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Abstract Artificial intelligence (AI) and machine learning (ML) pose a challenge for achieving science that
is both reproducible and replicable. The challenge is compounded in supervised models that depend on
manually labeled training data, as they introduce additional decision‐making and processes that require
thorough documentation and reporting. We address these limitations by providing an approach to hand labeling
training data for supervised ML that integrates quantitative content analysis (QCA)—a method from social
science research. The QCA approach provides a rigorous and well‐documented hand labeling procedure to
improve the replicability and reproducibility of supervised ML applications in Earth systems science (ESS), as
well as the ability to evaluate them. Specifically, the approach requires (a) the articulation and documentation of
the exact decision‐making process used for assigning hand labels in a “codebook” and (b) an empirical
evaluation of the reliability” of the hand labelers. In this paper, we outline the contributions of QCA to the field,
along with an overview of the general approach. We then provide a case study to further demonstrate how this
framework has and can be applied when developing supervised ML models for applications in ESS. With this
approach, we provide an actionable path forward for addressing ethical considerations and goals outlined by
recent AGU work on ML ethics in ESS.

Plain Language Summary Artificial intelligence and machine learning can make it hard to do
science in a way that can be repeated. This can mean redoing a study in the exact same way to see if you can get
the same or similar results (reproducibility) or trying to use the same study design on a new problem to see if the
results are the same or similar (replicability). These types of scientific repetitions is important for developing
robust knowledge, but is hard to do with certain types of machine learning that rely on data that were categorized
by researchers. The researchers have to make decisions and categorize their data, which the machine learning
algorithm then uses as a guide to make its own decisions. Generally, there is not enough information shared by
the researchers about how these decisions were made to repeat the science or evaluate how good it is. In this
paper, we provide a way to address these shortcomings. The approach and example we offer illustrates how to
(a) create a rulebook that can be shared for how to make decisions and (b) quantitatively measure how consistent
the researchers are at using that rulebook to make their decisions.

1. Introduction
The roles and prevalence of artificial intelligence (AI) and machine learning (ML) have rapidly increased in Earth
systems science (ESS) research. ESS applications of ML range from detection (e.g., Prabhat et al., 2021) to
predictive applications (e.g., Chapman et al., 2022; Ham et al., 2019; Mayer & Barnes, 2022; Weyn et al., 2021).
Many important developments in the ML‐ESS space in particular have been made through supervised ML (e.g.,
Beucler et al., 2021; Lam et al., 2022; Pathak et al., 2022). Supervised ML is an ML approach that requires a
model to be trained using a set of labeled data (e.g., Hastie et al., 2009). Although some of these labels can be
defined through mathematical heuristics, for example, by using climate or weather indices (e.g., the Madden‐
Julian Oscillation index, (Wheeler & Hendon, 2004) or anomaly/normalization methods (e.g., Ham
et al., 2019; Mayer & Barnes, 2021, 2022), some of them, especially image classification tasks, require a human to
assign the labels or to “hand label” the data (e.g., Biard & Kunkel, 2019; Prabhat et al., 2021). We use the term
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“hand labeling” broadly to refer to the process of humans manually labeling the training data for supervised
machine learning. We note this generally covers approaches for categorizing samples or identifying features “by
hand.” Such approaches allow humans to be explicitly involved in defining and identifying the examples for the
algorithm to “learn” from and then have the algorithm complete tasks across large data sets that would be
impractical or infeasible for the team of humans to label on their own (Nasteski, 2017).

Current practices of hand labeling for supervised ML typically involve a member (or subgroup) of the research
team who makes labeling decisions based on their personal judgment. This labeling is often done with little or no
documentation about how the phenomenon or feature to be labeled should be defined and thus how labels should
be assigned, nor how ambiguous cases should be handled. The process outlined here is likely familiar to many
researchers who have used hand labeling and represents a status quo (e.g., Raji et al., 2021; Sambasivan
et al., 2021), with several examples in ESS (e.g., Bond et al., 2007; Gagne et al., 2009; Sobash et al., 2023).
However, given the reliance on personal judgment, which may stem from human intuition, there are no measures
of how consistent multiple labelers were and no clear documentation on the process and logic used to assign
labels.

The general approach used by these studies and others is problematic because it “black‐boxes” essential meth-
odological detail about what the supervised ML model was trained on and the quality of those data. The black‐
boxing of the labeling process limits the reproducibility of the training data and thus the extent to which the
research can be reproduced, replicated, and evaluated by researchers or potential users. From our experience, not
having these details clearly documented with a training procedure makes it difficult for research teams to expand
their training sets or handle personnel changes and turnover on the labeling team. Furthermore, this “status quo”
approach to hand labeling has the potential to introduce undiagnosable error into the training data, which can
propagate into the ML model and its output, as we discuss later on. Such data bias issues are one key element of
broader conversations about and approaches to improving ethics and responsibility of ML models (McGovern
et al., 2022).

In this paper, we introduce quantitative content analysis (QCA) as an approach to increase the reproducibility and
replicability of hand labeling for training supervised ML in ESS applications. With this approach, we provide an
actionable path forward for addressing ethical considerations and goals outlined by recent AGU work on ML
ethics in ESS (Stall et al., 2023). QCA is a method used in social science to systematically and objectively
categorize data using a standardized set of rules, known as a “codebook,” together with assessments of reliability
(Coe & Scacco, 2017). This method provides a more systematic approach for hand labeling training data and a
reporting process for subsequent evaluation and documentation (Franzosi, 2008). In this paper, we identify po-
tential problems with current approaches to hand labeling and describe how QCA can help address them. We then
provide a general overview of the QCA approach, followed by an explanation of applying QCA in our work
developing a supervised ML model for New York State Department of Transportation (NYSDOT) to assess
roadway conditions. We use this case study to further demonstrate how this framework has been and can be
applied when developing supervised ML models for ESS applications.

2. Potential Problems With Hand Labeling Approaches for Supervised ML Models
In ML development and research, there are generally acknowledged issues with inadequate reporting and
documentation on how key decisions were made in model development, which inhibit other researchers' ability to
meaningfully reproduce, replicate, and evaluate others' models (e.g., Gundersen & Kjensmo, 2018; Liu
et al., 2021). Although providing code is a helpful practice for addressing these points, code does not commu-
nicate everything. Historically, code has not been shared for the majority of papers (e.g., Hutson, 2018), and it
does not generally convey anything about how the labeling was done nor if it was done well (Haibe‐Kains
et al., 2020). Making the labeled data sets publicly available is desirable, but it fails to provide the important
details about how the data set was created. Similarly, journal publications are generally the way researchers share
their methodologies and details on their decision making, but articles vary in what is reported with many key
details often excluded.

In this section, we outline two interconnected areas that are relevant to current approaches for hand labeling training
data for supervised ML models and the lack of reporting and communicating the procedures used. The first area of
this section relates to problems with reproducibility and replicability, which have broader scientific implications.
Reproducibility refers to the ability to generate the same (or similar) results of a study using the same approach,
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code, and data as the original study, and replicability refers to finding similar results as a previous study in a new
study employing the same or similar approach but not necessarily the same code or data (NASEM, 2019). Both
reproducibility and replicability are important for advancing science in that they are ways to evaluate the results
presented by a single study and, in some instances, to determine how generalizable a study's findings are or are not.
The second area of this section pertains to the ability of other researchers and potential users to evaluate how
supervised ML models were developed, which focuses more on the extent to which it is possible for experts and
potential users to meaningfully evaluate ML models and the influence of this evaluability (or lack thereof) on their
perceptions and use of models. To be clear, we do not claim these problems are true for all hand labeling campaigns
in ESS, but rather we are highlighting problematic areas that some labeling efforts have or may run into.

2.1. Problems With Reproducibility and Replicability of Hand‐Labeled Supervised ML Models

Issues with methodological transparency and reporting relate to concerns about the reproducibility and replica-
bility of ML (Gundersen & Kjensmo, 2018; Haibe‐Kains et al., 2020; Hutson, 2018; Peng, 2011; Tatman
et al., 2018). For some, reproducibility has been a major concern broadly for research using computational and
ML approaches (e.g., NASEM, 2019; Peng, 2011; Stodden et al., 2016) and specifically within ESS (e.g., Bush
et al., 2021; Nüst & Pebesma, 2021). There is a growing body of literature that is starting to address these concerns
across the ML community (Gundersen et al., 2022; Gundersen & Kjensmo, 2018; Pham et al., 2021; Zhuang
et al., 2021). However, in the ESS domain there is a strong need for improvement on how the reproducibility and
replicability of ML models are addressed in practice. From the computational and ML perspective, many ESS
authors focus largely on reporting and sharing the data, code, workflows, and details on the computing envi-
ronment to increase reproducibility and replicability of such studies. However, for supervised ML models trained
using hand labels to be more reproducible and replicable, detailed information about how hand labels were
defined and assigned must also be included.

Given the importance of the hand labels to the model and its performance (Northcutt et al., 2021), knowing
precisely how the labels were assigned is essential for new researchers to recreate the workflow when attempting
to reproduce the work and for efforts to replicate the results (Bond, 2015; Bond et al., 2007). For reproducibility,
insufficient documentation on labeling procedures inhibit researchers from being able to generate labeled data
from the raw data in the same or even similar way. Different interpretations and perceptions of the labeling task
can introduce errors and biases that will propagate into further errors and differences in the resulting model. If the
labels are included with the training data, relabeling the data would not be needed to assess the reproducibility of
the model architecture. However, if the labeling process is considered part of the research being reproduced, then
it should also be evaluated in a reproducibility experiment. This raises issues of data reproducibility, or concerns
about being able to effectively reproduce the data that were used for a given study (Boulbes et al., 2018; Mobley
et al., 2013; Pawlik et al., 2019; Xu et al., 2022), for the ML research community.

Prior research has addressed similar problems but uses slightly different concepts and approaches, such as the
quality of data annotations (Aroyo & Welty, 2015; Welty et al., 2019) or crowd sourced data (Daniel et al., 2018).
All this work comes together to demonstrate the importance of data quality (Sambasivan et al., 2021), especially
for supervised ML development (Inel & Aroyo, 2019). The reproducibility of the data can affect the ML models in
two ways. First, models with the same architecture that use the same training data set that has been labeled
differently can lead to differences in the model output, which are affected by the quality of the different labeling
(Shamsaliei et al., 2022). Second, because there are many sources of irreproducibility (Gundersen et al., 2022),
models with the same architecture trained with different training data sets aimed to represent the same concepts
may also yield different results. To this end, reproducibility, especially in the context of data, are essential
considerations for ML in ESS research and the main motivation of this paper.

For replicability, if the labeling process is not appropriately documented then efforts to apply the labeling
approach to new domains or data sets will be limited in their ability to claim the research does or does not
generalize to the new context. For ML applications, replicability has been defined as “obtaining consistent results
across studies aimed at answering the same scientific question using new data or other computational methods”
(Adali et al., 2022, p. 5). Putting the definition in the context of our case study, replicability would apply to taking
the same model architecture and training it on data from a different state or getting consistent results for the same
state using a different model architecture. However, what counts as “consistent” and the limits of replicability, as
well as reproducibility, for ML is still largely an active and evolving area of research (NASEM, 2019). Relatedly,
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the lack of reproducibility also then negatively impacts the replicability of that research. For example, if a study
applied a vague, poorly documented labeling scheme and model architecture to a new case and found different
results than the initial study, it would be difficult to assess whether the issue was differences in how labels were
assigned or whether the research overall did not generalize. The ability to reproduce and replicate ML models is a
key part of scientific advancement that requires effective methods to facilitate in practice.

2.2. Problems With Being Able to Evaluate the Development of Supervised ML Models

When key documentation and reporting of the hand labeling process outlined above is lacking, other experts and
potential users cannot meaningfully evaluate the supervised machine learning. Being able to evaluate the quality
and design of a supervised ML model is essential because assigning labels can be a subjective process in which
even experts vary greatly in their execution of the task (Bond, 2015; Bond et al., 2007). Such variation in expert
labeling has been quantified in applications of supervised ML for identifying atmospheric rivers, which required
post hoc methods to account for the variation in the model development (O’Brien et al., 2020).

Furthermore, rigorous and well‐documented hand labeling procedures are essential for evaluating and assessing
quality because this phase can introduce biases that affect the overall model. Researchers have demonstrated how
the often subconscious decisions and biases of developers lead to harmful errors that are then concretized and
hidden behind what some perceive to be “objective” algorithms (e.g., Barocas & Selbst, 2016; Bechmann &
Bowker, 2019). As McGovern et al. (2022) demonstrated, issues with biased or faulty training labels are ones in
which AI can lead to problems in environmental science‐related applications. Put simply, the adage “garbage in,
garbage out” describes the importance of high quality hand labeling for training supervised ML models (Chase
et al., 2022; Filipiak et al., 2023). Generally, inconsistent and poorly defined hand labeling will lead to worse and
more inconsistent performance, whereas more consistent hand labeling for training models will yield better and
more consistent performance (Northcutt et al., 2021). Although performance is not the only factor that influences
users' trust and use of ML models (Wirz, Demuth, et al., 2022), it nonetheless can play an important role, and
having rigorous approaches to enhance model performance with thorough and systematic documentation can
further be helpful.

2.3. Systemic Pressures That Exacerbate Problems With the Reproducibility and Replicability of
Supervised ML Models

The issues of reproducibility and replicability of supervised ML models are exacerbated by pressure to move at an
incredibly fast pace to keep up with ML advances, which often outweighs incentives for taking time to focus on
quality labeling. Trying to stay at the cutting edge of ML is a herculean task for many academics, especially when
competing with other labs and private sector companies with more resources and flexibility. This is reflected to
some degree by the recent calls to pause large scale AI experiments (Bengio et al., 2023), which aim to counteract
the ways competition has prompted the quick publishing of models over focusing on the safety and ethics of these
models. Some research and development teams might not be aware that individual labels are an important aspect of
reproducibility and replicability of supervised ML and, if they are aware, may lack the networks, time, and re-
sources needed to pursue high‐quality collaborative labeling. These points, paired with the often time‐intensive and
tedious nature of hand labeling thousands of examples, often lead researchers to focus on getting the task done
rather than on being deliberate. Public sector and academic researchers are often left under‐resourced and pressured
for time as they attempt to compete with the private sector on ML research (Togelius & Yannakakis, 2023). Such
pressures and stresses have led to a system that is vulnerable to prioritizing speed over robustness and quality.

An excellent demonstration of the importance of such efforts is a study conducted by Lebovitz et al. (2021) that
demonstrated how expert users from the medical domain wanted to know more information about the process
used for hand labeling data and about the expertise of the labelers when deciding whether or not to explore the use
of ML models in a professional context. These experts needed to be able to critically evaluate the labeling process
and the specific labels that were used to train the ML models in order to meaningfully evaluate the model and its
performance. The medical experts expected to have this information before using the ML model. In the next
section we outline how QCA can help address these limitations and provide an approach for more robust
development in ESS moving forward. This example demonstrates how, in the context of hand labeling training
data, approaches that are consistent and well‐documented are important for deploying applications of ML models.
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3. How QCA can Address Limitations and Problems of Training Supervised ML
Models
QCA is a systematic categorization that uses a “codebook” to document and standardize all decisions made in the
hand labeling or coding process and then uses a statistical evaluation to quantify the reliability of the labelers or
“coders.” Quantitative content analysis terminology, such as coders and coding, are similar to words that carry
different meanings in the ML community. Here, we use the term “labelers” instead of coders and “labeling”
instead of coding for clarity, but we provide the QCA terminology for those who are interested in exploring that
literature (see Neuendorf (2016) and Krippendorff (2018) for general QCA instruction and background).

Content analysis has broadly been discussed and applied as a method in social science research for decades (e.g.,
Gerbner, 1958; Kaplan, 1943). Over time, methods for QCA have been debated, evaluated, and refined into a
largely standard approach that involves the development of a codebook and reliability assessments (e.g., Krip-
pendorff, 2018; Neuendorf, 2016). Interestingly, over 80 years ago, Berelson (1952) noted the applicability of
content analysis to the natural sciences, “To the extent that historians, students, of literature, lawyers, economists,
anthropologists, and even natural scientists (emphasis added) deal with the materials of communication–and all
of them do, to some extent–content analysis procedures may be useful” (Berelson, 1952, p. 9).

QCA has the potential to address the limitations described above with supervised ML in the ESS by providing clear,
detailed documentation on the decision‐making process via a codebook and by quantifying the reliability of the
hand labelers. The codebook and reliability metrics can be published with the ML model to provide more trans-
parency in the underlying data set used to train the models (Figure 1). This approach expands efforts to address
human bias in labeling data (e.g., Inel & Aroyo, 2019; Welty et al., 2019) by leveraging QCA as a structured way of
ensuring reliability among labelers that has a strong grounding in social science. We further contribute to this space
by providing a detailed, step‐by‐step process that is tailored specifically for ESS researchers.

In this section, we provide a high‐level overview of the core components of QCA—i.e., of codebooks, sampling
data for labeling, and reliability metrics—and summarize several points for ML and ESS scientists to consider
before beginning the labeling process. This section is meant to introduce readers generally to the process and main
ideas, and then we provide a concrete example from our work in Section 4.

3.1. Codebooks: QCA Provides a Systematic and Transparent Approach for Hand Labeling

The first major component of QCA is a codebook, which is a document that clearly articulates the labeling process
and standardizes the decisions to be made for assigning each label. The development of the codebook is iterative

Figure 1. Conceptual diagram of how QCA addresses weaknesses of the hand labeling status quo (a) and can help make
supervised ML more reproducible and replicable (b).
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and generally time‐intensive because concretizing exactly what to label data and how requires externalizing
detailed information and adjudicating opinions on how labeling should be done.

Importantly, developing a codebook requires a great deal of definitional work, meaning time spent defining and
identifying exactly what concepts and phenomena are of interest, what the set of possible labels are, and how each
label is identified (Benoit, 2014). The difficulty of creating a codebook and the codebook's complexity depends on
the task at hand. The phenomena of interest may be either manifest or latent. Manifest content refers to concrete
concepts that are clearly present or absent, whereas latent content refers to more abstract concepts that cannot be
measured directly but instead are identified by several indicators (Riffe et al., 2018). For instance, if a goal is to
hand‐label the presence or absence of water in typically dry streambeds based on high‐quality webcam images,
“water” is a relatively manifest phenomenon, and thus the codebook would require minimal information about
how to identify it. Conversely, if a goal is to hand‐label a tornadic signature using radar data, “tornadic signature”
is a latent phenomenon, and thus the codebook would require more explanations, examples, and rules for what
indicators (e.g., hook echo, gate‐to‐gate velocity couplet) hand‐labelers should look for to identify it. In both
cases, the first step is to develop the codebook to articulate all the information that one should need to label the
data as well as whether specialized knowledge may be needed of labelers or if the codebook is general enough that
anyone should be able to use it.

Although individual codebooks vary, they should all define the unit of analysis, or what exactly is being labeled,
as well as how labels are to be assigned to each of these “units.” If you were training your model on images of the
streambed, the unit of analysis would be images of the streambed for your hand labeling. Units will vary greatly
from model to model and must be clearly articulated. The codebook should provide a list of possible labels,
descriptions of each label, and how each label should be identified, using examples when possible. Each option
should be listed and described in sufficient detail, providing examples when possible. Labeling options must be
exhaustive, which means there must be a label for each sample, even if this means having an “other” label option.
The codebook also must clarify if labels are mutually exclusive, meaning only one label can be assigned to each
sample, or if multiple labels can be assigned to each one. Note, in the rest of the paper we will refer to “units of
analysis” as “samples” to be consistent with ML terminology. An additional option when labeling is to use a
labeling certainty metric that labelers can use to rate their certainty in assigning a specific label that can be further
factored into the model training process (e.g., O’Brien et al., 2020).

In sum, the goal of developing the codebook is to explicate the purpose of what is being coded for, why, and how.
In practice, this will mean that, ideally, someone newly joining the project could easily assign labels consistent
with the original team by using the codebook. The output of this process is a document, the codebook, that can be
published with the model or associated paper (see Figure 1b), which increases the reproducibility and replicability
of the work, as well as the ability to evaluate it. For an example of a published codebook, see Wirz, Cains
et al. (2022). It is important to allow sufficient time to develop the codebook because the first draft rarely, if ever,
sufficiently captures the needed detail for easy and consistent hand labeling across a team. Typically when the
first draft of the codebook is put to the test, the team finds ambiguities in the wording or that it does not capture
some part of the labeling process. The labeling team should then work together to resolve disagreements and
confusion by adding clarifications, rules, and more examples to the codebook as needed until the codebook and
labeling team are reliable (see Section 3.3).

3.2. Sampling: QCA Requires a Deliberate and Documented Process for Samples to Label

Sampling, or the process by which sets of samples are drawn from a population of interest, is a key factor for
training supervised ML models, and thus it is also important for the QCA hand labeling process. Just as the
approach by which samples are selected when training an ML model affects the model's performance, the
sampling for reliability trials will also affect the subsequent model. As we will discuss in the next Section 3.3, you
will need sets of samples to test your codebook and assess the reliability of your labeling process and team. These
reliability trial samples should not be part of your final data sets for model training or evaluation unless the
samples are labeled again by one of the certified labelers after the group has reached inter‐coder reliability, so that
samples that have been reviewed and discussed for codebook development do not bias the training data
(Neuendorf, 2016).

Sampling techniques can vary significantly and may involve random selection or purposeful methods,
among other possibilities. The choice of sampling technique differs by project, and thus there is not one
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standard approach to follow. However, we generally recommend random sampling to better capture a more
full range of variance and potential types of samples from your data, to represent the true variance of the
underlying data the model will ultimately be analyzing. However, from the model training perspective,
random sampling is problematic for many geospatial ESS applications because autocorrelation between
neighboring data points can artificially inflate skill (e.g., Meyer et al., 2018, 2019; Valavi et al., 2019). To
this point, we note that the sampling process for the reliability trials does not have to be the same approach
used for the model training sampling. For example, one could use a random sampling approach to achieve
reliability and then use a different sampling approach to generate the samples for the labeling team to then
label for training the model.

Another sampling option for the reliability trials is purposive sampling, which may be necessary if your classes
are highly unbalanced (your data are not evenly distributed across the different classes but rather have some
classes with a much larger proportion of the data than others). This means specifically targeting certain types of
samples from the training set to supplement your random sampling. However, it is crucial to be very deliberate
about how this sampling is done and to report the details in your model documentation, as it can influence the
results of your reliability trial. Note that how any undersampling or oversampling is done may introduce bias in
the labeling process, so work to select these targeted samples to have as much variation as possible.

3.3. Reliability: QCA Provides Standardized Measures of How Consistent the Labelers Are at the
Labeling Task

In QCA, reliability has been broadly defined as how stable individual labelers are (i.e., consistent over time) and
how reproducible and replicable the labeling scheme is overall (Krippendorff, 2018). In other words, reliability is
a way for us to assess how “good” our labeling really is and whether or not others should be able to repeat what we
have done. Reliability in this context also refers to how consistently the labelers are able to apply the codebook
when labeling. Although this may seem like a relatively straightforward point, the concept of reliability and how it
should be assessed have been some of the most widely discussed topics in the QCA literature (e.g., Hayes &
Krippendorff, 2007; Krippendorff, 2004; Lacy et al., 2015; Lombard et al., 2004; Lovejoy et al., 2016). These
important debates are highly technical and are the foundation for leading practices in social science research. In
this section, we synthesize the main points from this literature and adapt them in recommendations and con-
siderations for ESS applications.

3.3.1. Reliability Trials

The main idea for reliability in QCA is that there must be a quantitative evaluation of agreement among the entire
labeling team to assess their consistency with each in applying the codebook before they officially label any data.
The evaluation is done through what are called reliability trials, which involve each member of the labeling team
independently labeling the same set of practice samples (remember these samples are ideally drawn from data that
will not be used for training the model) and then applying statistical methods to assess the reliability among the
labelers. Independence is key here because these assessments are meant to represent what labelers will do if and
when they are on their own labeling data to be used for training later on. The exact nature of this task will vary
depending on what the unit of analysis is and the complexity of the labeling process. Nonetheless, you must set a
number of samples the team will all label and generate these samples using the sampling approach you designated
in the codebook (see Section 3.2). When applying QCA for hand labeling in ESS, we recommend (a) selecting the
number of samples that a labeler could reasonably label in roughly 1 hr and (b) randomly sampling when possible
(e.g., with approximately balanced classes where data are roughly evenly distributed across all classes) and
sampling purposefully otherwise (e.g., with unbalanced classes).

Our 1 hr rule is a loose standard that generalizes well to a range of labeling tasks, but it also comes from our ex-
periences and considerations for label quality. Assigning too many samples to label independently runs the risk of
labelers either feeling rushed to complete the task or experiencing coding fatigue partway through the task. Both
rushing and fatigue negatively affect the quality of the labeling, which tends to result in the need for more reliability
trials and, in turn, more rushing and fatigue. Conversely, having too few samples to label makes it challenging to
meaningfully assess reliability of the labeling. Although future work may develop more concrete guidelines and
leading practices, we provide this standard for research and development teams to use as a starting point and adapt
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as needed for their respective projects. However, a key point here, and for QCA in general, is to record and report
whatever procedure was used in the documentation and publications associated with the final model.

Once you have a target number of samples for your reliability trial, prepare the samples for everyone in the
reliability trial to label. If you were randomly sampling and determined that 50 samples was the right number to
label for the reliability training, you would pull a random subset of 50 samples from the full unlabeled data set.
Then each labeler would use the codebook to label their own copy of these 50 samples independently, that is, on
their own, without talking to one another nor seeing each others' labels. After this process, the labeling team
should assess their sample for how often each of the labels were used and discuss whether or not the sample gave
sufficient practice for all categories. If some labels were not used or only came up a few times, consider a
purposive sampling approach for the next trial (see Section 3.2 for considerations on purposive sampling).

3.3.2. Reliability Measures and Reporting

After completing a reliability trial, the next step is to empirically evaluate the trial results. There are multiple
statistical measures that can be applied to the results of the trial to assess reliability, which has led to debates about
which are the best to use. Krippendorff's alpha (KA) is widely considered to be the gold standard reliability metric
(Hayes & Krippendorff, 2007; Krippendorff, 2004, 2018; Lacy et al., 2015; Neuendorf, 2016). KA is a strong
option because it works with a range of data types (e.g., categorical, ordinal), can incorporate any number of
coders, and allows for missing data (e.g., unlabeled samples). See Hayes and Krippendorff (2007) for an overview
of common approaches and justification for using KA.

There are easy and free tools available for calculating intercoder reliability measures. We recommend using the
materials created by Freelon, which provide helpful documentation on how to prepare and analyze the data, along
with an online tool to run the calculations (Freelon, 2010, 2013). Using these tools, you will then get a value for
each of the reliability measures for your given reliability metric. Generally, the goal is 0.8 KA or higher
(Krippendorff, 2004), but above 0.7 can be justified if the research is exploratory or an especially tricky, latent
concept (Lacy et al., 2015). Some argue that your exact threshold should be related to the stakes of the hand
labeling and that there is some flexibility in these values (Krippendorff, 2004) and not a set standard for cutoffs
(Neuendorf, 2016). Importantly, note that in order to calculate these measures, your labeling team and reliability
trials must include at least two labelers. Even if the second labeler does not do any labeling after the final reli-
ability trial, the second person is needed to meaningfully assess reliability.

If your results are above the thresholds outlined here or that you set and justified for your project, then you are
ready to begin labeling your training data. It is important to emphasize that, after the labeling team has reached
acceptable reliability, each person is “certified” to label samples on their own. This is because the labelers have
demonstrated consistent application of the codebook—that is, are reliable and consistent human “instruments”—
and thus do not need to label in teams or label the same samples as a cross check. It is important to document and
report the number of trials and information about the trials, your reliability thresholds, and your final reliability
scores. Providing this information in publications and documentation is essential, as it allows others to evaluate
your labeling process. If, however, your reliability results are not above the thresholds, you will need to revise,
review, and retest through a process we discuss in more detail in Section 4.1.

Lastly, we recommend making a plan and policy if the labeling will take place over longer than a few months or
will require adding in new team members. For longer projects, we recommend checking for drift (i.e., labelers
who were once reliable are no longer so, often after a long break in labeling) among the labelers by conducting
another reliability trial with the full team every few months to make sure the team is still labeling consistently. We
did this for the NYSDOT case study project we describe below to ensure we were still calibrated after a few month
pause on labeling. When adding new labelers, we recommend the new member work with one current member to
be trained on the codebook and labeling process before conducting a reliability trial with both the new and current
member. Ideally, these two labelers can reach reliability without needing to change the codebook. If they are able
to do this, the new labeler is sufficiently reliable and is ready to label images. If not, then the labeling team must
come back together and assess the situation. If the inability to reach reliability is because of points not reflected in
the codebook, this should be addressed in an updated version of the codebook. If the issue is a lack of essential
background knowledge or experience, this should also be clarified in an updated version of the codebook. In the
next section we take these high‐level ideas and concretize them with an example from our work.
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4. How to Apply QCA to Hand Labeling for the Training of Supervised Machine
Learning Models: A Case Study
Thus far, we have outlined the need for QCA for hand labeling supervised ML training data, and we have provided
a broad overview of the core concepts underlying the method. In this section, we build on this foundation and
describe the process, or the how, more concretely. We provide a step‐by‐step process and suggest leading
practices using an example from our team's work (led by co‐author Sutter). Our goal is for this section to provide
the basis for others to design and implement QCA for their own hand labeling projects. We begin with an
overview of the case study project's goals and background to situate the reader.

The NYSDOT has a network of about 2400 live traffic cameras throughout the state that are used by NYSDOT
specialists as a method of determining road surface conditions during the winter. However, monitoring cameras is
a time‐consuming process, and, given the large number of camera images, the NYSDOT is interested in using ML
methods to automate this process. The camera network and NYSDOT's current winter road condition classifi-
cation are publicly available at 511ny.org (NYSDOT, 2023).

The goal of this project was to use the camera images to predict a specific set of road conditions, and thus a fully‐
supervised machine learning approach was developed. This required a large hand‐labeled data set of camera
images for each road condition class. Specifically, a convolutional neural network was trained to predict road
surface conditions from a set of labeled road camera images. The xCITE lab at the University of Albany's At-
mospheric Sciences Research Center has an archive of the camera images starting in January 2022 (xCITE, 2023).
From the xCITE archive of images, we pulled samples from good quality, well‐lit cameras for hand‐labeling. The
New York State Mesonet (NYSM), a network of weather stations (Brotzge et al., 2020), was also used to help
sample images by pulling examples during varying weather conditions and to provide additional meteorological
information for the hand labelers during the image labeling process.

4.1. Steps for Implementing QCA for Hand Labeling to Train Supervised ML

In this section, we provide six steps for implementing QCA into a supervised ML hand labeling project. Each step
is listed in the headings of Table 1 coupled with guiding questions for labeling teams to consider for each step. We
detail each step below in the context of our NYSDOT image labeling case study to make the process clearer. The
guiding questions and associated descriptions are guidelines and templates to build from and thus will likely need
to be modified and adjusted to fit each team's project. Regardless of whether any adjustments are made to our
suggested guidelines, it is important to document the process and ensure it is clearly communicated in publi-
cations associated with the resulting model. We also note there is a great deal of work that must take place before
these steps begin, such as problem identification, defining the scope of the project, assessing the feasibility of the
approach, etc. We do not cover this phase here, but rather provide a guide for those who have already determined
hand labeling is needed to train their supervised ML model. Our aim with this case study is that it provides a
concrete application but has accompanying recommendations and commentary to make the steps more gener-
alizable and easier to transfer to other projects.

4.1.1. Step 1: Identify Goals and Requirements for Training the Model

The ML model for the case study was designed to use images labeled as one of a given set of road surface
conditions (RSCs). The images come specifically from the NYSDOT 511NY cameras, which are positioned
along roadways throughout the state. Our unit of analysis for labeling was a single image. We anticipated needing
several thousand images, so we brought together a team of six labelers to distribute the labeling work.

4.1.2. Step 2: Develop the Initial Codebook With Label Descriptions and Rules

For this effort, the team must develop the codebook by determining and articulating all possible labels and how
they should be applied. This project was designed to help NYSDOT officials by providing an automated way to
assess road surface conditions in their operational setting. To this aim, the leads of this project met with the
NYSDOT to establish how the model could be used operationally, which translated to what labeling classes we
needed. Our partners at the NYSDOT identified four key categorizations of RSCs that were important to them for
roadway management: dry, wet, snow, and severe snow. These categories are currently used operationally (with a
modification in the ML model to exclude icy conditions which cannot be identified in images) and served as the
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Table 1
Overview of the Steps for Implementing QCA for Hand Labeling and Guiding Questions to Consider Throughout the Approach
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foundation for our labeling scheme (NYSDOT, 2023). For our set of labeling classes, we augmented these
categories with two more that we want the model to predict: poor visibility and obstructed. We added these two
categories to help identify when conditions blocked the ability to see the road, which may end up being a helpful
tool for NYSDOT.

Poor visibility covered cases like fog and dense precipitation blocking the camera's view, whereas obstructed
covered issues with the camera like the image being over‐exposed or when the camera was not facing the
roadway. The final category for labeling we included was uncertain, not to be included in model training. This
label was reserved for cases the codebook did not cover or where the labeling task was extremely difficult. We
used this label to identify weak points in the codebook and instances where discussion was needed. In our trials,
this category was very rarely used. We determined and developed our codebook so that the labels were mutually
exclusive and only one label could be assigned to each image.

With the suite of labeling options identified, we then developed a preliminary codebook that defined each of
these classes, provided examples, and instructions for how and when to apply each label. We provide a brief
overview of how we defined each label with an associated example in Table 2. Our final codebook and the
images we coded for the reliability trial are available at Sutter et al. (2023), but note this is the final version that
took five rounds of reliability trials and discussions to solidify. Our initial version was much simpler and less
comprehensive. As we shall discuss in the next sections, we added and clarified many rules to achieve reli-
ability and strengthen the codebook. For example, we added the use of NYSM data (e.g., time since last
precipitation, current snow depth, temperature, etc.), to aid in our labeling decision‐making, and these details
are reflected in the final codebook. The final version reflects the updated rules and guidelines that we used to
achieve reliability.

4.1.3. Step 3: Prepare an Approach for Reliability Assessment

For our reliability trials we used approximately 50 images per trial, which satisfied the guideline we described in
Section 3.3.1 of about one focused hour of labeling. We found this number to be sufficient for assessing reliability
while also not forcing labelers to rush or become fatigued. We used both random and purposive sampling for these
trials, but largely used purposive sampling because random sampling resulted in samples that were primarily dry.
This is intuitive given the majority of the time roads are dry, but not ideal for assessing reliability on the other
classes. To this aim, the lead developer of the model (Sutter, who was also a labeler) strategically sampled from
time periods within the data set that were likely to have different forms and intensities of precipitation. The other
team members were unaware of how this sampling was done and how many images were selected from each
purposive sampling effort to avoid priming and anchoring biases. This process ensured more examples from each
label type, as well as the transitions between them (i.e., from wet to dry or from wet to snow). Ideally, the
researcher doing the purposive sampling should not also be a labeler because the sampling process may bias their
labeling. However, if the sampling information is kept hidden from the rest of the team, biases should be realized
during the reliability trials.

Our approach to labeling and logging our respective labels was very simple. We compiled a spreadsheet that
contained a column with links to each of the sampled images and one column for the labeler to list their label. To
make calculating reliability easier, we numbered the labels (from 1 to 7) and instructed the labeling team to enter
in the number associated with the label they assigned. The spreadsheet also contained optional columns for notes/
comments for the labeler to flag any examples they wanted to discuss with the full group after the trial (see step 5).
We then duplicated the spreadsheet and made a version for each coder.

We established a KA of 0.8 or higher as our threshold for reliability. We followed this standard from social
science naively thinking the task of labeling road surfaces would be straightforward, however, had we realized the
complexity of this process we likely would have set that threshold at 0.7. While KA was our determinate reli-
ability statistic, we also calculated percent agreement, Fleiss Kappa, and Cohen's Kappa because they are
automatically calculated in the online tool created by Freelon, 2010, 2013. Using this tool was incredibly simple.
We copied and pasted each labeler's final labels into one csv file and uploaded to Freelon's site to get the
calculated values.
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Table 2
Overview of the Road Survey Condition Label Classes, Definitions, and Examples for the NYSDOT Case Study

Note. The red outlines indicate the area of focus for labeling decisions.
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4.1.4. Step 4: Launch a Reliability Trial and Evaluate Reliability With the Drafted Codebook

Before beginning each trial, we reviewed the codebook and any changes we had made as a group, which was
followed by time for questions and clarifications. We reviewed a few images together (using examples from past
trials if possible) and discussed how we would label them as a group to make sure we were all up to speed and
understood the codebook. The process of reviewing and testing the codebook as a group is what we refer to as a
spin‐up session. The spin‐up session can be a great way to assess potential issues with the codebook and make
sure all labelers are well‐calibrated before a reliability trial. We then reviewed the timeline, reminded labelers this
was to be done individually (without consulting one another or anything beyond the codebook), and agreed upon a
timeline that worked for the whole labeling team. After all labelers completed the reliability trial, we calculated
reliability measures using the process detailed in Step 3. If the results met our threshold, we moved to Step 6. If
they were not, as was the case for the first 4 trials, we moved to Step 5 to work on strengthening the codebook.

4.1.5. Step 5: Review Disagreements and Refine the Codebook as Needed

If a trial does not meet the reliability threshold, we recommend one person review the aggregated results to
identify problematic images and any patterns in the disagreements. Then the full labeling team should meet to first
offer their impressions and challenges from the labeling process, then they should review the difficult cases
identified ahead of time. We repeated this step several times as we faced new examples and challenging images to
label. Through this process, the labeling team worked to clarify wording, add/remove examples, and add/refine
rules in the codebook as needed. The goal here is to address patterns rather than update the codebook for every
disagreement. For example, an important point to address would be two labelers consistently applying the same
rule differently throughout the labeling process. Addressing an issue that affects many labels is the goal, rather
than making new rules that only apply to one rare image type. Finding this balance can be challenging and will
likely take some practice to find. The overall goal is to make sure the codebook is general and covers the whole
suite of potential samples to label well, rather than hyper‐specializing it to capture each image in the entire data set
with a unique rule. The latter approach can be tempting, but often results in a codebook that is too long and dense
to be applied easily. Essentially, the goal is to avoid “overfitting” your codebook, just like with an ML model.
After this process, repeat Step 4. For our team, it took four rounds of labeling, discussing agreements and dis-
agreements, updating the codebook and then retesting before we were able to move on to Step 6 after completing
Step 4 successfully.

4.1.6. Step 6: Finalize the Codebook and Reliability Documentation

When you have reached your reliability threshold there are a few last details to consider. First, reflect with the
labeling team and make sure that all information needed to effectively label is reflected in the codebook, ideally so
that someone unfamiliar with the project could use it easily to label. Walk through the document and make sure
everything is clear, well‐formatted, and ready to be shared. You should also document the reliability trial process,
detailing the specific information covered in Steps 1–4, such as the number of reliability trials, number of samples
per trial, and the sampling approach taken for the trials. You also want to be sure to log the final reliability
measures. For the NYSDOT project, the group achieved a KA value of 0.888. All these details should be rep-
resented in any documentation or publication associated with the model, which we will do when the project is
complete. A key part of the process is to make a plan for how and where you will publish these details and the
codebook. An easy way to publish the codebook is to post it in a repository that provides a DOI, such as Zenodo
(e.g., Wirz, Cains, et al., 2022), or include it as an appendix with your publications. At this point, all those who
achieved reliability are ready to label data that can be used in training the supervised ML model. Since reliability
has been assessed, they do not need to label in teams and can label data independently.

The case study outlined in this section demonstrates how the concepts and QCA approach can be applied in
practice. However, we note this example is relatively simple compared to other potential labeling tasks in the ESS
domain, such as labeling for image segmentation. Further work and applications will be needed to continue to
refine this approach for a range of contexts. Nonetheless, preliminary work done by the same research team using
the same approach demonstrated the human labeling team achieved higher performance using the QCA approach
than a model trained using a rain gauge when classifying precipitation in images (Przybylo, 2023). Our codebook
also has already demonstrated success in the realm of replicability. We have used the approach to replicate the
labeling process on completely new cameras in different regions of NY state that have varying camera quality,
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lighting, positioning, and backgrounds. Including these additional cameras in the training data set is helpful for
building a model that can eventually generalize well to thousands of other cameras that realistically have differing
levels of quality. Additionally, the codebook and detailed QCA process proved successful within our labeling
group through our ability to achieve ICR again, months apart, after experiencing labeling drift. This shows
preliminary evidence for how the QCA builds reproducibility as well.

5. Conclusion
The QCA‐based approach we have outlined reduces the subjectivity of hand labeling by creating a codebook that
outlines the exact decision‐making rules for assigning labels and then empirically evaluates the reliability of
labelers in adhering to those rules. This process and the information it provides also increase the reproducibility
andreplicability of the ML model. Moreover, the certification of labelers via the reliability trials is more resource
efficient because it allows labeling teams to divide and conquer, rather than everyone having to label all of the
same samples to check for consistency. The QCA approach allows the research team to identify and address
inconsistencies among labelers a priori through reliability assessments. Although QCA does work to eliminate
subjectivity from the labeling process, we also note that the end goal is not necessarily perfect agreement among
the labelers but rather a baseline for reliability among the labeling team that can be quantified and communicated.
This process may take more time in the initial phases of the project, and obtaining sufficient reliability might
prove to be challenging. Nonetheless, we argue the additional rigor, transparency, and reproducibility are well
worth the effort. To this end, we have provided an actionable path forward for addressing ethical considerations
and goals outlined by recent AGU work on ML ethics in ESS (Stall et al., 2023).

5.1. A Foundation for Future Research on Potential Users' Perceptions of ML

The use of QCA also poses potentially fruitful areas for research about users' perceptions of how ML models are
developed. More reproducible, replicable, and evaluable hand labeling of training data for supervised ML models
may have implications for how potential users and affected communities perceive the overall ML system. First,
having clear documentation on the labeling process and statistical measures of how reliable the hand labeling
teams were improves the transparency of the overall model. This transparency allows potential users, as well as
other researchers, to more meaningfully evaluate the foundation of what the model was trained to do by being able
to interrogate the specific decision‐making processes that went into the hand labeling (e.g., Haibe‐Kains
et al., 2020; Lebovitz et al., 2021). Many have argued that transparency and documentation are key for devel-
oping “trustworthy AI” (e.g., Arnold et al., 2018; Ashoori & Weisz, 2019). Although ML trustworthiness is a
complex and context‐dependent concept (Wirz, Demuth, et al., 2022), methodological transparency may be
important for how users and other researchers assess ML trustworthiness.

Further, hand‐labeled also represent an interesting intersection of human and automation biases, which have
implications for how potential users evaluate the subsequent ML systems. Research has shown some individuals
tend to view humans as being more biased than automated systems (e.g., Dzindolet et al., 2003; Muir, 1987),
while others are skeptical of automation and prefer human involvement or oversight (Ashoori & Weisz, 2019;
Kern et al., 2022). Hand‐labeled supervised ML models are a potential way to appeal to both groups, if the la-
beling is done well. Having humans involved in the labeling of training materials may assuage concerns of ML
running away “unchecked” in a domain or system that it may not understand. For example, when National
Weather Service forecasters explored a non‐operational severe convective weather ML product, several fore-
casters noted that having humans involved in hand‐labeling the algorithm training data set increased the trust-
worthiness of the product for them, “assuming the humans know what they're doing” (Cains et al., 2023). When
addressing such concerns related to the human labelers, having clear documentation and statistical measures of
reliability for the hand labeling process may assuage the concerns about human subjectivity or ignorance
influencing an otherwise more objective approach. However more empirical research is needed to examine these
dynamics and potential implications.

5.2. Additional Contributions of QCA to Supervised ML Workflows

From our experiences applying QCA in ESS contexts, we have also noted a few additional benefits of this
approach. First, the robust documentation included in the codebook made it much easier to transfer leadership of a
project and to spin up new members of the team. Having a resource that clearly articulated the labeling goals,
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definitions, and procedures that everyone was working from, rather than an abstract set of undocumented shared
ideas and experiences, was essential for smooth onboarding. This is especially relevant in many research settings
where students and postdocs may move on to new opportunities before work is completed. Second, the articu-
lation process required in making the codebook facilitated co‐development with the target end users for the
NYSDOT project. We reached out to members of the NYSDOT to ask questions and facilitate discussions to
ensure our definitions and labeling scheme met their expectations, practices, and operational needs. Through this
process, we better tailored the model to the NYSDOT's needs because we had to commit time and thought into
exactly how we were defining each of the labeling classes. In turn, this use‐inspired process then helped us put
more thought into the design and goals of the model before it was designed and trained. Researchers in this
competitive field may find it tempting to respond to the pressure and pace of ML research by emphasizing speed
and efficiency over transparency and documentation. However, the deeply interdisciplinary method we provide
represents an opportunity for ESS to pave the way by establishing the expectation for reproducibility and
replicability of ML models in the context of hand‐labeled supervised ML models.
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