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Abstract. We give improved estimates for the size of the singular set of minimizing capil-
lary hypersurfaces: the singular set is always of codimension at least 4, and this estimate
improves if the capillary angle is close t0 0, 7, or . For capillary angles that are close to 0
or t, our analysis is based on a rigorous connection between the capillary problem and the
one-phase Bernoulli problem.
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1. INTRODUCTION

Given a smooth Riemannian (n + 1)-manifold with boundary (X"*1, h), functions o €
C(0X) satisfying o € (-1,1) and g € C'(X), and an open subset E c X, the Gauss’ free
energy is

(1.1 ,d(E):Jf”(a*Em)o()—/
0*ENoX

Stationary points (subject to a volume contraint) to the Gauss’ free energy model the equi-
librium state of incompressible fluids. Indeed, letting X be the container and E the por-
tion of the fluid, the three terms in (1.1) represent the free surface energy (proportional

a(x)d]f"+/g(x)dx.
E
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to area of the separating surface), the wetting energy (modeling the adhesion of the fluid
with the wall of the container), and the gravitational energy, respectively. The interface,
M =0En X, is usually called a capillary surface. Formally, if E is a stationary point of <7,
then the capillary surface M should have prescribed mean curvature g and boundary con-
tact angle cos~ (o). However, it is well-known that minimizers of ¢ may have a singular
set. The main result of this paper gives improved bounds for the size of this singular set.

Theorem 1.1. There exist €y, €1 > 0 such that the following holds. Let (X "+1 1) be a smooth
manifold with boundary, o € C'(0X), -1 <o <1, and g € C'(X). Suppose thatEc X isa
Caccioppoli set that minimizes (1.1). Then M = spt(0E n X) is a smooth hypersurface of M
away from a closed set sing(M).

(1) We always have that dim(sing(M)NoX) <n-—4;
(2) LetS;={x€dX:0x)e(-1,-1+&x) U(l—¢y,1)}. Then

dim(sing(M) N S;) < n->5.
(3) LetS, ={x€d0X:0(x) € (—€1,€1)}. Then
dim(sing(M) N S2) <n-7.

Previously, the best known partial regularity, dimsing(M) < n — 3, was proven by Taylor
in [26]. This was extended to the anisotropic case (extending the free surface energy to
an elliptic integral depending on the surface unit normal) by De Philippis—Maggi in [10].
When 0 = %, the surface M is usually called a free-boundary minimal surface, and satis-
fies the sharp estimate dimsing(M) < n — 7 by Griiter-Jost [16]. Capillary surfaces have
shown potential applications in comparison geometry (see, e.g. [19, 20]), where a major
stumbling block was the lack a satisfactory boundary regularity in the form of Theorem
1.1.

By the e-regularity and compactness theorems due to De Philippis—Maggi [10], the mono-
tonicity formula of Kagaya-Tonegawa [18] (see also [9]), and Federer’s dimension reduc-
tion, Theorem 1.1 follows from the classification of capillary minimizing cones with an
isolated singularity. Thus, for every open set U c R"*1 let us consider the functional (re-
call that cos6 = o by the first variation)

AHQ) =10*QANR ! N U|-coshld* QR N UL
We denote dg ., simply by «#?, where R?*! = {x; > 0} is an open half space. We say that a

n

Cacciopolli set Q < R?*! minimizes /9, if for every pre-compact open set U c R**1,
AH(Q) < AH(Q),
for every Cacciopolli set Q' = R?*! such that QAQ' is compactly contained in U.

Theorem 1.1 is thus a consequence of the following classification result for cones.

Theorem 1.2. There exist 09,0, > 0 such that the following holds. Let Q < R"*! be a mini-
mizing cone for «/% and M = 0Q N R, Assume that M is smooth away from 0. Suppose
one of the following holds:

(1) n<3;
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(2) n=4,0€(0,0p) U (T —00,7);
3 4$I’l$6,6€(%—91,%+91).

Then M is flat.

Since any «/?-minimizer Q gives a /" ~%-minimizer R?*! \ Q, we may, without loss of
generality, assume that 6 € (0, %]. With this in mind, each of the three cases in Theorem
1.2 is treated differently. Case (1) follows from an Almgren-type argument as in [1] by an-
alyzing the stability inequality on the spherical link £ = M n S"(1), and a topological clas-
sification result for embedded capillary disks analogous to Fraser-Schoen [15] in the free-
boundary case. Case (3) is analogous to the previous work by Li-Zhou-Zhu on the stable
Bernstein theorem for capillary surfaces [21, Appendix C], which follows from a careful
Simons-type computation as in [25], extending the one for stable free-boundary minimal
hypersurfaces.

1.1. Relationship with one-phase free boundary problem. The most interesting part of
Theorem 1.2 is Case (2), and it relies on a novel application of the connection between
the capillary problem and the one-phase Bernoulli free boundary problem. To motivate
the discussion, let us assume, for simplicity, that R”*! = {x; > 0}, and M is contained in the
graph over the x;-direction of a Lipschitz function u - i.e. there exists u € Lip(R" = {x; = 0})
such that

M={(ux),x): x' eR", u(x') >0},

u
tan® *

here x' = (x2,+++,x,). Set v =
we compute that

,Qfe(Q):/ (\/1+|Du|2—cost91{u>0})dx'
{u>0}cR"

:/ (\/1+tan20|Dv|2—cos@l{v>0})dx'
{u>0}

Assuming that | Lip(v)| is uniformly bounded as 6 — 0,

(1.2)
1

:/ ((l—cose)l{,,>0}+—tan29|Dv|2+O(63))dx'
(>0} 2

1
= —tan26/ (IDv|2+1{U>0}+O(9))dx'
2 (>0}

Thus,as 0 — 0, v = taLr‘l 7 should be an one-homogeneous minimizer of the functional

(1.3) J(v) :/ (IDV* + 1(ysq)) dx'.

The functional (1.3) is the well-known one-phase Alt-Caffarelli functional, and the above
argument shows heuristically that J should be the linearization of «#? as 8 — 0.

There is a vast literature concerning regularity of minimizers of the Alt-Caffarelli func-
tional; see, for example, [2], [6], [17], [27]. We also refer the readers to the book by Caffarelli—
Salsa [7] for an excellent expository of the problem. We note that the idea of J being the
linearization of <«#¢ is well-known to the experts (see e.g. [4, 14] and [13, Section 5]), but
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this seems the first time that the fine approximation (1.2) has been rigorously established
and used to deduce geometric consequences.

Theorem 1.3. Let; — 0+, Q; be a sequence of cones minimizing «¢% with an isolated sin-
gularity at0, and M; = Q; NR"™*Y. Then for i sufficiently large, M; is contained in the graph

of a Lipschitz function u; over R" = OR’*"1. Moreover, up to a subsequence, {%} converges
1

in (Wllt;i NC%)(R") to an one-homogeneous minimizer v to the Alt—Caffarelli functional ] for

all a € (0,1), and the free-boundaries 0{u; > 0} — 0{v > 0} in the local Hausdorff distance.
Therefore a smooth (away from 0) capillary cone with small angle has a fine approxima-
tion in by 1-homogenous minimizers to /. Additionally, in low dimensions (e.g. n < 4 by
[6, 17]), it is known that an one-homogeneous minimizer to (1.3) is (x-n); for some unit
vector n. In this case, we show that the improved convergence
Uj

—

tan0;

holds actually in C? away from the origin. We use this to prove case (2) of Theorem 1.2.
More generally, we have the following result.

Theorem 1.4. Let n = 2. Assume that the only one-homogeneous minimizers of J] on R"
are given by (x -n); for some unit vector n. Then there exists 0y = 0y(n) > 0, such that any
minimizing cone for /% in R"*! with an isolated singularity at 0 is flat.

1.2. Organization. In Section 2 we recall some preliminaries for capillary surfaces, mini-
mal cones in the Euclidean space and the Alt-Caffarelli functional. In Section 3 we prove
case (1) of Theorem 1.2. We carry out the rigorous relation between the capillary prob-
lem and the one-phase Bernoulli problem in Section 4, and prove case (2) of Theorem 1.2.
Finally, we prove case (3) of Theorem 1.2 in Section 5.

1.3. Acknowledgements. We would like to thank Daniela De Silva and William Feldman
for bringing our attention to the connection between the capillary problem and the one-
phase Bernoulli problem, and thank Guido De Philippis, Fang-Hua Lin, and Joaquim Serra
for helpful conversations.

0.C. was supported by a Terman Fellowship and an NSF grant (DMS-2304432). N.E. was
supported by an NSF grant (DMS-2204301). C.L. was supported by an NSF grant (DMS-
2202343) and a Simons Junior Faculty Fellowship.

2. PRELIMINARIES

2.1. Notation. We take (X, h) to be a smooth Riemannian manifold with boundary, E c X
an open set with M = dE c X smooth. Let v be the unit normal vector field of M in E that
points into E, 1 be the unit normal vector field of 0M in M that points out of X, 77 be the
unit normal vector field of 0 X in X that points outward X, v be the unit normal vector field
of M in 60X that points into 0EN0dX. Let S: Ty; — Ty, denote the shape operator defined
by S(Y) = —Vyv, and A the second fundamental form on M given as A(Y, Z) =(S(Y), Z) =
(VyZ,v). Particularly, if M is unit sphere in R"*! viewed as the boundary of the unit ball
E then we have that S =id and A = gy,.
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We write R = {x e R""! : x; > 0}, R” = OR"™! = {x; = 0}, and let 7 : R*"! — R" be the
orthogonal projection. Given any set S, let d(x, S) be the Euclidean distance from x to S.
We denote by B, (S) = {x: d(x,S) < r}. Constants of the form c or ¢; will always be = 1.

2.2. First and second variation of capillary functional. Say E is stationary for the capil-
lary functional (1.1), if %I =0 (E;) = 0 for all variations E;. Take M = 0E N X. The station-
ary condition is equivalent to

Hy=ginX, (v,i)=cosfondMnoX.

E is stable for (1.1), if ;—:2 |t=0<f (E¢) = 0 for all variations E;. The stability condition is equiv-
alent to

2.1) /(|VMf|2—(|AM|2+Ric(v,v))f2)d%”—cot9/ Ay, f2dA#""1 =0,
M oM

forall f e Cé (M). We refer the readers to [22, Section 1] for the deductions. Particularly, if
X =R""!, then stability gives

(2.2) /(IVMflz—|AM|2f2)dJ€"—cot9/ Ay, fPd#""1 0.
M oM

We write Ly; = Ay + | Ay|? the Jacobi operator.

We will often work with capillary stable (minimizing) cones Q in R”*!. By definition,
Q c R"*! is stationary and stable (minimizing) for «# in R"*!, We say Q is a smooth cone,
if M = 0Q N R is smooth away from the origin.

2.3. The Alt-Caffarelli functional. For an open set U < R" and u € W'2(U), write
Ju(u) = / IDul® + Yunusodx
U

for the Alt-Caffarelli functional. We will say that u € Wzléi(U ) minimizes Jy; if for every
U cc U and every w—u € WOLZ(U’) we have Jy(u) < Jy(w). If U = R" we will simply
write Jg» = J, and call any minimizer of Jg» an entire minimizer of J.

We require the following basic fact.

Lemma 2.1. Let u € Wkl)c2 (R™) be an entire minimizer of J. Then there exists a constant
co(n) >0 such that

ld(x,a{u >0} < u(x) <d(x,0{u>0}).

Co
Proof. The lower bound follow from [2, Corollary 3.6], and the sharp upper bound is a
consequence of the estimate |[Du| <1 (see, e.g. [17, Section 2.2]). O

We will also make important use of the classification of entire minimizers.

Theorem 2.2 ([17]). Assume n < 4. Letu € Wlécz (R™) be an entire minimizer of J. Then
u = (x-mn), for some unit vector n.

Proof. The classification of 1-homogenous minimizers is due to [17]. The same classifica-
tion holds for entire minimizers that are not a priori 1-homogenous by an obvious blow-
down argument and the Weiss monotonicity [28]. O



6 O. Chodosh, N. Edelen & C. Li

3. THECASEn=3

Proposition 3.1. Suppose Q c R**! is a cone, stationary and stable for «¢°, and M = 6Q N
RZ“. Assume that M has an isolated singularity so that X = M n S"(1) is smooth. Then we
have that

3.1) inf J5 (Vs f?—1As* %) — cotf foy As(n,mf* _(”—2)2
| fecl® Js f? =\ T2 )

Proof. This follows from [5, Lemma 4.5]. Note that any homogeneous extension of the first

eigenfunction with the capillary boundary condition (i.e. % = cotO A(n,n) f) satisfies the

same boundary condition. O

Proof of Theorem 1.2 when n=3. When n =3, (3.1) becomes

1
/(|V2f|2_|AZ|2f2)—COt0/ Az(n,n)fzz__/fZ’
z % 4 /s

for every f € C1(Z). Setting f = 1 and using the traced Gauss equation to write |As|? =
1-Ks + %IAZIZ, we have that

3 1
/Kz—cotﬁ/ Az(n,r/)>—J£2(Z)+—/|Azlz.
b oz 4 2)s

Using [19, (3.8)], one finds that cotf As(n,n) = —kg, where kg is the geodesic curvature of
0% with respect to the outward unit normal vector field. Thus, the above gives

3
—sz(Z)S/KZ+/ kg =21 y(2).
4 b3 >3

In particular, we have that y(Z) > 0 and thus X is a topological disk.

We then proceed exactly as in [15, Theorem 2.2]. Precisely, let u: D — S be the proper
minimal embedding such that £ = u(D). Take the standard complex coordinates z = x; +
ix,, and consider the function

_ [0 0 2
$le) = Ax (az' az) '
Here Ax(d;,0;) is the second fundamental form in these coordinates, given by As(0,,0;) =
(Vaue,duy),v). By [15, Theorem 2.2], we have that ¢ is a holomorphic function in D.
Now consider the boundary behavior of ¢. For this, take (r,0) the polar coordinates on D,
so that z = re'?. Set w = logz =logr+if. Then A(d,,0,) = éA(Gw,Ow). Along 0%, we have
that
du(a%) = An = A(cosOn +sinfv), v =cosOv—sinb,

here A = Idu(%) |. Consequently, we conclude that

0 o0 o S
As (E’ @) = /1<Vdu(%)(cosen+sm9v),cos@v—sm9n> =0,
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because |V| = || = 1 and 8S” is totally geodesic. Consequently, the same argument as in
[15, Theorem 2.2] shows that z4(,b(z) vanishes identically on D, and that X is totally geo-
desic. U

4. THE CASE n =4 WITH 6 CLOSE TO 0

In this section, we consider Q c Rﬁ“ that minimize the functional
#%(Q) =10"QnRM ! - cos0l0*Qna, R

in B; or (later) in compact subsets of R"**1 Here 0 € (0, Z]. We say (2 is a smooth minimizer
of «/% in U if M := 0Q nR"*! is a smooth hypersurface in U, which extends smoothly up
to the solid boundary OR”*!.

Most of our work in this Section is focused on proving the following convergence theo-
rem, which is essentially a generalization/refinement of Theorem 1.3.

Theorem 4.1. Let8; — 0+, Q; be a sequence of minimizers of «/% in B, which are smooth
(resp. conical with an isolated singularity at 0), and M; = 0Q; "R, Then for a dimen-
sional constant (n) and i sufficiently large, M; N\ B1,2N B¢ (R") (resp. M;N By 2) is contained
in the graph of a Lipschitz function u; over B",, = OR"*! n By;». Moreover, up to a subse-

1/2 =
-1,,. . 1,2 a n ... )
quence, 07 u; converges in (W, ' .nC;, )(B],) to a minimizer v (resp. one-homogenous

1/4
minimizer v) to the Alt—Caffarelli functional ] for all a € (0,1), and the free-boundaries

0{u; >0} — 0{v > 0} in the local Hausdorff distance in B{ZM.

Ifn <4, then v is entirely regular (resp. linear), and the convergence 91._1 u — vis Clz(’)‘z in
B}, Near the free-boundary this is interpreted in the sense of the Hodograph transform.

Remark 4.2. More generally, in Theorem 4.1 (and Lemma 4.14) instead of assuming n < 4
onecan assumen+1 < k*, where k™ is the smallest dimension in which there is a non-linear
1-homogenous minimizer of ] inR*" . The value of k* is not yet known, but by the works of
(171, [12], k* € {5,6,7}.

4.1. Preliminaries. Our first Lemma says that if the interior surface M := 0Q N R"*! is
smooth (up to the boundary), then in a region uniform far away from the interface 6M n
B; <R, M is mass-minimizing in the sense of boundaries.

Lemma 4.3. Let Q) be a smooth minimizer of.szfe in By, and let M = 0Q N BN RZ”, E =
QU (1 OQNORTH\RM), and S =71 (OM N AR N By). Then

O[E]L(B1\S) = [M]
is a mass-minimizing boundary in By \ S.
Proof. By construction we have 0E = M in By \ S. Let F be a Caccioppoli set in B; such that
FAE is contained in a compact subset W of By \ S. Without loss of generality (by replacing
W by a compact set containing it), we can assume that W = 7~ (W) N B, for W, < R” and

r < 1. Since M = 0Q n B; nR"*! is a smooth minimal hypersurface and (by the maximum
principle) meets 0R”*! only at dM, there is an £ > 0 so that

(4.1) d(x,0R")>2¢ VYxeoQnW.
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Define the piecewise linear map p.(x,...,X,+1) = (max{xy, €}, X2,...,X,+1), and define
F. = Fu({x; > €} N By). We have 0*F; = p.(0*F) and p:(0*F)n W = p.(0*Fn W), and
so since Lip(p,) < 1 we get the inequality [0*F, n W| < [0*Fn W|. From (4.1) we have
F.AQ cc W n{x; > 0}. Therefore if we set Q' = F. n Rﬁ“ we can make the comparison
‘dvev Q) < dtgv(Ql ). But since 8*Q' N 0R"*! = 9*Q N dR"*!, we can deduce the inequalities

0*EnW|=10*"QnR"™ ! nW|<0*Q nR"™ M nW|=|0*"F.nW|<|0*FnW|. O
We next recall the following application of the Allard regularity theorem.

Theorem 4.4. There is an €,(n) such that the following holds. Let T = 0|E] be a mass-
minimizing boundary in B, such that

0esptT, sup r_1|x1|<£<£1.
sptTnB;

Then spt T N B, = graphga (w) for some C? function u with the estimate

r|D2u| +|Du| + r_llul <c(n)e, inBy)s.

Proof. The estimate is scaling invariant so we assume r = 1 without loss of generality.
Assume the Proposition fails: then for any predetermined c(n), there exists a sequence
of mass-minimizing boundaries T; = d[E;] and numbers ¢; — 0, so that 0 € sptT; and
SUPspt75nB, |x1| < €}, but spt Tj N By 2 is not the graph of a C? function over {x; = 0} satisfy-
ing |ulc2 < c(n)e;.

Passing to a subsequence, by compactness of mass-minimizing boundaries we can as-
sume E; — E and T; — T = 0[E] for some mass-minimizing boundary T. However our
contradiction hypothesis implies 0 € spt T and spt T < {x; = 0}. Therefore we must have
T = +0[{x; < 0}], and hence T; — [{x; = 0}] with multiplicity-one. Allard’s them implies
that for j > 1, spt Tj N By 2 = graphg. (1) with |u|c2 < ¢(n) SUDspt T;nBy4 |x1| < c(n)ej, which
is a contradiction. O

We recall the Harnack inequality for harmonic functions on mass-minimizing bound-
aries by Bombieri—-Guisti [3].

Theorem 4.5 ([3, Theorem 5]). Let T = 0[E] be a mass-minimizing boundary in B{’“. There
are constants o (n) € (0,1), co(n) such that ifu € C'(B,) satisfies

/Vu-W/)duT =0, V¢e C&(Bl),u>0 on sptT,

then
sup u<c, inf wu.
spt Trlw)Bg 2 sptTNBy
Remark 4.6. It would be interesting to prove a version of Theorem 4.5 on the reduced bound-
ary of a capillary minimizer, which holds up to the boundary (cf. [11]). This would simplify
the arguments below.

Our final preliminary lemma rules out a minimizer Q of «#? having large pieces that stay
too close to the boundary.
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Lemma 4.7. There is €3(n) > 0 so that the following holds. Let Q < R be a minimizer for
A% inB,, and u : Bj' — R a non-negative Lipschitz function. Suppose either: QN By =
{x€ B;:0< x1 < ulwx)} and suppn U <e30;, or QNB; = {x € By : uwn(x)) < x1} and
Suppn U< €. Thenu=0inB},.

Proof. By allowing for 6 € (0,7) in the below proof, and replacing Q with B; \ Q, 0 with
7 —0 as necesary, there will be no loss of generality in assuming we are in the first case. We
loosely follow the ideas of [2, Lemma 3.4]. Let ¢(r = |x|) be the graphing function of the
upper half of the standard catenoid, defined on {x € R” : |x| > 1}. Standard estimates (e.g.
[23]) imply that as r — oo,

o) :{ alog(r)+ O(1) n=2
b,-—d,r*"+0r'™ n=3."’
for some constants a, b, d, > 0. Choose A(n,¢,0), u(n,&,0) > 0 (and ensure €(n) is small)
so that if
v =max{A¢p(|x|/A) — u,0},
then v(r =1/4) =0 and v(r = 1/2) = 2e6. We note it then follows from our choice of A, the
structure of ¢ and the smallness of €(n) that |0, v|,=1/4] < c(n)&€0h.

The graph of v is a scaled and translated portion of the catenoid. Write v for the unit
normal vector of graphg. (v) such that v-e; > 0, and extend v to be defined on all of R"*! so
itis constant in the x; direction. A standard computation shows that in {x € R (X)) =
1/4}, the n-form w := %V is a calibration for graphg. (v). Let us define the hypersurface

S={x=(x;,x)eRxR":|x'|=1/4and 0 < x; < u(x)},

endowed with the inward-pointing orientation, and define the cylinder
U={x=(x;,x)eRxR":u(x')>v(x) and x' € B, \ B],.},
so that, because v > u on 0By’ ,,
0U = [graphg. (1) N U] — [graphg.(v) N U] + S

(here we equip the graphs with an orientation so its unit normal vectors point into positive
x) direction). Now since min(u, v) is a Lipschitz function which agrees with u along 0B
we can make the comparison

49(Q) < 2% (10 < x; < min(u(r(x)), v (X))}

1/2’

and thereby compute:

/ \/1+|Du|2—cost9dx</ V1+|Dmin(u, v)]2 -1+ |Dul?dx
B n{u>0} {u

>0INBY),\Bf),

1/4

= A" (graphg. (v) N U) — #" (graphg. (u) N U) < / w —/ w
graphgn (v)NU graphgn (W)NU

(4.2)

U< c(n)s@/ u.
/ /Bl",4 V1+ |Dv|2 oB,
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On the other hand, we claim we have the estimate

(4.3) / U< c(n)H_l/ V1+|Dul?-cosfdx.
0B n n{u>0}

1/4 1/4
Combining (4.2) with (4.3) will give f 0B, u = 0 provided €(n) is sufficiently small, which
by a trivial comparison argument implies « =0 on By /4.
To prove (4.3), we break into two cases. For 0 € [0,7/2], we first note that we have the
inequalities

2V 1+ |Dul?—|Dulf-1=v4-0%2-1

>1-6°%/3
>1-0%/2+60%/24
= cos0

The first inequality follows by considering the minimum of the function ¢ — 2v'1+ % —
t0 — 1 on {t = 0}; the second and the third hold for 6 € [0, %] by elementary algebra; the
fourth holds by the Taylor remainder theorem.

Now using the trace inequality, then our bound |u| < €0, and then the above inequality,
we can estimate

/ u<cn) (IDul+wdx
4B B

1/4 1/4

so(n)@‘l/ (|IDul@ +1—-cos0)dx
{u>0}nB”"

1/4

sZc(n)H_l/ (\/1+|Du|2—c059) dx.
{u>0}nB"

1/4
This proves the assertion when 6 € [0,77/2]. When 0 € [r/2, ], then we can obtain the last
two inequalities by the fact cos@ < 0 and the inequality ¢+ 1 < 2V t? + 1. This proves the
Lemma. O

4.2. Inhomogenous blow-up to Alt-Caffarelli. We show here that capillary minimizers of
small angle with good a priori estimates near the boundary are graphical, and that the
graphing function looks close to a minimizer of the Alt-Caffarelli energy at the scale of the
angle. We first prove that non-degeneracy estimates (4.4) near the boundary can be ex-
tended to graphical estimates at both near and far from the boundary. In Section 4.3, we
shall prove using a bootstrap-type argument that estimates like (4.4) hold in a neighbor-
hood of uniform size.

Lemma 4.8 (Graphical propogation). Giveny > 0, there exists 0y, €, ¢ positive and depend-
ing only on (n,y) so that the following holds. Suppose Q < R"*! is a smooth minimizer for
% in B for some 0 <0y, and let M = 0QnN RZ“. Assume that0€ oM, and

1
(4.4) gtane d(@(x),0M) < x; <2tanfd(n(x),0M),
0
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forall x e M n By (0M), where cy as in Lemma 2.1.
Then there exists a Lipschitz function u : B}, — R and so that the following holds:

(1) Q={x:0<x <u@x)} L -ae in{0<x; <elNByy;
(2) M = graphg.(u) in{0< x; <€}NBy;

3) OM=0{u>0}inB
(4) Lip(u) < ctan®.

(5) foreveryze B, N {u> 0}, we have

n .
1/2’

(4.5) %tan@ d(z,0{u>0}) < u(z) <ctan0d(z,o0{u > 0}).

Remark 4.9. IfQ is smooth, then assumptions (4.4) will always hold for some'y.

Proof. Let €1, c; be the constants from Theorem 4.4, o, ¢, be the constants from Theorem
4.5, and &3 the constant from Lemma 4.7. Define

o CoC 4e
(4.6) = —Y, K= L, €= —1, tanfy = Lmin{e,el,&;}.
8 [ K 100c; 2 K
Here [1/p] is the smallest integer that is larger than or equal to 1/p. We claim that
4.7) Mn{0<x; <elnNB3q\By4(0M) < {tanb/K < x; < Ktan6}.

By our choice of constants, and since 0 € M, to prove (4.7), it will suffice to prove by
induction that for N =0,1,2,...,[1/p], we have the inclusion

Mni{yl4<d(x,0M) <y/2+ Np}n{0< x; <4e1p/cNyn B3y
(4.8) c{(y/8co)tan@/cy < x1 < 2ycy tan@}.

When N = 0 then (4.8) trivially holds by our hypothesis (4.4). Let N = 1, and suppose by
inductive hypothesis (4.8) holds with N—1 in place of N. Take y € R"N0By/2+(n-1)p(OM) N
Bs/4, and consider the ball Bsy(y). In Bsp/o(y), M is a minimizing boundary. If M n

Byp ()N B4£1p/c§’ (R™) # @, then by Theorem 4.5 (with u(x) = x1) we must have M N By, (y) ©
B4€lp/céV—1 (R™), and hence by Theorem 4.4 M N Ba, (y) = graphg. (u) for some smooth func-

tion u satisfying |ul <4ejp/c) 1.

In particular, there is a point z € M N By, (y) N By/2+(n-1)p(0M) N B ~n-1(R"), which

derp/c,
by our inductive hypothesis satisfies (y/8c¢p) tan6/ céV lezi< Z)fcév ~ltan6. Using Theo-
rem 4.5 again, we deduce M N By, (y) N By, /v R”) < {(y/8co) tanf/ ¢} < x1 <2yc) tan)}.
Repeating this argument for every admissible y proves (4.8), and hence (4.7) follows by
induction.

Let M' = Mn{0< x; <&} Given y = (y1,y) € M' N Byy4 take r = min{d(y’,0M)/16, p},
and note that by (4.4), (4.7), (4.6) we have

min{ey, €3}
4.9 < (K/p)tanOr < ———r<r/100
( ) n ( P) 100(3162

so that in particular we have y € M'nB,,4(y’). By Theorem 4.5, we have M'n By (y) < {x; <
c2(K/p)tanOr}, and so by (4.9) and Theorem 4.4 M’ N By, (y') = graphg. (v) for u: B (y") —
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R a smooth function satisfying

(4.10) r~ Y ul+|Dul < c162(K/p)tan®.

By our choice of 6y, Lemma 4.7 then implies that

(4.11) QN B, () ={x€B;2(y):0<x1 < uw(x))}

From (4.10), we deduce that 7(M') n B}, is an open subset of R", and M' N By, =

graphg. (1) N By for u: m(M') N B, — R a smooth positive function satisfying

(4.12) d(x,0M)tanf0/c < u(x) <cd(x,0M)tanf, |Du(x)|<ctanf

forall xe (M) N BI”,Z, with ¢ = ¢(n,y). The upper bounds in (4.12) follow from (4.10), and

the lower bound from (4.4), (4.7). By (4.10) and our choice of 8y, we have
on(M') N B}, =M n B,

and so we can extend u by zero to all of B’ to obtain a Lipschitz function satisfying the
required properties (2), (3), (4), (5).

Finally, we observe that if Q' is any connected component of QN {0 < x; < ¢}, then by
(4.4) necessarily 0Q' N {0 < x; < €} N B34 is a non-empty subset of M’ N Bs/4. From this and
(4.11) we obtain property (1). 0

By a trivial modification of the above proof, we also obtain a version of the graphical
propogation for smooth cones.

Lemma 4.10 (Graphical propogation for cones). Giveny > 0, there exist0y(n,y), c(n,y) so
that the following holds. Suppose 0 < 0y, and Q < R""! is a dilation-invariant minimizer
for 4% which is smooth away from the cone point 0. Write M = 0Q nR**!. Assume that

1
(4.13) ;tan@d(ﬂ(x),aM) < x; <2tanfd(m(x),0M)
0

forall x e Mn By (0M) N0dBy, where cg as in Lemma 2.1.
Then there exists a 1-homogenous Lipschitz function u: R" — R so that:
1) Q={x:0<x; <u@x)} L"'-ae;
(2) M = graphga(u) inR?*L;
(3) OM =0{u > 0};
(4) Lip(u) < ctanb;
(5) forevery z € {u > 0} we have

1
—tanfd(z,0{u > 0}) < u(z) < ctanfd(z,0{u > 0}).
c

Proof. We first note that by the maximum principle in the sphere M N dB; is necessar-
ily connected, and by the maximum principle for stationary varifold cones we must have
0M N OB; # @. By an essentially verbatim argument as Lemma 4.8, we can therefore find a
1-homogenous (because M is conical) Lipschitz function u : B} \ Bf',, — R satisfying prop-
erties (1)-(5) of Lemma 4.8 (except with B’ , replaced with B}’ \ B{,,).

Ensuring 0(n,y) is sufficiently small so that |u| < € on Bg \ B{l/z, property (1) and con-

nectivity of M implies that in fact (1), (2) hold without the restriction on x;. If we extend u



Improved regularity for minimizing capillary hypersurfaces 13

to R” by 1-homgeneity, then (1)-(5) will continue to hold on R”, as the estimates in (4), (5)
are invariant under 1-homogenous rescaling. 0J

As 0 — 0, the graphing function of Lemmas 4.8, 4.10 resembles more closely a minimizer
of the Alt-Caffarelli functional. This is made precise below.

Proposition 4.11 (Inhomogenous blow-up). Let6, >0 be a sequence approaching0, Q, <
R a sequence of (not necessarily smooth!) minimizers for </ in By, and M, =0Q, N
R, Assume there are fixedT, e > 0 and Lipschitz functions uy : Bl — R satisfying

(1) Qu=1{x:0<x; <uu((x))}in B:R")N By,

(2) My, = graphga(uy) in{0<x; <€etnBy,

(3) 0€ M, = d{u, >0} inR" N By,

(4) Lip(uy) <T'tan6;,

(5) forevery z € B]' n{uy, >0}, we have the estimate

1
ftaneud(z,a{uu >0}) < u;(z) <T'tanf,d(z,0{u, > 0}).

Then up to a subsequence,
1

tan 9u

converges in (Wllo’i NCP ) (BY),), forall a <1, to a Lipschitz function v : By, — R that min-
imizes the Alt-Caffarelli functional ] in B}',,, and the free-boundaries 0{v, > 0} — 0{v > 0}
in the local Hausdorff distance in By’ ,.
If, additionally, one assumes the M,, are smooth and admit an upper bound of the form
(4.14) sup sup 0;1 IAMHI < 00,
K B
then 0{v > 0} N By is entirely regular, and the convergence v,, — v is CIZO‘Z (Bf,z) in the sense
of Hodograph transforms. In particular, we get
(4.15) sup@;llAMu|—> sup |D?v| Vr<1/2.
B, B'n{v>0}
Remark 4.12. We shall show in Lemmas 4.13, 4.8 that hypotheses (1)-(5) will always hold
for any sequence of smooth minimizers with 0, — 0. Additionally, we shall show in Lemma
4.14 that (4.14) always holds for a sequence of smooth minimizers of dimension n < 4 (or
more generally n+1 < k*, see Remark 4.2).

Proof. We first prove the C}/ N Wlllﬁ and Hausdorff convergence for u, satisfying only
properties (1)-(5). By our hypothesis, we know that the functions v, are uniformly bounded
in W1°°(B,), and so passing to a subsequence we have vy — vinCy (By) forall @ <1, for
some v € W1’°°(Bl) satisfying |v| + Lip(v) < ¢(n,y).

We claim that 0{v, > 0} — 0{v > 0} in the local Hausdorff distance in By, which will
imply among other things that Liy,>0p — lipsop in L}OC(BI/Z) also. If x € 0{v > 0} N By/2,
then for any € > 0 small, choose z € B, (x) with 0 < v(z) < €. For p > 1, we must have
0 < vu(2) < 2¢, and hence by (4.5) we have d(x,0{v, > 0}) < c(n,y)e. Thus we obtain a

sequence x, € 0{v, > 0} with x, — x. Conversely, suppose we have x, € d{v, > 0} with
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Xy — X € Byjp. If x ¢ 0{v > 0}, then there is a ball By,(x) on which v = 0. But then since
v; — 0 on B;(x), Lemma 4.7 implies v, = 0 on B;/2(x) for u > 1, contradicing our choice
of x,;. So we must have x € 0{v > 0}. This proves our claim.

For any fixed By, (p) < {v > 0}, then B, (p) < {v, > 0} for all 4> 1. Since each u, solves
the minimal surface equation in B, (p), by standard elliptic estimates v, — v smoothly in
B;(p). So v, — v smoothly on compact subsets of By,2n{v > 0}. Together with the uniform
Lipschitz bounds on v, and the local Hausdorff convergence d0{v, > 0} — d{v > 0}, we get
vy — vin W2 (By2).

We now prove that v minimizes J in B;,,. For this, let r < 1/2 and let w be a Lipschitz
function satisfying spt(w—v) c B,. Choose a smooth function i : By/» — [0, 1] with spt(w —
v) € sptn < B;. Define the functions w, = w + (1 -n) (v, — v), and the domains

Q) = {x e BJ}}":0 < x; < max(0, tanh,wy)}.

Then Q,AQ), € B{’/Zl for > 1, and so

Q) < ()

— \/1+|Duu|2—C089“1{uu>0}dx
{

uu>0tNB,

g/ \/1+(tanHﬂ)ZlDwulz—coseul{wu>o}dx
{wu>0iNB;

1
:/ §|DuH|2+(l—coseu)l{uy>0}dx
B,
1 2 2 _ 3
< E(taneu) |IDwy|” + (1 - cos0u) 1w, >0dx + O(0,)
B,
- |DU#|2+1{yp>0}dx
B,

< | IDwl +1y,>0dx+0,)
B,

< [ IDwl*+2Dw-D((1 -n) (v, —v) +|D((1 -n) (v, - v)*dx
B,

+/ 1{w>0} + 1{n<1}dx+ O(Q’U)
In the second implication we used the bound |Du,| < ¢(n,y) tan6. Taking y — oo gives

/ |DV|2+1{U>0}dXS |DW|2+1{W>0}+1{n<1}dx,
B, B,
and then letting n) approximate 1p, we conclude that

Finally, for a general w—v € Wol’2 (B,) we can approximate w—v in W'?(By,») by a Lipschitz
function w compactly supported in By /2, and apply the above reasoning to v + w.
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We now assume the bound (4.14), and prove CZZOCCK convergence v, — v near the free-
boundary, and convergence as in (4.15). We have

(4.16) |D? vu(@) =1+ O(Hu))gﬁllAM,, (z+uy(2))],

and so (4.14) implies

(4.17) sup |D*vyl<A<oo
B]ﬁ{l/u>0}

for some fixed constant A. Since v, — v smoothly on compact subsets of d{v > 0}, we
deduce that

sup |D211| <A
Bin{v>0}

also. It follows that any tangent solution at any x € d{v > 0} is linear, and hence (by e.g. [2])
o{v > 0} is entirely regular. It also follows that if x, — x € {v > 0} N By, then 9;1 | Am, (x5 +
up(x))l = |Dv(x)].

Fix x € 0{v > 0} N By /2. We shall show that in some small ball B, (x) the Hodograph trans-
forms of v, convergence in C?% to Hodograph transform of v. Given any ¢ > 0 (to be fixed
later to depend only on n), we claim there is a radius r > 0 so that

(4.18) r_llvu(y) —(y=x)-Dv(x)| + IDv'u(y) —Dv(x)|<e in B;(x)n{v; >0},
(4.19) rHu(y) = (y—x)-Dv@)|+r Dv(y) - Dv(x)|<e inB,(x)n{v>0}.

The second estimate (4.19) follows from the regularity of 0{v > 0}, with r = r (v, x, €). The
Hausdorff convergence of free boundaries implies there is a sequence x;, € 0{v, > 0} — x,

and from the bound (4.17) (and the boundary condition 0, v, = —1 along d{v, > 0}), we
can shrink r = r(n, A) as necessary to get

(4.20) r_llvu(y) —(y—xi)-Dvy(x)| +|Dvy(y) —Dvy(x)l <€ inUy,

where U, is the connected component of {v, > 0} N B, (x) containing x,, € 0U,. Combining
(4.19), (4.20), with the C?OC convergence v; — v we deduce |Dv;(x;) — Dv(x)| < c(n)e and
{vy >0} N By (x) = Uy. The first estimate (4.18) (with c(n)e in place of ¢) then follows. This
proves our claim.

For convenience, after rotating/translating/dilating, there will be no loss in taking x = 0,
r=1,and Dv(x =0) = e;4+1, so that
(4.21) |IDvy(y) — en1l +1vp(¥) — (Ynr)+ I <€ in{v, >01N By.

Ensuring €(n) is sufficiently small, the inverse function theorem implies we can find smooth
functions g, (y1,--+, yu) : {y1 > 0} N B; — R satisfying

{(wuy2, -+ Yn+1), Y2, Ynr1) 1 Y €{vi > 0t N B} N By/10
(422) = {(J/b ;J/n,gy(J/1,"' ;J’n)) : y€ {J/I > 0} mBl} r-]BQ/IO)

and similarly we can find a g satisfying (4.22) with g, v in place of g, v,. From (4.21), we
have

(4.23) 18u(y1,---, yn) = 1l +1Dgu— el < c(m)e  in{y; >0} N By/10
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and similarly for g. The C?OC convergence v, — v implies that g, — g in o (B3 10)-
By differentiating (4.22), we have for every 2 < i, j < n the relations

(4.24) 1=D,1vD1g, 0=D;jv+Du41vD;ig

(4.25) 0=D7,1 ps1vD18D18 + Dpi1vD3 g

(4.26) 0=D%,,;vD1g+D%, | ., ,vD1gD;g+Dpi1vDi ;8

(4.27) 0=D}v+D;,, vDjg+D5,  \Dig+Dy,; i vDigDjg + DypivDi g,

and the same with g, v, in place of g, v. From the above, the bound (4.17), and the esti-
mates (4.21), we get the uniform bound

(4.28) sup Ingul <c(n)A,
B;/lO

and since Dv(0) = e, 41, we have
(4.29) Dg(0)=e;, |D*g(0)|=|D*v(0).

We show that the g, satisfy a good elliptic PDE with Neumann-type boundary con-
ditions, which we use to establish a priori C%>% bounds. For a general smooth function
g(y1,-+,yn) : B — R, define

graph® (g) = {(tanOy1, y2,++, Y, 1,--0, Yu)) : 31 > O},
so that we have M, N Bg/10 = graphgﬂ (gw) N Bg/10- Denote by
Dlg
Dlg= ,
& (tan@

DZgr"'ang)-

Then the upward unit normal v and volume form d Vol for glraph‘9 (g) have the expressions

(4.30) v(g) = ! (_Dlg,_ng,...,_Dng,l),
(1+|D%»)V2 \ tan@
4.31) dvol = (1+|D%g)'?dx.
Note that by (4.23) we have
(4.32) |tan 0, (1+|D%gu)"? ~1lcop: ) <cmle, for p>1.
Thus, in By, each g, is stationary for the area functional

A(graph®(g,)) = / (1+D% g

with boundary condition v(gy,)-(—e;) = cosf, when y; = 0. A standard computation shows
that g, is a solution to the equation

. 1 Dlgﬂ _ .
(4.33) div @n0, (111D g, [5)172 (taHZH”)DZgu,'“ ,Dngu)) =0 in {y; = 0},

(D1g)* = (IDgul* +1)/2 on {y; = 0}.

Note that (4.33) is a divergence form elliptic equation, but whose coefficients degener-
ate as 0, — 0. Denote these coefficients by (a;;(Dgu))1<i,j<n, aij : R" — R, so the equation
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for g, becomes D;(a;;j(Dgu)D;jgu) =0, for

1
all(p) p )
tan30,,(1 + tanzle +pi+---+ pR)l/2
(4.34) 1
aii(p) = , 2<is<n,
tan6 (1+t n29 +p5+--+ pR)l/2

and a; j = 0 for all other indices.
Fix 1 < k < n an integer, and set w,, = Dy g,,. Differentiating (4.33) in yi, we obtain that
wy, is a solution to the equation

(4.35) Di(a;ijDjw,) =0 iny; =0
and when k = 2, we have the boundary condition

(4.36) b-Dw, =0on {y; =0}.
Here

n
aij = aij(Dgy) +)_(D;aip)(Dg)Dpgu, b=Diguer— ) Djgpe;.
P i=

The vector b is uniformly close to c(n)e as 6, — 0, and we can compute the coefficients
aij as

1+ (D2g)* + -+ + (Dngu)?

(4.37) a = ,
tan36,, (1 + ID"ﬂgMIZ)y2
Dig,D;
(4.38) ayj = aj = —— Ll —, j>2
tan°6,(1+|D%g,|°)
) 1 (Djg,)? _
(4.39) ajj= - - — , j=2
tan6,(1+|D%g,1?)1/2  tan@,(1+|D"g,|?)3/?
D;g.D;
(4.40) aij=- 8y ;g“ L L2 #].
tanf,(1+|D%g,|?)3/2
Using (4.23), (4.28), we conclude that
4.41) |6_lij _5ij|C0(B;/10) <c(n)e, and |aij|C“(B9+/w) <c(nA,

provided p > 1. Therefore (ensuring £(n) is small) (4.35) is a divergence form uniformly
elliptic equation with uniformly Holder coefficients.

A key observation is that (4.36) is the natural boundary condition for (4.35), in the sense
that for every ¢ € Cé (Bg/10 NR™ = Bg/10 N {yn+1 = 0}), we have

(4.42) / C_liij wyD,'(p =0.
{120,yp+1=0}
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Indeed, we have that

0:—/ ¢D;(a;jDjw,)
{y120,yn+1=0}
n

:/ fliijWDi(P—/ @) ayDjwy,
{y120,y5+1=0} 11=0,yn11=0} j=1

and (4.33) and (4.37) implies that

1
Dlg)z.

a, = 7 (
tan®0(1+|DY%g|?)2
Combined with (4.38), (4.36) implies that Z?Zl @ jDjw =0on {x; = X4+ = 0}.
Thus, by (4.41), (4.42) we can apply C'% Schauder theory to get the bound
(4.43) [Dlg]-gu]a,gg/w scmA, G, ) #0Q, 1.
On the other hand, by rewriting (4.35) in non-divergence form, we get that g, satisfies the
equation c'lijD?ng =0on {y; =0}, and so we can write
(4.44) DY\gu=—ay; ), di]'ngjg.U’
i+j>2
and then combine (4.28), (4.43), (4.44) to deduce
(445) |g'u|c2,a(Bg-/10) < C(n)A
By Azela-Ascoli and the C° convergence gu — & we deduce that g, — g in CZ""(Bér 1100
In particular, if x,, € {v,, > 0} — 0 € 0{v > 0}, then from (4.16), (4.45), (4.29) we get
QﬁllAMp (e + up(x)) =1+ o(1))|D? Vu(x)]
= |D*gu(0)| + 0(1)
— |D*g(0)| = |D*v(0)!.
This proves (4.15). O
4.3. A priori estimates. For smooth minimizers, we can “bootstrap” the convergence of

Proposition 4.11 to show that the non-degeneracy estimates (4.4) hold for a uniform choice
of y.

Lemma 4.13 (Bootstrap non-degeneracy near free-boundary). There are constants 6y(n)
and dy(n) so that the following holds. Let Q) be a smooth minimizer of /% in B; c R™*! with
0 € (0,00). Then writing M = 0QNR"*™! we have

1

(4.46) Y tanfd(m(x),0M) < x1 <2tan0d (n(x),0M)
Co

forallx € M0 Byj» N Bg,(0M), where ¢ is as in Lemma 2.1.

Proof. Given a smooth minimizer Q of «/? in some ball B, and taking M = 0Q N R**!
and r < R, define D(M, B;) to be the largest number D so that (4.46) holds with Bp(0M)
in place of B;,(0M) and B, in place of B;,». Note that D(M, B,) is always positive (by our
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assumptions that M is smooth and r < R), and that r — D(M, B;) is decreasing. Note also
the scaling D(AM, By,) = AD(M, B;).

After replacing By with B34, there will be no loss of generality in assuming D(M, B;) > 0.
We shall prove: there are C(n), 0y(n) positive so that provided 6 < 6, then we have the
bound

(4.47) (1-rDM,B,) '<C Vre(o,D,

which clearly will imply the Lemma.
Suppose, towards a contradiction, there is no C(n), 8y(n) which makes (4.47) true. Then
there are sequences 6, — 0, and minimizers Q; of &/ 9 for which (writing M; = 0Q; NR")

sup (1-r)D(M;,B,)" ! — 0.
re(0,1)
Choose r; € (0,1) so that

1
(1-r)D(M;,B;)"' == sup (1-r)D(M;,B,)".
re(0,1)

Choose z; € B_rl.with d(z;,0M;) = D(M;, By,) so that
1
either Z—taneid(n(zi),aMi) =z;1, Or gz;=2tanb;d(n(z;),0M;)
Co

(z;,1 being the first component of z;). Set d; = d(n(z;),0M) < D(M;, By,). Clearly we have
d; — 0 and
d(n(z),0B)d; ' = (1-r)d;' = (1 -r;)D(M;,B;,) " — oo.
Define the dilated/translated domains Q' = (Q; -7 (z;))/d;, surfaces M; = (M;~n(z;))/ d;,
and points z;. = (z; — n(z;))/r;. Given any fixed R > 0, then for i > 1 the Q’i will be mini-
mizers of «#% in Br(0) = BR(T[(Z;.)) with

(4.48) D(M;,Bg) = 1/4,

but for which
1

(4.49) either Z—tanQid(O,aMi) =z., or z;, =2tan6;d(0,0M).
Co ! ’

From (4.48), Lemma 4.8, Proposition 4.11, for any R > 0 there are ip(R) and £(R) and
Lipschitz functions u; : Bﬁ — R so that le N Br = graphg.(u;) in {0 < x; < £(R)} when-
ever i > io(R). Taking a diagonal subsequence, the functions u;/tan6; converge in (C7 N
Wl’z)(R”) to an entire Lipschitz minimizer v : R” — R of the Alt-Caffarelli functional J.

loc
Lemma 2.1 and the local Hausdorff convergence d{u; > 0} — d{v > 0} imply that

1
gtaneid(z,a{u,— > 0}) < uj(z) <2tanf;d(z,0{u; > 0})
0

for all z € B* and all i > 1, which contradicts (4.49) since 22,1 = u;(0) and o0{u; > 0} =
oM. O
l
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Most importantly for us, in low dimensions (whereever 1-homogenous minimizers of
the Alt-Caffarelli energy are linear) we can obtain a priori curvature estimates near the
boundary also.

Lemma 4.14 (Curvature estimates). There are absolute constants C, €, 0y so that the fol-
lowing holds. Take n < 4, and let Q be a smooth minimizer of «/° in B, c R**1, for 0 €
(0,00), and write M = 0Q N R*"L. Then, assuming 0 € M, we have the curvature bound

-1
supMﬂBg(Rn)mBI/BH IAM| <C.

Proof. After replacing By with By,4 there will be no loss in assuming that supg, |Ap| < oo.
Moreover, ensuring 0 is sufficiently small, by Lemmas 4.13, 4.8 there is also no loss in
assuming we have a Lipschitz function u : B]' — R and absolute constant £ > 0 so that
M = graphg.(u) in B n{0 < x; < €} and Lip(u) < c6 and

(4.50) %Hd(z,a{u >0}) < u(z) <2c0d(z,0{u>0})

forall z € B{’ N {u > 0}. Here c is an absolute constant.

We will show that 871 Ay (x)|(1 — |x]) is bounded by an absolute constant, provided 6
is sufficiently small, which will clearly prove the Lemma. Suppose otherwise: there are
sequences 0; — 0, Q; minimizing /Y% in By, so that if M; = 0Q; N R"*! then

sup 0; 1 Apg, (0)1(1 = | x]) — 00
xeB

as i — oo. Choose x; € B satisfying

_ 1 _
0; ' An, (x)1(1 = 1x:)) = = sup 0; ' Apg, (0)](1 = | x]).
2 xX€B;
LetA; = Bi‘l | Apr, (x;)]. Write u; for the graphing functions for M; as in the first paragraph.
We break into two cases.

Case 1: sup; /ll.‘ld(xi,dMl-) < oo. Define the rescaled domains Q’l. =1 (Q; —m(x;)), sur-
faces M} = A;(M; — m(x;)) = 0Q; N OR’"*1, and points x; = A;(x; —m(x;)). Then for a suitable
R; — oo, the Q’l. are minimizers of «/% in Bg,(0) = Bg, (n(x;.)), satisfying
(4.51) supd(0,0M}) <oo, 0;'Ay(x))]=1, supf;'|Ayl<2.

i ! Bg; !
Moreover, if we let u(z) = A;u;((z - m(x;))/A;), then M; N Bg, = graphg.(u}), Lip(u]) <
c(p)8;, and the u; continue to satisfy (4.50) on B}’?li N {u;. > 0}.

We can therefore apply Proposition 4.11 (after passing to a subsequence as necessary)
to deduce there is entire Lipschitz minimizer v : R” — R of the Alt-Caffarelli functional J so
that 91._1 u; — vin (C;"OC N Wlléi) (R™). By Lemma 2.2 and our restriction n < 4, we must have
v(2) = ((z— z¢) - n) 4 for some zy € R” and unit vector 7, and in particular we have D?v = 0.
On the other hand, (4.51) and Proposition 4.11 imply we have

supBi_lIAM{I — sup |D?v| =0,
B ' BMni{v>0}

which contradicts our choice of 91._1 Ay (0)] = 1.
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Case 2: sup; /llfld (x;,0M;) = co. After passing to a subsequence we can assume
limA;'d(x;,0M;) = co.
1
Define the functions
u;(2) = Ai(ui((z— w(x)) /1 Ai) — xi1),
so that M} := A;(M; — x;) are the graphs of u}. Then for a sequence R; — oo, the u are
smooth solutions to the minimal surface equation in B ﬁi satisfying
Lip(u}) <cf;, u;(0)=0, 6;'ID*u}(0)|=1+0()).

By standard interior estimates and the structure of the minimal surface equation, after
passing to a further subsequence, we have CZZOC(R”) convergence of Qi_l u; — v for some
harmonic function v : R” — R satisfying

Lip(v)sc, v(0)=0, |D?v(0)]=1.

But now the Liouville theorem for harmonic functions together with the first condition
implies v is linear, which is a contradiction with the third condition. O

4.4. Proof of Theorems 1.3, 1.4, 4.1. Theorems 1.3, 4.1 follow by directly combining Lemma
4.10, Proposition 4.11, with Lemmas 4.13 and 4.14. The basic strategy for Theorem 1.4 in-
volves three key ingredients: we can write M; = graph(u;) and blow-up 91.‘1 u; — v for some
1-homogenous v minimizing the Alt-Caffarelli energy (Theorem 1.3); in low dimensions v
must be linear, and so the improved convergence of Proposition 4.11 implies 91.‘1 |Ap;noB, | —
0; a rigidity-type theorem for minimal capillary surfaces X in the sphere with small angle
0 and 6~ !| As| small. We first state the rigidity theorem.

Lemma 4.15 (Rigidity of almost-planar capillary cones with small angle). Thereisad(n) so
that the following holds. Let M be a stationary capillary cone in R"*! making contact angle
0 > 0 with R", and with smooth link £. Suppose the outward conormal s and second
fundamental form As of Z satisfy

INs+ens1l <8, 07'As|<é.
Then M is a half-plane.

(Note, though we don’t explicitly state it as a hypothesis, 7> can only be close to —e;+1 €
R" = 9R"*! provided 0 is very small.)

Proof. We first note the following trace-type inequality: provided ¢ is small, we have for
any non-negative f € C!(2):

/ fSZ/ f=n-en+1) :z/diVZ(_fenH)

0x 0x z

(4.52) =2 / Vef-(—ens1)+ fdivs(—en,1) <2 / Vs fl+(n-1f,
> >

having used that divs(e;+1) =n—1.



22 O. Chodosh, N. Edelen & C. Li

We now take Simons’ equation on X (see [25, Theorem 5.3.1]),
AsAs = (n—1-|As|?) A5,

and inner product with Ay and integrate over Z, to obtain

10|Az|?
(4.53) /|V2Az|2+(n—1—|Az|2)|Az|2:/ _x
z ox2 On

By [21, Lemma C.2], we have

(4.54) < c(n) cotB| As|3.

‘OIAZIZ

Therefore, combining (4.54) with (4.53), and using (4.52) with our assumption 8| Az| < §,
we get

/|vaz|2+(n—1)|Az|2sc(n)cs/ |Az|2+/|Azl4
> 0x >

<C(Vl)5/2|Az||Vz|Az||+(ﬂ—1)|Az|2+59/|A2|2
> >

sc(n)5/|VzAz|2+|Az|2,
b}

having used Kato’s inequality |Vz|Ax|| < |Vz As| in the last line. Ensuring 6 (n) is small, we
deduce As =0, as desired. L]

Proof of Theorem 1.4. Suppose, towards a contradiction, there are sequences §; — 0 and
cones ; minimizing /% so that each M; :=0Q; N RZ“ is smooth away from 0 but non-
planar. For i > 1, we can apply Lemma 4.13 at points in 0 M;Nd B to get the non-degeneracy
condition (4.13) with some absolute constant y. We can then use Lemma 4.10 and Propo-
sition 4.11 to deduce M; = graphg.(u;), where u;/0; — v for some 1-homogenous mini-
mizer v.

By our dimensionality hypothesis v must be linear, and without loss of generality v(x) =
(en+1-X)+. By Lemma 4.14 and Proposition 4.11, we have sup,p 07! Ay, | — supyp, |D*v| =
0, and that 6;1 u; — (epy1-Xx)4 in Clzo‘; (B2\ By 2) at the level of Hodograph transform, which
implies that the conormals 157, — —e,41 uniformly in 0B;. Lemma 4.15 then tells us that
the M; are planar for i > 1, which is a contradiction. O

5. THE CASE4 < n <6 WITH 6 CLOSE TO 7/2

In this section we prove case (3) of Theorem 1.2. In fact, we prove the following slightly
stronger result.

Theorem 5.1. Suppose 4 < n < 6. There exists 01 = 01(n) such that if Q c R*"! is a stable
minimal cone for A% M=0Qn Rﬁ“ is smooth away from 0, and 6 € (% -04, %], then M is

flat.

Remark 5.2. It will be clear from the proof that 0, can be explicitly computed depending on
n (compare to [21, Appendix C]).
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We first recall the following consequence of the Simons’s equation on a minimal cone.

Lemma 5.3. Let M" < R"*! be a minimal cone. Then for every A € (0,1), we have that
2

(5.1) AGIAP) +[A* 2 2A1x|?[AP + |1 =M1+ =) + 4| VAP
n

on M.

Proof. Fix a point p € M and take normal coordinates {xi}?zl around p, then the Simons
equation gives
n
AGIAPY +1A = Y A7 L
i,j,k=1
We write the right hand side of the above as:

n n
AGIAP +1AR =AY A2 - A7 (A Aiji)°
i,j,k=1 i,j,k=1

(=AY AT+ AY AT (A A

Note that ¥ |A|72(A4;;A;j,x)* = [VIAl>. On one hand, since M is a cone, we have that (see
[24, B.9])

n

n
Y AT Y AT (A A 0% = 20X 2 AP,
ij k=1 i,jk=1

On the other hand, we have the following Kato type inequality (see [8, (2.22)]):
ZA” L= 1+ —)|V|A||
(5.1) follows from combining the above two estimates. 0

Next, we establish the following trace type inequality on M. This was proven in [21,
Lemma C.3]. We include it here for completeness. (Compare to Lemma 4.15, where a
similar trace type inequality holds when 6 is close to 0).

Lemma 5.4. Suppose M" < R is a smoothly immersed hypersurface, meeting OR"*! at
constant angle 0. Then for any u € W4 (M), we have

1
(5.2) / Uus —— IVul+ |Hyrul.
oM sind M
Proof. For R > 0, let ¢ : [0,00) — R be a smooth function such that ¢g(f) = 1 when ¢ <
R, ¢r(t) = 0 when ¢ = 2R, and I(pRI %. Consider the vector field { = —¢@gr(x;)0;. By

assumption, we have that - ¢ = sin@ along 0 M. Therefore,

1
/aMu_ sinf 6MU77€

1
:ﬂ diVM(u(fT)s,—/ IVullél + udivys &+ |uHyl

2
/ Vu|+—= u+ |Hpru.
smB
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Sending R — oo gives the result. 0J

Proof of Theorem 5.1. For p € (%, 1) to be chosen later, by (5.1), we have that (here and after
weuser = |x|)

SAGARY) = pLARP Al Al + p(@p - DIARP V1 AIR
> plAPPT = AP + 242 Al + 1AL H (A - D 2) VAP
+p@2p—DIAPP? VAP
=p@p-2+A+ 1 -1 +2)APP2|VIAIP - plAPP** +2p A AP r 2

For a compactly supported radial Lipschitz function f = f(r), plug f|A|? into (2.2) and
obtain:

cote/ A(n,n)|A|2Pf2+/ |A|2P+2f2</ IV(f|AIP)|?
oM M M

1
(5.3) = / PALAPP2IVIAIP f2 + | APPIVFI? + §<V|AI2”,V(f2)>
M

20 A 12p—2 2 42 2 2 21 2 2 0| AP
= [ plAIPPT2IVIANC 2+ |AIPIVEIT = | fP=AlAIP) + f :
M M 2 oM on

We note that each integral on the right hand side of the above inequality is finite. Here
one only needs to check the integral involving | A?2?~2||V|A||? is finite. To see this, recall
that the Simons equation implies that

c(n)|V|A|[* <|AIA|A] + | A%,

for some c(n) > 0. Thus, we have that
c(n)|APP2|VIAI? < |APPTIA AL+ | AJPPHS,

Now both terms on the right hand side are integrable on MnS"(1), and hence | A|>?~2|V| A||? f?
is integrable on M if f is compactly supported.
We treat boundary term in (5.3) first. By [21, Lemma C.2], we have that

0|A
'(;_17| <3vVn-1|cotd| Al

Thus, using (5.2) we estimate

APP
cote/ A(n,r,)|A|2Pf2—/ fZL
oM oM n

so(n)lcot@l/ AP
oM

cotf

_sine'/Ml (F21A[2P*Y)

cotl B
sc(n)‘.—'/ FAIVIAIPIAPP™2 + F2|APPY2 £ |V fI2| AP,
sinf | J

<c(n)
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Here c(n) is a constant that may change from line to line, but depends only on n. We have
used that p <1 and the Young’s inequality 2ab < a? + b® above.
Plug this into (5.3), and use (5.1), we have

_ cot 2p+2 42
os/M((p 1) +c(n) sinHDIA| f

+/ (pz—p((l—/l)(l +2/n)+A+2(p-1)) +c(n)
M

cotf 2
——{|1APP72|V|Al)? £2
sinBD' | IVIA||I” f

cotd 9
+ 1+cn) |——|||APPPIV 12 = 2Ap| AP £211?
/M( ()‘sme‘)| 2PIV £~ 20 pl AP
(5.4) = I+II+1I1I.
For € > 0 to be chosen later, set

B rite r<i1
/= r2n2=e psq,
Though f is not compactly supported, [~ r" 3727 f(r)dr is finite (since p € [1/2,1] and

n = 2), and thus the right hand side of (5.3) is finite with this choice of f. Morever, we see
that /11 becomes

IIT= /
Mnir<ly

. / ,
Mnir=1} sin6

If we can make the coefficients in integrals I, II, IT all < 0, it will follow that A = 0, proving
our Theorem. We therefore seek to find p € (1/2,1),e € (0,1),A € (0,1),6; > 0 to ensure the
following inqualities hold whenever 0 € (7/2—-0,,7/2] and2< n<6:

(1+c(n)

cotf 2 2p 2, 2
—D(1 -2 AlFP =/
sinH‘)( +€) p)l [P felr

otf

(1+c(n) )(2—n/2—£)2—27tp) |AI?P £2 172

(5.5) 1o |29 <o
) p sinf
(5.6) pP—p((Q-AA+2/n)+A+2p—2)+c(n) %‘<0

cotf 9
(5.7) I+cn)|—=NA+e)-2Ap<0
sinf
cotf 9
(5.8) l+cn)|—P2—-n/2-¢)*-2Ap<0.
sinf

One can readily check that when 6 = 7/2 (and 2 < n < 6), then taking p =1—-¢, 1 =
1-10¢, € = 1/100 will make all of the above inequalities true. Therefore by continuity
there is a 6, > 0 so that all inequalities remain sharp if 0 € (m/2 — 0y, 7/2]. This finishes the
proof. 0
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