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Abstract

We prove Ilmanen’s resolution of point singularities conjecture by establishing short-

time smoothness of the level set flow of a smooth hypersurface with isolated conical

singularities. This shows how the mean curvature flow evolves through asymptoti-

cally conical singularities. Precisely, we prove that the level set flow of a smooth

hypersurface Mn ¢ R
n+1, 2 f n f 6, with an isolated conical singularity is modeled

on the level set flow of the cone. In particular, the flow fattens (instantaneously) if

and only if the level set flow of the cone fattens.

1 Introduction

A family of smooth hypersurfaces M(t) is a mean curvature flow if

( "
"t

x)§ = HM(t)(x),

where HM(t)(x) is the mean curvature vector of M(t) at x. Mean curvature flow is the

gradient flow of area. We recall that the mean curvature flow, M(t), from a smooth,

compact hypersurface M(0) ¢ Rn+1 is guaranteed to become singular in finite time,

moreover, well-posedness and regularity of the flow can break down after the onset

of certain singularities (cf. [50]).
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In the present article, we quantify the short-time regularity and well-posedness of

the level set flow from a smooth compact hypersurface with an isolated singularity1

modeled on any smooth cone C. Recalling [20], such hypersurfaces can appear as the

singular time-slice of a flow encountering a singularity modeled on an asymptotically

conical self-shrinker. Our results hence demonstrate how one can flow through such

a singularity.

Before stating our results, we recall that the level set flow (cf. [19, 32, 37, 44])

of a closed set X is the unique maximal assignment of closed sets t �³ Ft (X) with

F0(X) = X, such that Ft (X) avoids smooth flows (see Sect. 2.1). If the level set flow

Ft (X) develops an interior at t = T , we say that the flow fattens at time T .

Our main results can be stated as follows:

Theorem 1.1 (Fattening dichotomy) For 2 f n f 6, suppose that Mn ¢ R
n+1 is a

smooth hypersurface with an isolated conical singularity modeled on a smooth cone

C. Then the level set flow of M fattens instantly if and only if the level-set flow from

the cone C fattens.

Fattening of C implies fattening of M is proven in Theorem 4.1, whilst non-

fattening of C implies short-time non-fattening of M can be found in Corollary 6.3.

A fortiori, Theorem 1.1 is a consequence of the following results (more precisely

Theorem 1.2 and Theorem 1.4), which give a precise description of the level-set flow

near the conical singularity of M .

Theorem 1.2 (Structure theorem for the level set flow) For 2 f n f 6, suppose that

Mn ¢ R
n+1 is a smooth hypersurface with an isolated conical singularity modeled on

a smooth cone C at 0. Then, there is a T > 0 such that the outermost mean curvature

flows of M are smooth for t * (0, T ). Moreover, t21/2Ft (M) converges in the local

Hausdorff sense to F1(C) as t ↘ 0.

We provide a refinement of this statement below, which, in aggregate with the

aforementioned work [20], can be considered as a canonical neighbourhood theorem

for asymptotically conical singularities. Before stating this result, we provide a brief

exposition of the Hershkovits–White framework applicable to the present context.

(See Sect. 2.3 for a rigorous discussion.)

We first consider the compact case, illustrated in Fig. 1. Recall that the outer flow,

M is the space-time boundary of the level set flow Ft (V ) of the interior V of M .

Similarly the inner flow M′ is the space-time boundary of the level set flow Ft (V
′)

of the exterior V ′ of M . Turning to the cone C as illustrated in Fig. 2, we note dilation

invariance and uniqueness of the level set flow yields Ft (C) =
:

tF1(C). Denote W

and W ′ the interior and exterior of the cone C and assume we have chosen these conis-

tently with the interior and exterior of M . Let �′ := "F1(W
′) and � := "F1(W) and

observe that "Ft (W) =
:

t�, "Ft (W
′) =

:
t�′. Note, when 2 f n f 6, �, �′ will

1For simplicity of notation we only consider a single singularity, but everything here would generalize

easily to the case of finitely many isolated singularities, each modeled on a smooth cone.
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Fig. 1 Left: A hypersurface M with isolated conical singularity, with interior V and exterior V ′ . Right:

The level set flow of each at time t . (Color figure online.)

Fig. 2 Left: The initial cone C with interior W and exterior W ′ . Right: The level set flow of each region

at time t = 1. (Color figure online.)

be smooth (this is the source of the dimension restriction above; for n > 6, the above

theorems continue to hold if we impose the additional condition that the outermost

expanders for C are smooth).

In the sequel we will refer to M(t), M′(t) as outermost flows and �, �′ as the

outermost expanders. The next result shows that the outermost expanders approxi-

mate the outermost flows.

Theorem1.3 (Canonical neighbourhood theorem for outermost flows) For 2 f n f
6, suppose that Mn ¢ R

n+1 is a smooth hypersurface with an isolated conical sin-

gularity at 0. Assume the conical singularity is modeled on a smooth cone C with

outermost expanders �, �′ labeled as above. Then, t21/2M(t) (resp. t21/2M′(t))
converges to � (resp. �′) locally smoothly as t ↘ 0.

Theorem 1.3 resolves the “resolution of point singularities” conjecture of Ilmanen

[40, Problem 16]. Smoothness can be found in Corollary 4.2 and the forward blow-up

statement (including the convergence of the outermost Brakke flows to the outermost

expanders) can be found in Theorem 4.1.

Note that if C does not fatten then � = �′ and Theorem 1.2 trivially holds. In

particular, any flows starting from M are smooth for a short time and modeled on
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the unique expander asymptotic to C. This implies that two such flows separate like

o(t1/2), but this does not a priori imply there is only one such flow. This is the content

of our final result.

Theorem 1.4 (Uniqueness) For 2 f n f 6, suppose that Mn ¢ R
n+1 is a smooth

hypersurface with an isolated conical singularity at 0, modeled on a smooth cone C

which does not fatten. Then, there is T > 0 such that the outermost flows of M agree

(and are smooth) for t * (0, T ). Especially, the evolution of M is unique on this time

interval.

Smoothness follows again from Corollary 4.2 and for uniqueness see Corollary

6.3.

Remark 1.5 As a consequence of the work of Brendle [14] any asymptotically coni-

cal shrinker must have non-zero genus and by work of Ilmanen–White [38, p. 21]

the inner and outer expanders are topological planes. Combined with Chodosh–

Schulze [20, Corollary 1.2], the results presented in this work demonstrate strict

genus drop through any isolated conical singularities that form in a multiplicity one

flow. We note that the full “strict genus monotonicity conjecture” of Ilmanen [40,

Problem 13] at non-generic singularities (for outermost flows) was recently resolved

by Bamler–Kleiner [6] by combining their resolution of Ilmanen’s multiplicity one

conjecture with the strict genus drop results for one-sided perturbations of Chodosh–

Choi–Schulze–Mantoulidis [21, 22].

1.1 Related work

The study of fattening and non-fattening of conical singularities has received consid-

erable attention. In particular, in their first work on the level set flow, Evans–Spruck

already observed [32, §8.2] that the cone C := {xy = 0} ¢ R
2 and a figure eight will

fatten. Note that a figure eight is a smooth curve in R
2 with an isolated conical singu-

larity modeled on the cone C in the terminology of this paper (and our results would

apply without change to this setting). Fattening has been subsequently studied by

many authors, see [1, 3, 4, 27, 31, 33, 35, 37, 38, 47, 48, 50] for a non-exhaustive

list.

More recently, Hershkovits–White [43] introduced a powerful framework for

analysing the level set flow, which they applied to show non-fattening through mean-

convex singularities. Combining their work with the resolution of the mean-convex

neighborhood conjecture by Choi–Haslhofer–Herskovits [24] (cf. [25]), it follows

that fattening does not occur if all singularities are either round cylinders of the

form S
n21 × R or round spheres S

n. We also draw attention to the recent studies

of asymptotically conical expanders by Deruelle–Schulze [29] and Bernstein–Wang

[7, 8, 10–13]. In particular, Bernstein–Wang have used these results to prove a low-

entropy Schoenflies theorem [9] (cf. [22, 23, 26]) and have announced applications

to the study of low-entropy cones. See also the work of Chen [15–17].

Finally, we note that the question of evolving a Ricci flow through a singularity

modelled on the evolution of an asymptotically conical gradient shrinking soliton is
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also of considerable interest (but we note that the analogues of Theorem 1.1 and 1.3

and the resolution of point singularities are not understood in general). In particu-

lar, expanders have been studied in [5, 28, 30, 45] and flows have been constructed

out of initial Riemannian manifolds with isolated conical singularities modeled on

non-negatively curved cones over spheres [34]. Moreover, “fattening” of the cone at

infinity of a shrinking gradient Ricci soliton has been constructed in [2].

1.2 Strategy of proof

Optimistically, one might hope that the resolution of a conical singularity is always

modeled on expanders, just as tangent flows are always modeled on self-shrinkers.

Indeed, one might expect a forward monotonicity formula would control the forward

blow-ups (the (subsequential) weak limits of »2M(»21t) as » ³ >) but there appear

to be serious issues to make this rigorous in the setting of isolated conical singular-

ities (cf. [38, p. 25]). We do note that in the setting of flows coming out of cones,

Bernstein–Wang have obtained a version of forwards monotonicity [11] (generaliz-

ing to the dynamical setting the relative expander entropy of Deruelle–Schulze [29])

and Chen [15] has constructed non-self-expanding flows from cones. However, it re-

mains unclear if/how monotonicity based methods could prove that forward blowups

of outermost flows are outermost expanders (or even that they are smooth).

In this article we take a completely different approach (avoiding forwards mono-

tonicity entirely). Instead, we find barriers that push the outermost flows onto the out-

ermost expanders in the forward blowup limit. A closely related construction proves

uniqueness of two flows with the same outermost expander blowup limit. The con-

struction of these barriers combines two key spectral properties of an outermost ex-

pander �:

(1) The outermost expander minimizes weighted area to the outside, so the linearized

expander operator (cf. (2.4)) is non-negative L� g 0. In particular, there is a

positive eigenfunction Ç3R on � + B3R(0) with positive eigenvalue ¿3R > 0.

(2) The outermost expander is the one-sided limit of expanders asymptotic to nearby

cones, which yields a positive Jacobi field L�v = 0 with v growing linearly at

infinity.

The “interior” barrier is then formed by taking the graph over � of a small multiple

of f := v + ³Ç3R . Because L�f = 2³¿Ç3R this can be seen to be a strict barrier in

B2R(0), pushing (rescaled) mean curvature flows towards �.

To prove that the flow fattens if the cone fattens (Theorem 4.1), we can weld (in the

sense of Meeks–Yau [42]) the graph of f to the graph of a constant function h over �

to obtain a global barrier �s over � (note that L�h = (|A� |2 2 1
2
)h is < 0 outside of a

sufficiently large compact set). (See Proposition 3.4.) Now, the key observation is that

the forward blowups of the outermost flow will lie below �s outside of a sufficently

large set, since the forward blowups must lie in the level set flow of the cone (which

decay towards the cone) while �s has height > sh over the cone near infinity (see

Claim 4.2).

In particular, this proves that the outermost flows have forward blowup at 0 equal

to the outermost flows of the cone C. To prove that the flow does not fatten if the
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Fig. 3 The barrier construction

to prove uniqueness of flows

with the same (outermost)

expander � as forward blowup

at 0. (Color figure online.)

cone does not fatten, it thus suffices to consider two flows M1(t), M2(t) which have

forwards blowup given by the same outermost expander. We construct a barrier in

this situation by welding (in the sense of Meeks–Yau [42]) the graph of ±sf (denoted

�±
close,s(t)) to the normal graph of sh

:
t over M1(t) \ B:

tR(0) (denoted �±
far,s(t)).

The barriers then pinch M2 towards M1 from above and below as s ³ 0 proving

uniqueness. This can be seen in Fig. 3.

1.3 Organization

In Sect. 2 we collect some preliminary definitions and facts to be used later. In Sect. 3

we construct barriers graphical over the expander and then use these barriers to prove

that the level set flow is locally modeled on the level set flow of the cone in Sect. 4.

In Sect. 5 we construct global barriers over a flow that’s modeled on an outermost

expander near the conical singularity and then use these to prove uniqueness of such

flows in Sect. 6. Finally, we collect some results about graphs over expanders in the

Appendix.

2 Preliminaries

In this section we collect some preliminary definitions, conventions, and results.

2.1 Spacetime and the level set flow

We define the time map t : Rn+1 × R ³ R to be the projection t(x, t) = t . For E ¢
R

n+1 × R we will write E(t) := E + t
21(t). The knowledge of E(t) for all t is the

same thing as knowing E, so we will often ignore the distinction.

For a compact n-manifold M (possibly with boundary), we consider f : M ×
[a, b] ³R

n+1 so that (i) f is continuous (ii) f is smooth on (M \ "M) × (a, b] (iii)

f |M×{t} is injective for each t * [a, b] and (iii) t �³ f (M \"M, t) is flowing by mean

curvature flow. In this case we call

M := *t*[a,b]f (M, t) × {t} ¢ R
n+1 ×R
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a classical mean curvature flow and define the heat boundary of M by

"M := f (M,a) * f ("M, [a, b]).

Classical flows that intersect must intersect in a point that belongs to at least one of

their heat boundaries (cf. [49, Lemma 3.1]).

For � ¢ R
n+1 × [0,>), M ¢ R

n+1 × R is a weak set flow (generated by �)

if M(0) = �(0) and if M′ is a classical flow with "M′ disjoint from M and M′

disjoint from � then M′ is disjoint from M. There may be more than one weak set

flow generated by �.

The biggest such flow is called the level set flow, which can be constructed as

follows: For � ¢ R
n+1 × [0,>) as above, we set

W0 := {(x,0) : (x,0) /* �}

and then let Wk+1 denote the union of all classical flows M′ with M′ disjoint from

� and "M′ ¢ Wk . The level set flow generated by � is then defined by

M := (Rn+1 × [0,>)) \ *kWk ¢ R
n+1 × [0,>).

See [32, 37, 49]. If � ¢ R
n+1 ×{0}, we will write Ft (�) := M(t) for the time t slice

of the corresponding level set flow.

Fix � ¢ R
n+1 closed. We say that the level set flow of � is non-fattening if Ft (�)

has no interior for each t g 0. This condition holds generically for compact � ¢
R

n+1, namely if u0 is a continuous function with compact level sets u21
0 (s) then

the level set flow of u21
0 (s) fattens for at most countably many values of s, see [37,

§11.3-4].

2.2 Integral Brakke flows

An (n-dimensional2) integral Brakke flow in R
n+1 is a 1-parameter family of Radon

measures (¿(t))t*I so that

(1) For almost every t * I there is an integral n-dimensional varifold V (t) with

¿(t) = ¿V (t) and so that V (t) has locally bounded first variation and mean cur-

vature H orthogonal to Tan(V (t), ·) almost everywhere.

(2) For every bounded interval [t1, t2] ¢ I and K ¢ R
n+1 compact, we have

∫ t2

t1

∫

K

(1 + |H|2)d¿(t)dt < >.

(3) If [t1, t2] ¢ I and f * C1
c (Rn+1 × [t1, t2]) has f g 0 then

∫

f (·, t2)d¿(t2)2
∫

f (·, t1)d¿(t1) f
∫ t2

t1

∫

(2|H|2f + H ·'f + "f
"t

)d¿(t)dt.

2Of course one can consider k-dimensional flows in Rn+1 but we will never do so in this paper, so we

will often omit the “n-dimensionality” and implicitly assume that all Brakke flows are flows of “hypersur-

faces.”.
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We will sometimes write M to represent a Brakke flow.

We define the support of M = (¿(t))t to be *t supp¿(t) × {t} ¢ R
n+1 ×R. It is

useful to recall that the support a Brakke flow (with t * [0,>)) is a weak set flow

(generated by supp¿(0)) [37, 10.5].

We say that a sequence of integral Brakke flows Mi converges to another integral

Brakke flow M (written Mi ⇀ M) if ¿i(t) weakly converges to ¿(t) for all t and

for almost every t , after passing to a further subsequence depending on t , the asso-

ciated integral varifolds converge Vi(t) ³ V (t). (Recall that if Mi is a sequence of

integral Brakke flows with uniform local mass bounds then a subsequence converges

to an integral Brakke flow [37, §7].)

For a Brakke flow M and » > 0 we write D»(M) for the “dilated” Brakke flows

with measures satisfying ¿»(t)(A) = »n¿(»22t)(»21A).

2.3 The inner/outer flows of a level set flow

We collect results of [43] on weak set flows and outermost flows and show that they

are also applicable (with minor modifications) to the flow of more general initial data.

Proposition 2.1 ([43, Proposition A.3]) Suppose that F is a closed subset of Rn+1,

and let M ¢ R
n+1 ×R

+ be its level set flow. Set:

M(t) := {x *R
n+1 : (x, t) * "M} .

Then t �³ M(t) is a weak set flow.

In what follows, we assume that F is the closure of its interior in R
n+1 (we will

call3 such a set F admissible). Let F ′ := F c, denote the level set flows of F , F ′ by

M, M′, and set F(t) := M(t), F ′(t) := M′(t). In line with Proposition 2.1, we set:

M(t) := {(x, t) ¢ R
n+1 : x * "M},

M ′(t) := {(x, t) ¢ R
n+1 : x * "M′}.

(Here "M, "M′ are the relative boundaries of M, M′ as subsets of Rn+1 × R+).

We call

t �³ M(t), t �³ M ′(t)

the outer and inner flows of M := "F . By Proposition 2.1, M(t), M ′(t) are contained

in the level set flow generated by M . Furthermore,

M(t) = lim
Ç↗t

"F (Ç)

3Note that this slightly extends the definition in [43], where "F ("U in their notation) would be a compact,

smooth hypersurface. This extension allows us to flow from non-compact and non-smooth initial surfaces.

This does not change anything in the analysis of [43].
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for all t > 0, and M(t) = "F (t) for all but countably many t . See [43, Theorems

B.5, C.10]. Note that [43, Theorems B.5] directly carries over to M = "F where F

is admissible.

We will say that an admissible set F is smoothable, if the following holds: There

exist compact regions F � Fi with smooth boundaries such that

(1) For each i, Fi+1 is contained in the interior of Fi .

(2) +Fi = intF .

(3) Hn�M is a Radon measure and Hn�"Fi ³Hn�M .

(4) There is 
 > 0 so that for any p *R
n+1 and Ã > 0 it holds that |"Fi + BÃ(p)| f


Ãn.

By perturbing Fi slightly, we can also assume that

(5) the level set flow of "Fi never fattens.

Choose integral Brakke flows t �³ ¿i(t) starting from ¿i(0) = Hn�"Fi via elliptic

regularization. Assume that ¿i limits to t �³ ¿(t) in the sense of Brakke flows. Note

that the flow t * [0,>) �³ ¿(t) is an integral, unit-regular Brakke flow with ¿(0) =
Hn�M

We do the same hold with F ′ replacing F and so on. We then directly generalize

[43, Theorems B.6, B.8]. The proof extends verbatim.

Proposition 2.2 Assume F is admissible and smoothable with M = "F The Brakke

flow t �³ ¿(t) has spacetime support equal to the spacetime set swept out by t *
[0,>) �³ M(t), where t �³ M(t) is the outer flow of M . More precisely, for t > 0,

the Gaussian density of the flow ¿(·) at (x, t) is > 0 if and only if x * M(t). The

analogous statement holds for the inner flow t �³ M ′(t) of M .

2.4 Density, Huisken’s monotonicity, and entropy

For X0 = (x0, t0) *R
n+1 ×R we consider the (n-dimensional) backwards heat kernel

based at X0:

ÃX0
(x, t) := (4Ã(t0 2 t))2

n
2 exp

(

2|x 2 x0|2
4(t0 2 t)

)

(2.1)

for x * R
n+1, t < t0. For M a Brakke flow defined on [T0,>), t0 > T0 and 0 < r f:

T0 2 t0, we set


M(X0, r) :=
∫

ÃX0
(x, t0 2 r2)d¿(t0 2 r2).

Huisken’s monotonicity formula [36, 39] implies that r �³ 
M(X0, r) is non-

decreasing (and constant only for a shrinking self-shrinker centered at X0). In partic-

ular we can define the density of M at such X0 by


M(X0) := lim
r↘0


M(X0, r).
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We call an integral Brakke flow M unit-regular if M is smooth in a forwards-

backwards space-time neighborhood of any space-time point X with 
M(X) = 1.

Note that we can then write singM = {X * R
n+1 × R : 
M(X) > 1}. Note that

by [46, Theorem 4.2] the class of unit-regular integral Brakke flows is closed under

the convergence of Brakke flows. Furthermore, combining [46, Lemma 4.1] and [51]

it follows that there is ·0 > 0, depending only on dimension, such that every point

X * singM has 
M(X) g 1 + ·0. Upper semi-continuity of density then implies

that singM is closed.

2.5 Cones and self-expanders

Consider S ¢ S
n a smooth, embedded, closed hypersurface. We then call the cone

over S, denoted by C = C(S) ¢ Rn+1, smooth. We say that M ¢ Rn+1 is a smooth

hypersurface with a conical singularity at x0 modelled on the cone C if:

(1) M\{x0} is a smooth (embedded) hypersurface,

(2) limÃ³> Ã · (M 2 x0) = C,

where the convergence is in C>
loc(R

n+1\{0}). Note that a hypersurface with conical

singularities is admissible and smoothable in the sense of Sect. 2.3, see also [22,

Appendix E].

Similarly, we say that a hypersurface M ¢ R
n+1 is (smoothly) asymptotic to C if

lim
Ã↘0

Ã · M = C

in C>
loc(R

n+1\{0}).
A natural class of solutions to mean curvature flow, starting from an initial

(smooth) cone C, are self-similarly expanding solutions, i.e. solutions given by

t �³
:

t · � (2.2)

for t > 0, where � is asymptotic to C. These solutions are invariant under parabolic

rescalings forward in time. The condition that (2.2) is a mean curvature flow yields

an elliptic equation for �, given by

H�(x) 2 x§

2
= 0. (2.3)

We call � a self-expander and denote the corresponding immortal solution to mean

curvature flow by M� . Alternatively, self-expanders are critical points (under com-

pact perturbations) of the expander functional

E(M) =
∫

M

e
|x|2

4 dHn .

We call a self-expander � stable if the second variation of E is non-negative under

compact perturbations, i.e. if

∫

�

×(2L�×) e
|x|2

4 dHn g 0
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for all × * C>
c (�), where L� is the corresponding Jacobi operator given by

L� = �� + x

2
· '� 2 1

2
+ |A� |2. (2.4)

Note that a stable expander � becomes strictly stable when restricting to any compact

subset K ¢ �. Denoting �R := � + BR(0) for R * (0,>), this implies that there

exists a positive first eigenfunction ÇR * C>(�R) (unique up to scaling) solving

{

L�ÇR + ¿RÇR = 0 in �R

ÇR = 0 on "�R ,
(2.5)

where R �³ ¿R > 0 is monotonically decreasing in R. We will scale such that
∫

�R
Ç2

Re|x|2/4 = 1, ensuring that ÇR is unique.

Linearising the expander equation (2.3) yields solutions to the linearized equation,

i.e. functions u * C>(�) such that L�u = 0. We call such a function a Jacobi field.

We further recall the following decay estimate.

Proposition 2.3 ([31, Lemma 5.3]) Let � denote an expander asymptotic to a smooth

cone. Then there is R > 0 sufficiently large so that � \ BR(0) can be written as a

normal graph over C with the graphical height function Ã = o(|x|21) as x ³ >.

This improves the trivial Ã = o(|x|) estimate via comparison with large spheres.

2.6 The level set flow of a cone and the outermost expanders

For a smooth cone C = C(S) with C = "W for W a closed set, we define Gap(C) to

be the level set flow of the cone C at time t = 1. Since the level set flow is unique,

and C is invariant under scaling, it follows that the level set flow of C is given by

t �³
:

t · Gap(C) for t * (0,>).

The analogous statement to Proposition 2.2 holds also for the level-set flow of

smooth hypercones, see [22, Theorem E.2]. Furthermore, in [22, Theorem 8.21] it

was shown that the outermost/innermost flows from a cone (in low dimensions) are

modelled on smooth expanders, minizing the expander functional E from the outside.

(For n = 2 smoothness had been shown by Ilmanen [38].) We will refer to these as

the outermost expanders. We summarize these facts as follows:

Theorem 2.4 ([22, 38]) For 2 f n f 6, let Cn ¢ R
n+1 be a smooth cone. Then, there

are smooth expanders �, �′, smoothly asymptotic to C. The expanders �, �′ de-

scribe the level set flow of C in the following sense:

" If the level set flow of C does not fatten, then Gap(C) = � = �′ := �.

" If the level set flow of C does fatten, then � + �′ = ' and Gap(C) is the region

between � and �′, i.e. "Gap(C) = � * �′.

Finally, � minimizes the expander functional E to the outside (relative to W ) on

compact sets. Similarly, �′ minimizes E to the inside.
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Note that the property that �, �′ minimize E from one side implies that both �,

�′ are stable expanders. Furthermore, for n g 7, �, �′ could a priori have singular

set of dimension n27. We say that the outermost flows of C are smooth if the singular

set is empty (so this always holds for 2 f n f 6). When the outermost flows of C are

a priori known to be smooth the proof of Theorem 2.4 carries over to prove the

remaining assertions in the theorem.

Let � = W +Sn. Recall that C = C(S) where S = "� ¢ Sn is a smooth embedded

hypersurface. Let ¿S be the smooth unit normal vectorfield to S in S
n pointing to the

outside of �. Given Ë : S ³ R a positive, smooth function there exist · > 0 and a

smooth local foliation of hypersurfaces (Ss)2·<s<· in S
n such that S0 = S and

"
"s

Ss

∣
∣
∣
s=0

= Ë · ¿S .

We consider the cones Cs := C(Ss) and the corresponding outermost expanders �s ,

�′
s . Note that by construction of the outermost flows of Cs it follows that for s > t

the outermost expander �s lies strictly to the outside (with respect to W ) of �t and

�s ³ �t smoothly for s ↘ t . Similarly for s < t the innermost expander �′
t lies

strictly to the inside of �′
s and �′

t ³ �′
s smoothly for s ↗ t .

We denote with Ã� the composition of the closest point projection onto C(S) com-

posed with the radial projection C(S) ³ S of the cone onto its link. This is well

defined on the cone over a neighborhood of S in S
n. The next lemma then follows

from the above discussion together with [29, Lemma 2.2] and the strong maximum

principle.

Lemma 2.5 Let Ë : S ³ R be a positive, smooth function. Then there is a positive

Jacobi field v on � that satisfies

|'3
�v| = O(r123)

for 3 = 0,1,2, . . . , where r = |x|. Furthermore, the refined estimate

v = r · Ë ç Ã� + w

with

|'3
�w| = O(r2123)

for 3 = 0,1 holds. An analogous Jacobi field v′ exists on �′ with the same asymptotic

expansions.

2.7 Forward rescaled flow

Given a (smooth) mean curvature flow (0, T ) � t �³ M(t) in Rn+1 one obtains a

solution to forward rescaled mean curvature flow by considering the rescaling

(2>, log(T )) � Ç �³ ÞM(Ç) := e2Ç/2
M(eÇ ) ,
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which satisfies the evolution equation

(
"x

"Ç

)§
= H ÞM(Ç)

(x) 2 x§

2
.

Note that expanders are the stationary points of this evolution.

3 Expander barriers

Let C = "W denote a smooth cone so that the outermost flows of C are modeled on

smooth expanders �, �′. Assume that the level set flow of C fattens (so � and �′

are distinct). Recall that the level set flow of C is given by {
:

t Gap(�)}t*(0,>) and

" Gap(�) = � * �′. Below, we work with � but identical analysis for �′ follows by

replacing W with W ′ = W c .

We choose the unit normal ¿ pointing into Gap(�).

By Lemma 2.5, � admits a positive Jacobi field of the form v = r + w with

|'3w| = O(r2123). We also recall the definition of the first eigenfunction ÇR in

(2.5). For R > 0 large and for ³ > 0 to be fixed sufficiently small, we define

f3R,³ = v + ³Ç3R (3.1)

on �3R := � + B3R(0). Then, define

h = max
"�R

f3R,³ > 0. (3.2)

Then we define a function on all of � by

u(x) =

§

«
«

«
¬

f3R,³ x * �R

min{f3R,³, h} x * ER \ �2R

h x * E2R ,

(3.3)

where ER := � \ BR(0). We want to check that for s > 0 sufficiently small and ³,

R chosen appropriately, the (time-independent) family of hypersurfaces t �³ �s :=
graph� su is a supersolution to rescaled mean curvature flow (in the sense that a

rescaled mean curvature flow cannot touch �s from below relative to its unit nor-

mal as fixed above). We start by checking that the graphs of h and f3R,³ have good

intersection.

Lemma 3.1 There is R0 = R0(�) so that for R g R0 there is ³0 = ³0(R,�) > 0

small so that if ³ * (0, ³0) then h g f3R,³ on "�R and h f f3R,³ on "�2R .

Proof The first inequality follows from (3.2). We now observe that (using the decay

of w obtained in Lemma 2.5)

h = max
"�R

f3R,³

f R + O(R21) + ³ max
"�R

Ç3R
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f min
"�2R

f3R,³ 2 R + O(R21) + ³

(

max
"�R

Ç3R 2 min
"�2R

Ç3R

)

.

Taking R sufficiently large so that the second and third terms satisfy 2R+O(R21) f
21 we can then take ³ sufficiently small (depending on R through the dependence

of Ç3R) so the fourth term is f 1. This completes the proof. �

Thus it suffices to check that sh and sf3R,³ define supersolutions on the appropri-

ate overlapping regions (for s > 0 small).

Lemma 3.2 We can take R = R1(�) sufficiently large h0 = h0(�) > 0 sufficiently

small so that for h * (0, h0), Ç �³ �R,h := graphER
h defines a supersolution to

rescaled mean curvature flow.

Proof Since � is asymptotically conical, |A| < 1 on ER for R sufficiently large.

Thus, �R,h is smooth for R > 0 sufficiently large. We compute

v�R,h
(x, Ç )

(

"Ç x�R,h
2 H + 1

2
x�R,h

)

· ¿�R,h
= 2L�h + E(h)

=
(

1

2
2 |A� |2

)

h + E(h)

g
(

1

2
2 |A� |2

)

h 2 C1h
2

where we used Proposition A.3. Taking R sufficiently large so that |A� |2 f 1
4

. Then,

taking h0 = 1
4C1

completes the proof. �

We now fix R = R0 > 0 sufficiently large so that both Lemmas 3.1 and 3.2 hold.

Then take ³0 as in Lemma 3.1.

Lemma 3.3 For any ³ * (0, ³0) there is s0 = s0(�,³) > 0 sufficiently small,

Ç �³ �R0,³,s := graph�2R
sf3R,³

is a supersolution to rescaled mean curvature flow for any s * (0, s0).

Proof Since �2R is compact, �R,³,s will be smooth as long as s is sufficiently small.

Moreover, we have

v�R,³,s
(x, Ç )

(

"Ç x�R,³,s
2 H + 1

2
x�R,s

)

· ¿�R,s
= 2sL�f3R,³ + E(sf3R,³)

= s³¿3RÇ3R + E(sf3R,³).

Now we observe that since Ç3R > 0 on �3R , it holds that inf�2R
Ç3R > 0. Combined

with ¿3R > 0 and the simple error estimate E(sf3R,³) = O(s2) (cf. Proposition A.3),

the assertion follows. �
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We now fix ³ * (0, ³0) and s0 = s0(�,³) > 0 as in Lemma 3.3. Combining Lem-

mas 3.1, 3.2, and 3.3 we obtain (recalling the definition of u in (3.3))

Proposition 3.4 There is s0 > 0 sufficiently small so that Ç �³ �s := graph� su is a

supersolution to rescaled mean curvature flow for any s * (0, s0).

4 Fattening

We consider M ¢ R
n+1 with an isolated singularity at 0 modeled on a smooth cone

C. Let U be the compact region bounded by M and write U ′ = U c. Define W,W ′ ¢
R

n+1 closed so that "W = "W ′ = C and limÃ³> ÃU = W , limÃ³> ÃU ′ = W ′ in the

sense of local Hausdorff convergence. We let � = "F1(W) denote the outer expander

and �′ = "F1(W
′) the inner expander.

Approximate M to the inside and outside by smooth hypersurfaces M ′
i ¢ U ,

Mi ¢ U ′ satisfying conditions (1)-(5) described in Sect. 2.3. Let Mi , M
′
i denote

unit-regular cyclic Brakke flows with Mi(0) = Hn�Mi,M
′
i(0) = Hn�M ′

i obtained

via elliptic regularization. Passing to a subsequence we can assume that Mi ⇀ M,

M′
i ⇀M′ unit regular cyclic Brakke flows with M(0) = M′(0) = Hn�M .

Theorem 4.1 The flow M is modeled on the expander � near (0,0) in the sense that

lim»³> D»(M) = M� . The same holds for M′, namely lim»³> D»(M
′) = M�′ .

In particular, this shows that if C fattens under the level-set flow then so does M .

Before proving Theorem 4.1 we observe the following consequence. Recall that

M(t) (resp. M ′(t)) is the outer (resp. inner) flow of M as defined in Proposition 2.2.

Corollary 4.2 There is T > 0 so that M�{t < T } and M′�{t < T } are smooth and for

0 f t < T , we have suppM(t) = M(t) (resp. suppM′(t) = M ′(t)). Furthermore,

any unit regular integral Brakke flow ÇM with ÇM(0) = Hn�M and supp ÇM(t) ¢
M(t) satisfies ÇM�{t < T } = M�{t < T }.

Proof It suffices to consider M and outer flows. Suppose there are points Xi =
(xi, ti) * singM with 0 < ti ³ 0. Since M is smooth away from 0, it must hold that

xi ³ 0. Suppose that up to a subsequence suppi |xi |2t21
i < >. Then by Theorem

4.1, D
t
21/2
i

(M) ⇀ M� as i ³ >. Since D
t
21/2
i

(Xi) = (xi t
21/2
i ,1) is bounded (by

our assumption), this contradicts the fact that � is smooth. Thus, it remains to con-

sider the case that |xi |2t21
i ³ >. By Theorem 4.1 again, D|xi |21(M) ⇀ M� . Up

to a subsequence, D|xi |(Xi) = (|xi |21xi, |xi |22ti) converges to (Þx,0) with |Þx| = 1.

Since singM� = (0,0), this is a contradiction. This proves the smoothness part of

the assertion.

By the work of Hershkovits–White as recalled in Proposition 2.2, the support of

M agrees with the outer flow of M . The final statement follows since t �³ M(t) is a

smooth mean curvature flow for 0 < t < T , so the constancy theorem implies that the

multiplicity of ÇM is a non-negative constant for a.e. 0 < t < T , which additionally is

monotone in time. But the monotonicity formula together with unit regularity implies

that the multiplicity is one away from (0,0), so ÇM agrees with M. �
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Proof of Theorem 4.1 It suffices to consider the outer flow M. Fix s * (0, s0) and

let �s be defined as in Proposition 3.4 with respect to �. Recall that t �³
:

t�s is

a supersolution to mean curvature flow and that the unit normal to � points into

Gap(C).

Using the notation established in the beginning of this section, we have:

Claim 4.1 For i(j) ³ > and »j ³ > assume that ÞMj := D»j
(Mi(j)) ⇀ ÞM. Then

supp ÞM(t) ¢ W ′(t) (the level set flow of W ′).

Proof By construction, supp ÞM(0) ¢ W ′. Thus, the assertion follows from the avoid-

ance principle for Brakke flows (cf. [37, Theorem 10.7]). �

Claim 4.2 There is Ã0 = Ã0(s) < > so that W ′(1) \ BÃ0
(0) lies strictly below �s .

Proof Recall that W ′(1) is the region below �′. Thus, the assertion follows from the

fact that � decays towards �′ (cf. Proposition 2.3) whereas the function u in (3.3) is

constant near infinity. �

Claim 4.3 Fix Ã g Ã0. There’s T = T (s, Ã) so that suppMi(t) + B:
tÃ(0) lies below:

t�s for all t * (0, T ] and i *N.

Proof of Claim 4.3 We first show that there T = T (s, Ã) > 0 such that the claim holds

in a neighbourhood of "B:
tÃ(0). Assume this fails at times 0 < tj ³ 0 for the

flows Mi(j). Note that i(j) ³ > as j ³ > since Mi is disjoint from M . Let
ÞMj := D

t
21/2
j

(Mi(j)). Pass to a subsequence so that ÞMj ⇀ ÞM. By Claim 4.1,

supp ÞM(t) ¢ W ′(t). However, by Claim 4.2, W ′(t) \ B:
tÃ0

(0) lies strictly below:
t�s for t > 0. Combined with upper semi-continuity of Gaussian density along

Brakke flow convergence (implying that points in the support of a converging se-

quence of flows converge to points in support) we obtain a contradiction.

Now, we note that suppMi(t) is disjoint from B:
tÃ for all 0 f t f 2t (i) (since

Mi is disjoint from 0). The claim then follows by applying the maximum principle in

B:
tÃ(0) from t (i) to T (s, Ã). �

Letting i ³ > establishes the same statement as in Claim 4.3 for with Mi re-

placed by M. Since the flow t �³
:

t�s is scaling invariant this implies that any

forwards blow-up of M at (0,0) has to lie (weakly) below
:

t�s + B:
tÃ(0) for all

t > 0. Letting Ã ³ > and s ³ 0 establishes that any forward blow-up4 of ÞM is

supported (weakly) below t �³
:

t�, starting at C. Since � is the outer expander,

the support of ÞM thus must be a subset of t �³
:

t�. Again, the constancy theorem

implies that the multiplicity is a non-negative constant for a.e. t > 0, which addition-

ally is monotone in time. But the monotonicity formula together with unit regularity

implies that the multiplicity is one sufficiently far out, so any blow-up of M agrees

with t �³
:

t�. �

4i.e. any subsequential limit of D»( ÞM) as » ³ >.
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5 Global barriers

Let C denote a smooth cone over its link S ¢ S
n and � a smooth, stable expander

asymptotic to C. We choose a global unit normal vector field on ¿� . As in Lemma

2.5 for the outermost expanders, we assume that � admits a positive Jacobi field of

the form v = r · Ë ç Ã� + w, where Ë is a positive function on �, together with the

decay |'3w| = O(r2123) for l = 0,1.

We mimic part of the construction in Sect. 3. Since � is stable, for every R > 0

large we have a positive first eigenfunction Ç3R in (2.5) with eigenvalue ¿3R > 0. For

³ > 0 to be fixed sufficiently small, we take

f3R,³ = v + ³Ç3R (5.1)

on �3R := � + B3R(0). Then, define

h = max
"�R

f3R,³ > 0. (5.2)

We now consider M ¢ R
n+1 with an isolated singularity at 0 modelled on C. Assume

that M is a unit-regular cyclic Brakke flow, smooth on (0, T ) for some T > 0 with

M(0) = Hn�M and such that t21/2M(t) converges smoothly to � (on compact

subsets of Rn+1) as t ↘ 0. Thus for every · > 0 and every R < > there is T·,R and

a smooth family of functions u : �3R × (0, T·,R) such that for all t * (0, T·,R)

{x + u(x, t)¿�(x) |x * �3R} ¢ t21/2
M(t) (5.3)

with ‖u(·, t)‖C3(�3R) f ·
2

. For s * (0,1) we define the close barriers

�±
close,s(t) =

:
t · {(x + (u(x, t) ± sf3R,³) · ¿�(x)) |x * �2R}

and the far barriers

�±
far,s(t) = {(x ± sh

:
t · ¿M(t)(x)) |x *M(t) \ B:

tR(0)} ,

where we choose the unit normal vectorfield ¿M(t) such that it induces the same

orientations as ¿� in the convergence t21/2M(t) ³ � as t ↘ 0.

We aim to check that for s > 0 sufficiently small and ³, R chosen appropri-

ately t �³ �+
close/far,s(t) constitute supersolutions to mean curvature flow (in the sense

that a mean curvature flow cannot touch t �³ �+
close/far,s(t) from below relative to

its unit normal as fixed above) away from their respective boundaries. Similarly,

t �³ �2
close/far,s(t) constitute subsolutions to mean curvature flow (in the sense that

a mean curvature flow cannot touch t �³ �2
close/far,s(t) from above relative to its unit

normal as fixed above) away from their respective boundaries.

To construct global barriers, we start by checking that �±
close,s and �±

far,s have good

intersection. This will be used to “weld” them together in the sense of Meeks–Yau

[42] to form a global barrier.

Lemma 5.1 There is R0 = R0(�) so that for R g R0 there is ³0 = ³0(R,�) > 0

small and ·0 = ·0(R,�,³0) > 0 and so that if ³ * (0, ³0) and · * (0, ·0) then for

t * (0, T·,R) we have that
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(i) �+
close,s(t) lies above �+

far,s(t) in a neighborhood of "�+
close,s(t).

(ii) �+
far,s(t) lies above �+

close,s(t) in a neighborhood of "�+
far,s(t).

(i) �2
close,s(t) lies below �2

far,s(t) in a neighborhood of "�2
close,s(t).

(ii) �2
far,s(t) lies above �2

close,s(t) in a neighborhood of "�2
far,s(t).

for all s * (0,1).

Proof This follows from Lemma 3.1 by choosing ·0 > 0 sufficiently small. �

Lemma 5.2 For R g R0(�), ³ * (0, ³0), there is ·1 = ·1(R,³,�) > 0 and s0 =
s0(R,�) > 0, such that for all s * (0, s0) and · * (0, ·1), for t * (0, T·,R),

t �³ �+
close,s(t)

is a supersolution to mean curvature flow (and similarly t �³ �2
close,s(t) is a subsolu-

tion to mean curvature flow).

Proof By rescaling it is equivalent to show that

Ç �³ Þ�(Ç) := e2Ç/2�+
close,s(ln(Ç ))

for Ç * (2>, exp(T·,r )) is a supersolution to rescaled mean curvature flow. Similarly

we denote the corresponding solution of M to rescaled mean curavture flow by

Ç �³ ÞM(Ç ) := e2Ç/2
M(ln(Ç )) ,

which by (5.3) (writing Þu(x, Ç ) := u(x, ln Ç)) satisfies

{x + Þu(x, Ç )¿�(x) |x * �3R} ¢ ÞM(Ç ) .

Applying Lemma A.4 we compute

v Þ�

(

"Ç x Þ� 2 H Þ� + 1

2
x Þ�

)

·¿ Þ� = 2sL�f3R,³ +Esf3R,³ = ³s¿3RÇ3R +Esf3R,³ (5.4)

and provided ‖ Þu‖C3(�2R) + s‖f3R,³‖C3(�2R) f · we can estimate pointwise

|Esf3R,³ (x, Ç )| f Cs·(|f3R,³(x)| + |'�f3R,³(x)| + |'2
�f3R,³(x)|) .

Note that Ç3R > 0 on �3R , so there exists C > 0 such that for x * �2R

|f3R,³(x)| + |'�f3R,³(x)| + |'2
�f3R,³(x)| f CÇ3R(x) .

Thus (5.4) yields (for all s * (0, s0))

v Þ�

(

"Ç x Þ� 2 H Þ� + 1

2
x Þ�

)

· ¿ Þ� g s(³¿3R 2 C·)Ç3R > 0 ,

on �2R , as long as · is sufficiently small. This yields the statement for t �³ �+
close,s(t).

The statement for t �³ �2
close,s(t) follows analogously. �
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Take R0 as in Lemma 5.1.

Lemma5.3 There is R = R1(M,�) g R0 sufficiently large so that for R g R1, taking

³0 as in Lemma 5.1, s0 as in Lemma 5.2 and Tfar > 0 sufficiently small depending on

M , �, R the following holds: for t * (0, Tfar) the flow t �³ �+
far,s(t) is a supersolution

to mean curvature flow, away from its boundary (and similarly t �³ �2
far,s(t) is a

subsolution to mean curvature flow, away from its boundary).

Proof We first establish the following claim. Consider the n-dimensional ball in the

{xn+1 = 0} hyperplane, given by Bn
r (0) := Br (0) + {xn+1 = 0}.

Claim 5.1 There exists · = ·(n) > 0 with the following property. Let u : Bn
1 (0) ×

[0,1] with ‖u(·, t)‖C3(Bn
1 (0)) f · such that for t * [0,1]

M(t) := {(Æx, u(Æx, t)) | Æx * Bn
1 (0)}

constitutes a smooth mean curvature flow. Let ¿M(·, t) be the upwards unit normal

to M(t). Consider

�±(t) := {x ± s
:

t¿M(x, t) |x * M(t)} .

Then for s * (0,1), the flow (0,1] � t �³ �+(t) is a supersolution to mean curvature

flow. (Similarly, the flow (0,1] � t �³ �2(t) is a subsolution to mean curvature flow.)

Proof of Claim We consider �+(t) (the computation for �2(t) is analogous). Let t �³
xM(t) be a point evolving normally, i.e. "txM = HM(xM). Recall that

|"t¿M(xM(t), t)| = |'MHM| f C·.

Thus if we set x�+ = xM + s
:

t¿M then

"tx�+ = HM + ("t (s
:

t))¿M + s
:

t("t¿M)

so this point is evolving with normal speed

v�+("tx�+) · ¿�+ = HM + "t (s
:

t) + s
:

t("t¿M) · ¿�+

where v�+ = (¿�+(x�+) · ¿M(xM))21 (cf. Appendix A.3). Thus

v�+("tx�+ 2 H�+) · ¿�+ = HM 2 v�+H�+ + "t (s
:

t) + s
:

t("t¿M) · ¿�+

= "t (s
:

t) 2 |AM|2s
:

t + E ,

where the error satisfies |E| f Cs·
:

t , where C depends only on n (using Lemma

A.2 to estimate the difference in mean curvatures and the computation above to esti-

mate the unit normal evolution term). Thus, for · > 0 sufficiently small and t * (0,1]

v�+ ("Ç x�+ 2 H�+) · ¿�+ g ( 1
2t

2 C·)s
:

t g ( 1
2

2 C·)s
:

t > 0 .

This establishes the claim. �
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There is CM > 0 so that |y||AM (y)| + |y|2|'AM(y)| f CM (this follows because

M is modeled on a smooth cone at 0). This implies that after choosing R sufficiently

large, we have for all x * M \ {0} that

(R|x|21(M 2 x)) + B2(0)

can be written as a C3-graph over its tangent plane with C3-norm bounded by

O(R21). By pseudolocality (cf. [41, Theorem 1.5] or [18, Theorem 7.3]) this im-

plies that (taking R sufficiently large)

(R|x|21(M(R22|x|2t) 2 x)) + B1(0)

remains a small Lipschitz graph over its tangent plane for t * [0,2]. Parabolic esti-

mates then imply that if we take R even larger, the graph will have C3-norm bounded

by · (as defined in Claim 5.1).

We can thus apply the scaled version of Claim 5.1 over balls at x * M of radius

R21|x|. The claim only applies for times t * [0,R22|x|2], but for larger times, the

graph in M(t) over this ball will be contained in B:
tR , and thus does not contribute

to �+
far,s(t). This completes the proof. �

We now choose R g R1 to satisfy Lemma 5.3. We then choose ³ * (0, ³0) as in

Lemma 5.1 and then s0 as in Lemma 5.2.

Proposition 5.4 There is · > 0 sufficiently small such that for all s * (0, s0) and

t * (0, T·,R), we can weld t �³ �+
close,s(t) to t �³ �+

far,s(t) to obtain a global super-

solution t �³ �+
s (t) to mean curvature flow. Similarly, we can weld t �³ �2

close,s(t) to

t �³ �2
far,s(t) to obtain a global subsolution t �³ �2

s (t) to mean curvature flow.

6 Uniqueness

We work with the same set-up as in the previous section.

Assume that we have smooth mean curvature flows M1 and M2, defined on

(0, T ) for some T > 0, with M1(0) = M2(0) = Hn�M and such that t21/2Mi(t)

converges smoothly to � (on compact subsets of Rn+1) as t ↘ 0 for i = 1,2.

Lemma 6.1 It holds that dist(M1(t),M2(t)) = o(
:

t).

Proof Assume that there is » > 0 and xi * suppM1(ti) with ti ³ 0 so that

d(xi, suppM2(ti)) g »
:

ti . (6.1)

Pass to a subsequence so that xi ³ x * M . If x = 0 then (ti)
21/2Mi(ti) both con-

verge to � in C>
loc(R

n+1). If x �= 0 then short-time smoothness of Mi(t) around x

gives that5 (ti)
21/2(Mi(ti) 2 x) both converge to TxM in C>

loc(R
n+1). In either case,

we see that assuption (6.1) cannot hold. This completes the proof. �

5Note that one can view the x �= 0 case as the “same” as the x = 0 case, since M is modeled on the cone

TxM at x �= 0, which evolves as a static hyperplane under level set flow.
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Proposition 6.2 It holds that M1(t) = M2(t) on [0, T ).

Proof By Proposition 5.4 we can construct for all s * (0,1) and t * (0, T·,R) the

supersolution t �³ �+
s (t) and subsolution t �³ �2

s (t) over M1. Note that for any

s * (0, s0), we have by Lemma 6.1 that M2(t) lies between �+
s (t) and �2

s (t) for

t > 0 sufficiently small. This yields for all s * (0, s0) and t * (0, T·,R) that M2(t) lies

between �+
s (t) and �2

s (t). Since for all t * (0, T·,R) we have that �+
s (t),�2

s (t) ³
M1(t) as s ³ 0 this yields that M1 coincides with M2 on (0, T·,R). Thus M1 and

M2 have to coincide (at least as long as they both remain smooth). �

Corollary 6.3 If C does not fatten under the level set flow, then the inner and outer

flows agree for t * [0, T ].

Proof If C does not fatten then � = �′. Thus, by Theorem 4.1, the outer and inner

flows M, M′ are both modeled on � near (0,0). The assertion then follows from

Proposition 6.2. �

Appendix: Graphs over expanders

We consider a smooth embedded hypersurface M ¢ R
n+1 and assume that ¿M is a

choice of smooth unit normal vector field to M . We define its shape operator (or

Weingarten map)

Sp : TpM ³ TpM, ¿ �³ 2D¿¿� (A.1)

and its second fundamental form

A : TpM × TpM ³R, (¿, · ) �³ A(¿, · ) = Sp(¿) · · . (A.2)

We fix the sign of the scalar mean curvature H as follows

H = H ¿� ,

and thus H = trS = trA, with the principal curvatures of M being the eigenvalues of

S. We consider u : M × I ³ R so that

|u||AM | < · < 1

along M × I , where A is the second fundamental form of �. This allows us to define

the graph

�Ç := {x + u(x, Ç )¿M (x) : x * M}.

We compute here various geometric quantities associated to �Ç . The computations

follow directly as in [21, Appendix A]. There the focus was on the backwards rescaled

flow, but the computations for the forwards rescaled flow are completely analogous

and just amount to changing sign in front of the corresponding terms.

Define

v(x, Ç ) = (1 + |(Id2uSM)21('Mu)|2) 1
2 . (A.3)
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Lemma A.1 ([21, Lemma A.1]) The upwards pointing normal along �Ç is

¿� = v21(2(Id2uSM)21'Mu + ¿M). (A.4)

In particular

v = (¿� · ¿M)21. (A.5)

For 3 * {0,1} set

Ã3(x, Ç ) :=
3

3

j=0

422j
3

k=0

|"j
Ç 'ku(x, Ç )|. (A.6)

LemmaA.2 ([21, LemmaA.2]) The mean curvature of �Ç at x+u(x, Ç )¿M (x) satisfies

v(x, Ç )H�(x + u(x, Ç )¿M (x), Ç ) = HM(x) + (�Mu + |AM |2u)(x) + EH (A.7)

where the error EH can be decomposed into terms of the form

EH = uEH
1 + EH

2 ('Mu,'Mu)

where EH
1 * C>(�) and EH

2 * C>(�;T 7M · T 7M) satisfy the following esti-

mates:

|"ÇE
H
1 (x, Ç )| f CH

1 Ã1(x, Ç ),

2
3

k=0

|'k
�EH

1 (x, Ç )| f CH
1 Ã0(x, Ç )

and6

|"ÇE
H
2 (x, t)| f CH

2 (1 + Ã1(x, Ç )),

2
3

k=0

|'kEH
2 (x, t)| f CH

2 (1 + Ã0(x, Ç ))

where CH
1 , CH

2 depend only on · and an upper bound for
33

k=0 |'kA|(x).

Observe that the expander mean curvature can be written as

H 2 x§

2
=

(

H 2 1

2
x · ¿�

)

¿�

and recall the definition of the (expander) Jacobi operator L, see (2.4). For the fol-

lowing we assume that M = �, where � is an (open subset of an) expander.

Proposition A.3 ([21, Corollary A.4]) We have

v(x, Ç )("Ç x� 2 H + 1
2
x�) · ¿� = "Çu 2

(

�u + 1
2
xT · 'u + (|A|2 2 1

2
)u

︸ ︷︷ ︸

=Lu

)

+ E

6recall that E2 is a section of T 7� · T 7� so e.g., '�E2 is a section of T 7� · T 7� · T 7�.
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at x� = x + u(x, Ç )¿�(x) for E = uE1 + E2('u,'u) for E1, E2 satisfying

|"ÇE1(x, Ç )| f C1Ã1(x, Ç ),

2
3

k=0

|'kE1(x, Ç )| f C1Ã0(x, Ç )

and

|"ÇE2(x, Ç )| f C2(1 + Ã1(x, Ç )),

2
3

k=0

|'kE2(x, Ç )| f C2(1 + Ã0(x, Ç ))

where C1, C2 depend only on · and an upper bound for
33

k=0 |'k
�A|(x).

In particular, if �Ç is a solution to rescaled mean curvature flow, i.e.,

("Ç x)§ = H 2 1
2
x§

then

"Çu = Lu + E (A.8)

for E as above.

We also need to understand the linearization of the expander mean curvature of

two graphs over �, relative to each other and relative to the base �.

Lemma A.4 ([21, Lemma A.7]) For · < 1
2
(sup� |A� |)21 and ui * C>(�), i = 0,1

with

|ui(x)| + |'�ui(x)| + |'2
�ui(x)| + |'3

�ui(x)| f · (A.9)

for all x * �. Letting

�i := {x + ui(x)¿�(x) : x * �}

then denoting w = u1 2 u0 and vi := (¿�i
· ¿�)21 there exists C = C(sup� |A� | +

|'A� | + |'2A� |) such that

v1

(

H�1
2 1

2
x�1

· ¿�1

)

2 v0

(

H�0
2 1

2
x�0

· ¿�0

)

= L�w + Ew

where x�i
= x + ui(x)¿�(x) and the error term E satisfies

Ew(x) = w(x)F (x) + 'w(x) · F(x) + '2w(x) ·F(x) ,

with the estimate

|F | + |F| + |F | + |'F | f C·

for all x * �.
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