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Abstract

Purpose This study evaluates the effectiveness of a machine learning (ML) integrated science curriculum imple-
mented within the Science Research Mentorship Program (SRMP) for high school youth at the American Museum
of Natural History (AMNH) over 2 years. The 4-week curriculum focused on ML knowledge gain, skill development,
and self-efficacy, particularly for under-represented youth in STEM.

Background ML is increasingly prevalent in STEM fields, making early exposure to ML methods and artificial intel-
ligence (Al) literacy crucial for youth pursuing STEM careers. However, STEM fields, particularly those focused on Al
research and development, suffer from a lack of diversity. Learning experiences that support the participation

of under-represented groups in STEM and ML are essential to addressing this gap.

Results Participant learning was assessed through pre- and post-surveys measuring ML knowledge, skills, and self-
efficacy. Results from the implementation of the curriculum show that participants gained understanding of ML
knowledge and skills (p< 0.001, d= 1.083) and self-efficacy in learning ML concepts (p= 0.004, d= 0.676). On average,
participants who identified as female and non-white showed greater learning gains than their white male peers (ML
knowledge: p< 0.001, d= 1.191; self-efficacy: p= 0.006, d= 0.631), decreasing gaps in ML knowledge, skills, and self-
efficacy identified in pre-survey scores.

Conclusions The ML-integrated curriculum effectively enhances students'understanding and confidence in ML
concepts, especially for under-represented groups in STEM, and provides a model for future ML education initiatives
in informal science settings. We suggest that policy makers and school leaders take into account that high school age
youth can learn ML concepts through integrated curricula while maintaining an awareness that curriculum effective-
ness varies across demographic groups.
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Introduction
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self-efficacy has been identified as a precursor to Al tool
use in undergraduate students (Falebita & Kok, 2024),
and in engagement among pre-service teachers (Ayan-
wale et al., 2024). The successful development of Al lit-
eracy is an interdisciplinary endeavor, incorporating
data science, computational thinking and disciplinary
knowledge (Ng et al., 2021). One essential sub-domain
of AI is machine learning (ML). ML involves the use of
algorithms to"learn"or the use of models to draw infer-
ences from large data sets and make accurate predic-
tions without requiring explicit instructions. A diverse
set of ML methods have been developed to facilitate this
work (Mahesh, 2020). The centrality of ML in Al inno-
vations makes it a reasonable topic for K- 12 Al instruc-
tion, especially at the high school level (Lao, 2020; Sanusi
et al., 2023; Touretzky et al., 2023). This paper reports
the outcomes of an ML-integrated science curriculum
for high school youth delivered in an informal learning
environment.

A recent review of K- 12 AI education found that the
integration of Al methods into existing curriculum is a
prerequisite for success (Lee & Kwon, 2024). While ML
can be introduced to youth with a variety of framings,
scientific inquiry (including such practices as posing
questions, designing and conducting investigations, and
analyzing and interpreting data) is a particularly good fit
(Zhou et al., 2021). ML knowledge and skills are increas-
ingly used by non-computer science (CS) experts in a
variety of scientific fields, including the Natural Sciences,
that involve the organization and processing of large and
complex data sets (e.g., Desjardins-Proulx et al., 2019;
Longo et al,, 2019). ML methods can handle complex
non-linear relationships among hundreds of variables
and are especially well-suited for making accurate predic-
tions from complex data without explicit programming
(Kashinath et al., 2021; Mahesh, 2020). Data sets with
such complexity are commonplace in STEM fields, i.e.,
astrophysics (Longo et al.,, 2019) and genomics (Eraslan
et al., 2019). Preliminary approaches to integrating ML
in high school science curricula have framed ML meth-
ods as a set of tools for extracting insights from large data
sets (Lee & Zhang, 2022), suggesting that high school stu-
dents can learn ML in the context of STEM learning, and
there are several existing efforts in advancing K- 12 ML
literacy, including designing curriculum (Lee et al., 2021),
standards (Touretzky et al., 2023), and tools (Zhang et al.,
2024a, 2024b).

Yet few of these literacy efforts focus on integrating ML
and scientific research, despite the increasing prevalence
of Al in scientific discovery. To prepare high school youth
for conducting scientific research in the natural sciences,
it is essential for them to gain the knowledge and self-effi-
cacy around using ML methods in the context of natural
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science, including forming meaningful scientific ques-
tions, analyzing natural science data sets, making scien-
tific predictions, and understanding bias in ML.

One issue that plagues ML and STEM fields is the
lack of diversity, with women and members of ethnic
minority groups at risk of exclusion (West et al., 2019;
Zhang & Barnett, 2015). In the case of ML, additional
problems include the creation of biased algorithms and
biased data sets (Leavy, 2018) that automate discrimina-
tory practices in science and society (Shrestha & Yang,
2019). The lack of representation introduces barriers for
youth with historically marginalized identities to envi-
sion a future for themselves within STEM or ML careers
(Zhang & Barnett, 2015). We posit that informal learning
environments—such as museums and science centers—
provide a unique and strategic opportunity for access to
and engagement with STEM learning (Adams & Gupta,
2013), including ML and Al concepts. Informal science
learning environments are incubators for advancing our
understanding of how to learn with emerging technolo-
gies free from state standards that can be applied to the
formalized K- 12 system (Chaffee et al.,, 2021). Equally
important, in informal learning settings students are able
to engage in science as a part of their social interactions,
increasing their comfort with STEM subjects while fos-
tering community (Adams et al., 2012).

For 15 years, the Science Research Mentorship Pro-
gram (SRMP)—a flagship STEM workforce development
program of the American Museum of Natural History
(AMNH)—has been increasing access to science fields
and careers for New York City high school students
from historically marginalized communities by provid-
ing authentic science research opportunities and mean-
ingful mentorship in a museum setting. SRMP consists
of a Summer Institute, where youth are introduced to
research skills and begin participating in a community of
practice (Wenger, 1999), consisting of scientists, peers,
alumni, and program staff. The youth participating in
SRMP then work in small groups to conduct a year of
mentored scientific research on a particular natural sci-
ence topic under the guidance of a scientist mentor.

We developed a new science-integrated ML curricu-
lum for the SRMP Summer Institute, which introduces
high school students to key ML skills and concepts in the
context of scientific inquiry, called SRMPmachine. This
new SRMP Summer Institute (hereafter referred to as
the Institute) provides opportunities for high school age
youth to develop Al literacy as they (1) evaluate and apply
ML methods in a data science and scientific context, (2)
use, modify, create, and evaluate ML models using both
code and interactive tools, and (3) identify and propose
mitigation strategies for both data bias and societal bias
in the ML pipeline.
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While several K- 12 AI curricula have been developed
to introduce technical, ethical, and career aspects of Al
and ML to middle school (Zhang et al., 2023) and high
school students (Kaspersen et al., 2022; Sanusi et al,
2023), none of the existing ML curricula emphasize sci-
entific inquiry with the benefits of an informal learning
environment. In this paper, we present the theoretical
framework that informed the design of the Institute and
identify key characteristics of the curriculum that best
supported youth learning. We share results of quanti-
tative analysis measuring learning outcomes as well as
qualitative analysis highlighting aspects of the curricu-
lum that influenced students’ ML learning.

Literature review

K- 12 AI/ML education and curriculum

Expanding applications of AI and ML (AI/ML) in profes-
sional fields have made Al literacy increasingly impor-
tant for youth preparing to enter the future workforce
(Touretzky et al., 2019). In response to this need, several
K- 12 AI/ML curricula have emerged in recent years. For
example, Lee et al. (2021) developed a middle school Al
curriculum focusing on students’ Al knowledge, atti-
tudes, and career interests around AI. They primar-
ily engaged youth that are under-represented in STEM,
including non-male BIPOC youth. Through interactive
activities, games, and ethical inquiries, students gained a
deeper understanding of Al knowledge, applications and
skills. Similarly, several other K- 12 AI curricula focus on
developing students’ personal competencies, including
their competence, attitude (Su & Zhong, 2022), motiva-
tion towards Al learning (Chiu et al., 2023), creativity (Ali
et al,, 2019), career interests (Zhang et al., 2023), and eth-
ical implications of AI (Williams et al., 2023). Most of the
AI/ML curricula for high school youth emphasize ML
basics and neural networks (Marques et al., 2020). Our
work seeks to contribute to this burgeoning field an Al/
ML curriculum that integrates principles of equity/ethics
and STEM education for high school youth.

Equity in K- 12 Al/ML education

Many K- 12 AI/ML curricula have also specifically
focused on the ethical implications and justice frame-
works around Al Some have argued that AI education
cannot happen without consideration of ethics and equity
(Walsh et al., 2022). While the field agrees on the impor-
tance of ethics and equity in K- 12 AI education, the
understanding of how to design Al curriculum for equity
and social justice has yet to settle on a particular method.
In recent research in Al education, ethics and equity have
been considered (@) a topic of instruction, (b) a pedagogi-
cal method, (c) a co-development method, or all of the
above. For example, Lee and Zhang (2022) integrate ethic
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related topics into their Al curriculum to motivate learn-
ing and enable learners to see the relevance of Al in their
everyday lives (Saltz et al., 2019). Yet, they also design
their curriculum to be equitable by increasing accessibil-
ity through hands-on experimentation and participatory
simulation (Squire & Klopfer, 2007). Other AI curricu-
lum developers have designed curricula to be equita-
ble through project-based learning (e.g., Aliabadi et al,,
2022; Walsh et al., 2022). Centering algorithmic justice,
Walker et al. (2022) leveraged project-based learning to
enable students to mitigate systemic oppression through
data activism. Their data science program taught African
American students how to leverage their technical skills
in service of projects that are more authentic and relevant
to them. Centering students as co-developers of content
is a practice used by Lin et al. (2022) who co-constructed
their AI curriculum with traditionally marginalized stu-
dents. Similarly, Long and Magerko (2022) conducted
codesign activities with family groups to ensure their
definitions of Al literacy were useful to learners in their
everyday lives. These approaches to equity in Al educa-
tion are interwoven in Ali et al. (2021), who used interac-
tive simulation and experiential learning to help a diverse
group of students understand topics such as the ethical
and societal implications of generative AI that may affect
them, such as the spread of misinformation through
Deepfakes and relate these topics to their own lives.
These learning interventions not only led to significant
shifts in students’ knowledge and applications of Al but
significant shifts in their attitudes towards AI (Lee et al.,
2021; Williams et al., 2023; Zhang et al., 2023). This work,
which frames equity and ethics as a topic, pedagogy, and
method, informed the development of our curriculum.

Alin K- 12 STEM education

In spite of the value of AI/ML in STEM, emphasis has
primarily been placed on providing professional develop-
ment for K- 12 STEM teachers in AI/ML and supporting
the integration of Al tools into STEM classes. For exam-
ple, Zhou et al. (2021) introduced elementary, middle,
and high school math and science teachers to a K-means
clustering learning tool and supported the teachers in
developing lesson plans on topics, such as flood resist-
ance, evolution of biological characteristics, and heart
disease risk factors. The MLASTEM program expanded
the reach of this tool and involved K- 12 STEM educa-
tors in the co-development of additional ML-integrated
STEM instruction (Tang et al., 2023). In a similar vein,
Lee and Perret (2022) developed an Al and Data Sci-
ence professional development program to provide high
school math and science teachers with both AI content
knowledge and an understanding of bias in Al This
program also aimed to support STEM teachers in the
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integration of Al methods into their classrooms. Most
recently, Park et al. (2023) provided professional devel-
opment to three science teachers in secondary schools
in Singapore to introduce a new lesson package that
introduced their students to ML methods. In the infor-
mal STEM learning space, the Florida Museum recently
launched Shark AI, a program which prepares Flor-
ida middle school teachers to use ML to identify fossil
shark teeth. Teachers work with museum scientists and
engineers to create their own lesson plans using these
resources (Waisome et al., 2023). The greatest distinction
between these efforts and our work is the target audi-
ence. We designed and delivered a science-integrated
curriculum for high school youth themselves rather than
in the form of professional development for K- 12 STEM
teachers. The emphasis on research methods to prepare
youth for a yearlong mentored research experience is also
a unique aspect of our curriculum.

Theoretical framework

We designed the Institute curriculum in alignment with
several theoretical frameworks, including the Al literacy
competencies developed by Long and Magerko (2020),
and the ML education Framework developed by Natalie
Lao (2020). Lao draws from four established theories of
learning and incorporates them into the Use—Modify—
Create learning progression (Lee et al., 2011) to assemble
a scaffold for transforming learners from passive users
to an active role as tinkerers and makers of ML tools,
emphasizing knowledge, skills, and attitudes towards
ML. As an additional layer to the Use—Modify—Create
progression, learners must know how to use ML models
ethically, as well as how to critically evaluate these mod-
els and the algorithms used to generate them (Long &
Magerko, 2020). Finally, the addition of “Choose” after
the Use—Modify—Create progression, where students
must select suitable machine learning models, has been
shown to help students deepen their understanding of
ML concepts (Martin et al., 2020).

To support the implementation of the ML Education
Framework in a high school ML curriculum, Lao intro-
duces several important considerations for teaching ML
to high school students, many of whom will be intro-
duced to the topic for the first time. In particular, enac-
tive mastery, where learners successfully perform tasks
related to the learning objectives, is considered necessary
for the development of self-efficacy (Lao, 2020). The strat-
egies found to effectively support high school students in
reaching a state of enactive mastery in ML as detailed in
Lao (2020) correspond to the key design considerations
(DCs) for teaching Al Literacy identified by Long and
Magerko (2020). As shown below, we aligned the Long
and Magerko (2020) AI Competencies with the Lao ML
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Education Framework (2020) to form learning objectives
for the Institute curriculum (Table 1).

Participation in informal science education (ISE),
which entails voluntary participation in science learning
outside of school, is associated with increased interest in
science and STEM professions (Bell et al., 2009). How-
ever, not all people experience these benefits equally and
institutions such as science museums have the respon-
sibility of explicitly supporting the participation and
inclusion of non-white communities (Dawson, 2014). To
support the development and implementation of a cur-
riculum for the Institute that addresses these concerns,
we applied the lenses of Shifting Narratives and Author-
ity Sharing from the YESTEM Core Equitable Practices
(Archer et al.,, 2022; YESTEM Project Team, 2021). This
equity-informed identities-in-practice framework cent-
ers students’ developing identities in the context of sci-
ence communities of practice (Barton et al., 2008). The
Authority Sharing lens in particular dovetails with the
Community Cultural Wealth Theory consisting of aspira-
tional, linguistic, familial, social, navigational, and resist-
ant capital (Yosso, 2005). The Shifting Narratives lens
reframes learning experiences from perspectives other
than those dominant in the field of ML.

Curriculum overview

Youth enrolled in the Institute attend five 5-h sessions
for the first, second, and fourth weeks (75 total contact
hours) with the third week devoted to a 4-day excursion
to a biological field station. In this section, we present
a summary of the overall curriculum, detailing each of
4 weeks of instruction, and highlighting aspects of the
curriculum which participants identified as particularly
impactful in helping them understand ML concepts and
apply ML knowledge and skills.

Week 1: In the first week, youth are introduced to the
program and begin developing a community of prac-
tice. The instruction in this week is informed by the
YESTEM Core Equitable Practice of Shifting Narratives.
For example, a discussion about the nature of science is
framed using the indigenous metaphor of the three sis-
ters’ garden. The ML pipeline (Fig. 1) is introduced along-
side Teachable Machine, serving as a physically enacted
learning experience of the process of AI/ML. In addi-
tion, youth explore statistical, human, and societal biases
in data, algorithms, and predictions. During this week,
youth also perform data cleaning, review basic statistics
skills, and apply linear regression models to make pre-
dictions using data sets of New York City street trees
and dragonfly wing morphology. These data sets exem-
plify bias in data collection (e.g., more street trees were
measured in Manhattan than outer boroughs and more
dragonflies were observed in North America than other
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3. Choose your Method

e Model selection bias
e Bias in favor of ML

&

5. Train your Model 4, Prepare your Data
e Over/underfitting e Selection bias
e Overfitting

Fig. 1 Machine learning pipeline used in the institute. This framework was developed to help students integrate Al concepts and Al ethics.
Examples of possible statistical and societal bias are included for each step. Participants are encouraged to identify the steps from the pipeline

for each ML method introduced in the curriculum.

regions). The data is also tangible and interpretable,
e.g., dragonfly wings can be held and measured through
hands-on activities.

Week 2: Youth learn about two additional ML methods
in the second week of the institute: decision trees and
Principal component analysis (PCA). This week involves
a much heavier lift in terms of assimilating and applying
ML knowledge and skills. Youth progress from the “Use”
stage to “Modify” and “Create” in the Use—Modify—Cre-
ate progression. They have the opportunity to experiment
with different algorithmic parameters for decision trees
using Google Colab (Fig. 2) while choosing from among
several different learning scaffolds and strategies.

Later, in the second week, youth generate their own
species distribution model for a given dragonfly species
using the Wallace platform, a GUI for an open source R
library that gives science researchers access to large pub-
lic biodiversity databases (Kass et al., 2023) (Fig. 3). Stu-
dents also critically evaluate ML methods by assessing
the performance of their models. This week also features
tangible data sets, including animal skull morphol-
ogy (PCA) and dragonfly wing measurements (decision
trees).

Week 3: The third week of the Institute consists of
a 4-day excursion to a biological field station. Youth
have opportunities to socialize and build community in

Now it's time to split our data into a training and a testing dataset.

[ 1 #Get the features and labels from the data
x = df.drop(['North_America'l, axis=1)
y = df ['North_America'l

training_percentage =

#Create the training and testing datasets

Bias Alert: It's important to create a random split to eliminate any clustering or sorting of the data. Run the code below to do so:

Split the data 50/50 into a training and testing set by typing the number 50 after "training_percentage =" below. Then run the code cell.

#Specify a 50% split: TYPE 50 AFTER THE EQUAL SIGN BELOW

X_train, X_test, Y_train, Y_test = train_test_split(x, y, train_size=training_percentage/100)

Fig. 2 Excerpt from the decision tree Colab notebook. Youth were invited to self-sort into one of three stations: self-paced, instructor-guided small
group learning, and pair-programming to complete the Colab, giving them choice and agency in how they chose to encounter new material.
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Fig. 3 Screenshot of the Wallace platform showing the data thinning process. Youth followed a modified version of the machine learning
pipeline, with steps including obtaining data, processing data, creating and evaluating a set of possible models using maximum entropy analysis,

and visualizing the final predictions.

addition to gaining hands-on field research experience.
All youth join two field science activities: (1) setting up
camera traps to collect photographs of wildlife and trap-
ping and releasing turtles to record their size and (2)
additional activities according to their interests and pre-
ferred level of physical intensity on topics including geol-
ogy, insect identification, and archaeology field methods.
All youth attend a short presentation about Al and scien-
tific fieldwork.

Week 4: The fourth and final weeks of the institute
introduce the last ML method of the curriculum: arti-
ficial neural networks (ANNs). Embodied interactions
are again featured during the hands-on simulation of an
ANN (adapted from the Artificial Neural Network Game
reported in Zhang et al.,, 2023). The activity involves sim-
ulating the process of training an ANN involving feed-
forward, evaluation, and back-propagation with youth
acting in the roles of input, hidden, and output layers.
Later in the week, youth compare and contrast the ML
methods they learn about over the course of the pro-
gram and create a flowchart to decide when to use each
method to answer a scientific question (Fig. 4). This
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Fig.4 Sample flowchart

week also features the YESTEM Core Equitable Practice
of Authority Sharing, allowing students to choose their
own data set to work with based on their subject matter
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interests. The key theme of Bias in ML Systems is a pri-
mary focus this week. For example, artifact exploration
(including apps and readings) shifts the responsibility of
teaching about how Al is biased from students’ personal
experiences to more objective representations of the bias
and potential for harm.

Methods

Participants

For this study, high school age youth were recruited to
the Institute through the same application and enroll-
ment procedures used by SRMP in years prior. Youth
who had previously participated in AMNH programming
or were students from partner schools or community
based organizations were eligible. Participants (n =42)
were majority 11 th grade (72%, n= 30) females (60%,
n= 26), whose self-reported ethnicity was 28% white
(12), 20% South Asian (9), 19% Black or African Ameri-
can (8), and 16% Other (7) including American Indian or
Alaska Native, Middle Eastern or Persian, Native Hawai-
ian or other Pacific Islander. Sixteen percent identified as
multiracial (7). Fourteen percent preferred not to share
their race/ethnicity (6). Fifty-seven percent (24) reported
being multilingual. Thirty-three percent identified as His-
panic (14).

A third of all participants (33%, n= 14) reported living
in households with an annual income of $50,000 or less,
which was below the poverty index for the region. Other
participants reported living in households with a range
of incomes: 25% (11) reported annual incomes ranging
$50,000-$99,999; 4% (2) reported annual incomes rang-
ing $200,000 and up. Twenty-eight percent (12) preferred
not to share their household income.

Participants tended to report living in households in
which at least one member of the household held either
a 4-year degree (i.e., BA or BS) (19%, 8), a Master’s degree
(19%, 8) or had completed “some college” with no degree
earned (17%, 7). However, a relatively large minority, of
14% (6) reported the highest degree in their household
was a High School Diploma or Equivalent (e.g. GED). See
Supplementary File 1 for detailed demographics.

For the purposes of evaluating the curricular impact
on target outcomes among participants from under-
represented groups (URGs) in STEM, Al, and ML, we
define URGs as any non-white or non-Asian male. URG
is inclusive of participants who report a low socio-
economic status (i.e., below the poverty index for the
region), multi-racial identity (i.e., two or more reported
ethnic identities listed), or Hispanic cultural background,
see Table 2 for details on URG participant demograph-
ics. Group membership overlaps allowing for intersec-
tionality, e.g., a non-white, multiracial individual with
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Table 2 Proportion of participant population from under-
represented groups (URGs) in STEM

Demographics n %
Non-White Male, Non-Asian Males 30 7143
Low Socio-Economic Status 14 33.83
“Two or more”ethnic identities listed 8 19.052
Hispanic selected 14 33.38
Total Population of URGs in STEM 33 7857

low socio-economic status would be counted in three
categories, but only once in the total population of URGs
in STEM.

We also examine the curricular impacts on target
learning outcomes on two URG sub-categories: gender
and ethnicity. We define our gender categories as three
self-identified groups: (1) female, (2) male, and (3) non-
binary. We define our ethnic categories as comprising
two groups: (1) white or Asian; (2) non-white and non-
Asian, a category that is inclusive of multi-racial ethnici-
ties and people who identify as Hispanic. We refer to this
second ethnic category hereafter as non-Asian racial
minority. We make this distinction to acknowledge that
people of Asian descent, as well as people who identify
as white, are over-represented in AI/ML, CS and STEM
fields relative to the other ethnic populations (National
Science Foundation, 2023). While people who identify
as white make-up a near majority of the Al field, the
representation of people of Asian descent in this field is
likely to increase given recent patterns in the award of CS
degrees and hiring in new Al jobs (Maslej et al., 2024).

Research questions

Analysis of curricular outcomes involved a mixed-meth-
ods approach (i.e., using survey, exit ticket, and interview
data) to determine whether the curriculum effectively
achieved its goals as a ML educational curricular inter-
vention for high school age youth. To this end, evalua-
tion focused on measuring: participant learning outcomes
specific to the cognitive (i.e., knowledge and skills) and
affective learning outcomes (i.e., self-efficacy in learning
ML and interest in ML careers) that the curriculum was
designed to impact the alignment of learning objectives
with the curriculum’s theoretical framework (see Table 1)
via participant learning outcomes (RQ 1, see below); con-
tent quality, which is defined as the inclusivity and acces-
sibility of the curricular content and activities such that
all learners, regardless of their gender, ethnicity, or prior
knowledge, are able to engage and learn from the materi-
als (RQ 2); aspects of the curriculum that most impacted
youth cognitive and affective learning outcomes (RQ 3).
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From these goals, the following research questions were
developed,

RQ 1la. To what extent does participants’ (i) ML
knowledge and skills, (ii) self-efficacy in learning ML,
and (iii) interest in ML careers change after experi-
encing the Institute curriculum?

RQ 1b. How does participation in the Institute
impact participants’ understanding of target curricu-
lum concepts?

RQ 2. To what extent do participant responses vary
across participant demographics, i.e., gender or eth-
nicity?

RQ 3. What aspects of the curriculum do partici-
pants report as most impactful on their ML knowl-
edge, skills, interest, and self-efficacy?

Instrumentation

At the beginning and conclusion of the Institute, the
research team administered a pre- and post-survey. The
survey comprised items designed to measure both cogni-
tive and affective learning outcomes.

Cognitive outcomes were measured using the ML
Concept Inventory (MLCI), which underwent prelimi-
nary validation over the course of this study. The MLCI
(35 items) was found to have good internal consistency
(Cronbach’s alpha =0.763). Content validity was estab-
lished through a review by 9 ML education researchers,
who confirmed that the items were relevant to important
concepts in ML education and that item responses would
provide evidence of ML knowledge and skills. Agreement
was established using quantitative content validity analy-
sis methods established by Zamanzadeh et al. (2015).
This analysis was followed by a series of semi-structured
interviews in which each panelist was individually inter-
viewed about their item ratings as a form of quality con-
trol. Criterion validity was assessed by correlating scores
on the MLCI scores with scores on the validated Al Con-
cept Inventory (Zhang et al., 2024a, 2024b). The correla-
tion coefficient was significant (p< 0.01), indicating that
the MLCI provides a valid measure of ML knowledge and
skills. However, it is important to note that further analy-
sis with a larger sample population is needed to establish
the instruments’ construct validity. Furthermore, addi-
tional work is needed to assess the validity of the MLCI
in different populations.

Affective learning outcomes were measured, at the
same time as the administration of the MLCI, using a
survey of participants’ Attitudes and Perceptions of Al
(APAI). This instrument comprised a collection of scales
from previously validated instruments, including the Al/
ML Career Interest scale (17 items) (Cronbach a= 0.94)
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(Zhang et al., 2024a, 2024b). The APAI also an adapted
version of the Self-efficacy in Learning Medical AI (Cron-
bach a values ranged from 0.85 to 0.98) (Li et al.,, 2022)
was used as our scale of Self-Efficacy in Learning ML (6
items). See Supplementary File 2 for details on each of
the APAI items.

Exit tickets

In addition to pre- and post-surveys, exit tickets were
administered as a formative assessment at the end of
each day of instruction. Exit tickets used both closed and
open items (see Supplementary File 3 for items). They
were administered as part of a daily routine, through a
link provided with the curricular materials. The Insti-
tute schedule allotted 10 min at the end of each day exit
ticket completion. Anyone who finished early was asked
to wait for the full time as a deterrence from rushing to
finish. Only 2 of the 15 total exit tickets were examined
for this paper. They were selected for analysis, because
they included sets of items that prompted participants to
apply their ML knowledge and skills using open-ended
responses, which afforded qualitative triangulation of
quantitative results.

Interviews

Immediately following the Institute (1-2 weeks after-
wards), the research team conducted semi-structured
retrospective interviews with 18 randomly sampled
participants. Interviewees were demographically rep-
resentative of youth who participated in the Institute.
The protocol prompted interviewees to compare their
understandings, perceptions, and attitudes towards ML
before the Institute to those they had after the Institute.
If interviewees described a change (positive or negative),
they were asked to identify aspects of the Institute (i.e.,
activities, materials, interactions with people) that may
have impacted that change (full protocol available in Sup-
plementary File 4). Qualitative analysis of interviews used
a reflexive thematic analysis approach with a deductive
orientation (Braun & Clarke, 2022), which focused the
analysis on impactful aspects of the curriculum.

Planned analysis

Analyses used quantitative methods to compare differ-
ences between MLCI and APAI pre- and post-survey
responses from all participants. This was followed by
an analysis using participant self-reported gender and
ethnicity to determine whether there were differential
impacts of the curriculum on cognitive and affective
learning outcomes across demographic subgroups. Anal-
ysis then triangulated quantitative results with qualita-
tive data from post-Institute interviews and open ended
responses to select exit ticket items. Qualitative analysis
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was used to identify aspects of the curriculum that were
particularly impactful on target cognitive and affective
learning outcomes.

Results

RQ 1a.To what extent does participant (i) ML knowledge
and skills, (ii) self-efficacy in learning ML, and (iii) interest
in ML careers change after experiencing the Summer
Institute curriculum?

RQ 1a (i): ML knowledge and skills

Differences in MLCI responses showed large positive
gains in participants’ ML knowledge and skills after par-
ticipating in the Institute as compared to pre-Institute
responses. A paired t-survey indicated that post-survey
responses were significantly higher than responses on the
pre-survey, £(41) =8.869, p< 0.001, d= 1.083). Figure 5
displays these results.

All interviewees shared that they had some degree of
prior knowledge of ML before the Institute; yet, after the
Institute all felt they had a greater understanding of the
various ways that ML methods could be used in scien-
tific research and in everyday life. Interviewee descrip-
tions of their prior knowledge revealed a wide range of
understanding: from awareness that Al existed to some
knowledge of ML methods used in everyday technolo-
gies. For example, Elizabeth (all interviewee names are
pseudonyms), explained that before the Institute, she
didn’t know that Al used ML. She understood that social
media apps, i.e., TikTok, Instagram, and YouTube, use

MLCI Performance
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Fig. 5 Box-plot distribution of MLCI responses before the Institute
(shown as “pre”on the left) and after the Institute (shown as “post”
on the right)
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algorithms to track usage and recommend content based
on a user’s history; yet, she didn’t know, “how the data-
base works or how the algorithms themselves work.” After
the Institute, she described her knowledge of ML saying,

Now I know about neural networks and PCA and
decision trees and all these different things, which
now 1 feel like if I'm looking at a certain platform or
social media platform, I can identify which machine
learning method they were using.

Other interviewees shared that they had some prior
knowledge of ML and specific ML techniques before the
Institute, yet the Institute helped them better understand
these terms and processes. For example, Daniel shared
that he had heard about linear regression and neural net-
works before the Institute, but “didn’t really know how
they could be used for machine learning” Learning these
techniques during the Institute, Daniel said, “really wid-
ened my view of Al and machine learning and how it can
be used”

Another interviewee, Sophie, shared that, before the
Institute, she was aware that ANNs were used to identify
complex things, but she thought neural networks could
only be used for one purpose. After the Institute, she
realized that ML algorithms, including ANNSs, could be
used for different purposes in research. She said,

I was familiar with the artificial networking rhythms
like using features to be able to identify complex
things. But I didn’t know that there was other types
of algorithms that are correlated and were one with
machine learning and that we can use different types
of algorithms to be able to research different types of
things. I just thought it was all in one.

These examples show youth at different levels of prior
ML knowledge, yet all three gained broader and deeper
insights into ML concepts, especially ML methods and
applications, after participating in the Institute.

RQ 1a (ii). Self-efficacy in learning ML

Along with the MLCI assessment, participants also com-
pleted the APAIL On average, results suggest small to
moderate positive shifts in participants’ perceptions and
attitudes towards Al after experiencing the Institute, par-
ticularly in participants’ self-efficacy towards learning
ML (see Tables 7 and 8 for full details on APAI scales).
A Wilcoxon signed-rank test, used to control for the
non-normal distributions in the data, indicated that par-
ticipants’ self-efficacy was significantly higher after expe-
riencing the Institute than before, z= — 2.88, p= 0.004,
d=0.676 (before: M= 3.785, SD = 0.637; after: M = 4.190,
SD=0.558 (see Fig. 6).
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Responses to APAI Subscales
ML Career Interest Self-Efficacy Towards Using ML
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Fig. 6 Box-plot distribution of participant responses to the APAI ML

Career Interest scale (LEFT) and Self-Efficacy scale (RIGHT) before the
Institute (shown as “pre”) and after the Institute (shown as “post”).

In retrospective post-Institute interviews, 7 of the 18
youth interviewed shared that realizing how much they
had learned about ML over the course of the Institute
helped them feel more confident in their knowledge of
ML. For example, Alexis explained that she had felt “inse-
cure” about her ML knowledge and “super-lost” at the
beginning of the Institute, but that “in the end, I think I
saw a little bit improvement was when I did the Kahoot!
in the end about machine learning, like I was understand-
ing it slowly”

Another youth interviewed, Daniel, shared, “There
were a lot of times where I was slightly confused and then
something would happen, and it would be eye-opening
when I realized what I was—I had come a long way, and I
was actually learning a lot” Like Daniel, interviewees who
described their confidence and self-efficacy in learning
ML felt buoyed by the fact that they had learned about
a complicated topic, yet these youth also felt that they
had a lot more to learn. For example, Michael said, “I'm
not super confident about it. I mean, I can probably sum-
marize a decent amount, but I wouldn't be able to really
teach someone exactly so well the differences and how
you use different ones”

Worthy of note is that all interviewees, who spoke
about their knowledge impacting their confidence and
self-efficacy, had relatively low pre-survey scores and a
relatively small change in their learning according to the
MLCIL. These interviewees scored lower than the median
on the pre-survey (by 1 or 2 standard deviations). Their
scores also showed relatively small change in their learn-
ing (1 standard deviation of change) between the pre-
and the post-survey. Yet, in interviews they described a
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big change in their self-efficacy indicating a stronger pos-
itive shift in self-efficacy than our instruments were able
to detect.

RQ 1a (iii): interest in ML careers

Results from the APAI also showed, on average, no sig-
nificant change in participants’ interests in ML careers
after participating in the Institute when controlling for
the non-normal distribution using a Wilcoxon signed-
rank test, z= — 1.860, p= 0.063. Yet, differences were
approaching significance and mean scores across the sev-
enteen 5-point Likert scale items suggest a small gain in
interest (before: M= 3.839, SD= 0.512; after: M = 4.057,
SD=0.466) (see Fig. 6 for distributions).

Although our instrument did not detect a shift in inter-
est in ML careers, interviews suggest an interesting pat-
tern of change. Interviewees who described their level
of interest in ML careers as unchanged between the
beginning and the end of the Institute, shared that their
reasons for their level of interest in ML careers after the
Institute were different than before. For example, Mor-
gan described a new interest in ML careers, because they
wanted to use Al to help people,

Although I do I feel like it stayed the same, I feel like
my reasons behind it now are different because at
the beginning I was interested simply because I felt
like I didn’t know a lot about it. Now, I feel like I'm
a bit well versed, I could say. But I still find myself
interested in it because I understand now how Al
is impacting our society and communities and it's
something that I feel like I would like to be a part
of the impact, hopefully, good impacts. I just want
to honestly use or try to use Al to help people and I
would like to learn more about it and about how it
translates more to different work forces.

Another interviewee, Alyssa, explained that before the
Institute she had been interested in ML careers, because
she was concerned about how ML/AI would impact the
workforce. After the Institute, she was interested in ML
careers, because she wanted to learn more about oppor-
tunities to use ML to advance her career,

1 feel like ‘interest’ is such an ambiguous word where
you can have positive interests and negative inter-
ests. I was kind of like, oh, is Al taking away peo-
ple’s-- I feel like in the media, you hear Al is taking
people’s jobs. So, I was interested in the jobs that Al
is taking away. But now, I think I'm more interested
in kind of how do jobs use Al on a daily basis? How
do they use Al to benefit their work? How do they
decide to rely on Al and stuff like that. Obviously,
they use Al for a good reason, and it's helped them
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throughout their career. So, I'm very interested in
those careers. I know lots of fields across the board
that AI-- a lot of careers do use AL So, yeah, I'm still
very interested.

While our survey showed little change in interest, these
vignettes show that the nature of participants’ interest
is evolving. These findings are further explored in the
Discussion.

RQ 1b. How does participation in the Institute impact

participants’understanding of target curriculum concepts?
MLCI scores suggest positive learning gains in 5 of the 7
target ML curriculum concepts (detailed in Table 1). On
average, participant responses to the MLCI show mod-
erate to large learning gains in knowledge of ML meth-
ods and societal implications of ML as well as skills in
planning ML projects and analyzing ML results. Differ-
ences in responses to pre- and post-surveys of knowl-
edge of ML bias and the skill of applying ML in scientific
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research were not statistically significant. These results
are explored in the Discussion. Figure 7 displays the
distributions of participants’ average MLCI scores by
curricular concept. Table 3 shows the results from Wil-
coxon signed-rank tests comparing pre- and post-survey
responses by curriculum concept. In the subsequent sec-
tion, we triangulate the non-significant findings with
qualitative data from exit ticket responses and interviews.

Knowledge of ML bias

While the MLCI did not detect a shift in participants’
knowledge of ML bias, participants’ written responses to
exit tickets show that, by the end of the Institute, partici-
pants were correctly applying knowledge of ML bias in
their decisions on whether ML could and should be used
for scientific research and in the real world. For example,
on the final exit ticket, a majority of the respondents who
mentioned the term “bias” (79% of the 24 respondents,
n=19), used detail to support and justify their argument
to a degree that made it possible to detect an emerging

MLCI Performance Across All Target Curriculum Concepts

1. ML General Concepts

2. ML Methods

3. Bias in ML

1.00 - o §J

0.75

0.50 -

0.25-

0.00- ®

4. Societal Implications of ML 5. Plan ML Projects 6. Analyze ML Results
’é)‘ 1.00 - xRN O# *k Ou‘(‘\l" » % ° wxeee ©Jo
< ‘1;5\,""'?;\:)
< 0.75-
) s ’- 00— 2 B
6 5
S 0.50- [
2] a
O 0.25-
—
= 0.00- .
pre post pre post

7. Apply ML in the Sciences
1.00 - 4 X

0.75 -

0.50 -

0.25-

0.00 - °

pre

post
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Table 3 Results from Wilcoxon signed-rank tests of pre- and post-survey responses by curriculum concept

Curriculum concepts # Items Test statistic p d

1. Knowledge of ML General Concepts 11 —534 <0.001* 1.289 large
2.Knowledge of ML Methods 12 -36 <0.001* 0.678 moderate
3. Knowledge of ML Bias 3 1.56 ns ns negligible

4. Knowledge of Social Implications of ML 1 -2.56 0.011* 0.596 moderate
5. Skill of Planning ML Projects 7 —2.68 0.007* 0.663 moderate
6. Skill of Analyzing ML Results 3 —457 <0.001* 1.086 large

7. Skill of Applying ML in Scientific Research 3 0.607 ns ns negligible

*Significant difference, ns no significant difference

understanding of bias in ML. For example, one respond-
ent, Logan, argued that an ML tool should be deployed,
because its health benefits outweighed the ethical risks of
biased data. They wrote,

it should, because it could help identify people with
Alzheimers in that community. because the data
is randomized, there most likely will not be a sam-
pling bias and it could eventually be scaled up and
applied to ppl all over the world.

Another respondent, Dylan, wrote, “There is place for
bias to creep into this when you separate patients based
on neighborhood” Another explained, “The training data
may be too small, and the fact that they are considering
demographic information—which includes race—has
potential to introduce heavy bias”

In interviews, participants were asked to share their
understanding of the “limitations” of ML (with no men-
tion of the term “bias”). Twelve of the total 18 interview-
ees replied by describing their understanding of bias in
ML. Several described the various types of biases they'd
learned about in the Institute. For example, Katherine
explained, “In the Institute, they taught me about some
biases that can occur like human biases, societal biases,
things like statistical biases” Similarly, Emma listed the
different types of bias introduced during the Institute,

There’s societal, human, computational, and they’re
all so different. And I thought bias was just like one
category, but there’s so many umbrellas underneath
it that the types of bias can get sorted into. There’s
bias everywhere.

Three interviewees not only correctly described bias in
ML, but also mentioned the importance of minimizing
bias in ML systems. For example, Dylan explained, “It’s
just not possible to create a bias-less system,” concluding
that “perfection,” might not be attainable, but, “we can be
more careful to create like strive towards that perfection”
Another interviewee, Michael, shared that at the Insti-
tute, they learned some strategies that people can use “to

balance it out and fix them,” referring to biased ML mod-
els. Ashley described a specific strategy for minimizing
bias that she experienced during the Institute, “We had to
clean our dataset to make it more accurate”

Two interviewees explained that the Institute helped
them understand both the limitations and affordances
of various ML techniques and that these limitations and
affordances can impact people differently. For example,
Morgan explained that, “just because something is caus-
ing benefit to something, to another thing, it doesn't
mean that it’s causing the same benefit to a separate
thing,” later adding that with ML, “there are a lot of limi-
tations, honestly, and we just need to think about which
ones would be the ones that harm people the most”

Together, the exit tickets and interviews offer evidence
of the emergence of a rich understanding of ML bias as a
limitation, as well as its potential impact on society and
its ethical implications. What’s more, responses offer
evidence of participant efforts to apply their knowledge
of ML bias to make decisions as to whether ML can be
used and whether it should be used from a technical and
ethical perspective. Further research is needed to develop
instrumentation that can detect this type of ML knowl-
edge and skill.

Skill of applying ML in scientific research

The MLCI did not detect a shift in participants’ skill of
applying ML in scientific research, yet participants’
exit ticket responses show that, by the end of the Insti-
tute, a majority of participants were correctly applying
knowledge of ML concepts as they made decisions as to
whether ML could or should be used in the context of
scientific research. Exit tickets prompted all respondents
to apply their ML knowledge in scenario-based contexts
specific to scientific research. Questions prompted a
2 part response: 1) a binary (yes or no) response and 2)
an open-ended response to justify the first binary selec-
tion (e.g., “Why or why not?”). With this design, binary
responses could be scored for accuracy, while open
ended responses could be qualitatively evaluated. Table 4
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Table 4 Proportion of correct exit ticket responses by decision-
making-based skill (a3, b, ¢) of applied ML knowledge and skills in
the sciences

Types of Exit Ticket #Items Correct Total responses
Questions responses
n % n
(a) Could ML be used? 3 58 51 114
(b) Should ML be used? 4 106 70 152
(c) Which ML would be best? 4 111 73 152

displays the three types of questions used to prompt par-
ticipants to apply their knowledge of ML in scientific
research.

On average, exit ticket responses suggest a greater apti-
tude for deciding (b) and (c) than (a). Fifty-one percent
of the total responses to (a) items were correct. Whereas
70% and 73% of the total responses to (b) and (c) items
were correct. Correct responses to (a) type questions—
could ML be used—tended to use examples of common
limitations to ML to justify the selected answer. These
responses drew from respondents’ technical knowledge
of ML to justify answers with facts using knowledge of
ML limitations and of the ML pipeline. For example,
several responses explained that ML could not be used,
because the data set in the given scenario was too small
or too homogeneous to train a generalizable model (see
Table 5, for example, quotes marked i). Others explained
that ML could not be used, because there was missing
data (ii).

Correct responses to (b) type questions—should ML
be used—tended to compare the benefits and harms of
ML from an ethical and technical perspective. These
responses seemed to draw from respondents’ knowledge
of the societal impacts on ML to justify answers through
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reasoning. For example, responses reasoned that an ML
tool should not be used, because misclassification would
have too great a harm (iii). Others reasoned that even
correct predictions of a given tool, would not be useful
given the cultural context in which the tool would be
employed; thus it should not be used (iv).

Correct responses to (c) type questions—which ML
method would be best—tended to describe characteris-
tics or capabilities of ML methods that suited the given
research project (v—vii). These responses drew from
respondents’ knowledge of the four different ML meth-
ods introduced in the curriculum.

Exit tickets responses show how participants applied
their emerging ML knowledge in a series of scenario-
based contexts specific to scientific research. These
examples shed light on how participants use their knowl-
edge of ML to make technical and ethical decisions.
More research is needed to develop curricular activities
and assessments to further develop these skills.

RQ 2. To what extent do participant responses vary

across participant demographics?

Participant responses to both the MLCI and APAI var-
ied by URG status (see section titled Participants above
for our definition of URG and criteria for membership).
Paired ¢ tests show that participants from URGs experi-
enced large gains in ML knowledge and skills, £(32) =—
7.800, p< 0.001, d= 1.191; moderate gains in self-efficacy
in learning ML, £(32) = — 2.934, p= 0.006, d= 0.631;
and small gains in their interest in ML careers, £(32)
= — 3.376, p= 0.002, d= 0.483 (see Table 6 for details).
Their non-URG counterparts’ responses also showed
large gains in ML knowledge and skills, £(6) = — 3.710,
p< 0.010, d= 1.215; yet, no detectable changes in inter-
est in ML careers or self-efficacy. It is important to note
that the non-URG population is relatively small (n =7),

Table 5 Sample statements from exit ticket open-ended responses to justify application of ML in scientific research

Type of Exit Ticket Question

Example justifications of correct responses

(a) Could ML be used?

(i) The data set is too small to train the model to identify the flowers. In addition the flowers that she wants to use

for the data set are pressed, not in the natural form that they would be found in, so it would not make very good

training data either

(ii) this would not work because the data set she has only has the banana features without labels, and the other data
set only has the labels and no Emily banana features

(b) Should ML be used?

(iii) Using the criminal activity and the demographic of a small population high school students can lead to the misi-

dentifying of offenders. It can lead to innocent people being convicted just because they match the description

of a high school student

(iv) The data that is collected is biased, because it is only taken from the Met Gala events. The Met Gala fashion might
not be what everyone wears in Germany. First of all, Met Gala clothing pieces are very expensive; therefore, not every-

one will be wearing it
(c) Which ML would be best?

(v) PCAis the best option, because it is an unlabeled data set

(vi) You would use an ANN, because you are dealing with more complex data, such as images and videos
(vii) A decision tree would be able to find the biggest characteristic to split the data and further split the data into cat-

egories
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Table 6 Performance on MLCl and APAI pre- and post-surveys by URG and non-URG demographic groups

Demographic groups n Pre-survey Post-survey p d

M sd M sd
ML Knowledge (MLCI)
URG 33 0512 0.127 0.671 0.140 <0.001 1.191 large
Non-URG 7 0.684 0.128) 0.804 0.055 0.010 1.215 large
Self-efficacy (APAI)
URG 33 3818 0.666 4.207 0.562 0.006 0.630 moderate
Non-URG 7 3.762 0.568 4.048 0.583 ns
Interest in ML Careers (APAI)
URG 33 3.797 0.512 4.019 0.400 0.002 0.483 small
Non-URG 7 3.991 0.591 3.841 0489 ns

ns = not significant

making differences difficult to detect, see Fig. 8a for visu-
alization of URG MLCI distributions.

Differences in MLCI pre- and post-survey scores
between URG and non-URG members remained signifi-
cantly different (pre: p= 0.010, d= 1.358; post: p< 0.001,
d= 1.022), which suggests a gap in ML knowledge seen
on the pre-survey persisted to the post-survey. Results
from the APAI show no evidence of a gap between URG
and non-URG members’ interest in ML careers or self-
efficacy in learning ML. These findings suggest the
program significantly improved URG participant ML
knowledge and skills, yet it did not close the knowledge
gap observed between URG and non-URG members.

Further analysis identified several other patterns wor-
thy of note. In the subsequent sections, we explore how
participant responses varied across URG subgroups
by reporting results from analysis of MLCI and APAI
responses by gender (female, non-binary, and male) and
ethnic/racial subgroups (white and Asian as compared to
non-Asian minorities).

Learning outcomes

Results from paired ¢ tests show moderate to large gains
in ML knowledge and skills among females and partici-
pants who identified as a member of a non-Asian racial
minority group: females, #(21) =— 4.709, p< 0.001, d=
0.731; non-Asian racial minorities, £(11) =— 6.823, p<
0.001, d= 1.292. Their male counterparts showed no sig-
nificant learning gains; however, their white and Asian
peers did, £(23) =— 5.324, p< 0.001, d= 0.925 (see Table 6
for details).

On average, males scored significantly higher on the
pre-survey and post-survey than their female counter-
parts: pre, £(15.834) =— 3.627, p= 0.002, d= 1.475; post,
£(24.322) =— 2.827, p= 0.009, d= 0.971. In other words,
on average, males started and ended the Institute with

higher levels of ML knowledge than females. Yet, on
average, male participant MLCI scores showed no sig-
nificant difference between the pre- and the post-surveys
(perhaps because of their initial highscores). This sug-
gests that the observed gender gap in ML knowledge
was decreased, but not completely closed, see Table 7 for
details and Fig. 8b for a visualization of MLCI results by
gender.

White and Asian participants started the Institute with
relatively higher MLCI scores than their counterparts
who are non-Asian racial minorities; however, this gap
closed over the course of the Institute. While pre-survey
scores of participants who identified as white or Asian
were not significantly higher than participants who iden-
tified as non-Asian racial minorities, differences were
approaching significance, £(29.488) =— 2.075, p= 0.090,
d= 0.760. What’s more, differences between white/Asian
and non-Asian racial minority post-survey scores were
not significant, £(19.057) =— 0.646, p= 0.526. This sug-
gests that there may have been a knowledge gap between
ethnic groups that closed, see Table 7 for details and
Fig. 8c for a visualization of MLCI results by ethnicity.

Differences in participants’ MLCI pre- and post-survey
scores showed learning gains across a majority of ML
concepts targeted by the curriculum. On average, partici-
pants who identified as female or as a member of a non-
Asian racial minority group showed greater gains in these
target concepts than their white-male and Asian-male
counterparts. For example, female and non-Asian racial
minority group members showed gains in their knowl-
edge of general ML concepts (K1), ML methods (K2), and
societal implications of ML (K4). They also demonstrated
skill in analyzing ML results (S2) (see Supplementary File
5 for details).

While their white-male and Asian-male peers also
showed gains in their general ML knowledge (K1) and
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Table 7 Performance on MLCI by gender and ethnicity
Demographic groups n Pre-survey Post-survey p d
M (sd) M (sd)
Gender
Female 26 0517 (0.134) 0.671 (0.128) < 0.001 0.731 moderate
Male 13 0.594 (0.147) 0.733 (0.139) ns
Non-binary 2 0.512 (0.165) 0.721 (0.263) ns
No answer 1 0.521 0.814 ns
Ethnicity
Non-Asian racial minority 12 0.500 0.111) 0.678 (0.161) < 0.001 1.292 large
White and Asian 24 0.579 (0.155) 0.713 (0.136) <0.001 0.925 large
No answer 6 0.504 0.121) 0.663 (0.089) ns

non-Asian racial minority = non-white and non-Asian, a category that is inclusive of multi-racial ethnicities and people who identify as Hispanic

nsnot significant

ability to analyze ML results (S2), they did not show sig-
nificant gains in their knowledge of the societal implica-
tions of ML (K4). What’s more, on average, males did not
show significant gains in their knowledge of ML meth-
ods (K2), yet they showed gains in their ability to plan
ML projects (S1) (as did white and Asian participants)
to a greater degree than their peers who are female and
non-Asian racial minorities (see Supplementary File 5
for details). These results are explored in “Discussion”
section.

Affective learning outcomes

Changes in participant self-efficacy in learning ML also
varied by gender and ethnicity. Differences in male par-
ticipants’ self-efficacy showed large gains after the Insti-
tute as compared to before the Institute, £(12) = — 2.30,
p=0.040, d= 1.046. While differences in female partici-
pants’ scores were non-significant, £(25) =— 1.946, p=
0.063, yet differences were approaching significance, see
Table 7 for details and Fig. 9a for distributions by gender.

Self-efficacy scores of participants who identified as
non-Asian racial minorities showed moderate gains after
the Institute as compared to before the Institute, £(11) =
—2.215, p=0.049, d = 0.748; as did their white and Asian
counterparts, £(11) = — 2.215, p= 0.049, d= 0.748. On
average non-Asian racial minorities started and ended
the Institute with levels of self-efficacy that were not sig-
nificantly different from their white or Asian counter-
parts, see Table 8 for details and Fig. 9b for distributions
by ethnicity.

Changes in participant interest in ML careers also
varied by gender, but not significantly by ethnicity.
On average, responses from participants, who identi-
fied as female or non-binary, to items on their interest
in ML careers showed moderate positive gains after the

Institute as compared to before the Institute: female,
£(25) = — 3.4152, p= 0.002, d= 0.559; non-binary, £(1) =
— 1.8.143, p= 0.035, d = 0.784. Whereas their male coun-
terparts showed no significant changes in their interest.
Differences in pre-survey scores by gender were not sig-
nificant, which suggests that all participants’ shared simi-
lar levels of interest in ML careers at the beginning of the
Institute, see Table 9 for details and Fig. 9a for distribu-
tions by gender.

RQ 3. What aspects of the curriculum do participants
report as most impactful on their ML knowledge, skills,
interest, and self-efficacy?

Analysis of interviews led to the identification of 9 cur-
ricular activities that interviewees described as positively
impacting their ML knowledge and skills, or their per-
ceptions and attitudes towards ML/AIL Further analysis
of these activities revealed patterns across activities that
touched on similar themes. From these, 4 aspects of the
curriculum emerged as most impactful on participant
ML knowledge, perceptions, and attitudes towards Al
The interview protocol defines curricular “aspects” as,
“parts of SRMP” such as “specific lessons and activities;
hearing from Scientists, professionals and alumni; men-
tor meetings; and the Friday Advisories.” See Supplemen-
tary File 4 for full protocol. Table 10 offers a summary of
the 4 aspects.

Curriculum aspect 1: ML methods

Learning about various ML methods was impactful on
participants’ ML knowledge. In half of the interviews (9
of the 18), interviewees explained that they had known
about AI and ML before the Institute, but only periph-
erally. During the Institute, interviewees gained a deeper
understanding of ML methods and realized the wide
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Fig. 8 a—c Boxplots display differences between pre-Institute
and post-Institute MLCI scores by participant (n =42) URG
membership (TOP, a), self-reported gender (MIDDLE, b) and ethnicity
(BOTTOM, ). A relatively large number of participants chose
to not report their ethnicity; thus, these were grouped as a third
category in (a) and (c).

variety of ways ML can be used in the sciences and in
everyday life (see RQ 1a (i) for excerpts detailing these
revelations). Interviewees mentioned several aspects
of the Institute that helped them reach this level of
understanding.

The participatory simulations of ML methods were
repeatedly mentioned by interviewees. One interviewee,
Emma, shared that it was the Slice of ML activity that
helped her better understand ML methods,
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It was just such an activity that really impacted
what I thought of Al Because the data — like the
data biases, like the data biases, that really help me
understand that Al isn’t perfect, and it very much
depends on data that we give it

Several other interviewees described the un-plugged,
hands-on ANN simulation as an activity that helped
them understand what ML methods and how they work.
Morgan shared, “I feel like that activity in and of itself
helped me a lot to understand the ANN because not only
did it tell us exactly what it did, but it also showed us like
how to do it or how the process works” They appreciated
that it was an interactive activity that helped them under-
stand the differences between the ML methods.

Another frequently mentioned activity was the creation
of the ML Flowchart, which interviewees described as an
opportunity for them to practice using their knowledge
of ML methods to make decisions. Alyssa shared that
they felt creating their own ML flowchart helped them
understand ML at a “better level” They explained,

The flowchart really helped. And then when we all
made our own flowcharts that kind of really helped
because it kind of-- I know when we were doing the
exoplanet, when we split into groups in the last week
when we were doing the exoplanets, and we were dis-
cussing which machine learning techniques can be
used, I kind of always just referred to the flowchart
I had made in my head and be like, oh, okay, this is
what the question is asking for.

For these interviewees, using the flowchart helped
them apply their knowledge and make decisions about
which ML method would be appropriate to use under a
series of given circumstances.

Curriculum aspect 2: Wallace and dragonfilies
Using ML in Wallace coupled with introductory activi-
ties examining a data set of dragonfly wing features had
a positive impact on students’ ML knowledge. Just under
half of the interviewees (8 out of 18) mentioned that
applying their ML knowledge in Wallace had a positive
impact on both their ML knowledge. For example, one
interviewee, Jacob, explained that his understanding of
ML as a tool for prediction emerged from his work with
Wallace to make predictions, using the dragonfly data
set, as to where dragonfly habitats might be located. He
explained, “the prediction aspect really came in when we
did the dragonflies on Wallace, predict their habitat”
Several interviewees explained that it was the pro-
cess of using the dragonfly data set along with Wal-
lace as part of a larger project that was memorable and
impactful for them. For example, Katherine explained
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Fig. 9 a, b Boxplots display distributions of participant (n =42) responses to the APAI ML Career Interest and Self-efficacy subscales by self-reported
gender (TOP, a) and ethnicity (BOTTOM, b). A relatively large number of participants chose to not report their ethnicity; thus, these were grouped

as a third category when reporting distributions based on ethnicity.

that her ML knowledge grew through the process
of cleaning the dragonfly data set, creating graphs to
visualize the data, and then using Wallace to make
predictions, “like predicting if a species would be in
an area in a couple of years or so based off the data”
She added, “It was good to use an example that helped
me understand what the machine learning is and what
it does and how it functions.” For these interviewees
Wallace and the dragonfly data set together seemed
a touchstone or exemplar case that they frequently
returned to as they described their understanding of
ML.

Curriculum aspect 3: data set exploration

Processing data sets to prepare them for ML analysis
helped interviewees better understand concepts related
to bias in ML. In several of the interviews (5 of 18),
interviewees touched on how important interacting
directly with the data was to the development of their
understanding of ML and bias. For example, one inter-
viewee, Michael, described the work of cleaning a data
set to minimize bias, “doing data cleaning and that sort
of stuff. Actually working with datasets gave some sort
of idea of how data bias can be dealt with”
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Table 8 Self-efficacy scores on the pre and post-survey for participants separated by gender and ethnicity

Demographic groups n Pre-survey Post-survey p d
M (sd) M (sd)
Gender
Female 26 3.891 (0.70) 4.154 (0.55) ns
Male 13 3.641 (0.53) 4244 (0.62) 0.040 1.046 large
Non-binary 2 3.667 (0.00) 4.000 (0.00) ns
No answer 1 3.170 4.830
Ethnicity
Non-Asian racial minorities 12 3.778 (0.760) 4.306 (0.647) 0.0488 0.748 moderate
White or Asian 24 3.750 (0.582) 4139 (0.553) 0.020 0.685 moderate
No answer 6 3.945 (0.680) 4.167 (0.421) ns

non-Asian racial minority non-white and non-Asian, a category that is inclusive of multi-racial ethnicities and people who identify as Hispanic

nsnot significant

Table 9 ML career interest scores on the pre and post-survey for participants separated by gender and ethnicity

Demographic groups n Pre-survey Post-survey p d
m (sd) M (sd)
Gender
Female 26 3.760 (0.533) 4028 (0.418) 0.002 0.559 (moderate)
Male 13 4.001 (0.503) 3919 (0.429) ns
Non-binary 2 3.706 (0.167) 3.833 (0.157) 0.035 0.784 (moderate)
No answer 1 3.940 3.390
Ethnicity
Non-white and non-Asian 12 3.778 (0.692) 3.908 (0.460) ns
White or Asian 24 3.887 (0.469) 4.000 (0.426) ns
No answer 6 3.765 (0.241) 3.954 (0.333) ns

non-Asian racial minority non-white and non-Asian, a category that is inclusive of multi-racial ethnicities and people who identify as Hispanic

nsnot significant

Another interviewee, Ashley, explained how examining
real data helped her understand how data sets can intro-
duce bias. One was the dragonfly data set, which helped
her see that an unbalanced data set can introduce bias.
She explained that because there was an over-represen-
tation of dragonflies from the Northern Hemisphere,
“There are more northern dragonflies compared to any-
where else and that caused a bias. When the machine was
using that as a decision tree, that created a bias”

Another example Ashley provided was of the tree data
set, which had several issues with biased data collection
methods. One issue was due to an oversampling of tree
data from one region of a city. She explained, “We also
had more people collecting data about trees in Man-
hattan compared to other boroughs” Together, these
excerpts suggest that Ashley, like several other partici-
pants interviewed, was able to recall specific and clear
examples of how bias can creep into the ML pipeline

through issues in measurement and data collection after
learning to explore data sets.

Curriculum aspect 4: real-world stories and anecdotes

Anecdotal stories about real-world cases in which ML
was used correctly (and incorrectly) were impactful on
participants’ML knowledge, particularly their under-
standing of ML limitations. A few interviewees (4 of 18)
shared that these impactful stories about ML in the real
world came from stories they heard during the Insti-
tute from their instructor. For example, one interviewee,
Riley, shared that an aspect of the Institute that impacted
their understanding of the limitations of ML, particularly
issues related to the un-explainability of black-box sys-
tems, was an anecdotal story shared by their instructor
about a NASA brown dwarf classifier that had become
biased by an over-representation of brown dwarf training
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Table 10 Aspects of the curriculum that interviewees reported as impactful on their ML knowledge

Curriculum aspect 1: ML methods

Learning about various ML methods positively impacted participants' ML knowledge. In half of the interviews (9 of the 18), interviewees explained
that they had some prior knowledge of Al and ML; yet, after the Institute, they felt they understood a wider variety of ways that ML could be used
in general and also in scientific research, and that they had a “deeper understanding” of these methods

Impactful curricular activities: Slice of ML, Neural Networks, and making the ML Flowchart

Curriculum aspect 2: Wallace and dragonfiies

Using a dragonfly data set with Wallace, a no-code online platform, to apply ML methods (i.e, linear regression and PCA) had a positive impact

on interviewees' ML knowledge. Under half of the interviewees (8 out of 18) mentioned dragonflies and Wallace when describing their various types

of ML knowledge, e.g., the purpose of ML, the ML pipeline. While no specific activities were mentioned, the interpretable data set and no-code platform
seemed to be a touchstone, something interviewees referenced to help them explain ML concepts and processes

Curriculum aspect 3: Data sets

Working with data sets in the context of ML projects had a positive impact on interviewees knowledge of bias in ML. Several interviewees (5 of 18),
touched on how important interacting directly with the data was to developing their understanding. Some shared that this helped them understand
how bias could be identified in data, others described how bias could be minimized during data collection and data cleaning. These data sets used
interpretable features (i.e, length and width) and described phenomena that participants could interact with during the Institute

Impactful data sets: Local tree features, dragonfly features
Curriculum aspect 4: real-world stories and anecdotes

While mentioned by only a few interviewees (4 of 18) anecdotal stories about real-world ML use-cases seemed memorable and possibly impactful
on ML knowledge of ML limitations. Interviewees described these stories as example cases from which they learned how ML tools lack human-like

intelligence and insight

images (with the NASA logos printed in the corner of the
picture). They explained,

Someone was trying to make a neural network to
pick out brown dwarfs, I think. It had a very high
accuracy in the training data, but then it did ter-
ribly in the testing data. That was just because all
the brown dwarves in the training set had a NASA
logo in the bottom left corner or something, and then
because it'’s a black box, they didn’t know that was
what it was. They thought it was really accurate
at producing the brown dwarves, but instead they
were just looking up the NASA logo and that kind
of thing.

Other anecdotal stories from instructors emerged in
the interviews. For example, interviewees recalled a story
about an Al tool that had learned to identify types of fish
based on whether they were being held by a person. Yet,
the story about the NASA logo was most popular. Sophia
explained that this story, “really opened my eyes to the
realization that okay, we have to be specific with machine
learning because if not, it’s going to focus on things we
don’t want it to focus on.” Interviewees seemed to draw
from anecdotal stories an understanding that AI/ML sys-
tems do not have human-like intelligence. This under-
standing helped them make sense of ML’ limitations.

Discussion

In this study we used a mixed methods approach to tri-
angulate survey results with interviews and exit tickets
from 42 youth participants. Qualitative analysis offered
several insights into the survey results. First, we found

the curriculum had a large positive impact on partici-
pants’ ML knowledge and self-efficacy. Participants’
descriptions of their knowledge of ML before the Insti-
tute suggest they arrived with a range of prior knowledge;
some were aware that AI/ML is involved in functions
they use daily in social media and on their phones, oth-
ers had some knowledge of ML methods used in everyday
technologies. Participants explained that over the course
of the Institute they developed a new understanding of
the ways that a variety of ML methods can be used in
scientific research as well as in everyday life. Participants
shared that they enjoyed the participatory simulations in
the Institute, they appreciated the creation of flowcharts
to reinforce their ML knowledge and skills, and they val-
ued the opportunity to practice decision making about
whether ML could and should be used.

Emerging evidence of youth understanding of bias in ML
from exit tickets

Results also showed large positive gains across the major-
ity of the target learning outcomes. Interestingly, surveys
found no evidence of gains across two key targets: (1)
knowledge of bias in ML and (2) the skill of applying ML
in science. This finding is noteworthy given that one of
the curricular goals was to prepare high school students
to use ML methods in the context of natural science, with
an understanding of how ML systems can come to be
unpredictably biased. There are several plausible expla-
nations for these outcomes, such as (a) imperfect align-
ment of the instruments with the curriculum, (b) low
fidelity of curriculum implementation (e.g., pedagogy
was not aligned with the learning objectives), or (c) low
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participant engagement. Exit ticket responses suggest
that (a) is most likely and there may have been an issue
of alignment between the instruments’ sensitivity to the
curriculum’s impact.

A majority of exit ticket respondents correctly
described examples and types of bias in ML, as well as
other ML limitations. They wrote justifications for argu-
ments for and against using ML in various scientific and
everyday contexts. Answers drew from technical, ethical,
and cultural perspectives, suggesting an emerging under-
standing of “bias” grounded in the ethical issues of bias
(i.e., impacts on communities) as much as in technical
issues (i.e., unbalanced data sets). Respondents tended
to correctly answer exit ticket questions about which ML
methods should be used in a given context with greater
frequency than they correctly answered questions about
which ML methods can be used. Future research into
youth conceptualization of bias in ML systems may offer
insights into how youth make-sense of ethical and tech-
nical issues in ML systems.

Interviews suggest a shift in youth interest in ML careers
Survey responses showed little change in another con-
struct of interest, youth interest in ML careers, yet inter-
views show that the nature of participants’ interest in ML
careers evolved over the course of the Institute. At first,
interviewees were interested in ML careers out of con-
cern as to how ML would impact the workforce. After the
Institute, interviewees expressed interest in ML careers,
because they wanted to learn more about opportunities
to use ML to (a) advance their career or (b) help others.
These are youth of a generation of generative Al (Chan
& Lee, 2023), thus interest in ML/AI is natural and per-
haps explains the initial high interest in ML careers.
However, that interest became more nuanced as partici-
pants’ gained knowledge of ML methods, bias, and appli-
cations in scientific research during the Institute. Further
research is needed to investigate the subtleties of these
changes in participants’ interests and other affective
learning outcomes.

Differential impacts of curriculum on youth by URG
membership

A major focus of this work was to design the Al cur-
ricular content for inclusivity and accessibility such that
all learners, regardless of their gender, ethnicity, or prior
knowledge, would be able to engage and learn from the
materials. The participant group primarily included
youth from URGs in STEM. Analysis of concept inven-
tory results revealed that participants from URGs and
non-URGs both show significant gains in ML knowl-
edge and skills according to MLCI scores. While both
groups experience moderate to large effects, the effect
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size for youth from URGs is highest. Aligning with prior
STEM education literature (Whitcomb & Singh, 2021),
we found that participants from URG and non-URGs
had significantly different prior knowledge, where par-
ticipants from URG’s pre-survey scores were lower than
those from non-URG’s pre-survey scores. This difference
persisted in post-survey results as well, which suggests
that while our program significantly improved URG par-
ticipant ML knowledge and skills, it did not close the gap
observed between scores from URG and non-URG mem-
bers. While white and Asian males began and ended the
program with higher scores than their counterparts from
URGs, results show that the curriculum decreased the
gender and race gap in ML knowledge.

Further analysis across demographic groups by eth-
nicity and gender revealed interesting differences. For
example, women and non-Asian participants showed
significant gains in knowledge of societal implications of
ML, while their white-male counterparts did not. These
differences were higher between ethnic groups than
between gender groups. This distinction aligns with the
curricular content, which focuses more on societal impli-
cations of Al for under-represented ethnicities than for
under-represented gender identities. Furthermore, this
finding agrees with prior research suggesting that youth
may be drawing from their own lived social experiences,
such as encounters with societal biases, as they make and
making connections to their newly gained ML knowledge
(Solyst et al., 2023). On the other hand, changes in partic-
ipant interest in ML careers varied by gender, but not sig-
nificantly by ethnicity. Responses from participants who
identified as female or non-binary demonstrated a posi-
tive shift in interest in ML careers, while responses from
their male counterparts did not. This finding is largely
explained by pre-survey differences, where female and
non-binary participants’ expressed interest in ML careers
was significantly lower than that of their male counter-
parts upon beginning the Institute. This pattern in our
data mirrors the findings from prior research, which
show similar gender differences in STEM educational
and career choices among high school age youth (Chen
et al,, 2024; Sadler et al., 2012; Wang & Degol, 2013). Our
work shows that while similar patterns exist in ML edu-
cation, there is potential for these gender gaps to close.
While youth participants demonstrated overall shifts in
ML knowledge and attitudes, differences across groups
warrant for further research on curricular elements that
may interest or benefit specific groups.

Implications for policy and practice

+ When considering recommendations for high school
science curricula or grade-level standards for Al edu-
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cation, policy makers should take into account that
high school age youth can learn and develop self-
efficacy in learning foundational ML knowledge and
skills through engagement with a science-integrated
ML curriculum.

+  When evaluating curricula, policy makers and school
leaders should consider the demographic groups
of participants. Our findings suggest that ML cur-
ricula might have differential effects on cognitive and
affective learning outcomes (i.e., ML knowledge and
skills, self-efficacy in learning ML, and interest in ML
careers) of youth belonging to different demographic
groups.

+ When determining whether a curriculum effectively
impacts youth knowledge of ML bias, policy makers
should be aware that measuring this construct may
be particularly challenging. Our findings suggest the
evaluation of a curricular impact on youth knowl-
edge of bias in ML may require triangulation across
multiple measures, including open ended response
questions and retrospective, individual interviews.

Conclusions

In this paper, we present a 4-week science-integrated high
school ML curriculum that aims to prepare youth for a
scientific research mentorship program in a museum
setting. The curriculum leverages unplugged resources,
interactive tools, scientific data sets, embodied learning,
active learning and project-based learning methods to
make advanced concepts accessible to high school youth.
Participant responses to pre-/post-surveys, exit tickets,
and retrospective interviews offer evidence that the cur-
riculum achieves three key goals: (1) increases knowl-
edge of ML methods and societal implications of ML as
well as skills in planning and analyzing ML projects and
results; (2) decreases the URG gap in ML knowledge; and
(3) positively impacts students’ self-efficacy in learning
ML. This work is a unique contribution to ML learning
in informal spaces, offering findings from an evaluation
of the impacts of a novel curriculum on ML in the Nat-
ural Sciences on ML knowledge, skills and attitudes for
diverse high school learners.

Limitations and future work

Triangulation of non-significant survey results with exit
tickets and interviews suggests that, at the time of this
publication, the current version of the MLCI may not be
aligned with two of the ML concepts targeted by the cur-
riculum: (1) knowledge of ML bias and (2) application of
ML in the sciences. Alternatively, it may be that advanc-
ing knowledge of bias in ML and applications of ML in
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scientific research among high school age youth is a par-
ticular challenge for ML educational interventions.

We are continuing our analysis to explore these out-
comes. For example, after participants complete an aca-
demic year of mentored research, we will again measure
their understanding of bias in ML and their skill in apply-
ing ML to scientific research. It may be that after a year
of studying how to apply ML in the context of scientific
research, participants’ knowledge and skills in these areas
may improve. In future work, we will also further hone
the MLCI, with particular attention to items on bias
when administered to larger and more diverse audiences.

In the long term, we aim to make our learning materi-
als more accessible to science educators in both formal
and informal settings. This would involve scaffolding for
various levels of expertise, documentation and distri-
bution efforts, and modifications to the curriculum for
different subject domains. Continual effort is needed to
keep learning materials relevant as algorithms for scien-
tific research and analysis evolve rapidly. Finally, there is
a need for analyzing long-term influence of the curricu-
lum on youths’ ML knowledge, skills, attitudes and career
interests.
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