the model Mk that minimizes KL(ftrue(y|x), fk(y|β̂k,x)), i.e., the KL

divergence between the true model and the model estimated with the maximum likelihood

Akaike (1998). In the definition of (7), the first term is a constant across all candidate models.

The key to the success of model selection is to approximate the second term accurately. The

law of large numbers tells us that for each fixed value of βk,

ℓk(βk) → Eℓk(βk) = E(x,y) log fk(y|βk,x) =

∫∫
log(fk(y|βk,x))ftrue(y|x)dydFx, (8)

almost surely under appropriate integrability. However, since β̂k is the maximizer of ℓk(βk),

ℓk(β̂k) is not unbiased towards E(x,y) log fk(y|β̂k,x). Akaike (1998) showed that ℓk(β̂k) tends

to overestimate E(x,y) log fk(y|β̂k,x) and the asymptotic bias is qk/n where qk is the dimension

of βk. The AIC uses qk/n to correct the bias in ℓk(β̂k) with the goal to select the estimated

model that has the smallest KL divergence to the data-generating model.

In the subsampling framework with massive data, β̂k is hard to obtain due to the huge

computational cost and hence βk,pop is estimated by β̃k. To select a better working model,

we need to accurately approximate the KL divergence, KL(ftrue(y|x), fk(y|β̃k,x)). The key

is to accurately approximate E(x,y) log fk(y|β̃k,x) = E(xnew,ynew) log fk(ynew|β̃k,xnew), where

(ynew,xnew) means a new observation generated from the unknown true distribution. The

quantity E(x,y) log fk(y|β̃k,x) describes the goodness of the estimated model under Mk for

predicting a future response (Konishi and Kitagawa, 2007).

Again, ℓ∗k(β̃k) is biased towards E(x,y) log fk(y|β̃k,x) because the same subsample is used
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to estimate both the parameter and the KL divergence. Since β̃k is the maximizer of ℓ∗(βk),

using ℓ∗(β̃k) directly tends to overestimate E(x,y) log fk(y|β̃k,x), which implies that ℓ∗k(β̃k)

overestimates the model’s ability in prediction. If ℓ∗k(β̃k) is naively used for model selection, it

often ends up with a model that does not have the best prediction performance. The selected

model tends to overfit the subsample but does not have the best representation for the full

dataset.

To remove the influence of using the same subsample twice for estimating both the parame-

ter and the KL divergence, we derive the asymptotic mean ofDk := ℓ∗k(β̃k)−E(x,y) log fk(y|β̃k,x),

which provides a bias correction for estimating the KL divergence. Under Assumptions 1–5,

as r, n→ ∞, if qklog
κ(n)/r → 0, then

Dk =ℓ
∗
k(β̂k)− ℓk(β̂k)− (β̃k − β̂k)

TE(x,y)

(
∂ log fk(y|β̂k,x)/∂βk

)
(9)

+ ℓk(β̂k)− E(x,y)

(
log fk(y|β̂k,x)

)
+ (β̃k − β̂k)

TAk(β̃k − β̂k) + oP |Fn(qk/r),

where oP |Fn means convergence in conditional probability given the full data.

InDk, the term ℓ∗k(β̂k)−ℓk(β̂k) has a mean zero and (β̃k−β̂k)
TE(x,y)(∂ log fk(y|βk,x)/∂βk)

has an asymptotic mean zero conditional on Fn, so they do not contribute to the asymp-

totic bias. The rest terms can be decomposed into two parts. The first part ℓk(β̂k) −

E(x,y) log fk(y|β̂k,x) is the generalization bias from the full data to the population, which

has an unconditional asymptotic mean of qk/n according to the classical AIC theory. The

second part (β̃k − β̂k)
TAk(β̃k − β̂k) describes the bias from the subsample-based estimator

to the full-data-based estimator which has a conditional asymptotic mean of tr(Vk,cA
−1
k )/r

according to Proposition S.2. Therefore, conditionally on Fn, the asymptotic bias of ℓ∗k(β̃k)

in approximating E(x,y) log fk(y|β̃k,x) is tr(Vk,cA
−1
k )/r + qk/n. This becomes tr(Vk,cA

−1
k )/r if

r = o(n).

Based on Proposition S.2 and (9), we define the subsample-based AIC value for model Mk

as

AICsub(Mk) = −2rℓ∗k(β̃k) + 2tr
(
Vk,cA

−1
k

)
+ 2rqk/n. (10)

Remark 1. In the subsample-based AIC in (10), the first term describes the goodness of fit

for model Mk on the subsample and the bias correction terms (the second and third terms)
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penalize the model complexity. Here 2tr(Vk,cA
−1
k ) is the bias correction term for using 2rℓ∗k(β̃k)

to replace 2nℓk(β̂k)/r, and 2rqk/n is the bias correction term for 2nℓk(β̂k)/r. For oversampling

with r ≫ n, the term 2rqk/n dominates 2tr(Vk,cA
−1
k ). In this scenario, AICsub is just r/n times

the classical AIC, implying that oversampling does not give additional benefits in terms of

model selection. If r is of the same order as n, there is a clear trade-off between the epistemic

bias, 2nℓk(β̂k)/r − 2nℓk(βk,pop)/r = O(rqk/n), and the sampling variance, 2tr(Vk,cA
−1
k ) =

OP (r
−1). For the more practical scenario that the subsample size is much smaller than the full

sample size, tr(Vk,cA
−1
k ) ≫ rqk/n, so the bias term in subsample-based AIC mainly comes from

sampling volatility. Consequently, improving the quality of the subsample-based estimator

will also help identify the best model among the candidates. Although the relation between

informative subsampling and model selection is not surprising, it has not been well studied in

the literature.

Theorem 1. Under Assumptions 1–5, if (log(m) + q(L) log(q)) log
2κ(n)/r → 0 and lim r/n <

∞, then as r → ∞ and n → ∞, the AICsub defined in (10) selects an underfitted model

Mk ∈ U with probability going to zero, namely,

pr
(
argmin

Mk

AICsub(Mk) ∈ U
∣∣∣Fn

)
→ 0, (11)

in probability.

Although Theorem 1 is valid for the case that 0 < lim r/n < ∞, there is no essential

computational benefits to consider a subsample size of the same order of the full data. Despite

some insights on the variability of the AIC, this setting provides no significant improvement in

computation or statistical inference compared with the vanilla AIC Shibata (1997). Therefore,

we focus on the case r/n→ 0 in the rest of the paper.

4 Subsample Smoothed AIC Model Averaging
Besides using the information criteria to filter underfitted models, model averaging is usually

adopted as an alternative and the corresponding estimator can often improve the estimation

efficiency (Claeskens et al., 2006, 2008). The S-AIC is a popular weighting technique due to its

simplicity of implementation. When subsampling for computational efficiency, the subsample
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size is typically much smaller than the full data size, so we focus on this scenario and assume

r = o(n) in the following of the paper. In S-AIC, we construct a weighted average of the

estimators in the candidate pool. For each candidate model, we compute the weight as

ω̃k =
exp(−AICsub(Mk)/2)∑m
l=1 exp(−AICsub(Ml)/2)

, (12)

for k = 1, . . . ,m. The subsample-based S-AIC estimator is defined as β̃ =
∑m

k=1 ω̃kP
T
k β̃k,

where β̃k is the subsample-based estimator under Mk.

4.1 Model Averaging Subsampling Strategy

The key idea of the S-AIC estimator is to put more weight on candidate models that are

estimated to have better performance in predicting future responses. Thus, it is ideal to

find a subsample that can help better approximate the E(x,y) log fk(y|β̃k,x) for all candidate

models. From (9) and the discussion below it, we see that the terms ℓ∗k(β̂k) − ℓk(β̂k) and

(β̃k−β̂k)
TE(x,y)(∂ log fk(y|β̂k,x)/∂βk) are not used to define the subsample-based AIC in (10)

because their asymptotic means that given the full data are zero so they do not contribute to

the asymptotic bias. However, both terms are subject to the randomness of subsampling so

they do contribute to the variation of using ℓ∗k(β̃k) to define the AIC. An ideal subsampling

strategy should try to reduce this variation. The term ℓ∗k(β̂k)−ℓk(β̂k) is of order OP |Fn(r
−1/2).

Note that E(x,y)(∂ log fk(y|β̂k,x)/∂βk) is the population score function evaluated at the full-

data-based estimator under Mk, so its elements are of order OP (n
−1/2). Thus Proposition S.1

indicates that this term is of order OP |Fn(q
1/2
k /(nr)1/2) and it is a small term since qk is

much smaller than n. Recall that the asymptotic bias of ℓ∗k(β̃k) is of order OP |Fn(qk/r).

Combining the variance and bias, the overall uncertainty by the subsampling randomness is

of order OP |Fn(1/r + q2k/r
2). When qk = o(r3/4), the dominating term is ℓ∗k(β̂k)− ℓk(β̂k) and

other terms are negligible regarding the randomness caused by subsampling. Therefore, we

can focus on selecting an informative subsample that minimizes the conditional variance of

ℓ∗k(β̂k)− ℓk(β̂k) given Fn.

Thanks to Theorem 1, we know the weight assigned by the S-AIC weighting scheme in (12)

to an underfitted model in U is asymptotically zero. Thus we can focus on minimizing the
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asymptotic variance of ℓ∗k(β̂k) for Mk ∈ U c only, where U c is the complement set of U , i.e.,

the set of candidate models that includes all the predictors of the best model MB. Although

the set U c is unknown, the models in it can be embedded within the model that contains all

the predictors of x. We call this model the full model and denote it as Mfull. We recommend

finding the subsampling strategy that minimizes the asymptotic variance of ℓ∗full(β̂full) instead.

When there are no redundant variables and the full model Mfull is in the candidate pool,

this is a natural choice according to Theorem 1. If Mfull is not the best model, this is still

a reasonable choice because the asymptotic variance of ℓ∗full(β̂full) is an upper bound of the

asymptotic variances of ℓ∗k(β̂k) for any Mk ∈ U c. This is a type of mini-max asymptotic

uncertainty subsampling strategy, and we call it MASS.

Theorem 2. Assume that the maximum likelihood estimator under Mfull, say β̂full, exists

and Assumptions 1–2 also hold for the full model Mfull. The subsampling probabilities that

achieve the minimum asymptotic variance of ℓ∗full(β̂full) are

πMASS
i =

|yiβ̂T
fullxi − ψ(β̂T

fullxi)|∑n
l=1 |yiβ̂T

fullxi − ψ(β̂T
fullxi)|

, (13)

for i = 1, . . . , n.

Theorem 2 encourages us to select the data points with larger absolute values of the cor-

responding log-likelihood, i.e., |yiβ̂T
fullxi−ψ(β̂T

fullxi)|. Intuitively, data points with |yiβ̂T
fullxi−

ψ(β̂T
fullxi)| close to zero contribute less to the log-likelihood function, so it is reasonable to

assign smaller sampling probabilities on them. There are some potential risks of sampling

according to πMASS
i directly. For example, relying on the large absolute values of the log-

likelihood data points, the resultant estimator may be sensitive to outliers. In addition, if

the data points with extremely small πMASS
i are sampled, the subsample-based estimator will

become unstable. To make the estimator more stable and robust, we adopt the technique of

defensive importance sampling (Hesterberg, 1995; Owen and Associate, 2000). This approach

is also known as shrinkage subsampling (Ma et al., 2015). To be specific, we recommend using

the following subsampling probabilities

πSMASS
i = (1− ρ)πMASS

i + ρn−1, i = 1, . . . , n, (14)
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where ρ ∈ (0, 1). Mixing the MASS probabilities with the uniform probability improves the

stability of the subsample-based estimator. The empirical results suggest that the shrinkage

subsampling method is not sensitive to the selection of ρ and works well when ρ is not very

close to zero or one. In practice, it may not be feasible to obtain β̂full using the full data.

We take a pilot subsample of size r0 to explore the data and obtain a pilot estimator, say

β̃full,0, to be used for calculating the proposed sampling probabilities. We denote the resulting

sampling probabilities by π̃SMASS. We then use π̃SMASS to take a second subsample of size r

according to the computational capacity.

With the specific π̃SMASS
i , Assumption 4 is automatically satisfied under Assumptions 1–3,

and Assumption 5 can be refined by a sufficient tail condition presented in Assumption 6.

Assumption 6. For some κ ∈ (0,∞),

sup
∥u∥=1

max
1≤i≤n

|uTxi|6

logκ(n)
= OP (1), sup

Mk

max
1≤i≤n

ψ(β̂T
kPkxi)

logκ(n)
= OP (1).

4.2 Theoretical Properties

To measure the performance of the subsample-based S-AIC estimator β̃ under the proposed

subsampling procedure, we adopt the idea of Ando et al. (2017) and define the KL-divergence

based loss (normalized by the sample size) as

L̃(ω) = 1
n

∑n
i=1

{
yi

(
θi −

∑m
k=1 ωkβ̃

T
kPkxi

)
−
(
ψ(θi)− ψ

(∑m
k=1 ωkβ̃

T
kPkxi

))}
, (15)

where θi is the true parameter that generate yi through (1) and ω = (ω1, . . . , ωm) is a general

weight. It is worth mentioning that L̃(ω̃) with ω̃ calculated via (12) measures the general-

ization error of β̃ from the subsample to the full data. This reflects how well β̃ can be used

to describe the full data set. The following theorem shows that the subsample S-AIC weight

performs similarly to the full-data-based S-AIC weight in terms of the Kullback–Leibler loss.

Theorem 3. Let ζ = infω∈Cm L̂(ω), where Cm = {ω ∈ [0, 1]m :
∑m

k=1 ωk = 1} and L̂(ω)

has the same expression of (15) except that β̃k is replaced by the full-data-based estimator β̂k.

Under Assumptions 1–3 and 6, if as r → ∞, n→ ∞, (log(m)+ζ−2q(L) log(q)) log
2κ(n)/r → 0

and r/n→ 0, then
L̃(ω̃)

L̃(ω̂)
→ 1, and

L̃(ω̃)

L̂(ω̂)
→ 1, (16)
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in probability, where ω̃ = (ω̃1, . . . , ω̃m) and ω̂ = (ω̂1, . . . , ω̂m) are the subsample and full sample

S-AIC weights, respectively.

Theorem 3 indicates that the subsample S-AIC weight is asymptotically as good as the

full-data-based S-AIC weight in terms of the KL divergence loss. In the following, we show

the consistency of β̃ to the full-data-based S-AIC estimator β̂ =
∑m

k=1 ω̂kP
T
k β̂k.

Theorem 4. Let mc be the number of models in U c. Under Assumptions 1–3, and 6, if condi-

tions mcr/(n log(q)log
κ(n)) → 0 and (log(m)+ q(L) log(q)) log

2κ(n)/r → 0 holds as n, r → ∞,

then the S-AIC estimator β̃ is consistent to full-data-based S-AIC estimator β̂ in conditional

probability given Fn. More precisely, (i) when mc = O(log(q)logκ(n)), with probability ap-

proaching one, for any ϵ > 0, there exists a finite δϵ and rϵ such that for all r > rϵ,

pr
(
∥β̃ − β̂∥ ≥

√
mcq(L)/rδϵ

∣∣Fn

)
< ϵ; (17)

or (ii) when mc/(log(q)log
κ(n)) → ∞ and mcr/(n log(q)log

κ(n)) → 0, with probability ap-

proaching one, for any ϵ > 0, there exists a finite δϵ and rϵ such that for all r > rϵ,

pr

(
∥β̃ − β̂∥ ≥

√
q(L) log(q)log

κ(n)/rδϵ

∣∣∣∣Fn

)
< ϵ. (18)

Remark 2. In practice, prior information and subject knowledge are often helpful to identify

plausible candidate models so that the size of the candidate model set is much smaller than 2q.

An exhaustive search may be directly implemented in this case. When such information is not

available, an exhaustive search across m = 2q models is often computationally infeasible. To

reduce the computational burden, forward selection usually serves as an alternative approach

to an all-subset search. The forward selection procedure starts from the null model that

includes the intercept term only, and then it sequentially adds one variable at a time to

the model that yields the lowest value of the AIC. More precisely, in the first step, it adds

the variable that yields the lowest value of AIC among models with only one variable. In

the second step, it adds the variable that yields the lowest value of AIC when added to the

previously selected model with one variable. This process stops when q(L)+1 nested models are

obtained. Here, the maximum model size q(L) may be determined by some prior knowledge or

can be taken as q(L) = q when such knowledge is absent. After obtaining the q(L)+1 candidate

models, we calculate the corresponding S-AIC weights.
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5 Numerical Studies
We conduct numerical experiments to evaluate the finite sample performance of the proposed

method on two real datasets and two synthetic datasets. Further numerical results with more

synthetic datasets are relegated to the Supplementary Material. Computations are performed

in R.

5.1 Beijing Multi-site Air-quality Dataset

In the following, we experiment on a real dataset about Beijing’s air quality. This dataset

consists of hourly air pollutants records from twelve air-quality monitoring sites in Beijing

from March 1st, 2013 to February 28th, 2017. There are 420,768 records in the data. The

dataset is available in the UCI database at https://archive.ics.uci.edu/dataset/501/

beijing+multi+site+air+quality+data, and more information about it can be found in

Zhang et al. (2017). One research interest is predicting whether the air is currently polluted

using the PM2.5 data from the past 23 hours. According to the ambient air quality standard

in China, we call the air is polluted if the PM2.5 is greater than 75µg/m3. A logistic regression

model with the PM2.5 values from the past 23 hours is used to predict the air quality. After

removing the incomplete cases, a logistic regression is fitted.

Since the predictors are the PM2.5 values from the past 23 hours, we consider the candidate

model set that consists of the 23 nested models, each with the PM2.5 values in the past j

(j = 1, ..., 23) hours as predictors. More precisely, Mj is the model with the j predictors

being the PM2.5 values in the past j hours.

We evaluate the performance of the AICsub in (10) for model averaging with the proposed

MASS subsampling strategy. For comparison, we also implement the OSMAC subsampling

for which πi ∝ |yi − ψ̇(β̃full,0)|∥xi∥ under the L-optimality, and the uniform subsampling

(UNIF) for which πi = n−1. Here β̃full,0 denotes the pilot-sample-based estimator for the

full model. We use the L-optimality for OSMAC for the following two reasons. Firstly, the

number of predictors is usually large in a model averaging problem. Thus we need to control

the computational cost in calculating sampling probabilities within O(nq) instead of O(nq2).

Secondly, in order to achieve a consistent estimator of the full model’s information matrix, we
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need a much larger r0, which implies a large r0/(r+ r0) when the sampling budgets is limited.

As illustrated in Figure 3(b), a large r0/(r + r0) may lead to an inefficient subsample-based

estimator.

We measure the performance of a sampling strategy π via the empirical mean absolute

error (MAE) which is the average l1 distance between a subsample-based estimator β̃ and a

full-data-based estimator β̂. We repeated the simulation procedure for 500 times to calculate

the empirical MAE. To further demonstrate the advantage of the model averaging approach

over the full-model approach, the results of the full-model approach with MASS, OSMAC,

and UNIF subsampling probabilities are also presented as benchmarks. We fix r0 and ρ at

500 and 0.2, respectively. The empirical MAE, together with the accuracy on classifying the

full data are presented in Figure 1.

(a) log(MAE) (b) Classification accuracy

Figure 1: A graph showing the median of log MAE and prediction accuracy with different
subsample size r for the Beijing multi-site air-quality dataset based on the UNIF (grey lines
with circle), the MASS (yellow lines with triangle), and the OSMAC (blue lines with square)
subsampling methods. Here the solid lines stand for the full-model approach, and the dotted
lines stand for the averaging approach. The r0 and ρ are fixed at 500 and 0.2, respectively.

From Figure 1, one can see that the model averaging method always results in a smaller

MAE and a higher prediction accuracy compared with the full-model approach when the same

sampling probabilities are adopted. Judging from the selection results reported in Figure 2,

we believe this phenomenon comes from the fact that there are redundant variables in Mfull.

The MAE for all subsampling methods increases as r increases, which confirms the theoretical

result on the consistency of the subsampling methods.

Figure 2 reports the frequency that model Mj receives the highest weight. All methods

tend to select M2 as the best model, which implies that the air quality can be well predicted

16



(a) Unif,r=1000 (b) MASS,r=1000 (c) OSMAC,r=1000

(d) Unif,r=2500 (e) MASS,r=2500 (f) OSMAC,r=2500

Figure 2: The times that model Mj enjoys the highest weight with r = 1000 (upper panel)
and r = 2500 (lower panel). Here we fixed r0 = 500, ρ = 0.2.

by the PM2.5 values in the last two hours. Compared with the OSMAC and the MASS, the

UNIF has a higher chance to select M1 as the best model when r = 1, 000. Comparing the

results in (a)-(c) with those in (d)-(f), we see that M1 is an underfitted model as discussed

in Theorem 1. This can be understood as using the PM2.5 value in the past one hour only is

not sufficient enough to explain the current air quality. OSMAC and MASS are more likely

to rule out the underfitted model compared with the uniform subsampling. This is a reason

why the two methods outperform the uniform subsampling.

In the following, we evaluate the impact of the tuning parameter ρ in (14) and the pilot

sample size r0 on the performance of the MASS. We present the results with r0 = 500 and

r = 2500 for the sensitivity analysis on ρ and fix r0 + r = 3000 for the sensitivity analysis on

r0. The log(MAE) against different ρ and r0/(r0 + r) are reported in Figure 3 (a) and (b),

respectively. It is seen that the proposed method performs well and are not very sensitive to

ρ when it is between 0.2 and 0.5; the relative variation is less than 10%. With a fixed ρ = 0.2,

one can see that MASS performs well when r0/(r0 + r) is between 0.15 and 0.3.

5.2 The SUSY dataset

We experiment on a real dataset about supersymmetric particles available on https://

archive.ics.uci.edu/dataset/279/susy. The task is to distinguish between a signal pro-
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(a) ρ (b) r0/(r + r0)

Figure 3: Median log MAE against different ρ values with r0 = 500, r = 2000 (left panel) and
median log MAE against different r0 values with r0 + r = 3000, ρ = 0.2 (right panel).

cess which produces supersymmetric particles and a background process which does not.

There are eight features that are kinematic properties measured by the particle detectors in

the accelerator, which are known as the low-level features. There are another ten features

that are derived by physicists based on the low-level features to help discriminate between

the two classes. More information about the data is available in Whiteson (2014). Here we

consider a class of logistic regressions with 46 possible covariates (features), consisting of the

original 18 features and 28 interactions of the eight low-level features.

Due to limited computational resources, it is infeasible for us to consider all the 246 possible

models. Thus, the forward selection method as discussed in Remark 2 is adopted. Again, we

report the results for model averaging with the proposed MASS subsampling strategy together

with OSMAC and uniform subsampling strategies. The r0 and ρ are fixed at 500 and 0.2,

respectively. Results for the full-model approaches are also reported for comparison.

Figure 4 shows that the model averaging method always leads to a smaller MAE compared

with the full-model approach when the same sampling probabilities are adopted. As expected

the MASS and OSMAC have better performances compared with uniform subsampling.

The S-AIC weights for models with less than 15 predictors are less than 10−38 when the

forward regression is implemented on the full data. The extremely small weights imply that

models with less than 15 predictors are likely to be underfitted models. We record the number

of predictors in the best model selected by the smallest AICsub, say dB, to reflect the model

selection performance. The number of times that dB < 15 for the UNIF, the OSMAC, and
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(a) log(MAE) (b) Prediction accuracy

Figure 4: A graph showing the median of log MAE and prediction accuracy with different
subsample size r for the SUSY dataset based on UNIF (grey lines with circle), MASS (yellow
lines with triangle) and OSMAC (blue lines with square) subsampling methods. Here the solid
lines stand for the full-model approach, and the dotted lines stand for the averaging approach.

the MASS, are 88, 73, and 68, respectively, out of the 500 replications when r = 1000. This

implies that the MASS is more effective than the OSMAC in excluding underfitted models,

and they are both better than the UNIF.

We close this section by evaluating the computational efficiency. We implemented all

methods using the R programming language and recorded the computing times of the three

subsampling strategies using the Sys.time() function. Computations were carried out on an

iMac (Retina 5K, 2020) with a 10-Core Intel Core i9 processor. We also record the computing

time on the full dataset as a benchmark. Results are presented in Table 1.

Table 1: Computational time (in seconds) of the S-AIC estimator on the Beijing multi-site
air-quality and SUSY datasets.

r 1000 1500 2000 2500 Full data

Air-quality dataset
UNIF 0.0817 0.1051 0.1277 0.1504

18.5777MASS 0.1037 0.1224 0.1432 0.2081
OSMAC 0.1139 0.1361 0.1609 0.1765

SUSY dataset
UNIF 6.5255 8.3666 10.6676 12.2237

24469.62MASS 6.9350 9.2282 10.8142 12.5163
OSMAC 7.3816 8.9530 10.6676 12.2237

It is seen that all subsampling methods are significantly faster than the full-data calculation

for the S-AIC estimator. The UNIF is faster than the MASS and the OSMAC, but the

difference is not significant. The main reason is that the computational time is mainly spent

on calculating the AIC values of the candidate models. The time complexity for calculating β̃k
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under Mk is O(rq2k). For nested models as in the air-quality dataset, the time complexity of

calculating the model averaging estimator based on a subsample isO(r
∑q−1

j=1(j+1)2) = O(rq3).

When forward selection is adopted, q+1− j models with j+1 covariates are calculated in the

jth iteration, leading to a time complexity of O(r
∑m

j=1(q+1−j)(j+1)2) = O(rq4). The MASS

and OSMAC only take O(nq) time to calculate the sampling probabilities. Therefore, the

additional time in calculating the subsampling probabilities may not be a leading order term

in the computational complexity. Consequently, our method has comparable computational

performance with the uniform subsampling method.

5.3 Simulation Results
It is known that model averaging estimators are impacted by candidate model specification. In

the following, we further validate the proposed method on the synthetic dataset with different

candidate models. The response is generated by a logistic regression with q = 30 potential

covariates. The full data size is set to be n = 500, 000. The nonzero components of β have

decreasing sizes as suggested in Zheng et al. (2019). Specifically, βj = 2/j for j = 1, . . . , 6,

and βj = 0 for the rest.

The following two distributions are used to generate covariates xi’s.

Case 1 Multivariate normal distribution N(0,Σ1) with the (i, j)th entry of Σ1 being 0.5|i−j|.

Case 2 The first 10 dimensions of the covariate come from N(0,Σ1), and the rest dimensions
consist of quadratic and cubic transformation of the first 10 dimensions.

We consider the following two scenarios for the candidate model specification.

Scenario 1 The Mj contains the first j predictors. In this case, there are 29 models in the
candidate set.

Scenario 2 The forward selection procedure is used to explore the candidate models with
prior knowledge on the largest number of predictors. Here we assume the number to be
eight where the largest model contains 30% more predictors than the best true model.

We fix r0 = 500 and ρ = 0.2 and set r to 1000, 1500, 2000, and 2500. The uniform

subsampling is implemented with a subsample size r+r0 for fair comparisons. The simulation

results are given in Figure 5. We opt to show the full-model approach and model averaging

approach in different panels since the scaling of log MAE in the two methods is different.

We see that the MAE for all subsampling methods decreases as r increases, which confirms

the theoretical consistency of the subsampling methods. As expected, the MASS always leads
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(a) Case 1, Scenario 1 (b) Case 1, Scenario 2 (c) Case 1, Full model

(d) Case 2, Scenario 1 (e) Case 2, Scenario 2 (f) Case 2, Full model

Figure 5: A graph showing the median of the log MAE with different subsample size r for
different distributions of covariates and different candidate models. Here we opt to show the
full-model approach and model averaging approach in different panels since the scaling of log
MAE in the two methods is different. The full-model approach is the same under Scenarios 1
and 2.

to a smaller MAE compared with the UNIF. Although the OSMAC outperforms the UNIF

with the full model, Figure 5(d) shows that it does not necessarily outperform the UNIF in

the model averaging framework due to model uncertainty. Similar phenomenon is observed

in Figures 5(a) and (c) that OSAMC outperforms MASS with the full-model approach while

MASS has a better performance under the model averaging framework.

6 Conclusion
In this paper, we have investigated the subsample-based S-AIC estimator and developed

a MASS subsampling strategy to improve the subsample-based model averaging method.

We have derived the asymptotic properties of the estimators under candidate models with

diverging dimensions and derived the appropriate expression of the subsample AIC. We have

also carried out numerical experiments on both simulated and real datasets to evaluate its

practical performance. Both theoretical results and numerical results demonstrate the great

potential of the proposed method in extracting useful information from massive datasets. Our

investigations have focused on the subsample-based AIC model averaging, and the technical

proofs are already complicated. We only considered averaging candidate models with different
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covariates in the linear predictor as studied in Ando et al. (2017). More complicated scenarios,

such as that when candidate models have different link functions and/or different distribution

assumptions are also important and need to be investigated in future research. We hope this

work will attract more attention to the promising technique of model averaging in subsampling

big data.

Supplementary Material
Narrative Supplement The pdf file contains an algorithm, distributional results on the

subsample-based S-AIC estimator, all the technical proofs, and additional simulation
results.

Code Supplement The zip file contains the R codes that were used for the numerical results
of the paper.
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