

Role of Dry Dynamics in the Maritime Continent Barrier Effect in the Madden Julian Oscillation

Paul E. Roundy

University at Albany

Albany, New York, United States

Corresponding Author, Paul E. Roundy, proundy@albany.edu

10 **Abstract**

11 Eastward-moving moist deep convection and atmospheric circulation signals associated with the
12 tropical Madden Julian Oscillation (MJO) sometimes break down as they cross the Maritime
13 Continent region, but other times the signal propagates across the region maintaining amplitude or
14 regaining it over the West Pacific Basin. This paper assesses the hypothesis that upper tropospheric
15 zonal diffluence of the background wind over the Maritime Continent causes much of this
16 Maritime Continent barrier effect and its variation over time, through two mechanisms. 1. By
17 slowing down the MJO as stronger than average background upper tropospheric zonal wind over
18 the Indian Ocean advects the MJO circulation signal westward, slowing its eastward advance, and
19 2. through zonal advection of background wind by subseasonal zonal wind across a region of zonal
20 diffluence of the background wind, which advects background wind of the opposite sign to the
21 MJO wind. Advection of the opposite-signed background wind counteracts the MJO wind and
22 reduces its associated upper tropospheric mass divergence, weakening the mechanisms of the
23 upper tropospheric Kelvin wave component of the MJO circulation. Composites of MJO-
24 associated zonal wind and outgoing longwave radiation signals diminish as they cross the Maritime
25 Continent region when the region's background zonal winds are diffluent, and composites of data
26 reconstructing the relevant advection terms reveal the direct action of the advection mechanisms.

27

28 **Significance Statement:** The Madden Julian oscillation (MJO) is the leading subseasonal
29 variation of the tropical atmosphere. This project addresses how diffluence of the upper
30 tropospheric background zonal wind can break down MJO events through advection of and by
31 the background wind.

32

33 **1. Introduction**

34 The Madden Julian oscillation (MJO, Madden and Julian 1972) modulates the weather around the
35 world as it moves eastward across the warm pool regions of the tropics at phase speeds typically
36 less than 8 ms^{-1} . Although the associated atmospheric circulation signals move around the entire
37 world, its average associated rainfall signals emerge strongest over the Indian Ocean, weaken near
38 the Maritime Continent region, and grow again over the Western Pacific Ocean before finally
39 weakening over the Central Pacific Ocean (Hendon and Salby 1994; Wheeler and Kiladis 1999;
40 Roundy and Frank 2004). Although some MJO convective events continue across the Maritime
41 Continent to the West Pacific region without much change of amplitude, the convective signals of
42 other events almost completely break down before reaching the West Pacific basin (e.g., Zhang
43 and Ling 2017, Demott et al. 2018, Ling et al. 2019, Kim et al. 2021, Zhou et al. 2022, and many
44 others). This breakdown phenomenon is known as the Maritime Continent barrier effect.
45 Numerical weather prediction and climate models tend to exhibit stronger barrier effects than
46 observations, leading to a bias in these models with insufficient numbers of events getting through
47 to the Pacific Basin (Abhik et al. 2023). This bias implies that the downstream outcomes associated
48 with progression of the MJO across the Pacific region might also tend to occur less frequently in
49 the models than in observations. The bias presents a forecast problem, as when the observed MJO
50 ultimately does cross the Maritime Continent, a substantial and sometimes sudden change occurs
51 in the middle latitude model forecast states.

52 Previous authors have analyzed clues pointing to several alternative explanations of the
53 barrier effect (see Demott et al. 2018 and Kim et al. 2021 for summaries). To name a few, strong
54 diurnal convection around the islands seems to interfere with subseasonal convection over the
55 Maritime Continent (Ling et al. 2019; Ajayamohan et al. 2021). The islands also interfere with the
56 organization of convection over water. Chen et al. (2020) showed that models that more strongly
57 evolve the convection from land-dominated to ocean dominated during the regional active
58 convective phase have Maritime Continent crossing rates closer to observations. The island region
59 modifies the air sea sensible and latent heat fluxes relative to open ocean, and events that propagate
60 through the Maritime Continent region have stronger and geographically broader air sea flux
61 anomalies (Hudson and Maloney 2023), and broader, stronger moist anomalies (Barrett et al.
62 2021). Zhang and Han (2020) showed that events that cross the Maritime Continent tend occur
63 less often when there is strong sea surface temperature contrast between the eastern Indian Ocean

64 and the western Pacific Ocean. Demott et al. (2018) showed that many MJO events decline over
65 the Maritime Continent when they intersect with westward-propagating dry anomalies, and that
66 La Niña conditions favor the decline of MJO events. They also showed that many events that
67 decline but that do not encounter dry westward-moving anomalies are associated with insufficient
68 moistening over the southern Maritime Continent region. Other factors might include that winds
69 modulated by the MJO ascending across topography can excite rainfall during the opposite MJO
70 phase that on the large-scale favors convection, leading to atmospheric circulation responses
71 counter to the concurrent state of the MJO.

72 Dry dynamics might also influence weakening or maintenance of MJO convection. Roundy
73 (2022) showed that advection by upper tropospheric background wind substantially modulates the
74 propagation speed of the MJO, with the slowest MJO events the most impacted. Roundy (2020)
75 showed that, over the Indian Ocean, convectively coupled Kelvin waves and the MJO form a
76 continuum, with upper tropospheric Kelvin wave structure dominant in intermediate disturbances
77 and in the MJO itself. Kelvin wave-like features in the MJO include associated height anomalies
78 in phase with zonal wind. The principal source of wind acceleration in a Kelvin wave and also in
79 the equatorial upper tropospheric circulation signal of the MJO is the geopotential gradient force
80 (Matsuno 1966, Sakaeda and Roundy 2015), but Kelvin waves are advected by and can advect the
81 background flow as any other gravity wave. It is thus possible that interaction with the background
82 wind may alter MJO propagation. Zhang and Han (2020) showed that MJO events are less likely
83 to cross the Maritime Continent when the eastern Indian Ocean is anomalously cold and the
84 western Pacific Ocean is anomalously warm. Their Figure 1c suggests that this pattern tends to co
85 occur with lower tropospheric zonal mass confluence over the Maritime Continent. Lower
86 tropospheric mass confluence tends to co occur with upper tropospheric mass diffidence. Upper
87 tropospheric wind speeds are characteristically stronger, thus potentially yielding greater effects
88 from dry dynamical processes such as advection of and by the background flow. This paper
89 assesses the hypothesis that propagation of MJO upper tropospheric zonal wind across a region of
90 background upper tropospheric zonal diffidence slows the MJO upper tropospheric circulation
91 signal over the Indian Ocean and diminishes its amplitude over the Maritime Continent.

92
93
94

95 **2. Data and Methods**

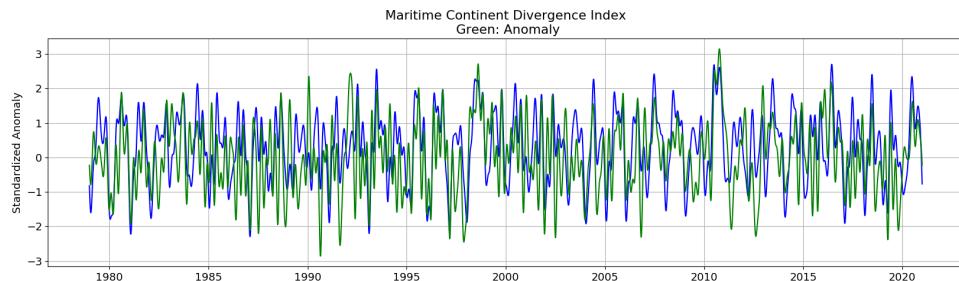
96 MJO event days are identified over the eastern Indian Ocean during realtime multivariate MJO
97 (RMM, Wheeler and Hendon 2004) index phase 3 with amplitude greater than one standard
98 deviation. This choice of target phase places the MJO active convective signal just before it begins
99 crossing the Maritime Continent. Data in this study are analyzed throughout the year to diagnose
100 the signals associated with the full range of background winds (which vary with the seasonal cycle
101 and other factors). Daily mean zonal wind u and geopotential gz data at 200 hPa on a 1° grid were
102 obtained from the ERA5 reanalysis for 1979-2020 (Hersbach et al. 2023). Interpolated satellite
103 outgoing longwave radiation (OLR) data on a 2.5-degree grid (Liebmann and Smith, 1996) were
104 obtained from the NOAA Earth System Research Laboratory. The background zonal wind was
105 calculated by applying an 80-day lowpass filter (via the Fourier transform) to the original u wind
106 data. This 80-day boundary allows inclusion of background signals at periods just beyond the
107 dominant timescale of the MJO. The primary and first 4 harmonics of the seasonal cycle were
108 removed to create anomalies for the composite analysis. The zonal gradients of the geopotential
109 anomaly, of the wind anomaly, and of the background zonal wind were obtained by using the
110 centered finite difference in space (i.e., $\frac{\partial F}{\partial x} = \frac{F(x+1) - F(x-1)}{2\Delta x}$).

111 The negative zonal gradient of geopotential anomaly gives the geopotential gradient force, the
112 principal source of acceleration of the winds in a Kelvin wave. The background gradient data were
113 smoothed in the zonal direction with a 1-1-1 boxcar filter for plotting.

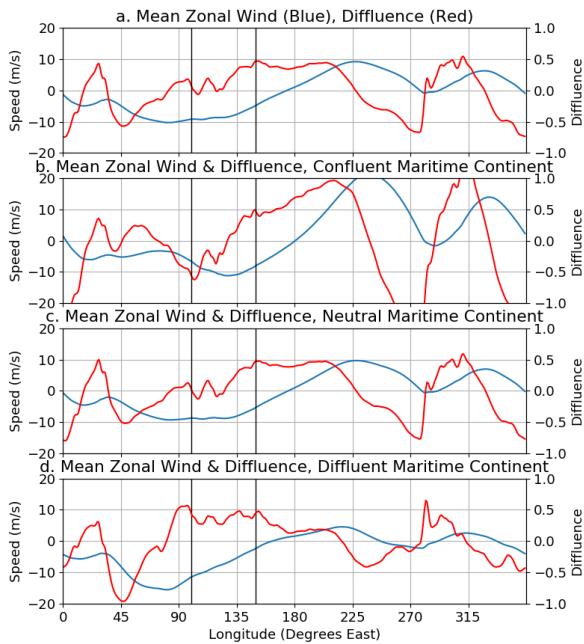
114 Advection of the background wind \bar{u} by the anomalous wind u' is

$$115 \quad adv_{\bar{u}} = -u' \frac{\partial \bar{u}}{\partial x}, \quad (1)$$

116 And advection of the wind anomaly u' by the background wind is

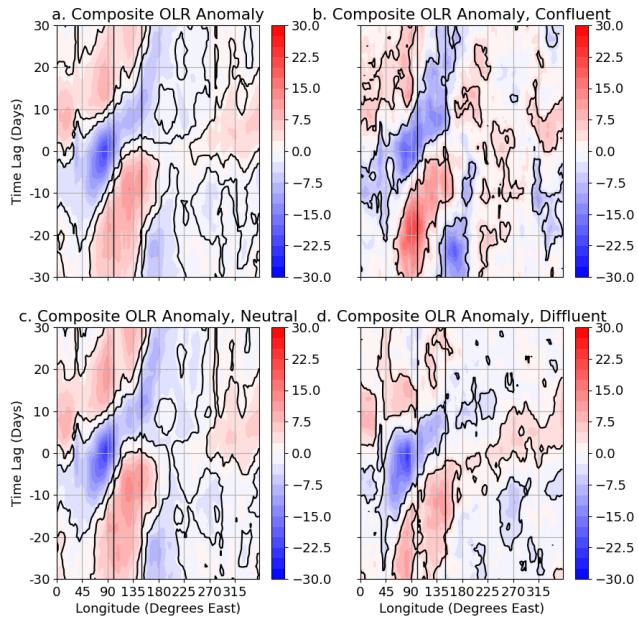

$$117 \quad adv_{u'} = -\bar{u} \frac{\partial u'}{\partial x}. \quad (2)$$

118 An index of zonal diffluence over the Maritime Continent was created by averaging the first zonal
119 finite difference of the 80-day low pass filtered zonal wind data over 90°E to 120°E (where the
120 MJO signal has been observed to break down when it fails to cross the Maritime Continent). This
121 index is standardized for reference by dividing by its standard deviation. Four composite events
122 were made based on averaging the given data fields over the set of MJO event days meeting
123 specified subsets of the RMM index phase 3 criteria. “All” events refers to the set of phase 3 event
124 days not stratified by the Maritime Continent diffluence index. Confluent, diffluent, and neutral


125 MJO-day subsets refer to those RMM 3 days co occurring with negative (confluent) background
126 zonal wind signal < -1 standard deviation, diffluent signal $> +1$ standard deviation, and neutral
127 signal between -1 and $+1$ standard deviations. Statistical significance is assessed at the 99%
128 confidence level by a 2-tailed students t-test assuming the null hypothesis that the true composite
129 anomaly is zero.

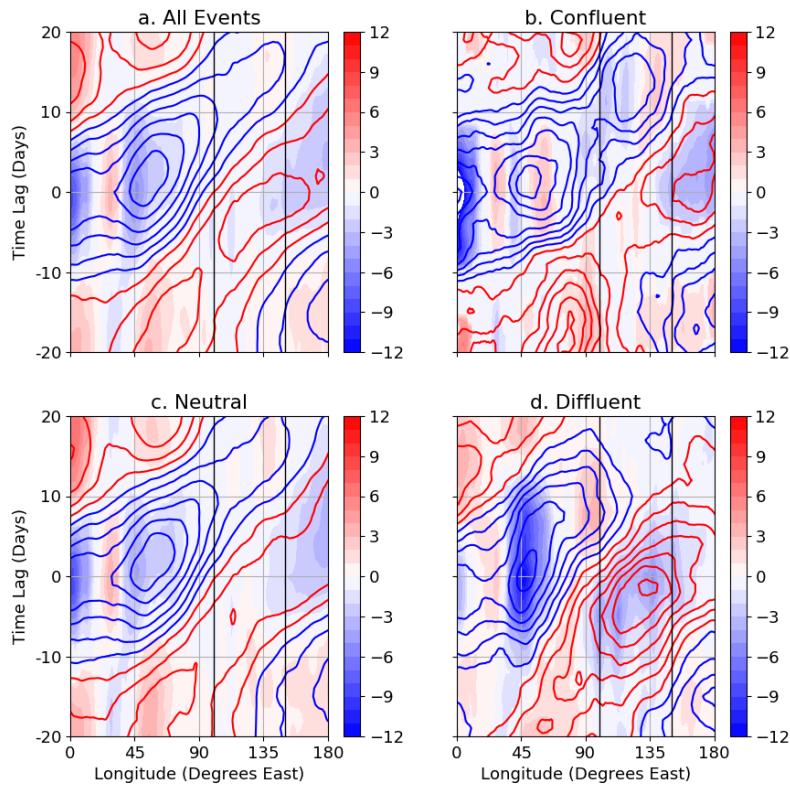
130 **3. Results**

131 Figure 1 shows the Maritime Continent standardized zonal diffluence index of 200 hPa zonal
132 wind between 90°E and 120°E . The signal historically varies between -3 and $+3$ standard
133 deviations and shows substantial year to year variability. The blue curve includes seasonal
134 variation while the green curve does not. The difference between them suggests a large seasonally
135 evolving component. The blue curve is used for further analysis.


136
137 Figure 1: The blue curve is the Maritime Continent diffluence index averaged from 10°N to 10°S
138 and from 90°E to 120°E , normalized by dividing by its standard deviation. The green curve is the
139 anomaly from the seasonal cycle in the same quantity.

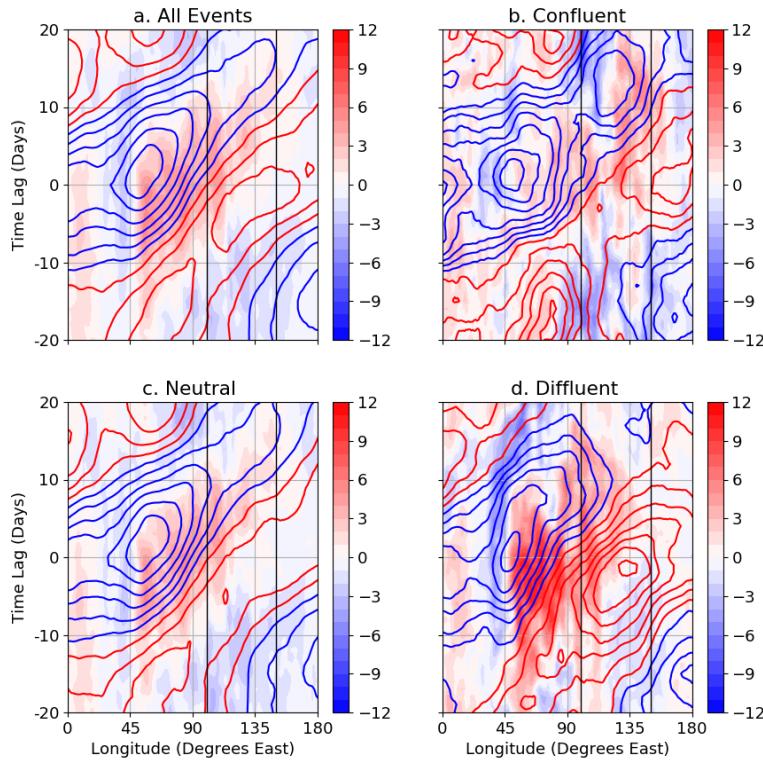
140
141 Figure 2: Time average zonal wind (blue) and zonal diffluence (red) as functions of longitude,
142 averaged over times characterizing the different Maritime Continent average diffluence categories
143 (a) the entire record, (b) confluent (diffluence < -1 Standard Deviation), (c) neutral (diffluence
144 between + and -1 standard deviation), and (d) diffluent (diffluence > 1 standard deviation).
145 Diffluence is scaled for plotting by a factor of 222,000m (twice the distance in meters between
146 grid points). Vertical lines highlight the westernmost and easternmost extent of Maritime
147 Continent Islands.
148

149 Figure 2 shows the mean state 10°S to 10°N 200 hPa equatorial zonal wind signal (blue curves),
150 with easterlies dominating in the Eastern Hemisphere and Westerlies in the Western Hemisphere.
151 The corresponding mean zonal diffluence is shown in red. Panel a represents the long-term mean,
152 and panels b-d show confluent, neutral, and diffluent categories of the Maritime Continent
153 diffluence index shown in Figure 1. In panel b, where diffluence is less than -1 standard deviation,
154 the easterly wind over part of the Maritime Continent is the strongest in the world at the time,
155 leading to upper tropospheric confluence (negative values in the red curve). In panel d, when 200
156 hPa diffluence over the Maritime Continent exceeds $+1$ standard deviation, the positive diffluence
157 shown in the panel exceeds that observed during all the other shown subsets. A similar structure
158 appears in the long-term average (panel a), suggesting stronger the contribution of diffluent periods
159 to the long-term average. Panel d shows zonal wind over the Indian Ocean $4-5 \text{ ms}^{-1}$ more easterly
160 than the long-term average (panel a). The strongest amplitude structure in zonal wind and


161 difffluence occurs in the Western Hemisphere, fluctuating wildly around South America, consistent
 162 with Sakaeda and Roundy (2015). The contrast between the region near and just east of 100°E
 163 between panels b and d between the confluent and diffluent categories is the main focus difference
 164 of this project.

165
 166
 167 Figure 3: Composite RMM phase 3 events $>$ amplitude 1 for (a) all events, (b), events in the
 168 Maritime Continent background confluent category, (c) events during neutral diffluence states,
 169 and (d) events during diffluent background conditions. Solid black contour indicates the 99%
 170 significance level by a student's t-test. Thin vertical lines darker than the grid highlight the location
 171 of the Maritime Continent.
 172

173 Figure 3 shows lag composite OLR anomalies based on RMM phase 3 $>$ amplitude 1.0 throughout
 174 the entire seasonal cycle. Black contours enclose regions that are statistically different from zero
 175 at above the 99% level. Consistent with each panel being in RMM 3 at lag = 0 days, convection
 176 near zero lag is present over the eastern Indian Ocean, moving slowly eastward (indicated by the
 177 blue-shaded region near the center-left of the composite). Convection begins in all panels prior to
 178 lag = -10 days over the western Indian basin. In all subgroups except the diffluent group (panel
 179 d), negative OLR anomalies cross the Maritime Continent (with substantial weakening in panels a
 180 and c), and then resume slow eastward propagation over the West Pacific Basin. One might argue


181 that panel b shows a stalling signal over the Maritime Continent, but the location of the center of
 182 the negative OLR anomaly at 20-30 day lags is east of the central location at 0-10 day lags, and
 183 wind data discussed later demonstrate clear eastward propagation to the West Pacific Ocean. In
 184 the confluent group, panel b, negative OLR anomalies gain substantial amplitude over the west
 185 Pacific basin and then continue slowly eastward. In panel d, the negative OLR anomaly
 186 dramatically loses amplitude and breaks up as it crosses the Maritime Continent, with some
 187 suggestion of a weak and rapid eastward-moving signal over the Western Hemisphere. The slow
 188 eastward-propagation seen in panels a-c over the Maritime Continent and West Pacific regions is
 189 absent in panel d.

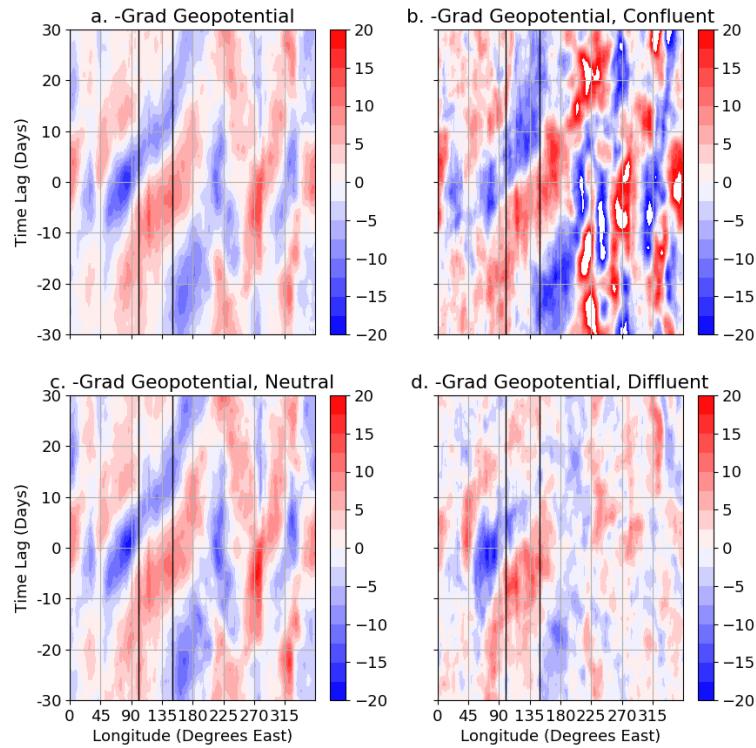
190
 191 Figure 4: Composite 200 hPa zonal wind anomaly (contours, ms^{-1}) for RMM 3 for each of the 4
 192 difffluence categories (a) All events, (b) confluent, (c) neutral, and (d) diffluent. Shading shows the
 193 advection of the background wind by the MJO composite zonal wind, scaled to $\text{ms}^{-1} / 5$ days.
 194 Positive (westerly) advection accelerations are red, shading levels are given every $1 \text{ ms}^{-1} / 5$ days.
 195 Shaded regions not achieving statistical significance are set to zero. Vertical black lines outline the
 196 eastern and westernmost points of the Maritime Continent islands.
 197
 198

199 Figure 4 shows composite 200 hPa zonal wind anomaly (contours) and the corresponding
200 accelerations (given in terms of ms^{-1} per 5 days) associated with advection of the background wind
201 by the MJO-associated wind (shading). Panels a and c show easterly wind anomalies growing
202 rapidly over the western Indian Ocean then gradually losing amplitude near the Maritime
203 Continent, and then maintaining or slightly regrowing over the West Pacific region. The strongest
204 easterly wind anomaly growth over the western Indian Ocean occurs together with easterly wind
205 acceleration contributed by advection of the background wind by the MJO-associated wind in
206 panel d. Panel b, for confluent conditions over the Maritime Continent, has fine structure
207 alternating between easterly and westerly forcing by advection of the background wind over the
208 western Indian Ocean, with less total acceleration of easterlies there by advection of the
209 background wind than in the other panels. Although the panel b MJO easterly wind anomaly does
210 not grow as rapidly over the western Indian Ocean, it maintains more amplitude over the Maritime
211 Continent (focusing near 90-120°E lag = 13 days), consistent with the easterly acceleration from
212 the advected background wind along its trajectory there, which does not occur in the other three
213 panels. The MJO easterly wind anomaly over the western Indian basin in panel d (near 45°E lag =
214 0 days), in contrast, includes a strong surge of easterly momentum due to advection of like-signed
215 background wind. Then the MJO easterly wind signal rapidly declines to near zero over the
216 Maritime Continent as it mingles with westerly momentum from advection of the background
217 wind (near 95°E and lag = 5-15 days). The local amplification over the western Indian Ocean due
218 to background confluence and collapse over the Maritime Continent associated with background
219 difffluence are both consistent with a stronger Indian Basin Walker circulation associated with
220 strong upper tropospheric easterly wind over the equatorial Indian Ocean (Fig. 2d). There is no
221 statistically significant resurgence of MJO easterly wind along the slow path of West Pacific
222 easterly wind anomalies present in the other panels. There is a weak and rapidly eastward moving
223 easterly wind anomaly over the east Pacific Basin after lead = 10 days (not shown). A strongly
224 fluctuating signal that occurs over the Western Hemisphere is not shown in Figure 4, to not
225 complicate view of the focus regions over the warm pool. This fluctuating signal is especially
226 strong during confluent Maritime Continent, when there is strong advection of the background
227 wind by the MJO wind over the Western Hemisphere (see Figure 2), consistent with the earlier
228 results of Sakaeda and Roundy (2015).

229

230

231


232

233 Figure 5: Composite zonal wind anomaly (ms^{-1}) and advection of the anomalous wind by the
 234 background wind adv_w , as defined in equation (2) for the four diffluence conditions shown in
 235 Figures 3-4, (a) all events, (b) confluent conditions, (c) neutral, and (d) diffluent. Acceleration due
 236 to advection shown in the shading is represented as ms^{-1} per 5 days. The contour interval is every
 237 2 ms^{-1} , with positive in red.
 238

239 Figure 5 shows the advection of the anomalous zonal wind by the background wind as defined in
 240 equation (2). When averaged over the selected MJO event days, the result gives advection of the
 241 MJO-associated wind by the background wind. Panels a, c, and d show positive advection of the
 242 MJO wind to the east of the MJO easterly wind region centered near lag = 0 between 45°E and
 243 90°E. These accelerations in quadrature with MJO zonal wind anomalies reduce the eastward
 244 propagation speed of the MJO (Roundy 2022), and they substantially explain why the advancing
 245 MJO easterly wind signal slows down over the Western Indian Ocean. Positive advection in panel
 246 d is especially strong, exceeding 6 $\text{ms}^{-1}/5$ days, while associated negative accelerations are much

247 less extensive along 45°E and eastward over the Indian Ocean at leads of 0-20 days. The
 248 deceleration of the MJO by advection by the background wind is much less robust in confluent
 249 Maritime Continent conditions in panel b, where upper tropospheric easterly background wind is
 250 much weaker (Figure 2b).

251

252

253 Figure 6: Composite $-\frac{dgz}{dx}$, the zonal geopotential gradient force, during each of the difffluence
 254 categories previously shown in Figures 3-5. Results are scaled to $\text{ms}^{-1}/5$ days.

255

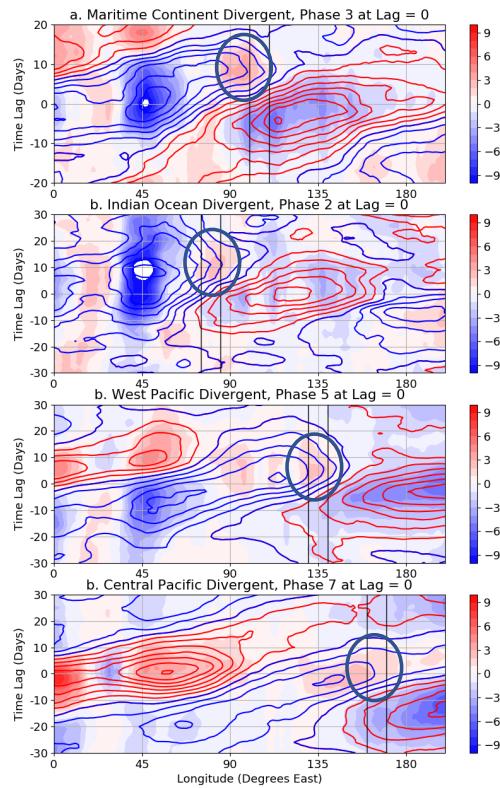
256 Figure 6 shows the corresponding accelerations (scaled to $\text{ms}^{-1}/5$ days) in response to the
 257 geopotential gradient force corresponding to Figures 3-5 for the four Maritime Continent
 258 difffluence categories. This term is the leading acceleration term in Kelvin waves, and dominates
 259 the upper tropospheric zonal wind tendency in subseasonal variability in the equatorial warm pool
 260 region (Sakaeda and Roundy, 2015). The whole pattern is advected westward, or slowed down,
 261 over the warm pool by background easterly wind as shown by Roundy (2022) and Figure 5. The
 262 general pattern of amplification of the easterly wind accelerations over the western Indian Ocean

263 is held in common with Figures 3-5, with some weakening in panels a and b over the Maritime
264 Continent, while panels a through c show substantial and significant amplitude over the Western
265 Pacific Ocean in the signal of acceleration of easterly wind shown in the blue shading. Panel b
266 shows its strongest accelerations after day 10 near the Maritime Continent. In panel d, however,
267 the acceleration of easterly wind damps to noise over the Maritime Continent, clearly showing the
268 Maritime Continent barrier effect timed with when the upper tropospheric background zonal winds
269 are most diffluent. The loss of OLR anomalies (Figure 3d), wind anomalies (Figure 4d), and
270 geopotential gradient force anomalies (Figure 5d) suggest most of the MJO signal is damped out
271 following RMM phase 3 events coinciding the diffluent upper tropospheric zonal wind over the
272 Maritime Continent. At the same time, Figure 4d (red contours along the trajectory of MJO easterly
273 wind) shows the direct contribution of the advection of the background wind to the decline of the
274 MJO easterly wind anomaly, even as Figure 5d shows advection of the MJO-associated wind by
275 the background flow strongly slowing the eastward propagation of the signal in this subset of
276 events.

277 The correlations in time and longitude over the Indian Ocean and Maritime Continent
278 region from 50°E to 120°E between the tendency of the composite zonal wind anomaly and each
279 term considered here, $-\partial g_z / \partial x$, $-u' \frac{\partial \bar{u}}{\partial x}$, and $= -\bar{u} \frac{\partial u'}{\partial x}$ for diffluent and confluent Maritime
280 Continent are shown in Table 1. To focus on the dominant central signals in the composites,
281 correlations are applied from time lags of -10 days to $+15$ days. To reduce redundant spatial signal,
282 for significance testing, the domain was sampled every 5° of longitude instead of every degree.
283 Results are not sensitive to these particular limits.

284
285
286
287
288
289
290
291
292

Table 1, Term Correlation Analysis against u Wind Tendency


Diffluent Maritime Continent	Correlation	p-value
$-\partial gz/\partial x$	0.68	2.6×10^{-50}
$-\bar{u} \frac{\partial u'}{\partial x}$	-0.63	2.0×10^{-42}
$-u' \frac{\partial \bar{u}}{\partial x}$	0.05	0.38
Confluent Maritime Continent		
$-\partial gz/\partial x$	0.59	2.4×10^{-35}
$-\bar{u} \frac{\partial u'}{\partial x}$	-0.22	2.0×10^{-10}
$-u' \frac{\partial \bar{u}}{\partial x}$	-0.03	0.56

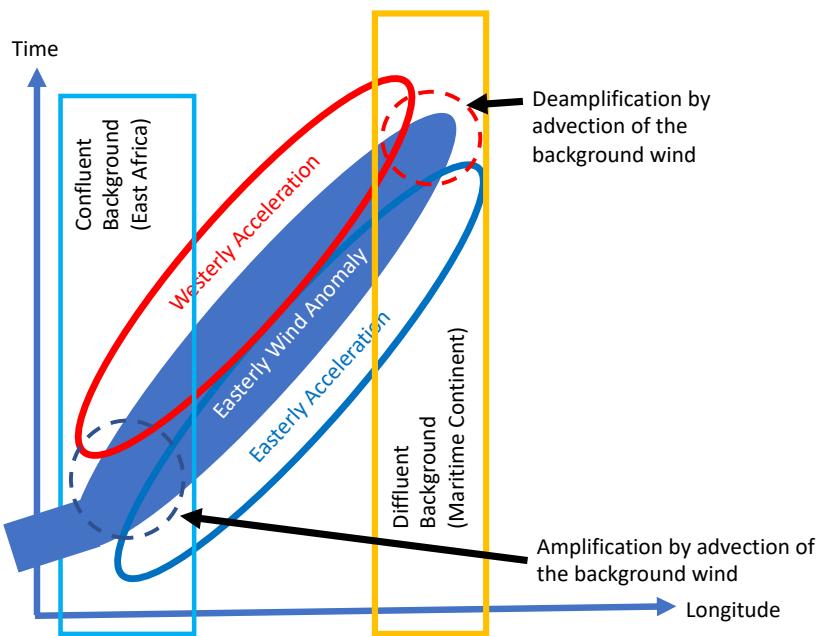
293 Table 1: Correlation analysis between the tendency of the composite 200 hPa zonal wind and the
 294 composites of the three terms examined here, for diffluent and confluent Maritime Continent, over
 295 50°E to 120°E and time lags of -10 days to +15 days.

296
 297 The factor among the 3 terms showing strongest correlation with the tendency of zonal wind is the
 298 geopotential gradient force, consistent with known dominance of Kelvin wave dynamics in the
 299 MJO equatorial upper tropospheric wind over the Indo Pacific warm pool (Sakaeda and Roundy
 300 2015, Roundy 2020, 2021). Advection of the MJO wind by the background wind has statistically
 301 significant negative correlations with zonal wind tendency for both diffluent and confluent
 302 Maritime Continent, consistent with the conclusion that advection of the MJO wind by the
 303 background wind substantially slows the advance of the MJO zonal wind by offsetting the height
 304 gradient term. This signal is especially strong during diffluent Maritime Continent, consistent with
 305 the other results signaling the strong upper tropospheric background easterly wind over the Indian
 306 Ocean during diffluent Maritime Continent conditions (Figure 2d).

307 In neither diffluent nor confluent Maritime Continent is the advection of the background wind
 308 by the MJO wind significantly correlated with the tendency. This finding reflects not that this term
 309 is not physically relevant, but it instead reflects that this term is in phase with the MJO zonal wind
 310 rather than its tendency. The result is that it builds or deteriorates the wind anomaly in phase with

311 the wind anomaly. The zero correlation between advection of the background wind by the MJO
 312 wind and tendency of the MJO wind emerges because its association with the tendency must
 313 reverse in time across a given wind anomaly. As an example, consider an MJO-associated easterly
 314 zonal wind anomaly crossing a region where the background wind is diffluent. At a given
 315 longitude, the MJO zonal wind tendency is negative prior to the maximum MJO easterly wind,
 316 then positive while the easterly wind anomaly declines. The contribution of advection of the
 317 background wind by the MJO wind must be positive, or westerly, across the whole MJO easterly
 318 wind anomaly, including both signs of its tendency. Therefore, an individual anomaly associated
 319 with this advection term must be uncorrelated with the MJO zonal wind tendency.

320
 321 Figure 7: Content of Figure 4d repeated for MJO wind events during periods of diffluent
 322 background wind in the region between the two vertical lines on each panel. RMM phases for
 323 composites were selected to place the MJO easterly wind anomaly at lag = 0 just before arriving
 324 at the diffluent region between the vertical bars. Advection of the background wind by the MJO
 325 wind is shown in the shading, with westerly wind advection indicated in warm colors. Ellipses
 326 highlight regions of easterly wind anomaly decline intersecting the region of background
 327 difffluence.


328 These results raise the question whether advection of the background wind by the MJO wind
329 has enhanced effect over the Maritime Continent due to other distinguishing characteristics of the
330 region, or whether the associated barrier effect is driven mainly by more frequent and stronger
331 diffluence signal at the Maritime Continent than other warm pool regions. To assess this concept
332 I repeat the analysis for diffluent background zonal wind conditions at other locations across the
333 warm pool. Figure 4d was replicated for different initial RMM states leading to MJO easterly wind
334 anomalies approaching longitude regions over the Maritime Continent (as control, 100-110°E,
335 Panel a), eastern Indian Ocean (75-85°E, Panel b), western Pacific Ocean (130-140°E, Panel c),
336 and central Pacific Ocean (160-170°E, Panel d). A new index of diffluence of the background wind
337 was calculated for each of these longitude regions to create composites. RMM phase at lag = 0
338 was assigned to 3 for Panel a, 2 for Panel b, 5 for Panel c, and 7 for panel d. Uniformly, in every
339 panel, the MJO easterly wind anomaly collapses when it arrives at the region of upper tropospheric
340 diffluence, and the decline coincides with advection of westerly background wind by the MJO
341 wind (shading). This result suggests that the phenomenon of MJO collapse with this advection
342 term is not unique to the Maritime Continent, but its common occurrence there would result from
343 the region more frequently exhibiting stronger upper tropospheric zonal diffluence.

344

345 **4. Conclusions**

346 Figures 3-6 show that when the MJO active convective and upper tropospheric easterly wind
347 anomalies located over the eastern Indian Ocean occur during periods of upper tropospheric
348 diffluence of the background zonal wind over the Maritime Continent, the events subsequently
349 tend to lose statistically significant amplitude in upper tropospheric zonal wind, geopotential
350 height, and OLR anomalies, consistent with the Maritime Continent barrier effect. Results confirm
351 the findings of Sakaeda and Roundy (2015), that the principal accelerations of the upper
352 tropospheric zonal wind associated with the MJO over the Indian Ocean are driven by the
353 geopotential gradient force, offset by advection of the MJO wind by the background easterly wind.
354 The geopotential gradient force in a Kelvin wave propagates eastward in response to divergence
355 of the eddy wind (Matsuno 1966). When background conditions are confluent over the Maritime
356 Continent, zonal wind and the gradient of geopotential achieve greatest amplitudes over the
357 Maritime Continent and the West Pacific basin. Figure 4 d shows that under conditions of
358 background diffluence over the Maritime Continent, stronger than normal advection of upper

359 tropospheric confluent background wind over the western Indian Ocean strengthens the upper
 360 tropospheric MJO zonal wind. The amplified MJO signal is then slowed in its eastward
 361 propagation as it is advected strongly westward by the enhanced upper tropospheric background
 362 easterly wind (Figure 5d). Then, as the MJO easterly wind anomaly moves eastward over the
 363 Maritime Continent, the MJO wind advects background wind of the opposite sign, counteracting
 364 its amplitude. The advection of the background wind by the MJO wind alters the amplitude of the
 365 MJO zonal wind anomalies by acting in line with the zonal wind, like the idealized event shown
 366 in Figure 8 (compare with Figure 4d).

367
 368 Figure 8: Schematic diagram of the longitude-time representation of an MJO upper tropospheric
 369 easterly wind anomaly during diffluent Maritime Continent. On arrival of the weak easterly wind
 370 anomaly from the west over East Africa, advection of easterly background wind grows the easterly
 371 wind anomaly. As it propagates eastward, it advances by easterly wind acceleration in quadrature
 372 with the easterly wind anomaly and declines by westerly wind acceleration, also in quadrature
 373 behind. Ultimately, the signal de amplifies to the east near the Maritime Continent as the easterly
 374 wind anomaly advects background wind of the opposite sign.
 375

376 First, a weak MJO upper tropospheric easterly wind anomaly arrives from the west near East Africa
 377 (lower left of Fig. 8). There, advection of confluent background wind by the MJO wind amplifies
 378 the MJO easterly wind anomaly in phase with itself. As the easterly wind anomaly continues east
 379 across the Indian Ocean, acceleration of the wind is controlled by the sum of the geopotential

gradient force and advection of the MJO wind by the background easterly wind (the total acceleration generated by these two terms is highlighted as easterly and westerly wind accelerations on Figure 8). On arrival at the Maritime Continent, advection of diffluent background wind by the MJO wind counteracts the MJO wind and the wind and convective signals then damp to zero. Since the resulting accelerations are in phase with the wind anomaly, zero correlation results between the zonal wind time tendency and advection of the background wind by the MJO wind, but it still yields a substantial weakening effect along the easterly wind anomaly trajectory. In events in which the MJO-associated zonal wind is diminished by superposition with wind of the opposite sign advected from the background wind, the weakened circulation must remove less mass east of the MJO-associated Kelvin wave trough, so the associated geopotential anomalies weaken as well (Figure 5d), which further damps the associated wind anomalies, and the whole signal collapses. The direct effects of convection are not considered here, but likely would result in reducing the amplitude of the MJO-associated upper tropospheric trough anomaly collocated with its easterly wind anomaly (because a convective mass source on the equator cannot create a trough above it and to its immediate west). This fact, the correlation analysis in Figure 1, and previous results of Sakaeda and Roundy (2015), Roundy (2020), and Roundy (2022) support the argument that the upper tropospheric equatorial zonal wind signal of the MJO over the Indian Ocean is fundamentally a planetary scale Kelvin wave altered by interaction with background flow.

The composite analysis was repeated for MJO events approaching regions of diffluence of the background wind at different locations across the warm pool, to assess whether the mechanism is unique to the Maritime Continent. Figure 7 shows that at each location, advection of background westerly wind by the MJO easterly wind coincides with dampening of the MJO easterly wind anomaly toward zero in the diffluent zone. Thus, this mechanism is not special to the Maritime Continent. However, since the Maritime Continent region is frequently diffluent, collapse of MJO events may occur there often.

Numerous authors have assessed sensitivity of the Maritime Continent barrier effect to various mechanisms, as discussed in the introduction. The mechanism discussed here does not necessarily exist in isolation from other mechanisms. Strong base state and diurnally varying convection over the Maritime Continent might compete with MJO convection crossing the region. Collapse of the upper tropospheric MJO circulation signal likely occurs at the same time that

411 topography directly interferes with the lower tropospheric MJO convective signal. The region's
412 background convection also associates with the strength of the Walker circulation and mass
413 diffluence observed over the island region, so the various factors may be correlated. Nevertheless,
414 direct computation of the advection terms shown here demonstrates their causal connection if not
415 balanced by other factors, and balancing factors were not found in the broader project that included
416 this analysis.

417 Numerical weather prediction models and global climate models on average show a
418 stronger Maritime Continent barrier effect than observations. The findings herein suggest that
419 these models might exhibit more consistently strong Maritime Continent convection and
420 associated stronger upper tropospheric diffluence than in observations.

421

422

423

424 **Acknowledgements**

425 National Science Foundation grants 1757342 and 2103624 to Paul Roundy funded the related
426 research. ERA5 reanalysis data was provided by ECMWF, and the NOAA ESRL provided OLR
427 data.

428

429

430

431 **Data Availability**

432 ERA5 reanalysis data can be downloaded freely from ECMWF via the Copernicus website and
433 OLR data from the NOAA ESRL. Code available from the author upon request (please give 2
434 weeks response time).

435

436 **References**

437 Abhik, S., H. H. Hendon, and C. Zhang, 2023: The Indo-Pacific Maritime Continent Barrier Effect
438 on MJO Prediction. *J. Climate*, **36**, 945–957, <https://doi.org/10.1175/JCLI-D-22-0010.1>.

439 Ajayamohan, R. S., B. Khouider, V. Praveen, and A. J. Majda, 2021: Role of Diurnal Cycle in the
440 Maritime Continent Barrier Effect on MJO Propagation in an AGCM. *J. Atmos. Sci.*, **78**,
441 1545–1565, <https://doi.org/10.1175/JAS-D-20-0112.1>.

442 Barrett, B.S., Densmore, C.R., Ray, P. *et al.* Active and weakening MJO events in the Maritime
443 Continent. *Clim Dyn* **57**, 157–172 (2021). <https://doi.org/10.1007/s00382-021-05699-8>

444 Chen, G., J. Ling, C. Li, Y. Zhang, and C. Zhang, 2020: Barrier Effect of the Indo-Pacific Maritime
445 Continent on MJO Propagation in Observations and CMIP5 Models. *J. Climate*, **33**, 5173–
446 5193, <https://doi.org/10.1175/JCLI-D-19-0771.1>.

447 DeMott, C. A., Wolding, B. O., Maloney, E. D., & Randall, D. A. (2018). Atmospheric
448 mechanisms for MJO decay over the Maritime Continent. *Journal of Geophysical Research: Atmospheres*, **123**, 5188–5204. <https://doi.org/10.1029/2017JD026979>

450 Hendon, H. H., and M. L. Salby, 1994: The Life Cycle of the Madden–Julian Oscillation. *J. Atmos. Sci.*, **51**, 2225–2237,
451 [https://doi.org/10.1175/1520-0469\(1994\)051<2225:TLCOTM>2.0.CO;2](https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2).

452 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J.,
453 Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-
454 N. (2023): ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate
455 Change Service (C3S) Climate Data Store (CDS).

456 Hudson, J., and E. Maloney, 2023: The Role of Surface Fluxes in MJO Propagation through the
457 Maritime Continent. *J. Climate*, **36**, 1633–1652, <https://doi.org/10.1175/JCLI-D-22-0484.1>.

459 Kim, D., Maloney, E. D., and Zhang, C., 2021: Review: MJO Propagation over the Maritime
460 Continent. The Multiscale Global Monsoon System. Editor: Chih-Pei Chang. 261-272.
461 <https://doi.org/10.1142/11723>

462 Liebmann, B., and C.A. Smith, 1996: Description of a Complete (Interpolated) Outgoing
463 Longwave Radiation Dataset. *Bull. Amer. Meteorol. Soc.*, **77**, 1275-1277.

464 Ling, J., Zhang, C., Joyce, R., Xie, P.-p., & Chen, G. (2019). Possible role of the diurnal cycle in
465 land convection in the barrier effect on the MJO by the Maritime Continent. *Geophysical
466 Research Letters*, **46**, 3001–3011. <https://doi.org/10.1029/2019GL081962>

467 Matsuno, T., 1966: Quasi-Geostrophic Motions in the Equatorial Area, *Journal of the
468 Meteorological Society of Japan. Ser. II*, **44**, 25-43.

469 Powell, S. W., and R. A. Houze, 2015: Effect of dry large-scale vertical motions on initial MJO
470 convective onset. *J. Geophys. Res. Atmos.*, **120**, 4783–4805. doi: 10.1002/2014JD022961.

471 Roundy, P. E., and W. M. Frank, 2004: A Climatology of Waves in the Equatorial Region. *J.
472 Atmos. Sci.*, **61**, 2105–2132.

473 Roundy, P. E., 2020: Interpretation of the spectrum of eastward-moving tropical convective
474 anomalies. *QJR Meteorol Soc.* **146**: 795– 806. <https://doi.org/10.1002/qj.3709>

475 Roundy, P. E., 2022: Effect of Advection by Upper-Tropospheric Background Zonal Wind on
476 MJO Phase Speed. *J. Atmos. Sci.*, **79**, 1859–1864, <https://doi.org/10.1175/JAS-D-21-0298.1>.

477 Sakaeda, N., and P. E. Roundy, 2015: The Development of Upper-Tropospheric Wind over the
478 Western Hemisphere in Association with MJO Convective Initiation. *J. Atmos. Sci.*, **72**,
479 3138–3160, <https://doi.org/10.1175/JAS-D-14-0293.1>.

480 Wheeler, M. C., and H. H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index:
481 Development of an Index for Monitoring and Prediction. *Mon. Wea. Rev.*, **132**, 1917–
482 1932, [https://doi.org/10.1175/1520-0493\(2004\)132<1917:AARMMI>2.0.CO;2](https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2).

483 Wheeler, M., & Kiladis, G. N. (1999). Convectively Coupled Equatorial Waves: Analysis of
484 Clouds and Temperature in the Wavenumber–Frequency Domain, *Journal of the*
485 *Atmospheric Sciences*, **56**(3), 374–399.

486 Zhang, C., and J. Ling, 2017: Barrier Effect of the Indo-Pacific Maritime Continent on the MJO:
487 Perspectives from Tracking MJO Precipitation. *J. Climate*, **30**, 3439–
488 3459, <https://doi.org/10.1175/JCLI-D-16-0614.1>.

489 Zhou, Y., S. Wang, J. Fang, and D. Yang, 2022: The Maritime Continent Barrier Effect on the
490 MJO Teleconnections during the Boreal Winter Seasons in the Northern Hemisphere. *J.*
491 *Climate*, **36**, 171–192, <https://doi.org/10.1175/JCLI-D-21-0492.1>.

492