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Abstract 

Purpose  This study evaluates the effectiveness of a machine learning (ML) integrated science curriculum imple-
mented within the Science Research Mentorship Program (SRMP) for high school youth at the American Museum 
of Natural History (AMNH) over 2 years. The 4-week curriculum focused on ML knowledge gain, skill development, 
and self-efficacy, particularly for under-represented youth in STEM.

Background  ML is increasingly prevalent in STEM fields, making early exposure to ML methods and artificial intel-
ligence (AI) literacy crucial for youth pursuing STEM careers. However, STEM fields, particularly those focused on AI 
research and development, suffer from a lack of diversity. Learning experiences that support the participation 
of under-represented groups in STEM and ML are essential to addressing this gap.

Results  Participant learning was assessed through pre- and post-surveys measuring ML knowledge, skills, and self-
efficacy. Results from the implementation of the curriculum show that participants gained understanding of ML 
knowledge and skills (p < 0.001, d = 1.083) and self-efficacy in learning ML concepts (p = 0.004, d = 0.676). On average, 
participants who identified as female and non-white showed greater learning gains than their white male peers (ML 
knowledge: p < 0.001, d = 1.191; self-efficacy: p = 0.006, d = 0.631), decreasing gaps in ML knowledge, skills, and self-
efficacy identified in pre-survey scores.

Conclusions  The ML-integrated curriculum effectively enhances students’ understanding and confidence in ML 
concepts, especially for under-represented groups in STEM, and provides a model for future ML education initiatives 
in informal science settings. We suggest that policy makers and school leaders take into account that high school age 
youth can learn ML concepts through integrated curricula while maintaining an awareness that curriculum effective-
ness varies across demographic groups.
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Introduction
As the use of Artificial Intelligence (AI) continues to 
expand across professional, personal, and academic 
domains, there is a mounting need for students at the 
pre-college level to develop AI literacy (Casal-Otero 
et al., 2023). AI literacy is a set of competencies that ena-
bles the critical evaluation of AI technologies, effective 
collaboration with AI, and the use of AI as a tool (Long 
& Magerko, 2020). In addition to these competencies, 
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self-efficacy has been identified as a precursor to AI tool 
use in undergraduate students (Falebita & Kok, 2024), 
and in engagement among pre-service teachers (Ayan-
wale et  al., 2024). The successful development of AI lit-
eracy is an interdisciplinary endeavor, incorporating 
data science, computational thinking and disciplinary 
knowledge (Ng et  al., 2021). One essential sub-domain 
of AI is machine learning (ML). ML involves the use of 
algorithms to"learn"or the use of models to draw infer-
ences from large data sets and make accurate predic-
tions without requiring explicit instructions. A diverse 
set of ML methods have been developed to facilitate this 
work (Mahesh, 2020). The centrality of ML in AI inno-
vations makes it a reasonable topic for K- 12 AI instruc-
tion, especially at the high school level (Lao, 2020; Sanusi 
et  al., 2023; Touretzky et  al., 2023). This paper reports 
the outcomes of an ML-integrated science curriculum 
for high school youth delivered in an informal learning 
environment.

A recent review of K- 12 AI education found that the 
integration of AI methods into existing curriculum is a 
prerequisite for success (Lee & Kwon, 2024). While ML 
can be introduced to youth with a variety of framings, 
scientific inquiry (including such practices as posing 
questions, designing and conducting investigations, and 
analyzing and interpreting data) is a particularly good fit 
(Zhou et al., 2021). ML knowledge and skills are increas-
ingly used by non-computer science (CS) experts in a 
variety of scientific fields, including the Natural Sciences, 
that involve the organization and processing of large and 
complex data sets (e.g., Desjardins-Proulx et  al., 2019; 
Longo et  al., 2019). ML methods can handle complex 
non-linear relationships among hundreds of variables 
and are especially well-suited for making accurate predic-
tions from complex data without explicit programming 
(Kashinath et  al., 2021; Mahesh, 2020). Data sets with 
such complexity are commonplace in STEM fields, i.e., 
astrophysics (Longo et  al., 2019) and genomics (Eraslan 
et  al., 2019). Preliminary approaches to integrating ML 
in high school science curricula have framed ML meth-
ods as a set of tools for extracting insights from large data 
sets (Lee & Zhang, 2022), suggesting that high school stu-
dents can learn ML in the context of STEM learning, and 
there are several existing efforts in advancing K- 12 ML 
literacy, including designing curriculum (Lee et al., 2021), 
standards (Touretzky et al., 2023), and tools (Zhang et al., 
2024a, 2024b).

Yet few of these literacy efforts focus on integrating ML 
and scientific research, despite the increasing prevalence 
of AI in scientific discovery. To prepare high school youth 
for conducting scientific research in the natural sciences, 
it is essential for them to gain the knowledge and self-effi-
cacy around using ML methods in the context of natural 

science, including forming meaningful scientific ques-
tions, analyzing natural science data sets, making scien-
tific predictions, and understanding bias in ML.

One issue that plagues ML and STEM fields is the 
lack of diversity, with women and members of ethnic 
minority groups at risk of exclusion (West et  al., 2019; 
Zhang & Barnett, 2015). In the case of ML, additional 
problems include the creation of biased algorithms and 
biased data sets (Leavy, 2018) that automate discrimina-
tory practices in science and society (Shrestha & Yang, 
2019). The lack of representation introduces barriers for 
youth with historically marginalized identities to envi-
sion a future for themselves within STEM or ML careers 
(Zhang & Barnett, 2015). We posit that informal learning 
environments—such as museums and science centers—
provide a unique and strategic opportunity for access to 
and engagement with STEM learning (Adams & Gupta, 
2013), including ML and AI concepts. Informal science 
learning environments are incubators for advancing our 
understanding of how to learn with emerging technolo-
gies free from state standards that can be applied to the 
formalized K- 12 system (Chaffee et  al., 2021). Equally 
important, in informal learning settings students are able 
to engage in science as a part of their social interactions, 
increasing their comfort with STEM subjects while fos-
tering community (Adams et al., 2012).

For 15 years, the Science Research Mentorship Pro-
gram (SRMP)—a flagship STEM workforce development 
program of the American Museum of Natural History 
(AMNH)—has been increasing access to science fields 
and careers for New York City high school students 
from historically marginalized communities by provid-
ing authentic science research opportunities and mean-
ingful mentorship in a museum setting. SRMP consists 
of a Summer Institute, where youth are introduced to 
research skills and begin participating in a community of 
practice (Wenger, 1999), consisting of scientists, peers, 
alumni, and program staff. The youth participating in 
SRMP then work in small groups to conduct a year of 
mentored scientific research on a particular natural sci-
ence topic under the guidance of a scientist mentor.

We developed a new science-integrated ML curricu-
lum for the SRMP Summer Institute, which introduces 
high school students to key ML skills and concepts in the 
context of scientific inquiry, called SRMPmachine. This 
new SRMP Summer Institute (hereafter referred to as 
the Institute) provides opportunities for high school age 
youth to develop AI literacy as they (1) evaluate and apply 
ML methods in a data science and scientific context, (2) 
use, modify, create, and evaluate ML models using both 
code and interactive tools, and (3) identify and propose 
mitigation strategies for both data bias and societal bias 
in the ML pipeline.
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While several K- 12 AI curricula have been developed 
to introduce technical, ethical, and career aspects of AI 
and ML to middle school (Zhang et  al., 2023) and high 
school students (Kaspersen et  al., 2022; Sanusi et  al., 
2023), none of the existing ML curricula emphasize sci-
entific inquiry with the benefits of an informal learning 
environment. In this paper, we present the theoretical 
framework that informed the design of the Institute and 
identify key characteristics of the curriculum that best 
supported youth learning. We share results of quanti-
tative analysis measuring learning outcomes as well as 
qualitative analysis highlighting aspects of the curricu-
lum that influenced students’ ML learning.

Literature review
K‑ 12 AI/ML education and curriculum
Expanding applications of AI and ML (AI/ML) in profes-
sional fields have made AI literacy increasingly impor-
tant for youth preparing to enter the future workforce 
(Touretzky et al., 2019). In response to this need, several 
K- 12 AI/ML curricula have emerged in recent years. For 
example, Lee et al. (2021) developed a middle school AI 
curriculum focusing on students’ AI knowledge, atti-
tudes, and career interests around AI. They primar-
ily engaged youth that are under-represented in STEM, 
including non-male BIPOC youth. Through interactive 
activities, games, and ethical inquiries, students gained a 
deeper understanding of AI knowledge, applications and 
skills. Similarly, several other K- 12 AI curricula focus on 
developing students’ personal competencies, including 
their competence, attitude (Su & Zhong, 2022), motiva-
tion towards AI learning (Chiu et al., 2023), creativity (Ali 
et al., 2019), career interests (Zhang et al., 2023), and eth-
ical implications of AI (Williams et al., 2023). Most of the 
AI/ML curricula for high school youth emphasize ML 
basics and neural networks (Marques et  al., 2020). Our 
work seeks to contribute to this burgeoning field an AI/
ML curriculum that integrates principles of equity/ethics 
and STEM education for high school youth.

Equity in K‑ 12 AI/ML education
Many K- 12 AI/ML curricula have also specifically 
focused on the ethical implications and justice frame-
works around AI. Some have argued that AI education 
cannot happen without consideration of ethics and equity 
(Walsh et al., 2022). While the field agrees on the impor-
tance of ethics and equity in K- 12 AI education, the 
understanding of how to design AI curriculum for equity 
and social justice has yet to settle on a particular method. 
In recent research in AI education, ethics and equity have 
been considered (a) a topic of instruction, (b) a pedagogi-
cal method, (c) a co-development method, or all of the 
above. For example, Lee and Zhang (2022) integrate ethic 

related topics into their AI curriculum to motivate learn-
ing and enable learners to see the relevance of AI in their 
everyday lives (Saltz et  al., 2019). Yet, they also design 
their curriculum to be equitable by increasing accessibil-
ity through hands-on experimentation and participatory 
simulation (Squire & Klopfer, 2007). Other AI curricu-
lum developers have designed curricula to be equita-
ble through project-based learning (e.g., Aliabadi et  al., 
2022; Walsh et  al., 2022). Centering algorithmic justice, 
Walker et  al. (2022) leveraged project-based learning to 
enable students to mitigate systemic oppression through 
data activism. Their data science program taught African 
American students how to leverage their technical skills 
in service of projects that are more authentic and relevant 
to them. Centering students as co-developers of content 
is a practice used by Lin et al. (2022) who co-constructed 
their AI curriculum with traditionally marginalized stu-
dents. Similarly, Long and Magerko (2022) conducted 
codesign activities with family groups to ensure their 
definitions of AI literacy were useful to learners in their 
everyday lives. These approaches to equity in AI educa-
tion are interwoven in Ali et al. (2021), who used interac-
tive simulation and experiential learning to help a diverse 
group of students understand topics such as the ethical 
and societal implications of generative AI that may affect 
them, such as the spread of misinformation through 
Deepfakes and relate these topics to their own lives. 
These learning interventions not only led to significant 
shifts in students’ knowledge and applications of AI, but 
significant shifts in their attitudes towards AI (Lee et al., 
2021; Williams et al., 2023; Zhang et al., 2023). This work, 
which frames equity and ethics as a topic, pedagogy, and 
method, informed the development of our curriculum.

AI in K‑ 12 STEM education
In spite of the value of AI/ML in STEM, emphasis has 
primarily been placed on providing professional develop-
ment for K- 12 STEM teachers in AI/ML and supporting 
the integration of AI tools into STEM classes. For exam-
ple, Zhou et  al. (2021) introduced elementary, middle, 
and high school math and science teachers to a K-means 
clustering learning tool and supported the teachers in 
developing lesson plans on topics, such as flood resist-
ance, evolution of biological characteristics, and heart 
disease risk factors. The ML4STEM program expanded 
the reach of this tool and involved K- 12 STEM educa-
tors in the co-development of additional ML-integrated 
STEM instruction (Tang et  al., 2023). In a similar vein, 
Lee and Perret (2022) developed an AI and Data Sci-
ence professional development program to provide high 
school math and science teachers with both AI content 
knowledge and an understanding of bias in AI. This 
program also aimed to support STEM teachers in the 
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integration of AI methods into their classrooms. Most 
recently, Park et  al. (2023) provided professional devel-
opment to three science teachers in secondary schools 
in Singapore to introduce a new lesson package that 
introduced their students to ML methods. In the infor-
mal STEM learning space, the Florida Museum recently 
launched Shark AI, a program which prepares Flor-
ida middle school teachers to use ML to identify fossil 
shark teeth. Teachers work with museum scientists and 
engineers to create their own lesson plans using these 
resources (Waisome et al., 2023). The greatest distinction 
between these efforts and our work is the target audi-
ence. We designed and delivered a science-integrated 
curriculum for high school youth themselves rather than 
in the form of professional development for K- 12 STEM 
teachers. The emphasis on research methods to prepare 
youth for a yearlong mentored research experience is also 
a unique aspect of our curriculum.

Theoretical framework
We designed the Institute curriculum in alignment with 
several theoretical frameworks, including the AI literacy 
competencies developed by Long and Magerko (2020), 
and the ML education Framework developed by Natalie 
Lao (2020). Lao draws from four established theories of 
learning and incorporates them into the Use–Modify–
Create learning progression (Lee et al., 2011) to assemble 
a scaffold for transforming learners from passive users 
to an active role as tinkerers and makers of ML tools, 
emphasizing knowledge, skills, and attitudes towards 
ML. As an additional layer to the Use–Modify–Create 
progression, learners must know how to use ML models 
ethically, as well as how to critically evaluate these mod-
els and the algorithms used to generate them (Long & 
Magerko, 2020). Finally, the addition of “Choose” after 
the Use–Modify–Create progression, where students 
must select suitable machine learning models, has been 
shown to help students deepen their understanding of 
ML concepts (Martin et al., 2020).

To support the implementation of the ML Education 
Framework in a high school ML curriculum, Lao intro-
duces several important considerations for teaching ML 
to high school students, many of whom will be intro-
duced to the topic for the first time. In particular, enac-
tive mastery, where learners successfully perform tasks 
related to the learning objectives, is considered necessary 
for the development of self-efficacy (Lao, 2020). The strat-
egies found to effectively support high school students in 
reaching a state of enactive mastery in ML as detailed in 
Lao (2020) correspond to the key design considerations 
(DCs) for teaching AI Literacy identified by Long and 
Magerko (2020). As shown below, we aligned the Long 
and Magerko (2020) AI Competencies with the Lao ML 

Education Framework (2020) to form learning objectives 
for the Institute curriculum (Table 1).

Participation in informal science education (ISE), 
which entails voluntary participation in science learning 
outside of school, is associated with increased interest in 
science and STEM professions (Bell et  al., 2009). How-
ever, not all people experience these benefits equally and 
institutions such as science museums have the respon-
sibility of explicitly supporting the participation and 
inclusion of non-white communities (Dawson, 2014). To 
support the development and implementation of a cur-
riculum for the Institute that addresses these concerns, 
we applied the lenses of Shifting Narratives and Author-
ity Sharing from the YESTEM Core Equitable Practices 
(Archer et al., 2022; YESTEM Project Team, 2021). This 
equity-informed identities-in-practice framework cent-
ers students’ developing identities in the context of sci-
ence communities of practice (Barton et  al., 2008). The 
Authority Sharing lens in particular dovetails with the 
Community Cultural Wealth Theory consisting of aspira-
tional, linguistic, familial, social, navigational, and resist-
ant capital (Yosso, 2005). The Shifting Narratives lens 
reframes learning experiences from perspectives other 
than those dominant in the field of ML.

Curriculum overview
Youth enrolled in the Institute attend five 5-h sessions 
for the first, second, and fourth weeks (75 total contact 
hours) with the third week devoted to a 4-day excursion 
to a biological field station. In this section, we present 
a summary of the overall curriculum, detailing each of 
4  weeks of instruction, and highlighting aspects of the 
curriculum which participants identified as particularly 
impactful in helping them understand ML concepts and 
apply ML knowledge and skills.

Week 1: In the first week, youth are introduced to the 
program and begin developing a community of prac-
tice. The instruction in this week is informed by the 
YESTEM Core Equitable Practice of Shifting Narratives. 
For example, a discussion about the nature of science is 
framed using the indigenous metaphor of the three sis-
ters’ garden. The ML pipeline (Fig. 1) is introduced along-
side Teachable Machine, serving as a physically enacted 
learning experience of the process of AI/ML. In addi-
tion, youth explore statistical, human, and societal biases 
in data, algorithms, and predictions. During this week, 
youth also perform data cleaning, review basic statistics 
skills, and apply linear regression models to make pre-
dictions using data sets of New York City street trees 
and dragonfly wing morphology. These data sets exem-
plify bias in data collection (e.g., more street trees were 
measured in Manhattan than outer boroughs and more 
dragonflies were observed in North America than other 
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regions). The data is also tangible and interpretable, 
e.g., dragonfly wings can be held and measured through 
hands-on activities.

Week 2: Youth learn about two additional ML methods 
in the second week of the institute: decision trees and 
Principal component analysis (PCA). This week involves 
a much heavier lift in terms of assimilating and applying 
ML knowledge and skills. Youth progress from the “Use” 
stage to “Modify” and “Create” in the Use–Modify–Cre-
ate progression. They have the opportunity to experiment 
with different algorithmic parameters for decision trees 
using Google Colab (Fig. 2) while choosing from among 
several different learning scaffolds and strategies.

Later, in the second week, youth generate their own 
species distribution model for a given dragonfly species 
using the Wallace platform, a GUI for an open source R 
library that gives science researchers access to large pub-
lic biodiversity databases (Kass et al., 2023) (Fig. 3). Stu-
dents also critically evaluate ML methods by assessing 
the performance of their models. This week also features 
tangible data sets, including animal skull morphol-
ogy (PCA) and dragonfly wing measurements (decision 
trees).

Week 3: The third week of the Institute consists of 
a 4-day excursion to a biological field station. Youth 
have opportunities to socialize and build community in 

Fig. 1  Machine learning pipeline used in the institute. This framework was developed to help students integrate AI concepts and AI ethics. 
Examples of possible statistical and societal bias are included for each step. Participants are encouraged to identify the steps from the pipeline 
for each ML method introduced in the curriculum.

Fig. 2  Excerpt from the decision tree Colab notebook. Youth were invited to self-sort into one of three stations: self-paced, instructor-guided small 
group learning, and pair-programming to complete the Colab, giving them choice and agency in how they chose to encounter new material.
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addition to gaining hands-on field research experience. 
All youth join two field science activities: (1) setting up 
camera traps to collect photographs of wildlife and trap-
ping and releasing turtles to record their size and (2) 
additional activities according to their interests and pre-
ferred level of physical intensity on topics including geol-
ogy, insect identification, and archaeology field methods. 
All youth attend a short presentation about AI and scien-
tific fieldwork.

Week 4: The fourth and final weeks of the institute 
introduce the last ML method of the curriculum: arti-
ficial neural networks (ANNs). Embodied interactions 
are again featured during the hands-on simulation of an 
ANN (adapted from the Artificial Neural Network Game 
reported in Zhang et al., 2023). The activity involves sim-
ulating the process of training an ANN involving feed-
forward, evaluation, and back-propagation with youth 
acting in the roles of input, hidden, and output layers. 
Later in the week, youth compare and contrast the ML 
methods they learn about over the course of the pro-
gram and create a flowchart to decide when to use each 
method to answer a scientific question (Fig.  4). This 

week also features the YESTEM Core Equitable Practice 
of Authority Sharing, allowing students to choose their 
own data set to work with based on their subject matter 

Fig. 3  Screenshot of the Wallace platform showing the data thinning process. Youth followed a modified version of the machine learning 
pipeline, with steps including obtaining data, processing data, creating and evaluating a set of possible models using maximum entropy analysis, 
and visualizing the final predictions.

Fig. 4  Sample flowchart
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interests. The key theme of Bias in ML Systems is a pri-
mary focus this week. For example, artifact exploration 
(including apps and readings) shifts the responsibility of 
teaching about how AI is biased from students’ personal 
experiences to more objective representations of the bias 
and potential for harm.

Methods
Participants
For this study, high school age youth were recruited to 
the Institute through the same application and enroll-
ment procedures used by SRMP in years prior. Youth 
who had previously participated in AMNH programming 
or were students from partner schools or community 
based organizations were eligible. Participants (n = 42) 
were majority 11 th grade (72%, n = 30) females (60%, 
n = 26), whose self-reported ethnicity was 28% white 
(12), 20% South Asian (9), 19% Black or African Ameri-
can (8), and 16% Other (7) including American Indian or 
Alaska Native, Middle Eastern or Persian, Native Hawai-
ian or other Pacific Islander. Sixteen percent identified as 
multiracial (7). Fourteen percent preferred not to share 
their race/ethnicity (6). Fifty-seven percent (24) reported 
being multilingual. Thirty-three percent identified as His-
panic (14).

A third of all participants (33%, n = 14) reported living 
in households with an annual income of $50,000 or less, 
which was below the poverty index for the region. Other 
participants reported living in households with a range 
of incomes: 25% (11) reported annual incomes ranging 
$50,000–$99,999; 4% (2) reported annual incomes rang-
ing $200,000 and up. Twenty-eight percent (12) preferred 
not to share their household income.

Participants tended to report living in households in 
which at least one member of the household held either 
a 4-year degree (i.e., BA or BS) (19%, 8), a Master’s degree 
(19%, 8) or had completed “some college” with no degree 
earned (17%, 7). However, a relatively large minority, of 
14% (6) reported the highest degree in their household 
was a High School Diploma or Equivalent (e.g. GED). See 
Supplementary File 1 for detailed demographics.

For the purposes of evaluating the curricular impact 
on target outcomes among participants from under-
represented groups (URGs) in STEM, AI, and ML, we 
define URGs as any non-white or non-Asian male. URG 
is inclusive of participants who report a low socio-
economic status (i.e., below the poverty index for the 
region), multi-racial identity (i.e., two or more reported 
ethnic identities listed), or Hispanic cultural background, 
see Table  2 for details on URG participant demograph-
ics.  Group membership overlaps allowing for intersec-
tionality, e.g., a non-white, multiracial individual with 

low socio-economic status would be counted in three 
categories, but only once in the total population of URGs 
in STEM.

We also examine the curricular impacts on target 
learning outcomes on two URG sub-categories: gender 
and ethnicity. We define our gender categories as three 
self-identified groups: (1) female, (2) male, and (3) non-
binary. We define our ethnic categories as comprising 
two groups: (1) white or Asian; (2) non-white and non-
Asian, a category that is inclusive of multi-racial ethnici-
ties and people who identify as Hispanic. We refer to this 
second ethnic category hereafter as non-Asian racial 
minority. We make this distinction to acknowledge that 
people of Asian descent, as well as people who identify 
as white, are over-represented in AI/ML, CS and STEM 
fields relative to the other ethnic populations (National 
Science Foundation, 2023). While people who identify 
as white make-up a near majority of the AI field, the 
representation of people of Asian descent in this field is 
likely to increase given recent patterns in the award of CS 
degrees and hiring in new AI jobs (Maslej et al., 2024).

Research questions
Analysis of curricular outcomes involved a mixed-meth-
ods approach (i.e., using survey, exit ticket, and interview 
data) to determine whether the curriculum effectively 
achieved its goals as a ML educational curricular inter-
vention for high school age youth. To this end, evalua-
tion focused on measuring: participant learning outcomes 
specific to the cognitive (i.e., knowledge and skills) and 
affective learning outcomes (i.e., self-efficacy in learning 
ML and interest in ML careers) that the curriculum was 
designed to impact the alignment of learning objectives 
with the curriculum’s theoretical framework (see Table 1) 
via participant learning outcomes (RQ 1, see below); con-
tent quality, which is defined as the inclusivity and acces-
sibility of the curricular content and activities such that 
all learners, regardless of their gender, ethnicity, or prior 
knowledge, are able to engage and learn from the materi-
als (RQ 2); aspects of the curriculum that most impacted 
youth cognitive and affective learning outcomes (RQ 3). 

Table 2  Proportion of participant population from under-
represented groups (URGs) in STEM

Demographics n %

Non-White Male, Non-Asian Males 30 71.43

Low Socio-Economic Status 14 33.83

“Two or more” ethnic identities listed 8 19.052

Hispanic selected 14 33.38

Total Population of URGs in STEM 33 78.57
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From these goals, the following research questions were 
developed,

RQ 1a. To what extent does participants’ (i) ML 
knowledge and skills, (ii) self-efficacy in learning ML, 
and (iii) interest in ML careers change after experi-
encing the Institute curriculum?
RQ 1b. How does participation in the Institute 
impact participants’ understanding of target curricu-
lum concepts?
RQ 2. To what extent do participant responses vary 
across participant demographics, i.e., gender or eth-
nicity?
RQ 3. What aspects of the curriculum do partici-
pants report as most impactful on their ML knowl-
edge, skills, interest, and self-efficacy?

Instrumentation
At the beginning and conclusion of the Institute, the 
research team administered a pre- and post-survey. The 
survey comprised items designed to measure both cogni-
tive and affective learning outcomes.

Cognitive outcomes were measured using the ML 
Concept Inventory (MLCI), which underwent prelimi-
nary validation over the course of this study. The MLCI 
(35 items) was found to have good internal consistency 
(Cronbach’s alpha = 0.763). Content validity was estab-
lished through a review by 9 ML education researchers, 
who confirmed that the items were relevant to important 
concepts in ML education and that item responses would 
provide evidence of ML knowledge and skills. Agreement 
was established using quantitative content validity analy-
sis methods established by Zamanzadeh et  al. (2015). 
This analysis was followed by a series of semi-structured 
interviews in which each panelist was individually inter-
viewed about their item ratings as a form of quality con-
trol. Criterion validity was assessed by correlating scores 
on the MLCI scores with scores on the validated AI Con-
cept Inventory (Zhang et al., 2024a, 2024b). The correla-
tion coefficient was significant (p < 0.01), indicating that 
the MLCI provides a valid measure of ML knowledge and 
skills. However, it is important to note that further analy-
sis with a larger sample population is needed to establish 
the instruments’ construct validity. Furthermore, addi-
tional work is needed to assess the validity of the MLCI 
in different populations.

Affective learning outcomes were measured, at the 
same time as the administration of the MLCI, using a 
survey of participants’ Attitudes and Perceptions of AI 
(APAI). This instrument comprised a collection of scales 
from previously validated instruments, including the AI/
ML Career Interest scale (17 items) (Cronbach α = 0.94) 

(Zhang et  al., 2024a, 2024b). The APAI also an adapted 
version of the Self-efficacy in Learning Medical AI (Cron-
bach α values ranged from 0.85 to 0.98) (Li et al., 2022) 
was used as our scale of Self-Efficacy in Learning ML (6 
items). See Supplementary File 2 for details on each of 
the APAI items.

Exit tickets
In addition to pre- and post-surveys, exit tickets were 
administered as a formative assessment at the end of 
each day of instruction. Exit tickets used both closed and 
open items (see Supplementary File 3 for items). They 
were administered as part of a daily routine, through a 
link provided with the curricular materials. The Insti-
tute schedule allotted 10 min at the end of each day exit 
ticket completion. Anyone who finished early was asked 
to wait for the full time as a deterrence from rushing to 
finish. Only 2 of the 15 total exit tickets were examined 
for this paper. They were selected for analysis, because 
they included sets of items that prompted participants to 
apply their ML knowledge and skills using open-ended 
responses, which afforded qualitative triangulation of 
quantitative results.

Interviews
Immediately following the Institute (1–2 weeks after-
wards), the research team conducted semi-structured 
retrospective interviews with 18 randomly sampled 
participants. Interviewees were demographically rep-
resentative of youth who participated in the Institute. 
The protocol prompted interviewees to compare their 
understandings, perceptions, and attitudes towards ML 
before the Institute to those they had after the Institute. 
If interviewees described a change (positive or negative), 
they were asked to identify aspects of the Institute (i.e., 
activities, materials, interactions with people) that may 
have impacted that change (full protocol available in Sup-
plementary File 4). Qualitative analysis of interviews used 
a reflexive thematic analysis approach with a deductive 
orientation (Braun & Clarke, 2022), which focused the 
analysis on impactful aspects of the curriculum.

Planned analysis
Analyses used quantitative methods to compare differ-
ences between MLCI and APAI pre- and post-survey 
responses from all participants. This was followed by 
an analysis using participant self-reported gender and 
ethnicity to determine whether there were differential 
impacts of the curriculum on cognitive and affective 
learning outcomes across demographic subgroups. Anal-
ysis then triangulated quantitative results with qualita-
tive data from post-Institute interviews and open ended 
responses to select exit ticket items. Qualitative analysis 
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was used to identify aspects of the curriculum that were 
particularly impactful on target cognitive and affective 
learning outcomes.

Results
RQ 1a. To what extent does participant (i) ML knowledge 
and skills, (ii) self‑efficacy in learning ML, and (iii) interest 
in ML careers change after experiencing the Summer 
Institute curriculum?
RQ 1a (i): ML knowledge and skills
Differences in MLCI responses showed large positive 
gains in participants’ ML knowledge and skills after par-
ticipating in the Institute as compared to pre-Institute 
responses. A paired t-survey indicated that post-survey 
responses were significantly higher than responses on the 
pre-survey, t(41) = 8.869, p < 0.001, d = 1.083). Figure  5 
displays these results.

All interviewees shared that they had some degree of 
prior knowledge of ML before the Institute; yet, after the 
Institute all felt they had a greater understanding of the 
various ways that ML methods could be used in scien-
tific research and in everyday life. Interviewee descrip-
tions of their prior knowledge revealed a wide range of 
understanding: from awareness that AI existed to some 
knowledge of ML methods used in everyday technolo-
gies. For example, Elizabeth (all interviewee names are 
pseudonyms), explained that before the Institute, she 
didn’t know that AI used ML. She understood that social 
media apps, i.e., TikTok, Instagram, and YouTube, use 

algorithms to track usage and recommend content based 
on a user’s history; yet, she didn’t know, “how the data-
base works or how the algorithms themselves work.” After 
the Institute, she described her knowledge of ML saying,

Now I know about neural networks and PCA and 
decision trees and all these different things, which 
now I feel like if I’m looking at a certain platform or 
social media platform, I can identify which machine 
learning method they were using.

Other interviewees shared that they had some prior 
knowledge of ML and specific ML techniques before the 
Institute, yet the Institute helped them better understand 
these terms and processes. For example, Daniel shared 
that he had heard about linear regression and neural net-
works before the Institute, but “didn’t really know how 
they could be used for machine learning.” Learning these 
techniques during the Institute, Daniel said, “really wid-
ened my view of AI and machine learning and how it can 
be used.”

Another interviewee, Sophie, shared that, before the 
Institute, she was aware that ANNs were used to identify 
complex things, but she thought neural networks could 
only be used for one purpose. After the Institute, she 
realized that ML algorithms, including ANNs, could be 
used for different purposes in research. She said,

I was familiar with the artificial networking rhythms 
like using features to be able to identify complex 
things. But I didn’t know that there was other types 
of algorithms that are correlated and were one with 
machine learning and that we can use different types 
of algorithms to be able to research different types of 
things. I just thought it was all in one.

These examples show youth at different levels of prior 
ML knowledge, yet all three gained broader and deeper 
insights into ML concepts, especially ML methods and 
applications, after participating in the Institute.

RQ 1a (ii). Self‑efficacy in learning ML
Along with the MLCI assessment, participants also com-
pleted the APAI. On average, results suggest small to 
moderate positive shifts in participants’ perceptions and 
attitudes towards AI after experiencing the Institute, par-
ticularly in participants’ self-efficacy towards learning 
ML (see Tables  7 and 8 for full details on APAI scales). 
A Wilcoxon signed-rank test, used to control for the 
non-normal distributions in the data, indicated that par-
ticipants’ self-efficacy was significantly higher after expe-
riencing the Institute than before, z = −  2.88, p = 0.004, 
d = 0.676 (before: M = 3.785, SD = 0.637; after: M = 4.190, 
SD = 0.558 (see Fig. 6).

Fig. 5  Box-plot distribution of MLCI responses before the Institute 
(shown as “pre” on the left) and after the Institute (shown as “post” 
on the right)
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In retrospective post-Institute interviews, 7 of the 18 
youth interviewed shared that realizing how much they 
had learned about ML over the course of the Institute 
helped them feel more confident in their knowledge of 
ML. For example, Alexis explained that she had felt “inse-
cure” about her ML knowledge and “super-lost” at the 
beginning of the Institute, but that “in the end, I think I 
saw a little bit improvement was when I did the Kahoot! 
in the end about machine learning, like I was understand-
ing it slowly.”

Another youth interviewed, Daniel, shared, “There 
were a lot of times where I was slightly confused and then 
something would happen, and it would be eye-opening 
when I realized what I was—I had come a long way, and I 
was actually learning a lot.” Like Daniel, interviewees who 
described their confidence and self-efficacy in learning 
ML felt buoyed by the fact that they had learned about 
a complicated topic, yet these youth also felt that they 
had a lot more to learn. For example, Michael said, “I’m 
not super confident about it. I mean, I can probably sum-
marize a decent amount, but I wouldn’t be able to really 
teach someone exactly so well the differences and how 
you use different ones.”

Worthy of note is that all interviewees, who spoke 
about their knowledge impacting their confidence and 
self-efficacy, had relatively low pre-survey scores and a 
relatively small change in their learning according to the 
MLCI. These interviewees scored lower than the median 
on the pre-survey (by 1 or 2 standard deviations). Their 
scores also showed relatively small change in their learn-
ing (1 standard deviation of change) between the pre- 
and the post-survey. Yet, in interviews they described a 

big change in their self-efficacy indicating a stronger pos-
itive shift in self-efficacy than our instruments were able 
to detect.

RQ 1a (iii): interest in ML careers
Results from the APAI also showed, on average, no sig-
nificant change in participants’ interests in ML careers 
after participating in the Institute when controlling for 
the non-normal distribution using a Wilcoxon signed-
rank test, z = −  1.860, p = 0.063. Yet, differences were 
approaching significance and mean scores across the sev-
enteen 5-point Likert scale items suggest a small gain in 
interest (before: M = 3.839, SD = 0.512; after: M = 4.057, 
SD = 0.466) (see Fig. 6 for distributions).

Although our instrument did not detect a shift in inter-
est in ML careers, interviews suggest an interesting pat-
tern of change. Interviewees who described their level 
of interest in ML careers as unchanged between the 
beginning and the end of the Institute, shared that their 
reasons for their level of interest in ML careers after the 
Institute were different than before. For example, Mor-
gan described a new interest in ML careers, because they 
wanted to use AI to help people,

Although I do I feel like it stayed the same, I feel like 
my reasons behind it now are different because at 
the beginning I was interested simply because I felt 
like I didn’t know a lot about it. Now, I feel like I’m 
a bit well versed, I could say. But I still find myself 
interested in it because I understand now how AI 
is impacting our society and communities and it’s 
something that I feel like I would like to be a part 
of the impact, hopefully, good impacts. I just want 
to honestly use or try to use AI to help people and I 
would like to learn more about it and about how it 
translates more to different work forces.

Another interviewee, Alyssa, explained that before the 
Institute she had been interested in ML careers, because 
she was concerned about how ML/AI would impact the 
workforce. After the Institute, she was interested in ML 
careers, because she wanted to learn more about oppor-
tunities to use ML to advance her career,

I feel like ‘interest’ is such an ambiguous word where 
you can have positive interests and negative inter-
ests. I was kind of like, oh, is AI taking away peo-
ple’s-- I feel like in the media, you hear AI is taking 
people’s jobs. So, I was interested in the jobs that AI 
is taking away. But now, I think I’m more interested 
in kind of how do jobs use AI on a daily basis? How 
do they use AI to benefit their work? How do they 
decide to rely on AI and stuff like that. Obviously, 
they use AI for a good reason, and it’s helped them 

Fig. 6  Box-plot distribution of participant responses to the APAI ML 
Career Interest scale (LEFT) and Self-Efficacy scale (RIGHT) before the 
Institute (shown as “pre”) and after the Institute (shown as “post”).
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throughout their career. So, I’m very interested in 
those careers. I know lots of fields across the board 
that AI-- a lot of careers do use AI. So, yeah, I’m still 
very interested.

While our survey showed little change in interest, these 
vignettes show that the nature of participants’ interest 
is evolving. These findings are further explored in the 
Discussion.

RQ 1b. How does participation in the Institute impact 
participants’understanding of target curriculum concepts?
MLCI scores suggest positive learning gains in 5 of the 7 
target ML curriculum concepts (detailed in Table 1). On 
average, participant responses to the MLCI show mod-
erate to large learning gains in knowledge of ML meth-
ods and societal implications of ML as well as skills in 
planning ML projects and analyzing ML results. Differ-
ences in responses to pre- and post-surveys of knowl-
edge of ML bias and the skill of applying ML in scientific 

research were not statistically significant. These results 
are explored in the Discussion. Figure  7 displays the 
distributions of participants’ average MLCI scores by 
curricular concept. Table 3 shows the results from Wil-
coxon signed-rank tests comparing pre- and post-survey 
responses by curriculum concept. In the subsequent sec-
tion, we triangulate the non-significant findings with 
qualitative data from exit ticket responses and interviews.

Knowledge of ML bias
While the MLCI did not detect a shift in participants’ 
knowledge of ML bias, participants’ written responses to 
exit tickets show that, by the end of the Institute, partici-
pants were correctly applying knowledge of ML bias in 
their decisions on whether ML could and should be used 
for scientific research and in the real world. For example, 
on the final exit ticket, a majority of the respondents who 
mentioned the term “bias” (79% of the 24 respondents, 
n = 19), used detail to support and justify their argument 
to a degree that made it possible to detect an emerging 

Fig. 7  Box-plots showing the distributions of participant responses to all but one of the MLCI scales. Responses after the Institute are shown 
as “post” on the right of each scale. Differences found to be significant are marked with asterisks. Non-significant differences are marked with ns. 
Dots represent individual data points and have been subjected to minimal random jitter along the x- and y-axis to improve visualization.
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understanding of bias in ML. For example, one respond-
ent, Logan, argued that an ML tool should be deployed, 
because its health benefits outweighed the ethical risks of 
biased data. They wrote,

it should, because it could help identify people with 
Alzheimers in that community. because the data 
is randomized, there most likely will not be a sam-
pling bias and it could eventually be scaled up and 
applied to ppl all over the world.

Another respondent, Dylan, wrote, “There is place for 
bias to creep into this when you separate patients based 
on neighborhood.” Another explained, “The training data 
may be too small, and the fact that they are considering 
demographic information—which includes race—has 
potential to introduce heavy bias.”

In interviews, participants were asked to share their 
understanding of the “limitations” of ML (with no men-
tion of the term “bias”). Twelve of the total 18 interview-
ees replied by describing their understanding of bias in 
ML. Several described the various types of biases they’d 
learned about in the Institute. For example, Katherine 
explained, “In the Institute, they taught me about some 
biases that can occur like human biases, societal biases, 
things like statistical biases.” Similarly, Emma listed the 
different types of bias introduced during the Institute,

There’s societal, human, computational, and they’re 
all so different. And I thought bias was just like one 
category, but there’s so many umbrellas underneath 
it that the types of bias can get sorted into. There’s 
bias everywhere.

Three interviewees not only correctly described bias in 
ML, but also mentioned the importance of minimizing 
bias in ML systems. For example, Dylan explained, “It’s 
just not possible to create a bias-less system,” concluding 
that “perfection,” might not be attainable, but, “we can be 
more careful to create like strive towards that perfection.” 
Another interviewee, Michael, shared that at the Insti-
tute, they learned some strategies that people can use “to 

balance it out and fix them,” referring to biased ML mod-
els. Ashley described a specific strategy for minimizing 
bias that she experienced during the Institute, “We had to 
clean our dataset to make it more accurate.”

Two interviewees explained that the Institute helped 
them understand both the limitations and affordances 
of various ML techniques and that these limitations and 
affordances can impact people differently. For example, 
Morgan explained that, “just because something is caus-
ing benefit to something, to another thing, it doesn’t 
mean that it’s causing the same benefit to a separate 
thing,” later adding that with ML, “there are a lot of limi-
tations, honestly, and we just need to think about which 
ones would be the ones that harm people the most.”

Together, the exit tickets and interviews offer evidence 
of the emergence of a rich understanding of ML bias as a 
limitation, as well as its potential impact on society and 
its ethical implications. What’s more, responses offer 
evidence of participant efforts to apply their knowledge 
of ML bias to make decisions as to whether ML can be 
used and whether it should be used from a technical and 
ethical perspective. Further research is needed to develop 
instrumentation that can detect this type of ML knowl-
edge and skill.

Skill of applying ML in scientific research
The MLCI did not detect a shift in participants’ skill of 
applying ML in scientific research, yet participants’ 
exit ticket responses show that, by the end of the Insti-
tute, a majority of participants were correctly applying 
knowledge of ML concepts as they made decisions as to 
whether ML could or should be used in the context of 
scientific research. Exit tickets prompted all respondents 
to apply their ML knowledge in scenario-based contexts 
specific to scientific research. Questions prompted a 
2 part response: 1) a binary (yes or no) response and 2) 
an open-ended response to justify the first binary selec-
tion (e.g., “Why or why not?”). With this design, binary 
responses could be scored for accuracy, while open 
ended responses could be qualitatively evaluated. Table 4 

Table 3  Results from Wilcoxon signed-rank tests of pre- and post-survey responses by curriculum concept

*Significant difference, ns no significant difference

Curriculum concepts # Items Test statistic p d

1. Knowledge of ML General Concepts 11 − 5.34  < 0.001* 1.289 large

2. Knowledge of ML Methods 12 − 3.6  < 0.001* 0.678 moderate

3. Knowledge of ML Bias 3 1.56 ns ns negligible

4. Knowledge of Social Implications of ML 1 − 2.56 0.011* 0.596 moderate

5. Skill of Planning ML Projects 7 − 2.68 0.007* 0.663 moderate

6. Skill of Analyzing ML Results 3 − 4.57  < 0.001* 1.086 large

7. Skill of Applying ML in Scientific Research 3 0.607 ns ns negligible
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displays the three types of questions used to prompt par-
ticipants to apply their knowledge of ML in scientific 
research.

On average, exit ticket responses suggest a greater apti-
tude for deciding (b) and (c) than (a). Fifty-one percent 
of the total responses to (a) items were correct. Whereas 
70% and 73% of the total responses to (b) and (c) items 
were correct. Correct responses to (a) type questions—
could ML be used—tended to use examples of common 
limitations to ML to justify the selected answer. These 
responses drew from respondents’ technical knowledge 
of ML to justify answers with facts using knowledge of 
ML limitations and of the ML pipeline. For example, 
several responses explained that ML could not be used, 
because the data set in the given scenario was too small 
or too homogeneous to train a generalizable model (see 
Table 5, for example, quotes marked i). Others explained 
that ML could not be used, because there was missing 
data (ii).

Correct responses to (b) type questions—should ML 
be used—tended to compare the benefits and harms of 
ML from an ethical and technical perspective. These 
responses seemed to draw from respondents’ knowledge 
of the societal impacts on ML to justify answers through 

reasoning. For example, responses reasoned that an ML 
tool should not be used, because misclassification would 
have too great a harm (iii). Others reasoned that even 
correct predictions of a given tool, would not be useful 
given the cultural context in which the tool would be 
employed; thus it should not be used (iv).

Correct responses to (c) type questions—which ML 
method would be best—tended to describe characteris-
tics or capabilities of ML methods that suited the given 
research project (v–vii). These responses drew from 
respondents’ knowledge of the four different ML meth-
ods introduced in the curriculum.

Exit tickets responses show how participants applied 
their emerging ML knowledge in a series of scenario-
based contexts specific to scientific research. These 
examples shed light on how participants use their knowl-
edge of ML to make technical and ethical decisions. 
More research is needed to develop curricular activities 
and assessments to further develop these skills.

RQ 2. To what extent do participant responses vary 
across participant demographics?
Participant responses to both the MLCI and APAI var-
ied by URG status (see section titled Participants above 
for our definition of URG and criteria for membership). 
Paired t tests show that participants from URGs experi-
enced large gains in ML knowledge and skills, t(32) = − 
7.800, p < 0.001, d = 1.191; moderate gains in self-efficacy 
in learning ML, t(32) = − 2.934, p = 0.006, d = 0.631; 
and small gains in their interest in ML careers, t(32) 
= − 3.376, p = 0.002, d = 0.483 (see Table 6 for details). 
Their non-URG counterparts’ responses also showed 
large gains in ML knowledge and skills, t(6) = − 3.710, 
p < 0.010, d = 1.215; yet, no detectable changes in inter-
est in ML careers or self-efficacy. It is important to note 
that the non-URG population is relatively small (n = 7), 

Table 4  Proportion of correct exit ticket responses by decision-
making-based skill (a, b, c) of applied ML knowledge and skills in 
the sciences

Types of Exit Ticket 
Questions

# Items Correct 
responses

Total responses

n % n

(a) Could ML be used? 3 58 51 114

(b) Should ML be used? 4 106 70 152

(c) Which ML would be best? 4 111 73 152

Table 5  Sample statements from exit ticket open-ended responses to justify application of ML in scientific research

Type of Exit Ticket Question Example justifications of correct responses

(a) Could ML be used? (i) The data set is too small to train the model to identify the flowers. In addition the flowers that she wants to use 
for the data set are pressed, not in the natural form that they would be found in, so it would not make very good 
training data either
(ii) this would not work because the data set she has only has the banana features without labels, and the other data 
set only has the labels and no Emily banana features

(b) Should ML be used? (iii) Using the criminal activity and the demographic of a small population high school students can lead to the misi-
dentifying of offenders. It can lead to innocent people being convicted just because they match the description 
of a high school student
(iv) The data that is collected is biased, because it is only taken from the Met Gala events. The Met Gala fashion might 
not be what everyone wears in Germany. First of all, Met Gala clothing pieces are very expensive; therefore, not every-
one will be wearing it

(c) Which ML would be best? (v) PCA is the best option, because it is an unlabeled data set
(vi) You would use an ANN, because you are dealing with more complex data, such as images and videos
(vii) A decision tree would be able to find the biggest characteristic to split the data and further split the data into cat-
egories
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making differences difficult to detect, see Fig. 8a for visu-
alization of URG MLCI distributions.

Differences in MLCI pre- and post-survey scores 
between URG and non-URG members remained signifi-
cantly different (pre: p = 0.010, d = 1.358; post: p < 0.001, 
d = 1.022), which suggests a gap in ML knowledge seen 
on the pre-survey persisted to the post-survey. Results 
from the APAI show no evidence of a gap between URG 
and non-URG members’ interest in ML careers or self-
efficacy in learning ML. These findings suggest the 
program significantly improved URG participant ML 
knowledge and skills, yet it did not close the knowledge 
gap observed between URG and non-URG members.

Further analysis identified several other patterns wor-
thy of note. In the subsequent sections, we explore how 
participant responses varied across URG subgroups 
by reporting results from analysis of MLCI and APAI 
responses by gender (female, non-binary, and male) and 
ethnic/racial subgroups (white and Asian as compared to 
non-Asian minorities).

Learning outcomes
Results from paired t tests show moderate to large gains 
in ML knowledge and skills among females and partici-
pants who identified as a member of a non-Asian racial 
minority group: females, t(21) = − 4.709, p < 0.001, d = 
0.731; non-Asian racial minorities, t(11) = − 6.823, p < 
0.001, d = 1.292. Their male counterparts showed no sig-
nificant learning gains; however, their white and Asian 
peers did, t(23) = − 5.324, p < 0.001, d = 0.925 (see Table 6 
for details).

On average, males scored significantly higher on the 
pre-survey and post-survey than their female counter-
parts: pre, t(15.834) = − 3.627, p = 0.002, d = 1.475; post, 
t(24.322) = − 2.827, p = 0.009, d = 0.971. In other words, 
on average, males started and ended the Institute with 

higher levels of ML knowledge than females. Yet, on 
average, male participant MLCI scores showed no sig-
nificant difference between the pre- and the post-surveys 
(perhaps because of their initial highscores). This sug-
gests that the observed gender gap in ML knowledge 
was decreased, but not completely closed, see Table 7 for 
details and Fig. 8b for a visualization of MLCI results by 
gender.

White and Asian participants started the Institute with 
relatively higher MLCI scores than their counterparts 
who are non-Asian racial minorities; however, this gap 
closed over the course of the Institute. While pre-survey 
scores of participants who identified as white or Asian 
were not significantly higher than participants who iden-
tified as non-Asian racial minorities, differences were 
approaching significance, t(29.488) = − 2.075, p = 0.090, 
d = 0.760. What’s more, differences between white/Asian 
and non-Asian racial minority post-survey scores were 
not significant, t(19.057) = − 0.646, p = 0.526. This sug-
gests that there may have been a knowledge gap between 
ethnic groups that closed, see Table  7 for details and 
Fig. 8c for a visualization of MLCI results by ethnicity.

Differences in participants’ MLCI pre- and post-survey 
scores showed learning gains across a majority of ML 
concepts targeted by the curriculum. On average, partici-
pants who identified as female or as a member of a non-
Asian racial minority group showed greater gains in these 
target concepts than their white-male and Asian-male 
counterparts. For example, female and non-Asian racial 
minority group members showed gains in their knowl-
edge of general ML concepts (K1), ML methods (K2), and 
societal implications of ML (K4). They also demonstrated 
skill in analyzing ML results (S2) (see Supplementary File 
5 for details).

While their white-male and Asian-male peers also 
showed gains in their general ML knowledge (K1) and 

Table 6  Performance on MLCI and APAI pre- and post-surveys by URG and non-URG demographic groups

ns = not significant

Demographic groups n Pre-survey Post-survey p d

M sd M sd

ML Knowledge (MLCI)

URG​ 33 0.512 0.127 0.671 0.140  < 0.001 1.191 large

Non-URG​ 7 0.684 0.128) 0.804 0.055 0.010 1.215 large

Self-efficacy (APAI)

URG​ 33 3.818 0.666 4.207 0.562 0.006 0.630 moderate

Non-URG​ 7 3.762 0.568 4.048 0.583 ns

Interest in ML Careers (APAI)

URG​ 33 3.797 0.512 4.019 0.400 0.002 0.483 small

Non-URG​ 7 3.991 0.591 3.841 0.489 ns
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ability to analyze ML results (S2), they did not show sig-
nificant gains in their knowledge of the societal implica-
tions of ML (K4). What’s more, on average, males did not 
show significant gains in their knowledge of ML meth-
ods (K2), yet they showed gains in their ability to plan 
ML projects (S1) (as did white and Asian participants) 
to a greater degree than their peers who are female and 
non-Asian racial minorities (see Supplementary File 5 
for details). These results are explored in “Discussion” 
section.

Affective learning outcomes
Changes in participant self-efficacy in learning ML also 
varied by gender and ethnicity. Differences in male par-
ticipants’ self-efficacy showed large gains after the Insti-
tute as compared to before the Institute, t(12) = − 2.30, 
p = 0.040, d = 1.046. While differences in female partici-
pants’ scores were non-significant, t(25) = − 1.946, p = 
0.063, yet differences were approaching significance, see 
Table 7 for details and Fig. 9a for distributions by gender.

Self-efficacy scores of participants who identified as 
non-Asian racial minorities showed moderate gains after 
the Institute as compared to before the Institute, t(11) = 
− 2.215, p = 0.049, d = 0.748; as did their white and Asian 
counterparts, t(11) = − 2.215, p = 0.049, d = 0.748. On 
average non-Asian racial minorities started and ended 
the Institute with levels of self-efficacy that were not sig-
nificantly different from their white or Asian counter-
parts, see Table 8 for details and Fig. 9b for distributions 
by ethnicity.

Changes in participant interest in ML careers also 
varied by gender, but not significantly by ethnicity. 
On average, responses from participants, who identi-
fied as female or non-binary, to items on their interest 
in ML careers showed moderate positive gains after the 

Institute as compared to before the Institute: female, 
t(25) = − 3.4152, p = 0.002, d = 0.559; non-binary, t(1) = 
− 1.8.143, p = 0.035, d = 0.784. Whereas their male coun-
terparts showed no significant changes in their interest. 
Differences in pre-survey scores by gender were not sig-
nificant, which suggests that all participants’ shared simi-
lar levels of interest in ML careers at the beginning of the 
Institute, see Table 9 for details and Fig. 9a for distribu-
tions by gender.

RQ 3. What aspects of the curriculum do participants 
report as most impactful on their ML knowledge, skills, 
interest, and self‑efficacy?
Analysis of interviews led to the identification of 9 cur-
ricular activities that interviewees described as positively 
impacting their ML knowledge and skills, or their per-
ceptions and attitudes towards ML/AI. Further analysis 
of these activities revealed patterns across activities that 
touched on similar themes. From these, 4 aspects of the 
curriculum emerged as most impactful on participant 
ML knowledge, perceptions, and attitudes towards AI. 
The interview protocol defines curricular “aspects” as, 
“parts of SRMP” such as “specific lessons and activities; 
hearing from Scientists, professionals and alumni; men-
tor meetings; and the Friday Advisories.” See Supplemen-
tary File 4 for full protocol. Table 10 offers a summary of 
the 4 aspects.

Curriculum aspect 1: ML methods
Learning about various ML methods was impactful on 
participants’ ML knowledge. In half of the interviews (9 
of the 18), interviewees explained that they had known 
about AI and ML before the Institute, but only periph-
erally. During the Institute, interviewees gained a deeper 
understanding of ML methods and realized the wide 

Table 7  Performance on MLCI by gender and ethnicity

non-Asian racial minority = non-white and non-Asian, a category that is inclusive of multi-racial ethnicities and people who identify as Hispanic

ns not significant

Demographic groups n Pre-survey Post-survey p d

M (sd) M (sd)

Gender

Female 26 0.517 (0.134) 0.671 (0.128)  < 0.001 0.731 moderate

Male 13 0.594 (0.147) 0.733 (0.139) ns

Non-binary 2 0.512 (0.165) 0.721 (0.263) ns

No answer 1 0.521 0.814 ns

Ethnicity

Non-Asian racial minority 12 0.500 (0.111) 0.678 (0.161)  < 0.001 1.292 large

White and Asian 24 0.579 (0.155) 0.713 (0.136)  < 0.001 0.925 large

No answer 6 0.504 (0.121) 0.663 (0.089) ns
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variety of ways ML can be used in the sciences and in 
everyday life (see RQ 1a (i) for excerpts detailing these 
revelations). Interviewees mentioned several aspects 
of the Institute that helped them reach this level of 
understanding.

The participatory simulations of ML methods were 
repeatedly mentioned by interviewees. One interviewee, 
Emma, shared that it was the Slice of ML activity that 
helped her better understand ML methods,

It was just such an activity that really impacted 
what I thought of AI. Because the data – like the 
data biases, like the data biases, that really help me 
understand that AI isn’t perfect, and it very much 
depends on data that we give it

Several other interviewees described the un-plugged, 
hands-on ANN simulation as an activity that helped 
them understand what ML methods and how they work. 
Morgan shared, “I feel like that activity in and of itself 
helped me a lot to understand the ANN because not only 
did it tell us exactly what it did, but it also showed us like 
how to do it or how the process works.” They appreciated 
that it was an interactive activity that helped them under-
stand the differences between the ML methods.

Another frequently mentioned activity was the creation 
of the ML Flowchart, which interviewees described as an 
opportunity for them to practice using their knowledge 
of ML methods to make decisions. Alyssa shared that 
they felt creating their own ML flowchart helped them 
understand ML at a “better level.” They explained,

The flowchart really helped. And then when we all 
made our own flowcharts that kind of really helped 
because it kind of-- I know when we were doing the 
exoplanet, when we split into groups in the last week 
when we were doing the exoplanets, and we were dis-
cussing which machine learning techniques can be 
used, I kind of always just referred to the flowchart 
I had made in my head and be like, oh, okay, this is 
what the question is asking for.

For these interviewees, using the flowchart helped 
them apply their knowledge and make decisions about 
which ML method would be appropriate to use under a 
series of given circumstances.

Curriculum aspect 2: Wallace and dragonflies
Using ML in Wallace coupled with introductory activi-
ties examining a data set of dragonfly wing features had 
a positive impact on students’ ML knowledge. Just under 
half of the interviewees (8 out of 18) mentioned that 
applying their ML knowledge in Wallace had a positive 
impact on both their ML knowledge. For example, one 
interviewee, Jacob, explained that his understanding of 
ML as a tool for prediction emerged from his work with 
Wallace to make predictions, using the dragonfly data 
set, as to where dragonfly habitats might be located. He 
explained, “the prediction aspect really came in when we 
did the dragonflies on Wallace, predict their habitat.”

Several interviewees explained that it was the pro-
cess of using the dragonfly data set along with Wal-
lace as part of a larger project that was memorable and 
impactful for them. For example, Katherine explained 

Fig. 8   a–c Boxplots display differences between pre-Institute 
and post-Institute MLCI scores by participant (n = 42) URG 
membership (TOP, a), self-reported gender (MIDDLE, b) and ethnicity 
(BOTTOM, c). A relatively large number of participants chose 
to not report their ethnicity; thus, these were grouped as a third 
category in (a) and (c).
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that her ML knowledge grew through the process 
of cleaning the dragonfly data set, creating graphs to 
visualize the data, and then using Wallace to make 
predictions, “like predicting if a species would be in 
an area in a couple of years or so based off the data.” 
She added, “It was good to use an example that helped 
me understand what the machine learning is and what 
it does and how it functions.” For these interviewees 
Wallace and the dragonfly data set together seemed 
a touchstone or exemplar case that they frequently 
returned to as they described their understanding of 
ML.

Curriculum aspect 3: data set exploration
Processing data sets to prepare them for ML analysis 
helped interviewees better understand concepts related 
to bias in ML. In several of the interviews (5 of 18), 
interviewees touched on how important interacting 
directly with the data was to the development of their 
understanding of ML and bias. For example, one inter-
viewee, Michael, described the work of cleaning a data 
set to minimize bias, “doing data cleaning and that sort 
of stuff. Actually working with datasets gave some sort 
of idea of how data bias can be dealt with.”

Fig. 9  a, b Boxplots display distributions of participant (n = 42) responses to the APAI ML Career Interest and Self-efficacy subscales by self-reported 
gender (TOP, a) and ethnicity (BOTTOM, b). A relatively large number of participants chose to not report their ethnicity; thus, these were grouped 
as a third category when reporting distributions based on ethnicity.
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Another interviewee, Ashley, explained how examining 
real data helped her understand how data sets can intro-
duce bias. One was the dragonfly data set, which helped 
her see that an unbalanced data set can introduce bias. 
She explained that because there was an over-represen-
tation of dragonflies from the Northern Hemisphere, 
“There are more northern dragonflies compared to any-
where else and that caused a bias. When the machine was 
using that as a decision tree, that created a bias.”

Another example Ashley provided was of the tree data 
set, which had several issues with biased data collection 
methods. One issue was due to an oversampling of tree 
data from one region of a city. She explained, “We also 
had more people collecting data about trees in Man-
hattan compared to other boroughs.” Together, these 
excerpts suggest that Ashley, like several other partici-
pants interviewed, was able to recall specific and clear 
examples of how bias can creep into the ML pipeline 

through issues in measurement and data collection after 
learning to explore data sets.

Curriculum aspect 4: real‑world stories and anecdotes
Anecdotal stories about real-world cases in which ML 
was used correctly (and incorrectly) were impactful on 
participants’ML knowledge, particularly their under-
standing of ML limitations. A few interviewees (4 of 18) 
shared that these impactful stories about ML in the real 
world came from stories they heard during the Insti-
tute from their instructor. For example, one interviewee, 
Riley, shared that an aspect of the Institute that impacted 
their understanding of the limitations of ML, particularly 
issues related to the un-explainability of black-box sys-
tems, was an anecdotal story shared by their instructor 
about a NASA brown dwarf classifier that had become 
biased by an over-representation of brown dwarf training 

Table 8  Self-efficacy scores on the pre and post-survey for participants separated by gender and ethnicity

non-Asian racial minority non-white and non-Asian, a category that is inclusive of multi-racial ethnicities and people who identify as Hispanic

ns not significant

Demographic groups n Pre-survey Post-survey p d

M (sd) M (sd)

Gender

Female 26 3.891 (0.70) 4.154 (0.55) ns

Male 13 3.641 (0.53) 4.244 (0.62) 0.040 1.046 large

Non-binary 2 3.667 (0.00) 4.000 (0.00) ns

No answer 1 3.170 4.830

Ethnicity

Non-Asian racial minorities 12 3.778 (0.760) 4.306 (0.647) 0.0488 0.748 moderate

White or Asian 24 3.750 (0.582) 4.139 (0.553) 0.020 0.685 moderate

No answer 6 3.945 (0.680) 4.167 (0.421) ns

Table 9  ML career interest scores on the pre and post-survey for participants separated by gender and ethnicity

non-Asian racial minority non-white and non-Asian, a category that is inclusive of multi-racial ethnicities and people who identify as Hispanic

ns not significant

Demographic groups n Pre-survey Post-survey p d

M (sd) M (sd)

Gender

Female 26 3.760 (0.533) 4.028 (0.418) 0.002 0.559 (moderate)

Male 13 4.001 (0.503) 3.919 (0.429) ns

Non-binary 2 3.706 (0.167) 3.833 (0.157) 0.035 0.784 (moderate)

No answer 1 3.940 3.390

Ethnicity

Non-white and non-Asian 12 3.778 (0.692) 3.908 (0.460) ns

White or Asian 24 3.887 (0.469) 4.000 (0.426) ns

No answer 6 3.765 (0.241) 3.954 (0.333) ns
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images (with the NASA logos printed in the corner of the 
picture). They explained,

Someone was trying to make a neural network to 
pick out brown dwarfs, I think. It had a very high 
accuracy in the training data, but then it did ter-
ribly in the testing data. That was just because all 
the brown dwarves in the training set had a NASA 
logo in the bottom left corner or something, and then 
because it’s a black box, they didn’t know that was 
what it was. They thought it was really accurate 
at producing the brown dwarves, but instead they 
were just looking up the NASA logo and that kind 
of thing.

Other anecdotal stories from instructors emerged in 
the interviews. For example, interviewees recalled a story 
about an AI tool that had learned to identify types of fish 
based on whether they were being held by a person. Yet, 
the story about the NASA logo was most popular. Sophia 
explained that this story, “really opened my eyes to the 
realization that okay, we have to be specific with machine 
learning because if not, it’s going to focus on things we 
don’t want it to focus on.” Interviewees seemed to draw 
from anecdotal stories an understanding that AI/ML sys-
tems do not have human-like intelligence. This under-
standing helped them make sense of ML’s limitations.

Discussion
In this study we used a mixed methods approach to tri-
angulate survey results with interviews and exit tickets 
from 42 youth participants. Qualitative analysis offered 
several insights into the survey results. First, we found 

the curriculum had a large positive impact on partici-
pants’ ML knowledge and self-efficacy. Participants’ 
descriptions of their knowledge of ML before the Insti-
tute suggest they arrived with a range of prior knowledge; 
some were aware that AI/ML is involved in functions 
they use daily in social media and on their phones, oth-
ers had some knowledge of ML methods used in everyday 
technologies. Participants explained that over the course 
of the Institute they developed a new understanding of 
the ways that a variety of ML methods can be used in 
scientific research as well as in everyday life. Participants 
shared that they enjoyed the participatory simulations in 
the Institute, they appreciated the creation of flowcharts 
to reinforce their ML knowledge and skills, and they val-
ued the opportunity to practice decision making about 
whether ML could and should be used.

Emerging evidence of youth understanding of bias in ML 
from exit tickets
Results also showed large positive gains across the major-
ity of the target learning outcomes. Interestingly, surveys 
found no evidence of gains across two key targets: (1) 
knowledge of bias in ML and (2) the skill of applying ML 
in science. This finding is noteworthy given that one of 
the curricular goals was to prepare high school students 
to use ML methods in the context of natural science, with 
an understanding of how ML systems can come to be 
unpredictably biased. There are several plausible expla-
nations for these outcomes, such as (a) imperfect align-
ment of the instruments with the curriculum, (b) low 
fidelity of curriculum implementation (e.g., pedagogy 
was not aligned with the learning objectives), or (c) low 

Table 10  Aspects of the curriculum that interviewees reported as impactful on their ML knowledge

Curriculum aspect 1: ML methods

Learning about various ML methods positively impacted participants’ ML knowledge. In half of the interviews (9 of the 18), interviewees explained 
that they had some prior knowledge of AI and ML; yet, after the Institute, they felt they understood a wider variety of ways that ML could be used 
in general and also in scientific research, and that they had a “deeper understanding” of these methods
Impactful curricular activities: Slice of ML, Neural Networks, and making the ML Flowchart

Curriculum aspect 2: Wallace and dragonflies

Using a dragonfly data set with Wallace, a no-code online platform, to apply ML methods (i.e., linear regression and PCA) had a positive impact 
on interviewees’ ML knowledge. Under half of the interviewees (8 out of 18) mentioned dragonflies and Wallace when describing their various types 
of ML knowledge, e.g., the purpose of ML, the ML pipeline. While no specific activities were mentioned, the interpretable data set and no-code platform 
seemed to be a touchstone, something interviewees referenced to help them explain ML concepts and processes

Curriculum aspect 3: Data sets

Working with data sets in the context of ML projects had a positive impact on interviewees knowledge of bias in ML. Several interviewees (5 of 18), 
touched on how important interacting directly with the data was to developing their understanding. Some shared that this helped them understand 
how bias could be identified in data, others described how bias could be minimized during data collection and data cleaning. These data sets used 
interpretable features (i.e., length and width) and described phenomena that participants could interact with during the Institute
Impactful data sets: Local tree features, dragonfly features

Curriculum aspect 4: real-world stories and anecdotes

While mentioned by only a few interviewees (4 of 18) anecdotal stories about real-world ML use-cases seemed memorable and possibly impactful 
on ML knowledge of ML limitations. Interviewees described these stories as example cases from which they learned how ML tools lack human-like 
intelligence and insight
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participant engagement. Exit ticket responses suggest 
that (a) is most likely and there may have been an issue 
of alignment between the instruments’ sensitivity to the 
curriculum’s impact.

A majority of exit ticket respondents correctly 
described examples and types of bias in ML, as well as 
other ML limitations. They wrote justifications for argu-
ments for and against using ML in various scientific and 
everyday contexts. Answers drew from technical, ethical, 
and cultural perspectives, suggesting an emerging under-
standing of “bias” grounded in the ethical issues of bias 
(i.e., impacts on communities) as much as in technical 
issues (i.e., unbalanced data sets). Respondents tended 
to correctly answer exit ticket questions about which ML 
methods should be used in a given context with greater 
frequency than they correctly answered questions about 
which ML methods can be used. Future research into 
youth conceptualization of bias in ML systems may offer 
insights into how youth make-sense of ethical and tech-
nical issues in ML systems.

Interviews suggest a shift in youth interest in ML careers
Survey responses showed little change in another con-
struct of interest, youth interest in ML careers, yet inter-
views show that the nature of participants’ interest in ML 
careers evolved over the course of the Institute. At first, 
interviewees were interested in ML careers out of con-
cern as to how ML would impact the workforce. After the 
Institute, interviewees expressed interest in ML careers, 
because they wanted to learn more about opportunities 
to use ML to (a) advance their career or (b) help others. 
These are youth of a generation of generative AI (Chan 
& Lee, 2023), thus interest in ML/AI is natural and per-
haps explains the initial high interest in ML careers. 
However, that interest became more nuanced as partici-
pants’ gained knowledge of ML methods, bias, and appli-
cations in scientific research during the Institute. Further 
research is needed to investigate the subtleties of these 
changes in participants’ interests and other affective 
learning outcomes.

Differential impacts of curriculum on youth by URG 
membership
A major focus of this work was to design the AI cur-
ricular content for inclusivity and accessibility such that 
all learners, regardless of their gender, ethnicity, or prior 
knowledge, would be able to engage and learn from the 
materials. The participant group primarily included 
youth from URGs in STEM. Analysis of concept inven-
tory results revealed that participants from URGs and 
non-URGs both show significant gains in ML knowl-
edge and skills according to MLCI scores. While both 
groups experience moderate to large effects, the effect 

size for youth from URGs is highest. Aligning with prior 
STEM education literature (Whitcomb & Singh, 2021), 
we found that participants from URG and non-URGs 
had significantly different prior knowledge, where par-
ticipants from URG’s pre-survey scores were lower than 
those from non-URG’s pre-survey scores. This difference 
persisted in post-survey results as well, which suggests 
that while our program significantly improved URG par-
ticipant ML knowledge and skills, it did not close the gap 
observed between scores from URG and non-URG mem-
bers. While white and Asian males began and ended the 
program with higher scores than their counterparts from 
URGs, results show that the curriculum decreased the 
gender and race gap in ML knowledge.

Further analysis across demographic groups by eth-
nicity and gender revealed interesting differences. For 
example, women and non-Asian participants showed 
significant gains in knowledge of societal implications of 
ML, while their white-male counterparts did not. These 
differences were higher between ethnic groups than 
between gender groups. This distinction aligns with the 
curricular content, which focuses more on societal impli-
cations of AI for under-represented ethnicities than for 
under-represented gender identities. Furthermore, this 
finding agrees with prior research suggesting that youth 
may be drawing from their own lived social experiences, 
such as encounters with societal biases, as they make and 
making connections to their newly gained ML knowledge 
(Solyst et al., 2023). On the other hand, changes in partic-
ipant interest in ML careers varied by gender, but not sig-
nificantly by ethnicity. Responses from participants who 
identified as female or non-binary demonstrated a posi-
tive shift in interest in ML careers, while responses from 
their male counterparts did not. This finding is largely 
explained by pre-survey differences, where female and 
non-binary participants’ expressed interest in ML careers 
was significantly lower than that of their male counter-
parts upon beginning the Institute. This pattern in our 
data mirrors the findings from prior research, which 
show similar gender differences in STEM educational 
and career choices among high school age youth (Chen 
et al., 2024; Sadler et al., 2012; Wang & Degol, 2013). Our 
work shows that while similar patterns exist in ML edu-
cation, there is potential for these gender gaps to close. 
While youth participants demonstrated overall shifts in 
ML knowledge and attitudes, differences across groups 
warrant for further research on curricular elements that 
may interest or benefit specific groups.

Implications for policy and practice

•	 When considering recommendations for high school 
science curricula or grade-level standards for AI edu-
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cation, policy makers should take into account that 
high school age youth can learn and develop self-
efficacy in learning foundational ML knowledge and 
skills through engagement with a science-integrated 
ML curriculum.

•	 When evaluating curricula, policy makers and school 
leaders should consider the demographic groups 
of participants. Our findings suggest that ML cur-
ricula might have differential effects on cognitive and 
affective learning outcomes (i.e., ML knowledge and 
skills, self-efficacy in learning ML, and interest in ML 
careers) of youth belonging to different demographic 
groups.

•	 When determining whether a curriculum effectively 
impacts youth knowledge of ML bias, policy makers 
should be aware that measuring this construct may 
be particularly challenging. Our findings suggest the 
evaluation of a curricular impact on youth knowl-
edge of bias in ML may require triangulation across 
multiple measures, including open ended response 
questions and retrospective, individual interviews.

Conclusions
In this paper, we present a 4-week science-integrated high 
school ML curriculum that aims to prepare youth for a 
scientific research mentorship program in a museum 
setting. The curriculum leverages unplugged resources, 
interactive tools, scientific data sets, embodied learning, 
active learning and project-based learning methods to 
make advanced concepts accessible to high school youth. 
Participant responses to pre-/post-surveys, exit tickets, 
and retrospective interviews offer evidence that the cur-
riculum achieves three key goals: (1) increases knowl-
edge of ML methods and societal implications of ML as 
well as skills in planning and analyzing ML projects and 
results; (2) decreases the URG gap in ML knowledge; and 
(3) positively impacts students’ self-efficacy in learning 
ML. This work is a unique contribution to ML learning 
in informal spaces, offering findings from an evaluation 
of the impacts of a novel curriculum on ML in the Nat-
ural Sciences on ML knowledge, skills and attitudes for 
diverse high school learners.

Limitations and future work
Triangulation of non-significant survey results with exit 
tickets and interviews suggests that, at the time of this 
publication, the current version of the MLCI may not be 
aligned with two of the ML concepts targeted by the cur-
riculum: (1) knowledge of ML bias and (2) application of 
ML in the sciences. Alternatively, it may be that advanc-
ing knowledge of bias in ML and applications of ML in 

scientific research among high school age youth is a par-
ticular challenge for ML educational interventions.

We are continuing our analysis to explore these out-
comes. For example, after participants complete an aca-
demic year of mentored research, we will again measure 
their understanding of bias in ML and their skill in apply-
ing ML to scientific research. It may be that after a year 
of studying how to apply ML in the context of scientific 
research, participants’ knowledge and skills in these areas 
may improve. In future work, we will also further hone 
the MLCI, with particular attention to items on bias 
when administered to larger and more diverse audiences.

In the long term, we aim to make our learning materi-
als more accessible to science educators in both formal 
and informal settings. This would involve scaffolding for 
various levels of expertise, documentation and distri-
bution efforts, and modifications to the curriculum for 
different subject domains. Continual effort is needed to 
keep learning materials relevant as algorithms for scien-
tific research and analysis evolve rapidly. Finally, there is 
a need for analyzing long-term influence of the curricu-
lum on youths’ ML knowledge, skills, attitudes and career 
interests.
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