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KEYWORDS: ABSTRACT: Numerous artificial intelligence-based weather prediction (AIWP) models have
Numerical weather ~ emerged over the past 2 years, mostly in the private sector. There is an urgent need to evaluate
prediction/ these models from a meteorological perspective, but access to the output of these models is
forecasting; limited. We detail two new resources to facilitate access to AIWP model output data in the hope
Model evaluation/ of accelerating the investigation of AIWP models by the meteorological community. First, a 3-yr
performance; (and growing) reforecast archive beginning in October 2020 containing twice daily 10-day
Artificial forecasts for FourCastNet v2-small, Pangu-Weather, and GraphCast Operational is now available
intelligence; via an Amazon Simple Storage Service (S3) bucket through NOAA's Open Data Dissemination
Model (NODD) program (https://noaa-oar-mlwp-data.s3.amazonaws.com/index.html). This reforecast
interpretation and archive was initialized with both the NOAA's Global Forecast System (GFS) and ECMWF's Inte-
visualization grated Forecasting System (IFS) initial conditions in the hope that users can begin to perform

the feature-based verification of impactful meteorological phenomena. Second, real-time output
for these three models is visualized on our web page (https:/aiweather.cira.colostate.edu) along
with output from the GFS and the IFS. This allows users to easily compare output between each
AIWP model and traditional, physics-based models with the goal of familiarizing users with the
characteristics of AIWP models and determine whether the output aligns with expectations, is
physically consistent and reasonable, and/or is trustworthy. We view these two efforts as a first
step toward evaluating whether these new AIWP tools have a place in forecast operations.
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1. Introduction

Over the past 2 years, conditions have aligned for an explosion of artificial intelligence—based
weather prediction (AIWP) models for global, medium-range weather forecasting. Namely, the
release of the fifth major global reanalysis produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF) (ERA5; Hersbach et al. 2020) in 2020 provided historical weather
data at a sufficient resolution for model training, generative artificial intelligence (AI) tech-
niques have advanced and become commonplace, and compute power has progressed to
handle extremely large datasets. This has culminated in the release of AIWP models such as
FourCastNet (Pathak et al. 2022) and FourCastNet v2-small (Bonev et al. 2023), Pangu-Weather
(Bietal. 2023), and GraphCast (Lam et al. 2023). These AIWP models use no physical equa-
tions or parameterizations to make global, medium-range (<10 day) weather forecasts, but
rely on access to extremely large datasets such as ERA5 for training the Al model.

Initial verification results are extremely promising, with root-mean-square errors (RMSEs)
comparable to or lower and anomaly correlation coefficients (ACCs) comparable to or higher
than the ECMWF’s High Resolution (HRES) Integrated Forecasting System (IFS). In fact,
GraphCast showed superior performance to the HRES for nearly every evaluated parameter,
including pressure, temperature, relative humidity, and wind speed/direction, spanning
across pressure levels, in terms of RMSE (Lam et al. 2023). While AIWP model training is
expensive, AIWP model inference accomplishes forecasting improvements while running
orders of magnitude faster than traditional numerical weather prediction (NWP) models.
Rolling model forecast skill scores for many AIWP models initialized with either the ERA5 or
IFS can be found on the WeatherBench 2 (Rasp et al. 2024) and ECMWF web charts (ECMWF
2023). WeatherBench 2 also offers hindcasts for various AIWP models and periods to provide
a starting point for further verification efforts.

The demonstrated forecast skill by AIWP models on its own makes a strong case for govern-
ment agencies, such as the National Oceanic and Atmospheric Administration (NOAA) and the
ECMWE, to consider and plan for the eventual integration of AIWP into their operational model-
ing processes. Indeed, both agencies show great interest in this technology. The ECMWF has
developed their own Al-based weather forecasting model, named AIFS (Lang et al. 2024), and
NOAA recently hosted a workshop on Al for NWP (AI4NWP) [NOAA’ Physical Sciences Labora-
tory (NOAA-PSL) 2023] that focused not only on exploring opportunities of Al-based models
for NWP but also on the challenges of integrating AIWP into the research-to-operation cycle.

In addition to performance considerations, the dramatically greater efficiency of ATWP
compared to traditional NWP could pave the way for a wide range of new forecasting applica-
tions, such as extremely large ensemble prediction systems for better-calibrated probability
distributions, rapid initial condition sensitivity analysis, and personal, on-demand weather
modeling, and certainly others that we have not yet considered.

a. Urgently needed: Al model evaluation from meteorological perspective. Despite the
initial performance results and tremendous opportunity, a substantial amount of work
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remains prior to potential transition to operations. The primary metrics used for evaluation
so far are RMSE and ACC applied to all model outputs. While this is a natural and neces-
sary starting point, many other aspects need to be urgently investigated (Ebert-Uphoff and
Hilburn 2023). In particular, Al-based models behave differently from physically based
models, and forecasters may need to learn the strengths and weaknesses of Al-based models
to help inform their forecasts. Key topics to be investigated include the following:

e The feature-based verification of events such as tropical cyclones, atmospheric blocking,
and atmospheric rivers with metrics targeted to the specific feature is a crucial next step to
determine if AI-based models can accurately depict impactful meteorological phenomena.

e Similarly, the verification of performance for extremes of traditional variables is a priority. A
common sentiment within the meteorological community is that Al-based models struggle
to represent extreme events due to their low prevalence in training datasets (such as intense
precipitation in Lavers et al. 2022) and the application of L1 (mean absolute error; Bi et al.
2023), L2 (mean-square error; Pathak et al. 2022; Bonev et al. 2023), or pressure-weighted
L2 loss (Lam et al. 2023), which may discourage predictions toward the tail ends of vari-
able distributions. Preliminary evaluation has shown AIWP models to be surprisingly
skillful when it comes to these types of extremes (Lam et al. 2023; Bouallégue et al. 2024;
Charlton-Perez et al. 2024), but additional independent validation on a robust reforecast
dataset would be extremely valuable.

e Most AIWP models implement no physical constraints to ensure temporal consistency and
consistency between variables. This has potential ramifications for the interpretability of
output and the capability of forecasters to diagnose model errors. While recent work has
shown that ATWP models tend to encode realistic physics (Hakim and Masanam 2023), this
is not guaranteed to be the case in all situations and the identification of these potential
scenarios could be a valuable contribution.

e Another critical component is gathering qualitative feedback from potential users of the
model output to help document model behavior and identify model instabilities and in-
consistencies that may not be evident in bulk verification.

e Last, we need to investigate AIWP with a social science lens to evaluate National Weather
Service (NWS) forecaster perspectives, including the trustworthiness and operational utility
of AIWP. As discussed by Murphy (1993), forecasts have no intrinsic value. They acquire
value through their ability to influence the decisions made by the users of the forecasts.
With respect to AIWP, this means that even if AIWP outperforms NWP, the models only
have a value if weather forecasters and the public trust them and put their forecasts into
practice. For example, Murphy and Ehrendorfer (1987) demonstrate that the forecast value
can even decrease as forecast accuracy increases. Furthermore, it is important to engage Al
users and other stakeholders in the development of Al models for environmental sciences
(Bostrom et al. 2024). Early involvement of and co-development with forecasters is crucial
to ensure that forecasters understand AIWP strengths and weaknesses, establish forecaster
trust, and maximize the forecast value of Al-based models. Questions to be investigated in
this domain include the following: Does the lack of physical underpinning reduce forecaster
trust or likelihood to use a model? And is there value in efforts to operationalize AIWP
models limited to 0.25° resolution and basic output variables or should we instead wait for
advancements toward mesoscale features and impactful variables?

It is clear that a concerted effort by the meteorological community is urgently needed to
evaluate such Al models before these models can be used in operations. However, research-
ers and forecasters can only evaluate what they have access to, and currently, access to the
model outputs is limited.
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b. Providing easy access to AIWP model output to accelerate their evaluation. Feature-
based and extreme event verification, qualitative model interrogation, and evaluation of
forecaster perspectives all require access to AIWP output. The ECMWF provides a major ser-
vice to the community, contributing uniform code for four major AIWP models in a GitHub
repository (ECMWF Lab 2023) that makes it easier to install and run these models locally
than using their original code bases. However, while AIWP models are substantially cheaper
to run than traditional NWP models, powerful graphics cards, or graphics processing units
(GPUs), are still necessary, and significant effort is required to download and/or modify
[IFS or Global Forecast System (GFS)] initial conditions to generate forecasts, placing the
models out of reach for many potential users. Our own experience has shown that a GPU
with at least 16 GB of memory is the minimum requirement for FourCastNet v2-small and
Pangu-Weather, while 35 GB is required for GraphCast Operational.

To conserve resources due to duplicate efforts and to make AIWP model evaluation ac-
cessible to all, we present two new resources to facilitate the quantitative and qualitative
investigation of AIWP models. First, we detail a 3-yr archive of FourCastNet v2-small,
Pangu-Weather, and GraphCast Operational reforecasts that can be used for the robust
verification of meteorological features. To the best of our knowledge such a public archive
does not yet exist. Details of these three models along with the full version of GraphCast

are presented in Table 1.

Second, we present an experimental web page that visualizes real-time output of the same
models side-by-side with traditional, physics-based NWP models. The ECMWF also provides
real-time output of several models in their Al model charts (ECMWF 2023). One key differ-
ence between these two efforts is that the ECMWEF’s Al model charts show AIWP forecasts
based on IFS initialization, while we provide AIWP forecasts based on GFS initialization—a
topic discussed further in the next section. Additionally, our visualization tool provides an
interactive interface that keeps the needs of forecasters and other evaluators in mind, such
as being able to easily examine specific regions around the globe and comparing results from
different models with ease. This real-time data are also appended to the reforecast archive

as netCDF files.

TasLe 1. Characteristics of FourCastNet v2-small, Pangu-Weather, and GraphCast Operational. The full GraphCast model
configuration is included for completeness and its relationship to GraphCast Operational. GraphCast Operational has not
been officially published and so the test period is unknown. Train refers to the dataset used to learn data patterns and
relationships, validation to the dataset used to tune model parameters, and test to the independent dataset used to evaluate
model skill. u = U-wind component; v = V-wind component; T = temperature; z = geopotential heights; r = relative humidity;
q = specific humidity; w = vertical velocity; TCWV = total column-integrated water vapor.

FourCastNet Spherical 1979-2015

2016-17 2018

Al model configurations
October 2020—the u10, v10, u100, v100,

u, v, t z,r@1000, 925, 850, 700, 600,

v2-small Fourier neural present T2, MSLP, SP, TCWV 500, 400, 300, 250, 200, 150, 100, 50hPa
operators
Pangu- 3D Earth 1979-2017 2019 2018  October 2020—the  u10, v10, T2, MSLP u, v, t,z,q@1000, 925, 850, 700, 600,
Weather specific present 500, 400, 300, 250, 200, 150, 100, 50hPa
transformer
GraphCast  Graph neural 1979-2015  2016-17  2018-21 — u10, v10, T2, MSLP,  u, v, t, z, g, w @ 1000, 975, 950, 925, 900,
network APCP? 875, 850, 825, 800, 775, 750, 700, 650,
600, 550, 500, 450, 400, 350, 300, 250,
225, 200, 175, 150, 125, 100, 70, 50, 30,
20,10, 7,5, 3,2, 1hPa
GraphCast  Graph neural 1979-2017 fine-tuned —  January 2022-the  u10, v10, T2, MSLP, u,v,t,z,q @ 1000, 925, 850, 700, 600,
Operational network 2016-21 present APCP? 500, 400, 300, 250, 200, 150, 100, 50 hPa
* APCP is an output but not an input for GraphCast Operational.
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2. Initial conditions—Using the GFS versus the IFS
Given the fact that the models presented in Table 1 were trained on ERA5 reanalysis, it was a
natural decision for the developers of the models to both verify performance against the ERA5
and develop real-time applications with the IFS initial conditions. Motivated by real-time ap-
plications at the ECMWF, the GraphCast team even went so far as to fine-tune an operational
version of their model for improved performance with HRES IFS initial conditions. Extending
from reanalysis to analysis resulted in only a marginal decrease in forecast skill as measured
by RMSE due to the strong correlation between ERA5 and IFS analyses (Lam et al. 2023).
Though there are clear advantages to running AIWP models on the IFS initial conditions,
there is also potential justification for running on the GFS initial conditions. For example, for
us and others in the Al development community, the necessary real-time IFS conditions to
initialize AIWP models only just became available. Furthermore, there may be a preference
within the NOAA community toward initialization with a product internal to NOAA (like the
GFS) due to greater familiarity. Finally, it is still an open question how extensible AIWP is to
unfamiliar initial condition datasets. For the above reasons, we provide reforecasts initial-
ized with both the IFS and GFS initial conditions. Our real-time implementation/visualization
web page of AIWP models is currently only initialized with the GFS, with the understanding
that performance is likely not maximized with this configuration. We hope to expand this to
include the IFS initialized versions in the near future. For full clarity, we initialize all models
on forecast hour zero (FO00) data at 0.25° grid spacing, rather than any analysis products.
The variables necessary for initialization of FourCastNet v2-small, Pangu-Weather, and
GraphCast Operational are generic enough that they are almost all present in most initial
condition datasets, including the GFS. This generally includes geopotential, temperatures,
specific humidity, and u- and v-wind components at 13 vertical levels, in addition to mean
sea level pressure (MSLP), 2-m temperature, and 10-m u- and v-wind components (see Table 1
for full lists). Geopotential was calculated from the GFS’s geopotential height fields. The only
variable necessary that is not natively present in the GFS files is top of atmosphere incident
solar radiation (TOA radiation). TOA radiation is a function solely of date/time, latitude, and
longitude, and thus, we felt justified in using ERA5 values rather than calculate it ourselves.
For real-time output, GraphCast developers have recently provided a Python library for TOA
radiation calculation (Google DeepMind 2024), which will be applied moving forward.

3. Reforecast archive

The reforecast archive includes FourCastNet v2-small, Pangu-Weather, and GraphCast Opera-
tional and generally dates back to October 2020 with two initializations per day (0000 and
1200 UTC). The GraphCast Operational archive only goes back to January of 2022 so as not
to overlap with the “fine-tuning” period. Forecasts are run out to 240 h at 6-h time steps. This
period was chosen for two reasons. First, it is 3 years retrospective from the date that we began
to develop the archive. Second, the period is independent from the training and validation pe-
riods used to develop the three models. We may consider extending the FourCastNet v2-small
and Pangu-Weather archive further back due to their earlier training and validation periods.

The archive is provided through the NOAA’s Open Data Dissemination (NODD) via an
Amazon Simple Storage Service (S3) bucket (NOAA-OAR 2024). Each model initialization (all
forecast steps) is stored in a netCDF4 file with level four zlib compression. Each FourCastNet
v2-small, Pangu-Weather, and GraphCast Operational file is approximately 7-9 GB. The full
archive is accessible online (https:/noaa-oar-mlwp-data.s3.amazonaws.com/index.html).

All variables output by the individual models are included in the files. These vary
slightly by model, but include geopotential, temperature, and U- and V-wind components at
1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, and 50 hPa for all three models
(Bonev et al. 2023; Bi et al. 2023; Lam et al. 2023). Pangu-Weather and GraphCast Operational
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contain specific humidity at these levels (Bi et al. 2023; Lam et al. 2023), while FourCastNet
v2-small has relative humidity (Bonev et al. 2023). GraphCast Operational also has vertical
velocity at these levels (Lam et al. 2023). In terms of surface variables, all three have 2-m
temperature, mean sea level pressure, and 10-m U- and V-wind components (Bonev et al.
2023; Bi et al. 2023; Lam et al. 2023). FourCastNet v2-small also contains 100-m U- and
V-wind components, surface pressure (SP), and precipitable water (Bonev et al. 2023), while
GraphCast Operational adds 6-hourly accumulated precipitation (APCP) (Lam et al. 2023).
The full list can be seen in Table 1.

Real-time AIWP model output is now being appended to continuously grow the archive.
Additionally, promising new models will be added to the archive both in retrospect and in
real-time as they are released. How new models are chosen for inclusion is an inherently
subjective process. We considered applying minimum performance criteria, but this is also
subjective and potentially excludes models that outperform in alternative metrics or applica-
tions. Rather, we list here some of our primary considerations for inclusion:

e In order for us to be able to run new models, they must be open access.

e Though we define no minimum performance criteria, new models should make advances
in the prediction of meteorological phenomena for some metrics or applications.

¢ To avoid repetition in the archive, preference will be given to models with novel Al/machine
learning (ML) approaches.

e GPU resources are limited and we may be unable to run models that have substantial
memory requirements. Thus, we encourage developers to strongly consider limiting model
size, whenever possible.

e Preference may also be given to models developed by organizations with proven weather
forecasting track records.

At present, this archive provides only deterministic AIWP model forecasts. The generation
of well-calibrated ensembles or probabilistic AIWP model forecasts is another exciting new
research topic and is generally not as simple as perturbing the initial conditions of determin-
istic AIWP models (Selz and Craig 2023; Price et al. 2024). Producing sufficient spread (Selz
and Craig 2023) and maintaining sharpness in individual member solutions are particularly
challenging tasks for which Price et al. (2024) have made promising progress. However, given
that AIWP ensembles are in early stages, are computationally expensive, and can potentially
produce orders of magnitude more data than deterministic AIWP models, inclusion is cur-
rently outside the scope of this project. We may consider adaptations to the archive to allow
for probabilistic data in the future.

4. Real-time output and visualizations
All of the variable information on the reforecast archive is also applicable to real-time imple-
mentation of the models, with output appended to the S3 bucket noted above. However,
rather than requiring potential users to download and process the data themselves to view the
output and familiarize themselves with AIWP models, we have prepared an experimental web
page (Radford 2023) that visualizes all variables for the four most recent initializations of all
three models. Like Radford et al. (2023a,b), the data are displayed on an interactive map to
facilitate panning and zooming to regions and scales of interest and increase customizability.
Hover readout capabilities to view values at a point have also been implemented. Data are cur-
rently visualized using vectors to allow for future customizability of contours and colormaps.
The primary goal of this web page is to allow users to familiarize themselves with the output
of Al models and determine whether the output aligns with expectations and/or is physically
reasonable. An additional goal is to facilitate intermodel comparisons, not just between

AMERICAN METEOROLOGICAL SOCIETY BAMS J%Jr\lle 1c%¥c;%691%Bm\nlnﬁli?ﬁ)()/m/% 04:59 PM UTC



different AIWP models but also between AIWP models and traditional, dynamical models.
Toward this end, we also visualize the output of the GFS and the IFS. Switching between
variables or between models keeps every other parameter unchanged to make comparisons
easier. The four most recent initializations can be viewed to evaluate model solution evolution
over time. Last, we offer a four-panel comparison tool that can be used to view four different
models side-by-side as in Fig. 1. Panning and zooming in one map can be mirrored by the
others to keep the views locked to the same area.

This is an experimental tool for the community to build familiarity with and assess the
trustworthiness of AIWP. It is not operational and thus does not have 24/7 technical support
and is likely to experience unexpected downtime. That said, we hope to continue develop-
ing the page to add features and new models. We would encourage users to use the “contact
us” page to make requests for features, identify bugs, and note observations of AIWP model
behavior and performance. We will also be adding new AIWP models as they become avail-
able and according to the considerations listed in the reforecast archive section.

We have tested this tool in daily weather briefings at CIRA and found that it has refined
our conceptions of Al model behavior, strengths, and weaknesses. We also demonstrated this
tool to several forecasters, e.g., at the NOAA AIWP workshop (NOAA-PSL 2023), and received
a very enthusiastic response from the forecasters, i.e., they were very interested in giving it a
try. With minimal publicization, the web page currently receives approximately 1000 unique
visitors per month, indicating strong interest within the meteorological community.

5. Discussion

AIWP models are powerful new forecasting tools that will likely have an increasing influence
in the operational forecast community over the coming years. It is crucial that we begin to
familiarize the community with the output of these models in both quantitative and qualita-
tive frameworks so that users can gauge the trustworthiness and utility of AIWP.

models. Products ar e Models Contact Us
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GraphCast Operational v

Fic. 1. Screenshot of the four-panel comparison tool on the AIWP visualizations web page viewing MSLP for 1200 UTC 14 Feb
2024 initializations of FourCastNet v2-small, Pangu-Weather, GraphCast Operational, and the GFS.
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We now provide two resources to start progress in this direction. First, our reforecast archive
allows users with various interests and expertise to perform evaluations of AIWP forecast
quality for specific meteorological features or extreme events, at least to the extent that the
necessary variables are present in the output files. For example, features that we believe
would be valuable to investigate include tropical cyclones (such as in DeMaria 2024), fronts,
atmospheric rivers, and severe storm parameters. Other interesting phenomena will have to
wait until additional output fields like hydrometeor mixing ratios and wind gusts are made
available, but our goal is to continue to update our archive with the latest models and ver-
sions to facilitate this future work.

Second, our web-based visualization page allows interested users to investigate AIWP
model output and compare that output to models with which they are already familiar. Users
can then begin to apply their own judgment on whether the output of AIWP models is physi-
cally reasonable, trustworthy, and useful. Both resources could help to foster communication
between the development and operational communities on how to best improve AIWP models
moving forward, a key relationship that, to this point, has often been neglected. For example,
the National Severe Storms Laboratory (NSSL) utilized the reforecast archive in their 2024
annual Spring Forecasting Experiment (SFE) to collect forecaster feedback on AIWP forecast
value in severe storms forecasting. We anticipate more testbeds will follow suit and begin
exploring the value of AIWP in different operational contexts. We also strongly encourage
users of the visualizations page to use the feedback form to document AIWP model successes,
failures, and oddities, as well as request additional features or resources which we can pass
on to the respective model developers.

It is our opinion that AIWP models have a bright future and will play an important role in
weather forecasting over the next several years. However, we want to note that at this point,
we are not pushing for operationalizing AIWP models. By providing the reforecast archive and
visualization web page, we merely want to help facilitate the rigorous evaluation necessary
before considering use in operations and ease the transition for users if operationalizing is
ultimately warranted.
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