IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024 1

Automated Generation of Transformations to
Mitigate Sensor Hardware Migration in ADS

Meriel von Stein', Hongning Wang', and Sebastian Elbaum!

Abstract—Autonomous driving systems (ADSs) rely on massive
amounts of sensed data to train their underlying deep neural
networks (DNNs). Common sensor hardware migrations can
render an existing DNN-dependent pipeline inadequate. This
necessitates the development of bespoke transformations to adapt
new sensor data to the old trained network, or the retraining of a
new network with new sensor data. These solutions are expensive,
often performed reactively to sensor hardware migration, and
rely only on empirical reconstruction and validation metrics
which lack knowledge of the features important to the trained
DNN. To address these challenges, we propose PreFixer, a tech-
nique that can systematically generate transformations for many
types of sensor hardware migration during the ADS development
lifecycle. PreFixer collects small datasets using colocated new
and old sensors, and then uses that data and the output of the
original trained DNN to train an augmented encoder to learn a
transformation that maps new sensor data to old sensor data.
The trained encoder can then be deployed as a preprocessor to
the original trained DNN. Our study shows that, for a common
set of camera sensor hardware migrations, PreFixer can match
or improve the performance of the best-performing specialized
baseline technique in terms of distance travelled safely with 10%
of the training dataset, and take at most half of the training time
of a new network.

Index Terms—Autonomous Vehicle Navigation, Deep Learning
for Visual Perception, Vision-Based Navigation

I. INTRODUCTION

UTONOMOUS Driving Systems (ADSs) are becoming
more advanced and ubiquitous, enabled by increasingly
sophisticated deep neural networks (DNNs). Producing these
DNNs is expensive, requiring massive amounts of data, la-
belling, training, and iterations of refinement [1I], [2], [3].
System evolution, however, can make even the most pow-
erful ADS network inadequate. In particular, sensor hardware
migrations where one sensor is replaced by another to reduce
cost or increase sensing quality occur frequently in practice.
These migrations are problematic because they may render
data different from that employed in the ADS development,
potentially affecting the system performance and reliability[4]],
and mitigating their downstream effects on DNN predictions
can be costly [4].

Manuscript received: December 21, 2023; Revised February 15, 2024;
Accepted April 30, 2024.

This paper was recommended for publication by Editor Ashis Banerjee
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported in part by NSF Award #2312487 and AFOSR Award #FA9550-
21-1-0164.

1Meriel von Stein, Hongning Wang, and Sebastian Elbaum are with the
School of Engineering, Computer Science Department, University of Virginia,
USA. {meriel, hw5x, selbaum}@virginia.edu

Digital Object Identifier (DOI): see top of this page.

(d) Camera Fisheye Lens

(c) Camera Resolution Decrease

Fig. 1: Image transformations that result from camera migra-
tions and the corresponding change in steering prediction.

Table [[details a diverse but representative sample of those
sensor migrations, the resulting feature changes in the sensor
reading, and the image transformation needed to approximate
the original sensor reading. Some migrations aim to improve
sensing quality, such as the migration from rolling to global
shutter, whereas some are cost saving measures, such as the
migration to a camera with lower resolution. Now consider
the sample images in Fig. [T] produced by four cameras. Let’s
assume an ADS neural network is trained to consume images
from the original camera to steer the vehicle. If the original
camera is replaced with another with different capabilities even
in a well-defined driving scenario, then that network is likely
to produce unexpected steering. The superimposed arrows in
Figures [Tp-d show dramatic steering angle differences between
the images of the migrations (blue arrows) and the image from
the original camera in Figure |lp (red arrows).

To mitigate the impact of sensor migrations, previous ap-
proaches typically employ three strategies [12], [13]. First,
developers can design bespoke transformations that map the
new sensor output distribution back to the old sensor one
to reuse the trained DNN. However, custom transformations
are highly dependent on domain knowledge and occasionally
infeasible [14]. Second, developers can fine tune existing
DNNs with a smaller dataset collected using the new sensor.
However, fine tuning may not be a sufficient intervention if the
migration gives rise to significant changes to the features of
the sensor reading, and it can be inconsistent and difficult to
apply [13]], [16]. Third, developers can train a new DNN on a
new dataset collected from the new sensor. However, collecting
a comprehensive dataset and retraining is time-consuming,

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

Systems Camera hardware migration Feature change Image transformation
Level 5 / Woven Planet 100m to 60m stereo depth accuracy[S] Depth of field Depth estimation [6]
Waymo Pinhole camera to fisheye lens camera [7] Fisheye Radial distortion [8]]

Waymo Rolling shutter to global shutter [7] Removed artifacting | Inpainting

Argo v1.0 to 2.0 (ring cameras) (1920 x 1200) to (2048 x 1550) inc. resol. [9], [[10] Resolution increase Interpolation/Superresolution
Argo v1.0 to 2.0 (front stereo cameras) | (2056 x 2464) to (2048 x 1550) dec. resol. [9]], [10] | Resolution decrease | Downsampling

Argo v1.0 to 2.0

Landscape to portrait orientation [9]], [10]

Orientation Mirror edge/Black padding

Tesla AutoPilot 2 to 2.5/3.0 RCCC filter to RCCB.8 filter [11]

Filter color shift Computational filter

Tesla AutoPilot 1.0 to 2.0

Black and white to RGB color [11]

Dimensionality inc. Inpainting/Retrain

TABLE I: Common hardware migrations and resulting image transformations. See Figure |l| for

through a subset of these cameras.

expensive, and may require external validation [17].

This state of the art leaves a clear need for a systematic,
low-cost, highly flexible technique that can handle significant
sensor hardware migrations in the ADS pipeline. Our key
insight to address this challenge is that generating a mapping
between sensor distributions that are image-to-image is an
easier problem than retraining a DNN to map images to a
control signal prediction and thus requires fewer resources.

We present PreFixer, the first technique to mitigate the
impact of sensor hardware migration in ADS with a high rate
of success, low cost to implement, and minimal disruption to
the ADS pipeline. To accomplish a successful transformation
with respect to a driving DNN, we prioritize the features
encoded by that DNN to translate between the feature rep-
resentations of the new and old sensor data distributions.
Unlike previous work [18]], [6]], [19], our technique makes
no assumptions on the unconditioned distribution of features
of new data or the similarity of old data to new. PreFixer
employs two key components: a simultaneous deployment of
old and new sensors to produce a collocated sensor dataset,
and an augmented encoder of a generative model trained
on that dataset. To effectively train the encoder, we rely
on a specialized loss function that accounts for the output
of the downstream DNN to ensure a feature selection that
is meaningful to both image reconstruction and prediction
accuracy. This process can learn an image transformation with
a small amount of data and preserves prediction accuracy of
the original driving network by optimizing for it in the encoder
training loss calculation. We show that PreFixer handles many
common camera sensor migrations, including those for which
heuristics do not exist. Our contributions are:

e an implementation and exploration of state-of-the-art
techniques to mitigate the impact of sensor migrations,
specifically camera sensors in commercial ADS;

« our technique, PreFixer, which provides a low-cost, ef-
fective, and highly generalizable remedy to this problem
that is hardware independent; and

o an artifact with pretrained weights available via https:
//github.com/MissMeriel/PreFixer

II. BACKGROUND

This section provides background on encoders and mitigat-
ing image transformations.

An encoder [20], [21]] is a type of neural network that learns
efficient embeddings of unlabeled data. The set of embeddings
is often referred to as a dictionary. Variational auto-encoders
(VAEs) [22], [23] use an encoder, dictionary, and a decoder

image examples captured

o

=

Q
\ o

Q

[}
dictionary

décoder?
e

Fig. 2: Output from PreFixer VQVAE for input Figure |1d to
approximately reconstruct the image in Figure .

to reconstruct the original data using its lower-dimensional
embedding. VAEs can suffer from gradient collapse and have
difficulty with non-categorical data. VQVAEs [24] were de-
signed to overcome such deficiencies by using an autoregres-
sive prior and discretizing the embedding dictionary, which is
a more natural representation modality for languages, image
features, and planning. VQVAEs are well-suited to encode
images correlated with a continuous output distribution from
the original DNN. A discrete dictionary also circumvents
“posterior collapse” where the decoder overpowers the latent
encoding and leads to poor reconstructions. Figure [2]illustrates
how encoders are used to generate reconstructions. An input
image is passed through the encoder to generate a dictionary
embedding, then the decoder uses the embedding to generate
the reconstruction. As we discuss later, PreFixer manipulates
the encoder architecture and embedding dimensions.

Using custom image transformations to approximate a fea-
ture space mapping has been explored in the computer vi-
sion community [19]. However, producing mappings between
sensor changes is a relatively new problem for engineers of
cyber-physical systems [25], [18]. Current research [6] shows
that engineers can introduce transformations to “clean” im-
ages, but cannot always translate between them. For example,
novel view synthesis [26] can support the translation between
images due to differences in camera extrinsics by interpo-
lating between perspectives, however feature deformations
due to changes in camera intrinsics prevent this translation.
Image transformations such as depth of field, camera motion,
view/placement changes, and noise, each require a unique
mitigation techniques such as deblurring GANs specific to the
type of motion blur, infill techniques, or denoising CNNs [27].
Confounding factors, such as changes to multiple aspects of
the hardware (e.g. changes to both resolution color shift) can
further complicate this process. Existing work on feature space
mapping to balance the needs of the system and the hardware
with which an image is collected [28] are designed to handle
only one type of change at a time. Moreover, they are evaluated
on image similarity metrics rather than their prediction fidelity
by another neural network. Instead, our technique seeks to

https://github.com/MissMeriel/PreFixer
https://github.com/MissMeriel/PreFixer

VON STEIN et al.: AUTOMATED GENERATION OF TRANSFORMATIONS

maximize prediction fidelity.

Image transformation methods do not account either for
downstream system effects, so developers often use other
techniques to mitigate sensor changes. Some take shortcuts
to retrain the original DNN such as initializing training with
pretrained weights, or warm-starting [29], which can offer
improvements compared to random initialization of weights.
Ash et al. mention this practice consistently hurts generaliza-
tion, while deceptively having little effect on training accuracy.
Completely retraining a DNN on a new dataset is costly [30],
[31], [32], [33], so warm-starting and fine-tuning are viable
options for some applications.

Our work also relates to efforts to ameliorate the effects of
adversarial attacks. Guo [34] and Naseer [35] take a similar
approach to “fixing” DNN inputs. Although their overall
goal is to defend against robustness attacks, they use image
transformations on DNN inputs to reduce perturbation strength
and mitigate consequences to the system. Guo et al. do this
through types of image reconstruction (variance minimization
and image patching) and Naseer et al. do this through fea-
ture distortion during training. However, it is unclear how
effectively these techniques can adapt to regression networks
and how they will generalize to features not seen during
training. Moreover, these techniques are geared towards “tar-
geted noise” attacks like Carlini-Wagner, rather than hardware-
derived feature deformations.

Our technique is architecturally similar to network chain-
ing [36], [37], in which predictions from some networks
become features for other downstream networks. This setup
is used in commercial autonomous driving systems [38]]. Sim-
ilarly, we use the VQVAE as a preprocessor for a navigation
DNN, applying transformations to important features that have
subtle but impactful influence on the DNN’s prediction.

III. PROBLEM DEFINITION

An ADS S is equipped with sensor ¢ and a navigation DNN
M. At each timestep ¢, ¢ produces ., defined by feature space
X, which is consumed by M to produce control signal 1.
Given a migration from c to a new sensor ¢’ defined by feature
space X (non-congruent with X, of c), the problem is to find
a transformation 7,s.. that maps an z. to an x. to produce
an reconstruction image &, such that:

(D) T o(Xer) = X =~ X, : the transformation of the feature
space of the new sensor must consistently approximate the
feature space of the original sensor. R

(2) argming, f(z)M(Te.o(Xe) = X) = M(X,) : the
transformation approximately reproduces the mapping from
image to DNN output of the original sensor component such
that it minimizes prediction error.

IV. TECHNIQUE

PreFixer aims to learn a transformation 7., to mitigate the
impact of a sensor migration by preserving the prediction ac-
curacy of the navigation network that consumes those images.

Figure [3| provides an overview of the phases of PreFixer:
data collection setup, encoder configuration, and training and
deployment of the encoder. Data collection uses collocated

original and new sensors, ¢ and ¢/, to create a dataset of
conjugate images (Z., z). The configuration space modifies
the augmented encoder to suit the transformation 7,... Then,
the encoder is trained on the dataset using a loss function that
leverages knowledge of M. Upon deployment, M is equipped
with sensor ¢’ and the trained encoder as a preprocessing
module of M. We next discuss how this architecture fulfils
the problem requirement and describe each stage in detail.

A. Technique Requirements and Fulfillment

PreFixer aims to (R1) support a diverse range of camera
hardware migrations commonly occurring in practice (see Ta-
ble[); (R2) be resource-efficient in that it is easier, faster, and
cheaper to apply than existing techniques such as designing
custom image transformations or retraining a DNN; and (R3)
provide a set of configuration principles that require minimal
setup, parameter tweaking, and domain knowledge.

1) RI: To support a range of camera migrations, we tailor
a VQVAE encoder to each transformation to avoid gradient
collapse and leverage the output distribution of the original
DNN. The encoder is responsible for the one-hot mapping
of the image input to the embedding space vectors, whereas
the decoder is responsible for producing the reconstruction
2. The encoder is flexible enough to support variations in
input image size as well as feature deformation according
to the configuration of the convolutional layers. The encoder
therefore ensures that all images can be encoded to the same
low-dimensional space, reducing parameter tweaking once a
sufficient embedding dimension has been found. Manipulating
the encoder thus also connects to the resource efficiency
requirement R2 and minimal configuration requirement R3.

2) R2: To satisfy R2, we have taken several steps to
ensure PreFixer is resource-efficient. First, we augment the
VQVAE training loss function to optimize for the recon-
struction of features important to M, improving prediction
accuracy on Z. Our use of predictions from M is rooted in
recent results suggesting that a well-trained image processing
network will help with the training of another [29], [36],
[16]. Thus prediction loss serves as a regularization term to
better differentiate encoding centroids for otherwise visually
similar images [39]. A steering DNN is a good application of
this because VAEs enforce normality and steering predictions
are a skewed normal distribution. Second, using a VQVAE
enables the use of a smaller dataset as it has fewer trainable
parameters than M, and is thus less prone to overfitting with
a smaller dataset. Backpropogation during training is faster
for the smaller VQVAE as well. Finally, by manipulating
only the encoder, the decoder can be reused for expedited
learning of future transformations, because all transformed
images have an onto mapping to a single image in the original
camera configuration and thus occupy a similar place in the
embedding space. By manipulating only the encoder, we have
narrowed the configuration space such that the default VQVAE
configuration of layers and embeddings works well for a set
of common transformations.

3) R3: To satisfy R3, we design PreFixer to need min-
imal investment in setup, parameter exploration, or domain

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

1. COLLECTION

2. CONFIGURATION
ey € Xy

—> encoder

z. € X,

dictionary

in_channels

j—
embedding_dim
num_embeddings

encoder_arch_id
hidden_dims

3. TRAINING

loss —
N " loss (Bqn.1)
E e _L ~ L2(E’L“..f.7L4T)
To € Xo ze X, . T T
VQVAE undergoing > —Y5—Yx
training o
E e original bedd .
S DNN | embedding_loss

4. DEPLOYMENT
, zo € Xo

Fig. 3: Overview of PreFixer.

knowledge. The VQVAE offers a single automated mechanism
to learn transformation regardless of type, eliminating the
need for developer time to craft bespoke transformations or
domain knowledge beyond the dimensions of the images.
Its unsupervised learning approach automates the mapping
between feature spaces of the new and old sensors in such a
way that features critical to the predictions of the downstream
DNN are automatically prioritized in reconstruction.

We offer in the study and tool repo a set of encoder ar-
chitectures, several of which work well for mappings between
images of identical size and two that work for mapping be-
tween differing image sizes. Our augmented VQVAE encoder
can be configured according to image size and transformation
complexity. This flexibility allows the encoder to map between
a wide set of transformed images.

B. Detailed Design of PreFixer

Our approach relies on two key components to automatically
compute the transformation 7...: a flexible variable encoder
architecture and the ability to capture a small dataset with both
sensors running concurrently. These components play a role in
the collection, configuration, training, and deployment stages
of the development lifecycle.

1) Collection: The collocated sensors setup enables the
collection of a dataset that captures pairs of readings from
cand ¢ |'} S is then instructed to navigate scenarios using M
to produce a dataset with cognate sensor readings from ¢’ for
every reading from c, accompanying the navigation signal
from M. As postulated earlier under R1 and later shown in

The sensors should be placed as close as possible on S, and the encoder
can manage small perspective shifts. Section shows it is able to handle
lossy transformations and low-quality images that require infill.

Section [V-D} a small, diverse dataset will be sufficient to learn
a generative model that encodes transformation 7. because
this model has fewer trainable parameters than M, making
backpropogation during training faster and rendering a model
less prone to overfitting.

2) Configuration: The configuration space affects the en-
coder and the dictionary. The encoder configuration consists of
the input channels for the sensor reading (for example, 3 input
channels for an RGB image), the encoder architecture identi-
fier (encoder_arch_id), and the size of the feature dimensions
in the hidden layers (hidden_dims). The dictionary reduces
internal representation of an input to the important features in
a lower-dimensional space. This dictionary configuration con-
sists of the number of embedding vectors (num_embeddings),
and the dimensions of each vector (embedding_dims). The
feature dimensions in the hidden layers are the number of
tensor channels and consequently the number of convolutional
kernels for each hidden layer in the encoder. The embedding
dimensions are the size of each of the embedding vectors that
define the latent space of the dictionary, and the number of
embeddings are the number of quantized vectors used to map
inputs in the latent space. By configuring only the encoder,
the decoder can be reused for expedited learning of future
transformations, because all transformed images have an onto
mapping to a single image in the original camera configuration
and thus occupy a similar place in the embedding space.
Section [V-B] further details how the configuration space is
parameterized.

3) Training: The training portion of Figure [3|shows training
for one input. The ¢’ reading . is passed to the VQVAE. The
resulting reconstruction £ € X, is then used to calculate the
terms of the loss function, defined as:

loss = Ly (Y3 — ¥s) + La(x. — &) + embedding_loss (1)

The first term of loss is the prediction loss. Z is passed to M
to produce prediction 13, which is compared to the prediction
from the original sensor reading, v, We use L1 to calculate
prediction loss because L1 penalizes large and small loss terms
proportionally, as a single high error prediction may not be as
catastrophic as a series of low error predictions. The second
term of [oss calculates the pixelwise reconstruction loss as
an L2 norm between the reconstruction & and the original
sensor reading z. to penalize large shifts in pixel values. The
third term, embedding loss, deals with the loss from quantizing
embedding vectors such that embedding vectors themselves
are defined to minimize ||z, — Z||Vz € X.. Embedding
loss is part of the VQVAE training but it is not unique to
PreFixer [24].

Our use of predictions from M is rooted in recent results
that suggest a high-quality image processing network will help
with the training of another network for a related task [29],
[36]. (See discussion of prediction loss as a regularization term
in Section [[V-A2). The prediction loss term can be weighted
to further prioritize it during training. We found empirically
that past a weight of 1.0 the prediction loss on the validation
set plateaus, likely due to the proportionality of prediction loss
and reconstruction loss, but this is an exploration for future
work. VQVAEs (like VAEs) assume that prior and posterior

VON STEIN et al.: AUTOMATED GENERATION OF TRANSFORMATIONS

are Gaussian [39]. Our technique circumvents this by using
the pretrained M which explicitly maps a non-Gaussian image
distribution to a skewed Gaussian steering distribution.

4) Deployment: The final section of Figure [3] shows the
deployment setup. The new sensor ¢’ sends an image x. €
X to the trained VQVAE which produces a reconstruction
T =~ x, € X.. This reconstruction is then sent to M to predict
1, which is then sent to the system S for actuation.

The costs of PreFixer are: (1) collecting a small dataset
using collocated sensors; and (2) training a VQVAE using that
dataset, the cost of which is proportional to dataset size. As
we shall see in the study, even with these costs, PreFixer gives
a higher probability of prediction accuracy, leading to better
generalization in new environments and more stable system
behavior under deployment, as well as lower training overhead
or developer involvement than alternative approaches.

C. Generalization

In this section we discuss two broad challenges to the
generalization of PreFixer: (1) the scope of factors related to
sensor migrations, specifically sensor parameters and sensor
types, and (2) the integration with existing ADS pipelines.

PreFixer focuses on intrinsic changes in sensor parameters
because those are the ones primarily affected by common
sensor migrations (see Table [[) and there exists no single tech-
nique to mitigate them. Changes in some extrinsic parameters,
such as sensor placement, could be accommodated. However,
that would require the reconstruction of unseen image areas,
rather than remapping features that are present but deformed.

In terms of sensor types, PreFixer can be adapted to sensors
beyond standard cameras. For example, adapting to RGB-D
would not require significant changes, as RGB-D cameras
would not interfere with each other during dataset collection
and the current encoder set handles 4-channel images similarly
to 3-channel ones. Adapting to LiDAR, however, would re-
quire carefully consideration to sensor placement to minimize
interferences so the transformation is learnable by the encoder
and replicable when the old sensor is eventually removed.
In addition, the encoder in_channels and encoder_arch_id
must be configured to match the LiDAR pointcloud structure.
PreFixer could also be used for migrations between sensor
types (e.g. RGB to LiDAR) as long as sensor readings can
be represented in tensor form and the encoder architecture
accommodates the sensor reading dimensions. Exploration of
these adaptations is part of future work.

Regarding the generalization to ADS pipelines, PreFixer
assumes an end-to-end network with a Gaussian output dis-
tribution to better leverage the assumptions of VQVAEs.
PreFixer can thus generalize well to network for different
tasks, such as predicting driver trust, or networks that produce
multiple outputs, such as a network that predicts both steering
and throttle, as long as there is a Gaussian signal to guide
training of the model.

Lastly, PreFixer can be applied in pipelines with sufficient
slack to tolerate its training costs and runtime latency. The
usage of our technique may not be feasible for systems in
which the onboard processing power is limited or where

software throughput is too high to accommodate the added
latency (see Section [V-D2)).

V. STUDY
Our study aims to answer the following research question:

RQ1) How effective is PreFixer compared to other techniques
in supporting common camera migrations? To answer this
question, we explore 4 image transformations related to cam-
era migrations observed in real-world systems. We then test
PreFixer on 10 validation road segments not seen in training.

RQ2) How much data does PreFixer need to successfully
learn each image transformation? To answer this question,
we compare performance across 4 dataset sizes for all 4 image
transformations.

A. Setup

1) System Under Test: Our study uses the BeamNG high-
fidelity driving simulator [40]. For the autonomous vehicle
under test, we equip the prepackaged “hopper” vehicle with
an onboard camera at the top edge of the windshield. The
camera has a 50° field of view angled upwards 5° relative
to the vehicle pitch and collects images at 15 Hz to mimic
established self-driving setups [41]. For vehicle control, we re-
implemented the DAVE2 architecture [42]], which consumes
camera images to steer a vehicle. We trained DAVE2 with
145,521 images collected over multiple prebuilt BeamNG
driving environments. The trained network final loss was 0.012
MSE between predicted and ground truth steering angles. A
PID regulates throttle. This system is able to traverse all road
segments in this study with the original camera configuration.

2) Validation Road Segments: We test all techniques in
simulation on 10 unseen 100-meter road segments. These
road segments were chosen for their difficulty for the DAVE2
network to navigate them, the variety of road topologies
(straight, winding, left and right turns), and the variety of
features in the driving environment (mountains, city driving,
country roads). Each technique was run 25 times per segment
to account for built-in randomness in the simulator.

3) Image transformations from real-world camera hard-
ware migrations: Table[[samples the broad spectrum of image
transformations that occur in real-world autonomous systems.
These examples motivate the transformations we chose for
this study. Rows 1 and 5 are lossy, where the new camera
hardware is of a reduced quality. Row 4 is lossless because
the new camera hardware is better (e.g. increased resolution).
Row 2 is additive and includes a feature deformation, where
the new sensor is qualitatively different in a way that captures
more information (e.g. pinhole to fisheye camera).

For the related image transformations explored in this study,
the fisheye transformation increases the field of view from 50°
to 75°. The depth of field transformation decreases the depth
in focus from 1000m to 100m. Depth and fisheye maintain the
image size of 108x192. The resolution increase transformation
increases original image dimensions from 108 x 192 pixels
to 270 x 480 pixels. The resolution decrease transformation
adjusts the original dimensions to 54 x 96 pixels.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

B. PreFixer Configuration

To accommodate the image transformations in Table
we configure the VQVAE architecture primarily through the
encoder_arch_id metaparameter. Each convolutional layer is
parameterized by padding p, kernel size k, and stride s.
Padding adds a border of zeroed pixels p wide before con-
volving. Kernel size determines the number of elements in
the tensor that are used to compute the element in the output
tensor of the layer. For each feature channel there is one kernel
of size k x k. Stride steps the kernel by s pixels across the
input tensor before the kernel is applied again.

For all transformations, we adjust the configuration to
reverse the original VQVAE architecture [43], starting with
a smaller kernel and stride relative to the size of the image
to preserve image features that may be combined, weighted,
or discarded in later convolutions. If needed for the transfor-
mation, we use padding in the outermost convolutional layers
to fit the dimensions of the target image and maximize use of
the original image pixels. We then tailored encoder_arch_id
further for each transformation as follows.

The resolution decrease camera migration (Figure [Ik) re-
quires a transformation that handles blurring and pixelation
of features to successfully map back to the original (larger)
image. This requires a smaller convolutional kernel relative
to image size in order to average between multiple pixels and
possibly some padding in earlier layers to leverage what infor-
mation is available in the image tensor. Kernel and stride are
small relative to the input image size throughout the encoder
layers to ensure that the feature space is not over-reduced
and the embedding vector size is maintained to reconstruct
the original image dimensions. For the resolution increase
transformation (mapping from larger to smaller images), the
kernel and stride are large relative to the size of the image
in the first layer and decrease on the subsequent convolutional
layers. This ensures that reconstruction image size is decreased
and features are not overreduced by subsequent layers.

The “pinhole to fisheye” camera migration causes features
towards the center to appear smaller and features towards the
edges to appear curved. The different distortion of features
across the image requires a 1 x 1 kernel and 1 x 1 stride in the
first layer to group pixels by features (the number of which is
defined by hidden_dims) before true convolutions are applied.
After pixel selection, a relatively small kernel and stride of
identical size are applied in subsequent layers to retain efficient
processing while capturing all values in the tensor output by
the previous layer. This same encoder_arch_id is appropriate
for the “decreased depth of field” image transformation, which
also has distortions appearing in different areas of the image.

After we completed the configuration for each transforma-
tion, for each one of them, we trained 4 encoders using 4
datasets with the following sizes: 5K, 10K, 25K, and 50K,
with each dataset being a subset of the next.

C. Baselines

We now describe existing techniques to handle camera
sensor hardware migrations as baselines to assess PreFixer.

1) Bespoke Transformation Only (BTO): This technique
employs a custom and domain-specific inverse transformation
that maps the new sensor feature space back to the old sensor
feature space before being sent to the DNN trained for the
original camera hardware. In practice, T,s.. is designed and
tuned over time by the developer using domain knowledge
and validation results. BTO avoids new data collection, la-
belling, and training, but required bespoke transforms. In our
study we selected existing transformations as follows: for the
fisheye transformation we used a discorpy backward radial
distortion [44], for the depth transformation we employed a
deblurring GAN [45]], and for resolution increase and decrease
we use the PIL resize with bilinear interpolation [46].

2) Transform and Retrain (TR): This technique retrains the
DAVE2 architecture using a transformed version of the dataset
where existing images are mapped to the feature space of the
new sensor. T,... is developed using a similar pipeline to the
previous baseline, but the transformations are inversed to map
from the feature space of the old camera to the new one. The
fisheye transformation is accomplished via a discorpy forward
radial distortion, the depth inverse transformation applies a
computational blur transformation and a depth estimator, and
the resolution increase and decrease transformations are again
accomplished with a PIL resize with bilinear interpolation.
Overall, this baseline eliminates the need for new data col-
lection and labelling, but again requires the engineering of a
high-fidelity transformation between the feature spaces of the
two cameras and training the network.

3) Fine-tuning (FT): This baseline uses warmstarting by
keeping the weights of the trained DAVE2 network and fine-
tuning those weights using new sensor data [29], [47]. For
transformations involving changes to input size, the network’s
last convolutional layer was adjusted. The new datasets used
and their size is discussed further in Section [V-D}

D. Results

1) RQI: Effectiveness Compared to Baseline Techniques:
Figure] shows the average distances travelled across ten 100m
tracks for all techniques on the 4 migrations. This shows
the effectiveness of the techniques to navigate a range of
environments, as well as the comparative difficulty of each
transformation mapping. An ideal technique would enable the
vehicle to still navigate for 100m across all tracks and camera
migrations. For RQI1, we compare BTO, TR, and FT and
PreFixer trained with the S0K dataset.

On average, PreFixer is more successful than all other
techniques, with all transformations achieving between 87.2
and 93.0m travelled. Even when compared with the best
alternative technique, BTO, PreFixer can equal or surpass the
performance for all transformations. Out of the 4 techniques,
BTO is the second-most effective and has the lowest variance
across transformations, with an average distance of 86.9m
across all transformations and all transformations between
84.4m and 90.0m travelled. FT is third-most effective, with
all transformations falling within 71.8m and 82.5m distance
travelled. 7R is the least effective on average — 50m for fisheye,
64m for depth, 57m for resolution decrease, and 37m for

VON STEIN et al.: AUTOMATED GENERATION OF TRANSFORMATIONS

¢
~ 90 9 z ¢ z
M ‘ ¢
o] H
% - ‘
g 80 = .
T o -
70
Q n ¢
Ze0 o
o A | u =
v = e fisheye
§ 50 A depth
0] e resdec
[a]
40 e resinc
A
BTO TR-50K FT-5K FT-10K FT-25K FT-50K PreFixer-5K PreFixer-10K PreFixer-25K PreFixer-50K
Technique & Dataset size
Fig. 4: Effectiveness of each technique with varying dataset sizes from 5K to 50K samples.
.. L Inference Inference
resolution increase. This is likely due to the DNN being trained Training time | (o \pu o FLOPs
on an approximation of the feature space of the new camera, DAVE2 (145K) 7596 min 0.001352 sec | 1.5 million
which does not map to the same predictions_ Fisheye (5K, 50K) 158, 919 min 0.007148 sec 1 billion
. . . . Depth (5K, 50K) 157, 1058 min | 0.007342 sec 1 billion
.Flsheye is the rr'lost.dlfﬁcult transfo.rmatlon' for all t'ech— ResDec (3K, 50K) | 134, 811 min | 0.007464 sec | 848 million
niques, and resolution increase the easiest. This seems intu- ResInc (5K, 50K) | 225, 4340 min | 0.006794 sec | 1.15 billion

itive, as fisheye deforms features unevenly across the image.
Conversely, resolution increase presents an easier task of aver-
aging pixels to shrink a larger image without any deformation.
2) RQ2: PreFixer Resource-Performance Tradeoffs: The
right half of Figure {4| provides several insights into data
efficiency for FT and PreFixer across the 4 training set sizes.
As expected, PreFixer encoder models trained with less data
(5K and 10K) under-perform those with more (25K and 50K),
but the disparity is lower than anticipated. Fisheye has the
highest difference between 5K and 50K (24.2m), but all other
transformations had a difference below 5Sm. Conversely, FT
shows high susceptibility to dataset size, with an average
17.7m jump in distance travelled between 5K and 50K dataset
size across all transformations. The minimum distance trav-
elled for FT is 53.1m and no transformation exceeds 82.5m.
Overall, PreFixer can learn an effective transformation
with % or less data than it takes to retrain a network.
PreFixer improves upon the best baseline by about 5% in
the average case for a problem that is an inevitable part of
the ADS development lifecycle. It also significantly improves
upon the resource efficiency of other techniques by precluding
the need for comprehensive new datasets and copious amounts
of developer time. We also find that even when compared
with the best alternative technique, BTO, PreFixer can
equal or surpass the performance for three of the four
transformations with just a 5K dataset. Our technique can
improve upon the best-performing baseline for 3 out of 4
common image transformations using only a 5K dataset. Given
a 50K dataset, PreFixer outperforms all baselines by a margin
of 3m or more. PreFixer also outperforms 7R and FT for all
transformations when comparing identical dataset sizes.
Related to resource-performance tradeoffs are training cost
and execution latency. Table [lI] shows the wall clock time to
train the original DNN with the full dataset compared to each
PreFixer VQVAE with 5K and 50K datasets, the smallest and
largest datasets we studied. As anticipated, training DAVE?2 is
more expensive than any PreFixer 50K encoder by a factor of
at least 2, and on average by a factor of 4. This indicates that
PreFixer is more affordable than retraining a DAVE2 network,

TABLE II: Training and inferencing cost

even without the cost of collecting a new dataset.

Table [IT] also shows inference latency in terms of mean wall
time and total floating point operations (FLOPs) per prediction.
The original DAVE2 architecture takes on average 0.0013s to
run on an NVIDIA Quadro RTX 6000, 128Gb RAM, and
Intel Xeon W-2225 CPU @ 4.10GHz. The non-optimized
PreFixer takes 0.0071s to run on the same hardware, and one
simply quantized [48] takes approximately 0.0031 seconds,
halving the inference time. That said, we note that DAVE2
is a simplified architecture of common real-world end-to-end
driving DNNs [49], [38] and more complex DNNs would
require more inference time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present PreFixer , the first unsupervised
low-data transformation technique applicable to a wide range
of common image transformations resulting from sensor hard-
ware migrations. Our technique successfully learns trans-
formations with high prediction accuracy even from small
datasets by leveraging the knowledge of the previously trained
base network. Our findings open many avenues for future
work. We aim to extend our study with migrations that require
transformations of higher complexity and their combinations
and other factors such as shifts in sensor locations. We will
further explore different training datasets to consider how
balancing will affect the reconstruction of rare features like
those from extreme lighting conditions or unusual driving
environments. We will also investigate the application of
PreFixer to other sensor types such as LiDAR to generalize
from images to point clouds. Lastly, we will investigate
alternative labeling techniques to reduce the reliance on sensor
co-location, for instance when the old sensor is unavailable or
when collocated sensors produce interference.

REFERENCES

[1] A. Tampuu et al., “A survey of end-to-end driving: Architectures and
training methods,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 4, pp. 1364-1384, 2022.

[2]

[3

[t

[4]

[5

=

[6]
[7]
[8

[t}

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

X. Zhang, Y. Cai, and Z. Yang, “A study on testing autonomous
driving systems,” in IEEE International Conference on Software Quality,
Reliability and Security Companion, 2020, pp. 241-244.

Waymo, “The waymo driver’s training regimen: How structured testing
prepares our self-driving technology for the real world,” https://waymo.
com/blog/2020/09/the- waymo-drivers-training-regime.html, 2020.

A. Luckow et al., “Deep learning in the automotive industry: Applica-
tions and tools,” in IEEE International Conference on Big Data, 2016,
pp. 3759-3768.

L. Platinsky et al., “Quantity over quality: Training an av motion
planner with large scale commodity vision data,” 2022. [Online].
Available: https://arxiv.org/abs/2203.01681

O. F. Kar et al., “3d common corruptions and data augmentation,”
2022. [Online]. Available: https://arxiv.org/abs/2203.01441

Waymo, “Waymo open dataset,” https://waymo.com/open/data/
perception/, 2022.

OpenCV, “Camera calibration with opencv,” https://docs.opencv.org/2.4/
doc/tutorials/calib3d/camera_calibration/camera_calibration.html, 2022.
M.-F. Chang et al., “Argoverse: 3d tracking and forecasting with rich
maps,” 2019. [Online]. Available: https://arxiv.org/abs/1911.02620

B. Wilson et al., “Argoverse 2: Next generation datasets for self-driving
perception and forecasting,” in NeurIPS, 2021.

TeslaDriver.net, “Tesla apl vs ap2 vs ap3 — differ-
ence between autopilot versions,” https://tesladriver.net/
tesla-ap1-vs-ap2-vs-ap3-difference- between-autopilot- versions/, 2022.

M. B. Alatise et al., “A review on challenges of autonomous mobile
robot and sensor fusion methods,” IEEE Access, vol. 8, pp. 39 830—
39 846, 2020.

Q. Rao et al., “Deep learning for self-driving cars: Chances and
challenges,” in International Workshop on Software Engineering for Al
in Autonomous Systems. Association for Computing Machinery, 2018,
p- 35-38. [Online]. Available: https://doi.org/10.1145/3194085.3194087
J. Jam et al., “A comprehensive review of past and present image
inpainting methods,” Computer Vision and Image Understanding, vol.
203, p. 103147, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1077314220301661

C. Tan et al, “A survey on deep transfer learning,” CoRR, vol.
abs/1808.01974, 2018. [Online]. Available: http://arxiv.org/abs/1808.
01974

J. Yosinski et al., “Advances in neural information processing systems,”
vol. 27, 2014. [Online]. Available: https://proceedings.neurips.cc/paper_
files/paper/2014/file/375¢71349b295fbe2dcdca9206f20a06- Paper.pdf]

P. Koopman et al., “Autonomous vehicle safety: An interdisciplinary
challenge,” IEEE Intelligent Transportation Systems Magazine, vol. 9,
no. 1, pp. 90-96, 2017.

A. Carlson et al., “Sensor transfer: Learning optimal sensor effect image
augmentation for sim-to-real domain adaptation,” IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 2431-2438, 2019.

L. He et al., “Learning depth from single images with deep neural
network embedding focal length,” CoRR, vol. abs/1803.10039, 2018.
[Online]. Available: http://arxiv.org/abs/1803.10039

B. A. Olshausen et al., “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,”
Nature, vol. 381, pp. 607-609, 1996. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:4358477

H. Sharma, “A survey on image encoders and language models for
image captioning,” IOP Conference Series: Materials Science and
Engineering, vol. 1116, no. 1, p. 012118, apr 2021. [Online]. Available:
https://dx.doi.org/10.1088/1757-899X/1116/1/012118

P. Li et al., “A comprehensive survey on design and application
of autoencoder in deep learning,” Applied Soft Computing, vol. 138,
p. 110176, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S156849462300194 1

D. Bank et al., “Autoencoders,” CoRR, vol. abs/2003.05991, 2020.
[Online]. Available: https://arxiv.org/abs/2003.05991

A. van den Oord et al., “Neural discrete representation learning,”
CoRR, vol. abs/1711.00937, 2017. [Online]. Available: http://arxiv.org/
abs/1711.00937

A. Carlson et al., “Modeling camera effects to improve visual learning
from synthetic data,” in European Conference on Computer Vision
Workshops, September 2018.

E. R. Chan er al., “Generative novel view synthesis with 3d-aware
diffusion models,” in IEEE/CVF International Conference on Computer
Vision, October 2023, pp. 4217-4229.

A. Abdelhamed et al., “A high-quality denoising dataset for smartphone
cameras,” in [EEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1692-1700.

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]
[47]

(48]

[49]

L. Pan et al.,, “Bringing a blurry frame alive at high frame-rate with
an event camera,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019.

J. T. Ash and R. P. Adams, “On the difficulty of warm-starting
neural network training,” CoRR, vol. abs/1910.08475, 2019. [Online].
Available: http://arxiv.org/abs/1910.08475

K. He et al., “Convolutional neural networks at constrained time cost,”
in [EEE Conference on Computer Vision and Pattern Recognition, 2015.
D. Masters et al., “Revisiting small batch training for deep neural
networks,” CoRR, vol. abs/1804.07612, 2018. [Online]. Available:
http://arxiv.org/abs/1804.07612

M. Kukar et al, “Cost-sensitive learning with neural networks,”
in European Conference on Artificial Intelligence, 1998. [Online].
Available: https://api.semanticscholar.org/CorpusID: 14677235

R. Mahmood et al., “Optimizing data collection for machine learn-
ing,” Advances in Neural Information Processing Systems, vol. 35, pp.
29915-29928, 2022.

C. Guo et al, “Countering adversarial images using input
transformations,” CoRR, vol. abs/1711.00117, 2017. [Online]. Available:
http://arxiv.org/abs/1711.00117

M. Naseer, S. H. Khan, M. Hayat et al., “A self-supervised approach
for adversarial robustness,” CoRR, vol. abs/2006.04924, 2020. [Online].
Auvailable: https://arxiv.org/abs/2006.04924

J. Read et al., “Classifier chains: A review and perspectives,” CoRR,
vol. abs/1912.13405, 2019. [Online]. Available: http://arxiv.org/abs/
1912.13405

K. Zaamout et al., “Improving neural networks classification through
chaining,” in International Conference on Artificial Neural Networks
and Machine Learning. Springer-Verlag, 2012, p. 288-295. [Online].
Available: https://doi.org/10.1007/978-3-642-33266-1_36

Z. Peng et al, “A first look at the integration of machine
learning models in complex autonomous driving systems: A case
study on apollo,” in ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, p. 1240-1250. [Online]. Available:
https://doi.org/10.1145/3368089.3417063

B. Dai and D. P. Wipf, “Diagnosing and enhancing VAE models,”
CoRR, vol. abs/1903.05789, 2019. [Online]. Available: http://arxiv.org/
abs/1903.05789

BeamNG, “Beamng.drive vehicle simulator,” https://www.beamng.com/,
2020.

“Waymo open dataset: An autonomous driving dataset,” 2019.

M. Bojarski et al., “End to end learning for self-driving cars,” CoRR,
vol. abs/1604.07316, 2016. [Online]. Available: http://arxiv.org/abs/
1604.07316

A. Agrawal and N. Mittal, “Using cnn for facial expression recognition:
a study of the effects of kernel size and number of filters on
accuracy,” vol. 36. Springer, 2020, pp. 405 — 412. [Online]. Available:
https://doi.org/10.1007/s00371-019-01630-9

N. T. Vo et al, “Radial lens distortion correction with sub-
pixel accuracy for x-ray micro-tomography,” Opt. Express, vol. 23,
no. 25, pp. 32859-32868, Dec 2015. [Online]. Available: https:
/lopg.optica.org/oe/abstract.cfm?URI=oe-23-25-32859

J. Lee et al., “Iterative filter adaptive network for single image defocus
deblurring,” in [EEE Conference on Computer Vision and Pattern
Recognition, 2021.

J. A. Clark and contributors, “Pillow image library,” https://pillow.
readthedocs.io/en/stable/index.html, 2023.

H. Liu et al., “Few-shot parameter-efficient fine-tuning is better and
cheaper than in-context learning,” 2022.

R. Krishnamoorthi, “Quantizing deep convolutional networks for
efficient inference: A whitepaper,” CoRR, vol. abs/1806.08342, 2018.
[Online]. Available: http://arxiv.org/abs/1806.08342

M. von Stein et al., “Finding property violations through network
falsification: Challenges, adaptations and lessons learned from
openpilot,” in [EEE/ACM International Conference on Automated
Software Engineering. Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3551349.3559500

https://waymo.com/blog/2020/09/the-waymo-drivers-training-regime.html
https://waymo.com/blog/2020/09/the-waymo-drivers-training-regime.html
https://arxiv.org/abs/2203.01681
https://arxiv.org/abs/2203.01441
https://waymo.com/open/data/perception/
https://waymo.com/open/data/perception/
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://arxiv.org/abs/1911.02620
https://tesladriver.net/tesla-ap1-vs-ap2-vs-ap3-difference-between-autopilot-versions/
https://tesladriver.net/tesla-ap1-vs-ap2-vs-ap3-difference-between-autopilot-versions/
https://doi.org/10.1145/3194085.3194087
https://www.sciencedirect.com/science/article/pii/S1077314220301661
https://www.sciencedirect.com/science/article/pii/S1077314220301661
http://arxiv.org/abs/1808.01974
http://arxiv.org/abs/1808.01974
https://proceedings.neurips.cc/paper_files/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
http://arxiv.org/abs/1803.10039
https://api.semanticscholar.org/CorpusID:4358477
https://api.semanticscholar.org/CorpusID:4358477
https://dx.doi.org/10.1088/1757-899X/1116/1/012118
https://www.sciencedirect.com/science/article/pii/S1568494623001941
https://www.sciencedirect.com/science/article/pii/S1568494623001941
https://arxiv.org/abs/2003.05991
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1910.08475
http://arxiv.org/abs/1804.07612
https://api.semanticscholar.org/CorpusID:14677235
http://arxiv.org/abs/1711.00117
https://arxiv.org/abs/2006.04924
http://arxiv.org/abs/1912.13405
http://arxiv.org/abs/1912.13405
https://doi.org/10.1007/978-3-642-33266-1_36
https://doi.org/10.1145/3368089.3417063
http://arxiv.org/abs/1903.05789
http://arxiv.org/abs/1903.05789
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/s00371-019-01630-9
https://opg.optica.org/oe/abstract.cfm?URI=oe-23-25-32859
https://opg.optica.org/oe/abstract.cfm?URI=oe-23-25-32859
https://pillow.readthedocs.io/en/stable/index.html
https://pillow.readthedocs.io/en/stable/index.html
http://arxiv.org/abs/1806.08342
https://doi.org/10.1145/3551349.3559500

	Introduction
	Background
	Problem Definition
	Technique
	Technique Requirements and Fulfillment
	R1
	R2
	R3

	Detailed Design of PreFixer
	Collection
	Configuration
	Training
	Deployment

	Generalization

	Study
	Setup
	System Under Test
	Validation Road Segments
	Image transformations from real-world camera hardware migrations

	PreFixer Configuration
	Baselines
	Bespoke Transformation Only (BTO)
	Transform and Retrain (TR)
	Fine-tuning (FT)

	Results
	RQ1: Effectiveness Compared to Baseline Techniques
	RQ2: PreFixer Resource-Performance Tradeoffs

	Conclusions and Future Work
	References

