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Abstract

We prove Ilmanen’s resolution of point singularities conjecture by establishing short-
time smoothness of the level set flow of a smooth hypersurface with isolated conical
singularities. This shows how the mean curvature flow evolves through asymptoti-
cally conical singularities. Precisely, we prove that the level set flow of a smooth
hypersurface M"* C R+ 2 <5 < 6, with an isolated conical singularity is modeled
on the level set flow of the cone. In particular, the flow fattens (instantaneously) if
and only if the level set flow of the cone fattens.

1 Introduction

A family of smooth hypersurfaces M (¢) is a mean curvature flow if
(307 =Hy ) (),

where H ;) (x) is the mean curvature vector of M (¢) at X. Mean curvature flow is the
gradient flow of area. We recall that the mean curvature flow, M (¢), from a smooth,
compact hypersurface M (0) C R"*! is guaranteed to become singular in finite time,
moreover, well-posedness and regularity of the flow can break down after the onset
of certain singularities (cf. [50]).
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In the present article, we quantify the short-time regularity and well-posedness of
the level set flow from a smooth compact hypersurface with an isolated singularity'
modeled on any smooth cone C. Recalling [20], such hypersurfaces can appear as the
singular time-slice of a flow encountering a singularity modeled on an asymptotically
conical self-shrinker. Our results hence demonstrate how one can flow through such
a singularity.

Before stating our results, we recall that the level set flow (cf. [19, 32, 37, 44])
of a closed set X is the unique maximal assignment of closed sets t — F;(X) with
Fo(X) = X, such that F;(X) avoids smooth flows (see Sect. 2.1). If the level set flow
F;(X) develops an interior at t = T, we say that the flow fattens at time T'.

Our main results can be stated as follows:

Theorem 1.1 (Fattening dichotomy) For 2 < n < 6, suppose that M"* C R"*! is a
smooth hypersurface with an isolated conical singularity modeled on a smooth cone
C. Then the level set flow of M fattens instantly if and only if the level-set flow from
the cone C fattens.

Fattening of C implies fattening of M is proven in Theorem 4.1, whilst non-
fattening of C implies short-time non-fattening of M can be found in Corollary 6.3.

A fortiori, Theorem 1.1 is a consequence of the following results (more precisely
Theorem 1.2 and Theorem 1.4), which give a precise description of the level-set flow
near the conical singularity of M.

Theorem 1.2 (Structure theorem for the level set flow) For 2 <n < 6, suppose that
M"™ C R" is a smooth hypersurface with an isolated conical singularity modeled on
a smooth cone C at 0. Then, there is a T > 0 such that the outermost mean curvature
flows of M are smooth for t € (0, T). Moreover, ~12F, (M) converges in the local
Hausdorff sense to F1(C) as t \( 0.

We provide a refinement of this statement below, which, in aggregate with the
aforementioned work [20], can be considered as a canonical neighbourhood theorem
for asymptotically conical singularities. Before stating this result, we provide a brief
exposition of the Hershkovits—White framework applicable to the present context.
(See Sect. 2.3 for a rigorous discussion.)

We first consider the compact case, illustrated in Fig. 1. Recall that the outer flow,
M is the space-time boundary of the level set flow F;(V) of the interior V of M.
Similarly the inner flow M’ is the space-time boundary of the level set flow F; (V')
of the exterior V’ of M. Turning to the cone C as illustrated in Fig. 2, we note dilation
invariance and uniqueness of the level set flow yields F;(C) = +/1F1(C). Denote W
and W’ the interior and exterior of the cone C and assume we have chosen these conis-
tently with the interior and exterior of M. Let X’ := 9 F;(W’) and X := 9 F; (W) and
observe that dF; (W) = 4/tX, dF,(W') = /tX'. Note, when 2 <n <6, &, ¥’ will

1For simplicity of notation we only consider a single singularity, but everything here would generalize
easily to the case of finitely many isolated singularities, each modeled on a smooth cone.
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Fig. 1 Left: A hypersurface M with isolated conical singularity, with interior V and exterior V’. Right:
The level set flow of each at time ¢. (Color figure online.)

E/

Fy(C)
F1(W?")

Fig.2 Left: The initial cone C with interior W and exterior W’. Right: The level set flow of each region
at time ¢ = 1. (Color figure online.)

be smooth (this is the source of the dimension restriction above; for n > 6, the above
theorems continue to hold if we impose the additional condition that the outermost
expanders for C are smooth).

In the sequel we will refer to M(t), M'(¢) as outermost flows and , X’ as the
outermost expanders. The next result shows that the outermost expanders approxi-
mate the outermost flows.

Theorem 1.3 (Canonical neighbourhood theorem for outermost flows) For2 <n <
6, suppose that M" C R"*! is a smooth hypersurface with an isolated conical sin-
gularity at 0. Assume the conical singularity is modeled on a smooth cone C with
outermost expanders ¥, ¥/ labeled as above. Then, t =12 M(t) (resp. t =12 M’ (1))
converges to ¥ (resp. L) locally smoothly as t \ 0.

Theorem 1.3 resolves the “resolution of point singularities” conjecture of Ilmanen
[40, Problem 16]. Smoothness can be found in Corollary 4.2 and the forward blow-up
statement (including the convergence of the outermost Brakke flows to the outermost
expanders) can be found in Theorem 4.1.

Note that if C does not fatten then ¥ = ¥’ and Theorem 1.2 trivially holds. In
particular, any flows starting from M are smooth for a short time and modeled on
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the unique expander asymptotic to C. This implies that two such flows separate like
o(t'/?), but this does not a priori imply there is only one such flow. This is the content
of our final result.

Theorem 1.4 (Uniqueness) For 2 < n < 6, suppose that M" C R"*! s a smooth
hypersurface with an isolated conical singularity at 0, modeled on a smooth cone C
which does not fatten. Then, there is T > 0 such that the outermost flows of M agree
(and are smooth) for t € (0, T). Especially, the evolution of M is unique on this time
interval.

Smoothness follows again from Corollary 4.2 and for uniqueness see Corollary
6.3.

Remark 1.5 As a consequence of the work of Brendle [14] any asymptotically coni-
cal shrinker must have non-zero genus and by work of Ilmanen—White [38, p. 21]
the inner and outer expanders are topological planes. Combined with Chodosh—
Schulze [20, Corollary 1.2], the results presented in this work demonstrate strict
genus drop through any isolated conical singularities that form in a multiplicity one
flow. We note that the full “strict genus monotonicity conjecture” of Ilmanen [40,
Problem 13] at non-generic singularities (for outermost flows) was recently resolved
by Bamler—Kleiner [6] by combining their resolution of Ilmanen’s multiplicity one
conjecture with the strict genus drop results for one-sided perturbations of Chodosh—
Choi-Schulze—Mantoulidis [21, 22].

1.1 Related work

The study of fattening and non-fattening of conical singularities has received consid-
erable attention. In particular, in their first work on the level set flow, Evans—Spruck
already observed [32, §8.2] that the cone C := {xy = 0} C R? and a figure eight will
fatten. Note that a figure eight is a smooth curve in R? with an isolated conical singu-
larity modeled on the cone C in the terminology of this paper (and our results would
apply without change to this setting). Fattening has been subsequently studied by
many authors, see [1, 3, 4, 27, 31, 33, 35, 37, 38, 47, 48, 50] for a non-exhaustive
list.

More recently, Hershkovits—White [43] introduced a powerful framework for
analysing the level set flow, which they applied to show non-fattening through mean-
convex singularities. Combining their work with the resolution of the mean-convex
neighborhood conjecture by Choi—Haslhofer—Herskovits [24] (cf. [25]), it follows
that fattening does not occur if all singularities are either round cylinders of the
form $"~! x R or round spheres S”. We also draw attention to the recent studies
of asymptotically conical expanders by Deruelle—Schulze [29] and Bernstein—Wang
[7, 8, 10-13]. In particular, Bernstein—Wang have used these results to prove a low-
entropy Schoenflies theorem [9] (cf. [22, 23, 26]) and have announced applications
to the study of low-entropy cones. See also the work of Chen [15-17].

Finally, we note that the question of evolving a Ricci flow through a singularity
modelled on the evolution of an asymptotically conical gradient shrinking soliton is
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MCF from conical singularities 1045

also of considerable interest (but we note that the analogues of Theorem 1.1 and 1.3
and the resolution of point singularities are not understood in general). In particu-
lar, expanders have been studied in [5, 28, 30, 45] and flows have been constructed
out of initial Riemannian manifolds with isolated conical singularities modeled on
non-negatively curved cones over spheres [34]. Moreover, “fattening” of the cone at
infinity of a shrinking gradient Ricci soliton has been constructed in [2].

1.2 Strategy of proof

Optimistically, one might hope that the resolution of a conical singularity is always
modeled on expanders, just as tangent flows are always modeled on self-shrinkers.
Indeed, one might expect a forward monotonicity formula would control the forward
blow-ups (the (subsequential) weak limits of A2M(L711) as A — co) but there appear
to be serious issues to make this rigorous in the setting of isolated conical singular-
ities (cf. [38, p. 25]). We do note that in the setting of flows coming out of cones,
Bernstein—Wang have obtained a version of forwards monotonicity [11] (generaliz-
ing to the dynamical setting the relative expander entropy of Deruelle-Schulze [29])
and Chen [15] has constructed non-self-expanding flows from cones. However, it re-
mains unclear if/how monotonicity based methods could prove that forward blowups
of outermost flows are outermost expanders (or even that they are smooth).

In this article we take a completely different approach (avoiding forwards mono-
tonicity entirely). Instead, we find barriers that push the outermost flows onto the out-
ermost expanders in the forward blowup limit. A closely related construction proves
uniqueness of two flows with the same outermost expander blowup limit. The con-
struction of these barriers combines two key spectral properties of an outermost ex-
pander X:

(1) The outermost expander minimizes weighted area to the outside, so the linearized
expander operator (cf. (2.4)) is non-negative Ly > 0. In particular, there is a
positive eigenfunction ¢3g on X N B3g(0) with positive eigenvalue p3g > 0.

(2) The outermost expander is the one-sided limit of expanders asymptotic to nearby
cones, which yields a positive Jacobi field Lyv = 0 with v growing linearly at
infinity.

The “interior” barrier is then formed by taking the graph over ¥ of a small multiple
of f:=v+ap3r. Because Ly f = —au¢3r this can be seen to be a strict barrier in
B>k (0), pushing (rescaled) mean curvature flows towards X.

To prove that the flow fattens if the cone fattens (Theorem 4.1), we can weld (in the
sense of Meeks—Yau [42]) the graph of f to the graph of a constant function 4 over ¥
to obtain a global barrier Iy over ¥ (note that Ly h = (|Ayg |2 — %)h is < O outside of a
sufficiently large compact set). (See Proposition 3.4.) Now, the key observation is that
the forward blowups of the outermost flow will lie below 'y outside of a sufficently
large set, since the forward blowups must lie in the level set flow of the cone (which
decay towards the cone) while I's has height ~ sh over the cone near infinity (see
Claim 4.2).

In particular, this proves that the outermost flows have forward blowup at 0 equal
to the outermost flows of the cone C. To prove that the flow does not fatten if the
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Fig.3 The barrier construction [ ose.s () T ()
to prove uniqueness of flows ’
with the same (outermost)
expander X as forward blowup
at 0. (Color figure online.)

cone does not fatten, it thus suffices to consider two flows M (r), M2(r) which have
forwards blowup given by the same outermost expander. We construct a barrier in
this situation by welding (in the sense of Meeks—Yau [42]) the graph of +sf (denoted
[ijose.s (1)) to the normal graph of sh+/f over M'(1) \ B ;5 (0) (denoted ', (1))
The barriers then pinch M? towards M! from above and below as s — 0 proving
uniqueness. This can be seen in Fig. 3.

1.3 Organization

In Sect. 2 we collect some preliminary definitions and facts to be used later. In Sect. 3
we construct barriers graphical over the expander and then use these barriers to prove
that the level set flow is locally modeled on the level set flow of the cone in Sect. 4.
In Sect. 5 we construct global barriers over a flow that’s modeled on an outermost
expander near the conical singularity and then use these to prove uniqueness of such
flows in Sect. 6. Finally, we collect some results about graphs over expanders in the
Appendix.

2 Preliminaries
In this section we collect some preliminary definitions, conventions, and results.
2.1 Spacetime and the level set flow

We define the fime map ¢ : R"*! x R — R to be the projection t(x,¢) = t. For E C
R"*! x R we will write E(¢) := E Nt~ (¢). The knowledge of E(¢) for all ¢ is the
same thing as knowing E, so we will often ignore the distinction.

For a compact n-manifold M (possibly with boundary), we consider f : M X
[a, b] — R"*! 5o that (i) f is continuous (ii) f is smooth on (M \ dM) x (a, b] (iii)
Sflmx iy is injective for each t € [a, b] and (iii) t — f(M \ dM, t) is flowing by mean
curvature flow. In this case we call

M= Ureiap f (M, 1) x {t} CR"™ xR
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MCF from conical singularities 1047

a classical mean curvature flow and define the heat boundary of M by
oM :=f(M,a)U f(OM, [a, b)).

Classical flows that intersect must intersect in a point that belongs to at least one of
their heat boundaries (cf. [49, Lemma 3.1]).

For I' ¢ R"! x [0,00), M C R""! x R is a weak set flow (generated by I')
if M(0) =T(0) and if M’ is a classical flow with 9 M’ disjoint from M and M’
disjoint from I' then M’ is disjoint from M. There may be more than one weak set
flow generated by I'.

The biggest such flow is called the level set flow, which can be constructed as
follows: For I' ¢ R*t! x [0, 00) as above, we set

Wo:={(x,0): (x,0) ¢ I'}

and then let Wy denote the union of all classical flows M’ with M’ disjoint from
[ and 9 M’ C Wy. The level set flow generated by T is then defined by

M = R x [0, 00)) \ U Wi € R % [0, 00).

See [32, 37, 49]. If I' ¢ R"H! x {0}, we will write F; (") := M(¢) for the time ¢ slice
of the corresponding level set flow.

Fix I' ¢ R"*! closed. We say that the level set flow of I is non-fattening if F,(I")
has no interior for each ¢ > 0. This condition holds generically for compact I C
R+ namely if ug is a continuous function with compact level sets u 1(s) then

the level set flow of u 1(s) fattens for at most countably many values of s, see [37,
§11.3-4].

2.2 Integral Brakke flows

An (n-dimensional?) integral Brakke flow in R”*! is a 1-parameter family of Radon
measures (u(t))ses so that

(1) For almost every ¢ € I there is an integral n-dimensional varifold V (¢) with
(1) = ey ) and so that V() has locally bounded first variation and mean cur-
vature H orthogonal to Tan(V (¢), -) almost everywhere.

(2) For every bounded interval [t1,#] C I and K C Rl compact, we have

15)
/ / 1+ HP)dp@)dt < oco.
f K
(3) If [t1, 0] C I and f € CLR™! x [t1,1,]) has f > 0 then

n
/ F () - f FCmdun) < / / (—HPf +H-Vf + Dydpuydr.
4]

20f course one can consider k-dimensional flows in R"*! but we will never do so in this paper, so we
will often omit the “n-dimensionality”” and implicitly assume that all Brakke flows are flows of “hypersur-
faces.”.
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We will sometimes write M to represent a Brakke flow.

We define the support of M = (1(t)); to be U, supp (1) x {r} € R**!1 x R. It is
useful to recall that the support a Brakke flow (with ¢ € [0, 00)) is a weak set flow
(generated by supp 1 (0)) [37, 10.5].

We say that a sequence of integral Brakke flows M; converges to another integral
Brakke flow M (written M; — M) if w; (z) weakly converges to w () for all ¢ and
for almost every ¢, after passing to a further subsequence depending on ¢, the asso-
ciated integral varifolds converge V;(t) — V (¢). (Recall that if M; is a sequence of
integral Brakke flows with uniform local mass bounds then a subsequence converges
to an integral Brakke flow [37, §7].)

For a Brakke flow M and A > 0 we write D, (M) for the “dilated” Brakke flows
with measures satisfying 11, (1)(A) = A (A ~2) (A~ A).

2.3 Theinner/outer flows of a level set flow

We collect results of [43] on weak set flows and outermost flows and show that they
are also applicable (with minor modifications) to the flow of more general initial data.

Proposition 2.1 ([43, Proposition A.3]) Suppose that F is a closed subset of R"*!,
and let M C R*t1 x RY be its level set flow. Set:

M) :={xeR": (x,1) e IM}.
Then t — M (t) is a weak set flow.

In what follows, we assume that F' is th_eclosure of its interior in R"**! (we will
call® such a set F admissible). Let F' := F¢, denote the level set flows of F, F’ by
M, M, and set F(t) := M(t), F'(t) := M’(¢). In line with Proposition 2.1, we set:

M@) ={(x,1) cR" :x e aM]},

M () :={(x, 1) cR":xeaM'}.

(Here M, M’ are the relative boundaries of M, M’ as subsets of R"T! x R).
We call

t— M(t), t— M (t)

the outer and inner flows of M := 9 F. By Proposition 2.1, M (¢), M'(t) are contained
in the level set flow generated by M. Furthermore,

M(t) = 11% AF (1)

3Note that this slightly extends the definition in [43], where 0 F' (U in their notation) would be a compact,
smooth hypersurface. This extension allows us to flow from non-compact and non-smooth initial surfaces.
This does not change anything in the analysis of [43].
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MCF from conical singularities 1049

for all + > 0, and M(¢t) = dF (¢) for all but countably many ¢. See [43, Theorems
B.5, C.10]. Note that [43, Theorems B.5] directly carries over to M = d F where F
is admissible.

We will say that an admissible set F is smoothable, if the following holds: There
exist compact regions F' € F; with smooth boundaries such that

(1) Foreach i, F;1 is contained in the interior of F;.

(2) NF; =intF.

(3) H"| M is a Radon measure and H" |0 F; — H" | M.

(4) Thereis A > 0 so that for any p € R**! and p > 0 it holds that |3 F; N By(p)| <
Ap".

By perturbing F; slightly, we can also assume that
(5) the level set flow of d F; never fattens.

Choose integral Brakke flows ¢ > w;(¢) starting from w;(0) = H" |9 F; via elliptic
regularization. Assume that u; limits to ¢ +— () in the sense of Brakke flows. Note
that the flow 7 € [0, 00) > w(¢) is an integral, unit-regular Brakke flow with w(0) =
HN M

We do the same hold with F’ replacing F' and so on. We then directly generalize
[43, Theorems B.6, B.8]. The proof extends verbatim.

Proposition 2.2 Assume F is admissible and smoothable with M = 0 F The Brakke
flow t +— wu(t) has spacetime support equal to the spacetime set swept out by t €
[0, 00) > M(t), where t > M (t) is the outer flow of M. More precisely, for t > 0,
the Gaussian density of the flow w(-) at (x,t) is > 0 if and only if x € M (¢t). The
analogous statement holds for the inner flow t — M'(t) of M.

2.4 Density, Huisken’s monotonicity, and entropy

For X = (Xo, fo) € R"t x R we consider the (n-dimensional) backwards heat kernel
based at Xg:

_n Ix — xo?
Pxo(X, 1) := (4 (tg — 1)) 2 exp <—m> 2.1

for x € R"*!, ¢ < 1y. For M a Brakke flow defined on [7p, ), tho>Tpand 0 <r <

Ty — to, we set
Om(Xo. 1) = / pxo (X, to — r¥)dp(to — r?).

Huisken’s monotonicity formula [36, 39] implies that r > ®(Xo,r) is non-
decreasing (and constant only for a shrinking self-shrinker centered at X¢). In partic-
ular we can define the density of M at such X by

O (Xp) :=1lim O rq(Xo, r).
M Xo) rl\rf(l) M Xo, 1)
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1050 0. Chodosh et al.

We call an integral Brakke flow M unit-regular if M is smooth in a forwards-
backwards space-time neighborhood of any space-time point X with ® p4(X) = 1.
Note that we can then write sing M = {X € R*! xR : ®r(X) > 1}. Note that
by [46, Theorem 4.2] the class of unit-regular integral Brakke flows is closed under
the convergence of Brakke flows. Furthermore, combining [46, Lemma 4.1] and [51]
it follows that there is &g > 0, depending only on dimension, such that every point
X e sing M has ®p(X) > 1+ e9. Upper semi-continuity of density then implies
that sing M is closed.

2.5 Cones and self-expanders

Consider S C S" a smooth, embedded, closed hypersurface. We then call the cone
over S, denoted by C = C(S) C R™*!, smooth. We say that M C R"*! is a smooth
hypersurface with a conical singularity at Xo modelled on the cone C if:

(1) M\{x¢} is a smooth (embedded) hypersurface,
(2) limpo0 p - (M —%x¢) =C,

where the convergence is in C;. (R*+1\{0}). Note that a hypersurface with conical
singularities is admissible and smoothable in the sense of Sect. 2.3, see also [22,
Appendix E].

Similarly, we say that a hypersurface M C R"*! is (smoothly) asymptotic to C if

Iimp-M=C
p\Op

in C;2 (R™1\{0}).
A natural class of solutions to mean curvature flow, starting from an initial
(smooth) cone C, are self-similarly expanding solutions, i.e. solutions given by

t> 132 (2.2)

for t > 0, where ¥ is asymptotic to C. These solutions are invariant under parabolic
rescalings forward in time. The condition that (2.2) is a mean curvature flow yields
an elliptic equation for X, given by
<t
Hy (x) — - = 0. (2.3)

We call ¥ a self-expander and denote the corresponding immortal solution to mean
curvature flow by M. Alternatively, self-expanders are critical points (under com-
pact perturbations) of the expander functional

x2
E(M) =/ e anr.
M

We call a self-expander X stable if the second variation of £ is non-negative under
compact perturbations, i.e. if

XZ
/ o(~Lsp)e T dH" >0
>
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MCF from conical singularities 1051

for all ¢ € C°(X), where Ly is the corresponding Jacobi operator given by

X 1 5
L2:A2+5-V2—§+|A2|. 24
Note that a stable expander X becomes strictly stable when restricting to any compact
subset K C X. Denoting X := X N Br(0) for R € (0, 00), this implies that there
exists a positive first eigenfunction ¢g € C°°(Xg) (unique up to scaling) solving

L =0 inX
sPr + URPR in Xg 2.5)
¢R =0 on BER s
where R +— wr > 0 is monotonically decreasing in R. We will scale such that
S5, ¢>%e‘x|2/4 = 1, ensuring that ¢ is unique.
Linearising the expander equation (2.3) yields solutions to the linearized equation,
i.e. functions u € C°°(X) such that Lyu = 0. We call such a function a Jacobi field.
We further recall the following decay estimate.

Proposition 2.3 ([31, Lemma 5.3]) Let X denote an expander asymptotic to a smooth
cone. Then there is R > 0 sufficiently large so that ¥ \ Bgr(0) can be written as a
normal graph over C with the graphical height function o = o(|x|™') as x — oo.

This improves the trivial o = o(|x|) estimate via comparison with large spheres.
2.6 The level set flow of a cone and the outermost expanders

For a smooth cone C = C(S) with C = dW for W a closed set, we define Gap(C) to
be the level set flow of the cone C at time ¢ = 1. Since the level set flow is unique,
and C is invariant under scaling, it follows that the level set flow of C is given by
t +— /1 -Gap(C) for t € (0, 00).

The analogous statement to Proposition 2.2 holds also for the level-set flow of
smooth hypercones, see [22, Theorem E.2]. Furthermore, in [22, Theorem 8.21] it
was shown that the outermost/innermost flows from a cone (in low dimensions) are
modelled on smooth expanders, minizing the expander functional £ from the outside.
(For n = 2 smoothness had been shown by Ilmanen [38].) We will refer to these as
the outermost expanders. We summarize these facts as follows:

Theorem 2.4 ([22, 38]) For 2 <n <6, let C" C R"t! be a smooth cone. Then, there
are smooth expanders ¥, ¥/, smoothly asymptotic to C. The expanders X, ¥’ de-
scribe the level set flow of C in the following sense:

o Ifthe level set flow of C does not fatten, then Gap(C) = X =X’ :=X.
o If the level set flow of C does fatten, then & N'Y' = @ and Gap(C) is the region
between ¥ and ¥, i.e. 3Gap(C) = X U X',

Finally, ¥ minimizes the expander functional £ to the outside (relative to W) on
compact sets. Similarly, X' minimizes £ to the inside.
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1052 0. Chodosh et al.

Note that the property that X, X’ minimize £ from one side implies that both X,
3’ are stable expanders. Furthermore, for n > 7, X, £’ could a priori have singular
set of dimension n — 7. We say that the outermost flows of C are smooth if the singular
set is empty (so this always holds for 2 < n < 6). When the outermost flows of C are
a priori known to be smooth the proof of Theorem 2.4 carries over to prove the
remaining assertions in the theorem.

Let @ = WNS". Recall that C = C(S) where S =92 C S" is a smooth embedded
hypersurface. Let vg be the smooth unit normal vectorfield to S in S” pointing to the
outside of Q2. Given ¢ : § — R a positive, smooth function there exist ¢ > 0 and a
smooth local foliation of hypersurfaces (Ss)_¢<s<¢ in S such that Sy = S and

%Ss 520 = -vs.

We consider the cones Cs := C(Ss) and the corresponding outermost expanders g,
Y. Note that by construction of the outermost flows of C; it follows that for s > ¢
the outermost expander X lies strictly to the outside (with respect to W) of X, and
¥ — %, smoothly for s \ ¢. Similarly for s < ¢ the innermost expander X, lies
strictly to the inside of ¥} and ¥; — X| smoothly fors 7.

We denote with 71 the composition of the closest point projection onto C(S) com-
posed with the radial projection C(S) — S of the cone onto its link. This is well
defined on the cone over a neighborhood of S in S". The next lemma then follows
from the above discussion together with [29, Lemma 2.2] and the strong maximum
principle.

Lemma 2.5 Let  : S — R be a positive, smooth function. Then there is a positive
Jacobi field v on X that satisfies

Vgul= 00"
for£=0,1,2,..., where r = |x|. Furthermore, the refined estimate
v=r-Yonr+w
with
IVzwl=00"""9

for £ =0, 1 holds. An analogous Jacobi field v’ exists on ¥/ with the same asymptotic
expansions.

2.7 Forward rescaled flow

Given a (smooth) mean curvature flow (0, T) 5 ¢ — M(z) in R"*! one obtains a
solution to forward rescaled mean curvature flow by considering the rescaling

(—00,log(T)) 3 7+ M(z) :=e 2 M(e"),
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which satisfies the evolution equation

ax\* xt

Note that expanders are the stationary points of this evolution.

3 Expander barriers

Let C = 0W denote a smooth cone so that the outermost flows of C are modeled on
smooth expanders X, ¥’. Assume that the level set flow of C fattens (so £ and T’
are distinct). Recall that the level set flow of C is given by {+/7 Gap(X)}re(0,00) and
9 Gap(X) = ¥ U X’. Below, we work with X but identical analysis for X’ follows by
replacing W with W/ = We.

We choose the unit normal v pointing info Gap(X).

By Lemma 2.5, ¥ admits a positive Jacobi field of the form v =r 4+ w with
|Viw| = O(r~'7%). We also recall the definition of the first eigenfunction ¢ in
(2.5). For R > 0 large and for @ > 0 to be fixed sufficiently small, we define

f3Re =V +agsr 3.1
on X3g := X N B3r(0). Then, define

h =max f3ro > 0. (3.2)
TR '

Then we define a function on all of X by

f3R,a X eE_R
u(x) = ymin{f3ra,h} x€Eg\ Xogr (3.3)
h x e Eog,

where Ep := X \ER (0). We want to check that for s > 0 sufficiently small and «,
R chosen appropriately, the (time-independent) family of hypersurfaces ¢ — I'y :=
graphy, su is a supersolution to rescaled mean curvature flow (in the sense that a
rescaled mean curvature flow cannot touch I'y from below relative to its unit nor-
mal as fixed above). We start by checking that the graphs of & and f3g , have good
intersection.

Lemma 3.1 There is Ry = Ro(X) so that for R > R there is ap = ap(R, X) > 0
small so that if o € (0, ag) then h > fig 4 on 0Xg and h < f3g 4 on 0X2R.

Proof The first inequality follows from (3.2). We now observe that (using the decay
of w obtained in Lemma 2.5)

h =max f3g
0XR

<R+ OR™ Y +amaxpsg
IR
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< min — R+ OR™Y + o max — min .
= min S3R.a (R™) (a):R P3R min ¢3R)

Taking R sufficiently large so that the second and third terms satisfy —R+ O(R™!) <
—1 we can then take « sufficiently small (depending on R through the dependence
of ¢3g) so the fourth term is < 1. This completes the proof. Il

Thus it suffices to check that sh and s f3 o define supersolutions on the appropri-
ate overlapping regions (for s > 0 small).

Lemma 3.2 We can take R = R{(X) sufficiently large ho = ho(X) > 0 sufficiently
small so that for h € (0, ho), T +> T'rp := graphg, h defines a supersolution to
rescaled mean curvature flow.

Proof Since X is asymptotically conical, |A] < 1 on Eg for R sufficiently large.
Thus, I'r, 5 is smooth for R > 0 sufficiently large. We compute

1
Ul (x,7) (8,X1~R_h —H+ EXFR.h) Vg, = —Lsh+ E(h)

! 2
=|5 14zl h+ E(h)

1
> (— - |A2|2)h —Cih?
2
where we used Proposition A.3. Taking R sufficiently large so that |Ax|? < 41_1' Then,
taking hog = % completes the proof. |

We now fix R = Ry > 0 sufficiently large so that both Lemmas 3.1 and 3.2 hold.
Then take o as in Lemma 3.1.

Lemma 3.3 Forany a € (0, ag) there is so = so(X2, o) > O sufficiently small,
T+ I'Ry.a.s '= graphy, . sf3r.«
is a supersolution to rescaled mean curvature flow for any s € (0, sg).

Proof Since Xy is compact, I'g o s Will be smooth as long as s is sufficiently small.
Moreover, we have

1
vFR.a,S (X’ T) <8TXFR,Q,S - H + EXFR.S> : VFR‘; = _SLZf?)R,Ol + E(Sf?)R,Ol)

=Sau3rRP3R + E(Sf3R,a)-

Now we observe that since ¢3r > 0 on X3, it holds that infs, , ¢3r > 0. Combined
with p3g > 0 and the simple error estimate E(sf3g,o) = O (s2) (cf. Proposition A.3),
the assertion follows. g
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We now fix o € (0, g) and so = so(X, &) > 0 as in Lemma 3.3. Combining Lem-
mas 3.1, 3.2, and 3.3 we obtain (recalling the definition of « in (3.3))

Proposition 3.4 There is so > O sufficiently small so that v +— T'y := graphy su is a
supersolution to rescaled mean curvature flow for any s € (0, sg).

4 Fattening

We consider M € R**! with an isolated singularity at 0 modeled on a smooth cone
C. Let U be the compact region bounded by M and write U’ = U°¢. Define W, W’ C
R"*! closed so that 9W = dW’ = C and limy— o0 pU = W, lim,_, o pU' = W' in the
sense of local Hausdorff convergence. We let ¥ = 9 F1 (W) denote the outer expander
and X' = 0 F| (W’) the inner expander.

Approximate M to the inside and outside by smooth hypersurfaces M! C U,
M; C U’ satisfying conditions (1)-(5) described in Sect. 2.3. Let M;, M denote
unit-regular cyclic Brakke flows with M;(0) = H" [ M;, M (0) = H" | M| obtained
via elliptic regularization. Passing to a subsequence we can assume that M; — M,
M — M’ unit regular cyclic Brakke flows with M(0) = M'(0) =H" M.

Theorem 4.1 The flow M is modeled on the expander % near (0, 0) in the sense that
lim; _, o0 Dj. (M) = M. The same holds for M, namely limy_, oo Dy (M) = M.

In particular, this shows that if C fattens under the level-set flow then so does M.
Before proving Theorem 4.1 we observe the following consequence. Recall that
M (1) (resp. M'(1)) is the outer (resp. inner) flow of M as defined in Proposition 2.2.

Corollary 4.2 Thereis T > 0 so that M| {t < T} and M'|{t < T} are smooth and for
0 <t <T, we have supp M(t) = M(t) (resp. supp M'(t) = M'(t)). Furthermore,
any unit regular integral Brakke flow M with M(0) = H"|M and supp M(r) C
M (t) satisfies M|{t <T}=M|{t <T}.

Proof 1t suffices to consider M and outer flows. Suppose there are points X; =
(xi, t;) € sing M with 0 < #; — 0. Since M is smooth away from 0, it must hold that
x; — 0. Suppose that up to a subsequence supp; |x; |2tl._1 < 00. Then by Theorem
4.1, D -12(M) — My, as i — 00. Since D -ip(X;) = (xiti_l/z, 1) is bounded (by
our asslumption), this contradicts the fact thatl Y is smooth. Thus, it remains to con-
sider the case that |)(,'|2ti_1 — 00. By Theorem 4.1 again, D)y -1 (M) — Msx. Up
to a subsequence, Dix,|(X;) = (Ix;|7'x;, Ix;|721;) converges to (X,0) with |X| = 1.
Since sing My = (0, 0), this is a contradiction. This proves the smoothness part of
the assertion.

By the work of Hershkovits—White as recalled in Proposition 2.2, the support of
M agrees with the outer flow of M. The final statement follows since ¢ — M () is a
smooth mean curvature flow for 0 < # < T, so the constancy theorem implies that the
multiplicity of Misa non-negative constant for a.e. 0 < ¢ < 7, which additionally is
monotone in time. But the monotonicity formula together with unit regularity implies
that the multiplicity is one away from (0, 0), so M agrees with M. O
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Proof of Theorem 4.1 1t suffices to consider the outer flow M. Fix s € (0, sg) and
let Iy be defined as in Proposition 3.4 with respect to X. Recall that # — V1T is
a supersolution to mean curvature flow and that the unit normal to ¥ points into
Gap(C).

Using the notation established in the beginning of this section, we have:

Claim 4.1 For i(j) — oo and A; — oo assume that Mj =Dy, (Mij) = M. Then
supp M (1) C W'(¢) (the level set flow of W’).

Proof By construction, supp M(0) C W’. Thus, the assertion follows from the avoid-
ance principle for Brakke flows (cf. [37, Theorem 10.7]). |

Claim 4.2 There is pg = po(s) < 0o so that W/ (1) \ B, (0) lies strictly below T'y.

Proof Recall that W' (1) is the region below X’. Thus, the assertion follows from the
fact that ¥ decays towards X’ (cf. Proposition 2.3) whereas the function u in (3.3) is
constant near infinity. O

Claim 4.3 Fix p > pg. There’s T = T (s, p) so that supp M;(t) N Bﬁp(O) lies below
V1T forallt € (0, T] and i € N.

Proof of Claim 4.3 We first show that there T = T (s, p) > 0 such that the claim holds
in a neighbourhood of 9B Jip (0). Assume this fails at times 0 < f; — 0 for the
flows M;jy. Note that i(j) — oo as j — oo since M; is disjoint from M. Let

Mj = Dt—l/Z(M[(j)). Pass to a subsequence so that /\;lj - M. By Claim 4.1,
j

supp M (1) C W'(t). However, by Claim 4.2, W'(t) \ B, (0) lies strictly below
/1Ty for t > 0. Combined with upper semi-continuity of Gaussian density along
Brakke flow convergence (implying that points in the support of a converging se-
quence of flows converge to points in support) we obtain a contradiction.

Now, we note that supp M, (¢) is disjoint from B s, for all 0 <t < 2t(i) (since
M; is disjoint from 0). The claim then follows by applying the maximum principle in
Bﬁp(ﬂ) from ¢ (i) to T (s, p). Il

Letting i — oo establishes the same statement as in Claim 4.3 for with M; re-
placed by M. Since the flow t > +/tTy is scaling invariant this implies that any
forwards blow-up of M at (0, 0) has to lie (weakly) below /I’y N B Vip (0) for all

t > 0. Letting p — oo and s — 0 establishes that any forward blow-up* of M is
supported (weakly) below ¢ — /f%, starting at C. Since X is the outer expander,
the support of M thus must be a subset of 7 —> /7. Again, the constancy theorem
implies that the multiplicity is a non-negative constant for a.e. ¢ > 0, which addition-
ally is monotone in time. But the monotonicity formula together with unit regularity
implies that the multiplicity is one sufficiently far out, so any blow-up of M agrees
with # > /1 2. 0

4ie. any subsequential limit of D) (M) as A — co.
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5 Global barriers

Let C denote a smooth cone over its link S C S" and ¥ a smooth, stable expander
asymptotic to C. We choose a global unit normal vector field on vy. As in Lemma
2.5 for the outermost expanders, we assume that ¥ admits a positive Jacobi field of
the form v =r - Y o nr + w, where ¥ is a positive function on I, together with the
decay |Vfw| = 0@~ '7¢) for[ =0, 1.

We mimic part of the construction in Sect. 3. Since X is stable, for every R > 0
large we have a positive first eigenfunction ¢3r in (2.5) with eigenvalue 3z > 0. For
o > 0 to be fixed sufficiently small, we take

f3ra=v+ad3p 5.1
on X3 := X N B3g(0). Then, define

h =max f3g o > 0. 5.2)
TR

We now consider M C R"*! with an isolated singularity at 0 modelled on C. Assume
that M is a unit-regular cyclic Brakke flow, smooth on (0, T') for some 7 > 0 with
M(0) = H"*|M and such that r~'/2M(t) converges smoothly to ¥ (on compact
subsets of R"*1) as 7 \ 0. Thus for every § > 0 and every R < oo there is Ts g and
a smooth family of functions u : X3z x (0, Ts g) such that for all # € (0, T5 )

X+ u(x, Hvs(x) | x € Tagt C =2 M) (5.3)

with [lu(, Dl 355,y < % For s € (0, 1) we define the close barriers

T iose.s () = V1 -{(X+ (X, 1) £ 5f3r.4) - v5 (X)) | X € Tag}

and the far barriers

i (O = (R EShVT - v X)) [x €M)\ B /2 (0)],

where we choose the unit normal vectorfield vaq() such that it induces the same
orientations as vy, in the convergence 712 M(@t) > T ast N O.
We aim to check that for s > 0 sufficiently small and «, R chosen appropri-

ately 7 — Fgos e/far.s (t) constitute supersolutions to mean curvature flow (in the sense

that a mean curvature flow cannot touch ¢ — Fjose/far (1) from below relative to
its unit normal as fixed above) away from their respective boundaries. Similarly,

t > T osesrar s (F) constitute subsolutions to mean curvature flow (in the sense that

a mean curvature flow cannot touch ¢ — I"j o e/far,x(t) from above relative to its unit
normal as fixed above) away from their respective boundaries.

To construct global barriers, we start by checking that I‘Cilose, , and F;:r, , have good
intersection. This will be used to “weld” them together in the sense of Meeks—Yau

[42] to form a global barrier.

Lemma 5.1 There is Ry = Ro(X) so that for R > Rg there is ap = ap(R, X) > 0
small and 8o = §o(R, X, ag) > 0 and so that if a € (0, ap) and § € (0, &) then for
t € (0, Ts, r) we have that
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@) Fclose (1) lies above I (¢) in a neighborhood OfBFClOSe L.
(i) T (1) lies above Fcloge (1) in a neighborhood of BFfar s,

@) L ose. (1) lies below Ty, () in a neighborhood of AT
(i) Ffar () lies above T

foralls € (0, 1).

far s
far,s

close, s( )

(t) in a neighborhood of g 5 (0.

far,s

close,s

Proof This follows from Lemma 3.1 by choosing §y > O sufficiently small. g

Lemma 5.2 For R > Ro(X), a € (0, ag), there is 51 = §;1(R,a, X) > 0 and so =
so(R, X) > 0, such that for all s € (0, s0) and § € (0,81), fort € (0, Ts.r),

+
I Fclose v(t)

is a supersolution to mean curvature flow (and similarly t — T ; (t) is a subsolu-

tion to mean curvature flow).

close,s

Proof By rescaling it is equivalent to show that
T D(1):=e7"’T ], . (n(1))

for T € (—oo, exp(Ts,r)) is a supersolution to rescaled mean curvature flow. Similarly
we denote the corresponding solution of M to rescaled mean curavture flow by

T M) :=e 7> M(In(z)),
which by (5.3) (writing u(x, 7) := u(X, In 7)) satisfies
{X+ii(x, T)vg(X) | X € T3p} C M(7).

Applying Lemma A.4 we compute
1 : :
Vp (f’rxf —Hp + §Xf> g =—sLy fira+EPR =aspzrdsr + ERe (5.4)

and provided [|it[| ¢35, ) + S f3R.allc3(x,,) < & We can estimate pointwise

|E*Fre(x, 7)| < Cs8(] f3g.a X + Vs f3r.a X + VE f3R,a (X)) .
Note that ¢3g > 0 on X3g, so there exists C > 0 such that for x € Xop
| f3Ra |+ Vz f3ra®)] + VE f3r.a(X)] < C3r(x).

Thus (5.4) yields (for all s € (0, s9))
1
Vp 37Xf~ — Hf + EXf “Vp = s(oepuzp — Co)e3r >0,

on Xg, as long as § is sufficiently small. This yields the statement for t — ' close,s (0)-

The statement for t — I" | (t) follows analogously. Il

close,s
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Take Rg as in Lemma 5.1.

Lemma5.3 Thereis R = R1{(M, X) > Ry sufficiently large so that for R > Ry, taking
o as in Lemma 5.1, 5o as in Lemma 5.2 and Ty > 0 sufficiently small depending on
M, X, R the following holds: for t € (0, Ttyr) the flow t — Flj;r,s (t) is a supersolution
to mean curvature flow, away from its boundary (and similarly t — 'z (t) is a
subsolution to mean curvature flow, away from its boundary).

far,s

Proof We first establish the following claim. Consider the n-dimensional ball in the
{xn4+1 = 0} hyperplane, given by B} (0) := B,-(0) N {x,4+1 =0}.

Claim 5.1 There exists n = n(n) > 0 with the following property. Let u : B} (0) x
[0, 1] with |lu(-, t)||c3(3{'(0)) < 7 such that for ¢ € [0, 1]

M) ={(X,uX, 1) |%X e Bj(0)}

constitutes a smooth mean curvature flow. Let va4(-, #) be the upwards unit normal
to M(t). Consider

I = {x sV (x, 1) | x € M(1))}.

Then for s € (0, 1), the flow (0, 1] 5 ¢ — I'T(¢) is a supersolution to mean curvature
flow. (Similarly, the flow (0, 1] > ¢ +— ' (¢) is a subsolution to mean curvature flow.)

Proof of Claim We consider I'*(¢) (the computation for I'™ (¢) is analogous). Let ¢ >
X A (1) be a point evolving normally, i.e. 9;x 34 = Haq(XAq). Recall that

10V XA (), D] = VA H M| = Cn.
Thus if we set X+ = XA + s4/fv4 then
dxp+ = Hpg + @ (sVD))var + 531 (0vpm)
so this point is evolving with normal speed
v+ (BXp+) - vp+ = Hag + 9 (s3/1) + s3/1(3vp0) - vp+
where vp+ = (vp+ (Xp+) - VAL (Xaq)) ! (cf. Appendix A.3). Thus
vp+ (3xp+ — Hpt) - vps = Hpg — vps Her 4 8,(s3/1) + s3/1(3vp01) - vpe+
=3 (sv/1) — |Am*sVI+ E,

where the error satisfies |E| < Csn+/t, where C depends only on n (using Lemma
A.2 to estimate the difference in mean curvatures and the computation above to esti-
mate the unit normal evolution term). Thus, for 1 > 0 sufficiently small and ¢ € (0, 1]

vr+ (0Xp+ — Hp+) - vp+ > (% — Cn)s+/t > (% —Cn)s/t >0.

This establishes the claim. O
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There is Cps > 0 so that |y||Ay ()| + [yI?IVAM(¥)| < Cp (this follows because
M is modeled on a smooth cone at 0). This implies that after choosing R sufficiently
large, we have for all x € M \ {0} that

(RIx|"1(M —x)) N B2(0)

can be written as a C3-graph over its tangent plane with C3-norm bounded by
O(R’l). By pseudolocality (cf. [41, Theorem 1.5] or [18, Theorem 7.3]) this im-
plies that (taking R sufficiently large)

(RIx|""(M(R™2[x[*) — x)) N B1(0)

remains a small Lipschitz graph over its tangent plane for ¢ € [0, 2]. Parabolic esti-
mates then imply that if we take R even larger, the graph will have C3-norm bounded
by 7 (as defined in Claim 5.1).

We can thus apply the scaled version of Claim 5.1 over balls at x € M of radius
R~!|x|. The claim only applies for times ¢ € [0, R~%|x|?], but for larger times, the
graph in M(t) over this ball will be contained in B, and thus does not contribute

+
to Ffar, P

(t). This completes the proof. g

We now choose R > R; to satisfy Lemma 5.3. We then choose « € (0, ap) as in
Lemma 5.1 and then sg as in Lemma 5.2.

Proposition 5.4 There is & > O sufficiently small such that for all s € (0, sg) and
t € (0, Ts,r), we can weld t — 't (Htotr FP;I (1) to obtain a global super-

close,s
solution t + T} (t) to mean curvature flow. Similarly, we can weld t +> T (t) to

close,s
t = g (t) to obtain a global subsolution t — T () to mean curvature flow.

6 Uniqueness

We work with the same set-up as in the previous section.

Assume that we have smooth mean curvature flows M! and M2, defined on
(0, T) for some T > 0, with M!(0) = M?(0) = H"| M and such that =12 M (1)
converges smoothly to ¥ (on compact subsets of R 1) as 7 \ 0 fori =1, 2.

Lemma 6.1 It holds that dist(M! (1), M2(1)) = o(J/1).
Proof Assume that there is x > 0 and x; € supp/\/l1 (t;) with t; — 0 so that

d(x;, supp M>(1;)) > K /1. (6.1)

Pass to a subsequence so that x; — x € M. If x = 0 then ()12 M (#;) both con-
verge to X in CY (R™+1). If x # 0 then short-time smoothness of M (¢) around x
gives that’ ()~ Y2(Mi(1;) — x) both converge to TxM in C3, (R"+1). In either case,
we see that assuption (6.1) cannot hold. This completes the proof. d

SNote that one can view the x = 0 case as the “same” as the x = 0 case, since M is modeled on the cone
TxM at x # 0, which evolves as a static hyperplane under level set flow.

@ Springer



MCF from conical singularities 1061

Proposition 6.2 It holds that M (1) = M?(t) on [0, T).

Proof By Proposition 5.4 we can construct for all s € (0,1) and 7 € (0, T5,g) the
supersolution 7 + '} (7) and subsolution # > I'; () over M!. Note that for any
s € (0, s9), we have by Lemma 6.1 that M?2(1) lies between [ (t) and T'; (1) for
t > O sufficiently small. This yields for all s € (0, so) and ¢ € (0, T3 ) that /\/lz(t) lies
between I';F () and 'y (¢). Since for all ¢ € (0, T5 g) we have that '] (r), 'y (1) >
MU (1) as s — 0 this yields that M! coincides with M? on (0, Ts.r). Thus M! and
M? have to coincide (at least as long as they both remain smooth). U

Corollary 6.3 If C does not fatten under the level set flow, then the inner and outer
flows agree fort € [0, T].

Proof If C does not fatten then X = X’. Thus, by Theorem 4.1, the outer and inner
flows M, M’ are both modeled on ¥ near (0, 0). The assertion then follows from
Proposition 6.2. |

Appendix: Graphs over expanders

We consider a smooth embedded hypersurface M C R"*! and assume that vy is a
choice of smooth unit normal vector field to M. We define its shape operator (or
Weingarten map)

Sp:TyM — TpM, &~ —Dgvy (A.1)
and its second fundamental form
A:T,M xTyM — R, E. D= AE =58 -¢. (A.2)
We fix the sign of the scalar mean curvature H as follows
H=Hvy,

and thus H = tr § = tr A, with the principal curvatures of M being the eigenvalues of
S. We consider u : M x I — R so that

lullAp| <n <1

along M x I, where A is the second fundamental form of . This allows us to define
the graph

' =x+uXx vy :xe M}.

We compute here various geometric quantities associated to I';. The computations
follow directly as in [21, Appendix A]. There the focus was on the backwards rescaled
flow, but the computations for the forwards rescaled flow are completely analogous
and just amount to changing sign in front of the corresponding terms.

Define

v(x, ) = (1 + |(Ad —uSy) " (V) |?)2. (A3)
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Lemma A.1([21, Lemma A.1]) The upwards pointing normal along T';

~.

S

vr = v~ N (=(Ad —uSy) " Vagu 4 vp). (A4)
In particular
v=(vr-vy) . (A.5)
For ¢ € {0, 1} set
¢ 4-2j
or(x, 1) =Y Y [3{ VFu(x. 7). (A.6)
j=0 k=0

LemmaA.2([21,LemmaA.2]) The mean curvature of 'y at X+u(X, T)vyr (X) satisfies
V(X, T)Hr (X + u(x, Doy (x), T) = Hy (X) + (Ayu + A Pw)(x) + ER (A7)
where the error Ef can be decomposed into terms of the form
E" =uEl + EX¥ (Vyu, Vyu)

where Ef{ € C*®(X) and Ef € C®(Z; T*M ® T*M) satisfy the following esti-
mates:

2
o Ef x. D) <Cfloix. 1), Y IVEE[ (x. 1) < Cflon(x. 1)
k=0
and6
2
o B (x, 01 <CY (I +o1(x, 1), Y IVFES (x, 0] < CF (1 + 00(x, 7))
k=0

where C{I, Cf depend only on n and an upper bound for Z}E:o |VFA|(x).

Observe that the expander mean curvature can be written as

X (m_]
- — = —=X-vr v
) ) r r

and recall the definition of the (expander) Jacobi operator L, see (2.4). For the fol-
lowing we assume that M = X, where X is an (open subset of an) expander.

Proposition A.3 ([21, Corollary A.4]) We have

v(X, ) (@:xr —H+ Ixr) - vr = d:u — (Au+ 3x" - Vu+ (A = Du) +E

=Lu

Srecall that E; is a section of T*E @ T* so e.g., Vs, Es is a section of T*L @ T*S @ T*X.
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atxr =X+ u(x, t)vs(X) for E=uE1 + E2(Vu, Vu) for E1, E, satisfying

2
0 E\(x, 1) < Clo1(x, 1), Y [VFEI(x, 7)| < Cio0(x, 7)
k=0

and

2
9 Ex(x. D) < Ca(l+01(x. 7). Y IVFEa(x, )] < Ca(l + 09 (x. 7))
k=0

where C1, C> depend only on n and an upper bound for ZZ:O |V)k:A [(x).
In particular, if T'; is a solution to rescaled mean curvature flow, i.e.,

(0, x)" =H— %xj‘
then
d;u=Lu+E (A.8)
for E as above.

We also need to understand the linearization of the expander mean curvature of
two graphs over X, relative to each other and relative to the base X.

Lemma A.4 ([21, Lemma A.7]) For § < %(Supg |Az|)_1 and u; € C*(%),i=0,1
with

lu; (X)| + [Vsu ()] + [Vau; (X)| + [Vau ()] < 8 (A.9)
forall x € X. Letting
i =x+uXvgx):xe X}

then denoting w = u1 — ug and v; := (v, - vs) "1 there exists C = C(sups |Ax| +
IVAs| + |V2As|) such that

V] (HgI - %Xgl . v);l) — v()(HgO — %XEO . vgo) =Lsw+ EY
where X5, =X+ u; (X)vs (X) and the error term E satisfies
E¥(x) = wX) F(x) + Vw(x) - Fx) + V2w (x) - F(x),
with the estimate
|F|+ |F|+|F|+|VF| <Cé

forallx e 2.
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