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Abstract— Although Driving Automation Systems (DASs) are
rapidly becoming more advanced and ubiquitous, they are still
confined to specific Operational Design Domains (ODDs) over
which the system must be trained and validated. Yet, each DAS
has a bespoke and often informally defined ODD, which makes
it intractable to manually judge whether a dataset satisfies
a DAS’s ODD. This results in inadequate data leaking into
the training and testing processes, weakening them, and causes
large amounts of collected data to go unused given the inability
to check their ODD compliance. This presents a dilemma:
How do we cost-effectively determine if existing sensor data
complies with a DAS’s ODD? To address this challenge, we
start by reviewing the ODD specifications of 10 commercial
DASs to understand current practices in ODD documentation.
Next, we present ODD-diLLMma, an automated method that
leverages Large Language Models (LLMs) to analyze existing
datasets with respect to the natural language specifications of
ODDs. Our evaluation of ODD-diLLMma examines its utility
in analyzing inputs from 3 real-world datasets. Our empirical
findings show that ODD-diLLMma significantly enhances the
efficiency of detecting ODD compliance, showing improvements
of up to 147% over a human baseline. Further, our analysis
highlights the strengths and limitations of employing LLMs
to support ODD-diLLMma, underscoring their potential to
effectively address the challenges of ODD compliance detection.

I. INTRODUCTION

Current Driving Automation Systems (DASs) [1] can only
offer high-levels of autonomy under the limited operating
conditions defined by their Operational Design Domain
(ODD). SAE J3016 defines the ODD as “operating con-
ditions under which a given driving automation system or
feature thereof is specifically designed to function, including,
but not limited to, environmental, geographical, and time-
of-day restrictions, and/or the requisite presence or absence
of certain traffic or roadway characteristics” [1]. Yet, these
ODDs are often incomplete and described imprecisely using
natural language (NL). This limits our ability to align system
design and validation techniques with a system’s ODD.

In exploring the alignment between DASs’ ODDs and
real-world data, we confront a multifaceted challenge. ODDs
encapsulate a range of conditions, as shown in Figure 1, that
define when a DAS is designed to operate safely. However,
the complexity and variability inherent in these domains pose
significant hurdles for aligning ODDs and datasets. For ex-
ample, an ODD may specify that operation is considered safe

→Equal contribution
1University of Virginia, United States, {hildebrandt.carl, adw8dm, sel-

baum}@virginia.edu
This work was funded in part by NSF through grants #2312487 and

#2403060, and Lockheed Martin ATL. Trey Woodlief was supported by a
University of Virginia SEAS Fellowship.

(a) Environment [5] (b) Traffic [6] (c) Roadway [7]
Fig. 1: Examples of potential ODD requirements.

only in the absence of rain, where there are no traffic signals,
or on non-winding roads. Each of these requirements, while
straightforward to human comprehension, demands distinct
checks when aligning with real-world data. Verifying the
presence of rain for weather compatibility requires real-
time environmental monitoring. Accurately identifying traffic
signals requires a basic knowledge of road rules and an
understanding of their relevance to various situations. More-
over, ascertaining whether a road does not have significant
bends requires an analysis of the road’s topology, potentially
involving the classification of its layout or the calculation
of specific metrics regarding its form. However, this detailed
information is often not captured in existing datasets, leaving
us the challenge of identifying these dimensions from the
collected data, i.e. determining if the image depicts rain,
traffic signals, or winding roads.

Now consider that these complex requirements need to be
applied to massive datasets of real-world sensor data used to
train and test DASs. For example, in 2015 Tesla received 1
million miles of data every 10 hours [2]; in 2021, comma.ai
stated that its users drive over 500,000 miles each week [3];
by 2023, Waymo had completed 7 million miles of fully
autonomous driving [4]. Such rich field data cannot easily be
applied at scale for DAS training or testing as the data may
not comply with the system’s ODD, raising the potential that
ODD violations could leak into training or testing. The key
questions we tackle are 1) how are ODDs specified today,
and to what extent do existing datasets comply with their
own ODD? 2) How can we automatically check existing
datasets for compliance with respect to an ODD?

To address the first question, we start by analyzing 10
commercial DASs to understand the current state of NL
ODD specification. Then, we manually investigate 3 datasets
of autonomous driving data, including 2 datasets utilized
in training/testing a commercially-available, road-deployed
DAS to judge their compliance with that DAS’s ODD. Next,
to address the second question, we explore an approach that
integrates Large Language Models (LLMs) to automate the
process of ODD compliance checking. LLMs have shown
immense promise in their ability to mimic human compre-



hension over NL and images [8]. Our proposed framework,
ODD-diLLMma, leverages this ability, providing an auto-
mated and structured way to use LLMs to analyze DAS
sensor datasets with respect to the NL specification of its
ODD by producing for each input a “compliance vector”
that characterizes the input’s compliance with the ODD.

Our key contributions are: 1) An examination of commer-
cial DAS ODDs, highlighting the challenges of consistent
application and their misalignment with today’s datasets. 2)
The identification of LLMs as a foundational technology to
address the disconnect between ODD specification and real-
world data. 3) Definition of the ODD-diLLMma framework
to leverage LLMs and ODDs specified in NL to enable anal-
ysis of real-world datasets. 4) A study implementing ODD-
diLLMma with two state-of-the-art LLMs to analyze datasets
for a commercially available DAS system, openpilot [9]. 5)
An open-source1 implementation of ODD-diLLMma.

II. OPERATIONAL DESIGN DOMAINS

The ODD includes many factors, which we refer to as
“semantic dimensions” of the ODD, e.g., raining, in inter-
section, etc. The full ODD is the product of all semantic
dimensions. Prior ODD analysis for DAS has focused on
improving ODDs [10], [11], deriving assurance cases [12],
[13], and performing runtime restriction [14]. A few efforts
aimed to utilize ODDs for DAS analysis and dataset genera-
tion [15], [16], [17]. However, no techniques currently exist

to automatically determine whether a dataset is compliant

with an ODD—we present the first steps to this end.
The next section provides a brief overview of the ODDs of

10 commercially available DASs to highlight the nuances in
their specifications. Then, for one of those DAS, we illustrate
the difficulties in checking dataset ODD compliance.

A. Examining ODDs on Deployed DASs

Kaiser et al. note that “while end users can understand
an ODD definition best in a simplified natural language
format, engineers need a more exact, in the best case formally
underpinned definition of the ODD of the systems they are
developing” [20]. However, such formalisms are not always
available, with the end-user NL versions representing the
only publicly available ODDs.

We inspected the NL ODD descriptions of the DASs
offered by comma.ai [9], GMC [18], and Tesla [19] to extract
selected semantic dimensions of the ODD shown in Table I.
Tesla and comma.ai’s DASs are composed of multiple com-
ponents; each component has a separate ODD description. In
the table, ‘→’ indicates the semantic dimension is excluded

from the ODD, while ‘↭’ indicates included in the ODD;
unless noted, no interpretation was done to identify the
in/exclusion, i.e. the semantic dimension was stated directly.

From examining the DASs’ ODDs we can draw several
conclusions. The NL descriptions are often phrased to list
what is excluded from the ODD rather than included, and
each DAS has exclusions related to weather, e.g., GMC

1
https://github.com/hildebrandt-carl/ODD_diLLMma_

Artifact

Super Cruise states that it should not be used “in ad-
verse weather conditions, including rain”, i.e. rain is out of
ODD [18]. However, the NL descriptions used across sys-
tems are inconsistent, highlighting their imprecision. While
GMC expressly excludes “rain”, comma.ai more specifically
excludes “heavy rain”; this makes ODD precise comparison
and thus necessary train/test data difficult. GMC’s system
would require a dataset with no rain, and that same dataset
could be used for comma.ai’s systems since no rain implies
no heavy rain; however, the reverse is not true. Further, since
these ODD descriptions come from separate companies,
comma.ai’s definition of “heavy rain” may be equivalent to
GMC’s definition of “rain”. The definitions’ imprecision is
further highlighted when examining the Tesla components
where all but one expressly exclude “heavy rain” from their
ODD; however, the Full Self-Driving (Beta) system excludes
“rain” instead. Since these descriptions are all produced by
Tesla, we may infer that “rain” for Full Self-Driving (Beta)
is intended to have distinct semantics from “heavy rain” for
the others. This suggests a continuum of “rain” intensity that
is inadequately captured by the binary inclusion or exclusion
within the ODD, reflecting the simplified manner in which
complex conditions are represented.

This binary perspective, which categorizes conditions like
rain as either “present” and outside the ODD or “absent” and
inside the ODD, fails to capture the continuum of intensity
inherent to such conditions and inadvertently introduces
subjectivity into the ODD evaluation process. Similarly,
consider the semantic dimension of a road’s curvature where
several ODDs exclude “sharp” curves. The definition of what
constitutes a “sharp” curve can vary significantly between
individuals, such as between an inexperienced driver and a
racing driver. This variation occurs despite the availability of
precise physical measures like the degree of curvature, which
could objectively define sharpness and eliminate subjectivity.

The discrepancy highlights a broader issue with cur-
rent publicly-available ODD specifications: they often lack
sufficient granularity, leading to subjective interpretations
of compliance criteria. This ambiguity and imprecision in
ODDs complicates the application of formal methods and
other forms of quality assurance, underscoring the need
for rigorously defined ODDs that are robust against these
variations. The current shortcomings of ODD descriptions
for DASs underscore the difficulties in ensuring precise
definition and adherence, pointing towards the necessity
of approaches that provide utility by accommodating the
nuanced realities of driving conditions.

B. Manual ODD Compliance Analysis of DAS Datasets

We now explore the degree to which DAS datasets con-
form to the ODD to determine whether it is appropriate for
use in training and testing.

1) DAS and 3 Datasets: We primarily focus on
comma.ai’s openpilot ALC DAS and its NL ODD encom-
passing 11 semantic dimensions [9]; further discussion on
the ODD dimensions is available in the online repository.
We selected openpilot as it uses camera-based inputs to de-



TABLE I: Selected ODD semantic dimensions from NL description for comma.ai, GMC, and Tesla DASs.

ODD Semantic Dimension
Weather and Environmental Factors Roadway Characteristics

Company DAS Heavy
Rain Rain Sleet Ice Bright

Light Low Light Sharp
Curves

On-Off
Ramps Intersections Traffic

Signals

comma.ai [9] ALC ↑ ↑ ↑ ↑ ↑
ACC ↑ ↑ ↑

GMC [18] Super Cruise ↑ ↑ ↑ ↑a ↑b ↑ ↑c ↑

Tesla [19]

Traffic-Aware
Cruise Control ↑ ↑ ↑ ↑ ↑

Autosteer ↑ ↑ ↑
Auto Lane Change ↑ ↑

Full Self-Driving (Beta) ↑ ↑ ↑ ↭ ↭ ↭
Autopark ↑
Summon ↑

Smart Summon ↑
aWhile Super Cruise does not mention Bright Light, it says “not when [...] there is too much glare”. b Super Cruise says “not on winding [...] roads”.

c While Super Cruise does not mention intersections directly, it says “not on surface streets”, excluding intersections.

TABLE II: ODD Compliance per Selected Data Subset

Subset Dataset In ODD % Out ODD %
Both comma.ai 2016 268 56.6% 232 46.4%
Both comma.ai 2k19 288 57.6% 212 42.4%
Both External JUtah 183 36.6% 317 63.4%
Pass comma.ai 2016 191 76.4% 59 23.6%
Pass comma.ai 2k19 222 88.8% 28 11.2%
Pass External JUtah 137 54.8% 113 45.2%
Fail comma.ai 2016 77 30.8% 173 69.2%
Fail comma.ai 2k19 66 26.4% 184 73.6%
Fail External JUtah 46 18.4% 204 81.6%

termine its behavior, allowing us to leverage existing camera-
based datasets. Further, openpilot is compatible with over
250 vehicle models [21] and has driven over 50 million miles
while deployed [22] indicating the maturity of the system.
Lastly, openpilot functions as is off-the-shelf, processing
video inputs to generate steering angles.

Our dataset choices for evaluating comma.ai’s openpilot
system comprise the comma.ai 2016 dataset [23], which
includes 11 videos totaling 7 hours, and the comma.ai 2k19
dataset [24], encompassing 2035 videos that amount to 34
hours. Given their source, we presumed these datasets would
be compatible with the DAS’s ODD. In addition, we incor-
porated 50 videos totalling 43 hours from the External JUtah
collection [25], a curated global compilation of dashcam
videos not affiliated with comma.ai, thus potentially diverg-
ing from the specified ODD. This diverse selection aims to
fulfill three objectives: verify the efficacy of older datasets
for training initial software versions, assess the relevance
of newer datasets for advancing software capabilities, and
evaluate model resilience using non-native datasets. Before
their integration, all datasets were adjusted to meet the
resolution and frame rate requirements of openpilot.

2) Selected Data for Analysis: To conduct the manual
analysis we sample 1, 500 images from the datasets. The
sampling technique is inspired by differential testing [26],
comparing the steering angles produced by different DAS
versions when given the same image to identify discrepancies
indicative of failures, or similarities indicating passing. We
implemented this approach by analyzing the outputs from
three versions of the openpilot ALC [27], [28], [29]. When

Fig. 2: Percentage Compliance with Semantic Dimensions
Among Failing Images

the maximum steering angle difference between any of these
versions exceeded 45°, we interpreted this as a sign of
failure in one of the versions—indicating that either an earlier
version could not effectively handle the input, or the latest
version exhibited a regression. Conversely, when all versions
produced steering angles that differed by less than 1°, we
considered this a strong indication of correct behavior, or a
“pass.” This process reduced the dataset from 4.6 million
images to 691, 369. Under such conservative passing and
failing definitions, 13% of images yielded a pass while 2%
induced a failure. We randomly sampled 250 passing and 250
failing images from the reduced dataset across all videos to
form 3 subsets of 500 images for manual investigation.

3) ODD Checking Process: Each researcher evaluated
and marked each image according to its compliance to open-
pilot’s ODD’s 11 semantic dimensions (Figure 2) [9]. The
researchers then met to discuss inconsistencies, developed
rules to achieve consistency, and then re-reviewed all images;
an overview of these rules is available in the online repos-
itory. The need for this consensus-building step highlights
the difficulty in using ODDs specified in NL. Figure 3
highlights several examples of this challenge, dealing with
the imprecision in defining “sharp curve” in Figure 3a, or
unique cases such as a drive-thru in Figure 3d or hiking trail



(a) Imprecise: “Sharp
Curve”

(b) In-ODD (c) Out-ODD: Intersection (d) In-ODD but Likely In-
tended Out: Drive-Thru

(e) In-ODD but Clearly
Intended Out: Hiking Trail

Fig. 3: comma.ai 2k19 dataset images using openpilot ALC ODD (best viewed on a screen) illustrating annotation difficulties.

in Figure 3e which are likely out of the intended ODD but
do not violate the specified ODD semantics.

4) ODD Compliance Results: Table II presents human-
judged ODD compliance for each dataset, discriminated by
images causing failures and passes. Contrary to expectations,
nearly half of the sampled data from the company building
openpilot, 46.4% and 42.4%, was found to be out of the
ODD. Moreover, despite the expectation that failing images
would predominantly fall outside the ODD—where correct-
ness is not guaranteed—a substantial portion of the failing
data, 30.8% and 26.4%, actually lies within the ODD. That
means that openpilot would exhibit a significant difference
in steering angle output of 45 degrees or more, depending
on the version used, despite operating within the ODD.

For the External JUtah dataset, just more than one-third
of the data is classified as in ODD, which is understandable
considering that this dataset was not specifically collected for
the openpilot system. Nonetheless, these findings illustrate
the potential value of an approach which could automatically
determine ODD compliance, revealing that large portions
of already existing datasets—178, 199 passing images and
11, 046 failing images, as extrapolated—could be effectively
utilized for the training and testing of openpilot.

5) ODD Compliance per Semantic Dimension: We now
examine the datasets’ ODD compliance per semantic dimen-
sion to understand why images are out of ODD. As shown
in Figure 2, the most common semantic dimension violated
is “Intersection”. This is understandable for External JUtah
as it is an external dataset of mostly city driving images,
but again we are surprised by the number of intersections in
the comma.ai datasets. Similarly, it was strange to find basic
dimensions such as “Poor Visibility” violated in 20% and
10% of comma.ai’s inspected failing images respectively.

Findings: We find inconsistencies in NL ODD de-
scriptions and compliance challenges. Analysis re-
veals that 46.4% and 42.4% of data from two DAS
development datasets fall outside their ODDs. How-
ever, alternative datasets contain significant compli-
ant data, with one offering an estimated 189, 165 new
inputs for DAS development.

III. APPROACH

ODD-diLLMma analyzes real-world sensor data with re-
spect to a DAS’s ODD, producing a vector that encodes DAS
compliance against the ODD semantic dimensions.

A. Overview

Figure 4 presents an overview of ODD-diLLMma. The
inputs are a sensor dataset and the NL ODD specification.
Each of the ODD semantic dimensions identified in the
specification are reformulated, either manually or through
an LLM-based Converter, as a yes-or-no question, e.g. “yes
or no, was this taken at night”. Then, all pairs of sensor
inputs and questions are fed to the LLM-based Checker
which generates an answer per pair. The yes-or-no answers
generated by the LLM Checker are then converted to “inside”
or “outside” of the ODD based on the phrasing of the
question, i.e. answering “yes” to a question about an ODD
exclusion results in “outside” for that semantic dimension.
These responses are then encoded into a vector with one
dimension for each semantic dimension. A vector of all
“inside” indicates that the input did not violate the ODD,
while all of the vectors with at least one “outside” illustrate
a possible ODD non-compliance.

B. Large Language Models (LLMs)

ODD-diLLMma leverages LLMs to enable its analysis,
building on their increasing potential to respond to a general
array of inputs approaching human-level fidelity [8]. The
field is rapidly progressing, with OpenAI, Google, and Meta
each releasing LLMs in recent months [30], [31], [32]. LLMs
take as input a context and a prompt and provide as output a
response to the prompt. Advances in multi-modal LLMs have
enabled handling of additional input and output types, such
as images [8], [33], [34]. LLMs with multi-modal capabilities
can, for example, take as context an image and, as a prompt,
be asked to generate a caption for the image, which will
be rendered as a textual output. We show next how ODD-
diLLMma takes advantage of such emerging capabilities.

C. ODD-diLLMma Input and Conversion

ODD-diLLMma takes a set of ODD specifications written
in NL and a sensor dataset collected on multiple scenes,
where each scene includes the sensor readings (e.g., images,
point clouds) that serve as context for the LLM Checker.

As discussed in Section II, publicly available ODDs are
written in NL, often in the form of lists describing the ODD
semantic dimensions. For our approach, we must convert the
specifications into a structured format so the LLM Checker’s
responses can be unambiguously matched with the semantic
dimensions. We transform the list of semantic dimensions
into a series of yes-no questions due to prior demonstrated
success in LLMs responding to this paradigm [35], [36]. This



Fig. 4: ODD-diLLMma pipeline to judge sensor dataset compliance to a NL ODD description.

conversion is a one-time task that can be accomplished either
manually or automatically, e.g. by an LLM-based Converter.

For example, a typical ODD specification might state:
“Many factors can impact the performance of openpilot ALC
and openpilot LDW, causing them to be unable to function as
intended. These include, but are not limited to: Poor visibility
(heavy rain, snow, fog, etc.) or weather conditions that may
interfere with sensor operation...” [9]. This statement would
be reformulated into a question like: “Yes or no, does the
image exhibit poor visibility conditions such as heavy rain,
snow, fog, or other weather conditions that may interfere
with sensor operation?” By translating ODD specifications
into this question format, we streamline the process for
the LLM Checker to analyze sensor data in the context of
these specifications while providing a specific and consistent
interface for collecting data, enhancing the efficiency and
effectiveness of our approach.

D. ODD-diLLMma Compliance Vector Generation

Given a sensor input, and a set of n translated ODD
semantic dimension questions, our approach computes a
single compliance vector describing how the sensor input
complies with the ODD. Each of the n ODD semantic
dimension questions are passed to the LLM Checker with
the sensor input as context as shown in Figure 4.

The LLM Checker is prompted to output either “yes”
or “no”, which is then converted to “Inside ODD” (0),
“Outside ODD” (1), or “Undefined” (-1). Given the inherent
unpredictability of LLM outputs [37], we cannot guarantee
that the LLM Checker will output explicitly and solely “yes”
or “no”. As such, we use a muti-method parsing strategy to
interpret and validate the response. Strategies include looking
directly for “yes” or “no”, applying regular expressions to
identify numbering patterns, and filtering out parts of the
response based on context clues. The parsed responses across
all dimensions are then concatenated to form the compliance
vector which forms the basis of our analysis of datasets to
judge their adherence to the DAS’s ODD.

IV. STUDY

We address two questions on the efficacy of ODD-
diLLMma in analyzing datasets concerning a DAS’s ODD:

RQ1) Can ODD-diLLMma identify in-ODD failures?
RQ2) Does ODD-diLLMma accurately predict compliance
overall and per semantic dimension?

A. Setup

The unit of analysis is comma.ai’s open-source, road-
tested DAS, openpilot, along with 11 dimensions of its ODD,
checking compliance of 3 datasets totaling 85 hours of video.

1) LLM Checkers in ODD-diLLMma: As described in
Section II-B, we first performed a human-annotated method
on 1, 500 images over 11 ODD semantic dimensions to serve
as a baseline to measure the proficiency of current LLMs.

We instantiated ODD-diLLMma with two off-the-shelf
LLMs as checkers to explore multiple approaches for dis-
cerning semantic dimensions within images. One LLM
comes from MiniGPT-4’s [34] integration of the open-source
Vicuna V0 13 billion parameter model [38]. The second
LLM was OpenAI’s proprietary ChatGPT-4V(ision) [33] ac-
cessed by their API. This allowed access to a more advanced
model, but at the cost of ↑$0.02 per image-prompt pair.

Since prompt fine-tuning has been shown to enhance
LLM performance, we used 10 known prompting strate-
gies [39] and ChatGPT-4 to generate 10 alternate sets of
questions. We then used all combinations of strategies and
alternative questions to generate 100 unique prompts which
we evaluated on a 10% sample of our dataset to find the
prompt that yielded LLM responses that best matched the
human annotations measured by F1-score [40], and called
this technique Vicuna+. Conducting this prompt fine-tuning
on ChatGPT-4V was not feasible due to the current daily rate
limitations. Although this prompt fine-tuning allows further
exploration of the potential of LLM performance, it requires
additional calls to the LLM and available human annotations
for portions of the dataset to identify the best prompt.

2) Converting the ODD: We structured each LLM
Checker prompt into two key components: a premise for
context and formatting, and questions that align with the
ODD’s semantic dimensions. The premise outlined the prob-
lem setup, which involved answering questions about an
image taken from a car’s front-facing camera. The questions
were derived from the ODD descriptions on comma.ai’s



Fig. 5: Failures identified by ODD-diLLMma as in ODD.

Fig. 6: In-ODD Failures vs Images Requiring Inspection

website [9], where we manually identified items in the
ODD that could be assessed through an image. We then
rephrased the ODD into structured yes-no questions. This
process also involved breaking down complex ODD state-
ments that encompassed multiple semantic dimensions. For
example, a statement like “many factors can impact... [such
as] sharp curves, on-off ramps, intersections” [9] actually
contains three distinct scenarios: curves, on-off ramps, and
intersections. Each of these was rephrased into a question,
such as “Is the road we are driving on an intersection?” and
included in the converted ODD. This manual translation was
a one-time effort, resulting in a premise-question set prompt.

B. RQ1: Failures within the ODD

Consider a developer tasked with analyzing failure-
inducing images to determine which ones are in ODD
and thus should be further analyzed as they may represent
a latent fault in the system. ODD-diLLMma is the first
approach that can partially automate this process by selecting
a subset of the failure-inducing images for the developer to
review; ODD-diLLMma will provide the developer with a
list of images judged to be in-ODD, and then the developer
will review them to confirm. Thus, the first portion of the
study compares the percentage of true in-ODD inputs found
versus the percentage of inputs the developer reviewed. Fig-
ure 5 showcases failure-inducing images the LLM Checkers
marked as in-ODD across the three datasets. In each case,
we expect the DAS to perform well since the input is in-

ODD, but it does not, highlighting the importance for the
developers to be able to identify such cases.

Figure 6 shows the efficiency gains by automating the
review process. The red dashed line represents the human an-
notation approach baseline, where each input image is man-
ually reviewed. As the human examines a greater portion of
the input set, we assume they would discover a proportionate
amount of failure-inducing inputs that are within the ODD
(reaching 100% when all images are inspected). Techniques
that render scores above this line are more efficient as they
allow the human to find more in-ODD failure-inducing inputs
in the same amount of time. Techniques below this line are
less efficient, requiring humans to spend more time analyzing
failure-inducing inputs to find the same amount in ODD.

We observe several interesting patterns. First, ChatGPT-
4V, across all datasets, is more efficient than the human
annotation approach. At its peak on the comma.ai 2016
dataset, ChatGPT-4V correctly identifies 24.7% of all in-
ODD failure-inducing inputs while requiring the human to
review only 10.0% of images: 24.7%/10.0% = 2.47→ or 147%
improvement in efficiency. By contrast, Vicuna consistently
labels almost all inputs as in ODD, leading to efficiency on
par or slightly below the baseline. However, Vicuna+ is able
to improve upon this performance, showing efficiency over
the baseline on all datasets. Vicuna+ achieves peak efficiency
on comma.ai 2k19 finding 80.3% of failure-inducing inputs
while only requiring the developer to review 62.4% of the
dataset—an improvement of 28.7%. While a lesser gain in
efficiency compared with ChatGPT-4V, Vicuna+ is able to
identify a much larger quantity of in-ODD inputs.

The out-of-the-box success of the commercial ChatGPT-
4V and the improvements shown by simple prompt fine-
tuning on open-source models demonstrates the potential
for ODD-diLLMma to provide utility in automating ODD
compliance checking. Furthermore, while ODD-diLLMma
is the first approach capable of identifying such failure-
inducing inputs at a rate more efficient than humans, it is
quite conservative by design. In order for a failure-inducing
input to be marked in ODD, every semantic dimension
must be compliant; this constraint could be relaxed to only
consider partial ODD compliance. Additionally we note that
the LLMs currently used have had no additional training for
this problem domain, and we assume further improvements
could be made through these methods.

RQ1 Findings: ODD-diLLMma is the first approach
capable of automatically identifying when failures
are in ODD, achieving up to 147% improvement in
efficiency when compared to purely manual analysis,
enabling developers to find 24.7% of failure-causing
images while only analyzing 10.0% of the dataset.

C. RQ2: ODD-diLLMma Accuracy

We analyze ODD-diLLMma’s accuracy using different
LLM Checkers across several dimensions and devising two



Fig. 7: ODD-diLLMma in-ODD Accuracy by LLM

Fig. 8: ODD-diLLMma Semantic Accuracy by LLM

metrics. The first, in-ODD accuracy, measures if the LLM
Checker correctly identified in/out of ODD status per image,
with results in Figure 7. This evaluates the true and false pos-
itive rates for in/out-ODD labeling. The second, “semantic
accuracy,” assesses accuracy over the compliance vector’s
semantic dimensions, showing the LLM Checker’s overall
accuracy; results appear in Figure 8.

In Figure 7, “In-ODD Match” indicates true positive in-
ODD, and “Out-ODD Missed” indicates false positive in-
ODD, i.e. the LLM Checker mislabeled an out of ODD
image as in-ODD. ChatGPT-4V appears conservative in its
labeling of items in-ODD, achieving by far the lowest false
positive in-ODD count and rate, while Vicuna and Vicuna+
are much less conservative, labeling many images as in-
ODD. This helps to explain the RQ1 results, as efficiency is
most increased when the in-ODD true positive to false posi-
tive ratio is high, i.e. it has high in-ODD precision. We find
that ChatGPT-4V has a precision of 294/(294 + 104) = 73.9%
meaning that in 73.9% of cases where ChatGPT-4V says
an image is in-ODD, it is correct. By comparison, Vicuna
has a precision of 573/(573 + 650) = 46.9%, and Vicuna+ of
656/(656 + 514) = 56.1%. Despite ChatGPT-4V achieving the
highest precision, Figure 8 shows that Vicuna and Vicuna+
achieve higher aggregate semantic accuracy with 84.4%,
92.6%, and 94.2% respectively. This performance difference
is largely due to ChatGPT-4V’s high number of “Undefined”
answers where the model would say it was unsure; prompt
refinements to encourage the model to take a stance may
render improvements. Overall, the performance of ODD-
diLLMma is encouraging at the semantic level.

Figure 9 further drills into this accuracy, showing the
performance of each LLM checker per semantic dimension.

Fig. 9: ODD-diLLMma Accuracy per Semantic Dimension

On average, ODD-diLLMma achieves 90.3% accuracy, with
a peak of 99.7% on the “Highly Banked” configuration.
Notably, Vicuna and Vicuna+ demonstrate higher accuracy,
again largely due to the high occurrence of “Undefined”
responses by ChatGPT. Additionally, prompt fine-tuning sig-
nificantly improved Vicuna’s accuracy in the “Bright Light”
dimension and, to a lesser extent, the “Intersection” dimen-
sion. These findings suggest potential avenues for further
enhancements in the LLM Checkers within ODD-diLLMma.

RQ2 Findings: Building from RQ1, ODD-diLLMma
demonstrates high precision in determining if an
input is in ODD, with a maximum precision of
73.9%. ODD-diLLMma also achieves a high ag-
gregate semantic accuracy of up to 94.2%. Further
analysis shows accuracy is high across all semantic
dimensions, achieving an average semantic dimen-
sion accuracy of 90.3% and a maximum accuracy of
99.7%.

V. THREATS TO VALIDITY

Our study’s external validity is affected by the choice
of DAS and datasets. We chose comma.ai’s system for
its open-source nature and real-world use. Yet, each DAS
behaves differently, and future studies with more DASs could
address this. To mitigate dataset selection bias, we chose two
comma.ai datasets and one with public dashcam footage.
The internal validity of our study is largely dependent on
the complexity of the components used, with LLMs being
the most significant. LLMs have varying performance and
are known to have hallucinations [37], both of which could
impact the generality of our study. To capture a wide range
of LLMs, we chose both an open-source and commercial
model. While we used standardized prompt tuning across
these models, certain uncontrollable factors, particularly with
ChatGPT-4V’s blackbox API, remain. Another threat is se-
lection bias in our study due to the classification of 45-degree
images as failing and 1-degree images as passing; while this
threshold represents a significant steering difference, it may
not fully capture true failures. Additionally, the low number
of samples could further introduce bias. The human analysis



of ODD language descriptions and image compliance checks
is subjective and potentially biased, though we mitigated this
through the involvement of multiple participants. Neverthe-
less, we have made our code publicly available to ensure
transparency in our methodology.

VI. CONCLUSION

This work highlights inconsistencies in today’s publicly
available NL ODD descriptions, demonstrating that multiple
datasets used in development do not comply with their own
ODDs. Furthermore, we illustrate the untapped potential of
compliant data that remains unused or wasted due to the lack
of automated compliance checks. We then introduced ODD-
diLLMma, the first approach to automatically check if a
dataset complies with a DAS’s ODD. The approach leverages
advances in LLMs to address the disconnect between ODD
specifications and the datasets that underpin current DAS
development. Our findings indicate that when instantiated
with a sophisticated LLM, ODD-diLLMma makes the chal-
lenge tractable and can outperform the effectiveness of a
purely manual approach. In the future, we will explore fine-
tuning the LLMs to improve their performance, will carry
out additional studies considering more DAS, datasets, and
ODDs, and will develop analyses that can assist developers in
closing the distance between their ODDs and their datasets.
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