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1. Introduction

The dynamics between groups and operator algebras encompass a vast literature in 

the study of operator algebras. They trace back to the pioneering work of Murray and 

von Neumann [26] where they encode group dynamics as operators on Hilbert spaces. In 

its simplest form, a C*-dynamical system arises from a group acting by ∗-automorphisms 

on a C*-algebra. This system is then encoded by the C*-crossed product, where both 

the group and the C*-algebra are represented as operators on a Hilbert space. One may 

refer to Williams’s book [36] for a thorough discussion of the subject.

The C*-crossed product construction bears a strong resemblance to the semi-direct 

product of groups, in which one group H acts on another group G by automorphisms. 

Their semi-direct product G ⋊ H is a group that encodes both groups and their inter-

action. But what happens if the group G also acts on H? This leads to a more general 

construction called the Zappa–Szép product of groups (also known as bicrossed product

or knit product), which encodes a two-way action between two groups. Such a two-way 

action may arise when a group K contains two subgroups H, G such that every element 

k ∈ K decomposes uniquely as a product k = gh where g ∈ G, h ∈ H (equivalently, 

K = G · H and G ∩ H = {e}). In this case, for each g ∈ G and h ∈ H, there exists 

unique g′ ∈ G and h′ ∈ H such that hg = g′h′. This leads to an H-action on G via 

(h, g) �→ g′ and a G-action on H via (h, g) �→ h′. These two actions need to satisfy 

certain compatibility conditions, and one may recover the enveloping group K as the 

Zappa–Szép product group G �� H from these compatible actions.

In the realm of operator algebras, the analogous study of Zappa–Szép products is 

scarce. Representations of Zappa–Szép products of matched pairs of groupoids were 

studied in [1]. The Zappa–Szép product of étale groupoids and their C*-algebras were 

first studied in [2]. Recently, we defined and studied an operator algebraic analogue 

of such products [6]. Just like the C*-crossed product A ⋊ H is an operator algebraic 

analogue of the semi-direct product of two groups G ⋊ H, so is our construction an 

analogue of the Zappa–Szép product G �� H of two groupoids. To achieve this, the 

operator algebraic data has to ‘act’ on the groupoid H; this is achieved by replacing the 

C*-algebra A by a Fell bundle B → G on which the groupoid H acts in an appropriate 

sense to form the Fell bundle B �� H → G �� H. The resulting Fell bundle C*-algebra 

of these Zappa–Szép dynamics is a generalization of the classical C*-crossed product, 

and we proved that several properties of the C*-crossed product hold similarly in the 

Zappa–Szép construction.

Given the vast literature on C*-dynamical systems, our study unlocks a trove of 

intriguing questions on what properties of C*-crossed products can be generalized to 

the Zappa–Szép product context. In this paper, we prove a Zappa–Szép analogue of the 

imprimitivity theorems arising from groupoid actions. Imprimitivity theorems originated 

from Mackey’s study on inducing representations of a locally compact group G from its 

closed subgroups and giving criteria to identify such representations, known as Mackey’s 

machine [21]. Along with the rapid development of the C*-algebra theory, Mackey’s 
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imprimitivity theorems were soon recast in terms of C*-algebras in the early 1970s by 

Rieffel [30,31], where he introduced the notion of Morita equivalence for C*-algebras [32]. 

One may refer to Rosenberg’s survey paper [33] on the rich history of this subject. Since 

then, the theory of imprimitivity theorems and Morita equivalence among C*-algebras 

has been further developed. For imprimitivity theorems arising from group dynamics, 

notable works include Green’s [12] and Raeburn’s [28] symmetric imprimitivity theorems. 

One may refer to [36, Chapter 4] for various versions and applications of these results. 

In [22], Muhly, Renault, and Williams introduced the notion of equivalent groupoids

which implies the existence of a Morita equivalence between their C*-algebras. This 

was generalized to Fell bundles by Muhly and Williams in [23] (see also [39]). Applying 

the technique developed by Muhly and Williams, Kaliszewski et al. [17] recovered and 

extended “all known imprimitivity theorems involving groups” by using a semi-direct 

product construction of Fell bundles by locally compact groups.

The main theorem of this paper (Theorem 6.1) further generalizes the imprimitiv-

ity theorem of Kaliszewski et al. beyond the realm of semi-direct products and to the 

realm of Zappa–Szép products. This opens a new world of study on the Zappa–Szép-type 

two-way interactions between groupoids and Fell bundles.

We briefly outline the key ideas and constructions of this paper. We first introduce 

the notion of self-similar actions of a groupoid H on another groupoid X in Section 2

and construct their self-similar product groupoid X �� H. We adopted this terminology 

in order to differentiate our new construction from earlier, more restrictive Zappa–Szép 

product constructions [1,2]: we no longer require the groupoids to have the same unit 

space. Rather, the groupoids are connected using a momentum map, similar to the idea 

of a semi-direct product of groupoids in [15]. This allows us to study many interesting 

examples such as group actions on groupoids. We also removed the requirement imposed 

in our earlier paper [6] that the groupoids be étale: unless stated otherwise, all groupoids 

are merely assumed to be locally compact Hausdorff. Consequently, our new construction 

is an honest generalization of that in [17], and our notion of a self-similar action is 

a generalization of self-similar group actions whose close relationship to Zappa–Szép 

products has already been studied [9,20,27]. At the end of Section 2, we induce Haar 

systems from X and H to a Haar system on X �� H under mild assumptions.

In Section 3, we start by studying the orbit space H\X of a self-similar left action of 

H on X , which is also a groupoid as long as the action is free and proper. In the setup of 

most symmetric imprimitivity theorems, it is standard to assume that the left H-action 

on X commutes with a right action of another groupoid, G, yielding two groupoids of 

the form (X /G) ⋊ H and G ⋉ (H\X ) that are equivalent. This assumption is not quite 

enough in the self-similar product setting. We therefore introduce the notion of in tune

actions (Definition 3.5), and we call X a (H, G)-self-similar para-equivalence if the H-

and G-actions are free, proper, and in tune, and if X has open source map. Under such 

assumptions, the H- and G-actions on X factor through the respective opposite quotient: 

H naturally has a self-similar left action on X /G and G a self-similar right action on H\X , 

allowing us to build their self-similar product groupoids (X /G) �� H and G �� (H\X ). 
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We prove (Theorem 3.10) that these two groupoids are equivalent in the sense of [22]. 

Moreover, the existence of a Haar system on X that is equivariant in an appropriate sense 

allows us to build Haar systems for these equivalent groupoids, so that their groupoid 

C*-algebras are Morita equivalent.

In Sections 4 and 5, we bootstrap our construction to the more operator algebraic 

setting of self-similar actions on Fell bundles B → X for X a (H, G)-self-similar para-

equivalence. We define the notions of self-similar left and right actions on B following 

similar ideas as in [6]. This allows two constructions: that of their self-similar products 

B H and G B, where the color of the symbol distinguishes between left- and right-

actions, and that of the orbit spaces H\B and B/G. Assuming the actions are free, 

proper, and in tune, the orbit spaces become Fell bundles themselves. By iterating these 

constructions, we obtain two Fell bundles, (B/G) H and G (H\B).

Our main theorem (Theorem 6.1) in Section 6 states that these two Fell bundles are 

equivalent in the sense of [23]. Again, under suitable additional assumptions regarding 

Haar systems, their Fell bundle C*-algebras are therefore Morita equivalent. We note 

that the imprimitivity theorem of Kaliszewski et al. can be recovered by requiring that 

half of our two two-way actions be trivial (namely, that X does not act on H or G). There 

are other examples where the X -actions on G and H are non-trivial, some of which are 

briefly discussed (Examples 2.8, 2.13, 3.17, and 3.19). Finally, we apply our result to a 

certain class of Deaconu–Renault groupoids generated by ∗-commuting endomorphisms 

in Section 7.

Due to the sheer number of actions involved, we try our best to assign each action a 

unique symbol to best avoid confusion. By convention, the arrow of each action symbol 

will point to the element of the space that is acted upon.

2. Self-similar actions

Self-similar groups originated from Grigorchuk’s construction of finitely generated 

groups of intermediate growth [13,14]. Its application in operator algebra was first ex-

plored by Nekrashevych [27] where he studied a self-similar group acting on a set. The 

distinctive feature that set it apart from other group actions is that the set also acts 

back on the group; this action is often called the restriction map. Such a two-way inter-

action has since been generalized to various contexts; for example to self-similar actions 

on directed graphs [9], k-graphs [20], and semigroups [3,35]. In this section, we define 

self-similar groupoid actions on groupoids. Again, the key feature that sets our defini-

tion apart from classical groupoid actions is the two-way interactions recorded in these 

self-similar dynamics.

2.1. Self-similar left actions on groupoids

Notation 2.1. Given continuous maps f : X → Z and g : Y → Z between topological 

spaces, we write
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X ∗
f g

Y := {(x, y) ∈ X × Y | f(x) = g(y)}

and equip this space with the subspace topology.

Definition 2.2. Let H and X be two locally compact Hausdorff groupoids. We say H has 

a self-similar left action on X if there exist a continuous surjection ρ
(0)
X : X (0) → H(0)

and, using the momentum map ρX := ρ
(0)
X ◦ rX , two continuous maps

H ↷ X : H ∗
sH ρX

X � (h, x) �→ h ▹ x ∈ X

H ↷X : H ∗
sH ρX

X � (h, x) �→ h ◃ x ∈ H

such that the following hold.

• For any h ∈ H and x ∈ X such that sH(h) = ρX (x), we have:

rH(h) = ρX (h ▹ x) sH(h ◃ x) = ρX (x−1) rH(h ◃ x) = ρX ((h ▹ x)−1) (L1)

• For all h ∈ H and v ∈ X (0) such that sH(h) = ρX (v), and for all x ∈ X , we have:

h ◃ v = h and ρX (x) ▹ x = x (L2)

• For all h ∈ H and (x, y) ∈ X (2) such that sH(h) = ρX (x), we have sX (h ▹ x) =

rX ((h ◃ x) ▹ y) and

h ◃ (xy) = (h ◃ x) ◃ y (L3)

h ▹ (xy) = (h ▹ x)[(h ◃ x) ▹ y] (L4)

• For all (h, k) ∈ H(2) and x ∈ X such that sH(k) = ρX (x), we have:

(hk) ▹ x = h ▹ (k ▹ x) (L5)

(hk) ◃ x = [h ◃ (k ▹ x)](k ◃ x) (L6)

We will often write H ∗
s ρ

X instead of H ∗
sH ρX

X when the subscripts are clear from 

context.

Example 2.3. Suppose X and H are groupoids with X (0) = H(0). Then (X , H) is a 

matched pair of groupoids in the sense of [1, Definition 1.1] if and only if H has a self-

similar left action on X with ρ
(0)
X = idX (0) , meaning that ρX = rX . We point out that 

this is the reason that inverse elements appear in Condition (L1): Here, the condition 

sH(h ◃ x) = ρX (x−1) becomes sH(h ◃ x) = sX (x), which might feel a bit more natural.
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Remark 2.4. If H has a self-similar left action on X , then (h, x) �→ h ▹ x is a left action 

of the groupoid H on the space X with momentum map ρX in the sense of [38, Def. 2.1]. 

Indeed, the algebraic properties needed for an action are

ρX (h ▹ x) = rH(h), ρX (x) ▹ x = x, and (kh) ▹ x = k ▹ (h ▹ x), (2.1)

which are all assumed in (L1), (L2), and (L5), respectively.

Moreover, if X (0) = H(0) and ρ
(0)
X = idX (0) , then (h, x) �→ h ◃ x is a right action of 

the groupoid X on the space H with momentum map sH.

Example 2.5. Suppose H acts on a groupoid X by automorphisms, meaning X has a 

continuous, surjective momentum map ρX : X → H(0) and there is a continuous map 

H ∗
s ρ

X → X satisfying not only the conditions in (2.1) but also h ▹ (xy) = (h ▹x)(h ▹ y)

where it makes sense. Then ▹ is a self-similar left action of H on X if and only if we 

let X act trivially on H (meaning h ◃ x = h). Note that there is no other choice for ◃

because of Condition (L4) in combination with the assumption that ▹ is an action by 

homomorphisms.

Example 2.6 (see [1, Example 1.6.]). Suppose we are given a groupoid X . If we let 

H = X (0) be the trivial groupoid and let ρ
(0)
X = idX (0) , so that ρX = rX , then we can 

define for a tuple (u, x) = (rX (x), x) ∈ X (0) ∗
s r

X ,

X (0)
↷ X : rX (x) ▹ x = x,

X (0) ↷X : rX (x) ◃ x = sX (x).

One swiftly verifies that these constitute a self-similar left action of X (0) on X . (In fact, 

these groupoids form a matched pair.)

We point out that, in order for the condition sH(h ◃ x) = ρX (x−1) in (L1) to be 

satisfied by the pair in Example 2.6, we must define X (0) ↷X in the above way and 

cannot let X act trivially on X (0). For Example 3.8 later, it will therefore be convenient 

to know that we can also replace the trivial groupoid X (0) with the trivial group {e} as 

follows. This also highlights the advantage of not having forced X and H to have the 

same unit space, as was the case in, for example, [1,2].

Example 2.7. Suppose we are given a groupoid X . If we let H = {e} be the trivial group, 

so that ρ
(0)
X : X (0) → H(0) = {e} is constant and so that ▹ and ◃ must be defined to be 

trivial, then these constitute a self-similar left action of {e} on X .

Example 2.8. Suppose a locally compact Hausdorff group K acts on the left on a locally 

compact Hausdorff space X; denote the action by ∗. Suppose further that K can be 

written as an (internal) Zappa–Szép product of two (necessarily closed) subgroups, i.e., 
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K = G �� H with the product topology. This means that, for any h ∈ H and t ∈ G, 

there exist unique elements h|t ∈ H and h · t ∈ G such that (e, h)(t, e) = (h · t, h|t), where 

the product on the left-hand side is the group multiplication of K and where e denotes 

the identity element of each group.

Consider the transformation groupoid X = G ⋉ X = {(t, x) : x ∈ X, t ∈ G}; we 

choose the convention that its range and source maps are r(t, x) = t ∗ x and s(t, x) = x, 

respectively. Then

H ↷ X : h ▹ (t, x) = (h · t, h|t ∗ x)

H ↷X : h ◃ (t, x) = h|t
(2.2)

is a self-similar left action of H on X .

Note that units are not necessarily fixed by self-similar actions. Instead, we have the 

following formulas:

Lemma 2.9. For any x ∈ X and for any (h, v) ∈ H ∗
s ρ

X (0), we have

ρX (x) ◃ x = ρX (x−1) (L7)

h ▹ v ∈ X (0) (L8)

Moreover, if sH(h) = ρX (x), then

(h ▹ x)−1 = (h ◃ x) ▹ x−1 and (h ◃ x)−1 = h−1
◃ (h ▹ x) (L9)

rX (h ▹ x) = h ▹ rX (x) and sX (h ▹ x) = (h ◃ x) ▹ sX (x) (L10)

Proof. Let e = ρX (x) ∈ H(0). For (L7),

e ◃ x = (e2) ◃ x
(L6)
= (e ◃ (e ▹ x))(e ◃ x)

(L2)
= (e ◃ x)2.

Hence, e ◃ x ∈ H(0). Therefore,

e ◃ x = sH(e ◃ x)
(L1)
= ρX (x−1).

Condition (L8) follows from

h ▹ v = h ▹ (v2)
(L4)
= (h ▹ v)((h ◃ v) ▹ v)

(L2)
= (h ▹ v)2.

For (L9), note that we have just shown that h ▹ (xx−1) ∈ X (0). By Condition (L4),

X (0) � h ▹ (xx−1) = (h ▹ x)[(h ◃ x) ▹ x−1].
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Therefore, (h ▹x)−1 = (h ◃x) ▹x−1. Similarly, by what we have proved above, (h−1h) ◃x ∈

H(0). Therefore, by Condition (L6),

H(0) � (h−1h) ◃ x = [h−1
◃ (h ▹ x)](h ◃ x).

This proves that (h ◃ x)−1 = h−1
◃ (h ▹ x).

Lastly, for (L10), we compute

h ▹ x = h ▹ (rX (x)x)
(L4)
= (h ▹ rX (x))[(h ◃ rX (x)) ▹ x]

(L2)
= (h ▹ rX (x))(h ▹ x)

and

h ▹ x = h ▹ (xsX (x))
(L4)
= (h ▹ x)[(h ◃ x) ▹ sX (x)]. �

Corollary 2.10. If H has a self-similar left action on X and if h ▹ x is a unit in X , then 

x is a unit.

Proof. By Lemma 2.9, H maps units to units. In particular, x 
(L5)
= h−1

▹ (h ▹ x) is a 

unit. �

Since ▹ is a left groupoid action of H on the space X (Remark 2.4), we make the 

following definitions, which are standard in the literature.

Definition 2.11. If H has a self-similar left action on X , we call it free if ▹ is free, meaning 

that the equality h ▹ x = x implies h ∈ H(0). Likewise, we call it proper if ▹ is proper, 

meaning that the map H ∗
s ρ

X → X × X defined by (h, x) �→ (h ▹ x, x) is a proper map.

We note that these conditions on ▹ do not impose conditions on ◃.

Example 2.12. Given a groupoid X , the (trivial) self-similar left actions of the trivial 

groupoid X (0) and of the trivial group {e} on X (Examples 2.6 and 2.7) are both free 

and proper.

Example 2.13 (continuation of Example 2.8). Suppose again that a locally compact Haus-

dorff group K = G �� H acts on the left on a locally compact Hausdorff space X, denoted 

by ∗. We define the self-similar left action ▹ and ◃ of H on the transformation groupoid 

X = G ⋉ X as in (2.2).

Note that, if ∗ is free, then so is ▹: suppose h ▹ (t, x) = (t, x), i.e., h · t = t and 

h|t ∗ x = x. By the freeness of the K-action on X, this forces h|t = e. Recall that the 

Zappa–Szép-structure of K implies that (e, h)(t, e) = (h · t, h|t). But the right-hand side 

equals (t, e), which forces h = e.

Likewise, if ∗ is proper, then so is ▹: suppose that we have convergent nets (ti, xi) →

(t, x) and hi ▹ (ti, xi) → (s, y) in X ; we must check that hi has a convergent subnet. 
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By definition of ▹, we know in particular that hi|ti
∗ xi → y in X. As xi → x and as ∗

is proper, it follows that hi|ti
(has a subnet that) converges to, say, k in K. Since H is 

closed in K, k is an element of H, and so by continuity of the restriction and inversion 

map, we conclude that hi = (hi|ti
)|t−1

i
→ k|t−1 .

Lemma 2.14. If H has a self-similar left action on X , then ▹ restricts to a continuous 

left action of H on the unit space, X (0). The action on X is free (respectively proper) if 

and only if the action on X (0) is free (respectively proper).

Proof. Notice first that, if v ∈ X (0) and h ∈ H are such that sH(h) = ρX (v), then h ▹v ∈

X (0) by Lemma 2.9 (L8), so the map restricts to a continuous action H ∗
s ρ

X (0) → X (0)

with momentum map ρ
(0)
X : X (0) → H(0).

Now suppose the action on X (0) is free, and assume that h ▹ x = x for some x ∈ X . 

Then

x−1 = (h ▹ x)−1 (L9)
= (h ◃ x) ▹ x−1,

so that

h ▹ (xx−1)
(L4)
= (h ▹ x)

[
(h ◃ x) ▹ x−1

]
= xx−1.

As xx−1 ∈ X (0), our assumption now implies that h is a unit, proving that ▹ is free. The 

other direction of the equivalence is trivial.

Lastly suppose that the action on X (0) is proper, and assume that the net {(hλ ▹

xλ, xλ)}Λ converges to (y, x) in X × X . By (L10) and continuity of rX , this implies 

that (hλ ▹ rX (xλ), rX (xλ)) → (rX (y), rX (x)). By properness on X (0), it follows from [38, 

Proposition 2.17] that {hλ}Λ has a convergent subnet. By the same proposition, this 

implies that H acts properly on X . �

The above implies that a non-trivial groupoid H cannot admit a free self-similar left 

action on a group X , because its action on the unit space {e} of X is never free.

Lemma 2.15. Let H act on X by a free self-similar left action. If x, x′ ∈ X satisfy 

H ▹ x = H ▹ x′ and if rX (x) = rX (x′), then x = x′.

Proof. Since H ▹ x = H ▹ x′, there exists h ∈ H such that x′ = h ▹ x. By (L10)

(Lemma 2.9), h ▹rX (x) = rX (h ▹x) = rX (x′), which coincides with rX (x) by assumption. 

Since the self-similar H-action is free, h must be in H(0) and thus x′ = x. �

2.2. The self-similar product groupoid: a generalized Zappa–Szép product

Following [2] and [6, Example 2.4], we can define a Zappa–Szép-type product of H

with X ; the main difference is that we do not require the unit spaces of the two groupoids 

to coincide.
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Definition 2.16. Let H be a groupoid that has a (not necessarily free or proper) self-

similar left action on X (Definition 2.2). The self-similar product of X and H is the 

set

X �� H = {(x, h) ∈ X × H : ρX (x−1) = rH(h)}

with the following structure of a groupoid: the unit space is

(X �� H)(0) = (X (0) × H(0)) ∩ (X �� H)

and its range and source maps are given by

rX ��H(x, h) =
(
rX (x), rH(h) ◃ x−1

)
and respectively,

sX ��H(x, h) =
(
h−1

▹ sX (x), sH(h)
)
.

Two elements (x, h) and (y, k) are composable if and only if sX (x) = h ▹ rX (y), in which 

case their composition is defined by

(x, h)(y, k) := (x(h ▹ y), (h ◃ y)k).

Lastly, the inverse is

(x, h)−1 := (h−1
▹ x−1, h−1

◃ x−1).

Remark 2.17. Let us do some sanity checks.

The range map lands in the alleged unit space. We trivially have that v := rX (x) is 

in X (0). Since rH(h) ◃ x−1 = ρX (v) by Lemma 2.9, it is an element of H(0), and

ρX (v−1) = ρX (v) = rH(h) ◃ x−1 = rH

(
rH(h) ◃ x−1

)
,

which shows that rX ��H(x, h) is in (X �� H)(0).

Composability condition. The elements (x, h) and (y, k) are composable in X �� H if and 

only if sX ��H(x, h) = rX ��H(y, k); by our definition of the source and range map, that 

means

h−1
▹ sX (x) = rX (y) and sH(h) = rH(k) ◃ y−1.

But now notice that the first condition implies the second:

rH(k) ◃ y−1 = ρX (y) (by (L7) in Lemma 2.9)

= ρ
(0)
X (h−1

▹ sX (x)) (by the first condition)

= rH(h−1) = sH(h) (by (L1)),
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so (x, h) and (y, k) are composable if and only if h−1
▹ sX (x) = rX (y), as claimed.

The composition makes sense. By assumption, we have sH(h) = rH(k) ◃ y−1. By 

Lemma 2.9 (L7), the right-hand side is exactly ρX (y), so that h ▹ y and h ◃ y are indeed 

defined. We have rX (h ▹y) = h ▹ rX (y) by (L10) (Lemma 2.9); the right-hand side is, by 

assumption, equal to h ▹ [h−1
▹sX (x)]. By (L5), that is exactly sX (x), so that x(h ▹y) is 

defined. We have sH(h ◃y) = ρX (y−1) by (L1). Since (y, k) ∈ X �� H, the right-hand side 

equals rH(k), so that (h ◃ y)k makes sense. We have ρX ((x[h ▹ y])−1) = ρX ((h ▹ y)−1)

which equals rH(h ◃ y) = rH([h ◃ y]k) by (L1), so the product is an element of X �� H.

Remark 2.18. With the algebraic structure from Definition 2.16 and the subspace topol-

ogy, X �� H is a locally compact Hausdorff groupoid. Indeed, since X and H are both 

locally compact Hausdorff, and since X �� H is a closed subspace of X × H, it is clear 

that X �� H is itself locally compact Hausdorff. Continuity of multiplication and inver-

sion follow immediately from continuity of ▹, ◃, and of multiplication and inversion in X

and H.

Remark 2.19. Notice that the unit space of the self-similar product,

(X �� H)(0) = {(u, v) : u ∈ X (0), v ∈ H(0), ρX (u) = v},

is homeomorphic to X (0), since the map (u, v) �→ u and its inverse u �→ (u, ρX (u))

are continuous. Under this identification, we can simply write rX ��H(x, h) = rX (x) and 

sX ��H(x, h) = h−1
▹ sX (x).

Example 2.20 (continuation of Example 2.5). Suppose H acts on a groupoid X by auto-

morphisms. Then the self-similar product X �� H (where X acts trivially on H) is identi-

cal to the transformation groupoid X ⋊H, if we use the convention that rX⋊H(x, h) = x

and sX⋊H(x, h) = h−1
▹ x.

Example 2.21. Given a groupoid X , it is easy to check that the self-similar product 

X �� X (0) of X with the trivial groupoid X (0) (as in Example 2.6) is isomorphic to X via 

(x, sX (x)) �→ x. Likewise, the self-similar product X �� {e} of X with the trivial group 

(as in Example 2.7) is isomorphic to the groupoid X via (x, e) �→ x.

In [2, Section 3], the Zappa–Szép product was defined for groupoids that are matched: 

In addition to the left and right actions, groupoids in a matched pair are assumed to 

have the same unit space, X (0) = H(0), and that ρ
(0)
X = idX (0) . Our above definition of 

the self-similar product X �� H does not require X and H to be matched; they may have 

different unit spaces. However, as pointed out in [6, Example 2.4], we can construct a 

new transformation groupoid H̃ such that H̃ and X are matched, and such that their 

Zappa–Szép product X �� H̃ is isomorphic to the self-similar product X �� H. We will 

now make this more precise.
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Lemma 2.22. Suppose a groupoid H has a self-similar left action on a groupoid X , de-

noted ▹ and ◃. By Lemma 2.14, we get a left action of H on X (0) which gives rise 

to a transformation groupoid H̃ = H ⋉ X (0) with unit space X (0). If we define for 

((h, u), x) ∈ H̃ ∗
s r

X ,

H̃ ↷ X : (h, u) · x := h ▹ x,

H̃ ↷X : (h, u)|x := (h ◃ x, sX (x)),

then (X , H̃) is a matched pair.

Note that the momentum map of X for these newly defined actions is not ρX but rX , 

as necessary for a matched pair.

Proof. Recall that H̃ is the set H ∗
s ρ

X (0) with multiplication and inversion defined by

(k, h ▹ u)(h, u) = (hk, u) and respectively, (h, u)−1 = (h−1, h ▹ u).

Its unit space is further identified with X (0); to be precise, the source of (h, u) is 

(h−1h, u) = (u, u), or simply u.

Let us check that the new actions are well-defined. The actions are only defined for 

((h, u), x) for which sH̃(h, u) = u equals rX (x). Since (h, u) ∈ H̃, we have sH(h) =

ρ
(0)
X (u), and so sH(h) = ρX (x). This means that h ▹x and h ◃x are both defined. Lastly, 

notice that sH(h ◃x) = ρX (x−1) = ρX (sX (x)) by (L1), so that (h, u)|x is indeed another 

element of H̃.

The ambitious reader can now verify easily that (X , H̃) is a matched pair. �

Proposition 2.23. With the assumptions and definitions in Lemma 2.22, the Zappa–Szép 

product X �� H̃ of the matched pair is isomorphic to the self-similar product X �� H in 

the sense of Definition 2.16.

Proof. By definition of X �� H̃, any of its elements (x, (h, u)) satisfies sX (x) = rH̃(h, u), 

which is exactly h ▹ u by definition of the range map of H̃. Thus, u = h−1
▹ sX (x). 

Moreover, ρX (x−1) = ρX (h ▹ u) = rH(h) by (L1), which shows that (x, h) is an element 

of X �� H. All in all, the maps

ϕ : X �� H̃ → X �� H, (x, (h, u)) �→ (x, h),

and

X �� H → X �� H̃, (x, h) �→
(
x, (h, h−1

▹ sX (x))
)
,

are well-defined and mutually inverse. Since they are constructed out of continuous maps, 

they are themselves continuous. Lastly, notice that ϕ is a groupoid homomorphism:
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ϕ
(
(x, (h, u)) (y, (k, v))

)
= ϕ

(
x[(h, u) · y], (h, u)|y(k, v)

)
(def’n of X �� H̃)

= ϕ
(
x[h ▹ y], (h ◃ y, sX (y))(k, v)

)
(def’n of · and |)

= ϕ
(
x[h ▹ y], ([h ◃ y]k, v)

)
(def’n of H̃)

=
(
x[h ▹ y], [h ◃ y]k

)
(def’n of ϕ)

= (x, h) (y, k) (def’n of X �� H)

= ϕ(x, (h, u)) ϕ(y, (k, v)).

This proves that X �� H̃ is isomorphic to X �� H. �

Example 2.24 (cf. [2, Section 5.3], [5, Definition 3.6]). Suppose G is a locally compact 

Hausdorff groupoid and H is a group (neither are assumed to be étale), and c : G → H

is a continuous homomorphism. The skew-product groupoid G(c) is the set G × H with 

the operations given for (g, g′) ∈ G(2) and h ∈ H by

(g, h)(g′, hc(g)) = (gg′, h) and (g, h)−1 = (g−1, hc(g)).

Note that G(c)(0) = G(0) × H. The formula ϕh(g, h′) := (g, h′h−1) defines a continuous, 

free action of H on G(c) by automorphisms. See [18, Section 4] for more details, but note 

that their convention for G(c) is slightly different from ours.

In the case where G and H are étale, [2, Proposition 22] states that the above action 

induces a left H-action on G(0) ×H and that the corresponding transformation groupoid

H̃ := Hϕ⋉G(c)(0)

allows a Zappa–Szép product with G(c). It was pointed out further that this product 

G(c) �� H̃ “should be considered as the Zappa–Szép product of the groupoid G(c) with the 

group H”, since the space G(c) × H is homeomorphic to G(c) �� H̃ via 
(
(g, h), h′

)
�→(

(g, h), (h′, s(g), hc(g)h′)
)
.

Using our machinery above, this comment can be made concrete without the need to 

go via the transformation groupoid H̃ (and without assuming étale): Since H(0) = {e}, 

the balanced fiber product ∗
s ρ

just becomes the Cartesian product, and we can define

H ↷ G(c) : h ▹ (g, h′) := (g, h′h−1)

H ↷G(c) : h ◃ (g, h′) := c(g)−1hc(g)

One verifies that these give a self-similar left action of H on G(c), and so we may 

construct the self-similar product G(c) �� H as in Definition 2.16. By Proposition 2.23, 

G(c) �� H is isomorphic to the Zappa–Szép product groupoid G(c) �� H̃ from [2, Propo-

sition 22].



14 A. Duwenig, B. Li / Journal of Functional Analysis 288 (2025) 110699

Remark 2.25. As the last example highlights, the main distinction between the (old) 

Zappa–Szép product and our (new) self-similar product is that the latter does not re-

quire the groupoids with two-way actions to have matching unit spaces. For Zappa–Szép 

products, there is no inherent distinction between the roles of the two groupoids H and 

X (everything is entirely symmetric), while the self-similar-variant makes a clear dis-

tinction between them: Besides its range and source maps, the groupoid X must also 

carry a separate momentum map ρX : X → H(0) with respect to which the H-action is 

defined. After Proposition 4.3, it is natural to ask whether this added layer of difficulty 

in Definition 2.2 is worth the effort. But while the self-similar product X �� H and the 

Zappa–Szép product X �� H̃ are isomorphic, there are fundamental differences between 

the pair (X , H) and the pair (X , H̃), as we will see in Example 3.8 and its subsequent 

remark.

Example 2.26 (reconciliation). Suppose H = {e} has the trivial self-similar left action 

on a groupoid X (Example 2.7). The induced action · of the transformation groupoid 

{̃e} = {e} ⋉X (0) on X as defined in Lemma 2.22 is then likewise trivial, and the induced 

action | of X on {̃e} is given for x ∈ X and (e, u) ∈ {̃e} by

(e, u)|x := (e, sX (x)) where u = sH̃(e, u) = rX (x).

In other words: If we identify an element (e, u) of {̃e} with u in X (0), then the self-similar 

left action of {̃e} on X that we described in Lemma 2.22 is identical to the one of X (0)

on X that we described in Example 2.6. Under this identification, the concatenation of 

the isomorphisms X �� {e} ∼= X and X ∼= X �� X (0) in Example 2.21 yields exactly the 

isomorphism X �� {e} ∼= X �� {̃e} in Proposition 2.23.

One can define an analogous notion of a self-similar action on the right. For the 

convenience of the reader and to establish notation, we will repeat the main properties 

in Subsection 2.4.

2.3. Haar systems for self-similar left actions

Definition 2.27. Suppose H and X are groupoids and that ▹ is a left H-action on X with 

momentum map ρX = ρ
(0)
X ◦ rX : X → H(0). We say that a left Haar system {λu}u∈X (0)

on X is ▹-invariant if for all h ∈ H and all u ∈ X (0) with sH(h) = ρX (u), we have

h ▹ λu = λh▹u,

where (h ▹ λu)(E) = λu(h−1
▹ E). Equivalently, for all f ∈ Cc(X ),

∫
f(h ▹ x) dλu(x) =

∫
f(y) dλh▹u(y). (2.3)
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Proposition 2.28 (cf. [16, Proposition 6.4]). Suppose H and X are locally compact Haus-

dorff groupoids, that H has a self-similar left action on X , and that X has a ▹-invariant 

left Haar system λ. If ε is any left Haar system for H, then we get a left Haar system 

λ �� ε for X �� H defined for u ∈ X (0) by

d(λ �� ε)u(y, k) = dερ(y−1)(k) dλu(y).

Equivalently, for any f ∈ Cc(X �� H),

∫
f(y, k) d(λ �� ε)u(y, k) =

∫

X

∫

H

f(y, k) dερ(y−1)(k) dλu(y).

In the above, we have used the fact that (X �� H)(0) ≈ X (0) by Remark 2.19. To 

prove the above proposition, we need the following:

Lemma 2.29. Suppose u, v ∈ X (0) and (x, h) ∈ X u
v × Hρ(v) ¦ X �� H are fixed. If we let 

h2 = (h−1
◃ x−1)−1 and x2 = h−1

2 ▹ x, then h ▹ sX (x2) = v, and for all y ∈ X h−1
▹v, we 

have x(h ▹ y) = h2 ▹ (x2y).

Proof. We compute

x2 = (h−1
◃ x−1) ▹ x

(L9)
= (h−1

▹ x−1)−1, (2.4)

so that

sX (x2) = rX (h−1
▹ x−1)

(L10)
= h−1

▹ rX (x−1) = h−1
▹ sX (x) = h−1

▹ v,

as claimed. By Equation (2.4),

h2
(L9)
= h ◃ (h−1

▹ x−1) = h ◃ x−1
2 , so that h2 ◃ x2

(L3)
= h.

Now, if y is such that rX (y) = h−1
▹ v, meaning that x2y makes sense by our above 

computation, then

ρX (x2y) = ρX (x2)
(L1)
= sH(h ◃ x−1

2 ) = sH(h2).

Therefore, h2 ▹ (x2y) is likewise defined, and we have:

h2 ▹ (x2y) = (h2 ▹ x2)[(h2 ◃ x2) ▹ y] (by (L4))

= x[h ▹ y] (def’n of h2 and by the above). �
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Corollary 2.30. Suppose u, v ∈ X (0), (x, h) ∈ X u
v × Hρ(v) ¦ X �� H, and λ is a ▹-

invariant left Haar system for X in the sense of Definition 2.27. If G ∈ Cc(X ), then

∫

X

G
(
x[h ▹ y]

)
dλh−1

▹v(y) =

∫

X

G(y) dλu(y).

Proof. Let x2, h2 be as in Lemma 2.29. Then

∫

X

G
(
x[h ▹ y]

)
dλh−1

▹v(y) =

∫

X

G
(
h2 ▹ [x2y]

)
dλs(x2)(y).

By left invariance of λ, we have

∫

X

G
(
h2 ▹ [x2y]

)
dλs(x2)(y) =

∫

X

G(h2 ▹ z) dλr(x2)(z).

Since rX (x2) = sH(h2), we can invoke ▹-invariance of λ in the form of Equation (2.3) to 

conclude

∫

X

G(h2 ▹ z) dλr(x2)(z) =

∫

X

G(y) dλh2▹r(x2)(y).

Since x2 = h−1
2 ▹ x, it follows from (L10) (Lemma 2.9) that h2 ▹ rX (x2) = rX (x) = u, 

so that the above right-hand side is as claimed in the statement. �

Proof of Proposition 2.28. For this proof, let ρ := ρX = ρ
(0)
X ◦ rX and ρ′ := ρ

(0)
X ◦ sX . Fix 

an arbitrary u ∈ X (0) and note that (λ �� ε)u is a Radon measure on X �� H, since

(λ �� ε)u : Cc(X �� H) → C, F �→

∫

X

∫

H

F (y, k) dερ′(y)(k) dλu(y),

is clearly a positive linear functional on Cc(X �� H). First, we show that supp (λ �� ε)u =

(X �� H)u. To see §, fix any

η = (y, k) ∈ (X �� H)u = X u �� H = 
v∈X (0)X u
v × Hρ(v).

For any open neighborhood Nη around η, we must show that (λ �� ε)u(Nη) > 0. By 

monotonicity, it suffices to show this for a basic open neighborhood, so we may assume 

that Nη = (Ny × Nk) ∩ X �� H for some neighborhoods Ny of y and Nk of k. Thus,

(λ �� ε)u(Nη) =

∫

X ��H

1Nη
(ξ) d(λ �� ε)u(ξ) =

∫

X

∫

H

1Nη
(x, h) dερ′(x)(h) dλu(x)
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=

∫

X

∫

H

1Ny
(x) 1Nk

(h) 1X ��H(x, h) dερ′(x)(h) dλu(x)

=

∫

X

1Ny
(x)

⎡
£

∫

H

1Nk
(h) dερ′(x)(h)

¤
⎦ dλu(x). (2.5)

Since H is locally compact, we may find a precompact neighborhood Mk of k for 

which Mk ¦ Nk. Since k ∈ Hρ(v) = supp ερ(v), we have δ := ερ(v)(Mk) > 0. Let 

f ∈ Cc(H, [0, 1]) be a function that is constant 1 on Mk and vanishes outside of Nk, so 

that for all w ∈ H(0),

∫

H

1Nk
(h) dεw(h) ≥

∫

H

f(h) dεw(h) ≥

∫

H

1Mk
(h) dεw(h). (2.6)

Note that the middle term is exactly εw(f). As ε is a Haar system for H, the function

ε(f) : H(0) → C, w �→ εw(f),

is continuous, where we followed the notation used in [38, Remark 1.20]. As the right-

most side of (2.6) equals δ for w = ρ(v), continuity of ε(f) implies that ε(f) is greater 

than δ
2 in a neighborhood U of ρ(v); let V := (ρ′)−1(U) ¦ X .

Using our computation in (2.5), we see that

(λ �� ε)u(Nη) ≥

∫

X

1Ny
(x) ε(f)

(
ρ′(x)

)
dλu(x)

≥

∫

X

1Ny∩V (x) ε(f)
(
ρ′(x)

)
dλu(x)

≥ δ

∫

X

1Ny∩V (x) dλu(x) = δ λu(Ny ∩ V ).

Note that by choice of y, ρ′(y) = ρ
(0)
X (sX (y)) = ρ

(0)
X (v) is an element of U , so Ny ∩ V

is a neighborhood of y. Since y ∈ X u = supp λu, we must have λu(Ny ∩ V ) > 0, and 

hence (λ �� ε)u(Nη) > 0. Since y, k, u, v were arbitrary, this proves that supp (λ �� ε)u §


v∈X (0)X u
v × Hρ(v).

Conversely, assume that η /∈ (X �� H)u, i.e., if we write η = (y, k), then rX (y) �= u. 

Consider r−1
X (X (0) \{u}) = X \X u. Since X (0) is Hausdorff, this is an open neighborhood 

around y. Since supp λu = X u, we have λu(X \ X u) = 0. In particular, if we let Nη :=

(X \ X u) �� H, then we have found a neighborhood of η for which (λ �� ε)u(Nη) = 0. 

Indeed, using our computation in (2.5), we see that
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(λ �� ε)u(Nη) =

∫

X

1X \X u(x)

⎡
£

∫

H

1H(h) dερ′(x)(h)

¤
⎦ dλu(x) = 0.

This means that η /∈ supp (λ �� ε)u, as claimed.

Next, for F ∈ Cc(X �� H), we need to show that the map u �→
∫

F d(λ �� ε)u is 

continuous. We will first prove the claim for F = (f × g)|X ��H, where f × g : (x, h) �→

f(x)g(h) for some f ∈ Cc(X ) and g ∈ Cc(H), so that

∫

X ��H

F (η) d(λ �� ε)u(η) =

∫

X

f(y)

∫

H

g(k) dερ′(y)(k) dλu(y).

Since ε is a Haar system on H and since g ∈ Cc(H), we know that the function

H(0) → C, u′ �→

∫

H

g(k) dεu′

(k),

is continuous. Since f ∈ Cc(X ) and since ρ′ = ρ
(0)
X ◦ sX is continuous, it follows that

G : X → C, y �→ f(y)

⎛
¿

∫

H

g(k) dερ′(y)(k)

À
⎠ ,

is continuous and compactly supported. Since λ is a Haar system on X , we thus know 

that

(X �� H)(0) ∼= X (0) → C, u �→

∫

X

G(y) dλu(y) =

∫

X ��H

F (η) d(λ �� ε)u(η),

is continuous, as needed.

For general F ∈ Cc(X �� H), let KX and KH be the X - and the H-part of supp(F ), 

respectively, both of which are compact. Pick f ∈ Cc(X ) and g ∈ Cc(H) which are 

constant 1 on KX and KH, respectively, so that for any v ∈ X (0) and for KX �� KH :=

(KX × KH) ∩ X �� H,

(λ �� ε)v(supp(F )) ≤ (λ �� ε)v(KX �� KH) ≤

∫

X ��H

(f × g) d(λ �� ε)v.

By our earlier argument, the right-hand side is a continuous function in v. Therefore, if 

K is some compact set, then for any v ∈ K,

(λ �� ε)v(KX �� KH) ≤ max
v′∈K

[ ∫

X ��H

(f × g) d(λ �� ε)v′] :=cK < ∞. (2.7)
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Now, assume we are given a convergent net ui → u in X (0) and fix an arbitrary ε > 0. 

By local compactness of X , we may without loss of generality assume that each ui is 

contained in a compact neighborhood K of U , so that (2.7) holds for v = ui. By Stone–

Weierstrass, we can choose finitely many fj ∈ Cc(X ), gj ∈ Cc(H) such that

∥∥∥∥F −
∑k

j=1
(fj × gj)|X ��H

∥∥∥∥
∞

< ε/
(
3cK + 1

)
.

Without loss of generality, the support of each fj is in KX and of each gj is in KH, so 

that for all v ∈ K,

∫ ∣∣F −
∑

j
fj × gj

∣∣ d(λ �� ε)v

≤(λ �� ε)v
(
KX �� KH

) ∥∥∥∥F −
∑k

j=1
(fj × gj)|X ��H

∥∥∥∥
∞

(2.7)
< ε/3. (2.8)

By our earlier result, we may choose i0 large enough such that for all i ≥ i0 and all 

1 ≤ j ≤ k, we have

∣∣∣∣
∫

fj × gj d(λ �� ε)ui −

∫
fj × gj d(λ �� ε)u

∣∣∣∣ < ε/3k.

Combining this with (2.8), we get for all i ≥ i0 that

∣∣∣∣
∫

F d(λ �� ε)ui −

∫
F d(λ �� ε)u

∣∣∣∣

≤

∫ ∣∣F −
∑

j
fj × gj

∣∣ d(λ �� ε)ui

+
∑

j

∣∣∣∣
∫

fj × gj d(λ �� ε)ui −

∫
fj × gj d(λ �� ε)u

∣∣∣∣

+

∫ ∣∣(∑
j

fj × gj

)
− F

∣∣ d(λ �� ε)u < ε,

as needed.

Lastly, we have to show that for any ξ ∈ X �� H and any F ∈ Cc(X �� H), we have ∫
F (ξη) d(λ �� ε)s(ξ)η =

∫
F (η) d(λ �� ε)r(ξ)η. Write ξ = (x, h) ∈ X u

v × Hρ(v), so that 

s(ξ) = h−1
▹ v; as above, it suffices to consider the case where F can be written as 

F (ξ) = f(x)g(h) for some f ∈ Cc(X ) and some g ∈ Cc(H). Then

∫

X ��H

F (ξη) d(λ �� ε)s(ξ)(η) =

∫

X ��H

F
(
x[h ▹ y], [h ◃ y]k

)
d(λ �� ε)h−1

▹v(y, k)

=

∫

X

∫

H

f
(
x[h ▹ y]

)
g
(
[h ◃ y]k

)
dερ′(y)(k) dλh−1

▹v(y)
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=

∫

X

f
(
x[h ▹ y]

) ∫

H

g
(
[h ◃ y]k

)
dερ′(y)(k) dλh−1

▹v(y),

where the last equation follows from (L1), which guarantees that ρ′(y) = sH(h ◃y). Since 

rH(h ◃ y) = ρ′(h ▹ y), left-invariance of ε implies

∫

X ��H

F (ξη) d(λ �� ε)s(ξ)(η) =

∫

X

f
(
x[h ▹ y]

) ∫

H

g(k) dερ′(h▹y)(k) dλh−1
▹v(y).

For z ∈ X , define

G(z) := f(z)

∫

H

g(k) dερ′(z)(k).

Since ε is a Haar system and since g ∈ Cc(H), we know that

H(0) → C, u′ �→

∫

H

g dεu′

,

is continuous. Since ρ′ = ρ
(0)
X ◦sX is continuous and since f ∈ Cc(X ), we conclude that G

is a continuous and compactly supported function on X . Since sX (h ▹ y) = sX (x[h ▹ y]), 

we conclude that

∫

X ��H

F (ξη) d(λ �� ε)s(ξ)(η) =

∫

X

G
(
x[h ▹ y]

)
dλh−1

▹v(y)

=

∫

X

G(y) dλr(x)(y) (Corollary 2.30)

=

∫

X

f(y)

∫

H

g(k) dερ′(y)(k) dλr(ξ)(y) (def’n of G)

=

∫

X ��H

F (η) d(λ �� ε)r(ξ)(η). �

Corollary 2.31. Suppose H and X are locally compact Hausdorff groupoids and that H

has a self-similar left action on X .

(1) If X is étale, then counting measure on X is ▹-invariant in the sense of Defini-

tion 2.27.

(2) If H and X are both r-discrete, then so is H �� X .

(3) If H and X are both étale, then so is H �� X .



A. Duwenig, B. Li / Journal of Functional Analysis 288 (2025) 110699 21

Proof. If X is étale, [38, Prop. 1.29] says that counting measures form a Haar system 

on X . Now, for any fixed (h, u) ∈ H ∗
s ρ

X (0), the map X h▹u → X u, y �→ h−1
▹ y, is a 

bijection (in fact, a homeomorphism), and thus

∑

x∈X u

f(h ▹ x) =
∑

y∈X h▹u

f(y)

for all f ∈ Cc(X ). In other words, counting measure on X is ▹-invariant.

Now suppose the groupoids are r-discrete. Since X (0)×H(0) is open in X ×H and since 

X �� H has the subspace topology, we have that (X (0) × H(0)) ∩ (X �� H) = (X �� H)(0)

is open in X �� H. Thus, X �� H is also r-discrete.

Now, if both X and H are étale, then it follows from Proposition 2.28 that H �� X

admits a Haar system. According to [38, Prop. 1.23 and 1.29], any locally compact and r-

discrete groupoid that admits a Haar system is necessarily étale, so our claim follows. �

2.4. Rehash (from left to right)

The definitions we made so far can similarly be made on the right; we have added 

them here for easy reference.

Definition 2.32 (cf. Definition 2.2). Let G and X be two locally compact Hausdorff 

groupoids. We say G has a self-similar right action on X if there exists a continuous 

surjection σ
(0)
X : X (0) → G(0) and, using the anchor map σX := σ

(0)
X ◦ sX , two continuous 

maps

X ↶ G : X ∗
σX rG

G � (x, s) �→ x ◂ s ∈ X

X ↶G : X ∗
σX rG

G � (x, s) �→ x ▸ s ∈ G

such that the following hold.

• For any x ∈ X and t ∈ G such that σX (x) = rH(t), we have

σX (x ◂ t) = sG(t) σX (x−1) = rG(x ▸ t) σX ((x ◂ t)−1) = sG(x ▸ t) (R1)

• For all v ∈ X (0) and s ∈ G such that σX (v) = rG(s) and for all x ∈ X , we have:

v ▸ s = s and x ◂ σX (x) = x (R2)

• For all (x, y) ∈ X (2) and s ∈ G such that σX (y) = rG(s), we have sX (x ◂ (y ▸ s)) =

rX (y ◂ s) and

(xy) ▸ s = x ▸ (y ▸ s) (R3)

(xy) ◂ s = [x ◂ (y ▸ s)](y ◂ s) (R4)
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• For all x ∈ X and (s, t) ∈ G(2) such that σX (x) = rG(s), we have:

x ◂ (st) = (x ◂ s) ◂ t (R5)

x ▸ (st) = (x ▸ s)[(x ◂ s) ▸ t] (R6)

We call the self-similar right action free (and respectively, proper) if ◂ is free (and 

respectively, proper).

Remark 2.33. Similar to our previous computation for the self-similar left actions, for 

every t ∈ G, x ∈ X , and v ∈ X (0) with rG(t) = σX (x) = σX (v), we have

x ▸ σX (x) = σX (x−1) (R7)

v ◂ t ∈ X (0) (R8)

(x ◂ t)−1 = x−1
◂ (x ▸ t) and (x ▸ t)−1 = (x ◂ t) ▸ t−1 (R9)

sX (x ◂ t) = sX (x) ◂ t and rX (x ◂ t) = rX (x) ◂ (x ▸ t) (R10)

In a very similar fashion, we can define the self-similar product for a right action:

Definition 2.34. Let G be a groupoid that has a self-similar right action on X . Define 

their self-similar product as the set

G �� X = {(t, x) : sG(t) = σX (rX (x))}

with multiplication

(s, x)(t, y) := (s(x ▸ t), (x ◂ t)y), whenever sX (x) = rX (y) ◂ t−1,

and inverse

(t, x)−1 := (x−1
▸ t−1, x−1

◂ t−1).

For a right action, we mimic the construction in Definition 2.27 verbatim, only re-

placing the left Haar system by a right Haar system:

Definition 2.35. Suppose G and X are locally compact Hausdorff groupoids and that 

◂ is a right G-action on X with momentum map σG : X → G(0). We say that a right 

Haar system {λu}u∈X (0) on X is ◂-invariant if for all t ∈ G and all u ∈ X (0) with 

σX (u) = rG(t), we have

λu ◂ t = λu◂t,

where λu ◂ t(E) = λu(E ◂ t−1).
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Given a self-similar right action of G on X , a right Haar system of G and a ◂-invariant 

right Haar system on X yields a right Haar systems on the self-similar product groupoid 

G �� X similarly to the result in Proposition 2.28. The details are omitted here.

3. The orbit space

If H has a self-similar left action on the groupoid X , then (h, x) �→ h ▹x is an H-action 

on the space X according to Lemma 2.4. We can therefore construct the quotient space, 

H\X , whose elements we will denote by H▹x. We will now show that we can equip this 

space with its own groupoid structure as long as the action is free and proper.

Recall from Lemma 2.14 that ▹ restricts to an H-action on X (0), so we may consider 

H\X (0). We define sH\X , rH\X : H\X → H\X (0) by

sH\X (H ▹ x) = H ▹ sX (x) and rH\X (H ▹ x) = H ▹ rX (x). (3.1)

These are well-defined by (L10).

Lemma 3.1. If sH and sX are open, then the map sH\X is also open.

Proof. Since sH is open, the quotient map q|X (0) : X (0) → H\X (0) is open by [38, Propo-

sition 2.12]. The claim now follows from continuity of q and commutativity of the diagram 

below.

X H\X

X (0) H\X (0)

q

sX sH\X

q|
X (0)

�

Lemma 3.2. Suppose H has a self-similar left action on X , and fix two elements ξ, η of 

H\X for which sH\X (ξ) = rH\X (η). Then we can find x1 ∈ ξ and y1 ∈ η such that 

sX (x1) = rX (y1).

Moreover, if the action of H on X is free, then any two more such elements x2, y2

satisfy H ▹ (x2y2) = H ▹ (x1y1).

Proof. For existence, start with two arbitrary elements x ∈ ξ and y ∈ η. By construction 

of sH\X and rH\X , we have sX (x) ∈ sH\X (ξ) and rX (y) ∈ rH\X (η). As the two equiva-

lence classes coincide by assumption, there exists h ∈ H such that sX (x) = h ▹ rX (y). 

Since the right-hand side equals rX (h ▹ y) by (L10) (Lemma 2.9), we see that we can 

pick x1 := x and y1 := h ▹ y ∈ H ▹ y = η.

To see the claim about the product, let k, l ∈ H be such that x2 = k ▹ x1 and 

y2 = l ▹ y1. By (L10),

sX (x2) = sX (k ▹ x1) = (k ◃ x1) ▹ sX (x1), and
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rX (y2) = rX (l ▹ y1) = l ▹ rX (y1) = l ▹ sX (x1).

Since the left-hand sides of these equations are assumed to be equal and since the H-

action is free, we conclude that l = k ◃ x1. Therefore, by (L6),

x2y2 = (k ▹ x1)(l ▹ y1) = (k ▹ x1)([k ◃ x1] ▹ y1) = k ▹ (x1y1),

so H ▹ (x2y2) = H ▹ (x1y1), as claimed. �

The lemma allows us to turn H\X into a groupoid.

Proposition 3.3. Suppose H has a self-similar left action on X for which ▹ is free on X . 

For two elements ξ, η of the orbit space H\X with sH\X (ξ) = rH\X (η), define

ξη = H ▹ (xy) where x ∈ ξ, y ∈ η are such that sX (x) = rX (y).

Further, define

(H ▹ x)−1 = H ▹ x−1.

With this structure, H\X is a (non-topological) groupoid.

If we further assume that ▹ is proper and sH is open, then H\X is a locally compact 

Hausdorff groupoid with the quotient topology, and if X is étale, then so is H\X .

Proof. We have seen in Lemma 3.2 that, since the H-action is free, the multiplication 

is well-defined and independent of the choice of x, y. To see that the inversion is well-

defined, suppose that x1 ∈ H▹x = ξ, i.e., x1 = h ▹x for some h. Then by (L9), we have 

x−1
1 = (h ▹x)−1 = (h ◃x) ▹x−1, so x−1

1 ∈ H▹x−1, and hence the definition of (H▹x)−1

does not depend on the chosen representative.

The algebraic properties of a groupoid are now easy to verify and follow from the 

algebraic properties that X satisfies.

Now suppose ▹ is proper and sH is open. Since we assume our groupoids H and X to 

be locally compact Hausdorff, it follows from [38, Proposition 2.18] that the quotient is 

locally compact Hausdorff.

To show that the multiplication map (H\X )(2) → H\X is continuous, suppose we 

are given a net {(ξi, ηi)}i∈I in (H\X )(2) that converges to some composable pair (ξ, η). 

Because of Lemma A.2, it suffices to show that a subnet of {ξiηi}i∈I converges to ξη.

As (H\X )(2) has the subspace topology of the product topology on (H\X ) × (H\X ), 

convergence implies that ξi → ξ and ηi → η in H\X . Since sH is open, the quotient 

map q is open by [38, Proposition 2.12]. Thus, if we fix x ∈ ξ, then by Proposition A.1

we can find a subnet of {ξi}i∈I that is the image under q of a net in X that converges 

to x; without loss of generality, the subnet is the net itself, meaning there exist xi ∈ X

such that xi → x and H ▹ xi = ξi. Once again by passing to a subnet, we can without 
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loss of generality assume that {ηi}i∈I is the image under q of a convergent net, say 

of yi → y ∈ η. In other words, by passing to a subnet of a subnet, we can without 

loss of generality assume that {(ξi, ηi)}i∈I itself can be lifted to a net {(xi, yi)}i∈I that 

converges to (x, y) ∈ ξ × η in X × X . Since (ξi, ηi) ∈ (H\X )(2), we have

H ▹ sX (xi) = sH\X (ξi) = rH\X (ηi) = H ▹ rX (yi),

so we can find hi ∈ H such that sX (xi) = hi ▹ rX (yi); note that hi is unique by freeness. 

Similarly, there exists a unique h with sX (x) = h ▹ rX (y). Continuity of sX and rX

implies that

(
hi ▹ rX (yi), rX (yi)

)
=

(
sX (xi), rX (yi)

) i
→

(
sX (x), rX (y)

)
=

(
h ▹ rX (y), rX (y)

)
(3.2)

Since ▹ is proper, this convergence implies that (a subnet of) {hi}i∈I converges. 

Since X (0) is Hausdorff and ▹ is free, it must converge to h. In particular, continuity if 

▹ implies that {(xi, hi ▹ yi)}i∈I is a net in X (2) that converges to the composable pair 

(x, h ▹ y). Continuity of the multiplication on X implies that {xi[hi ▹ yi]}i∈I converges 

to x[h ▹ y]. Since

q(xi[hi ▹ yi]) = H ▹ (xi[hi ▹ yi]) = (H ▹ xi)(H ▹ yi) = ξi ηi

and q(x[h ▹ y]) = ξ η, continuity of q implies that {ξiηi}i∈I converges to ξη. This proves 

that the multiplication on H\X is continuous.

For the inversion map, the argument is similar: if ξi → ξ in H\X , then openness of 

q allows a lift {xj}j∈J of a subnet {ξj}j∈J which converges to a fixed preimage x of ξ. 

Continuity of the inversion in X implies that x−1
j → x−1, and continuity of q implies 

ξ−1
j = H ▹ (x−1

j ) → H ▹ (x−1) = ξ−1. By Lemma A.2, this suffices to show that the 

inversion on H\X is continuous.

Lastly, assume that X is étale, so its source map is an open map and its unit space 

is open. As argued above, the quotient map q : X → H\X is open, and so (H\X )(0) =

H\X (0) = q(X (0)) is open, i.e., H\X is r-discrete. Since sH and sX are open, Lemma 3.1

implies that the source map of H\X is open, and so [38, Proposition 1.29] implies that 

H\X is étale. �

Example 3.4. If we consider the self-similar left action of the trivial groupoid X (0) on X

as defined in Example 2.6, then X (0)\X ∼= X via X (0)
▹ x �→ x, since ▹ is trivial.

Likewise, the trivial group {e} with its (trivial) self-similar left action on a groupoid 

X as defined in Example 2.7 is (trivially) free and proper. The quotient groupoid {e}\X

is exactly the groupoid X if we identify {e} ▹ x with x.
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3.1. Self-similar para-equivalences

We are now in a position where we can define a generalized notion of compatible 

actions.

Definition 3.5. Suppose the two groupoids H, G act on the left and right of a groupoid X

by self-similar actions, respectively. We say the actions are in tune if for any h ∈ H, 

x ∈ X , and s ∈ G with sH(h) = ρX (x) and σX (x) = rG(s), we have

(C0) σX (h ▹ x) = σX (x) in G(0) and ρX (x) = ρX (x ◂ s) in H(0),

(C1) h ▹ (x ◂ s) = (h ▹ x) ◂ s in X ,

(C2) (h ▹ x) ▸ s = x ▸ s in G, and

(C3) h ◃ (x ◂ s) = h ◃ x in H.

Note that Condition (C0) ensures that the elements in the other conditions make 

sense.

Definition 3.6. Suppose the two groupoids H, G act on the left and right of a groupoid X

by self-similar actions, respectively. If the self-similar actions are in tune and both free 

and proper, and if H, G, and X have open source maps, then we call X an (H, G)-self-

similar para-equivalence.

Remark 3.7. In case of the semidirect product construction in [17, Appendix A.2], we 

have x ▸s = s and h ◃x = h for all h ∈ H, x ∈ X , and s ∈ G. Therefore, Conditions (C2)

and (C3) are trivially satisfied since both sides of the first equation are s and both 

sides of the second are h. Thus, in this case, the in-tune conditions simply reduce to the 

commuting conditions (C0) and (C1).

Example 3.8. Let G and X be groupoids whose source maps are open, and suppose that 

G has a self-similar right action on X that is free and proper (Definition 2.32). Then 

X is a ({e}, G)-self-similar para-equivalence. Indeed, the trivial actions ▹, ◃ constitute a 

free and proper self-similar left action of {e} on X (see Examples 2.7 and 2.12), and the 

following computations show that the actions of X (0) and of G are in tune, where x ∈ X

and s ∈ G are such that σX (x) = rG(s).

Re (C0): Since ▹ is trivial, we have σX (h ▹ x) = σX (x), and since ρX : X → {e}

is constant, we have ρX (x) = ρX (x ◂ s).

Re (C1), (C2): Since ▹ is trivial, we have e ▹(x ◂s) = x ◂s = (e ▹x) ◂s and (e ▹x) ▸s =

x ▸ s.

Re (C3): Since ◃ is trivial, we have e ◃ (x ◂ s) = e = e ◃ x.
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Note, however, that X is not a (X (0), G)-self-similar para-equivalence (even though X

has a free and proper self-similar left action of X (0) by Example 2.6): If there exists one 

(x, s) ∈ X ∗
σ s

G with s /∈ G(0), then freeness of the G-action ◂ on X (0) implies that

rX (x) �= rX (x) ◂ (x ▸ s)
(R10)

= rX (x ◂ s).

As the momentum map ρX for the X (0)-action on X is rX in this setting, the above 

inequality conflicts with Condition (C0).

Remark 3.9. In Example 2.26, we showed that the (trivial) self-similar left action of {e}

on a groupoid X gives rise to the ‘standard’ self-similar left action of X (0) on X as defined 

in Example 2.6, and it then also followed that X �� {e} ∼= X �� X (0). This seemed to 

indicate that the pairs (X , {e}) and (X , X (0)) are ‘the same’ in some sense.

However, the above example shows that this point of view is ill-advised, since a self-

similar para-equivalence X between H and G need not be one between H̃ = H ⋉ X (0)

and G. The reason is that, Condition (C0) for the pair (H, G) does not imply the same 

condition for (H̃, G), since the momentum maps on X with respect to the left actions 

do not need to coincide: we have ρX : X → H(0) for the left H-action ▹, while we have 

rX : X → X (0) = H̃(0) for the left H̃-action · (see Lemma 2.22).

Given a (H, G)-self-similar para-equivalence X , we have shown in Proposition 3.3 that 

the orbit space H\X and, by extension, X /G are groupoids. In Proposition 3.12, we will 

establish that H has a self-similar left action on X /G; similarly, G has a self-similar right 

action on H\X . We can then consider the self-similar product groupoids (X /G) �� H

and G �� (H\X ), as constructed in Definition 2.16. Our main result is that these two 

self-similar product groupoids are equivalent via their actions on X in the sense of [22, 

Definition 2.1] as summed up in the following theorem; this generalizes [17, Lemma 3.2].

Theorem 3.10 (cf. [17, Lemma 3.2]). Let H, G, X be groupoids, and suppose that X is a 

(H, G)-self-similar para-equivalence in the sense of Definition 3.6, that is,

• sH, sG, and sX are open maps,

• H has a self-similar left action on X that is free and proper (Definition 2.2),

• G has a self-similar right action on X that is free and proper (Definition 2.32), and

• the two actions are in tune (Definition 3.5).

Then there is a natural way to turn X into a groupoid equivalence from (X /G) �� H to 

G �� (H\X ).

For the description of the equivalence structure on X , see Proposition 3.14. Examples 

of applications of Theorem 3.10 can be found in Subsection 3.2.
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Example 3.11. Theorem 3.10 recovers [17, Lemma 3.2]: when H and G are locally com-

pact Hausdorff groups and their free and proper actions on a groupoid X are actions by 

automorphisms, then we may let X act trivially on both H and G, i.e., h ◃ x = h and 

x ▸s = s. This makes X a (H, G)-self-similar para-equivalence, and the equivalence struc-

ture alluded to in Theorem 3.10 makes X a groupoid equivalence between (X /G) ⋊ H

and G ⋉ (H\X ).

Proposition 3.12. Suppose X is a (H, G)-self-similar para-equivalence. Then H has a self-

similar left action on X /G: the momentum map is given by ρ̃(x ◂ G) = ρX (x), and the 

actions are defined by

H ↷ (X /G) : H ∗
s ρ̃

(X /G) � (h, x ◂ G) �→ h ©▹ (x ◂ G) := (h ▹ x) ◂ G ∈ X /G

H ↷(X /G) : H ∗
s ρ̃

(X /G) � (h, x ◂ G) �→ h ©◃ (x ◂ G) := h ◃ x ∈ H

Likewise, G has a self-similar right action on H\X : the momentum map is given by 

σ̃(H ▹ x) = σX (x), and the actions are defined by

(H\X ) ↶ G : (H\X ) ∗
σ̃ r

G � (H ▹ x, s) �→ (H ▹ x) ©◂ s := H ▹ (x ◂ s) ∈ H\X

(H\X ) ↶G : (H\X ) ∗
σ̃ r

G � (H ▹ x, s) �→ (H ▹ x) ©▸ s := x ▸ s ∈ G

Note that, even though ▹ and ◂ are free and proper, the same is not necessarily true 

for ©▹ or ©◂ . This fact prevents us from turning an iterated quotient such as H\(X /G)

or (H\X )/G into a topological groupoid, if we were so inclined. (Luckily, we aren’t.)

Proof. The momentum map is well-defined by Condition (C0) and it is surjective because 

ρX is surjective. It remains to check that ρ̃ is continuous. Since rG is open, we know that 

the quotient map X → X /G is open by [38, Proposition 2.12]. In particular, if {xi◂G}i∈I

is a net converging to x ◂G in X /G, then Proposition A.1 says that we can find a subnet 

{xf(j) ◂ G}j∈J which allows a convergent lift in X , i.e., there exist yj ∈ xf(j) ◂ G for all 

j with yj → y for some y ∈ x ◂ G. Continuity of ρX then implies

ρ̃(xf(j) ◂ G) = ρX (yj) → ρX (y) = ρ̃(x ◂ G).

Using Lemma A.2, we conclude that ρ̃ is continuous.

We next verify that ©▹ is well-defined. If x ◂ G = y ◂ G, there exists a unique s ∈ G

such that x = y ◂ s. Now by the commuting Condition (C1),

h ▹ x = h ▹ (y ◂ s) = (h ▹ y) ◂ s.

Therefore, (h ▹ x) ◂ G = (h ▹ y) ◂ G. Similarly, to show that ©◃ is well-defined, let x, y, s

be as above, and let h ∈ H be such that sH(h) = ρX (x). By Condition (C3), we have

h ◃ x = h ◃ (y ◂ s) = h ◃ y.
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To see that this H-action on X /G is self-similar, we observe that the H-action on X

passes through the quotient and (x ◂ G)(y ◂ G) = (xy) ◂ G whenever rX (y) = sX (x). 

Therefore, the Conditions (L2) through (L6) from the self-similar H-action on X all pass 

through to the H-action on X /G, proving that this H-action on X /G is also self-similar.

Lastly, we will check that ©▹ is continuous. So assume we are given hi ∈ H such that 

sH(hj) = ρX (xi) and hi → h. By continuity of ▹ and ◃, we have hf(j) ▹ yj → h ▹ y in X

and hf(j) ◃yj → h ◃y in H. Continuity of the quotient map X → X /G then implies that

hf(j) ©▹ (xf(j) ◂ G) = (hf(j) ▹ yj) ◂ G → (h ▹ y) ◂ G = h ©▹ (x ◂ G),

and likewise we have

hf(j) ©◃ (xf(j) ◂ G) = hf(j) ◃ yj → h ◃ y = h ©◃ (x ◂ G).

Lemma A.2 again implies that ©▹ is continuous.

The claims for ©◂ and ©▸ follow mutatis mutandis. �

Following Definitions 2.16 and 2.34, we obtain two groupoids, (X /G) �� H and G ��

(H\X ). By Remark 2.19, the unit space of the self-similar product groupoid (X /G) �� H

is homeomorphic to the unit space of X /G. In other words, we have:

((X /G) �� H)(0) ≈ (X (0))/G = {u ◂ G : u ∈ X (0)};

(G �� (H\X ))(0) ≈ H\(X (0)) = {H ▹ u : u ∈ X (0)}.

The following lemma computes the range and source maps explicitly for these two 

self-similar product groupoids. It follows immediately from Remark 2.19.

Lemma 3.13. Consider (ξ, h) ∈ (X /G) �� H and (t, η) ∈ G �� (H\X ), and let x ∈ ξ and 

y ∈ η be arbitrary. We have

(1) r(ξ, h) = rX /G(ξ) = rX (x) ◂ G

(2) s(ξ, h) = h−1 ©▹ sX /G(ξ) = (h−1
▹ sX (x)) ◂ G

(3) r(t, η) = rH\X (η) ©◂ t−1 = H ▹ (rX (y) ◂ t−1)

(4) s(t, η) = sH\X (η) = H ▹ sX (y)

We now define left and right actions of these groupoids on X .

Proposition 3.14. Let X be a (H, G)-self-similar para-equivalence. Define r : X →

[(X /G) �� H](0) and s : X → [G �� (H\X )](0) by

r(x) = rX (x) ◂ G and s(x) = H ▹ sX (x).
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These are well-defined, surjective, continuous, open maps. Using them as momentum 

maps, we can define a left (X /G) �� H- and a right G �� (H\X )-action via:

((ξ, h), y) �→ (ξ, h) · y := x(h ▹ y), where x ∈ ξ is such that (x, h ▹ y) ∈ X (2);

(y, (t, η)) �→ y · (t, η) := (y ◂ t)z, where z ∈ η is such that (y ◂ t, z) ∈ X (2).

Here, x(h ▹y) and (y◂g)z denote composition in the groupoid X . These actions are free 

and proper, and they commute.

Proof. We will do everything for the left-hand side; the claims for the right-hand side 

will follow mutatis mutandis.

First, notice that r is clearly continuous and surjective since rX is continuous and 

surjective. Furthermore, r is open as a concatenation of open maps: rX is open by as-

sumption, and the quotient map X → X /G is open by [38, Proposition 2.12] since rG is 

open by assumption.

Next, we verify that the left (X /G) �� H-action is well-defined. Given a pair ((ξ, h), y)

with r(y) = s(ξ, h), it follows from the definition of r, from Lemma 3.13, and from (L10)

that rX (h ▹ y) ◂ G = sX /G(ξ), where sX /G : X /G → (X (0))/G is as in Equation (3.1). 

Therefore, there exists x ∈ ξ such that sX (x) = rX (h ▹ y). Since the action on X is 

assumed to be free, we may invoke a ◂-version of Lemma 2.15 to conclude that such x

must be unique. Therefore, the left action is well-defined.

We now verify that the left action is free. Pick any y ∈ X and (ξ, h) ∈ (X /G) �� H

such that (ξ, h) · y = y, and let x ∈ ξ satisfy rX (h ▹ y) = sX (x). By the definition of 

the left (X /G) �� H-action on X , our assumption (ξ, h) · y = y implies x(h ▹ y) = y. In 

particular,

sX (y) = sX (x(h ▹ y)) = sX (h ▹ y) = h ▹ sX (y).

Since the H-action on X is free, we have h ∈ H(0) and thus y = xy. This only happens 

when x = rX (y) and thus (ξ, h) = (rX (y) ◂ G, h) is a unit in (X /G) �� H.

To see that the left action is continuous, assume that we have nets {(ξi, hi)}i∈I in 

(X /G) �� H and {yi}i∈I in X which converge to (ξ, h) and y, respectively, and which 

satisfy

s(ξi, hi) = r(yi), i.e., sX /G(ξi) = rX (hi ▹ yi) ◂ G.

If we let xi ∈ ξi and x ∈ ξ be the unique elements such that

ui := sX (xi) = rX (hi ▹ yi) and u := sX (x) = rX (h ▹ y),

then by Lemma A.2, it suffices to find a subnet of {xi(hi ▹ yi)}i∈I that converges to 

x(h ▹ y). As (hi, yi) → (h, y), we only need to show that a subnet of {xi}i∈I converges 
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to x; furthermore, it gives us that ui → u. Since ξi → ξ and since q : X → X /G is 

open, Proposition A.1 then implies that there exists a subnet {ξj}j∈J of {ξi}i∈I and lifts 

zi ∈ ξj such that zi → x. As xj ∈ ξj also, there exist ti ∈ G such that zi = xj ◂ ti. In 

particular, by continuity of sX and by (R10), we have uj ◂ ti = sX (zi) → sX (x) = u. 

Since uj → u, we therefore have that

(uj ◂ ti, uj) → (u, u).

As the right action of G on X is free and proper, it now follows from [38, Corollary 

2.26] that ti → σX (u) = σX (x) by definition of σX . Thus, xj = zi ◂ t−1
i converges to 

x ◂ σX (x)−1 = x ◂ σX (x) = x by (R2).

To show that the left action is proper, suppose yi → y and (ξi, hi) · yi → z in X ; 

according to [38, Proposition 2.17], it suffices to show that {(ξi, hi)}i∈I has a convergent 

subnet. As before, let xi ∈ ξi be the unique element such that ui := sX (xi) = rX (hi▹yi), 

so that (ξi, hi) · yi = xi(hi ▹ yi) → z.

We have sX (yi) → sX (y) and

(hi ◃ yi) ▹ sX (yi) = sX (hi ▹ yi) = sX ((ξi, hi) · yi) → sX (z).

Since ▹ is proper, this implies that (a subnet of) {hi ◃ yi}i∈I converges in H; let g be its 

limit. Note that

hi ▹ rX (yi) = hi ▹ (yiy
−1
i ) = (hi ▹ yi)

[
(hi ◃ yi) ▹ yi

]
by (L4).

If we multiply by (hi ▹ yi)
−1 on the left, we therefore get

(hi ▹ yi)
−1

[
hi ▹ rX (yi)

]
= (hi ◃ yi) ▹ yi → g ▹ y. (3.3)

Since H leaves X (0) invariant (Lemma 2.14), we have

(hi ▹ yi)
−1

[
hi ▹ rX (yi)

]
= (hi ▹ yi)

−1,

and so it follows from (3.3) that hi ▹ yi → (g ▹ y)−1. Again, since yi → y, properness of 

▹ now implies that (a subnet of) hi converges in H; let h be its limit. Thus

xi =
[
xi(hi ▹ yi)

]
(hi ▹ yi)

−1 → z(h ▹ y)−1.

We have shown that (a subnet of) {(xi, hi)}i∈I converges, namely to 
(
z(h ▹ y)−1, h

)
. We 

conclude that (a subnet of) {(ξi, hi)}i∈I converges as well. This concludes our proof of 

properness.

We now want to verify that these two actions commute. Pick (ξ, h) ∈ (X /G) �� H, 

y ∈ X , and (t, η) ∈ G �� (H\X ) with matching range, source, and momentum maps, 
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respectively. Let x be the unique element in ξ such that sX (x) = rX (h ▹ y). We want to 

argue that we can choose a particular representative of η. We compute

s(x(h ▹ y)) = H ▹ sX (x(h ▹ y)) (def’n of s)

= H ▹ sX (h ▹ y)

= H ▹ [(h ◃ y) ▹ sX (y)] (by (L10))

= H ▹ sX (y) = r(t, η) (def’n of G �� (H\X )).

This shows that (t, η) can act on the right of x(h ▹ y). Our previous explanation now 

implies that there exists a unique representative z ∈ η which has range equal to sX ([x(h ▹

y)] ◂ t). This choice of x and z makes the following computation particularly easy:

[
(ξ, h) · y

]
· (t, η) = [x(h ▹ y)] · (t, η) =

[(
x(h ▹ y)

)
◂ t

]
z

=
[
x ◂

(
(h ▹ y) ▸ t

)]
((h ▹ y) ◂ t)z (by (R4))

=
[
x ◂

(
y ▸ t

)]
(h ▹ (y ◂ t))z (by (C3) and (C1)).

On the other hand, let z′ ∈ η satisfy rX (z′) = sX (y ◂ t), and let x′ ∈ ξ be the unique 

element such that sX (x′) = rX (h ▹ ((y ◂ t)z′)). Then

(ξ, h) ·
[
y · (t, η)

]
= (ξ, h) · [(y ◂ t)z′] (choice of z′)

= x′
[
h ▹ ((y ◂ t)z′)

]
(choice of x′)

= x′[h ▹ y ◂ t]
[
(h ◃ (y ◂ t)) ▹ z′

]
(by (L4))

= x′[h ▹ y ◂ t]
[
(h ◃ y) ▹ z′

]
(by (C3)).

Thus, to prove that 
[
(ξ, h) · y

]
· (t, η) = (ξ, h) ·

[
y · (t, η)

]
, it suffices to show that

x ◂

(
y ▸ t

)
= x′ and z = (h ◃ y) ▹ z′.

For the right equation, we compute the range of the right-hand side as

rX

(
(h ◃ y) ▹ z′

)
= (h ◃ y) ▹ rX (z′) (by (L10))

= (h ◃ y) ▹ sX (y ◂ t) (choice of z′)

= (h ◃ y) ▹ [sX (y) ◂ t] (by (R10))

= sX (h ▹ y) ◂ t (by (L10)).

On the other hand,

rX (z) = sX

(
[x(h ▹ y)] ◂ t

)
(choice of z)

= sX (x(h ▹ y)) ◂ t (by (L10))

= sX (h ▹ y) ◂ t.
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Both combined yield

rX

(
(h ▹ y ◂ t) ▹ z′

)
= rX (z).

Since H ▹ z = H ▹ z′ = H ▹

(
(h ◃ y) ▹ z′

)
and since the actions are free, it follows from 

Lemma 2.15 that z = (h ◃ y) ▹ z′. A similar argument shows that x′ = x ◂ (y ▸ t). We 

proved that the left (X /G) �� H- and the right G �� (H\X )-actions on X commute. �

We now prove the first main result (Theorem 3.10) which states that X is a (X /G) ��

H – G �� (H\X )-equivalence.

Proof of Theorem 3.10. According to Proposition 3.14, we have commuting free and 

proper left (X /G) �� H- and right G �� (H\X )-actions on X . It remains to show that r

induces a homeomorphism r̃ between X /(G �� (H\X )) and ((X /G) �� H)(0); a similar 

proof will then show that s induces an analogous homeomorphism.

Fix y ∈ X and consider any (t, η) ∈ G �� (H\X ) with s(y) = r(t, η). Let z ∈ η be the 

unique element such that rX (z) = sX (y◂t), so that by definition of the right-G �� (H\X )-

action, y · (s, η) = (y ◂ t)z. Consider its range in X :

rX (y · (t, η)) = rX ((y ◂ t)z) = rX (y ◂ t)

= rX (y) ◂ (y ▸ t) ∈ rX (y) ◂ G.

Therefore, if we write y for the equivalence class of y in X /(G �� (H\X )), then r̃(y) =

rX (y) ◂ G is well-defined. Surjectivity, continuity, and openness of r̃ is trivial, since 

r is surjective, continuous, and open. To see that r̃ is injective, take any y, y′ with 

rX (y) ◂ G = rX (y′) ◂ G; we need to find t ∈ G and η ∈ H\X such that y · (s, η) = y′. 

By assumption, there exists s ∈ G such that rX (y′) = rX (y) ◂ s. Set t = y−1
▸ s Then 

s = y ▸ t and thus by (R10),

rX (y′) = rX (y) ◂ (y ▸ t) = rX (y ◂ t).

Since y′ and y ◂ t have the same range in X , we may let x = (y ◂ t)−1y′ ∈ X , so that 

y′ = (y ◂ t)x, i.e., y′ = y · (t, H ▹ x). �

Remark 3.15. Let us briefly recap which topological assumption in Theorem 3.10 was 

needed for which part of the proof. We required the source map of H to be open in order 

for the quotient map q : X → H\H to be open which, in turn, we used to show that the 

momentum map σ̃ of the G-action on H\X is continuous (see proof of Proposition 3.12). 

Freeness of the H-action on X allowed us to turn H\X into a groupoid (Lemma 3.2), 

and its properness plus openness of q was needed to make H\X a locally compact Haus-

dorff groupoid (Proposition 3.3). Lastly, the source map of X was required to be open 

in order to prove that the momentum map s of the right G �� (H\X )-action on X
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(Proposition 3.14) is open and can therefore induce a homeomorphism of the quotient 

by the right (X /G) �� H-action onto the unit space of G �� (H\X ).

Corollary 3.16 (cf. [38, Proposition 2.47]). Suppose H and X are groupoids and that H

has a self-similar left action on X that is free and proper. If sX and sH are open maps, 

then the groupoids X �� H and H\X are equivalent.

Proof. We have seen in Example 3.8 that X is a (H, {e})-self-similar para-equivalence 

(modulo switching the roles of H and G). Theorem 3.10 thus implies that (X /{e}) �� H

and {e} �� (H\X ) are equivalent groupoids. By Examples 2.21 and 3.4, we have {e} ��

(H\X ) ∼= H\X and (X /{e}) �� H ∼= X �� H, respectively. The claim now follows. �

3.2. Applications of Theorem 3.10

Example 3.17 (continuation of Examples 2.8 and 2.13). Suppose again that a locally 

compact Hausdorff group K = G �� H acts on the left on a locally compact Hausdorff 

space X, denoted by ∗. We let X = G ⋉X be the transformation groupoid, and we define 

the self-similar left action ▹ and ◃ of H on X as in (2.2). We assume that ∗ is free and 

proper, so that ▹ and ◃ are free and proper by our computations in Example 2.13. Thus, 

by Corollary 3.16, we get that X �� H is equivalent to H\X . (Here, the assumption that 

the source maps are open is trivially satisfied: the source map of H is constant and the 

source map of X is the identity map.)

Note that the map

φ : (G ⋉ X) �� H → (G �� H) ⋉ X, ((t, x), h) �→ ((t, h), h−1 ∗ x),

is a groupoid isomorphism X �� H ∼= K⋉X. Indeed, using the definition of �� in X �� H, 

we compute the product of two elements of the domain to be

(
(t, x), h

) (
(s, y), k

)
=

(
(t, x)[h ▹ (s, y)], [h ◃ (s, y)]k

)
=

(
(t, x)(h · s, h|s ∗ y), h|sk

)
.

Of the tuple on the far right-hand side, the first component is a product in X ; it is 

defined if and only if the source of (t, x) equals the range of (h ·s, h|s ∗y). In other words, 

we must have x = (h ·s) ∗ [h|s ∗y] = [(h ·s)(h|s)] ∗y = [hs] ∗y, in which case their product 

is (t[h · s], h|s ∗ y). Therefore, the composition in X �� H can be described succinctly as 

follows:

(
(t, [hs] ∗ y), h

) (
(s, y), k

)
=

(
(t[h · s], h|s ∗ y), h|sk

)
.

Applying φ, we end up with

φ
((

(t, [hs]∗y), h
) (

(s, y), k
))

=
(
(t[h·s], h|sk), [h|sk]−1∗[h|s∗y]

)
=

(
(t[h·s], h|sk), k−1∗y

)
.
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On the other hand, the product of φ((t, h), x) with φ((s, k), y) in the codomain K ⋉X is 

defined if and only if the source h−1 ∗x of ((t, h), h−1x) equals the range (s, k) ∗ (k−1 ∗y)

of ((s, k), k−1 ∗y). In other words, we get the same necessary condition for composability 

as above, namely that x = [hs] ∗ y, in which case

φ
(
(t, [hs] ∗ y), h

)
φ

(
(s, y), k

)
=

(
(t, h)(s, k), k−1 ∗ y

)
.

In K, we have (t, h)(s, k) = (t[h · s], h|sk), which shows that indeed

φ
(
(t, x), h

) (
(s, y), k

)
= φ

(
(t, x), h

)
φ

(
(s, y), k

)
.

The setup in Example 3.17 arises abundantly in group dynamics.

Example 3.18 (First special case of Example 3.17). In the above example, suppose that 

G = {e}, so K = H and X = X is a trivial groupoid (i.e., a space). The action ◃ is now 

trivial and the action ▹ is exactly the action ∗ of K on X that we started with. If ∗ is free 

and proper, Example 3.17 shows that the transformation groupoid K ⋉ X is equivalent 

to K\X. Note that the trivial groupoid K\X always admits a Haar system (see, for 

example, [38, Example 1.22]). Assuming that the two groupoids are second countable, 

K ⋉ X therefore also admits a Haar system by [37, Theorem 2.1]. We may now apply 

[22, Theorem 2.8], which states that the C*-algebras of equivalent groupoids with Haar 

systems are Morita equivalent. In other words, we exhibit the known result that the 

crossed product C0(X) ⋊ K is Morita equivalent to C0(K\X).

The following is a concrete example using a finite group K.

Example 3.19 (Second special case of Example 3.17). Consider the symmetric group S4, 

which is a group of order 24, and the elements

a = (1 2 3) and r = (1 2 3 4) , f = (1 3) .

Let G = 〈a〉 and H = 〈r, f〉; one can verify that G and H are of order 3 and 8 respectively, 

that neither subgroup is normal, and that G ∼= C3 and H ∼= D4.

Since |S4| = |G| · |H| and |G ∩ H| = 1, we must have S4 = G · H, i.e., each element 

in S4 is a unique product of the form th for t ∈ G and h ∈ H. In other words, S4 = K

is the internal Zappa–Szép product of G and H, and in particular, we get Zappa–Szép 

actions G ↷↷H in such a way that any product ht of h ∈ H and t ∈ G in S4 can be 

uniquely decomposed as

ht = (h · t)(h|t)

where h · t ∈ G and h|t ∈ H. Tables 1 and 2 contains an overview of these actions.
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Table 1

Action map h · t on S4.

h
t

e a a2

e e a a2

r e a2 a
r2 e a a2

r3 e a2 a
f e a2 a
rf e a a2

r2f e a2 a
r3f e a a2

Table 2

Restriction map h|t on S4.

h
t

e a a2

e e e e
r r r2f r3

r2 r2 rf r3f
r3 r3 r r2f
f f f f
rf rf r3f r2

r2f r2f r3 r
r3f r3f r2 rf

Now let X = S4 and we let S4 act on X by left translation, so that K⋉X = S4 ⋉lt S4. 

One can explicitly write out all the orbits in H\(G ⋉ X), and verify that the nine 

elements in G ⋉ G ¦ G ⋉ X are in different H-orbits. Since |H\(G ⋉ X)| = 9, we 

have H\(G ⋉ X) ∼= G ⋉ G. By Example 3.17, we conclude that the groupoids S4 ⋉lt S4

and G ⋉ G are equivalent. By the Stone–von Neumann Theorem, their groupoid C*-

algebras are given by K(�2(S4)) ∼= M24(C) and K(�2(G)) ∼= M3(C). Consequently, these 

C*-algebras are Morita equivalent.

Example 3.20 (continuation of Example 2.24). Suppose again that c : G → H is a con-

tinuous homomorphism from a groupoid to a group. In Example 2.24, we described a 

self-similar left action of H on the skew-product groupoid G(c). This action is free and 

proper. Note that sG is open if and only if sG(c) is open, in which case it follows from 

Corollary 3.16 that G(c) �� H is equivalent to H\G(c) ∼= G.

3.3. Haar systems on quotients

To construct a right Haar systems on X /G out of a right Haar system on X , we again 

require ◂-invariance.

Lemma 3.21 (cf. [17, Prop. A.10]). Suppose G and X are locally compact Hausdorff 

groupoids, that G has a free and proper self-similar right action on X , and that X has 

a ◂-invariant right Haar system {λu}u∈X (0) (Definition 2.35). Then there exists a right 

Haar system {κu◂G}u◂G on X /G given for any f̂ ∈ Cc(X /G) by
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∫
f̂(x ◂ G) dκu◂G(x ◂ G) =

∫

X

f̂(x ◂ G) dλu(x).

Proof. The argument is verbatim as in the proof of [17, Prop. A.10], only that the range 

map of X has to be replaced by its source map. To be precise, we will invoke [29, Lemma 

1.3] for (X, Y, G, π) = (X , X (0), G, sX ). Since we assumed ◂ to be free and proper, X is a 

principal G-space. Since X is assumed to have a Haar system, its continuous source map 

sX is open [38, Prop. 1.23]. It is furthermore equivariant by (R10), so that we may apply 

[29, Lemma 1.3]. The given formula for κ is hence a system for the map X /G → X (0)/G, 

x ◂ G �→ sX (x) ◂ G, which is the source map of the groupoid X /G. In other words, κ is 

a right Haar system for X /G. �

Lemma 3.22. Suppose X , H, G are locally compact Hausdorff groupoids and that X has 

a left H-action ▹ and a free and proper right G-action ◂. Assume {λu}u∈X (0) is a ◂-

invariant right Haar system on X (Definition 2.35), and let {κu◂G}u◂G be the induced 

right Haar system on X /G (Lemma 3.21). If the left Haar system {λu}u∈X (0) on X

defined by λu(E) = λu(E−1) is ▹-invariant (Definition 2.27), then the left Haar system 

{κu◂G}u◂G on X /G associated to {κu◂G}u◂G is ©▹ -invariant.

Proof. The computation is straightforward: on the one hand,

κu◂G(h−1 ©▹ [E ◂ G]) = κu◂G([h−1
▹ E] ◂ G) (def’n of ©▹ )

= κu◂G

(
[h−1

▹ E]−1
◂ G

)
(def’n of κu◂G and of −1 on X /G)

= λu([h−1
▹ E]−1) (def’n of κu◂G)

= λu(h−1
▹ E) (def’n of λu)

= λh▹u(E) (▹-invariance of λu).

On the other hand,

κh©▹ [u◂G](E ◂ G) = κh©▹ [u◂G]([E ◂ G]−1) (def’n of κh©▹ [u◂G])

= κ[h©▹u]◂G(E−1
◂ G) (def’n of ©▹ and of −1 on X /G)

= λh▹u(E−1) (def’n of κ[h©▹u]◂G)

= λh▹u(E) (def’n of λh▹u).

This shows that κu◂G(h−1 ©▹ [E ◂ G]) = κh©▹ [u◂G](E ◂ G). �

Corollary 3.23. Suppose G, H, X are as in Theorem 3.10. Assume that X has a ▹-

invariant left Haar system (Definition 2.27) whose associated right Haar system is 

◂-invariant. If H and G have Haar systems, then so do (X /G) �� H and G �� (H\X ), 

and so their C*-algebras C∗((X /G) �� H) and C∗(G �� (H\X )) are Morita equivalent.
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In Corollary 6.8, we will generalize the above result to Fell bundle C*-algebras.

Proof. Since G acts properly and freely on X , it follows from Lemma 3.21 that the right 

Haar system on X induces a right Haar system on X /G. By Lemma 3.22, the associated 

left Haar system is ©▹ -invariant. It follows from Proposition 2.28 that (X /G) �� H has a 

Haar system. Since our assumptions are symmetric, we likewise get a Haar system on G ��

(H\X ). As the two groupoids are equivalent by Theorem 3.10 and have Haar systems, 

it follows from [22, Theorem 2.8] that their C*-algebras are Morita equivalent. �

4. Self-similar actions on Fell bundles

Fell bundles were originally introduced by Fell as “C*-algebraic bundles” [10]; they 

are a powerful tool to study C*-algebras graded by groups or groupoids, and many C*-

algebras can be realized as Fell bundle C*-algebras. One may refer to [4,8,19,40] for a 

more detailed discussion on the subject.

4.1. Self-similar left actions on Fell bundles

We will now extend the notion of self-similar actions to Fell bundles. Similar to the 

construction of a Zappa–Szép product Fell bundle in [6], this will allow us to construct 

a self-similar product Fell bundle.

Definition 4.1. Let B = (qB : B → X ) be a Fell bundle. Suppose H has a left self-similar 

action on X with momentum map ρX : X → H(0). Define ρB = ρX ◦ qB and let

H ∗
s ρ

B = {(h, b) ∈ H × B : sH(h) = ρB(b)}

be equipped with the subspace topology of H × B. A left self-similar H-action on B is 

a continuous map

: H ∗
s ρ

B → B

satisfying the following conditions:

(B1) For any (h, x) ∈ H ∗
s ρ

X , the map h maps Bx into Bh▹x and is linear.

(B2) For any (k, h) ∈ H(2), we have k (h ) = (kh) .

(B3) For any u ∈ H(0), the map u is the identity.

(B4) For any (b, c) ∈ B(2) such that (h, bc) ∈ H ∗
s ρ

B, we have

h (bc) = (h b) [(h ◃ qB(b)) c] .

(B5) For any (h, b) ∈ H ∗
s ρ

B, we have

(h b)∗ = [h ◃ qB(b)] b∗.
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Writing h b := h ◃ qB(b) ∈ H for (h, b) ∈ H ∗
s ρ

B highlights the similarities between 

the above definition and Definition 2.2; compare (L4) and (L9) on the left to (B4) and 

(B5) on the right:

h ▹ (xy) = (h ▹ x)[(h ◃ x) ▹ y] versus h (bc) = (h b) [(h b) c] ,

(h ▹ x)−1 = (h ◃ x) ▹ x−1 versus (h b)∗ = [h b] b∗.

Remark 4.2. When X and H form a matched pair of groupoids, Definition 4.1 coincides 

with the notion of a (X , H)-compatible H-action [6, Definition 3.1].

In general, we saw in Proposition 2.23 that the self-similar product groupoid X �� H

is isomorphic to the Zappa–Szép product groupoid X �� H̃. The next proposition proves 

that a similar result holds in the realm of Fell bundles.

Proposition 4.3. Suppose H has a self-similar left action on a Fell bundle B =

(qB : B → X ) and write rB = rX ◦ qB. Let H̃ = {(u, h) ∈ X (0) × H : ρX (u) = rH(h)}

be the transformation groupoid of the H-action on X (0) with source map given by 

sH̃(u, h) = h−1
▹ u. Let

β : H̃ ∗
s r

B → B be defined by β((u, h), b) = h b.

Then β is a (X , H̃)-compatible H̃-action on B in the sense of [6, Definition 3.1].

Proof. To see that β is well-defined, take (u, h) ∈ H̃ and b ∈ Bx with sH̃(u, h) = rX (x). 

Since sH̃(u, h) = h−1
▹ u, we have

ρX (x) = ρ
(0)
X (rX (x)) = ρ

(0)
X (h−1

▹ u)
(L1)
= rH(h−1) = sH(h).

Therefore, (h, b) ∈ H ∗
s ρ

B and β is well-defined. It is routine to check that β is indeed 

an (X , H̃)-compatible H̃-action on B. �

One immediate consequence is that, fiberwise, shares all the nice properties of an 

(X , H)-compatible action. For example, the following is a consequence of [6, Corollary 

3.3]:

Corollary 4.4. For each h ∈ H and x ∈ X with sH(h) = ρX (x), the map h : Bx →

Bh▹x is isometric.

4.2. The self-similar product Fell bundle

The Zappa–Szép product Fell bundle was first defined in [6, Theorem 3.8] under the 

assumption that
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(1) the underlying groupoids X and H form a matched pair and

(2) the underlying groupoids are étale.

Inspired by the construction of semi-crossed product Fell bundles in [16], we now define 

a similar construction with these two assumptions removed. To be precise, we aim to 

define the product Fell bundle from a self-similar H-action on a Fell bundle B, where 

the underlying groupoids are locally compact Hausdorff.

Definition 4.5. Suppose H has a self-similar left action on a Fell bundle B = (qB : B →

X ) (Definition 4.1). Define the (left) self-similar product Fell bundle B H to have the 

total space

B H = B ∗
ρX ◦sX ◦qB rH

H = {(b, h) ∈ B × H : (qB(b), h) ∈ X �� H}

with bundle projection qB H(b, h) = (qB(b), h), mapping B H to X �� H. The fiber

(B H)(x,h) = {(b, h) ∈ B H : qB(b) = x}

is equipped with the norm ‖(b, h)‖ = ‖b‖.

As always, let

(B H)(2) := (B H) ∗
sB H rB H

(B H),

and define multiplication and involution by

(a, h)(b, k) =
(
a[h b], [h b]k

)
and (b, h)∗ = (h−1 b∗, h−1 b∗).

We note that the proof that B H is a Fell bundle over X �� H follows mutatis 

mutandis as in the proof in [6, Section 3].

For the first example, we will need a bit of notation.

Notation 4.6. Let A = (qA : A → K(0)) be an upper semi-continuous C*-bundle over 

the unit space K(0) of a groupoid K, and let (A , K, α) be a groupoid dynamical system 

(see [24, Definition 4.1] or [11, Chapter 3] for more details). We let B(A , K, α) denote 

the Fell bundle associated to this dynamical system: as a set, it is given by A ∗
q r

K with 

bundle projection qB(a, k) = k. The involution is given by (a, k)∗ :=
(
αk−1(a)∗, k−1

)
, 

and the product of two elements (ai, ki) ∈ B(A , K, α) with (k1, k2) ∈ K(2) is given by

(a1, k1) · (a2, k2) := (a1αk1
(a2), k1k2) .

The C*-algebra of this Fell bundle is exactly the groupoid crossed product A ⋊³ K [23, 

Example 2.8].
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Example 4.7 (generalization of [6, Example 3.10]). Suppose H has a self-similar left 

action on a groupoid X , and suppose that (A , X �� H, α) is a groupoid dynamical 

system. Let α|X be the restriction of α to the subgroupoid X , i.e., (α|X )x := α(x,ρX (x)). 

Then H has a self-similar left action on B = B(A , X , α|X ) defined for h ∈ H and 

(a, x) ∈ A ∗
q r

X with sH(h) = ρB(a, x) = ρX (x) by

h (a, x) :=
(
α(r(h),h)(a), h ▹ x

)
.

One can check that

B(A , X �� H, α) ∼= B(A , X , α|X ) H.

Remark 4.8. If H has a self-similar left action on a Fell bundle B, then

(B H)(x,h) · (B H)(y,k) = (Bx × {h}) · (By × {k}) ¦ Bx(h▹y) × {(h ◃ y)k}.

Moreover, our assumptions on imply that h By = Bh y, rather than merely a 

containment of the left-hand side in the right-hand side. Thus, if B is saturated (meaning 

that the closed linear span of the B-product of any Bx1
with any compatible Bx2

equals 

the entire Bx1x2
), then by the above argument, we automatically have that B H is 

saturated also.

Similar to the case of a self-similar product groupoid (see Lemma 2.22), we can lift 

the action to a H̃-action β, where (X , H̃) is a matched pair of groupoids. When the 

groupoids X and H are étale, this construction is closely related to the construction in 

[6] in the following sense.

Proposition 4.9. If the groupoids X and H are étale, then so is the groupoid H̃ from 

Proposition 4.3 and the self-similar product Fell bundle B H is isomorphic to the 

Zappa–Szép product Fell bundle B ��´ H̃ constructed in [6].

Remark 4.10. As always, a similar construction can be done on the other side: if B

carries a right self-similar G-action , we can let G B be given as the bundle with the 

total space

G B = G ∗
s σ

B = {(s, b) ∈ G × B : (s, qB(b)) ∈ G �� X }

and the analogous Fell bundle structure.

5. The orbit Fell bundle from self-similar actions

The following is analogous to the construction in [17, Corollary A.12].
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Definition 5.1. If H is a groupoid and a topological space B is a left H-space, where the 

action is denoted by , we may let H\B = {H b : b ∈ B} be the quotient space which 

we equip with the quotient topology, i.e., the largest topology making π : B → H\B

continuous.

Remark 5.2. We will frequently assume that an acting groupoid H has open source map, 

because then [38, Prop. 2.12] implies that the quotient map π : B → H\B is open.

When H has a self-similar left action on a Fell bundle B = (qB : B → X ) (Defini-

tion 4.1), then B is a left H-space. In this case, since h maps Bx to Bh▹x by (B1), 

the map

qH\B : H\B → H\X given by H b �→ H ▹ qB(b) (5.1)

is well-defined, and we let H\B := (qH\B : H\B → H\X ). The fiber over ξ ∈ H\X of 

the bundle is therefore given by

(H\B)ξ = {H b : b ∈ B such that qB(b) ∈ ξ}.

Lemma 5.3. Suppose the self-similar left action ▹ of H on the groupoid X is free. Let 

ξ ∈ H\X . For Ξ, Θ in the fiber (H\B)ξ and for z ∈ C, we may let

‖Ξ‖ := ‖b‖ and z Ξ = H (zb) where b ∈ Ξ, and

Ξ + Θ = H
(
[h b] + c

)
where b ∈ Ξ, c ∈ Θ, h ∈ H such that qB(c) = qB(h b).

With this structure, (H\B)ξ is a complex Banach space.

Proof. First note that ‖·‖ is well-defined: Since h is isometric on each fiber, H a =

H b implies ‖a‖ = ‖b‖. Likewise, scalar multiplication is well-defined since each h 

is C-linear by assumption.

To see that addition is well-defined, we first check that h exists. If we pick any b ∈

Ξ, c ∈ Θ, then by definition of the fiber (H\B)ξ, we have qB(b), qB(c) ∈ ξ. In particular, 

there exists h ∈ H such that qB(c) = h ▹ qB(b) = qB(h b). This shows that c and 

h b are in the same fiber of B, so that [h b] + c makes sense. It remains to check 

that Ξ + Θ does not depend on the choices, so assume that we are given b′, c′, h′ with 

qB(c′) = qB(h′ b′). As b, b′ ∈ Ξ and c, c′ ∈ Θ, there exist k, l ∈ H such that b′ = k b

and c′ = l c. In particular,

h′
▹ qB(b′) = qB(c′) = qB(l c) = l ▹ qB(c) = l ▹ [h ▹ qB(b)]

= (lh) ▹ qB(k−1 b′) = (lhk−1) ▹ qB(b′).

Since the H-action on X is free, we conclude that h′ = lhk−1, and thus
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[h′ b′] + c′ = (lhk−1) (k b) + l c = (lh) b + l c = l
(
[h b] + c

)
,

which shows that [h′ b′] + c′ and [h b] + c represent the same class in (H\B)ξ.

It is now easy to check that we have a normed vector space. To see that (H\B)ξ is 

complete, let (Ξn)n be a Cauchy sequence. If we pick arbitrary bn ∈ Ξn for each n, then 

we can find hn ∈ H such that cn := hn bn is in the same fiber as the representative b1

of ξ1; say, in Bx. We now have a sequence (cn)n in Bx. Note that, by definition of the 

linear structure on (H\B)ξ, we have Ξn − Ξm = H (cn − cm), so that

‖Ξn − Ξm‖ = ‖cn − cm‖
Bx

.

Thus, (cn)n is a Cauchy sequence in the Banach space Bx and hence converges to some 

element c. As

‖Ξn − H c‖ = ‖cn − c‖
Bx

,

we conclude that Ξn → H c in norm in (H\B)ξ. �

Corollary 5.4. Suppose the self-similar left action ▹ of H on the groupoid X is free and 

H has open source map. Then H\B = (qH\B : H\B → H\X ) is a USC Banach bundle.

Proof. We will check that we can apply [7, Proposition 6.13] to the commutative diagram

B H\B

X H\X

π

qB qH\B

We have already noted in Lemma 5.3 that the fibers of H\B are complex Banach spaces. 

By definition of the topologies of the spaces on the right-hand side, the vertical maps 

are quotient maps. Moreover, π is open by Remark 5.2 and X → H\X is open by [38, 

Proposition 2.12] since sH is open. Therefore, Assumption (i) of [7, Proposition 6.13]

holds. By definition of the Banach space structure on the fibers of H\B (see Lemma 5.3), 

Assumption (ii) holds.

Lastly, let Ξ ∈ H\B and x ∈ qH\B(Ξ) be given, and take any b ∈ Ξ ¦ B. Since 

qB(b) ∈ qH\B(Ξ), there exists h ∈ H such that x = h ▹ qB(b) = qB(h b). This means 

that h b ∈ Bx satisfies π(h b) = Ξ, since π ◦ (h ) = π where both are defined. This 

proves the final Assumption (iii) of [7, Proposition 6.13]. �

As before, we will write sH\B := sH\X ◦ qH\B and rH\B := rH\X ◦ qH\B.

Proposition 5.5. Suppose the self-similar left action ▹ of H on the groupoid X is free 

and proper and H has open source map. For two elements Ξ, Θ of H\B with sH\B(Ξ) =

rH\B(Θ), define
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ΞΘ = H (bc) where b ∈ Ξ, c ∈ Θ are such that (b, c) ∈ B
(2).

Further, let (H b)∗ = H b∗. With this structure, H\B is a Fell bundle, which we call 

the left quotient bundle of B by H.

Proof. Since H acts freely and properly on X , the quotient H\X is a groupoid by 

Proposition 3.3. We first verify that b ∈ Ξ and c ∈ Θ exist, so start with two arbitrary

elements b ∈ Ξ and c′ ∈ Θ. By construction of sH\B and rH\B, we have sB(b) ∈ sH\B(Ξ)

and rB(c′) ∈ rH\B(Θ). By assumption, the equivalence classes are the same element in 

H\X , so there exists h ∈ H such that sB(b) = h ▹ rB(c′). We have

h ▹ rB(c′) = h ▹ rX (qB(c′))
(L10)

= rX (h ▹ qB(c′))
(B1)
= rX (qB(h c′)).

Thus, for the element c := h c′ of Θ, we have shown that (b, c) ∈ B(2). Next, we must 

show that the multiplication does not depend on the choice of (b, c) ∈ B(2), so assume 

that (b1, c1) is another composable pair of B for which b1 ∈ Ξ and c1 ∈ Θ. Then there 

exist k, l ∈ H such that b1 = k b and c1 = l c. A computation similar to that in the 

proof of Lemma 3.2 shows that

[k b] ▹ sB(b) = sB(b1) = rB(c1) = l ▹ rB(c) = l ▹ sB(b).

Since the H-action on X is free, we conclude l = k b, so that (B4) implies

b1c1 = [k b][l c] = [k b]
[
(k b) c

]
= k bc.

In other words, b1c1 ∈ H bc, as claimed.

Now, if b1 = k b, then b∗
1 = (k b)∗ = [k b] b∗, which shows that H b∗

1 = H b∗, 

i.e., involution is well-defined on H\B.

As noted in Corollary 5.4, H\B is a USC Banach bundle. Moreover, the algebraic 

and norm-related properties for Fell bundles (that is, (F1)–(F10) in [7, Definition 2.9]) 

are all swiftly verified and follow from the respective properties of B. For example, to 

show (F10), take an arbitrary Ξ ∈ H\B and any b ∈ Ξ; let u := sB(b). Since B is a Fell 

bundle, we have b∗ · b = c∗c for some c ∈ Bu. The definition of the multiplication and 

involution on H\B thus implies that

Ξ∗Ξ = H (b∗ · b) = H (c∗c) = (H c)∗(H c).

Since H c ∈ (H\B)H▹u and H ▹ u = H ▹ sB(b) = sH\B(Ξ), this proves that Ξ∗Ξ is a 

positive element of the C*-algebra (H\B)H▹u, as needed for (F10). �

Remark 5.6. If B is saturated, then so is H\B. Indeed, take (ξ1, ξ2) ∈ (H\X )(2) and 

let Θ ∈ (H\B)ξ1ξ2
be arbitrary. By definition of the fiber, there exists b ∈ B with 
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qB(b) ∈ ξ1ξ2 and H b = Θ. Since ξ1 and ξ2 are composable, we can find xi ∈ ξi

such that (x1, x2) ∈ X (2). Thus, there exists h ∈ H such that (L4) implies qB(b) =

h ▹ (x1x2) = y1y2, where y1 := h ▹ x1 and y2 = (h ◃ x1) ▹ x2. Since B is saturated, we 

can approximate b by linear combinations of products of elements in By1
and in By2

. 

Since yi ∈ H ▹ xi = ξi, the images of these elements under π are in (H\B)ξi
and, by 

definition of the linear and topological structure on H\B, they approximate H b = Θ, 

as claimed.

Example 5.7. Suppose that the self-similar left action ▹ of H on the groupoid X is 

free and proper, that H has open source map, and that (A , H\X , α) is a groupoid 

dynamical system. If we define α̃x := αH▹x for x ∈ X , then (A , X , α̃) is a groupoid 

dynamical system. Moreover, H has a self-similar left action on B(A , X , α̃) given by 

h (a, x) := (a, h ▹x) and the quotient bundle H\B(A , X , α̃) is exactly B(A , H\X , α).

Remark 5.8. Analogously to Proposition 5.5, we can define the right quotient bundle 

B/G from the right self-similar action of G on B. We denote an element of B/G by 

b G and let qB/G(b G) = qB(b) ◂ G.

We next require a Fell bundle analogue of in tune actions.

Assumption 5.9. We assume that

(1) G and H are locally compact Hausdorff groupoids;

(2) X is a (H, G)-self-similar para-equivalence with self-similar actions ▹ of H and ◂ of G

respectively (Definition 3.6); in particular, the actions are in tune, free, and proper, 

and the source maps of all three groupoids are open;

(3) B = (qB : B → X ) is a saturated Fell bundle,

(4) H and G act on the left and right of B by self-similar actions and , respectively; 

and

(5) for any h ∈ H, b ∈ Bx, t ∈ G for which (h ▹ x) ◂ t is well-defined, we have:

(h b) t = h (b t). (BC1)

Note that, with the notation introduced after Definition 4.1, we automatically also have

(h b) t = b t (BC2)

h (b t) = h b (BC3)

as a consequence of Condition (B1) combined with Condition (C2) and (C3).

We first show that the actions and on B pass to the quotients. We remind the 

reader of some definitions we made earlier:
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qH\B : H\B → H\X is defined by qH\B(H b) = H ▹ qB(b), and

qB/G : B/G → X /G is defined by qB/G(b G) = qB(b) ◂ G.

Moreover, in Proposition 3.12, we defined a left self-similar H-action on X /G with mo-

mentum map ρ̃(x ◂G) = ρX (x), and a right self-similar G-action on H\X with momentum 

map σ̃(H ▹ x) = σX (x).

Proposition 5.10. We assume all conditions in Assumption 5.9. With

© : H\B ∗
σ̃◦q r

G → H\B, Ξ © s = H [b s] where b ∈ Ξ,

© is a right self-similar G-action on H\B, and with

© : H ∗
sH ρ̃◦q

B/G → B/G, h © Ξ := [h b] G where b ∈ Ξ,

© is a left self-similar H-action on B/G.

Proof. As always, we will focus only on one of the two statements, namely ©.

To see that © is well-defined, assume c ∈ Ξ, so there exists h ∈ H such that c = h b. 

Therefore, by Equation (BC1) and the definition of ,

H [c s] = H
[
(h b) s

]
= H

[
h (b s)

]
= H [b s].

It remains to show that © satisfies all the conditions listed in Definition 4.1. We start 

with the algebraic properties. For (B1), take an arbitrary element ξ = H▹x ∈ H\X and 

Ξ ∈ (H\B)ξ. If b ∈ Ξ ∩ Bx, then

Ξ © s = H [b s] ∈ (H\B)H▹(x◂s) = (H\B)ξ©◂ s.

This is linear as a map (H\B)ξ → (H\B)ξ©◂ s because s is linear as a map Bx → Bx◂s

and because of how we defined the linear structure on the fibers of the quotient (see 

Lemma 5.3).

Both (B2) and (B3) are trivial. For (B4), let (Ξ, Θ) ∈ (H\B)(2). If b ∈ Ξ and c ∈ Θ

with (b, c) ∈ B(2), then ΞΘ = H (bc) by our definition in Proposition 5.5. If x = qB(b), 

then

[H bc] © s = H (bc s) (def’n of ©)

= H
(
[b (x ▸ s)][c s]

)
(Property (B4) for )

=
[
H

(
b (x ▸ s)

)]
[H (c s)] (def’n of H\B; see Prop. 5.5)

=
[
(H b) © (x ▸ s)

]
[(H c) © s] (def’ of ©).

Since x ▸ s = (H ▹ x) ©▸ s = qH\B(Ξ) ©▸ s (see the definition of ©▸ in Proposition 3.12

and that of qH\B in Equation (5.1)) and since Ξ = H b and Θ = H c, this proves that
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ΞΘ © s =
(
Ξ © [qH\B(Ξ) ©▸ s]

)
(Θ © s),

as required.

For (B5), we compute

(
Ξ © s

)∗
=

(
H [b s]

)∗
for b ∈ Ξ

= H [b s]∗ (involution on H\B; see Prop. 5.5)

= H
[
b∗ (b s)

]
(Property (B5) for )

=
(
H b∗

)
©

(
b s

)
(def’n of ©)

=
(
H b∗

)
©

(
qH\B(Ξ) ©▸ s

)
(def’n of ©▸ ; see Prop. 3.12)

= Ξ∗ ©
(
qH\B(Ξ) ©▸ s

)
(involution on H\B; see Prop. 5.5),

as required.

Lastly, we have to check that © is continuous, so let {(Ξi, si)}i∈I be a net in 

H\B ∗
σ̃◦q rG

G that converges to (Ξ, s). Since the quotient map B → H\B is open by 

Remark 5.2, there exists a subnet {Ξj}j∈J of {Ξi}i∈I and lifts bμ ∈ Ξj , b ∈ Ξ such that 

bj → b in B. Since is continuous, it follows that bj sj → b s, so that

Ξj © sj = H [bμ sj ] → H [b s] = Ξ © s.

By Lemma A.2, this suffices to conclude that © is continuous. �

6. The symmetric imprimitivity theorem for self-similar actions

Let us rehash what the conditions in Assumption 5.9 imply. By Proposition 5.5, we 

get two quotient Fell bundles: the right quotient B/G over the groupoid X /G and the 

left quotient H\B over H\X . These are saturated by Remark 5.6, since B is assumed to 

be saturated. We have seen in Proposition 5.10 that H\B carries a right self-similar G-

action ©, and likewise, B/G carries a left self-similar H-action ©. We can therefore take 

two self-similar products, as explained in Definition 4.5 and respectively, Remark 4.10:

• the product (B/G) H of B/G with H is a bundle over (X /G) �� H and will be 

denoted qA : A → (X /G) �� H, while

• the product G (H\B) of H\B with G is a bundle over G �� (H\X ) and will be 

denoted qC : C → G �� (H\X ).

These self-similar product Fell bundles are saturated by Remark 4.8.

We now prove that A and C are equivalent via the bundle B in the sense of [23, 

Definition 6.1]. Recall that X is a groupoid equivalence between (X /G) �� H and G ��

(H\X ) by Theorem 3.10 when equipped with the structure defined in Proposition 3.14. 

We remind the reader that r : X → [(X /G) �� H](0) denotes the momentum map of X for 
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that left action and s : X → [G �� (H\X )](0) the momentum map for that right-action. 

Consequently, we will write rB := r ◦qB, not to be confused with rB = rX ◦qB : B → X (0); 

we likewise let sB := s ◦ qB.

Theorem 6.1 (cf. [17, Theorem 3.1]). We assume all conditions in Assumption 5.9. 

Then B is a Fell bundle equivalence between A = (B/G) H and C = G (H\B) in 

the following way:

(1) A acts on the left of B: whenever (Θ, h) ∈ A and b ∈ B are such that sA (Θ, h) =

rB(b) in [(X /G) �� H](0), we let

(Θ, h) · b = a[h b], where a ∈ Θ is such that sB(a) = rB(h b).

(2) C acts on the right of B: whenever b ∈ B and (t, Ξ) ∈ C are such that sB(b) =

rC (t, Ξ) in [G �� (H\X )](0), we let

b · (t, Ξ) = [b t]c, where c ∈ Ξ is such that sB(b t) = rB(c).

(3) The left A -valued inner product defined on B ∗
s s

B is given by

A
〈a | b〉 =

(
[a(h b∗)] G, h b∗

)
,

where h is the unique element of H such that sB(a) = h ▹ sB(b).

(4) The right C -valued inner product defined on B ∗
r r

B is given by

〈a | b〉
C

=
(
a∗ t, H [(a∗ t)b]

)
,

where t is the unique element of G such that rB(a) ◂ t = rB(b).

Example 6.2 (see also Example 3.11). Theorem 6.1 recovers [17, Theorem 3.1]: suppose 

G and H are locally compact Hausdorff groups with commuting actions on a Fell bun-

dle B = (qB : B → X ) by Fell bundle automorphisms, where X is a locally compact 

Hausdorff groupoid. The induced actions of G and H on X are then by groupoid auto-

morphisms, and so (with X acting trivially on H and G) they are self-similar actions 

on X . If the actions are free and proper, then B as described in Theorem 6.1 is a Fell 

bundle equivalence between the semi-direct product bundles (B/G) ⋊H and G ⋉(H\B)

as considered in [17].

We will do the proof in pieces.

Lemma 6.3. The formulas in (1) and (2) of Theorem 6.1 define actions on the USC 

Banach bundle B in the sense of [7, Definition 2.10].
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Proof. We will follow similar ideas as in the proof of Proposition 3.14 and we will only 

do the proof for the left action; the other one follows mutatis mutandis. We will denote 

the source and range map of (X /G) �� H merely by r and s, respectively.

First, let us check that the condition sA (Θ, h) = rB(b) implies that there indeed exists 

a ∈ Θ with sB(a) = rB(h b), so that a[h b] makes sense. If a0 is any element of Θ, 

then

sA (Θ, h) = s
(
qA (Θ, h)

)
= s

(
qB/G(Θ), h

)
(def’n of qA in Definition 4.5)

= s
(
qB(a0) ◂ G, h

)
(def’n of qB/G ; cf. (5.1) on p. 42)

= h−1 ©▹ sX /G(qB(a0) ◂ G) (Rmk 2.19 and def’n of s; cf. Definition 2.16)

= h−1 ©▹ [sB(a0) ◂ G] (def’n of sX /G ; cf. Lemma 3.1)

= [h−1
▹ sB(a0)] ◂ G (def’n of ©▹ ; see Proposition 3.12)

On the other hand, rB(b) = rB(b) ◂ G, and so our assumption sA (Θ, h) = rB(b) implies 

that there exists t ∈ G such that

rB(b) = [h−1
▹ sB(a0)] ◂ t

(C1)
= h−1

▹ [sB(a0) ◂ t],

i.e., h ▹ rX (qB(b)) = sX (qB(a0)) ◂ t. Since

h ▹ rX (qB(b))
(L10)

= rX (h ▹ qB(b))
(B1)
= rX (qB(h b))

and likewise, sB(a0) ◂ t = sB(a0 t), we may thus let a := a0 t, which is the required 

element of a0 G = Θ.

Note that this chosen representative a ∈ Θ is unique, since the G-action on X is free: 

if a s also satisfies sB(a s) = rB(h b), then

sB(a) ◂ s
(R10)

= sB(a s) = sB(a), so s ∈ G(0).

To see that the left action is continuous, assume that we have a net {(Θi, hi, bi)}i∈I

in A ∗
s r

B that converges to (Θ, h, b). For each i, let ai ∈ Θi be the unique element such 

that ui := sB(ai) = rB(hi bi). By Lemma A.2, it suffices to check that a subnet of 

ai[hi bi] converges to a[h b]. Since is continuous, we already know that {hi bi}i∈I

converges to h b; and so in particular ui → u := sB(a) in X (0), and since multiplication 

on B is continuous, it suffices to show that a subnet of {ai}i converges to a.

Since the quotient map B → B/G is open (cf. Remark 5.2) and since Θi → Θ, 

Proposition A.1 implies that there exists a subnet {Θj}j∈J and lifts cj ∈ Θj such that 

cj → a in B. Since aj ∈ Θj also, there exist tj ∈ G such that aj tj = cj . In particular, 

by continuity of sB, we have

uj ◂ tj = sB(aj) ◂ tj
(R10)

= sX (qB(aj) ◂ tj)
(B1)
= sX (qB(aj tj)) = sB(cj) → sB(a) = u,
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so that

(uj ◂ tj , uj) → (u, u) in X (0) × X (0).

As the right action of G on X (0) is proper, it now follows from [38, Corollary 2.26] that 

tj converges; since the action is free, (R2) implies that it must converge to σX (u) ∈ G(0). 

This, in turn, implies that

aj = cj t−1
j → a σX (u)−1 (B3)

= a,

as needed.

To see that (FA1) of [7, Definition 2.10] holds, we must check that qB((a G, h) ·

b) = qA (a G, h) · qB(b), where · is the left (X /G) �� H-action on X as defined in 

Proposition 3.14. Let qB(a) = x and qB(b) = y, so that sB(a) = sX (x) equals rB(h b) =

rX (h ▹ y) and

qB((a G, h) · b) = qB(a[h b]) = x[h ▹ y].

On the other hand, qA (a G, h) = (x ◂G, h). By Proposition 3.14, since sX (x) = rX (h ▹y), 

we know that (x ◂ G, h) can act on the left of y and we get

qA (a G, h) · qB(b) = (x ◂ G, h) · y = x[h ▹ y].

This proves (FA1).

Next, we must show that (FA2) of [7, Definition 2.10] holds, i.e., associativity, so for 

i = 1, 2 pick ai ∈ Bxi
, b ∈ B and hi ∈ H with appropriate range and sources such that

(a1 G, h1)(a2 G, h2) and (a2 G, h2) · b

make sense; we have to show

[
(a1 G, h1)(a2 G, h2)

]
· b = (a1 G, h1) ·

[
(a2 G, h2) · b

]
. (6.1)

In A = (B/G) H, we have

(a1 G, h1)(a2 G, h2)

=
(
[a1 G](h1 © [a2 G]), [h1 ©◃ qA (a2 G)]h2

)
(Definition 4.5)

=
(
[a1 G][(h1 a2) G], [h1 ©◃ (x2 ◂ G)]h2

)
(def’n of © and qA in Prop. 5.10)

=
(
[a1(h1 a2)] G, [h1 ◃ x2]h2

)
(Prop. 5.5 for B/G; ©◃ in Prop. 3.12).

Therefore, we get
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[
(a1 G, h1)(a2 G, h2)

]
· b = a1(h1 a2)

(
[(h1 ◃ x2)h2] b

)
.

On the other hand,

(a1 G, h1) ·
[
(a2 G, h2) · b

]
= (a1 G, h1) · (a2[h2 b])

= a1

[
h1

(
a2[h2 b]

)]

= a1(h1 a2)
(
[(h1 ◃ x2)h2] b

)
(by (B4) for B),

so we have shown Equation (6.1).

For (FA3) of [7, Definition 2.10], recall from Lemma 4.4 that h is isometric and 

‖(b G, h)‖ = ‖b‖. Therefore,

‖(a G, h) · b‖ = ‖a(h b)‖ ≤ ‖a‖‖b‖ = ‖(a G, h)‖‖b‖,

as needed. �

One by one, we will now check that Properties (FE1)–(FE3) of [7, Definition 2.11] are 

satisfied.

Lemma 6.4. The left and right actions commute.

Proof. Let (Θ, h) ∈ A , b ∈ B, and (t, Ξ) ∈ C be such that sA (Θ, h) = rB(b) and 

sB(b) = rC (t, Ξ); we have to confirm that [(Θ, h) · b] · (t, Ξ) = (Θ, h) · [b · (t, Ξ)]. For the 

left-hand side, we let a be the (unique) element of Θ with sB(a) = rB(h b), so that 

(Θ, h) ·b = a[h b]; then let c be the (unique) element in Ξ with sB((a[h b]) t) = rB(c), 

so that

[(Θ, h) · b] · (t, Ξ) =
[
(a[h b]) t

]
c

= [a ([h b] t)] ([h b] t) c (by (B4) for )

= [a (b t)] ([h b] t) c (by (BC2)).

On the other hand, let c′ be the (unique) element in Ξ with sB(b t) = rB(c′), so that 

b ·(t, Ξ) = [b t]c′; then let a′ be the (unique) element in Θ with sB(a′) = rB(h ([b t]c′)), 

so that

(Θ, h) · [b · (t, Ξ)] = a′
[
h ([b t]c′)

]

= a′ (h [b t]) [(h [b t]) c′] (by (B4))

= a′ (h [b t]) [(h b) c′] (by (BC3)).

Since [h b] t = h [b t] by (BC1), we see that it suffices to check that
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a′ = a (b t) and (h b) c′ = c.

Note that the second equation is the -version of the first equation, so by symmetry, it 

suffices to check the first equation. We have a (b t) ∈ a G = Θ, so by uniqueness of 

a′, we only need to check that sB(a (b t)) = rB(h ([b t]c′)).

Since

qB(a (b t)) = qB(a) ◂ [b t],

we have

sB

(
a (b t)

)
= sX

(
qB(a) ◂ [b t]

)

= sB(a) ◂ [b t] (by (R10))

= rB(h b) ◂ [b t] (by choice of a)

=
(
h ▹ rB(b)

)
◂ [b t] (by (L10))

= h ▹

(
rB(b) ◂ [b t]

)
(by (C1))

= h ▹ rX

(
qB(b) ◂ t

)
(by (R10)).

On the other hand, since qB(b′c′) = qB(b′)qB(c′) (Property (F1) in [7, Definition 2.9]), 

we have

qB(h ([b t]c′))
(B1)
= h ▹ qB([b t]c′)

(F1)
= h ▹ [qB(b t)qB(c′)]

(L4)
=

[
h ▹ qB(b t)

] ([
h ◃ qB(b t)

]
▹ qB(c′)

)
,

so that it follows from (L10) and (B1) for that

rB(h ([b t]c′)) = rX

(
h ▹ qB(b t)

)
= h ▹ rX

(
qB(b) ◂ t

)
.

Our earlier computation therefore shows that sB

(
a (b t)

)
= rB(h ([b t]c′)), as 

needed. This shows that the left and right actions commute. �

Lemma 6.5. The formulas in (3) and (4) of Theorem 6.1 define inner products on the 

USC Banach bundle B in the sense of [7, Definition 2.11], (FE2.a)–(FE2.c).

Proof. We will do the proof for the left inner product; the other one follows mutatis 

mutandis.

First, we verify that the inner product is well-defined. As sB(a) = sB(b), the definition 

of sB = s ◦ qB implies the existence of h satisfying h ▹ sB(b) = sB(a). As this implies 

sH(h) = ρX (sB(b)), we therefore have

ρB(b∗) = ρX (rB(b∗)) = ρX (sB(b)) = sH(h),
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and so h b∗ and h b∗ = h ◃ qB(b∗) make sense. Now qB(h b∗) = h ▹ qB(b∗), and so 

by (L10), we thus have

rB(h b∗) = h rB(b∗) = h ▹ sB(b) = sB(a),

so that a[h b∗] makes sense.

To see that

A
〈a | b〉 =

(
[a(h b∗)] G, h b∗

)

is an element of A = (B/G) H, we have to verify that

(ρX /G ◦ sX /G ◦ qB/G)
(
[a(h b∗)] G

)
= rH(h b∗).

Recall from a -version of Equation (5.1) that

qB/G

(
[a(h b∗)] G

)
= qB

(
a(h b∗)

)
◂ G.

Moreover, sX /G(x ◂ G) = sX (x) ◂ G (cf. the definition before Lemma 3.1) and ρX /G(x ◂

G) = ρX (x) by the definition in Proposition 3.12. Thus

(ρX /G ◦ sX /G ◦ qB/G)
(
[a(h b∗)] G

)
= ρX

(
sB(a[h b∗])

)
= ρX

(
sB(h b∗)

)
.

On the other hand, we have

rH(h b∗) = rH(h ◃ qB(b∗))
(L1)
= ρX

(
sX (h ▹ qB(b∗))

) (B1)
= ρX

(
sB(h b∗)

)
,

as required. The inner product is thus well-defined and lands in the right space.

Since multiplication on B, , and are linear, we see that 
A

〈· | ·〉 is linear in the 

first and conjugate linear in the second coordinate. To check that it satisfies the other 

required properties, let x := qA (a) and y := qA (b) and h ∈ H be as above.

For (FE2.a), we must check that, when qA

(
A

〈a | b〉
)

∈ (X /G) �� H acts on the left of 

y, it yields x. By the definition of qA (see Definition 4.5) and our computations above, 

we have

qA

(
A

〈a | b〉
)

=
(
qB/G

(
[a(h b∗)] G

)
, h b∗

)
=

(
qB

(
a(h b∗)

)
◂ G, h b∗

)

=
(
[x(h ▹ y−1)] ◂ G, h ◃ y−1

)
.

By the definition of the left (X /G) �� H-action on X (Proposition 3.14),

(
[x(h ▹ y−1)] ◂ G, h ◃ y−1

)
· y

= x(h ▹ y−1)[(h ◃ y−1) ▹ y] = x(h ▹ (y−1y)) (by (L4))

= x(h ▹ sX (y)) = xsX (x) = x (by choice of h).
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To show (FE2.b), we must prove that 
A

〈a | b〉
∗

=
A

〈b | a〉 Since sX (y) = h−1
▹ sX (x), 

we have

A
〈b | a〉 =

([
b(h−1 a∗)

]
G, h−1

◃ x−1
)
.

Using the definition of the involution on A (see Definition 4.5), we can compute the 

adjoint of

A
〈a | b〉 =

(
[a(h b∗)] G, h b∗

)
.

Its B/G-component

[
(h ◃ y−1)−1

(
a[h b∗]

)∗
]

G has to equal
[
b(h−1 a∗)

]
G (6.2)

and that its H-component

(h ◃ y−1)−1
◃

(
x[h ▹ y−1]

)−1
has to equal h−1

◃ x−1. (6.3)

If z := h ▹y−1 and k := h ◃y−1, then by (L9), we have k−1 = h−1
◃z. Thus, the asserted 

equality in (6.3) is easily seen:

(h ◃ y−1)−1
◃ (x[h ▹ y−1])−1 = k−1

◃ (xz)−1

= (h−1
◃ z) ◃ (xz)−1 (L3)

= h−1
◃ x−1.

For the asserted equality in (6.2), we compute

(
a[h b∗]

)∗
= [h b∗]∗a∗ (B5)

=
[
(h b∗) b

]
a∗.

If c := (h b∗) b = k b, then we have for the left-hand side of (6.2)

(h ◃ y−1)−1
(
a[h b∗]

)∗
= k−1 (ca∗)

(B4)
= (k−1 c)

[
(k−1 c) a∗

]
. (6.4)

Since k = h ◃ y−1 = h b∗, we have

k−1 c = k−1 [(h b∗) b]
(B2)
=

[
k−1(h b∗)

]
b

(B3)
= b.

On the other hand, qB(c) = k ▹ y by (BC1), so that

k−1 c = k−1
◃ (k ▹ y)

(L9)
= (k ◃ y)−1 =

(
[h ◃ y−1] ◃ y

)−1 (L3)
= h−1.

Plugging the results of our last computations back into Equation (6.4), we get
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(h ◃ y−1)−1
(
a[h b∗]

)∗
= b

(
h−1 a∗

)
,

which is, on the nose, what we needed for (6.2).

Lastly, for (FE2.c), we need that the inner product is A -linear in the first component, 

so let (Θ, k) be an arbitrary element of A with sA (Θ, k) = rB(a). If c ∈ Θ is such that 

sB(c) = rB(k a), then our definition of the left A -action on B (see 6.1(1)) yields 

(Θ, k) · a = c[k a]. Note that m := (k ◃ x)h is the unique element of H such that 

sB(c[k a]) = m ▹ sB(b), since

sB(c[k a]) = sB(k a)
(L10)

= (k ◃ x) ▹ sB(a) = (k ◃ x) ▹ [h ▹ sB(b)].

We have

A
〈(Θ, k) · a | b〉 =

([
(c[k a])(m b∗)

]
G, m b∗

)
. (6.5)

On the other hand, according to Definition 4.5, the product of

(Θ, k)
A

〈a | b〉 = (Θ, k)
(
[a(h b∗)] G, h b∗

)

in A has B/G-component

Θ

[
k ©

([
a(h b∗)

]
G

)]
= Θ

[(
k

[
a(h b∗)

])
G

]
. (6.6)

We compute

k
[
a(h b∗)

]
= (k a)

[
(k a) (h b∗)

]
(by (B4))

= (k a)(m b∗) (by (B2)).

Note that c ∈ Θ was chosen such that sB(c) = rB(k a), so that the above computation 

together with the definition of the multiplication in B/G (cf. Proposition 5.5) shows that 

the B/G-component of (Θ, k)
A

〈a | b〉 is

Θ
[(

(k a)(m b∗)
)

G
]

=
[
c[(k a)(m b∗)]

]
G,

which, by associativity of the multiplication on B, is exactly the B/G-component of 

A
〈(Θ, k) · a | b〉; see (6.5).

Similarly, the H-component of (Θ, k)
A

〈a | b〉 is given by

[
k ©◃ qB/G

([
a(h b∗)

]
G

)]
(h b∗)

=

[
k ©◃

(
qB

(
a(h b∗)

)
G

)]
(h b∗) (def’n of qB/G)
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=
[
k ◃ qB

(
a(h b∗)

)]
(h b∗) (def’n of ©◃ )

=
[
(k ◃ x) ◃ qB(h b∗)

]
(h b∗) (by (L3) and (F1))

=
[
(k ◃ x) ◃ (h ▹ y−1)

]
(h ◃ y−1) (by (BC1) and def’n of y)

= [(k ◃ x)h] ◃ y−1 (by (L6))

which is exactly m b∗, as needed. �

Lemma 6.6 (Regarding (FE2.d)). The inner products on the USC Banach bundle B

satisfy (FE2.d), i.e., 
A

〈a | b〉 · c = a · 〈b | c〉
C

whenever both inner products make sense.

Proof. Let a ∈ Bx, b ∈ By, and c ∈ Bz. For the inner products to be defined, we 

require sB(a) = sB(b) and rB(b) = rB(c), so there exist h ∈ H and t ∈ G such that

sX (x) = h ▹ sX (y) and rX (y) ◂ t = rX (z), so that

A
〈a | b〉 =

(
[a(h b∗)] G, h b∗

)
and 〈b | c〉

C
=

(
b∗ t, H [(b∗ t)c]

)
.

If we let Θ := [a(h b∗)] G, then

sA

(
A

〈a | b〉
)

= (h b∗)−1 ©▹ sB/G(Θ) (cf. Def. 2.16 and Rmk. 2.19)

= (h ◃ y−1)−1 ©▹ sX /G

(
[x(h ▹ y−1)] ◂ G

)

=
[
(h ◃ y−1)−1

▹ sX (x[h ▹ y−1])
]
◂ G (def’n of sX /G and ©▹ ).

Since

sX

(
x[h ▹ y−1]

)
= sX (h ▹ y−1)

(L10)
= [h ◃ y−1] ▹ rX (y),

it follows that

sA

(
A

〈a | b〉
)

= rX (y) ◂ G = rB(c) ◂ G = rB(c),

so that 
A

〈a | b〉 · c is indeed defined. Moreover, we see that t can act on the right of 

a(h b∗) and that

sB

(
[a(h b∗)] t

)
= sX

(
x[h ▹ y−1]

)
◂ t

(C1)
= [h ◃ y−1] ▹ [rX (y) ◂ t]

= [h ◃ y−1] ▹ rX (z)
(L10)

= rX

(
[h ◃ y−1] ▹ z

)
.

Thus, [a(h b∗)] t is the (unique) element of Θ whose image under sB equals rB([h 

b∗] c), so that
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A
〈a | b〉 · c =

([
a(h b∗)

]
t
)(

[h b∗] c
)
. (6.7)

A similar argument shows that a · 〈b | c〉
C

is well-defined and that

a · 〈b | c〉
C

=
(
a [b∗ t]

)(
h

[
(b∗ t)c

])
. (6.8)

We compute the first element of the product in (6.7) to be

[a(h b∗)] t =
(

a
[
(h b∗) t

])[
(h b∗) t

]
(by (R4))

=
(
a [b∗ t]

)[
h (b∗ t)

]
(by (C2) and (BC1))

and its second element to be

[h b∗] c =
[
h (b∗ t)

]
c (by (C3)),

so that it follows from (6.8) that

A
〈a | b〉 · c =

(
a [b∗ t]

)[
h (b∗ t)

]([
h (b∗ t)

]
c
)

=
(
a [b∗ t]

)(
h

[
(b∗ t)c

])
= a · 〈b | c〉

C
(by (B4)). �

Lemma 6.7. With the induced actions, each B(x) is a A
(
r(x)

)
– C

(
s(x)

)
-imprimitivity 

bimodule.

Proof. For x ∈ X , we have (see the definitions of s and r in Proposition 3.14):

r(x) = rX (x) ◂ G and s(x) = H ▹ sX (x).

Recall that here, we have identified the unit spaces of (X /G) �� H and G �� (H\X ) with 

those of X /G and H\X , respectively; cf. Remark 2.19. Thus, if we want to think of r(x)

and s(x) in (X /G) �� H and G �� (H\X ), we must write

r(x) =
(
rX (x) ◂ G, ρX (x)

)
and s(x) =

(
σX (x), H ▹ sX (x)

)
,

where we have used that ρ
(0)
X ◦rX = ρX and σ

(0)
X ◦sX = σX by definition of the right-hand 

sides.

Now, recall that B is a Fell bundle equivalence between B and itself; in particular, 

we know that each B(x) is a B
(
rX (x)

)
– B

(
sX (x)

)
-imprimitivity bimodule. We claim 

that the fiber A(r(x)) is isomorphic to B(rX (x)) and likewise that C(s(x)) is isomorphic 

to B(sX (x)), and that these isomorphisms turn the canonical B(r(x)) – B(s(x))-imprim-

itivity bimodule B(x) into our bi-Hilbertian A(r(x)) – C(s(x))-module B(x), proving 
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that the latter is an imprimitivity bimodule also. We will do so for the fiber A(r(x)) of 

A = (B/G) H.

Define

ψ : B(rX (x)) → A(r(x)) by ψ(a) = (a G, ρX (x)).

This map is clearly linear, ∗-preserving, surjective, and injective, since the norm on A
r(x)

is inherited from Br(x). Therefore, ψ defines an isomorphism of C*-algebras.

Notice that this isomorphism indeed turns the left A(r(x))-action on B(x) into the 

left B(rX (x))-multiplication on B(x): if b ∈ B(x) and a ∈ BrX (x), then

sB(a) = sX (rX (x)) = rX (x) = rB(b)
(BC3)

= rB(ρX (x) b),

proving that a is the unique element in a G such that sB(a) = rB(ρX (x) b), so that 

the definition of the left A -action on B implies

ψ(a) · b = (a G, ρX (x)) · b = ab,

as claimed. �

Proof of Theorem 6.1. The groupoids (X /G) �� H and G �� (H\X ) are locally compact 

Hausdorff: In Proposition 3.3, we have seen that the quotient of locally compact Haus-

dorff groupoids is again locally compact Hausdorff, and clearly so is the self-similar 

product of such groupoids.

We have seen that X is a groupoid equivalence between (X /G) �� H and G �� (H\X )

(Theorem 3.10 and Proposition 3.14), and that A and C are Fell bundles by Defini-

tion 4.5 and Remark 4.10. Moreover, as B is assumed to be saturated, it follows from 

Remark 5.6 that H\B and B/G are saturated also. Consequently, it follows from Re-

mark 4.8 that A and C are saturated, and so we are dealing with the right ingredients.

We have then checked that all conditions in [7, Definition 2.11] are satisfied. Indeed,

Re (FE1): Lemma 6.3 shows that the formulas in 6.1(1) and 6.1(2) define actions in 

the sense of [7, Definition 2.10], and Lemma 6.4 shows that they commute.

Re (FE2): Lemma 6.5 shows that the formulas in 6.1(3) and 6.1(4) define inner prod-

ucts, while Lemma 6.6 shows that they satisfy the imprimitivity condition

(FE2.d), and finally

Re (FE3): Lemma 6.7 shows that each B(x) is an imprimitivity bimodule. �

Corollary 6.8. We assume all conditions in Assumption 5.9. Assume that X has a ▹-

invariant left Haar system (Definition 2.27) whose associated right Haar system is ◂-

invariant, and that H and G also have Haar systems. Then the Fell bundle C*-algebras 

C∗((B/G) H) and C∗(G (H\B)) are Morita equivalent.
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Recall from Corollary 2.31 that the assumptions regarding Haar systems are satisfied 

if X , H, G are étale.

Proof. All Fell bundles in sight are saturated, since B is saturated. By Theorem 6.1, 

the Fell bundles (B/G) H and G (H\B) are equivalent. Recall from Corollary 3.23

that both groupoids (X /G) �� H and G (H\X ) allow Haar systems, so that the claim 

now follows from an application of [23, Theorem 6.4]. �

One immediate application is the one-sided imprimitivity theorem by setting G = {e}.

Corollary 6.9. Let X be a groupoid and B be a Fell bundle over X . Suppose H has a 

self-similar left action on the Fell bundle B, and that the action of H on X is free and 

proper. Then B is a Fell bundle equivalence between B H and H\B. In particular, if 

X has a ▹-invariant Haar system and H admits any Haar system, then C∗(B H) and 

C∗(H\B) are Morita equivalent.

Example 6.10 (combination of previous examples). Suppose that the self-similar left ac-

tion ▹ of H on the groupoid X is free and proper, that H has open source map, and that 

(A , H\X , α) is a groupoid dynamical system. We have stated in Example 5.7 that

H\B(A , X , α̃) ∼= B(A , H\X , α), (6.9)

where α̃ = α ◦ q for q the quotient map. On the other hand, if we let p : X �� H → X be 

the projection onto the first component, then (A , X �� H, α̃ ◦p) is a groupoid dynamical 

system on A whose restriction to X is α̃. By Example 4.7, H thus has a self-similar left 

action on B(A , X , α̃) given by h (a, x) := (a, h ▹ x), and we have

B(A , X , α̃) H ∼= B(A , X �� H, α̃ ◦ p). (6.10)

By Corollary 6.9, the Fell bundles on the left-hand sides of (6.9) and (6.10) are equivalent, 

so that B(A , H\X , α) and B(A , X �� H, α̃ ◦ p) are also equivalent. If the groupoids 

have appropriate Haar systems (for example, if they are étale), then this implies that 

the groupoid crossed product A ⋊³ (H\X ) is Morita equivalent to A ⋊³̃◦p (X �� H).

7. Examples on Deaconu–Renault groupoids

One interesting class of self-similar actions arises from Deaconu–Renault groupoids 

[34, Section 3], and we devote the last section to examples from this class of groupoids. It 

is observed in [2, Proposition 5.1] that a Deaconu–Renault groupoid generated by a pair 

of ∗-commuting endomorphisms has a Zappa–Szép product structure. We will describe 

this as self-similar product in more detail, and apply our main result on equivalent 

groupoids (Theorem 3.10) in this context.
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We first give a brief overview of Deaconu–Renault groupoids. For Y a topological 

space, we say a map σ : Y → Y is an endomorphism if it is a surjective local homeomor-

phism, and we denote the collection of all endomorphisms on Y by End(Y ). We note 

that an endomorphism may not be injective. Suppose θ : N
k → End(Y ) is a semigroup 

action on Y by endomorphisms. The Deaconu–Renault groupoid, denoted Y ⋊θ N
k, is 

defined as

Y ⋊θ N
k =

{
(x, p − q, y) ∈ Y × Z

k × Y : θp(x) = θq(y)
}

with multiplication and inverse given by

(x, p − q, y)(y, m − n, z) = (x, (p + m) − (q + n), z),

(x, p − q, y)−1 = (y, q − p, x).

Its range and source maps are therefore given by

r(x, p − q, y) = (x, 0, x),

s(x, p − q, y) = (y, 0, y),

and its unit space is identified as {(x, 0, x) : x ∈ Y } ≈ Y . We give Y ⋊θ N
k the topology 

induced by the basic open sets Zθ(U, m, n, V ), defined for open subsets U, V ¦ Y and 

vectors m, n ∈ N
k by

Zθ(U, m, n, V ) := {(x, m − n, y) : x ∈ U, y ∈ V and θmx = θny}.

This makes Y ⋊θ N
k a locally compact Hausdorff étale groupoid [34, Lemma 3.1.].

To two commuting elements S, T ∈ End(Y ), we can naturally associate an N2-action 

on Y given by θp,m(x) = T pSmx. We let K = Y ⋊θ N
2 be the corresponding Deaconu–

Renault groupoid. Each of the endomorphisms S and T corresponds to an N-action on 

Y , so we can define their respective Deaconu–Renault groupoid as

H = Y ⋊T N = {(x, p − q, y) ∈ Y × Z × Y : T px = T qy} ,

X = Y ⋊S N = {(x, m − n, y) ∈ Y × Z × Y : Smx = Sny} .

From now on, we fix S and T and further assume that they ∗-commute: not only 

do we have ST = TS, but whenever Sx = Ty for some x, y ∈ Y , then there exists a 

unique z ∈ Y such that Tz = x and Sz = y. Note that, for all integers p, q ≥ 1, Sp, T q

are also ∗-commuting. It was observed in [2, Proposition 5.1] that, in this setting, K

can be realized as the Zappa–Szép product groupoid X �� H. The proof uses a unique 

decomposition property but does not describe the actions of X and H on each other 

explicitly, so we start by giving such a description.
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Lemma 7.1. Let H and X be the Deaconu–Renault groupoids described above. Then the 

following maps define a self-similar left action of H on X , where w ∈ Y is the unique 

element that satisfies Snw = Smx and T pw = T qz:

H ↷ X : (x, p − q, y) ▹ (y, m − n, z) = (x, m − n, w) ∈ X

H ↷X : (x, p − q, y) ◃ (y, m − n, z) = (w, p − q, z) ∈ H

Here, H(0) = X (0) = Y , so that we can use idY as the continuous surjection X (0) → H(0).

Proof. First, the element w ∈ Y exists because

T p(Smx) = Sm(T px) = Sm(T qy) = T q(Smy) = T q(Snz) = Sn(T qz).

We apply the ∗-commuting condition for T p and Sn to obtain the desired w.

From [2, Proposition 5.1], Y ⋊θ N
2 is an internal Zappa–Szép product of the groupoids 

H and X . Here, we embed H and X as subgroupoids of Y ⋊θ N
2 by identifying (x, k, y) ∈

H and (y, �, z) ∈ X as (x, (k, 0), y) and (y, (0, �), z) in Y ⋊θ N
2, respectively.

It follows from [2, Proposition 3.4] that the corresponding self-similar actions are 

uniquely determined by the equation

gh = (h ▹ g)(h ◃ g), h ∈ H, g ∈ X .

Therefore, it suffices to verify that the self-similar left action of H on X satisfies this 

equation.

Pick any x, y, z ∈ Y and p, q, m, n ∈ Z such that

(x, (p − q, 0), y) ∈ H ¦ Y ⋊θ N
2 and (y, (0, m − n), z) ∈ G ¦ Y ⋊θ N

2.

If w ∈ Y is the unique element that satisfies Snw = Smx and T pw = T qz, then

(x, (p − q, 0), y)(y, (0, m − n), z) = (x, (p − q, m − n), z)

= (x, (0, m − n), w)(w, (p − q, 0), z). �

For a map T : Y → Y , we say that x ∈ Y is a periodic point for T if T kx = x for some 

k ∈ N
×. If no such x exists, we call T non-periodic.

Lemma 7.2. The self-similar left action ▹ defined in Lemma 7.1 is free if and only if T

is non-periodic.

Proof. Suppose ▹ is not free, so there exists x, y, z and p �= q such that (x, p − q, y) ▹

(y, m − n, z) = (y, m − n, z). By definition of ▹, this equality forces x = y. Since (x, p −

q, x) ∈ H by assumption, this implies T px = T qx, so since p �= q, T has a periodic point.
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Conversely, assume T has a periodic point x, so there exists k > 0 with T kx = x. In 

this case, (x, k, x) ∈ H \ H(0) and (x, 0, x) ∈ X . One can easily verify that (x, k, x) ▹

(x, 0, x) = (x, 0, x). �

While the action ▹ in Lemma 7.1 may not be a proper map in general, the examples 

on certain classes of 2-graphs that we shall consider later satisfy this property. With 

properness, Corollary 3.16 implies that the self-similar product groupoid H �� X ∼=

Y ⋊ N
2 is equivalent to the quotient groupoid H\X , which we conjecture is another 

Deaconu–Renault groupoid.

Conjecture 7.3. Partition Y into the equivalence classes given by [z]T = ∪p,q∈N{w ∈ Y :

T pw = T qz}. On the quotient space YT , define Ŝ : YT → YT by Ŝ([z]T ) = [Sz]T . If T is 

non-periodic, then the map

Φ: H\X → YT ⋊Ŝ N, H ▹ (y, k, z) �→ ([y]T , k, [z]T ), (7.1)

is an (algebraic) isomorphism of groupoids. If, furthermore, the self-similar left action 

▹ defined in Lemma 7.1 is proper and Ŝ is locally injective (so that both groupoids are 

locally compact Hausdorff), then Φ is a homeomorphism.

While it is easy to show that Φ is a continuous bijection that preserves the groupoid 

structure, we found no reason for Φ to be open. We are furthermore unsure under which 

circumstances ▹ is proper or Ŝ locally injective. If the conjecture is true, then it would 

follow from Corollary 3.16 that the Deaconu–Renault groupoids Y ⋊θ N
2 and YT ⋊Ŝ N

are equivalent.

Appendix A. Exercises in topology

Above, the most frequently used topological fact is Fell’s Criterion, which we repeat 

here for convenience.

Proposition A.1 (Fell’s Criterion; [38, Prop. 1.1]). Let f : X → Y be a surjective map 

between topological spaces. Then f is open if and only if, whenever {yi}i∈I is a net in Y

that converges to some f(x), there exists a subnet {yj}j∈J which allows a lift {xj}j∈J

in X under f that converges to x.

The next lemma is an immediate consequence of (2) =⇒ (1) in [25, Theorem 18.1.].

Lemma A.2. If f : X → Y is a function, then the following are equivalent.

(1) f is continuous.

(2) If {xi}i∈I is a net in X which converges to x, then there exists a subnet {f(xj)}j∈J

of {f(xi)}i∈I which converges to f(x).
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