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ABSTRACT. This paper studies a principal-agent problem in continuous time
with multiple lump-sum payments (contracts) paid at different deterministic
times. We reduce the non-zero-sum Stackelberg game between the principal
and agent to a standard stochastic optimal control problem. We apply our
result to a benchmark model to investigate how different inputs (payment fre-
quencies, payment distribution, discounting factors, agent’s reservation utility)
affect the principal’s value and agent’s optimal compensations.

1. Introduction. Principal-agent problems describe strategic interactions between
two parts: the principal (i.e. the manager), and the agent (i.e. the employee).
The principal aims to incentivize good performance from the agent by designing an
optimal compensation, i.e. the contract. Such contracts are contingent on an agent’s
controlled random state, referred to as the output process (i.e. the firm’s value), and
must satisfy the agent’s participation constraint. In most real-life applications, the
contracts are structured as multiple lump-sum payments scheduled periodically (e.g.
insurance, brokerage, managerial compensations). The contract schedule can be
deterministic (e.g. salaries) or random (e.g. spot bonuses). This paper investigates
the problem of optimal contract schedule design (multiple lump-sum payments) in
continuous time. To our knowledge so far, this is the first paper addressing this
problem, as prior studies focused on either (i) continuous-time lump-sum single
payment and a possible continuous payment, or (ii) discrete time multiple lump-
sum payments. A continuous time approach facilitates tractability and qualitative
analysis in the study of optimal contract schedule design. The latter has numerous
applications in economics, finance, and management science.

A substantial amount of research has been developed in the continuous time
principal-agent literature. The first publication on this matter is authored by Holm-
strom and Milgrom [21]. The authors demonstrated that in a finite-horizon setting
the optimal contract is linear with respect to the output process. Since then, multi-
ple extensions have been developed. We highlight the following papers that extend
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the original model: [29], [30],[31], [22], [23], [18], [17]. Thereafter, the following ar-
ticles [24], [32], [33], [9], [10], [11] employed the stochastic maximum principle and
forward-backward stochastic differential equations to characterize optimal compen-
sations in a more general setting. Finally, we mention the latest contributions: [13],
[12], [20], [19].

In discrete time, the problem of optimal contracting schedule design has been ex-
tensively explored. Rubinstein and Yaari [27], and Rogerson [26] developed discrete-
time sequential contracting models providing qualitative properties of the optimal
compensations. Subsequently, Fudenberg et al. [15], [16] introduced the concept of
short-term compensation corresponding to the case where each contract is renego-
tiated immediately after the preceding contract is delivered. The authors showed
that, when the principal and agent have common knowledge, there is no need to
commit to a long-term negotiation.

Our paper has the following contributions. Firstly, in Sections 2 and 3 we con-
sider a general sequential contracting problem with contract schedules consisting
of multiple lump-sum payments paid at deterministic pre-established times. Fol-
lowing a similar approach to Cvitanié¢ et al. [8], we represent the agent’s value
using a recursive system of quadratic BSDEs (backward stochastic differential equa-
tions) allowing us to reduce the principal’s bi-level optimization problem to a single
stochastic control problem with mixed static and continuous controls. The latter
problem can be approached using dynamic programming techniques (see, for exam-
ple, [6]). The assumptions made are fairly general and can be applied to various
sequential contracting problems.

Secondly, in Section 4 we introduce a benchmark model to investigate how the
contracting environment affects the principal’s value and agent’s optimal compen-
sations. Inspired by Sannikov [28], our model assumes a risk-neutral principal and
a risk-averse (via power utility), time-sensitive agent. In addition to the reserva-
tion utility, we enforce a limited liability constraint imposing that every admissi-
ble contract schedule provides the agent a non-negative continuation utility. The
principal ‘s problem is to find an optimal contract schedule satisfying the agent’s
reservation utility and the limited liability constraints.

Using the results from Sections 2, and 3 we reduce the principal’s sequential con-
tracting problem to a stochastic control problem with state constraints and mixed
continuous-discrete controls which can be approached by carefully applying the re-
sults from Bouchard and Nutz [4]. In their paper, Bouchard and Nutz derive a
dynamic programming principle for the state-constrained stochastic control prob-
lem and write a comparison principle for viscosity solutions of its associated HJB
equation. To apply the previous results, we find an appropriate upper and lower
bound of the principal ‘s value function using probabilistic arguments. Finally, in
Theorem 6, we show that the principal 's value function is continuous and solves
a recursive system of HJB equations. We refer the reader to [7] for a comprehen-
sive review of the theory of viscosity solutions of second-order partial differential
equations.

In Section 5 we approximate numerically the solution of the recursive system of
HJB equations characterizing the principal’s value function allowing us to inves-
tigate how the contracting environment affects the principal’s value and optimal
compensations. Firstly, from our numerical simulations, we observe that the op-
timal intermediate payments £ delivered to the agent are an increasing function
of the agent’s continuation utility. Furthermore, as the agent’s discounting factor
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increases, the principal’s maximum achievable profit decreases. This is connected
to the concept of employment interval described by Sannikov [28], indicating that
the principal is less inclined to provide a large utility to an impatient agent. More-
over, independently of the agent’s discounting, the principal always benefits from
increasing the frequency of payments. Regarding the distribution of payments, we
conclude that the principal’s choice of payment distribution highly depends on the
agent’s participation constraint. The previous effect is noticeable when the agent is
impatient.

Finally, we compare the principal “s value in our model (initial negotiation) with
an analogous contracting model when the contracts are renegotiated at every trans-
action time. In our benchmark model, the negotiation is finalized at the initial
time implying that the agent precommits to a long-term contract guaranteeing to
remain in the firm until the last payment £y is transacted. In contrast, the rene-
gotiation problem represents the scenario where the principal and agent sign a new
contract at the beginning of each contracting period with a possibly different agent’s
reservation utility level. Our numerical simulations show that the principal’s opti-
mal negotiation setting (initial negotiation, renegotiation) depends on the model’s
inputs.

2. Set up. We start by describing the dynamics of the output process, i.e. the
value of the firm. We consider  := C([0,T],R), the space of R-valued, continuous
functions endowed with the supremum norm || - |[¢([0,7],r), and the Wiener measure
W e P(£2), where P(2) denotes the space of probability measures on 2. We denote
by W the canonical random element in €2, and F its augmented filtration (with
respect to W). The principal compensates the agent with N lump sum payments
En = (&1,...,€&N), ie. the contract schedule, transacted at Ty := {T1,...,Tn},
where 0 < 77 < ... <Tn-1 <Tn =T < o0. For each i € {1,..., N}, we define
the set of i-th contracts as follows

Y= {¢:(Q, Fr,) = (E,B(E)) measurable, EY [exp (p|¢])] < oo, for all p > 0},
(1)

where £ C R is a non-empty convex set. Additionally, for all ¢ € {1,...,N},
we introduce ¥; = H;‘:l C? corresponding to the set of contract schedules &; :=
(&1,...,&;) transacted at T; := {T1,..., T3} C Tn. Let &y € Xy be a contract
schedule. We denote by &n_1 € ¥n_1 the first N — 1 payments of £y. The output
process X §v-1 g defined as the unique strong solution of the following iterative

system of SDEs (stochastic differential equations)

_ N-1 _ t
X0 =+ Y6 (X%X*Hgi) Lo, +/0 oo (XEN-1)dW,, W —as.  (2)
i=1

where g € R, and 0 : [0,T] x R— R, G; : R x E+— R, 1 <14 < N, are measurable
mappings satisfying the following assumption.
Assumption 1. The mappings (G;)Y.,, and o satisfy the following properties:

(i) There exist constants Kg > 0, and p > 1, for which

Gi(z,y)| < Ka (L+ [z” + [yl") ,
for all (4, z,y) € {1,..., N} xRx E.
(ii) There exists a constant K, > 0, such that
lo(t,2)] < Ko (1+z]), ot 2) —o(t,2)| < Kolz — 2,
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for all z,z' € R.
(iii) o is bounded, and o(t,x) is invertible with bounded inverse, for all0 <t <T,
and z € R.

We notice that under Assumption 1, the SDE (2) admits a unique strong solution.
We write X;- := lim,_,;- X, for all 0 <t < T. Next, we describe the impact of
the agent’s actions on the output process. We assume the agent’s actions consist
of F-adapted, R-valued processes «. Furthermore, we introduce the measurable
function A : [0,7] x R x R — R, satisfying the following condition.

Assumption 2. A\(t,z,-) € CY(R) for all (t,z) € [0,T] x R. Moreover, for all
(t,a,z) € [0,T] x R?, there exists Ky > 0, such that

At z,a)| < Ky (14 |al), ‘8/\(t,x,a) < K.

da

Given a contract schedule 5 N € XN, we introduce the set of admissible agent’s
actions A(En—1), consisting of the F-adapted processes a for which there exists
€ > 0, such that

T ) B 1+e€
E|& (/ os(XﬁNl)lAs(XﬁNl,as)dWS> < oo.
0

Using Girsanov’s theorem, for any (gN,ha) € YnN_1 X A(gN,l) we define the
probability measure P* € P(2), and the P*-Brownian motion B® described as
follows

T _ _
W (/O as(XfN1)_1AS(XfN1,aS)dWS> 7

i _
BY =W, —/ oo (XEV-1) "IN (XEN -1 ay)ds.
0

Therefore, under P, the output process satisfies the following SDE
_ _ t ~ t _
X = Gi(Xgifl,gi) +/ Ae(XE¥-1 ay)ds +/ os(X5¥-1)dBY,
i T; T;
Ti§t<Ti+1, P* —a.s

)

_ t _ t _
XV =g +/ Ae(XE¥1 a,)ds +/ oo (XN-1)dBY, 0<t<Ty, P*—as.,
0 0
(3)
forallie {1,...,N —1}.

Remark 1. It is worth commenting on the economic interpretation of the state
equation (3). For all (z,y) € R x E, G;(x,y) represents the output value at T;
(immediately after the i-th payment is transacted), incorporating potential trans-
action costs. Finally, given (¢,a, ) € [0,T] x R?, the value \;(z,a) accounts for the
effect of the agent’s effort on the output level, and o4(z) denotes the risk level of
the output.
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3. The principal-agent problem. In this section, we introduce a class of sequen-
tial optimal contracting problems that can be solved by applying dynamic program-
ming techniques. We start by introducing the agent’s objective. Firstly, we define
the agent’s utility function U,, running cost ¢, and discount factor k£ defined by the
measurable functions: U, : B+ R, ¢: [0,7] x R? = R, and k: [0,7] x R* » R
satisfying the following condition.

Assumption 3. The mappings U,, ¢, and k satisfy the following properties:
(i) There exists a constant K,, > 0, for which

Ua(y)] < Ku (1 +yl), VyeE. (4)

(ii) For all (t,z) € [0,T] X R, ¢(t,z,-) € CY(R), strictly convex and non negative.
Moreover, there exist constants K. > 0, and p > 1, for which
et =, a)|

> K.|al?, lim ————= =o0.
jalwoelal

0
le(t, z,a)| < K. (1+ |al® + |z]), %c(t,x,a)

(iii) k is bounded. Moreover, for all (t,x) € [0,T] x R, k(t,x,-) € CH(R), and
%k(t,x,) is bounded.

Given a contract schedule &y := (&1,...,6n) € Sy, with transaction times
Tn :={T1,...,Tn}, the agent maximizes the following objective
Ja (t, 0, €N)
N-1 T _
=E" |KPrUa(én) + Z K8 r,Ua (&) Le<r, f/ /C?,scs(XgN’l,as)ds .Fz:| , (5)
t

=1

where (a, Xé¥-1) solves (3), and

s _
K{ :=exp (—/ k;r(XfN‘l,ozT)dr> , s>t
t
Additionally, we define the agent’s continuation value

VA(En) = esssup J, (t,a,én), 0<t<T.
a€A(EN_1)

Next, we introduce the principal’s problem. Let A*(€n) be the set of agent’s
optimal actions given the contract schedule {5 € ¥ . The principal maximizes the
following objective

Tp (En) = aeig%N)E“’“ U, (1) —en )] (6)

where U, is a real utility function, and [ : 2 — R is a Borel measurable liquidation
function.

Given an agent’s reservation utility R, € R, we denote by X%, the set of incentive
compatible admissible contracts

% = {&v €Sn: Vi (én) > Ra}
Hence, we define the principal’s value as follows

Vp= sup J, (EN) .
ENEXS
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In conclusion, the principal’s problem is to find an incentive-compatible contract
schedule {n € £, for which J,(én) = V). We introduce the following class of
processes to represent the principal’s problem effectively.

For all 0 <t < s < T, we define the following sets of processes

S P/2
(/ |Zr2dr> <oo,Vp>07y,
t

Dexp([t, 8]) == {Y,IF — predictable, cadlag ’JEW [exp (p sup ‘YT’)] < 00,Vp > O} .

t<r<s

H([¢, s]) := {Z,F — predictable | EW

In Proposition 1 we represent any admissible contract schedule in terms of a unique
solution of a recursive system of BSDEs. We start by introducing the following
functionals

hi(a,z,y,2) = 2X\i(x,a) — ke(z,a)y — ci(x,a), (t,a,7,y,2) € [0,T] x R,

Ht($7yaz> = Sught(avxvyaz>' (7)
aec

Remark 2. Note that under Assumptions 1, 2, and 3, the mapping a — —h;(x,y, z, a)
is coercive implying that Hy(z,y, 2) is well defined for all (¢, z,y) € [0, 7] xR2. More-
over, z — Hy(z,y, z) is convex as it is the pointwise supremum of affine functions.

Proposition 1. Let &y = (&1,...,6n) € n be a contract schedule. Then, there
exists a unique pair of processes (Y, Z) € Dexp ([0, T]) x H([0, T]), solving the follow-
ing recursive system of BSDFEs

T _ T _
Y;:Ua(gN)+/ H, (X§N*1,YS,ZS) dsf/ Z,0 s (XEN-1)dW,, (8)
t t

W—a.s. Ty_1<t<T
T; _ T; _
Y, =Y, + U, (&) +/ H, (X§N*1,YS,ZS) ds —/ Zyos(XEN-1)dW,,
t t
W —a.s. T;_q <t <T;,
forallie{l,...,N —1}.

Using the previous recursive system of BSDEs, we characterize the agent’s op-
timal response for any contract schedule {5 € ¥y satisfying an integrability con-
straint.

Proposition 2. Let & € Sy, and (Y, Z) € Degy([0,T]) x H([0,T]) be the unique
pair of processes defined in Proposition 1. Assume E {E (IOT stVVS)1+6] < o0, for
some € > 0. Then,
Y, =V (én) W—as., 0<t<T.
Moreover, a € A*(&n) if and only if
= & (XEV Y5, Z), dtoW —ae.,
di(z,y, 2) € argmax hy(-,,y,2), Y(t,z,y,2z) €[0,T] x R3. 9)

Remark 3. The previous proposition motivates us to restrict the set of admissible
contract schedules by excluding contracts that are not integrable enough. The latter
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does not suppose a significant limitation and allows us to fully characterize the set
of agent’s optimal responses.

We introduce the following class of contract schedules:
R B T 1+e
Ny o= {EN € X% : (Y, Z) solving (8), E [8 (/ ZSdWS> } < 0o, for some € > 0}.

0
In addition, for any £y € 2%, we denote by A(€x) the set of processes o € A(Ex_1)
satisfying
o= a(XNU YL 7)), dteW —ae.,
Gi(x,y, 2) € argmax hy(-, 2,9y, 2), Y(t,z,y,2) €[0,T] x R>. (10)

Finally, we reduce the principal’s problem to a weak formulation stochastic control
problem.

Theorem 4. The principal’s value satisfies

sup Jy(E)
ENEXY

- Yf;ga (Z7EN*1)€H?I1&1[§7T])XEN—1 QGEEE_I)EPQ {Up (l (XENH) -~ (Ysz?lyZ))} ’

where (XéNfl,YYmZ’EN*l) solves the following iterative system of SDEs

t _ t _
Yo=Y, - Ud(&) —/ H5<X§N*1,Y;7zs)ds+/ Z, XS, Ty <t < Tip,
1 ; |

T1
t _ t _
Yt:Yo—/ HS(Xngl,n,Zs)der/ ZdXSv-1 0<t< T,
0 0

X
=G (x5 8) + /Tt (A (X8, 6u(XEV =2, 20, Y3) ) ds 4+ 0o (XEV-1)aBE ) |

T; <t <Tita,

_ t _ _ _
X1 = g +/ </\S (Xngl,as(Xfol, ZS,YS)) ds + as(Xngl)ng) ,
0
0<t<Ty, P*—as., i€e{l,...,N—1}

4. The benchmark model. In this section, we apply the results obtained in the
previous sections to a benchmark model with a risk-neutral principal and risk-averse,
time-sensitive agent. We assume that the principal compensates the agent with N
non-negative payments £y := (&1, ...,&n) transacted at Ty := {T1,..., Ty}, where
(T;)N., is a strictly increasing sequence satisfying Ty = 0, Ty = T. Given a contract
schedule £x € Yy, and an initial output level zq € R, we introduce the output
process

~ N-1
thN—l = z0+ Wi — Z fj]]-TjStv W — a.s.
j=1
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We denote by A the set of admissible agent’s actions corresponding to the set of
F-adapted processes « satisfying

1 T T 1+e€
E |exp —5/ agds—i—/ asdWy < 00,
0 0

for some positive constant € > 0.

Hence, given an agent’s action o € A, and a contract schedule {5 € Xy, the
output process satisfies the following controlled dynamics

_ N-1 t
XVt =g — ZgjnTj§t+/ asds + BY, P*—as., 0<t<T,

j=1 0

where P® € P(Q2), and B® is a P*-Brownian motion defined via Girsanov’s theorem
as follows

N ¢ P> 1T, r
By = Wt—/o adr, W::exp —5/0 asder/O asdWs | .

In this scenario, we introduce the agent’s objective and continuation value re-
spectively
Ja (t7 «, EN)
4 |

N-1 T
B |:eka(Tt)Ua(£N) + 3 e Ty, () Ty — }/ eRela=0) 02
t

. 2
i=1
Vi (én)
N-1 T
ol _ _ _ o 1 _ .
= esssEpIEP g ka(T t)Ua(SN)-l- Ze ka (Ts t>Ua(§i)]lTi>t_§/ e kals t)ozgds ft],
ac i=1 t

where U,(y) := y1/71y20 — 00l <o, for some v > 1, and k, > O represents the
agent’s discount factor.

On the other hand, we introduce the principal’s objective and continuation value

JIp (EN) = E" {X%V’l — §N} , Vpi= sup sup  Jp (EN), (11)
ENED a€A*(EN)
where

& = {&v €SN 1 Vi (En) 2 Ra, VA(EN) 2 0, W — a5, 0 < ¢ < T,

and R, > 0, represents the agent’s reservation utility level. Additionally, we assume
that the agent has limited liability implying that the agent only accepts contracts
that generate a non-negative continuation utility at any time.

Applying Proposition 2, we obtain that for any contract schedule £y € 34, there
exists a unique pair of processes (Y, Z) € Dexp ([0, T]) x H([0,T]) satisfying

1 t
(—225 +kaYS> ds+/ ZydWs,

T;

t

Y, =Yy — Ua(&) +/

T;
ﬂ§t<ﬂ+l7 ZE{I,,N-l},
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t 1 t
Yt:YoJr/ (—2Z§+kaYs> ds+/ ZdW,, 0<t<Tiy,
0 0

where Yy € R.

Next, we invoke ([14], Theorem 4.3) to justify that the previous weak formula-
tion stochastic control problem is equivalent to a stochastic control problem in the
strong formulation where the stochastic basis is fixed. Using Theorem 4, and the
previous observation, we reduce the principal’s problem (11) to the following strong
formulation stochastic control problem

3 3 Y
V(t,z,y) := sup E [X;JZ’Z{N*I - (ij;,y,Z,ngl) } , (12)
(Z,En—1)eU(t,z,y)
for all (¢,z,y) € [0,T] x R x [0,00), and, for s > t:

~ N—-1 s
X;’I’Z’@V—l =r — Z §j1t<Tj§s +/ Zydr + Bs — By,

j=1 ¢

N—-1
_ s /9 _
Ystyy’Z,ENfl =y — E U, (gj)]lt<Tj§s +/ <223+kayrt’y,2,§zv1) dr
t

J=1

+ / ZrdB,.
t

In the previous equation, B is a Brownian-motion defined on fixed probability space
(Q,F,P), and F is the augmented filtration generated by B. The control Z is an
F-predictable process, and {n—1 = (£1,...,6ny-1) € Ln-_1, indicating that for
every ¢ € {1,...,N — 1}, & is a Fr,-measurable random variable satisfying the
integrability condition stated in (1). Moreover, for all (¢,z,y) € [0,T] x R x [0, c0),
the set U(t, z,y) denotes the set of controls (Z,&x_1) € H([0,T]) x £x_1, satisfying
the limited liability condition: Ytt’y’Z’fN ~' > 0P—a.s., and the uniform boundedness
condition: |Z;| < K,dt ® P — a.e, for some constant K > 0.

Remark 5. From a modeling perspective, the restriction to uniformly bounded
continuous controls |Z;| < Kdt ® P — a.e., establishes a maximum sensitivity level
of the agent’s value with respect to changes in the output process. Jointly with
the limited liability constraint and the reservation utility R,, comprise the agent’s
participation constraint.

The following theorem allows us to write the principal’s value function as the
unique viscosity solution of a recursive system of HJB equations.

Theorem 6. The principal’s value function satisfies the following properties:
1. The value function satisfies V(t,x,y) = x + v(t,y), where v is the unique
viscosity solution of the following constrained HJB equation:
v+ G (Y, 0,0y,0yy) =0, (t,y) € [Ti-1,T;) x (0,00), (13)
U(Ti_’y):fi(y)v yZOa ie{la"’aNfl}a
U(TNﬂy) = _y’Y7 ye [0700]7
U(tv()) :Oa te [E*hn);
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where G(t,y, vy, vyy) = kayVy + SUP|, <k {z + % (vy + vyy) 22}, and fi(y) =
maxo<p<y —17 +0(T;,y —n). Moreover, v is continuous in each region R; :=
[TiflyTi) X [0,00), 1€ {1 . N}

2. The function f; is continuous and has polynomial growth for alli € {1,..., N—
1}. Moreover, there exists a minimal function n; : [0,00) — R satisfying
e 1;(y) € argmaxg<, <, v(Ti,y —n) —n7, forally >0,i€{1,...,N —1}.
o nf is lower semicontinuous, for ally > 0,4 € {1,...,N —1}.

3. V(I7 ,z,y) = x+ fily), for all (t,z,y) € [0,T] xR x[0,00), i € {1,...N—1}.

5. Numerical results. In this section, we employ numerical methods to discuss
the model presented in the previous section. In the analysis, we fix U,(y) = yl/2,
zo = 0, and K = 10°. The recursive HJB equation (13) is approximated numer-
ically following a standard finite-difference scheme. We refer to [2] to justify the
convergence of our numerical scheme to the unique solution of the HJB equation
(13), which, by Theorem 6, corresponds to the principal’s value function.

— Ty
nHy) T2
084 — MTL

0.6

n*

— V(T4y)

Principal's value

(T3y) 044
24 — VT3-y)
— V(T2,y)
— W(T2-y) 02
=34 — wT2y)
W(T1-y)
— VoY)
- 0.00 0.25 0.50 0.75 100 125 150 175 2.00 0-00.00 0.25 0.50 0.75 1.00 125 150 175 2.00
Agent's value Agent's value
(A) Principal’s value with kq = 0. (B) Static optimizers with k, = 0.

FIGURE 1. Principal’s value and optimal utilities 7} = U, (&),
when k, = 0.

5.1. The case with no discounting k, = 0. Figure (1a) illustrates the princi-
pal’s value function at each transaction time when k, = 0. The functions v(73, )
represent the principal’s value function at time T;, and v(7T; ,y) is the principal’s
value function immediately before T;. On the other hand, figure (1b) depicts the
utilities that the principal provides to the agent at each intermediate transaction
time. The function 1} (-) := U, (&} (+)) denotes the optimal utility the principal aims
to pay to the agent at T;, i € {1,...,N — 1}. We see that the principal’s value
function in figure (1a) exhibits concavity and it is ultimately decreasing with re-
spect to the agent’s continuation utility in a fixed time. The latter is consistent
with Sannikov’s model ([25], Lemma 8.1). Moreover, our numerical results indicate
that an agent with a low reservation utility level has informational rent, meaning
that the principal optimally offers a contract providing to the agent a utility strictly
greater than the agent’s reservation utility.

Secondly, figure (1b) shows that the optimal intermediate payments are an in-
creasing function of the agent’s utility at a given time. Moreover, for the same
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agent’s utility level, the principal offers more utility to the agent in a posterior
payment. Finally, (1b) reflects the fact that the region where the agent has infor-
mational rent shrinks as time elapses. The principal only compensates the agent
when his utility does not belong to the informational rent region.

— V(T4y)
—— V(T3y)
— V(T3-y) N 24 — VT3-y)
— V(T2.y) — V(T2,y)
— V(T2-y) \ — vtrz-\,/y)
-3 — v(m2y) \ -3 — v(m2y)
V(T1-y) N\ V(T1-y)

8 — V(Tay)
— WT3y)

— Vo) \ — Vo)

- N . \
000 025 050 075 100 125 150 175 2.00 000 025 050 075 100 125 150 175 2.00
Agent's value Agent's value

(A) Principal’s value with ko= 0.05. (B) Principal’s value with k, = 0.2.

FIGURE 2. Principal’s value, when k, > 0.

5.2. The effect of the discounting factor %k, > 0. The figure above represents
the principal’s value function at each transaction time when the agent is impatient:
ke > 0. The above simulations align with the concept of employment interval
discussed in Sannikov [28]. In our case, it directly shows that it is harmful for
the principal to provide a large utility to the agent when the agent’s discounting
factor is greater than zero. We define the i-th employment interval to the set &; :=
{y € [0,00) : V(T;-1,y) > V(T;,y)}. A careful observation of the above figures
shows that the employment interval shrinks when the time elapses. Moreover, a
comparison between figures (2a) and (2b) shows that an increase of the discounting
factor causes a shrinkage of the employment intervals in every contracting period.

— Py T3 — my T3
175 ny) 12 1754 my) T2
— ryn — Ty T

0.00 0.00
000 025 050 075 100 125 150 L75  2.00 000 025 050 075 100 125 150 175  2.00
Agent's value Agent's value

(A) Optimal utilities delivered to the (B) Optimal utilities delivered to the
agent. ko, = 0.05. agent. ko, = 0.2.

FIGURE 3. Optimal utilities 0} = U, (&), when k, > 0.

Figure (3) above describes the optimal utilities delivered to the agent associated
with the principal’s value functions represented in figure (2). We see that, with an
increase in the discounting factor, the truncation region {y : nf(y) = 0} shrinks.
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This means the principal prefers to provide more utilities to an agent with a high
discounting factor. Finally, a careful comparison among figures (3a) and (3b) shows
that it is not optimal for the principal to fully compensate the agent before the
terminal time.

— W(T0,y)-1 — V(TOy)-1
V(TO,y)-1.5 V(T0.y)-1.5

— W(T0,y)-2 — W(T0,y)-2

— W(T0,y)-2.5 — WToy)-2.5

— W(T0,y)-3 — V(Toy)-3

— W(T0,y)-3.5 — V(T0.y)-35

1 period case 1 period case

0.5 4

004 /

Principal’s value at To
Principal's value at To

-15

000 025 050 075 100 125 150 175 2.00 000 025 050 075 100 125 150 175 2.00
Agent's value Agent's value

(A) Principal’s value V(To,y), ka = 0. (B) Principal’s value V(To,y), ko = 0.05.

FIGURE 4. Principal’s value with N = 2 payments for different 77.

5.3. Analysis of the payments’ distribution. Figure (4) illustrates the problem
with NV = 2 payments with a terminal contract transacted at a fixed time T = 4,
and a flexible initial payment transacted at one of the following times: T3 = 1 + %,
i € {0,1,2,3,4,5}. For example, 'V (Tp,y) — 1.5” represents the principal’s value
function at Ty = 0 when the first payment occurs at 73 = 1.5 and the second
payment occurs at To = 4. Additionally, the '1-period case’ refers to the classic
principal-agent model with a single payment transacted at the end of the contracting
period T = 4.

Firstly, we observe that the principal benefits from making multiple payments
compared to a single terminal compensation. Secondly, when k, = 0, the principal
always benefits from delaying the first payment. Finally, subfigure (4b) depicts
the principal’s value functions when the agent is impatient (k, = 0.05). It shows
that if the agent is impatient with a relatively high reservation utility, the principal
benefits from setting the first payment earlier. Conversely, if the agent is impatient
with a low reservation utility, the principal benefits from delaying the first payment.

—— 5 payments vO
4] 10 payment v0
—— 30 payment v0
— 5 payments v0 ka-0.05
7] — 10 payment vo ka-0.05
—— 30 payment v0 ka-0.05

Principals value at To (v0)

0 1 2 3 4 5
Agent's value

FIGURE 5. Principal’s value for different payment frequencies.
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5.4. Analysis of the payment frequency. Figure (5) illustrates the principal “s
value V(0,-) for different payment frequencies. For N = 5,10,30, we consider a
sequential optimal contracting problem with N contracts transacted at T; = i%7
ie{l,...,N}, and T = 10. As the number of payments in the contract schedule
increases, the principal achieves higher profits for any given agent’s reservation

utility.

5.5. Initial negotiation vs. renegotiation. In this subsection, we compare the
principal’s value in our benchmark model (initial negotiation) with an analogous
model assuming that each contract is renegotiated right after the previous payment
is transacted. In the renegotiation setting the agent solves a different optimization
problem in each contracting region. Moreover, the agent’s continuation utility resets
when the i-th payment is delivered. Mathematically, the renegotiation problem
corresponds to a sequential Stackelberg game with N different reservation utility
constraints:

I :
sup E e_k”'Tan(fi) — 7/ e_k“sagds > e_k"'Ti‘lRfl7 1e{l,...,N}, (14)
acA 2 T; 1

where R! is the reservation utility level in the i-th contracting period.

On the other hand, recall the definition of the reservation constraint in the initial
negotiation problem:

N

1 T
Z e_k“T"’Ua(&) — f/ e_k”'sozgds
2 /o

=1

sup E > R,

acA

where R, is the agent’s reservation utility in the initial negotiation problem.

Assuming that the agent allocates his utility uniformly throughout the duration
of the contract, we obtain normalizing the units in (14):

i koTis (i = Tio1)
R, =e T

The following figures represent the principal’s value function in both settings as-
suming N =4, T =8, T; = 2i, i € {0,...,4}.

R., i€{l,...,N}. (15)

O S
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— V(T3-y)
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..... RUs

— V(T4y)
ViT3y)

— VIT3-y)

— VIT2y)
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-+ highest profit

000 025 050 075 100 125 150 175 2.00 00 02 0.4 0.6 08 10
Agent's value Agent's value

(A) Principal’s value. Initial negotiation.  (B) Principal’s value. Renegotiation. kq =
ka =0. 0.

FIGURE 6. Initial Negotiation vs. Renegotiation, when k, = 0.
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Figure (6) describes the principal’s value in the initial negotiation and renego-
tiation settings. In both cases, we fix k, = 0, and R, = 0.909. The utilities
of each contracting period in the renegotiation problem are computed using (15).
We observe that the principal benefits from an initial negotiation compared to a
renegotiation setting.

Z
Z
— Ty
V(T3,y)

0.0

W(T3y)

Principal's value
Principal's value

— V(T3-y) — V(T3-y)
=051 — V(T2y) -0.51 — V(T2y)
— V(T2-y) — V(T2-y)
— V(T2y) — V(T2)y)
1o W(T1-y) 1o V(T1-y)
— V(o) — Vioy)

..... RUS
-+ highest profit

-+ highest profit

0.0 02 04 06 08 10 0.0 0.2 04 06 058 10
Agent's value Agent's value

(A) Principal’s value function. Initial

negotiation, k, = 0.4.

(B) Principal’s value function. Renego-
tiation, kg = 0.4.

FIGURE 7. Initial Negotiation vs. Renegotiation, when k, = 0.4.

Figure (7) describes the principal’s value in the initial negotiation and renego-
tiation settings. In both cases, we fix k, = 0.4, and R, = 0.131. The reservation
utilities in the renegotiation problem are computed using (15). We observe that

the principal benefits again from an initial negotiation compared to a renegotiation
setting.

10 10
0.50{398 054,
\ =
2 00 N 2 004 i
S — W(T4y) S — V(Tay)
2 W(T3y) 2 V(T3y)
% — V(T3-y) % — V(T3-y)
£ -0.51 — W(T2y) £ -0.51 — V(T2y)
= — W(T2-y) = — V(T2-y)
— V(T2y) — V(T2)y)
10 W(T1-y) 1o V(T1-y)
— V(o) — VoY)

(A) Principal’s value function.

0.4 0.6 0.8 10
Agent's value

negotiation, k, = 0.4.

Initial

+++ highest profit

0.0

0.2

0.4 0.6 0.8 1.0
Agent's value

(B) Principal’s value function. Renego-

tiation, ko = 0.4.

FI1cURE 8. Initial Negotiation vs. Renegotiation, when k, = 0.4.

Figure (8) describes the principal’s value in the initial negotiation and renego-
tiation settings. In both cases, we fix k, = 0.4, and R, = 0.25. The reservation
utilities in the renegotiation problem are computed using (15). We observe that
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the principal benefits from renegotiation. The latter shows that the principal’s
optimal negotiation setting (initial or renegotiation) depends on the contracting
environment.

Appendix A. Technical proofs.

A.1. Proof of Proposition 1. Let £y € Xy. Using Assumptions 1, 2, 3, and the
uniform boundedness of k, there exists By > 0, for which

Hy(x,y,-) is convex, V(t,z,y) € [0,T] x R?,

|Ht(x7y1az)_Ht(xay27z)| S‘Bl|yl _y2|7 V(t7x72ay17y2) € [07T] XR4' (16)

Moreover, there exists By > 0, for which

|Hi(z,y,2,a)| = sup {A(t, z,a)z — c(t,z,a) + yk(t, 2z, a)}
acR
< mm{MLx¢020@ﬂx®}‘+BﬂM~ (17)
acR

Next, we observe that for all (t,z) € [0,7] x R, the mapping a — A(t,z,a)z —
c(t, z,a), admits a global maximizer a* (¢, x) satisfying the first order condition

0 0
%A(t,x, a*(t,x))z = %c(t,x, a*(t,x)).
Hence, using Assumption 3, there exists C' > 0 such that

la*(t, )| < C(1+|z).
Plugging in the last expression into (17), we obtain

‘Ht(x,yvz” < BQ|y| + C|Z|2

Applying ([5], Corollary 2), there exists a unique pair of processes (YN, ZV) €
Dexp ([0, T]) x H([0,T]) solving the BSDE

dyN = H, (XEN—l,YtN, ZgV) dt — ZN oy (XE¥-1)dw,,
YI{V =Ua <§N) .
Therefore, for all p > 0, there exists Cp,p’ > 0, such that
1/2
E [exp (p )] < 00,

where we used the Cauchy-Schwarz inequality, and (5 N, Y) € XN X Deyp ([0,T7).

Ua(én-1) + Yqj“\ll\,71

)] < GoE [exp (' lew—11)] /*E [exp (20 |2,

Repeating the same argument we show by induction that for alls € {1,..., N—1},
there is a unique pair of processes (Y, Z%) € Dexp ([0, T3]) x H([0, T3]) satisfying
dy; = H, (Xf”’l,Yti, Z;’) dt — Zio (XEN1)dw,,
Vi, =Y UL (&)

Finally, setting Y; := Zi\;l )/;i]l[Ti—l7Ti)+YtN]l[TN—1aTN]’ and Z; 1= E«f\[:zl Zz]l[TiflaTi)—f—

ZN1iry_, mn], We obtain that (Y, Z) belongs to Dex,([0,7]) x H([0,T]), and solves
(8). Moreover, we conclude that Yy € R by Blumenthal’s zero—one law. g
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A.2. Proof of Proposition 2. Firstly, consider a payment scheme £y € Sn. By
Proposition 1, there exists a unique pair of process (Y, Z) € Dexp, ([0, T) x H([0, T)
satisfying

dY; = H, (XfN—l,Yt, Zt) dt — Zioy (X)) AW, W — as. Ti_y <t < T,

YTf:YTi_FULL(&i)a W—G.S., 7'6{17aN_1}7

Yr = Ud(én).
Without loss of generality, we assume that 0 < ¢t < Ty_;. Let a € A(én_1).
Applying It6’s Lemma, and using Assumptions 1, 2, 3, we obtain
J(l(tv a, gN)
K YT + Z KirUa (&) Licr, — / K ses( (XEN1 ay)ds ]-'t]
pe Tn-1 _
=E zTN 1 T]§7 + Z ,C fz licr, _l ]Ctojscs(Xf,N_l,Ozs)dS Fi
e T = =
—EF / e, (HS(XS&N*HYS’ Zs) — hs(XgN—l’y'st,as)) ds .7-}] .
Tn-1

Repeating the same argument recursively, we have

T _ ~
Ju(t,a,&n) = Y3 —E* {/ Kt (HS(XEN_17YS,Z5) — hS(XfN_l,YS,ZS,aS)) ds

t

7.
Therefore, ~
ViEn) <Y, W—as,

and the previous upper bound is attained if and only if af = d(t,XfN’l,Yt7Zt)
dt @ W — a.e., where &(t,x,y,2) € argmaxh(x,y,2,-). Note that o* is an F-
adapted process. Indeed, using Assumptions 1, 2, 3, we obtain that & satisfies
%)\(t,w, a(t,x,y,2))z — %ka(aad(tw,y, 2))y = %c(t,x7 alt,x,y, 2)).

Hence, applying the measurable selection theorem ([3], Theorem 7.49), we obtain
that the process a* is F-adapted. Moreover, using Assumptions 1, 2 3, there exists
C > 0 such that |a(t,z,y,2)| < C(1+ |z| + |y|). From the latter estimate and the
hypothesis on Z, we obtain that a* € A(éx_1). O

A.3. Proof of Theorem 6. We introduce the following auxiliary result before
proving Theorem 6. For n > 1, we denote R™" the set of n-tuples with positive
entries.

Definition 7 Let § := (b,c, M) € RY3 a € RM, v > 1. We introduce the
function ¢7%9 : [0, [0,00) — R defined by

T] x
,a,8 @—t) 1 c(T—t) —
5709 (t,) = —ay” + be Ty 4 e T0(1 — ),
Lemma 1. For all v > 1, there exists 6o € RT3 such that
a 1 s Ay a a
— /"% (t,y) — sup {z +3 (W 20ty y) + gy (t,y)) 22} — kaydy ™ (t,y) 2 0,

|z|<K

forallae{l,5~,..., 2=}, and (t,y) € [0,T] x (0,00).
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Proof. Let M > max{2,7, 5 —L-}. We obtain

max sup {byy + Oy}
a€{1,.... 5= } () €[0,7]x(0,00)

- 1 1 M-1 .
=be%M <yM_1 - MyM_2> —ayy’ "t —ay(y = 1)y

M-1 . _
Y ”)avyav(vl)>

_ L (
e N A S WA EES )

M Nv-1

1 1 1
o2 (pe L (PN (M1 T "oy -1
M\ M My —1) -1 N1
)

- 1 =

v=2 — AT 7

<y (be U N1 )

The fourth inequality comes from applying the first order condition to the function
an(y) = y%ﬂ—"/ — %y%_"’, which is satisfied at y* %M%V% B > Mj\Zl.

The fifth inequality comes from the monotonicity of the functlon

restricted to (max{Q,'y, ﬁ},oo). Then, for any 0 < b < = < A/é']yv(j_—ll), the

following inequality holds

max sup {pyy + 0y} < 0. (18)
a€{1,..., <2 } (t,¥)€[0,T]x(0,00)

Using (18), we have that for all a € {1
that M > max{2, vy, -~ L}, and b <

ooy =1}, and § = (b,c, M) € RT3 such

—~=T, the following inequality is satisfied

2 2
~ sup {z+ (625 (t,y) + 625 (1, 1)) } > —sup{z+ (655 (t,y) + 625 (2, )) }

|2|<K 2 z€R 2
1
2 (be(T=0 Lyt = Molydi=2) — qayp=1 — 9(y — 1ay1=2)

Hence, for any § = (b,¢, M) € RT3 such that M > max{2,7, - L1 <
the following inequality holds for all a € {1 ey Nwl—l }:

eN’Y eN =1

2

a, a, a z a
) = sup {2+ (05 0 + 05 00) T |~ ks (00)
1
(be 2 (Fyi = MoLydi=2) gt~y - 1)ay”‘2)

1 kg,
(7 - M>€(TT Yy 4 (ka)ay” + e T — ce ™V — koye ).
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We will show that there exists &g := (b, c, M) € RT3, for which

1< 2¢c (1 —e Y- I%lye_y) (7bew (%yﬁ_l — MM_Qlyﬁ_2) +'yay'y_l +v(y — 1)ay7_2> s

(19)
holds for all a € {1,..., 52—}, and (¢,y) € [0,T] x (0,00). The previous implies
that

a 1 a, a a,sd
min {—¢t’50(t,y) — sup {z +3 (qbysfo(t,y) + ¢y’5°(t7y)) zz} - kayqby"’“(ty)} > 0.

l=I <K
To show (19), we fix ¢ > 3k,, and use the following estimate
y ko 1 1
LoV =2ye? 2 liogyay + gl gy (20)

Firstly, we consider the case y > 1. Using (20), we obtain that for all a €
{17 L) ﬁ}

_ k _ T-t) /1 1 _ M—-1 1 _ _ _
20(1—6 y—fye y) (—be T (MyM o 2 yM 2>+’Yay_y 1+"/(’Y—1)Gy‘y 2)

g (T—t) 1 1 M—-1 1
> % (—beT (7 - iYe yV#) +yay" T+ y(y = 1)@21772)
—1
cy” (T-v (1 1_. M-—1 1 _,_ )
> —b T — gy MY — M R
=T ( ¢ MY 2 Y t e

v

ca be /f M —1 ﬁ‘”(("/Jrl)Mfl ﬁ_'y_lJr
7\ e \AM—1 M v

S ca be [ M* —1 Ml*"y+
- 27 a \yM* —1 v

where M* := max{2, ﬁ,’y}.

The first inequality comes from (20), and the third inequality is obtained from

applying the first order condition to (ﬁyﬁ_1 — %y%ﬁ). The second last in-

equality is a consequence of the nonnegative and nonincreasing property of the

function ) )
M—1\"" ((y+1)M—1\" !

- () ()
M —1 M

in the domain M > M*. Thus, for all 6} := (b,c, M) € RT3, satisfying

: v (ME-1\TE 4 1
b —_ M 2, —— 21
<mm{eN'Yl <7M*1) ’eN’Yl}’ >max{ 7’Y*177 , (21)

NY—127
¢ > max 1_7a3/€a ,
7= BN e( 2t

we obtain that (19) holds for all y > 1.

Next, we consider the case 0 < y < 3. Let M > 2, (b,c) € R™2. Applying the
estimate (20), we obtain that for all a € {1,..., == }:

k (T—t) 1 1 M-1 1
2c (1 —e ¥ - Tayefy> (—beT (Myﬁfl - S yﬁ72> +yay? " y(y — 1)ay772>

¢ (T—t) 1 1., M-1 1 _, Y Y2
25y<be T (—MyM + M )-&-*fay +y(y = 1ay
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(T—t) 1 M-1 1
2 y <be T ( M — yW*”> +(y —- 1)a)
M—-1 1 _ y(vy—1)
y' 1 +1-v el
Z <be T ( yM + E yM ) NA—1

M-1 1 _ vy = 1)
’Yl +1— Y
£ (o (e )+NH,

where we used that g (y) = —*yMJrl

where M L >3

Next, we con81der the function
_ I oayy o M—1 1 vy —1)
o 1 +1
ely) ==y’ (b (—MyM v 7) TN )
Notice that lim, .o+ ¢(y) = oo, implying that for all d > 0, there exists y; :=
y1(d,b, M) > 0, for which ¢(y) > d, for all 0 < y < y;. Using that go is non-
negative in (0, 3) when M > 2, we obtain

Ty —=1) 41
p(y) = dlocy<ys + 7= U1 Lyi<y<i

Therefore, taking d = 1 (or any arbitrary positive constant), we obtain that for
all 62 := (b,c, M) € RT3 satisfying

M >2 2 2N k 22
>3, om0 e O .

the inequality (19) is satisfied for all y € ( ) Finally, combining (21), and (22),
we conclude that for any & := (b,c, M) € RB 4 satisfying

) v M*— 1\ w" y 1
b _— M 2, ——
<m1n{eN,y_1 (fyM*—l) 76N’Y—1}’ >max{ 77_1# )

9 2N71 NY—197 ”

c > max | 2, —, — 3k, S
(v = Dya (1,6, M)7—1 <_bN7_1€(A%;*:11)M* ¥ +7>

the inequality in Lemma 1 holds. 0

Definition 8. Let v > 1 and 6, € R™3 be the 3-tuple determined in Lemma 1.
We introduce the function ¢7% : [0, 7] x [0,00) + R defined as

N

¢’7750(t v) ZQW’(HN 7 0 o(t, y)]l(Tq T

i=1

Remark 9. The function ¢7% plays an important role in our approach. It is
carefully designed to obtain an appropriate upper bound of the principal “s value
function. The latter is crucial to successfully employ the results from [4].

Next, we introduce the open-state constraint value function

. F ; ¥
V(t,z,y) = sup sup E {X;’LZ’&V’I - (Y;«’y’z’w’l) } ,
Yo2Ra (z,6x_1)€U(t,my)
where

X;,I,Z,EN—I — Z &licry<s +/ Zrdr + Bt — Bs,

t
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N-1

— S 1 - S
Yst’y,zng—l =y — E Ua, (5]) ]lt<Tj§s + / (523 + kaYTtay»ZﬁN—l) dr + / ZT-dBT7
t t

j=1
and Z](t,:c,y) = {(Z, En_1) EU(t,z,y) : Yst’y’Z’EN >0, P—as, t<s< T}, for
all (t,z,y) € [Tn-1,T] x R x (0, 00).

We introduce the lower and upper semicontinuous envelopes of V, defined for all
(t,z,y) € [0,T] x R x (0,00) as follows

— CNE 7 (4 o o
Vilbzy) = (t’vz’vy’l)lin%igfyy),y’>0V(t Ty
VE(t, ) == lim sup V(2 y).
',z y' )= (t,x,y),y’ >0
Firstly, we show Theorem 6.1, 6.2, 6.3, simultaneously by backward induction on
the regions R; := [T;—1,T;) x [0,00), 4 € {1,...,N}.

A.3.1. Proof of Theorem 6.1 on Ry. Firstly, consider (t,z,y) € (Tn-1,T] x R x
(0,00), a control process Z € U(t,z,y), and an F-stopping time 7. Applying Itd’s
Lemma, we obtain

z+ @70 (ty) = XheZ 4 7% (T, yivZ)
= [ () £ v ds a7, (29)
where t
MY2 .= B, — B, + /T 6y(5, YE12) Z,dB,
t

and, for any z € R, the operator L* is defined as

L 7) =2+ 5 ) + L) 2 + oy W)y,
for all f € C%((0,00)).

Note that M*Z is a local martingale. Next, we introduce a localizing sequence
of F-stopping times (7,,)nen defined by

Toi=inf {s >t :|¢, (s, Y)V?) Zs| > n} AT.
Fixing 7 := 7,,, and taking expectations in (23), we obtain by Lemma 1:
o+ ¢"0(ty) 2 E (X557 + 670 (1, YV D))

Next, by the uniform boundedness of the set of admissible controls U (t,z,y), and
standard SDE estimates, we have

E l sup |X§’I’Z + ¢7’5°(S,Y;’y’z)|21 < o0.
Tn-1<s<T
Thus, (XL®Z 4 ¢ (7, Y0 #)) | is uniformly integrable. Hence, using that
lim, o0 7w = T, P — a.s., and the continuity of ¢7:%:
-+ (b%éo (t, y) >E [X;JLZ + ¢’Y,5o (T7 Yq{,y,Z):| ] (24)
Taking the supremum over Z € Z:l(t,x,y) in (24), and using that ¢7% (T,y) > —y7
for all y > 0, we obtain

z+ ¢ (ty) > V(t,z,y). (25)
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Moreover, using the control Z:=0, we get the following inequalities
z— M0y <V(ta,y) <a+¢"%(ty).
The previous implies

x=Vi(t,z,0) = (t',x',y')l}gl,m,o),y»o Vit  z,y). (26)
Next, we apply ([4], Proposition 4.11). Firstly, we check that all the assumptions in
Proposition 4.11 are satisfied. Indeed, equation (26) implies that V. is continuous
on {y = 0}. Due to the uniform boundedness of the controls, the drift of the state
processes (X% Y¥%) grows linearly in (z,y) € R x (0,00). Additionally, for
all y > 0, the control Z := 0 satisfies Ystyz > 0,P — a.s. Hence, V is the unique
viscosity solution to the following state-constrained HJB equation

1 1
—pp — ‘s‘up {2 (py + yy) 2° + oz + 5%1-22 + 2<pxyz} —kayopy, =0,  (27)
z| <K

@(T,l:,y) =T — y77

in the class of functions with polynomial growth and lower semi-continuous envelope
continuous on [Ty_1,T] x {y = 0}. Moreover, using ([4], Corollary 4.13), we have
that V(t,z,y) = V(t,x,y), for all (t,z,y) € [Tn—1,T] x R x (0,00). Using that V
is continuous on [Tn_1,7T] X R x [0,00), and the fact that the value is separable in

(x,y), there exists a continuous function v : [Tn_1,T] x [0,00) — R, such that
Vt,z,y) =z +v(t,y).

Plugging in the last expression into (27), we obtain that v is the unique viscosity
solution to the following state-constrained HJB equation

1
-t — ‘S‘up {2 (py + oyy) 2° + Z} —kayvy =0, (t,y) € [Ty-1,T) x (0,00),
z| <K

QD(T,I,y) = 7y"/’ Yy > 07

in the class of functions with polynomial growth and lower semi-continuous envelope
continuous at {y = 0}. O

A.3.2. Proof of Theorem 6.2 on Ry. From the proof of Theorem 6.1 on Ry, we
know that V(Tn_1,2,y) = ¢ + v(Tn_1,y) is continuous on R x [0,00). We write

fN—l(xa y) = max h(xv Y, 77)7
nep(z,y)
where h(z,y,n) =V (In-1,2 — 17,y —n), and B(z,y) = {n € [0,00) : n < y}.
Clearly, h : R x [0,00) x [0,y] — R is a continuous function due to the continuity
of V(Tn_1,-,-) shown in the previous section. Moreover, 5(z,y) is a continuous
set-valued map with non-empty compact values by Theorems 17.20, and 17.21 in
[1]. Using Berge’s maximum theorem and ([1], Lemma 17.30), we obtain that fy_;
is continuous and the lowest maximizer n}_; is lower semicontinuous. O

I'We show this property trivially from the definition of the principal’s value in (12).
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A.3.3. Proof of Theorem 6.3 on Ry. Let t € [Tn—2,Tn—1). We will show that
for all € > 0, and (t,z,y) € [Tn—2,Tn-1) X R x [0,00), the following dynamic
programming equation holds

t,@,Z,EN— t,y,Z,6N—
V(t,z,y) = e S;}E%(t ) y)]E {V (TNfl +e, X T Y el 1)} . (28)
Z,EN -1 Ty

Note that the right-hand side of (28) is well defined as we showed that V is
continuous in [Ty_1,Tn] X Rx [0, 00), and therefore, measurable. Next, we consider
the principal’s objective:

J(taxaya Za £N—1) =E [X;I’Z’gN_l _ (Y;’va»fN—l)’y} )

Evidently, for all (¢,z,y) € [Tx_2,Tn—1) X R x [0,00), and (Z,én_1) € U(t, z,y),
the following inequality is satisfied

J(t,x,y, Z,6n-1) < sup E [V (TN_1 + €7X;§LZI£§717YTt;3ffgﬂ)] .
(Z,€n-1)EU(t,7,Y)

(29)
Hence,
Vitay) < swp B[V (Tyoy+e XpoZfi v 2o ]
(ZEn—1)EU(t,z,y)
Repeating the same argument using U as the space of admissible controls, we obtain
V(t,x,y) < sup E [V (TN_l + g’X%fLZfF’;‘l,YTt}fff?”)} .

(Z&n—1)EU(t,2,y)
Next, we show the reverse inequality in (28). Firstly, we observe that
V(t,z,y) > V(t,2,y) > V(Tn 1 + €z, erem> Nt t0ly) (30)
where the second inequality holds by considering the controls Zy = ZsLo>Ty_1+4e
where Z € U(Tn_1 + €, x, eFa(TN-1Fe=t) gy,

Furthermore, we observe that the mapping
(t,z,y) = V(Tn_1 + €z, ke max{Tn—1Fe=1.0}y) is continuous on [Ty_o, Tn] X R X
[0,00), as V is continuous on [Ty_1,Txn] X R x [0,00). Hence, for some § > 0 small
enough, we consider the set D := (t — 0, Tn_1 + €) X R x (0,00), and realize that

Tn_1+e is the first exit time of (5 Xﬁ“*Z’EN—l,ﬁ’y’Z’EN—l) from D. Using ([4],
t

Lemma 4.9 (ii)), we have

s>

Vito,y) 2 Vitay) 2 B [V(Tyoy +e XE025 yir i) 6

for all (Z,&n-1) € U(t,z,y). Finally, noticing that V =V on [Tn-1,Tn] x R x
[0,00), and taking the supremum in (31), we obtain

V(t,m,y) > sup E|V(Ty-1+ e,X;IfLZl’if’l,YTt;Vyiff?’l)] . (32)
(Z,En—1)€U(t,z,y)

Due to the continuity and local boundedness of V on [Ty _1,Tn] xR % [0, 00), taking
e — O:

V(t,z,y) < sup E {Xt‘f’z + fyv-1 (Yt’f’z
T, T

ZeU(t,x,y) — N-1

):| s (t,a:,y) c [TN72,TN71)XRX [0,00)7
(33)
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V(t,x,y) = sup  E {X;f’z + fn-1 (Y;’f’z)] , (tx,y) € [Tn—2,Tn-1)xRx(0,00).
ZeL{(t,z,y) N-—-1 N-1
(34)
Let (t,2,y) € [Tn—2,Tn-1) X R x [0,00). We consider the sequence (¢, Zn,yn) —
(Tn-1,2,y), tn < Tn—1, yn > 0. Based on the claim (34), we get the following
inequalities

E [Xt"’m"’z" + fnoa <YTti’ymZ"ﬂ <V (tn, Ty Yn)

TN—l N-—1

n n 1
trTn 2 tn,Yn,Z
<E {XT + [y (YT )] + -,

N-1 N-1 n

where Z" is a %—optimal control. Moreover, we have
2]

<R U (X;"_’I"’Zn,Y;Ty"’Zn> — (T, Yn)

E \(XTYTZ) ~ (@)

N—-1 N—-1

2
+2(@n —2)°+2 (0 —y)°

N-—1 N-—-1

<90eC(TN-1-tn) (|xn|2 +lyal? + 0) (T—1 —tn) + 2 (20 — 2)> +2 (yn — y)°,

for some positive constant C' > 0. In the previous inequalities, we used standard
SDE estimates (see, for example, ([24], Theorem 1.3.16)), and the uniform bound-
edness of Z. Combining the latter bound with the continuity of fy_1, we have

V(Tlg_lvxay):m+fN—1(y)' (35)
Applying the same argument to (33), taking a suitable sequence, we obtain
V*(T];—lvz7y) S T+ fN—l(y)a

where for all (¢,z,y) € [0,T] x R x [0,00), we define

VIt xy) = lim sup V(' a'y),
("2 y" )= (ta,y), ' <t, y'>0
Vet ,z,y) = lim inf V(2.

",z 9 )= (tz,y), t'<t, y'>0

Furthermore, we consider a sequence (f,,, @, ¥n) — (I'n_1,2,), such that
limy, o0 V(tn, Tn, Gn) = Vi(TNy_1, 2, y). Then,
V(Tﬁﬂv%y) = lim V(Enw%ﬂngn) S V*(TJG—hxvy) S V*(T§71,$,y) S :C+fN—1(y)'

Combining the latter inequality with (35), we obtain V(T'y_,z,y) = z+fy—1(y).0

Finally, we show the induction step. Assume that the results from Theorem 6
hold on R;41, for some ¢ € {1,..., N — 1}. We will show that it holds on R;. As
the proofs for 6.2, and 6.3 are identical to the proof in the terminal region Ry, we
only write the induction step for Theorem 6.1.
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A.3.4. Proof of Theorem 6.1 on R;. Let (t,x,y) € [Ti—1,T;) x R x (0,00). Our
hypothesis of induction claims that Theorem 6 holds on R;+1. Hence, V(T; ,z,y) =
z+ fi(y) = x +sup, {v(Ti,y —n) —n" = n €0,y]}, for all (z,y) € R x [0,00). By
induction, we obtain that for 0 < n < y:

O(Toy =)+ @407 < 0Ty —m) + a7 = ¢ I Ty ) oy,

Hence, for all (x,y) € R x (0,00), using that ¢?%(T},y) > v(Ti,y) by induction,
we obtain

V(T z,y)

?

= fily) + =

< SUP{(ZS%&O(T%?J_”) -n'ine [O,y]} +x
n

1 —¢
< sup {UV—Z)‘Y—l(y —n)’=n":n= 0} +be Ty 4 T (1—e?)+ua

1 _
— e e T e (L) e

= ¢V (T} y) + =, (36)

where dg := (b,c, M) € RT3 is the constant found in Lemma 1. Using Lemma 1,
and (36), we follow the same probabilistic argument we did for ¢ = N, obtaining

w— 0y <V(tw,y) < V(L a,y) <o+ 7% (Ly),
for all (¢,z,y) € [T;—1,T3) x R x (0, 00).

Hence, V, is continuous on [T;_1,T;) x {y = 0}. Invoking ([4], Proposition 4.11),
and following the same arguments done in the proof of this property in the terminal
region Ry, we obtain that V (¢, x,y) = x + v(t,y), where v is a continuous function
on R;. Moreover, v is the unique viscosity solution of the following state-constrained
HJB equation

1
—Pt — |S|U-p {2 (@’u + ‘pyy) Z2 + Z} - kayvy = 07 (tay> € [T;*].,T%) X (0700)5
z|<K

@(Tivy) = fi(y)7 y >0,

in the class of functions with polynomial growth and lower semi-continuous envelope
continuous at [T;_1,T;] x {y = 0}. Hence, we show the induction step. O

The previous completes the proof of Theorem 6.
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