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1. Introduction

The dynamics between groups and operator algebras encompass a vast literature in
the study of operator algebras. They trace back to the pioneering work of Murray and
von Neumann [26] where they encode group dynamics as operators on Hilbert spaces. In
its simplest form, a C*-dynamical system arises from a group acting by *-automorphisms
on a C*-algebra. This system is then encoded by the C*-crossed product, where both
the group and the C*-algebra are represented as operators on a Hilbert space. One may
refer to Williams’s book [36] for a thorough discussion of the subject.

The C*-crossed product construction bears a strong resemblance to the semi-direct
product of groups, in which one group H acts on another group G by automorphisms.
Their semi-direct product G x H is a group that encodes both groups and their inter-
action. But what happens if the group G also acts on H? This leads to a more general
construction called the Zappa—Szép product of groups (also known as bicrossed product
or knit product), which encodes a two-way action between two groups. Such a two-way
action may arise when a group K contains two subgroups H, G such that every element
k € K decomposes uniquely as a product k = gh where g € G,h € H (equivalently,
K = G-H and GN H = {e}). In this case, for each ¢ € G and h € H, there exists
unique ¢’ € G and W' € H such that hg = ¢’h’. This leads to an H-action on G via
(h,g) — ¢’ and a G-action on H via (h,g) — h'. These two actions need to satisfy
certain compatibility conditions, and one may recover the enveloping group K as the
Zappa—Szép product group G < H from these compatible actions.

In the realm of operator algebras, the analogous study of Zappa—Szép products is
scarce. Representations of Zappa—Szép products of matched pairs of groupoids were
studied in [1]. The Zappa—Szép product of étale groupoids and their C*-algebras were
first studied in [2]. Recently, we defined and studied an operator algebraic analogue
of such products [6]. Just like the C*-crossed product A x H is an operator algebraic
analogue of the semi-direct product of two groups G x H, so is our construction an
analogue of the Zappa—Szép product G <t H of two groupoids. To achieve this, the
operator algebraic data has to ‘act’ on the groupoid H; this is achieved by replacing the
C*-algebra A by a Fell bundle 4 — G on which the groupoid H acts in an appropriate
sense to form the Fell bundle £ <1 H — G >1 H. The resulting Fell bundle C*-algebra
of these Zappa—Szép dynamics is a generalization of the classical C*-crossed product,
and we proved that several properties of the C*-crossed product hold similarly in the
Zappa—Szép construction.

Given the vast literature on C*-dynamical systems, our study unlocks a trove of
intriguing questions on what properties of C*-crossed products can be generalized to
the Zappa—Szép product context. In this paper, we prove a Zappa—Szép analogue of the
imprimitivity theorems arising from groupoid actions. Imprimitivity theorems originated
from Mackey’s study on inducing representations of a locally compact group G from its
closed subgroups and giving criteria to identify such representations, known as Mackey’s
machine [21]. Along with the rapid development of the C*-algebra theory, Mackey’s
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imprimitivity theorems were soon recast in terms of C*-algebras in the early 1970s by
Rieffel [30,31], where he introduced the notion of Morita equivalence for C*-algebras [32].
One may refer to Rosenberg’s survey paper [33] on the rich history of this subject. Since
then, the theory of imprimitivity theorems and Morita equivalence among C*-algebras
has been further developed. For imprimitivity theorems arising from group dynamics,
notable works include Green’s [12] and Raeburn’s [28] symmetric imprimitivity theorems.
One may refer to [36, Chapter 4] for various versions and applications of these results.
In [22], Muhly, Renault, and Williams introduced the notion of equivalent groupoids
which implies the existence of a Morita equivalence between their C*-algebras. This
was generalized to Fell bundles by Muhly and Williams in [23] (see also [39]). Applying
the technique developed by Muhly and Williams, Kaliszewski et al. [17] recovered and
extended “all known imprimitivity theorems involving groups” by using a semi-direct
product construction of Fell bundles by locally compact groups.

The main theorem of this paper (Theorem 6.1) further generalizes the imprimitiv-
ity theorem of Kaliszewski et al. beyond the realm of semi-direct products and to the
realm of Zappa—Szép products. This opens a new world of study on the Zappa—Szép-type
two-way interactions between groupoids and Fell bundles.

We briefly outline the key ideas and constructions of this paper. We first introduce
the notion of self-similar actions of a groupoid H on another groupoid X in Section 2
and construct their self-similar product groupoid X <1 H. We adopted this terminology
in order to differentiate our new construction from earlier, more restrictive Zappa—Szép
product constructions [1,2]: we no longer require the groupoids to have the same unit
space. Rather, the groupoids are connected using a momentum map, similar to the idea
of a semi-direct product of groupoids in [15]. This allows us to study many interesting
examples such as group actions on groupoids. We also removed the requirement imposed
in our earlier paper [6] that the groupoids be étale: unless stated otherwise, all groupoids
are merely assumed to be locally compact Hausdorff. Consequently, our new construction
is an honest generalization of that in [17], and our notion of a self-similar action is
a generalization of self-similar group actions whose close relationship to Zappa—Szép
products has already been studied [9,20,27]. At the end of Section 2, we induce Haar
systems from X and H to a Haar system on X <1 H under mild assumptions.

In Section 3, we start by studying the orbit space H\X of a self-similar left action of
H on X'; which is also a groupoid as long as the action is free and proper. In the setup of
most symmetric imprimitivity theorems, it is standard to assume that the left H-action
on X commutes with a right action of another groupoid, G, yielding two groupoids of
the form (X/G) x H and G x (H\X) that are equivalent. This assumption is not quite
enough in the self-similar product setting. We therefore introduce the notion of in tune
actions (Definition 3.5), and we call X a (H, G)-self-similar para-equivalence if the H-
and G-actions are free, proper, and in tune, and if X has open source map. Under such
assumptions, the H- and G-actions on X factor through the respective opposite quotient:
‘H naturally has a self-similar left action on X' /G and G a self-similar right action on H\ X,
allowing us to build their self-similar product groupoids (X' /G) b H and G > (H\X).
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We prove (Theorem 3.10) that these two groupoids are equivalent in the sense of [22].
Moreover, the existence of a Haar system on X that is equivariant in an appropriate sense
allows us to build Haar systems for these equivalent groupoids, so that their groupoid
C*-algebras are Morita equivalent.

In Sections 4 and 5, we bootstrap our construction to the more operator algebraic
setting of self-similar actions on Fell bundles 8 — X for X a (H,G)-self-similar para-
equivalence. We define the notions of self-similar left and right actions on % following
similar ideas as in [6]. This allows two constructions: that of their self-similar products
B H and G M B, where the color of the symbol distinguishes between left- and right-
actions, and that of the orbit spaces H\Z and %/G. Assuming the actions are free,
proper, and in tune, the orbit spaces become Fell bundles themselves. By iterating these
constructions, we obtain two Fell bundles, (%/G) N H and G M (H\AB).

Our main theorem (Theorem 6.1) in Section 6 states that these two Fell bundles are
equivalent in the sense of [23]. Again, under suitable additional assumptions regarding
Haar systems, their Fell bundle C*-algebras are therefore Morita equivalent. We note
that the imprimitivity theorem of Kaliszewski et al. can be recovered by requiring that
half of our two two-way actions be trivial (namely, that X does not act on H or G). There
are other examples where the X-actions on G and ‘H are non-trivial, some of which are
briefly discussed (Examples 2.8, 2.13, 3.17, and 3.19). Finally, we apply our result to a
certain class of Deaconu—Renault groupoids generated by x-commuting endomorphisms
in Section 7.

Due to the sheer number of actions involved, we try our best to assign each action a
unique symbol to best avoid confusion. By convention, the arrow of each action symbol
will point to the element of the space that is acted upon.

2. Self-similar actions

Self-similar groups originated from Grigorchuk’s construction of finitely generated
groups of intermediate growth [13,14]. Its application in operator algebra was first ex-
plored by Nekrashevych [27] where he studied a self-similar group acting on a set. The
distinctive feature that set it apart from other group actions is that the set also acts
back on the group; this action is often called the restriction map. Such a two-way inter-
action has since been generalized to various contexts; for example to self-similar actions
on directed graphs [9], k-graphs [20], and semigroups [3,35]. In this section, we define
self-similar groupoid actions on groupoids. Again, the key feature that sets our defini-
tion apart from classical groupoid actions is the two-way interactions recorded in these
self-similar dynamics.

2.1. Self-similar left actions on groupoids

Notation 2.1. Given continuous maps f: X — Z and g: Y — Z between topological
spaces, we write
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X o,V o={(z,y) € X xY | f(z) = g(y)}
and equip this space with the subspace topology.

Definition 2.2. Let H and X be two locally compact Hausdorff groupoids. We say H has

a self-similar left action on X if there exist a continuous surjection pgg): X0 — 1)

and, using the momentum map py = pgg) ory, two continuous maps

HAX: H,x X>(hzx)—=h>breX

s Px

Hv X H. + X>(hz)—hdzeH

sHPX

such that the following hold.
e For any h € H and x € X such that sy (h) = px(x), we have:
) = pelh ) su(haz)=px() (b <az) = pe((hoa)h)  (LD)
o Forall h € H and v € X such that sy (h) = px(v), and for all z € X, we have:
hdv=h and px(z)br==2x (L2)

o Forall h € H and (z,y) € X® such that sy(h) = px(x), we have sy(h > x) =
rx((h<z)p>y) and

h<d(zy)=(h<x)dy (L3)
B (o) = (b 2)[(h < 2) by (L4)

e Forall (h,k) € H® and x € X such that sy (k) = px(z), we have:

(hk) >z =hb> (k> 2x) (L5)
(hk)<z=[h< (k> a)(k<dx) (L6)

We will often write H s, X instead of H _ *, & when the subscripts are clear from
context.

Example 2.3. Suppose X and H are groupoids with X(® = H(© . Then (X,H) is a
matched pair of groupoids in the sense of [1, Definition 1.1] if and only if H has a self-
similar left action on X with pg?) = id y(), meaning that px = rx. We point out that
this is the reason that inverse elements appear in Condition (L1): Here, the condition

su(h<4z) = px(z~1) becomes sy (h 4 z) = sx(x), which might feel a bit more natural.
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Remark 2.4. If /{ has a self-similar left action on X, then (h,z) — h >z is a left action
of the groupoid H on the space X with momentum map py in the sense of [38, Def. 2.1].
Indeed, the algebraic properties needed for an action are

px(h>x)=ry(h), px(x)>x=x, and (kh)>ax=k> (hdx), (2.1)

which are all assumed in (L1), (L2), and (L5), respectively.
Moreover, if X(© = #(©) and pE\?) = idy(, then (h,x) — h < z is a right action of
the groupoid X on the space H with momentum map sy.

Example 2.5. Suppose H acts on a groupoid X by automorphisms, meaning X has a
continuous, surjective momentum map px: X — H(© and there is a continuous map
H ¢, X — X satisfying not only the conditions in (2.1) but also h> (zy) = (h>x)(h>y)
where it makes sense. Then b is a self-similar left action of H on X if and only if we
let X act trivially on H (meaning h <z = h). Note that there is no other choice for «
because of Condition (L4) in combination with the assumption that > is an action by
homomorphisms.

Example 2.6 (see [I, Example 1.6.]). Suppose we are given a groupoid X. If we let
H = X be the trivial groupoid and let p()g) = idy(0, so that py = ry, then we can

define for a tuple (u,z) = (rx(z),z) € X * X,

X0~ x: rx(z) >z =z,

xO.O x: rx(r) de = sx(x).

One swiftly verifies that these constitute a self-similar left action of X(®) on X. (In fact,
these groupoids form a matched pair.)

We point out that, in order for the condition sy (h < x) = px(z~1) in (L1) to be
satisfied by the pair in Example 2.6, we must define X(®) ~J X in the above way and
cannot let X act trivially on X(9). For Example 3.8 later, it will therefore be convenient
to know that we can also replace the trivial groupoid X(®) with the trivial group {e} as
follows. This also highlights the advantage of not having forced & and H to have the
same unit space, as was the case in, for example, [1,2].

Example 2.7. Suppose we are given a groupoid X. If we let H = {e} be the trivial group,
so that p): X(© — (0 = {¢} is constant and so that > and < must be defined to be
trivial, then these constitute a self-similar left action of {e} on X.

Example 2.8. Suppose a locally compact Hausdorff group K acts on the left on a locally
compact Hausdorff space X; denote the action by *. Suppose further that K can be
written as an (internal) Zappa—Szép product of two (necessarily closed) subgroups, i.e.,
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K = G > H with the product topology. This means that, for any h € H and t € G,
there exist unique elements h|; € H and h-t € G such that (e, h)(t,e) = (h-t, h|;), where
the product on the left-hand side is the group multiplication of K and where e denotes
the identity element of each group.

Consider the transformation groupoid X = G x X = {(t,z) : « € X,t € G}; we
choose the convention that its range and source maps are r(t,x) =t * z and s(t, z) = z,
respectively. Then

HA~X: hb(t,z)=(h-t bl xz)

(2.2)
H~X: hda(t,x)=hl
is a self-similar left action of H on X.

Note that units are not necessarily fixed by self-similar actions. Instead, we have the
following formulas:

Lemma 2.9. For any v € X and for any (h,v) € H *, X we have

pr(z) Qw = px(z™") (L7)
hbvex® (L8)

Moreover, if s3(h) = px(x), then

(h>z)t=(h<az)>a! and (h<az) ' =h"t<a(hp>) (L9)
rx(h>x)=hp>ry(z) and sx(h>z)=(h<ax)>sy(z) (L10)
Proof. Let e = px(z) € H(). For (L7),

edz=(e?)<dx = (e<(e>x))(edx) 2 (e < z)?.

Hence, e <« € H(®). Therefore,

edz=syledx) w px(z™h).

Condition (L8) follows from

(o) (hav) > o) Z (b o)2.

hv=hb(v?)
For (1.9), note that we have just shown that h > (zz~!) € X(©). By Condition (I.4),

XOshp (zz™t) = (hpa)[(haz) >zl
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Therefore, (h>x) ™! = (h<z)>x~!. Similarly, by what we have proved above, (h~!h)<x €
H(©). Therefore, by Condition (L6),

HO 5 (hh)az ="t a(h>a)](h<z).

This proves that (h<z)™! =h™! < (h > ).
Lastly, for (L10), we compute

hz=ho (ry(@)z) "2 (hpre@)[(h<are@) > 2] 2 (> ra(@)(h > z)

and
hox=hb (xsx(x)) = (h>z)[(h<z)>sy(x)]. O

Corollary 2.10. If H has a self-similar left action on X and if h > x is a unit in X, then
T 18 a unit.

Proof. By Lemma 2.9, H maps units to units. In particular, x = h=tp> (h>x)isa
unit. O

Since > is a left groupoid action of H on the space X (Remark 2.4), we make the
following definitions, which are standard in the literature.

Definition 2.11. If H has a self-similar left action on X', we call it free if > is free, meaning
that the equality h >z = x implies h € H(?). Likewise, we call it proper if > is proper,
meaning that the map H * X — X x X defined by (h,z) +— (h >z, ) is a proper map.

We note that these conditions on > do not impose conditions on <.

Example 2.12. Given a groupoid X, the (trivial) self-similar left actions of the trivial
groupoid X and of the trivial group {e} on X (Examples 2.6 and 2.7) are both free
and proper.

Example 2.13 (continuation of Example 2.8). Suppose again that a locally compact Haus-
dorff group K = G <t H acts on the left on a locally compact Hausdorff space X, denoted
by *. We define the self-similar left action > and < of H on the transformation groupoid
X =Gx X asin (2.2).

Note that, if * is free, then so is b: suppose h > (¢,x) = (t,x), i.e., h-t = ¢ and
h|t * & = x. By the freeness of the K-action on X, this forces h|; = e. Recall that the
Zappa—Szép-structure of K implies that (e, h)(t,e) = (h-t, hl¢). But the right-hand side
equals (t, e), which forces h = e.

Likewise, if  is proper, then so is >: suppose that we have convergent nets (¢;, ;) —
(t,z) and h; > (t;,z;) — (s,y) in X; we must check that h; has a convergent subnet.
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By definition of >, we know in particular that h;

t; *x; = yin X. As z; — x and as *
is proper, it follows that h;|;, (has a subnet that) converges to, say, k in K. Since H is
closed in K, k is an element of H, and so by continuity of the restriction and inversion
map, we conclude that h; = (hi‘ti”t;l — Ely-1.

Lemma 2.14. If H has a self-similar left action on X, then > restricts to a continuous
left action of H on the unit space, X°). The action on X is free (respectively proper) if
and only if the action on X©) is free (respectively proper).

Proof. Notice first that, if v € X(©) and h € H are such that sy (h) = px(v), then h>v €
X by Lemma 2.9 (L8), so the map restricts to a continuous action H &, X0 5 x(0)
with momentum map PE\?) : X0 5 3(0),

Now suppose the action on X(? is free, and assume that h >z = x for some z € X.
Then

= (h>a)? w (h<x)>a
so that
ho> (zxt) L (hpz)[(h<az)>a!] =2z

As zz—' € X our assumption now implies that h is a unit, proving that b is free. The
other direction of the equivalence is trivial.

Lastly suppose that the action on X is proper, and assume that the net {(hy >
Zx,xx)}a converges to (y,z) in X x X. By (L10) and continuity of ry, this implies
that (ha>rx(zy),rx(2))) = (rx(y), 72 (x)). By properness on X'©) it follows from [38,
Proposition 2.17] that {hy}a has a convergent subnet. By the same proposition, this
implies that H acts properly on X. O

The above implies that a non-trivial groupoid H cannot admit a free self-similar left
action on a group X, because its action on the unit space {e} of X is never free.

Lemma 2.15. Let H act on X by a free self-similar left action. If v,x' € X satisfy
Hoz=Hb>a and if rxy(z) = rx(z'), then x = z'.

Proof. Since H >z = H > ', there exists h € H such that 2/ = h > 2. By (L10)
(Lemma 2.9), hbra(x) = ry(h>x) = ra(2’), which coincides with rx () by assumption.
Since the self-similar H-action is free, h must be in #(®) and thus 2/ = z. O

2.2. The self-similar product groupoid: a generalized Zappa—Szép product
Following [2] and [6, Example 2.4], we can define a Zappa—Szép-type product of H

with X; the main difference is that we do not require the unit spaces of the two groupoids
to coincide.
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Definition 2.16. Let H be a groupoid that has a (not necessarily free or proper) self-
similar left action on X (Definition 2.2). The self-similar product of X and H is the
set

XaH = {(x,h) € X xH:px(x™) =ryh)}
with the following structure of a groupoid: the unit space is
(X H) O = (XO x HO)Y N (X aH)
and its range and source maps are given by

rasar (2, h) = (ra(z),ry(h) <z7')  and respectively,
SXMH(xv h) = (hil > SX(:E)v S'H(h))

Two elements (x, h) and (y, k) are composable if and only if sx(x) = h>rx(y), in which
case their composition is defined by

(z,h)(y, k) = (x(h>y), (h<dy)k).
Lastly, the inverse is
(z,h) = (bt A aah).

Remark 2.17. Let us do some sanity checks.

The range map lands in the alleged unit space. We trivially have that v = ry(z) is
in X, Since ry(h) <z~! = px(v) by Lemma 2.9, it is an element of #(®), and

1=y (T’H(h) < m_l) ,

px(v™h) = pa(v) =ru(h) <
which shows that rxp (2, k) is in (X a H)©).

Composability condition. The elements (z, h) and (y, k) are composable in X <1 H if and
only if sypqp (2, h) = Txsq(y, k); by our definition of the source and range map, that
means

h™' o sx(e) =rx(y) and sy(h)=ru(k) <y

But now notice that the first condition implies the second:
ru(k) 4yt = px(y) (by (L7) in Lemma 2.9)

= p()?)(h_1 > sx(x)) (by the first condition)
=ru(h™) = su(h) (by (L1)),
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so (z,h) and (y, k) are composable if and only if h=! > sy (z) = 7+ (y), as claimed.

The composition makes sense. By assumption, we have sy (h) = ry(k) <y~ By
Lemma 2.9 (L7), the right-hand side is exactly px(y), so that h >y and h <y are indeed
defined. We have rx(h>y) = h>7rx(y) by (L10) (Lemma 2.9); the right-hand side is, by
assumption, equal to h>[h =1 > sy (2)]. By (L5), that is exactly sx(z), so that x(h>y) is
defined. We have s (h<y) = px(y~1) by (L1). Since (y, k) € X 1 H, the right-hand side
equals r4(k), so that (h < y)k makes sense. We have px((z[h > y])™1) = px((h>y)~)
which equals r4(h 4y) = ry([h < y]k) by (L1), so the product is an element of X < H.

Remark 2.18. With the algebraic structure from Definition 2.16 and the subspace topol-
ogy, X > H is a locally compact Hausdorff groupoid. Indeed, since X and H are both
locally compact Hausdorff, and since X <t H is a closed subspace of X x H, it is clear
that X > H is itself locally compact Hausdorff. Continuity of multiplication and inver-
sion follow immediately from continuity of I, <, and of multiplication and inversion in X
and H.

Remark 2.19. Notice that the unit space of the self-similar product,
(X aH)O = {(u,0) :ue X0 veHD pr(u) =v},

is homeomorphic to X, since the map (u,v) — u and its inverse u — (u, px(u))
are continuous. Under this identification, we can simply write 7xpp (2, h) = rx(z) and
sxvar (T, h) = h™1 > sx ().

Example 2.20 (continuation of Example 2.5). Suppose H acts on a groupoid X by auto-
morphisms. Then the self-similar product X' >t H (where X acts trivially on H) is identi-
cal to the transformation groupoid X x H, if we use the convention that ryxy(x,h) = =
and syw(z,h) =h™ 1>

Example 2.21. Given a groupoid X, it is easy to check that the self-similar product
X 1 XO) of X with the trivial groupoid X'(©) (as in Example 2.6) is isomorphic to X' via
(z,sx(z)) — z. Likewise, the self-similar product X < {e} of X with the trivial group
(as in Example 2.7) is isomorphic to the groupoid X via (x,e) — .

In [2, Section 3], the Zappa—Szép product was defined for groupoids that are matched:
In addition to the left and right actions, groupoids in a matched pair are assumed to
have the same unit space, X(®) = H©) and that pg?) = id (0. Our above definition of
the self-similar product X 1 H does not require X and H to be matched; they may have
different unit spaces. However, as pointed out in [6, Example 2.4], we can construct a
new transformation groupoid # such that H and X are matched, and such that their
Zappa—Szép product X < H is isomorphic to the self-similar product X > H. We will

now make this more precise.
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Lemma 2.22. Suppose a groupoid H has a self-similar left action on a groupoid X, de-
noted > and 4. By Lemma 2.1/, we get a left action of H on X©) which gives rise
to a transformation groupoid H = H x XO with unit space X0, If we define for
((h,u),z) € H * X,

HAX: (h,u) -z :=hba,
Hu X (hyu)| = (h<x,sx(x)),

then (X, H) is a matched pair.

Note that the momentum map of X for these newly defined actions is not py but ry,
as necessary for a matched pair.

Proof. Recall that H is the set K, X (0) with multiplication and inversion defined by
(k,h>u)(h,u) = (hk,u) and respectively, (hyu)™t = (A1 h>w).

Its unit space is further identified with X'(©); to be precise, the source of (h,u) is
(h='h,u) = (u,u), or simply u.

Let us check that the new actions are well-defined. The actions are only defined for
((h,u),z) for which sz (h,u) = u equals rx(z). Since (h,u) € H, we have sy (h) =
p()?)(u), and so sy(h) = px(z). This means that h >z and h <z are both defined. Lastly,
notice that sy (h<z) = px(z71) = px(sx(x)) by (L1), so that (h,u)]|, is indeed another
element of 7.

The ambitious reader can now verify easily that (X, ﬁ) is a matched pair. [

Proposition 2.23. With the assumptions and definitions in Lemma 2.22, the Zappa—Szép
product X > H of the matched pair is isomorphic to the self-similar product X <t H in
the sense of Definition 2.16.

Proof. By definition of X’ 1 7, any of its elements (z, (h, u)) satisfies sy (z) = 5 (hyu),
which is exactly h > u by definition of the range map of H. Thus, u = h=! > sy ().

Moreover, px(z71) = px(h>u) = rg(h) by (L1), which shows that (x,h) is an element
of X >xH. All in all, the maps

P XM o> XxH, (z,(hu)— (z,h),
and
XaH = X H, (z,h) = (z,(h,h 7 b sx(2))),

are well-defined and mutually inverse. Since they are constructed out of continuous maps,
they are themselves continuous. Lastly, notice that ¢ is a groupoid homomorphism:
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o((z, (h,w)) (y, (k,v))) = o(z[(h , (hu)ly(k,v)) (def'n of X > H)
:cp(xhby (h<y,sx(y))(k,v)) (def'n of - and |)

= o(z[h>y], ([h < ylk,v)) (def'n of H)

= (z[h > y], [h < ylk) (def’n of ¢)
= (z,h) (y, k) (defn of X > H)

= So(xa (ha u)) @(ya (k7 U))
This proves that X H is isomorphic to X xH. O

Example 2.24 (cf. [2, Section 5.3], [5, Definition 3.6]). Suppose G is a locally compact
Hausdorff groupoid and H is a group (neither are assumed to be étale), and ¢: G — H
is a continuous homomorphism. The skew-product groupoid G(c) is the set G x H with
the operations given for (g,¢’) € G and h € H by

(g,h)(g', he(g)) = (99',h) and  (g,h) " = (97", he(g)).

Note that G(c)(®) = GO x H. The formula ¢, (g, k') == (g,h’h~") defines a continuous,
free action of H on G(c) by automorphisms. See [18, Section 4] for more details, but note
that their convention for G(c) is slightly different from ours.

In the case where G and H are étale, [2, Proposition 22] states that the above action
induces a left H-action on G(%) x H and that the corresponding transformation groupoid

H = H,xG(c)”

allows a Zappa—Szép product with G(c). It was pointed out further that this product
G(c) > H “should be considered as the Zappa—Szép product of the groupoid G(c) with the
group H”, since the space G(c) x H is homeomorphic to G(c) 1 H via ((g.h), W) =
((g: 1), (1, 5(g), he(g)R')).

Using our machinery above, this comment can be made concrete without the need to
go via the transformation groupoid H (and without assuming étale): Since H(©) = {e},
the balanced fiber product *, just becomes the Cartesian product, and we can define

H~ G(c): ho (g, h') = (g,h'h™Y)
H~G(c): h<(g,h') = c(g) " he(g)

One verifies that these give a self-similar left action of H on G(c), and so we may
construct the self-similar product G(c) >t H as in Definition 2.16. By Proposition 2.23,
G(c) > H is isomorphic to the Zappa—Szép product groupoid G(c) <t H from [2, Propo-
sition 22].
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Remark 2.25. As the last example highlights, the main distinction between the (old)
Zappa—Szép product and our (new) self-similar product is that the latter does not re-
quire the groupoids with two-way actions to have matching unit spaces. For Zappa—Szép
products, there is no inherent distinction between the roles of the two groupoids H and
X (everything is entirely symmetric), while the self-similar-variant makes a clear dis-
tinction between them: Besides its range and source maps, the groupoid X must also
carry a separate momentum map px: X — H(© with respect to which the H-action is
defined. After Proposition 4.3, it is natural to ask whether this added layer of difficulty
in Definition 2.2 is worth the effort. But while the self-similar product X <t H and the
Zappa—Szép product X' H are isomorphic, there are fundamental differences between
the pair (X,H) and the pair (X,H), as we will see in Example 3.8 and its subsequent
remark.

Example 2.26 (reconciliation). Suppose H = {e} has the trivial self-similar left action
on a groupoid X (Example 2.7). The induced action - of the transformation groupoid
{e} = {e}xx© on X as defined in Lemma 2.22 is then likewise trivial, and the induced
action | of X on {e} is given for € X and (e, u) € {e} by

(e,u)lz = (e,sx(x)) where wu=sg(e,u)=rx(z).
In other words: If we identify an element (e, u) of @/} with u in X(©), then the self-similar
left action of {e} on X that we described in Lemma 2.22 is identical to the one of X(%)
on X that we described in Example 2.6. Under this identification, the concatenation of
the isomorphisms X < {e} & X and X = X < X(©) in Example 2.21 yields exactly the
isomorphism X < {e} = X 1 {e} in Proposition 2.23.
One can define an analogous notion of a self-similar action on the right. For the

convenience of the reader and to establish notation, we will repeat the main properties
in Subsection 2.4.

2.8. Haar systems for self-similar left actions

Definition 2.27. Suppose H and X" are groupoids and that b is a left H-action on X’ with
momentum map py = p( )o rx: X — HO. We say that a left Haar system {AN"}uex©
on X is >-invariant if for all h € H and all u € X©) with sy (h) = px(u), we have

h AY = A",

where (h > A\*)(E) = X*(h~! > E). Equivalently, for all f € C.(X),

/f (h> ) d\“(x /f ) dAP(y). (2.3)
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Proposition 2.28 (c¢f. [16, Proposition 6.4]). Suppose H and X are locally compact Haus-
dorff groupoids, that H has a self-similar left action on X, and that X has a >-invariant
left Haar system . If € is any left Haar system for H, then we get a left Haar system
A< e for X aH defined for u € X©) by

d(A>ae)(y, k) = de”@ D (k) dA“(y).

Equivalently, for any f € C.(X <t H),
[ wm o @ = [ [ m o man )
X H

In the above, we have used the fact that (X >a H)© ~ X(© by Remark 2.19. To
prove the above proposition, we need the following:

Lemma 2.29. Suppose u,v € X and (x,h) € X* x HP®) C X > H are fived. If we let
hy=(h t<az7H~! and 2o = h;l >, then h > sy (x2) = v, and for all y € X}fl”, we
have x(h > y) = hy > (z2y).

Proof. We compute

ro=(htar Hpo w (e (2.4)

so that

0L -1 re(z™) =h" b sx(z) =h > o,

S)c'(l‘g) = Tx(h_l > LL'_I)
as claimed. By Equation (2.4),

(L9)

hy = h<a(h'pat)=h<xy!, sothat hy <y (L

' h.

Now, if y is such that rx(y) = h~! > v, meaning that xoy makes sense by our above
computation, then

L1 _
p(way) = pa(wa) 2 s3(h a23L) = sy (ha).

Therefore, ha > (x2y) is likewise defined, and we have:

ha > (z2y) = (he > 2)[(he < 22) >y (by (L4))
= z[h > y] (def'n of hy and by the above). O
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Corollary 2.30. Suppose u,v € X, (x,h) € X* x HP®W) C X a H, and \ is a >-
invariant left Haar system for X in the sense of Definition 2.27. If G € C.(X), then

-1
[ 6Galne ) ) = [ 6w
X X
Proof. Let x5, hy be as in Lemma 2.29. Then

[ 6Galne ) > ) = [ b frag) XE20).
By left invariance of A, we have
/ G(ha > [z2y]) AN *2) (y) = / G(hy > 2) dN"@2) (),
X

X

Since rx (z2) = sy (he), we can invoke >-invariance of A in the form of Equation (2.3) to
conclude

/ G(hg > z) dA"(#2) (z / G(y) dXP2>T(@2) (y)).,

Since x9 = hy ' b x, it follows from (L10) (Lemma 2.9) that hy > ry(z2) = rx(z) = u,
so that the above right-hand side is as claimed in the statement. [

Proof of Proposition 2.28. For this proof, let p = px = p()?) ory and p’ = p()?) osy. Fix

an arbitrary u € X9 and note that (A >1¢)* is a Radon measure on X 1 H, since

(Apae)*: Co(X<H)—C, Fres //F(y, k) de? @) (k) dX“(y),
is clearly a positive linear functional on C.(X <1 H). First, we show that supp (A >1¢e)* =
(X > H)™. To see D, fix any
n=(y,k) € (X H)" = X" > H = Uyeyio X2 x HW
For any open neighborhood N, around 7, we must show that (A 0 €)*(N,) > 0. By

monotonicity, it suffices to show this for a basic open neighborhood, so we may assume
that N, = (N, x Ni) N X paH for some neighborhoods N, of y and Ny of k. Thus,

(A5 £)*(N) = / Iy, (€) d(Aba )" //1N,] 2, h) de?’ @ (h) A ()

X<aH
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- / / Ly, (2) Ly (h) Lsane (. B) de?’ @ () ¥ ()
X H

= / 1y, (2) / 1n, (h) de” @ (h) | dA“(z). (2.5)

X H

Since H is locally compact, we may find a precompact neighborhood Mj of k for
which M, C Nj. Since k € HP®) = suppe”™), we have § = £”(")(M;) > 0. Let
f € C.(H,]0,1]) be a function that is constant 1 on M), and vanishes outside of Ny, so
that for all w € H©),

/ L, (h) de® (k) > / F(h)de® (1) > / Lo, (h) de¥(h). (2.6)
H H

H

Note that the middle term is exactly €“(f). As € is a Haar system for H, the function
e(f): HO = C,w e e”(f),

is continuous, where we followed the notation used in [38, Remark 1.20]. As the right-

most side of (2.6) equals § for w = p(v), continuity of e(f) implies that e(f) is greater

than 2 in a neighborhood U of p(v); let V == (p/)~1(U) C X.
Using our computation in (2.5), we see that

(Apae)(Ny)

Y

Iy, (@) e(f) (¢ (2)) dX* (@)

Y

e M

In,av(@)e(f) (o' (z)) AN ()

>0 [ In,av(z)dX(z) = S XU (N, N V).

L

Note that by choice of y, p/(y) = pgg)(s;((y)) = pgg) (v) is an element of U, so N, NV

is a neighborhood of y. Since y € X* = supp A%, we must have \*(N, NV) > 0, and
hence (A > ¢e)*(N,) > 0. Since y, k, u, v were arbitrary, this proves that supp (A< e)* D
Upexo Xy x HPW).

Conversely, assume that n ¢ (X > H), i.e., if we write n = (y, %), then rx(y) # u.
Consider 73" (XO\ {u}) = X\ X" Since X©) is Hausdorff, this is an open neighborhood
around y. Since supp A* = X", we have \*(X \ X*) = 0. In particular, if we let N, :=
(X \ X"*) >a H, then we have found a neighborhood of 1 for which (A a1 €)*(N,) = 0.
Indeed, using our computation in (2.5), we see that
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(02 (N) = [ 1w @) | [ 10() = @) | ax* () =0,

X H

This means that n ¢ supp (A 1), as claimed.

Next, for F € C.(X < H), we need to show that the map u — [ Fd(A > e)* is
continuous. We will first prove the claim for F' = (f X ¢)|xpap, where f X g: (z,h) —
f(z)g(h) for some f € C.(X) and g € C.(H), so that

/1n)aAms /f /) ) de? @) (k) A" (y).

X<IH

Since ¢ is a Haar system on H and since g € C.(H), we know that the function

H@ac,wa/gm@

(0)

is continuous. Since f € C.(X) and since p’ = p3’ o sx is continuous, it follows that

G:X5C, yos fy) /g(k) de?’ ) (k)
H

is continuous and compactly supported. Since )\ is a Haar system on X, we thus know
that

W H) O =20 5 € e [ G = [ Fo)daee) o),

X Xp<H

is continuous, as needed.

For general F' € C.(X <t H), let Ky and K3 be the X- and the H-part of supp(F),
respectively, both of which are compact. Pick f € C.(X) and g € C.(H) which are
constant 1 on Ky and Ky, respectively, so that for any v € X and for Ky pa Ky ==
(Kx x Ky ) N X > H,

(Aot £)? (supp(F)) < (A bt £) (K 11 Kp) < / (f x g)d(A ot )"
X<aH

By our earlier argument, the right-hand side is a continuous function in v. Therefore, if
K is some compact set, then for any v € K,

(\ba )" (Kox b4 Fy) < ma| / (f x g)d(A 2 ) | =ex < os. (2.7)
X<aH
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Now, assume we are given a convergent net u; — u in X©) and fix an arbitrary € > 0.
By local compactness of X', we may without loss of generality assume that each wu; is
contained in a compact neighborhood K of U, so that (2.7) holds for v = u;. By Stone-
Weierstrass, we can choose finitely many f; € C.(X),g; € C.(H) such that

HF - ijl(fj x gj)|Xl><1HHOO <¢/(3¢x +1).

Without loss of generality, the support of each f; is in Kx and of each g; is in Ky, so
that for all v € K,

/]F— Zj fi % gj|d(Ape)”

<) (K 5 Ky HF _ ijl(fj y gj)|XMHH s, (2.8)

o

By our earlier result, we may choose iy large enough such that for all ¢ > ¢y and all
1< j <k, we have

‘/f;xgg (Apae)® /f]xgj dA=e)*| < ¢e/3k.

Combining this with (2.8), we get for all ¢ > i that

’/Fd()\me)“i _ /Fd(/\mg)“

§/|F_Z-fj><9j|d(kb<€)“i
+Z ‘/f]xg] (Axae)® /fjxgj (Axae)®
+/’(ijj><gj)—F\d(/\l><s)“<e

as needed.

Lastly, we have to show that for any £ € X <t H and any F' € C.(X < H), we have
JFEn)d(X < e)*@n = [ F(n)d(\ > &)"©n. Write £ = (z,h) € X x HPY)| so that
5(§) = h~! b v; as above, it suffices to consider the case where F' can be written as
F(&) = f(x)g(h) for some f € C.(X) and some g € C.(H). Then

/ F(en) d(A 5a.£)© (1) = / F(afh > gl [ 4 y)k) d(A 1 £)* 0y, k)

XaH XaH

//f (> y]) g([h < ylk) de” @) (k) A" >V (y)
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= [(ativu)) [ o(hauik) = g an " )
X H

where the last equation follows from (L1), which guarantees that p'(y) = s (h<y). Since
ry(h Qy) = p'(h > y), left-invariance of £ implies

/ F(en) d(Asae)*l / f(alh> y) / (k) de? (™) () AR~ "> (),

XaH

For z € X, define

/ g(k) de? ) (i
H

Since ¢ is a Haar system and since g € C.(H), we know that
HO S C, o /gds“l,

(0)

is continuous. Since p’ = p3’ 0 sy is continuous and since f € C.(X), we conclude that G
is a continuous and compactly supported function on X. Since sy (h>y) = sx(x[h > y]),

we conclude that

/F(fn) (A e)*©(n) /G (zlh>y)) A" > (y)

XaH
/ G(y) dA"@) (y) (Corollary 2.30)
X
= /f / k) de?’ @) (k) dA™©) (y) (def'n of G)
X

F(n)d(Aae)" (). O

X<aH

Corollary 2.31. Suppose H and X are locally compact Hausdorff groupoids and that H
has a self-similar left action on X.

(1) If X is étale, then counting measure on X is >-invariant in the sense of Defini-
tion 2.27.

(2) If H and X are both r-discrete, then so is H <1 X.

(3) If H and X are both étale, then so is H <1 X.
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Proof. If X is étale, [38, Prop. 1.29] says that counting measures form a Haar system
on X. Now, for any fixed (h,u) € H *, X the map X% — X% y— h~ by, is a
bijection (in fact, a homeomorphism), and thus

o fhva)y= > fy)

reXY yeXxhou

for all f € C.(X). In other words, counting measure on X is >-invariant.

Now suppose the groupoids are r-discrete. Since X9 x %9 is open in X x H and since
X 1 H has the subspace topology, we have that (X©) x HO) N (X xaH) = (X > H)©
is open in X > H. Thus, X > H is also r-discrete.

Now, if both X and H are étale, then it follows from Proposition 2.28 that H > X
admits a Haar system. According to [38, Prop. 1.23 and 1.29], any locally compact and 7-
discrete groupoid that admits a Haar system is necessarily étale, so our claim follows. [

2.4. Rehash (from left to right)

The definitions we made so far can similarly be made on the right; we have added
them here for easy reference.

Definition 2.32 (c¢f. Definition 2.2). Let G and X be two locally compact Hausdorff

groupoids. We say G has a self-similar right action on X if there exists a continuous

surjection 02?): X(©) — GO and, using the anchor map oy = ag?) o sy, two continuous

maps
XAG: X, *,92(@s)rrdaseX

X G X_ *x G (xz,8)—zrseG

ox TG

such that the following hold.

e For any z € X and ¢t € G such that ox(z) = ry4(t), we have
ox(z 4t) = sg(t) ox(z ) =rg(zwt) ox((z 4t)™h) = sg(zw»t) (R1)
e Forall v € X and s € G such that ox(v) = rg(s) and for all x € X', we have:
vhs=sand zqox(z) == (R2)

o For all (z,y) € X® and s € G such that ox(y) = rg(s), we have sy(z € (y» s)) =
rx(y €s) and

(zy)»s=ax» (y»s) (R3)
(ry) s = [z 4 (y > s)|(y 45) (R4)
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e Forall z € X and (s,t) € G? such that ox(x) = rg(s), we have:

z» (st) = (z»s)[(x €s)» 1] (R6)

We call the self-similar right action free (and respectively, proper) if « is free (and
respectively, proper).

Remark 2.33. Similar to our previous computation for the self-similar left actions, for
every t € G, x € X, and v € X(O with rg(t) = ox(z) = ox(v), we have

z»oy(r)=ox(z™t) (R7)
vatex® (R8)

(rat) P =2 q(zrt) and (zwt) P =(zat)pt! (R9)
sx(r €t) =sx(z) <t and rx(r 4t) =ryx(z) <(z»t) (R10)

In a very similar fashion, we can define the self-similar product for a right action:

Definition 2.34. Let G be a groupoid that has a self-similar right action on X. Define
their self-similar product as the set

Gra X ={(t,x): sg(t) = ox(rx(z))}
with multiplication
(5,2)(t,y) = (s(z > t),(x «t)y), whenever sy(z)=rx(y) «t™,
and inverse
(t,x) L= (27t t7 T €.

For a right action, we mimic the construction in Definition 2.27 verbatim, only re-
placing the left Haar system by a right Haar system:

Definition 2.35. Suppose G and X are locally compact Hausdorff groupoids and that
« is a right G-action on X’ with momentum map og: X — G, We say that a right
Haar system {\,},cx® on X is «-invariant if for all ¢ € G and all v € X with
ox(u) =rg(t), we have

)\u «t= /\u<ta

where \, 4« t(E) = A\, (E «t71).
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Given a self-similar right action of G on X', a right Haar system of G and a «-invariant
right Haar system on X yields a right Haar systems on the self-similar product groupoid
G a1 X similarly to the result in Proposition 2.28. The details are omitted here.

3. The orbit space

If H has a self-similar left action on the groupoid X, then (h,x) — h1>z is an H-action
on the space X’ according to Lemma 2.4. We can therefore construct the quotient space,
H\X, whose elements we will denote by H > 2. We will now show that we can equip this
space with its own groupoid structure as long as the action is free and proper.

Recall from Lemma 2.14 that > restricts to an H-action on X(?), so we may consider
H\X(©. We define sy v, a0 H\X — H\X© by

sy (Hoz) =Hb>sy(z) and rpx(Hb>z) =HD>ry(z). (3.1)
These are well-defined by (L10).
Lemma 3.1. If sy and sx are open, then the map sy\ x is also open.

Proof. Since sy is open, the quotient map ¢| (o) : x0 H\X(O) is open by [38, Propo-
sition 2.12]. The claim now follows from continuity of ¢ and commutativity of the diagram
below.

X —L s H\x

Jsx JSH\X 0

x M H\X(©

Lemma 3.2. Suppose H has a self-similar left action on X, and fix two elements €, of
H\X for which sy x(§) = Ta\x(n). Then we can find x1 € § and y1 € 1 such that
sx(z1) =rx(y1).

Moreover, if the action of H on X is free, then any two more such elements o,y
satisfy H > (vay2) = H > (21y1).

Proof. For existence, start with two arbitrary elements z € £ and y € 7. By construction
of sy x and ry\ x, we have sx(z) € sy\x(§) and rx(y) € r\x(n). As the two equiva-
lence classes coincide by assumption, there exists h € H such that sy(z) = h > ra(y).
Since the right-hand side equals rx(h > y) by (L10) (Lemma 2.9), we see that we can
pick zy =x and y; =h>ye HD>y=n.

To see the claim about the product, let k,I € H be such that zo = k> 1 and
y2 =1 >yi. By (L10),

sx(x2) =sx(kp>x) = (k<z)>sx(xr), and
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rx(ye) =rx(I>y) =1>rx(yr1) =1 sx(x).

Since the left-hand sides of these equations are assumed to be equal and since the H-
action is free, we conclude that [ = k < x1. Therefore, by (L6),

Toys = (k> x1)(I>y1) = (k> 21)([k <a1] > y1) = k> (z101),
so H > (zay2) = H > (2111), as claimed. O
The lemma allows us to turn H\X into a groupoid.

Proposition 3.3. Suppose H has a self-similar left action on X for which > is free on X.
For two elements §,1 of the orbit space H\X with sy x (&) = ra\x(n), define

En=Hp> (xy) wherex € &,y €1 are such that sy(x) =rx(y).
Further, define
(Hpoz) ' =H>al.

With this structure, H\X is a (non-topological) groupoid.
If we further assume that > is proper and sy is open, then H\X is a locally compact
Hausdorff groupoid with the quotient topology, and if X is étale, then so is H\X.

Proof. We have seen in Lemma 3.2 that, since the H-action is free, the multiplication
is well-defined and independent of the choice of x,y. To see that the inversion is well-
defined, suppose that 1 € K>z =&, i.e., z1 = h> x for some h. Then by (L.9), we have
7t = (h>z)~' = (h<dz)ba~ ! soz;t € H>a~!, and hence the definition of (H >x)~?
does not depend on the chosen representative.

The algebraic properties of a groupoid are now easy to verify and follow from the
algebraic properties that X satisfies.

Now suppose D> is proper and sy is open. Since we assume our groupoids H and X to
be locally compact Hausdorff, it follows from [38, Proposition 2.18] that the quotient is
locally compact Hausdorff.

To show that the multiplication map (H\X)? — H\X is continuous, suppose we
are given a net {(&,n;)}ier in (H\X)® that converges to some composable pair (&,7).
Because of Lemma A.2, it suffices to show that a subnet of {&;;}ier converges to &n.

As (H\X)® has the subspace topology of the product topology on (H\X) x (H\X),
convergence implies that §; — £ and n; — n in H\X. Since sy is open, the quotient
map ¢ is open by [38, Proposition 2.12]. Thus, if we fix € &, then by Proposition A.1
we can find a subnet of {&;};c; that is the image under ¢ of a net in X’ that converges
to x; without loss of generality, the subnet is the net itself, meaning there exist z; € X
such that x; — = and H > x; = &. Once again by passing to a subnet, we can without



A. Duwenig, B. Li / Journal of Functional Analysis 288 (2025) 110699 25

loss of generality assume that {n;};c; is the image under ¢ of a convergent net, say
of y; = y € n. In other words, by passing to a subnet of a subnet, we can without
loss of generality assume that {(&;,n;)}ier itself can be lifted to a net {(z;,y;)}icr that
converges to (z,y) € € x nin X x X. Since (&,1;) € (H\X)?, we have

HD sx (i) = s\ (&) = rapa(mi) = HDra(vi),

so we can find h; € H such that sy (z;) = h; > rx(y;); note that h; is unique by freeness.
Similarly, there exists a unique h with sy (z) = h > rx(y). Continuity of sy and rx
implies that

(hi > e (i) e (w0)) = (s2(@), () > (s2(2),72(y)) = (h> T2 (y),r2(y)) (3.2)

Since B> is proper, this convergence implies that (a subnet of) {h;}ic; converges.
Since X(©) is Hausdorff and b is free, it must converge to h. In particular, continuity if
> implies that {(x;, h; > y;) }ier iS @ net in X @) that converges to the composable pair
(z,h > y). Continuity of the multiplication on X implies that {x;[h; > y;]}ier converges
to z[h > y]. Since

q(zi[hi > yi]) = H > (zlhs > yi]) = (H>x)(H>ys) =&

and q(x[h > y]) = &n, continuity of ¢ implies that {&;7; }icr converges to &n. This proves
that the multiplication on H\X is continuous.

For the inversion map, the argument is similar: if & — £ in H\X, then openness of
q allows a lift {z;};ecs of a subnet {&;};c; which converges to a fixed preimage x of &.
Continuity of the inversion in A implies that xj_l — 7!, and continuity of ¢ implies
f;l =HD> (x;l) — H > (z71) = ¢! By Lemma A.2, this suffices to show that the

inversion on H\X is continuous.

Lastly, assume that X is étale, so its source map is an open map and its unit space
is open. As argued above, the quotient map ¢: X — H\X is open, and so (7—[\)\,’)(0) =
H\X(O) = q(X(O)) is open, i.e., H\X is r-discrete. Since sy and sy are open, Lemma 3.1
implies that the source map of H\X is open, and so [38, Proposition 1.29] implies that
H\X is étale. O

Example 3.4. If we consider the self-similar left action of the trivial groupoid X on X
as defined in Example 2.6, then X\ X = X via X©) p 2 2, since b is trivial.

Likewise, the trivial group {e} with its (trivial) self-similar left action on a groupoid
X as defined in Example 2.7 is (trivially) free and proper. The quotient groupoid {e}\X
is exactly the groupoid X if we identify {e} > = with z.
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3.1. Self-similar para-equivalences

We are now in a position where we can define a generalized notion of compatible
actions.

Definition 3.5. Suppose the two groupoids H, G act on the left and right of a groupoid X
by self-similar actions, respectively. We say the actions are in tune if for any h € H,
xz € X, and s € G with sy (h) = px(z) and ox(x) = rg(s), we have

Q

(CO) ox(hb>z)=0cx(z) in GO and pxy(z) = px(z «s) in HO),
(C1) h>(x4s)=(h>z)4sin X,

(C2) (h>px)»s=zw»sinG, and
(C3)

Note that Condition (C0) ensures that the elements in the other conditions make

sense.

Definition 3.6. Suppose the two groupoids H, G act on the left and right of a groupoid X
by self-similar actions, respectively. If the self-similar actions are in tune and both free
and proper, and if H, G, and X have open source maps, then we call X an (H, G)-self-
similar para-equivalence.

Remark 3.7. In case of the semidirect product construction in [17, Appendix A.2], we
have x> s =sand hdxz = hforall h € H, z € X, and s € G. Therefore, Conditions (C2)
and (C3) are trivially satisfied since both sides of the first equation are s and both
sides of the second are h. Thus, in this case, the in-tune conditions simply reduce to the
commuting conditions (C0) and (C1).

Example 3.8. Let G and X be groupoids whose source maps are open, and suppose that
G has a self-similar right action on X that is free and proper (Definition 2.32). Then
X is a ({e}, G)-self-similar para-equivalence. Indeed, the trivial actions >, < constitute a
free and proper self-similar left action of {e} on X' (see Examples 2.7 and 2.12), and the
following computations show that the actions of X(9) and of G are in tune, where z € X
and s € G are such that ox(x) = rg(s).

Re (CO0): Since b is trivial, we have ox(h > ) = ox(x), and since px: X — {e}
is constant, we have px(z) = px(z € s).
Re (C1), (C2): Since b is trivial, we have e> (z 4s) = z4s = (e>z) 4s and (ebz)bs =
xp»s.
Re (C3): Since « is trivial, we have e 4 (z €48) = e =e < x.
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Note, however, that X" is not a (X OR G)-self-similar para-equivalence (even though X
has a free and proper self-similar left action of X(®) by Example 2.6): If there exists one
(z,5) € X %G with s ¢ GO then freeness of the G-action <4 on X(9) implies that

rx(z) #rx(r) <(zw»s) (e rx(z «s).

As the momentum map py for the X(@-action on X is ry in this setting, the above
inequality conflicts with Condition (C0).

Remark 3.9. In Example 2.26, we showed that the (trivial) self-similar left action of {e}
on a groupoid X gives rise to the ‘standard’ self-similar left action of X(®) on X as defined
in Example 2.6, and it then also followed that X v {e} = X > X(?). This seemed to
indicate that the pairs (X, {e}) and (X, X)) are ‘the same’ in some sense.

However, the above example shows that this point of view is ill-advised, since a self-
similar para-equivalence X between H and G need not be one between H="Hxx0
and G. The reason is that, Condition (C0) for the pair (#,G) does not imply the same
condition for (7—~L, G), since the momentum maps on X with respect to the left actions
do not need to coincide: we have py: X — H(® for the left H-action >, while we have
ra: X = X0 = HO for the left H-action - (see Lemma 2.22).

Given a (H, G)-self-similar para-equivalence X', we have shown in Proposition 3.3 that
the orbit space H\X and, by extension, X' /G are groupoids. In Proposition 3.12, we will
establish that H has a self-similar left action on X' /G; similarly, G has a self-similar right
action on H\X. We can then consider the self-similar product groupoids (X' /G) >t H
and G 1 (H\X), as constructed in Definition 2.16. Our main result is that these two
self-similar product groupoids are equivalent via their actions on X in the sense of [22,
Definition 2.1] as summed up in the following theorem; this generalizes [17, Lemma 3.2].

Theorem 3.10 (cf. [17, Lemma 3.2]). Let H,G, X be groupoids, and suppose that X is a
(H, G)-self-similar para-equivalence in the sense of Definition 3.6, that is,

e Sy, Sg, and Sy are open maps,

o H has a self-similar left action on X that is free and proper (Definition 2.2),

e G has a self-similar right action on X that is free and proper (Definition 2.32), and
o the two actions are in tune (Definition 3.5).

Then there is a natural way to turn X into a groupoid equivalence from (X /G) <1 H to

G (H\X).

For the description of the equivalence structure on X, see Proposition 3.14. Examples
of applications of Theorem 3.10 can be found in Subsection 3.2.
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Example 3.11. Theorem 3.10 recovers [17, Lemma 3.2]: when H and G are locally com-
pact Hausdorff groups and their free and proper actions on a groupoid X" are actions by
automorphisms, then we may let X' act trivially on both H and G, i.e., h<dz = h and
x»s = s. This makes X a (H, G)-self-similar para-equivalence, and the equivalence struc-
ture alluded to in Theorem 3.10 makes X a groupoid equivalence between (X/G) x H
and G x (H\X).

Proposition 3.12. Suppose X is a (H, G)-self-similar para-equivalence. Then H has a self-
stmilar left action on X /G: the momentum map is given by p(x 4 G) = px(x), and the
actions are defined by

HA(X/G): H o, (X/G) > (h,z4G) = h® (x«4G) = (h>z)4GecX/G
H~u (X/G): H*,(X/G)> (h,x4G) = hQ@ (x4G)=hazcH

Likewise, G has a self-similar right action on H\X: the momentum map is given by
G(H>z)=o0x(x), and the actions are defined by

(H\X) A~ G: (H\X) %, G2 (Hpx,5) = (Hbz) @s=HD (v 4s) € H\X
(H\X)G: (H\X) %, G (H>z,s) =~ (Hbx)®s=z»seEG

Note that, even though > and <« are free and proper, the same is not necessarily true
for ® or @. This fact prevents us from turning an iterated quotient such as H\(X'/G)
or (H\X)/G into a topological groupoid, if we were so inclined. (Luckily, we aren’t.)

Proof. The momentum map is well-defined by Condition (C0) and it is surjective because
px is surjective. It remains to check that p is continuous. Since r¢g is open, we know that
the quotient map X — X' /G is open by [38, Proposition 2.12]. In particular, if {x; 4G}icr
is a net converging to z 4G in X' /G, then Proposition A.1 says that we can find a subnet
{xf(;) 4G}jcs which allows a convergent lift in X, i.e., there exist y; € x ;) €4 G for all
j with y; — y for some y € x 4 G. Continuity of px then implies

Pz 4G) = px(yj) = px(y) = p(z 4G).

Using Lemma A.2, we conclude that p is continuous.
We next verify that @) is well-defined. If x 4 G = y € G, there exists a unique s € G
such that © = y €4 s. Now by the commuting Condition (C1),

h>xz=hp>(y4s)=(h>y) «s.

Therefore, (h>2x) 4G = (h>y) 4 G. Similarly, to show that &) is well-defined, let x,y, s
be as above, and let h € H be such that sy (h) = px(x). By Condition (C3), we have

hdz=h<(y«s)=h<y.
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To see that this H-action on X /G is self-similar, we observe that the H-action on X
passes through the quotient and (z 4 G)(y 4 G) = (zy) 4 G whenever rx(y) = sx(x).
Therefore, the Conditions (L2) through (L6) from the self-similar H-action on X all pass
through to the H-action on X'/G, proving that this H-action on X/G is also self-similar.

Lastly, we will check that ® is continuous. So assume we are given h; € H such that
s#(h;) = px(x;) and h; — h. By continuity of > and <, we have hy¢;) >y; — h>yin X
and hy(;)4y; — h<y in H. Continuity of the quotient map X — &'/G then implies that

hi) © (Tp) 4G) = (hsi) > yj) 4G = (hby) 4G=h® (v 4G),

and likewise we have

hf(j) @ (xf(j) 49) = hf(j) <y; — h<ay= h@ ($<g)

Lemma A.2 again implies that ¢ is continuous.
The claims for @ and ® follow mutatis mutandis. O

Following Definitions 2.16 and 2.34, we obtain two groupoids, (X /G) > H and G >
(H\X). By Remark 2.19, the unit space of the self-similar product groupoid (X /G) <1 H
is homeomorphic to the unit space of X'/G. In other words, we have:

(X/G) b H) P = (X19)/G = {u 4G :ue XV}
(G > (H\X))(O) ~ H\(X(O)) ={Hp>u:ue X(O)}.

The following lemma computes the range and source maps explicitly for these two
self-similar product groupoids. It follows immediately from Remark 2.19.

Lemma 3.13. Consider (§,h) € (X/G) <t H and (t,n) € G < (H\X), and let © € £ and
y € n be arbitrary. We have

(1) r(§,h) = rx/g(§) = rx(z) 4G
(2) (& h) =h" @ sx/g() = (W' >sx(x) 4G
(3) r(t;n) = rax(n )@t =M (rx(y) «t7)
(4) s(t,n) = sp\x(n) = HP> sx(y)

We now define left and right actions of these groupoids on X.

Proposition 3.14. Let X be a (H,G)-self-similar para-equivalence. Define v: X —
[(X/G) b H]© and s: X — [G < (H\X)]© by

t(z) =rx(z) 4G and s(x)=HD>sx(z).
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These are well-defined, surjective, continuous, open maps. Using them as momentum
maps, we can define a left (X /G) <t H- and a right G > (H\X)-action via:

(& h),y) — (&h) -y =x(h>y), where x € € is such that (x,h>1y) € X@;
(y,(t,n) —y-(t,n) = (y 4t)z, where z € 1 is such that (y 4t,z) € X2,

Here, x(h>y) and (y 49)z denote composition in the groupoid X. These actions are free
and proper, and they commute.

Proof. We will do everything for the left-hand side; the claims for the right-hand side
will follow mutatis mutandis.

First, notice that v is clearly continuous and surjective since ry is continuous and
surjective. Furthermore, v is open as a concatenation of open maps: ry is open by as-
sumption, and the quotient map X — X /G is open by [38, Proposition 2.12] since rg is
open by assumption.

Next, we verify that the left (X /G) <t H-action is well-defined. Given a pair ((§,h),y)
with t(y) = s(&, h), it follows from the definition of ¢, from Lemma 3.13, and from (1.10)
that rx(h > y) 4G = sx/g(€), where sy,g: X/G — (X)/G is as in Equation (3.1).
Therefore, there exists € £ such that sy (x) = rx(h > y). Since the action on X is
assumed to be free, we may invoke a «-version of Lemma 2.15 to conclude that such x
must be unique. Therefore, the left action is well-defined.

We now verify that the left action is free. Pick any y € X and (§,h) € (X/G) < H
such that (£,h) -y = y, and let z € £ satisfy rx(h > y) = sx(x). By the definition of
the left (X/G) <1 H-action on X, our assumption (¢, h) -y = y implies z(h >y) = y. In
particular,

sx(y) = sx(x(h>y)) =sx(h>y) =h>sx(y)

Since the H-action on X is free, we have h € H(?) and thus y = zy. This only happens
when = = rx(y) and thus (£, h) = (rx(y) 4G, h) is a unit in (X/G) > H.

To see that the left action is continuous, assume that we have nets {(&;, h;)}ier in
(X/G) <t H and {y;}icr in X which converge to (£, h) and y, respectively, and which
satisfy

5(&i, hi) = v(ys), e, sx/g(&) =rx(hi>y;) <G.
If we let x; € & and « € £ be the unique elements such that
u; =sx(z;) =rx(hi>y;) and u:=sx(z)=rx(h>y),

then by Lemma A.2, it suffices to find a submnet of {z;(h; > v;)}:csr that converges to
x(h>y). As (hiyy;) — (h,y), we only need to show that a subnet of {x;};c; converges
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to x; furthermore, it gives us that w; — w. Since § — £ and since ¢: X — X/G is
open, Proposition A.1 then implies that there exists a subnet {{;};e.s of {& }icr and lifts
z; € & such that z; — z. As x; € & also, there exist ¢; € G such that z; = z; «¢;. In
particular, by continuity of sy and by (R10), we have u; €t; = sx(z) — sx(z) = u.
Since u; — u, we therefore have that

(uj < tiauj) - (uvu)'

As the right action of G on X is free and proper, it now follows from [38, Corollary
2.26] that t; — ox(u) = ox(x) by definition of ox. Thus, 2; = z; € t; ' converges to
r4oy(r)"t =z 4ox(z) =z by (R2).

To show that the left action is proper, suppose y; — y and (&, h;) - y; — z in X
according to [38, Proposition 2.17], it suffices to show that {(&;, h;) }icr has a convergent
subnet. As before, let z; € £ be the unique element such that u; == sx(z;) = ra(h;>y;),
so that (&, hq) - yi = zi(hy > y;) — 2.

We have sx(y;) — sx(y) and

(hi Qyi) > sx(yi) = sx(hi > yi) = sx((&ir ha) - ys) — sx(2).

Since b is proper, this implies that (a subnet of) {h; <y;};cr converges in H; let g be its
limit. Note that

hi > rx(yi) = hi > (yay; ) = (hi > i) [(hi Qi) > w3 by (L4).

If we multiply by (h; > v;)~! on the left, we therefore get

(h; > yi)_l [hi > Tx(yi)] =(h; <dy) >y = g>y. (3.3)

Since H leaves X(©) invariant (Lemma 2.14), we have
(hi > i) R > ra(yi)] = (hi > i)™,

and so it follows from (3.3) that h; > y; — (g > y)~!. Again, since y; — y, properness of
> now implies that (a subnet of) h; converges in #; let h be its limit. Thus

XTi = [l‘l(hl > yz)] (hl > yi)_l — Z(h > y)_l.
We have shown that (a subnet of) {(z;, h;)}ier converges, namely to (z(h>y)~*, k). We
conclude that (a subnet of) {(&;, h;)}ier converges as well. This concludes our proof of
properness.

We now want to verify that these two actions commute. Pick (§,h) € (X/G) < H,
y € X, and (t,n) € G > (H\X) with matching range, source, and momentum maps,
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respectively. Let 2 be the unique element in ¢ such that sy (z) = rx(h > y). We want to
argue that we can choose a particular representative of . We compute

s(z(h>y)) =HD sx(x(h>y)) (def’n of s)
=Hbsxy(h>y)
—Hp[(hay)psal)]  (by (L10))
=Hb>sx(y) =r(t,n) (def'n of G <1 (H\X)).

This shows that (¢,7) can act on the right of x(h > y). Our previous explanation now
implies that there exists a unique representative z € n which has range equal to sx ([z(hD>
y)] 4 t). This choice of  and z makes the following computation particularly easy:

[(&h)-y] - (tn) = [z(h>y)]- (t,n) = [(z(h>y)) «t]z
=z <4 ((h>y)»t)]((h>y) «t)z (by (R4))
=[z<(y»t)](h>(y«at))z (by (C3) and (C1)).

On the other hand, let 2’ € 5 satisfy rx(2') = sx(y «t), and let 2’ € £ be the unique
element such that sy (z') = rx(h > ((y «t)z’)). Then

(57 h) : [y . (t, 77)] = (57 h) ’ [(y < t)Z/]

(choice of z')
=a'[h > ((y 4t)2")] (choice of ")
(
(

=a/[h>y«t][(h < (y «t)) > 2] by (L4))
=2'[h>y«t][(h<ay) > 7] by (C3)).

Thus, to prove that [(£,h) - y] - (t,n) = (£, h) - [y - (t,n)], it suffices to show that
r4(y»t)=2" and z=(hay)>2

For the right equation, we compute the range of the right-hand side as

rx((h<y)>2') = (h<ay)>ra(2) (by (L10))
= (h<y)>sx(y «t) (choice of 2')
= (h<y) > [sx(y) <] (by (R10))
=sx(h>y) <t (by (L10)).
On the other hand,
rx(z) = sx([z(h>y)] «t) (choice of z)
=sxy(z(h>y)) «t (by (L10))

=sx(h>y)«t.
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Both combined yield

rx((h>y<t)>2') =rx(z).

Since H>z=HD> 2z = Hb> ((h<y) > 2') and since the actions are free, it follows from
Lemma 2.15 that z = (h <4 y) > 2’. A similar argument shows that @’ = = <« (y » t). We
proved that the left (X' /G) >t H- and the right G < (H\X)-actions on X commute. O

We now prove the first main result (Theorem 3.10) which states that X is a (X/G)
H—G 1 (H\X)-equivalence.

Proof of Theorem 3.10. According to Proposition 3.14, we have commuting free and
proper left (X/G) < H- and right G 1 (H\X)-actions on X. It remains to show that t
induces a homeomorphism & between X'/(G > (H\X)) and ((X/G) < H)(©); a similar
proof will then show that s induces an analogous homeomorphism.

Fix y € X and consider any (t,n) € G b (H\X) with s(y) = r(¢,n). Let z €  be the
unique element such that ry(z) = sx (y<«t), so that by definition of the right-G > (H\X)-
action, y - (s,1) = (y «t)z. Consider its range in X:

rx(y-(t,n) =rx((y 4t)z) = rx(y «t)
=rx(y) «(y»t) €rx(y) «G.

Therefore, if we write 7 for the equivalence class of y in X/(G > (H\X)), then ¥(y) =
rx(y) €4 G is well-defined. Surjectivity, continuity, and openness of T is trivial, since
t is surjective, continuous, and open. To see that T is injective, take any y,73’ with
rx(y) 4G = rx(y’) 4G; we need to find ¢t € G and n € H\X such that y - (s,n) = y/.
By assumption, there exists s € G such that ry(y’) = rx(y) 4 s. Set t = y~! » s Then
s =y » t and thus by (R10),

rx(y') =rx(y) «(y»t) =rx(y «t).

Since y’ and y <t have the same range in X, we may let z = (y «t)" 1y’ € X, so that
Yy = (yat)r,ie,y =y - (tL,H>z). O

Remark 3.15. Let us briefly recap which topological assumption in Theorem 3.10 was
needed for which part of the proof. We required the source map of H to be open in order
for the quotient map ¢: X — H\H to be open which, in turn, we used to show that the
momentum map & of the G-action on H\X is continuous (see proof of Proposition 3.12).
Freeness of the H-action on X allowed us to turn H\X into a groupoid (Lemma 3.2),
and its properness plus openness of ¢ was needed to make H\X a locally compact Haus-
dorff groupoid (Proposition 3.3). Lastly, the source map of X was required to be open
in order to prove that the momentum map s of the right G > (H\X)-action on X
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(Proposition 3.14) is open and can therefore induce a homeomorphism of the quotient
by the right (X/G) < H-action onto the unit space of G 1 (H\X).

Corollary 3.16 (cf. [38, Proposition 2.47]). Suppose H and X are groupoids and that H
has a self-similar left action on X that is free and proper. If sy and sy are open maps,
then the groupoids X < H and H\X are equivalent.

Proof. We have seen in Example 3.8 that X" is a (H, {e})-self-similar para-equivalence
(modulo switching the roles of H and G). Theorem 3.10 thus implies that (X/{e}) >x H
and {e} > (H\X) are equivalent groupoids. By Examples 2.21 and 3.4, we have {e}
(H\X) 2 H\X and (X /{e}) > H = X 1 H, respectively. The claim now follows. O

3.2. Applications of Theorem 3.10

Example 3.17 (continuation of Examples 2.8 and 2.13). Suppose again that a locally
compact Hausdorff group K = G <1 H acts on the left on a locally compact Hausdorff
space X, denoted by *. We let X = G X X be the transformation groupoid, and we define
the self-similar left action > and < of H on X as in (2.2). We assume that x is free and
proper, so that > and < are free and proper by our computations in Example 2.13. Thus,
by Corollary 3.16, we get that X’ >t H is equivalent to H\X. (Here, the assumption that
the source maps are open is trivially satisfied: the source map of H is constant and the
source map of X is the identity map.)
Note that the map

6: (Gx X)) H = (G H)x X, ((t,x),h) = ((t,h),h ™ x z),

is a groupoid isomorphism X <1 H = K x X. Indeed, using the definition of xtin X > H,
we compute the product of two elements of the domain to be

((t.2),h) ((s,9). k) = ((t,2)[h > (s,9)], [h < (s,9)]k) = ((t,2)(h- 5, hls *+y), hlsk).

Of the tuple on the far right-hand side, the first component is a product in X; it is
defined if and only if the source of (¢, ) equals the range of (h-s, h|s*y). In other words,
we must have x = (h-s) x [h|sxy] = [(h-s)(h|s)] *y = [hs]*y, in which case their product
is (t[h - s, h|s * y). Therefore, the composition in X 1 H can be described succinctly as
follows:

((tv [hs] * y),h) ((Say)vk) = ((t[h : S]a h|s * y)’h‘sk)'

Applying ¢, we end up with

O((t s h) (5,0, %) ) = ((tlh-s], bl [loK) <[] xad) = (¢lh-s], blL), e,
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On the other hand, the product of ¢((¢, h), x) with ¢((s, k),y) in the codomain K x X is
defined if and only if the source h=!xx of ((t,h), h~12) equals the range (s, k) * (k=1 *y)
of ((s,k), k=1 *y). In other words, we get the same necessary condition for composability
as above, namely that @ = [hs] * y, in which case

¢((t7 [hs] * y)vh) ¢((Svy)7k) = ((t’h)(‘g’k)’ ko y)

In K, we have (t,h)(s, k) = (t[h - 5], h|sk), which shows that indeed

o((t,2),h) ((5,9), k) = ¢((t,2),h) 6((s,9), k).
The setup in Example 3.17 arises abundantly in group dynamics.

Example 3.18 (First special case of Example 3.17). In the above example, suppose that
G ={e},s0 K = H and X = X is a trivial groupoid (i.e., a space). The action < is now
trivial and the action b is exactly the action % of K on X that we started with. If * is free
and proper, Example 3.17 shows that the transformation groupoid K x X is equivalent
to K\X. Note that the trivial groupoid K\X always admits a Haar system (see, for
example, [38, Example 1.22]). Assuming that the two groupoids are second countable,
K x X therefore also admits a Haar system by [37, Theorem 2.1]. We may now apply
[22, Theorem 2.8], which states that the C*-algebras of equivalent groupoids with Haar
systems are Morita equivalent. In other words, we exhibit the known result that the
crossed product Cp(X) x K is Morita equivalent to Co(K\X).

The following is a concrete example using a finite group K.

Example 3.19 (Second special case of Example 3.17). Consider the symmetric group Sy,
which is a group of order 24, and the elements

a=(1 2 3) and r=(1 2 3 4),f=(1 3).

Let G = (a) and H = (r, f); one can verify that G and H are of order 3 and 8 respectively,
that neither subgroup is normal, and that G = C5 and H = D,.

Since |S4| = |G| - |H| and |G N H| = 1, we must have Sy = G - H, i.e., each element
in Sy is a unique product of the form th for t € G and h € H. In other words, Sy = K
is the internal Zappa—Szép product of G and H, and in particular, we get Zappa—Szép
actions G L H in such a way that any product ht of h € H and ¢ € G in Sy can be
uniquely decomposed as

ht = (h - t)(h|;)

where h -t € G and h|, € H. Tables 1 and 2 contains an overview of these actions.
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Table 1
Action map h -t on Sy.
h ¢ e a a?
e e a a?
r e da®> a
r? e a a?
r® e a2 a
f e a? a
rf e a a?
r2f e a? a
rf e a a?
Table 2
Restriction map h|: on Sy.
h ¢ e a a?
e e e e
r T r2f
r? r? rf o f
r3 r3 r r2f
f f f f
rf rf r3f r?
r2f r2f 3 r
rf r2f 2 rf

Now let X =S4 and we let Sy act on X by left translation, so that K x X = 54, x Sy.
One can explicitly write out all the orbits in H\(G x X), and verify that the nine
elements in G x G C G x X are in different H-orbits. Since |H\(G x X)| = 9, we
have H\(G x X) = G x G. By Example 3.17, we conclude that the groupoids Sy ;X Sa
and G X G are equivalent. By the Stone-von Neumann Theorem, their groupoid C*-
algebras are given by K(¢£2(S4)) = Moy (C) and K(¢2(G)) = M3(C). Consequently, these
C*-algebras are Morita equivalent.

Example 3.20 (continuation of Example 2.2/). Suppose again that ¢: G — H is a con-
tinuous homomorphism from a groupoid to a group. In Example 2.24, we described a
self-similar left action of H on the skew-product groupoid G(c). This action is free and
proper. Note that sg is open if and only if sg () is open, in which case it follows from
Corollary 3.16 that G(c) < H is equivalent to H\G(c) = G.

3.3. Haar systems on quotients

To construct a right Haar systems on X' /G out of a right Haar system on X', we again
require «-invariance.

Lemma 3.21 (¢f. [17, Prop. A.10]). Suppose G and X are locally compact Hausdorff
groupoids, that G has a free and proper self-similar right action on X, and that X has
a <-invariant right Haar system {\,}y ey (Definition 2.55). Then there exists a right
Haar system {Ky«g tuag on X /G given for any fe C.(X/G) by
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/ Flr 4G) drpec(z 4G) = / Fle 4G) dr(@).
X

Proof. The argument is verbatim as in the proof of [17, Prop. A.10], only that the range
map of X has to be replaced by its source map. To be precise, we will invoke [29, Lemma
1.3] for (X,Y,G, ) = (X, X G sx). Since we assumed « to be free and proper, X is a
principal G-space. Since X is assumed to have a Haar system, its continuous source map
sx is open [38, Prop. 1.23]. It is furthermore equivariant by (R10), so that we may apply
[29, Lemma 1.3]. The given formula for & is hence a system for the map X /G — X /G,
x 4G — sy (z) 4G, which is the source map of the groupoid X' /G. In other words, & is
a right Haar system for X/G. O

Lemma 3.22. Suppose X, H,G are locally compact Hausdorff groupoids and that X has
a left H-action > and a free and proper right G-action 4. Assume {Ay,}ycx© s a -
invariant right Haar system on X (Definition 2.55), and let {Kyeg tueg be the induced
right Haar system on X /G (Lemma 3.21). If the left Haar system {\“}, cyw on X
defined by \“(E) = A\ (E~Y) is b-invariant (Definition 2.27), then the left Haar system
{K"9} yeg 0n X /G associated to {Kyqg yueg is ®-invariant.

Proof. The computation is straightforward: on the one hand,

KUY M I® [F 4G)) = k"9 (h > E] 4G) (def'n of ®)
= kug([h' > E] 7" 4G) (def'n of £K**9 and of ~* on X/G)
=X\([h P> ETY (defn of Ky«g)
=\“h"'>E) (defn of \*)
= \"(E) (>-invariance of A*).

On the other hand,

W) 4 G) = e (E 46]1) (defn of 5®lu<0)
= Kneu«c (B~ 4G) (defn of ® and of ~* on X'/G)
o (def'n of Kjpguj«g)
= \"(E) (def'n of A">v).

This shows that x“*9(h=' ® [E € G]) = k"®9(E 4G). O

Corollary 3.23. Suppose G, H,X are as in Theorem 3.10. Assume that X has a D>-
invariant left Haar system (Definition 2.27) whose associated right Haar system is
<-invariant. If H and G have Haar systems, then so do (X/G) >t H and G 1 (H\X),
and so their C*-algebras C*((X/G) > H) and C*(G > (H\X)) are Morita equivalent.
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In Corollary 6.8, we will generalize the above result to Fell bundle C*-algebras.

Proof. Since G acts properly and freely on X, it follows from Lemma 3.21 that the right
Haar system on X induces a right Haar system on X' /G. By Lemma 3.22, the associated
left Haar system is ®-invariant. It follows from Proposition 2.28 that (X' /G) <t H has a
Haar system. Since our assumptions are symmetric, we likewise get a Haar system on G <
(H\X). As the two groupoids are equivalent by Theorem 3.10 and have Haar systems,
it follows from [22, Theorem 2.8] that their C*-algebras are Morita equivalent. [J

4. Self-similar actions on Fell bundles

Fell bundles were originally introduced by Fell as “C*-algebraic bundles” [10]; they
are a powerful tool to study C*-algebras graded by groups or groupoids, and many C*-
algebras can be realized as Fell bundle C*-algebras. One may refer to [4,8,19,40] for a
more detailed discussion on the subject.

4.1. Self-similar left actions on Fell bundles

We will now extend the notion of self-similar actions to Fell bundles. Similar to the
construction of a Zappa—Szép product Fell bundle in [6], this will allow us to construct
a self-similar product Fell bundle.

Definition 4.1. Let & = (¢q: B — X) be a Fell bundle. Suppose H has a left self-similar
action on X with momentum map px: X — H(®. Define pz = px 0 ¢z and let

H %, B ={(h,b) € HxRB:sy(h)=paza)}

be equipped with the subspace topology of H x . A left self-similar H-action on A is
a continuous map

e Hx B — B
satisfying the following conditions:

(B1) For any (h,x) € H , X, the map h> _ maps %, into By, and is linear.
(B2) For any (k,h) € H®), we have k> (b _) = (kh) > _.
(B3) For any u € H(®), the map u ¥ _ is the identity.
(B4) For any (b,c) € B such that (h,bc) € H x, 2, we have
h=(bc) = (h>b)[(h<qaz(b)) > ].
(B5) For any (h,b) € H *,%, we have

(h>b)* = [h < qz(b)] - b
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Writing h4b = h <qz(b) € H for (h,b) € H *, 6% highlights the similarities between
the above definition and Definition 2.2; compare (L4) and (L9) on the left to (B4) and
(B5) on the right:

ho (zy) = (h>x)[(h<4z) > Y] Versus h(be) = (h>Db)[(h<b) > ],
(h>z)t=(haz)>a?! versus (hb)" =[h<b]+b".

Remark 4.2. When X and ‘H form a matched pair of groupoids, Definition 4.1 coincides
with the notion of a (X, H)-compatible H-action [6, Definition 3.1].

In general, we saw in Proposition 2.23 that the self-similar product groupoid X > H
is isomorphic to the Zappa—Szép product groupoid X 1 H. The next proposition proves
that a similar result holds in the realm of Fell bundles.

Proposition 4.3. Suppose H has a self-similar left action > on a Fell bundle # =
(qz: B — X) and write rg = rx 0 qz. Let H = {(u,h) € X© x H : px(u) = ro(h)}
be the transformation groupoid of the H-action on X with source map given by
sg(u,h) =h™' >u. Let

B: ﬁs*rﬂ — B be defined by  B((u,h),b) =h+b.
Then B is a (X, H)-compatible H-action on B in the sense of [6, Definition 3.1].

Proof. To see that S is well-defined, take (u,h) € H and b € B, with sg(u,h) =rx(z).
Since sz (u,h) = h™" > u, we have

pr(@) = pQra(@) = o (h ' > w) = rpy(h1) = sp(h),

Therefore, (h,b) € H *, % and (3 is well-defined. It is routine to check that j is indeed
an (X, H)-compatible H-action on . O

One immediate consequence is that, fiberwise, > shares all the nice properties of an
(X, H)-compatible action. For example, the following is a consequence of [6, Corollary

3.3]:

Corollary 4.4. For each h € H and v € X with sy (h) = px(z), the map h¥» _: B, —
B 18 isometric.

4.2. The self-similar product Fell bundle

The Zappa—Szép product Fell bundle was first defined in [6, Theorem 3.8] under the
assumption that
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(1) the underlying groupoids X and H form a matched pair and
(2) the underlying groupoids are étale.

Inspired by the construction of semi-crossed product Fell bundles in [16], we now define
a similar construction with these two assumptions removed. To be precise, we aim to
define the product Fell bundle from a self-similar H-action on a Fell bundle %, where
the underlying groupoids are locally compact Hausdorff.

Definition 4.5. Suppose H has a self-similar left action > on a Fell bundle # = (¢»: B —
X) (Definition 4.1). Define the (left) self-similar product Fell bundle 98 W H to have the
total space

BMH=B x  H={(bh) € BxH:(qa(b),h) € X xxH}

PXOSXOIB TH

with bundle projection g3 (b, h) = (¢#(b), h), mapping B M H to X < H. The fiber
(B M)y =1{(b,h) € BHH: qu(b) =}

is equipped with the norm ||(b, h)|| = ||b]|-
As always, let

(BHH)?D = (BH) * (B HH),

SBHH  TB-H

and define multiplication and involution by
(a,h)(b, k) = (a[h 0], [h b]k) and (b,h)* = (R~ 1+ b*, Rt <b%).

We note that the proof that Z M H is a Fell bundle over X < H follows mutatis
mutandis as in the proof in [6, Section 3].

For the first example, we will need a bit of notation.

Notation 4.6. Let &7 = (qur: A — K(©)) be an upper semi-continuous C*-bundle over
the unit space K of a groupoid K, and let (o7, K, a) be a groupoid dynamical system
(see [24, Definition 4.1] or [11, Chapter 3] for more details). We let Z(#, K, «) denote
the Fell bundle associated to this dynamical system: as a set, it is given by &7 * K with
bundle projection gg(a, k) = k. The involution is given by (a,k)* = (ag-1(a)* k1),
and the product of two elements (a;, k;) € B(o/, K, o) with (k;, ke) € K is given by

(0,17 ]{31> . (a27 /{32) = (alakl (ag), klkg) .

The C*-algebra of this Fell bundle is exactly the groupoid crossed product o7 x, K [23,
Example 2.8].
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Example 4.7 (generalization of [6, Example 3.10]). Suppose H has a self-similar left
action on a groupoid X, and suppose that (&7, X > H, «) is a groupoid dynamical
system. Let a|x be the restriction of o to the subgroupoid X, i.e., (a|x)z = Q(z px(2))-
Then H has a self-similar left action » on B = B(«, X, alx) defined for h € H and
(a,z) € o x X with sy (h) = pg(a,z) = px(x) by

h > (a, x) = (a(r(h)ﬁ) (a),h > ;L‘) .
One can check that
B, X H, o) = B(A, X, a|lx) HH.
Remark 4.8. If H has a self-similar left action > on a Fell bundle 4, then
(B H) @) - (BHRH) g0 = (Ba x {h}) - (By x {k}) € Boinoy) x {(h<y)k}.

Moreover, our assumptions on b imply that h > %, = (%’hky, rather than merely a
containment of the left-hand side in the right-hand side. Thus, if % is saturated (meaning
that the closed linear span of the #-product of any %,, with any compatible %, equals

the entire %, ., ), then by the above argument, we automatically have that % M H is
saturated also.

Similar to the case of a self-similar product groupoid (see Lemma 2.22), we can lift
the action > to a H-action 53, where (X,ﬁ) is a matched pair of groupoids. When the
groupoids X and H are étale, this construction is closely related to the construction in
[6] in the following sense.

Proposition 4.9. If the groupoids X and H are étale, then so is the groupoid H from
Proposition 4.3 and the self-similar product Fell bundle 9 W H is isomorphic to the
Zappa—Szép product Fell bundle % <ig H constructed in [0].

Remark 4.10. As always, a similar construction can be done on the other side: if %A

carries a right self-similar G-action 4, we can let G M % be given as the bundle with the
total space

GHB=G % B={(s,b) € G xB:(s,q5(b) € Gra X}
and the analogous Fell bundle structure.
5. The orbit Fell bundle from self-similar actions

The following is analogous to the construction in [17, Corollary A.12].
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Definition 5.1. If H is a groupoid and a topological space B is a left H-space, where the
action is denoted by >, we may let H\B = {H > b : b € B} be the quotient space which
we equip with the quotient topology, i.e., the largest topology making n: B — H\B
continuous.

Remark 5.2. We will frequently assume that an acting groupoid H has open source map,
because then [38, Prop. 2.12] implies that the quotient map 7: B — H\B is open.

When H has a self-similar left action on a Fell bundle = (¢z: B — X) (Defini-
tion 4.1), then B is a left H-space. In this case, since h > _ maps B, to By, by (Bl),
the map

@oz: H\B — H\X  given by H b H D> qz(b) (5.1)

is well-defined, and we let H\Z = (q\5: H\B — H\X). The fiber over { € H\X of
the bundle is therefore given by

(H\B)¢ = {H¥»b:be P such that g»(b) € £}.

Lemma 5.3. Suppose the self-similar left action > of H on the groupoid X is free. Let
& € H\X. For 2,0 in the fiber (H\%)¢ and for z € C, we may let

IZ] = jb] and 2Z=HW™(zb) whereb€E, and

E+O0=Hr([A*b+c) wherebeE,ceO,he M such that qz(c) = quz(h>b).
With this structure, (H\%#)¢ is a complex Banach space.

Proof. First note that ||| is well-defined: Since h ¥ _ is isometric on each fiber, H>a =
H = b implies ||a|| = ||b]|. Likewise, scalar multiplication is well-defined since each h > _
is C-linear by assumption.

To see that addition is well-defined, we first check that h exists. If we pick any b €
E, ¢ € O, then by definition of the fiber (H\%)¢, we have qz(b), gz(c) € £. In particular,
there exists h € H such that qg(c) = h > qz(b) = qz(h > b). This shows that ¢ and
h b are in the same fiber of %, so that [h I b] + ¢ makes sense. It remains to check
that = 4+ © does not depend on the choices, so assume that we are given ¥, ¢, h’ with
qz(c) = qa(M =1'). As b,b’ € Z and ¢, € O, there exist k,l € H such that b’ = kb
and ¢’ = [ > c¢. In particular,

B qea) =qz(c)=qz(l>c)=1>qz(c) =1> [h> qz(b)]
= (1h) > qu(k™ "+ b') = (Ihk™") > qa(b).

Since the H-action on X is free, we conclude that ' = lhk~!, and thus
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Wb+ =(1hk ")+ (k=b)+1=c=(lh)b+1kc=1F ([h+b] +c),

which shows that [A' & 0] 4+ ¢’ and [h & b] + ¢ represent the same class in (H\%)e.

It is now easy to check that we have a normed vector space. To see that (H\%)¢ is
complete, let (Z,,),, be a Cauchy sequence. If we pick arbitrary b,, € =, for each n, then
we can find h, € H such that ¢, = h,, > b, is in the same fiber as the representative by
of &; say, in %B,. We now have a sequence (¢,), in %,. Note that, by definition of the

—_
—

linear structure on (H\%)¢, we have Z,, — Z,,, = H > (¢;, — ), so that

1En — Emll = llcn — CWH%’I .
Thus, (¢, )y is a Cauchy sequence in the Banach space %, and hence converges to some
element c. As

1Zn —HPcl| = len — CH@m )
we conclude that =, — H > ¢ in norm in (H\%A).. O

Corollary 5.4. Suppose the self-similar left action > of H on the groupoid X is free and
H has open source map. Then H\PB = (qp\2: H\B — H\X) is a USC Banach bundle.

Proof. We will check that we can apply [7, Proposition 6.13] to the commutative diagram

B —"— H\B

q”f?l lqa\k@

X — H\X

We have already noted in Lemma 5.3 that the fibers of H\% are complex Banach spaces.
By definition of the topologies of the spaces on the right-hand side, the vertical maps
are quotient maps. Moreover, 7 is open by Remark 5.2 and X — H\X is open by [38,
Proposition 2.12] since sz is open. Therefore, Assumption (i) of [7, Proposition 6.13]
holds. By definition of the Banach space structure on the fibers of H\ % (see Lemma 5.3),
Assumption (ii) holds.

Lastly, let = € H\B and x € g\ »(Z) be given, and take any b € = C B. Since
qz(b) € g\ %(E), there exists h € H such that 2 = h > gz(b) = qz(h > b). This means
that h>=b € B, satisfies m(h>b) = =, since wo (h _) = m where both are defined. This
proves the final Assumption (iii) of [7, Proposition 6.13]. O

As before, we will write sy z = s\ x © g\ and ry\z = T\ x © Gx\B-

Proposition 5.5. Suppose the self-similar left action > of H on the groupoid X is free
and proper and H has open source map. For two elements 2,0 of H\P with sy (E) =

r\2(0), define
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EO =H b (be) whereb e Z,c € O are such that (b,c) € B,

Further, let (H»b)* = H & b*. With this structure, H\Z is a Fell bundle, which we call
the left quotient bundle of & by H.

Proof. Since H acts freely and properly on X, the quotient H\X is a groupoid by
Proposition 3.3. We first verify that b € = and ¢ € © exist, so start with two arbitrary
elements b € = and ¢’ € ©. By construction of sy, 5 and ry\ 5, we have s 2(b) € s3\ %(Z)
and rz(c’) € rp\ 2(©). By assumption, the equivalence classes are the same element in
H\X, so there exists h € H such that sz(b) = h > rg(c’). We have

o ra(c) = here(ga(@) "2 re(h b as(c)) 2 ralgsh - ).

Thus, for the element ¢ :== h > ¢’ of ©, we have shown that (b, c) € (). Next, we must
show that the multiplication does not depend on the choice of (b,c) € B, so assume
that (b1,c1) is another composable pair of Z for which b; € = and ¢; € ©. Then there
exist k,l € H such that by = k> b and ¢; = [ > c¢. A computation similar to that in the
proof of Lemma 3.2 shows that

[k 40 > s55(b) = 5(b1) = rz(c1) =1>rg(c) =1>sz(b).
Since the H-action on X is free, we conclude [ = k <b, so that (B4) implies
bier = [k=b][l>c] = [k b][(k<b) -] = k> b

In other words, byc; € H P be, as claimed.

Now, if by = kb, then b} = (k> b)* = [k<b] - b*, which shows that H b} = H - b*,
i.e., involution is well-defined on H\%.

As noted in Corollary 5.4, H\Z is a USC Banach bundle. Moreover, the algebraic
and norm-related properties for Fell bundles (that is, (F1)—(F10) in [7, Definition 2.9])
are all swiftly verified and follow from the respective properties of . For example, to
show (F10), take an arbitrary E € H\Z and any b € Z; let u := sg(b). Since A is a Fell
bundle, we have b* - b = c¢*c for some ¢ € %,. The definition of the multiplication and
involution on H\Z thus implies that

*

(1]
(1]

=HF 0" -b)=HF(cc)=(HFc) (HFc).

Since H > c € (H\%)#pw and H > u = H > sz(b) = s\ »(Z), this proves that =*=Z is a
positive element of the C*-algebra (H\%)xpw, as needed for (F10). O

Remark 5.6. If 2 is saturated, then so is H\ 4. Indeed, take (&,&) € (H\X)® and
let © € (H\PB)e e, be arbitrary. By definition of the fiber, there exists b € £ with
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qz(b) € &€ and H b = O. Since & and & are composable, we can find z; € &
such that (z1,72) € X?). Thus, there exists h € H such that (L4) implies qz(b) =
h > (z122) = y1y2, where y1 :== h > x1 and yo = (h < 1) > x2. Since A is saturated, we
can approximate b by linear combinations of products of elements in %,, and in %,,.
Since y; € H > x; = §;, the images of these elements under 7 are in (H\%)¢, and, by
definition of the linear and topological structure on H\ %, they approximate H>b = O,
as claimed.

Example 5.7. Suppose that the self-similar left action > of H on the groupoid X is
free and proper, that H has open source map, and that (&, H\X,«a) is a groupoid
dynamical system. If we define &, = axp, for x € X, then (&7, X, &) is a groupoid
dynamical system. Moreover, H has a self-similar left action on B(<,X,&) given by
ht-(a,z) = (a,h>x) and the quotient bundle H\B(, X, &) is exactly B(/, H\X, a).

Remark 5.8. Analogously to Proposition 5.5, we can define the right quotient bundle
A/G from the right self-similar action 4 of G on . We denote an element of Z/G by
b4 G andlet qz/g(b4G) = qz(b) «G.

We next require a Fell bundle analogue of in tune actions.

Assumption 5.9. We assume that

(1) G and H are locally compact Hausdorff groupoids;

(2) Xisa (H,G)-self-similar para-equivalence with self-similar actions > of H and € of G
respectively (Definition 3.6); in particular, the actions are in tune, free, and proper,
and the source maps of all three groupoids are open;

(3) #=(qu: B— X) is a saturated Fell bundle,

(4) H and G act on the left and right of Z by self-similar actions - and , respectively;
and

(5) for any h € H, b € B, t € G for which (h > x) «t is well-defined, we have:

(h=b)4t="hHr(bt). (BC1)
Note that, with the notation introduced after Definition 4.1, we automatically also have

(h=b)=t=brt (BC2)
h<(b«t)=h~b (BC3)

as a consequence of Condition (B1) combined with Condition (C2) and (C3).

We first show that the actions = and 4 on 4 pass to the quotients. We remind the
reader of some definitions we made earlier:
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Gz H\B — H\X is defined by @ (M > b) = H > qz(b), and
qz/g: B|G — X /G is defined by q2/6(b4G) = qz(b) 4G.
Moreover, in Proposition 3.12, we defined a left self-similar H-action on X /G with mo-

mentum map p(z4G) = px(z), and a right self-similar G-action on H\X with momentum
map 6(H > z) = ox(z).

Proposition 5.10. We assume all conditions in Assumption 5.9. With

@ H\Z,, *,G— H\B, EQ@s=Hr[b4s] wherebeE,

Goq T

@ is a right self-similar G-action on H\A, and with
O H, 0, BIG— B, h®Z:=[h>b 4G wherebe€ =,
® is a left self-similar H-action on B/G.

Proof. As always, we will focus only on one of the two statements, namely Q).
To see that @ is well-defined, assume ¢ € =, so there exists h € H such that ¢ = hb.
Therefore, by Equation (BC1) and the definition of >,

Hb[cds|=H-[(h+-b)4s| =HE[hb(b4s)| =HF[bs].

It remains to show that @ satisfies all the conditions listed in Definition 4.1. We start
with the algebraic properties. For (B1), take an arbitrary element £ = H > 2 € H\X and
Ee (H\AB)e. If be EN Ay, then

EQs=Hr[bAs] € (H\D)rp(aes) = (H\B)e@s-

This is linear as a map (H\%#)¢ — (H\%)c@s because _s is linear as a map By — Baas
and because of how we defined the linear structure on the fibers of the quotient (see
Lemma 5.3).

Both (B2) and (B3) are trivial. For (B4), let (£,0) € (H\%)?.Ifbc Z and c € ©
with (b, c) € B3, then 20 = H > (bc) by our definition in Proposition 5.5. If 2 = qz(b),
then

[Hrb] @s=HPF(bc4s) (def'n of @)
=HE (b4 (x> s)cs]) (Property (B4) for )
=[H+- (b4 (z»s))] [H+(c4s)] (def'n of H\%; see Prop. 5.5)
— [(H-b)Q@rs)][(HFc)@s]  (def of Q).

Since z » s = (H > x) ® s = g\ 2(E) ® s (see the definition of ® in Proposition 3.12
and that of g3\ in Equation (5.1)) and since = = H>b and © = H b ¢, this proves that
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E0Q@s=EQ@[mm=zE) ®s]) (0 s),

as required.
For (B5), we compute

(E@s)*z(Hl>[b4s])* forbe =
=H+[bH4s]" (involution on H\%; see Prop. 5.5)
=H+[b*4(b+s)] (Property (B5) for «)
=HF)Q@ (bFs) (def’n of @)
=(H»b") @ (30,2(E) ® s) (def’n of ®; see Prop. 3.12)
=Z'Q (¢ 2(E) ® s) (involution on H\%; see Prop. 5.5),

as required.

Lastly, we have to check that @ is continuous, so let {(Z;,s;)}icr be a net in
H\B soa*rg G that converges to (Z,s). Since the quotient map & — H\ A is open by
Remark 5.2, there exists a subnet {Z;};cs of {Z;}icr and lifts b, € Z;, b € = such that
bj — b in . Since 4 is continuous, it follows that b; 4 s; — b 4 s, so that

EiQ@sj=Hrb,4s;] > HF[bAs]|=EQs.
By Lemma A.2, this suffices to conclude that @ is continuous. [
6. The symmetric imprimitivity theorem for self-similar actions

Let us rehash what the conditions in Assumption 5.9 imply. By Proposition 5.5, we
get two quotient Fell bundles: the right quotient %/G over the groupoid X' /G and the
left quotient H\Z over H\X. These are saturated by Remark 5.6, since 2 is assumed to
be saturated. We have seen in Proposition 5.10 that H\Z carries a right self-similar G-
action @, and likewise, /G carries a left self-similar H-action . We can therefore take
two self-similar products, as explained in Definition 4.5 and respectively, Remark 4.10:

o the product (#A/G) W H of #/G with H is a bundle over (X /G) px H and will be
denoted g : & — (X /G) >1 H, while

o the product G w4 (H\A) of H\A with G is a bundle over G x (H\X) and will be
denoted gz : € — G <1 (H\X).

These self-similar product Fell bundles are saturated by Remark 4.8.

We now prove that &/ and € are equivalent via the bundle % in the sense of [23,
Definition 6.1]. Recall that X is a groupoid equivalence between (X /G) <t H and G i
(H\X) by Theorem 3.10 when equipped with the structure defined in Proposition 3.14.
We remind the reader that t: X — [(X'/G) b1 H](®) denotes the momentum map of X' for
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that left action and s: X — [G > (H\X)]© the momentum map for that right-action.
Consequently, we will write t := togg, not to be confused with rg = rxyoqg: B — X,
we likewise let s = 5 0 ¢ .

Theorem 6.1 (cf. [17, Theorem 3.1]). We assume all conditions in Assumption 5.9.
Then B is a Fell bundle equivalence between of = (B/G) N H and € = G M (H\B) in
the following way:

(1) o acts on the left of B: whenever (©,h) € &7 and b € B are such that s (©,h) =
tz(b) in [(X/G) > H]O, we let

(©,h)-b=alh*+b], where a € O is such that sg(a) = rg(h ¥+ D).

(2) € acts on the right of B: whenever b € B and (t,Z) € € are such that sz(b) =
re(t,Z) in [G >a (H\X)]©), we let

b-(t,2) = [b4t]le, where ¢ € E is such that sg(b-4t) =rg(c).
(3) The left of -valued inner product defined on B x R is given by
Aal8) = (la(h b)) <G, R4 ),

where h is the unique element of H such that sg(a) = h > sz(b).
(4) The right €-valued inner product defined on B x B is given by

(a|b), = (a* W t,H™[(a* 41)b]),
where t is the unique element of G such that rz(a) 4t = r4(b).

Example 6.2 (see also Example 3.11). Theorem 6.1 recovers [17, Theorem 3.1]: suppose
G and H are locally compact Hausdorff groups with commuting actions on a Fell bun-
dle Z = (q%: B — X) by Fell bundle automorphisms, where X is a locally compact
Hausdorff groupoid. The induced actions of G and H on X are then by groupoid auto-
morphisms, and so (with X acting trivially on H and G) they are self-similar actions
on X. If the actions are free and proper, then % as described in Theorem 6.1 is a Fell
bundle equivalence between the semi-direct product bundles (#/G) x H and G x (H\ %)
as considered in [17].

We will do the proof in pieces.

Lemma 6.3. The formulas in (1) and (2) of Theorem 6.1 define actions on the USC
Banach bundle & in the sense of [7, Definition 2.10].
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Proof. We will follow similar ideas as in the proof of Proposition 3.14 and we will only
do the proof for the left action; the other one follows mutatis mutandis. We will denote
the source and range map of (X/G) <t H merely by r and s, respectively.

First, let us check that the condition s (0, h) = t4(b) implies that there indeed exists
a € © with sg(a) = rg(h & b), so that a[h & b] makes sense. If ag is any element of O,
then

#(0,h) =5(q(0,h)) = s(qs/5(0),h) (def'n of ¢z in Definition 4.5)
(Qgg (ap) 4 G, h) (def'n of qgg/g; cf. (5.1) on p. 42)
=h"' ® sx/glqz(ao) 4G) (Rmk 2.19 and def’n of s; cf. Definition 2.16)
=h~" ® [s#(a0) <] (
(

= [ > sz(ag)] 4G

def'n of sx,g; cf. Lemma 3.1)
def’n of ®); see Proposition 3.12)

On the other hand, t4(b) = r(b) 4G, and so our assumption s, (0, h) = tg(b) implies
that there exists ¢t € G such that

ra(b) = [h™ > sglag)] €t RN [se(ap) <],

ie, h>rx(qa(b)) = sx(gaz(ap)) «t. Since

o ra(gm®) "2 ra(h > qu() = rr(gm(h - b))

and likewise, sg(ag) 4t = sgz(ag 4t), we may thus let a := ag < ¢, which is the required
element of ag 4G = O.

Note that this chosen representative a € © is unique, since the G-action on X’ is free:
if a < s also satisfies sg(a 4 s) = rg(h - b), then
(R10

1

) szla<s)=sz(a), soseG®.

sg(a) 4s

To see that the left action is continuous, assume that we have a net {(0;, ki, b;) }ier
in & x 9% that converges to (0, h,b). For each i, let a; € ©; be the unique element such
that u; = sg(a;) = re(h; > b;). By Lemma A.2) it suffices to check that a subnet of
a;[h; & b;] converges to a[h - b]. Since - is continuous, we already know that {h; > b; }icr
converges to Ak b; and so in particular u; — u = sg(a) in X and since multiplication
on 4 is continuous, it suffices to show that a subnet of {a;}; converges to a.

Since the quotient map & — £/G is open (cf. Remark 5.2) and since ©; — O,
Proposition A.1 implies that there exists a subnet {©;};c; and lifts ¢; € ©; such that
c; — a in . Since a; € O, also, there exist t; € G such that a; 4¢; = ¢;. In particular,
by continuity of sg, we have

R10 (B1)
uj ty = s(ag) 4ty "= sx(gumlag) 4t;) =) snlgmlag <45)) = sw(c;) — swla) = u,
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so that
(uj «tj,uj) = (u,u) in X x x©,

As the right action of G on X' is proper, it now follows from [38, Corollary 2.26] that
t; converges; since the action is free, (R2) implies that it must converge to ox(u) € G ),
This, in turn, implies that

B3
a; =¢j 4t;1 —a- O’X(u)_l <:> a,

as needed.

To see that (FA1) of [7, Definition 2.10] holds, we must check that gz((a 4 G, h) -
b) = qw(a 4G, h) - qp(b), where - is the left (X/G) > H-action on X as defined in
Proposition 3.14. Let g(a) = x and qz(b) = vy, so that sg(a) = sx(x) equals rg(h>b) =
rx(h>y) and

qz((a 4G, h)-b) =qzp(alh b)) = z[h >yl

On the other hand, q.y(a<4G, h) = (x<4G, h). By Proposition 3.14, since sx(z) = rx (h>y),
we know that (x €4 G, h) can act on the left of y and we get

(@ 4G, h) - qz(b) = (z 4G, h) -y = z[h > y].
This proves (FA1).

Next, we must show that (FA2) of [7, Definition 2.10] holds, i.e., associativity, so for
1 =1,2 pick a; € #A;,,b € & and h; € H with appropriate range and sources such that

(a1 4G, h1)(az 4G, hy) and (az 4G, hy)-b
make sense; we have to show
[(a1 4G, h1)(as 4G, ha)] -b= (a1 4G, h1) - [(az 4G, hs) - b]. (6.1)
In o = (B/G) M, we have

(a1 4G, h1)(a2 4G, ha)

([a1 “4Gl(h1 ® a2 4G]),[h1 Q@ ger(as < g)]hQ) (Definition 4.5)

([ar 4 G][(h1 > a2) 9G], [ Q (z2 € G)]h2) (def’n of ® and g in Prop. 5.10)
([a1(h1 > a2)] 4G, [h1 < a2]hs) (Prop. 5.5 for Z/G; @ in Prop. 3.12).

Therefore, we get
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[(al - g, hl)(ag - Q’, hg)} b= al(hl P ag)([(hl < {L'Q)hg] > b)

On the other hand,

(a1 4G, hy) - [(a2 4G hg) - b] = (a1 4G, hy) - (azlha > b))
—a [hl b (ag[ha > b])}
= ay(hy = az) ([(h1 < 2)ha) W b)  (by (BA) for B),
s0 we have shown Equation (6.1).

For (FA3) of [7, Definition 2.10], recall from Lemma 4.4 that h & _ is isometric and
|(b4G,h)|| =|b||. Therefore,

[(a 4G, h)-bl| = lla(h>D)|| < [lalll[o]l = [|(a 4G, h)|l|b]],
as needed. O

One by one, we will now check that Properties (FE1)—(FE3) of [7, Definition 2.11] are
satisfied.

Lemma 6.4. The left and right actions commute.

Proof. Let (©,h) € &7, b € A, and (t,Z) € ¥ be such that s (0,h) = tg(b) and
52(b) = r(t,E); we have to confirm that [(©,h) - b] - (¢,E) = (0, h) - [b- (t,Z)]. For the
left-hand side, we let a be the (unique) element of © with sg(a) = rg(h & b), so that
(©,h)-b = a[hb]; then let ¢ be the (unique) element in = with sg((a[h+b]) 4t) = re(c),
so that

[(©,h) - b]- (t,2) = [(alh ™ b)) 4 t]c
=la<4([h=0]»=1)] ([h=b] 4t)c (by (B4) for «)
=la<4(brt)] ([h>b<t)c (by (BC2)).
On the other hand, let ¢/ be the (unique) element in ZE with sg(b<4t) = r4(c¢'), so that

b-(t,E) = [b4t]c’; then let a’ be the (unique) element in © with sg(a’) = re(h-([b4t])),
so that

=a (h>[b4t]) [(h<[b4t]) -] (by (B4))
=a (h>-[bt]) [(R<b) ] (by (BC3)).

Since [h-b] 4t = h > [b4t] by (BCI), we see that it suffices to check that
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ad=a4(brt) and (h<b)+d =c.

Note that the second equation is the b-version of the first equation, so by symmetry, it
suffices to check the first equation. We have a 4 (b ™ t) € a 4G = O, so by uniqueness of
a’, we only need to check that sg(a 4 (b »t)) =rg(h > ([b4t]ld)).

Since

qz(a 4 (b ¥+ 1)) = qz(a) «[b 1],

we have
sa(a4(brt) =sx(qz(a) b+t
= sz(a) «[b ¥+ 1] (by (R10))
=rg(h>b) «[b+1] (by choice of a)
= (h>rzb) «bri] (by (L10))
=hp (ra®) «[br1])  (by (C1))
=h>rx(qz(b) «t) (by (R10)).

On the other hand, since qz(b'¢’) = qz(b')qz(c’) (Property (F1) in [7, Definition 2.9]),
we have

as(h+ (b44c)) = hb ga(lb 1)) =

(L4)

h > [gz(b 4 t)qz(c)]

[h> gos(b<1)] ([h Qgub-t)] > q@(c’)),
so that it follows from (L.10) and (B1) for < that
a(h>=(b<4tld)) =rx(h>qz(b<4t)) =h>ra(qzb) <t).

Our earlier computation therefore shows that sg(a « (b & t)) = rg(h > ([b 4 t])), as
needed. This shows that the left and right actions commute. O

Lemma 6.5. The formulas in (3) and (4) of Theorem 6.1 define inner products on the
USC Banach bundle B in the sense of [7, Definition 2.11], (FE2.a)~(FE2.c).

Proof. We will do the proof for the left inner product; the other one follows mutatis
mutandis.

First, we verify that the inner product is well-defined. As sg(a) = s4(b), the definition
of s = s 0 qg implies the existence of h satisfying h > s5(b) = sg(a). As this implies
s1(h) = px(sg(b)), we therefore have

pz(b") = px(rz(b7)) = px(s2(b) = su(h),
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and so h > b* and h~<b* = h < g(b*) make sense. Now gz (h > b*) = h > qz(b*), and so
by (L10), we thus have

ra(h¥b") = hrg() = h>sz(b) = sz(a),

so that a[h - b*] makes sense.
To see that

Aalb) = ([a(h+b")] 4G h<b")
is an element of & = (#/G) M H, we have to verify that

(PG © s2)g © 4)g) ([a(h +0*)] 4 G) = 1y (R < b").

Recall from a <-version of Equation (5.1) that

az/g([a(h=b%)] 4G) = qz(a(h - b*)) € G.

Moreover, sy /g(z 4G) = sx(z) 4G (cf. the definition before Lemma 3.1) and py/g(z <
G) = px(x) by the definition in Proposition 3.12. Thus

(pajg 0 sx/g 0 amyg)([a(h™b")] 4G) = px(sz(alh > b)) = px(sa(h+b")).

On the other hand, we have

ru(h=2b%) = rag(h 2as(v)) = px(sx (b qu(6)) = pa(saa(h 7)),

as required. The inner product is thus well-defined and lands in the right space.

Since multiplication on £, &, and <« are linear, we see that _{(-|-) is linear in the
first and conjugate linear in the second coordinate. To check that it satisfies the other
required properties, let z = ¢ (a) and y == g (b) and h € H be as above.

For (FE2.a), we must check that, when g ((a | b)) € (X/G) > H acts on the left of
y, it yields . By the definition of ¢ (see Definition 4.5) and our computations above,
we have

4o ({a | ) = (¢m/5([a(h = b")] 4G),h<b*) = (qz(a(h > ")) 4G, h <))
= ([z(h>y )] 4G hay™).
By the definition of the left (X/G) <t H-action on X' (Proposition 3.14),
([z(h >y~ ") <G hay™) y

=a(h>y )[(hay ) eyl =a(h>(y'y)  (by (L4))
=z(h>sx(y) =zsx(z) =2 (by choice of h).
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To show (FE2.b), we must prove that _{a | b)" = (b | a) Since sx(y) = h™1 > sx(z),
we have

Abla)=([b(A~ =a)] 4G, n7 aa™t).

Using the definition of the involution on  (see Definition 4.5), we can compute the
adjoint of

La| by = ([a(h+b*)] 4G, h<b").
Tts % /G-component
(h<ay™)~ > (afh > b*])*] 4G hastoequal [b(h~':a®)] 4G (6.2)
and that its H-component
(h<ay H ' a(z[h> y_l])_1 has to equal At <zl (6.3)

If z:=hp>y ' and k :== h<y™!, then by (L9), we have k~! = h™! <z. Thus, the asserted
equality in (6.3) is easily seen:

(hay ™) a(alhey™ )™ =k~ q(az)™!
= (h a2 (@)t E h gt
For the asserted equality in (6.2), we compute
(alh ™))" = [h > b*]"a* ) [(h<b*) -ba".
If c:= (h<b*) = b= kb, then we have for the left-hand side of (6.2)
(hay ) e (alh=0*)) =k ' (ca®) = (K R)[(k <o) +a].  (6.4)
Since k = h <y~ = h<b*, we have
o=k e [(h4b) =0 ) B (100 -0 2 b,
On the other hand, ¢z(c) = k> y by (BC1), so that

Flte=k"akey) 2 (kay ™ = (hay Ny En

Plugging the results of our last computations back into Equation (6.4), we get
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(hay™) 1+ (a[h>b"])" = b(h™" +a*),

which is, on the nose, what we needed for (6.2).

Lastly, for (FE2.c), we need that the inner product is «7-linear in the first component,
so let (O, k) be an arbitrary element of & with s,(0,k) = tg(a). If ¢ € © is such that
sa(c) = rg(k > a), then our definition of the left «/-action on Z (see 6.1(1)) yields
(©,k) - a = c[k ¥ a]. Note that m = (k < x)h is the unique element of H such that
sa(clk ¥ a)) = m > sg(b), since

sa(clk-a)) = sak+a) "2 (k<z) > sz(a) = (k<z) > [h > sz(b)).

We have
(O.k)-a|b) = ([(c[k: b a)(m - b*)] 4G, m b*). (6.5)
On the other hand, according to Definition 4.5, the product of
(0,k),,(a | b) = (©,k) ([a(h+b")] 4G, h < ")

in o/ has %/G-component

0 [k ® ([a(h - 5%)] g)] e [(k > [a(h b*)]) ¥ g] : (6.6)
We compute

k¥ [a(h>=b%)] = (k>a)[(k<a) > (h>b")] (by (B4))
= (kbka)(mmb") (by (B2)).
Note that ¢ € © was chosen such that sg(c) = rg(k>a), so that the above computation
together with the definition of the multiplication in #/G (cf. Proposition 5.5) shows that
the %B/G-component of (0,k)_(a | b) is
o[(U+a)m+ ) 46| = [elk - a)m+17)]] 4G,
which, by associativity of the multiplication on 4, is exactly the %/G-component of

A(O,k) - a | by; see (6.5).
Similarly, the H-component of (0,k)_{a | b) is given by

{k Q@ q@/g([a(m b*)] g)] (h<b%)

- [k@ <qgg(a(ht>b*)) 4g)}(h<b*) (def'n of gz/g)
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- [k aqz(alh b*))} (h <4 b%) (def'n of @)

- [kqx 44 hl>b*)} (h < b*) (by (L3) and (F1))

- [zmx (hy~ 1)] (hay™) (by (BC1) and def'n of )
= [(k <x)h] < (by (L6))

which is exactly m < b*, as needed. O

Lemma 6.6 (Regarding (FE2.d)). The inner products on the USC Banach bundle %
satisfy (FE2.d), i.e., {a|b) -c=a-(b]|c), whenever both inner products make sense.

Proof. Let a € #,, b € #,, and ¢ € #,. For the inner products to be defined, we
require sg(a) = s4(b) and tg(b) = tg(c), so there exist h € H and ¢ € G such that
sx(x) =hpsy(y) and ry(y) <t = rx(2), so that

Aa|b) = ([a(h=b*)] 4G, h<b*) and (b|c), = (b* W, H+[(b* 4t)d]).

If we let © := [a(h > b*)] 4 G, then

o (a|b) =(h=<b)""® sz/g(0) (cf. Def. 2.16 and Rmk. 2.19)
=(hay™ )~ @sx/g([xhby ! <g)
=[(h<ay ) 'psx(zhpy])] «G (def'n of sx/g and ®).

Since

2z y ) =salhoy ) 2 hay b ray),

it follows that

sar (a1 b)) =rx(y) 4G =rz(c) 4G =rtg(c),

so that _{a|b) - ¢ is indeed defined. Moreover, we see that ¢ can act on the right of
a(h > b*) and that

sa([a(h =) 4t) = sx(z[h>y~']) <t (€

=[h<ay > ry(z) (L rx([h<ay™]>2).

[hay > [rx(y) <]

Thus, [a(h > b*)] 4t is the (unique) element of © whose image under sg equals rg([h
b*] & ¢), so that
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Aa|b)y-c= ([a(hl>b*)] 4t)([h<1 b - c). (6.7)

A similar argument shows that a - (b | ¢),, is well-defined and that

a-(b|c), = (a~b* +1) (h - [(0* t)c]). (6.8)
We compute the first element of the product in (6.7) to be
[a(h>b")] 4t = (a < [(h>=b*) » t]) [((h=b") <t (by (R4))
= (a4 Ht])[h+ (b* 1) (by (C2) and (BC1))
and its second element to be
[h=b ] c=[h<4(b"4t)] +c (by (C3)),
so that it follows from (6.8) that

Salby-c=(a<[p* »t])[h>(b*4t)]([h<1(b*4t)] I>c>

= (@< + ) (= [ 4D]) =a- (o), (by (B1). O

Lemma 6.7. With the induced actions, each B(x) is a A(x(x)) - C(s(x))-imprimitivity
bimodule.

Proof. For x € X, we have (see the definitions of § and v in Proposition 3.14):
t(r) =rx(r) 4G and s(x) =HD>sx(x).

Recall that here, we have identified the unit spaces of (X /G) > H and G < (H\X) with
those of X /G and H\X, respectively; cf. Remark 2.19. Thus, if we want to think of v(x)
and s(z) in (X/G) < H and G > (H\X), we must write

t(z) = (rx(z) 4G, px(z)) and s(z) = (ox(z), H D> sx(z)),
where we have used that pg?) ory = px and O'EYO) osy = ox by definition of the right-hand
sides.

Now, recall that £ is a Fell bundle equivalence between % and itself; in particular,
we know that each B(z) is a B(rx(z)) - B(sx(z))-imprimitivity bimodule. We claim
that the fiber A(r(x)) is isomorphic to B(rx(x)) and likewise that C(s(x)) is isomorphic
to B(sx(z)), and that these isomorphisms turn the canonical B(r(x))— B(s(z))-imprim-
itivity bimodule B(z) into our bi-Hilbertian A(t(z))—C(s(x))-module B(z), proving
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that the latter is an imprimitivity bimodule also. We will do so for the fiber A(r(z)) of
o = (AB]G)HH.
Define

¥: Bra(z)) = A(e(x)) by ¥(a) = (a 4G, px(x)).

This map is clearly linear, *-preserving, surjective, and injective, since the norm on 47,
is inherited from %, (.. Therefore, ¢ defines an isomorphism of C*-algebras.

Notice that this isomorphism indeed turns the left A(t(z))-action on B(z) into the
left B(rx(z))-multiplication on B(x): if b € B(x) and a € %, (), then

s(a) = sx(ra (@) = ra(@) = r2(6) "= ra(pr () F b),

proving that a is the unique element in @ 4 G such that sz(a) = rg(px(x) > b), so that
the definition of the left «/-action on % implies

Y(a) b= (a4G,px(x)) b= ab,
as claimed. O

Proof of Theorem 6.1. The groupoids (X/G) >xx H and G <1 (H\X) are locally compact
Hausdorff: In Proposition 3.3, we have seen that the quotient of locally compact Haus-
dorff groupoids is again locally compact Hausdorff, and clearly so is the self-similar
product of such groupoids.

We have seen that X' is a groupoid equivalence between (X/G) <t H and G 1 (H\X)
(Theorem 3.10 and Proposition 3.14), and that &/ and ¢ are Fell bundles by Defini-
tion 4.5 and Remark 4.10. Moreover, as % is assumed to be saturated, it follows from
Remark 5.6 that H\Z and #£/G are saturated also. Consequently, it follows from Re-
mark 4.8 that &/ and € are saturated, and so we are dealing with the right ingredients.

We have then checked that all conditions in [7, Definition 2.11] are satisfied. Indeed,

Re (FE1): Lemma 6.3 shows that the formulas in 6.1(1) and 6.1(2) define actions in
the sense of 7, Definition 2.10], and Lemma 6.4 shows that they commute.

Re (FE2): Lemma 6.5 shows that the formulas in 6.1(3) and 6.1(4) define inner prod-
ucts, while Lemma 6.6 shows that they satisfy the imprimitivity condition
(FE2.d), and finally

Re (FE3): Lemma 6.7 shows that each B(zx) is an imprimitivity bimodule. O

Corollary 6.8. We assume all conditions in Assumption 5.9. Assume that X has a >-
invariant left Haar system (Definition 2.27) whose associated right Haar system is 4-
invariant, and that H and G also have Haar systems. Then the Fell bundle C*-algebras
C'((B)G) NH) and C* (G M (H\AB)) are Morita equivalent.
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Recall from Corollary 2.31 that the assumptions regarding Haar systems are satisfied
if X,H,G are étale.

Proof. All Fell bundles in sight are saturated, since 4 is saturated. By Theorem 6.1,
the Fell bundles (#/G) M H and G M (H\ %) are equivalent. Recall from Corollary 3.23
that both groupoids (X/G) > H and G M (H\X') allow Haar systems, so that the claim
now follows from an application of [23, Theorem 6.4]. O

One immediate application is the one-sided imprimitivity theorem by setting G = {e}.

Corollary 6.9. Let X be a groupoid and B be a Fell bundle over X. Suppose H has a
self-similar left action on the Fell bundle %, and that the action of H on X is free and
proper. Then A is a Fell bundle equivalence between B H and H\AB. In particular, if
X has a >-invariant Haar system and H admits any Haar system, then C*(#B M H) and
C*"(H\ZA) are Morita equivalent.

Example 6.10 (combination of previous examples). Suppose that the self-similar left ac-
tion > of H on the groupoid X is free and proper, that H has open source map, and that
(o7, H\X, «) is a groupoid dynamical system. We have stated in Example 5.7 that

H\B(A, X, &) = B, H\X, ), (6.9)

where & = « o ¢ for g the quotient map. On the other hand, if we let p: X >t H — X be
the projection onto the first component, then (&, X >t H, @ op) is a groupoid dynamical
system on &/ whose restriction to X is @. By Example 4.7, H thus has a self-similar left
action on #(/, X, &) given by h ¥ (a,x) := (a,h > z), and we have

B(A, X, 0) {H2B(A, X< H,aop). (6.10)

By Corollary 6.9, the Fell bundles on the left-hand sides of (6.9) and (6.10) are equivalent,
so that B(/, H\X,a) and B(,X <1 H,& o p) are also equivalent. If the groupoids
have appropriate Haar systems (for example, if they are étale), then this implies that
the groupoid crossed product & x, (H\X) is Morita equivalent to &7 X gop (X D1 H).

7. Examples on Deaconu—Renault groupoids

One interesting class of self-similar actions arises from Deaconu-Renault groupoids
[34, Section 3], and we devote the last section to examples from this class of groupoids. Tt
is observed in [2, Proposition 5.1] that a Deaconu—Renault groupoid generated by a pair
of x-commuting endomorphisms has a Zappa—Szép product structure. We will describe
this as self-similar product in more detail, and apply our main result on equivalent
groupoids (Theorem 3.10) in this context.
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We first give a brief overview of Deaconu—Renault groupoids. For Y a topological
space, we say a map o: Y — Y is an endomorphism if it is a surjective local homeomor-
phism, and we denote the collection of all endomorphisms on Y by End(Y). We note
that an endomorphism may not be injective. Suppose 6: N¥ — End(Y) is a semigroup
action on Y by endomorphisms. The Deaconu-Renault groupoid, denoted Y xy N*_ is
defined as

Y xg N* = {(z,p—q.y) €Y x Z* x Y : 6,(x) = 0,(y)}
with multiplication and inverse given by

(x,p—q,y)(y,m —n,2) = (z,(p+m) — (¢ +n),2),
(z,p—q,9)"" = (¥,q—p, ).

Its range and source maps are therefore given by

T($,p - q7y) = (1’,0,1’),
S(xap - Q7y) = (y’07y)a

and its unit space is identified as {(z,0,2) : x € Y} = Y. We give Y x4 N¥ the topology
induced by the basic open sets Zy(U,m,n, V), defined for open subsets U,V C Y and
vectors m,n € N¥ by

Zo(Uym,n, V) ={(z,m—n,y):x €U,y €V and 0,,x = 0,y}.

This makes Y x4 N* a locally compact Hausdorff étale groupoid [34, Lemma 3.1.].

To two commuting elements S, T € End(Y), we can naturally associate an NZ2-action
on Y given by 0, ,(z) = TPS™z. We let K =Y x4 N? be the corresponding Deaconu—
Renault groupoid. Each of the endomorphisms S and T corresponds to an N-action on
Y, so we can define their respective Deaconu—Renault groupoid as

H=YxrN={(z,p—q,y) €Y XZ XY : TPz =Ty},
X =Y xgN={(z,m—n,y) €Y xZxY :5"x=5"y}.

From now on, we fix S and T and further assume that they *-commute: not only
do we have ST = TS, but whenever Sx = Ty for some x,y € Y, then there exists a
unique z € Y such that Tz = x and Sz = y. Note that, for all integers p,q > 1, SP, T4
are also x-commuting. It was observed in [2, Proposition 5.1] that, in this setting, K
can be realized as the Zappa—Szép product groupoid X > H. The proof uses a unique
decomposition property but does not describe the actions of X and H on each other
explicitly, so we start by giving such a description.
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Lemma 7.1. Let H and X be the Deaconu—Renault groupoids described above. Then the
following maps define a self-similar left action of H on X, where w € Y is the unique
element that satisfies S"w = S™x and TPw = T9z:

HX: (m,p—q,y)b(y,m—n,z):(x,m—n,w)GX
Ho X (x,p—qy)<d(y,m—mn,z)=(w,p—q,2) €EH

Here, HO) = X =Y, s0 that we can use idy as the continuous surjection X — H©),
Proof. First, the element w € Y exists because
TP(S™x) = S™(TPx) = S™(Ty) = T(S™y) =T9(S"z) = S"(T1z).

We apply the #-commuting condition for TP and S™ to obtain the desired w.

From [2, Proposition 5.1], Y x¢ N? is an internal Zappa—Szép product of the groupoids
H and X. Here, we embed H and X as subgroupoids of Y x4 N2 by identifying (z, k, y) €
H and (y,4,z) € X as (z,(k,0),y) and (y, (0,£),z) in Y xg N2, respectively.

It follows from [2, Proposition 3.4] that the corresponding self-similar actions are
uniquely determined by the equation

gh=(h>g)(hdg), heH,geX.

Therefore, it suffices to verify that the self-similar left action of H on X satisfies this
equation.
Pick any x,y,z € Y and p,q,m,n € Z such that

(z,(p—q,0),y) EHCY xgN? and (y,(0,m —n),z) €GCY xg N2
If w € Y is the unique element that satisfies S™w = S™x and TPw = Tz, then

(:U, (p—qvo),y)(ya (Ovm_n)vz) = (x’(p_%m_n)az)
:(x,(O,m—n),w)(w,(p_qﬂ),z). u

Foramap T:Y — Y, we say that = € Y is a periodic point for T if T*z = x for some
k € N*. If no such z exists, we call T non-periodic.

Lemma 7.2. The self-similar left action > defined in Lemma 7.1 is free if and only if T
s non-periodic.

Proof. Suppose b is not free, so there exists x,y, z and p # ¢ such that (z,p — ¢,y) >
(y,m —n, z) = (y,m — n, z). By definition of b, this equality forces = = y. Since (x,p —
q,x) € H by assumption, this implies TPx = Tz, so since p # ¢, T has a periodic point.
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Conversely, assume T has a periodic point z, so there exists k > 0 with 7%z = 2. In
this case, (z,k,2) € H\ H® and (z,0,x) € X. One can easily verify that (z,k,z) >
(2,0,2) = (z,0,2). O

While the action > in Lemma 7.1 may not be a proper map in general, the examples
on certain classes of 2-graphs that we shall consider later satisfy this property. With
properness, Corollary 3.16 implies that the self-similar product groupoid H <t X =
Y x N2 is equivalent to the quotient groupoid H\X, which we conjecture is another
Deaconu—Renault groupoid.

Conjecture 7.3. Partition Y into the equivalence classes given by [z]7 = Up gen{w € Y :
TPw = T9z}. On the quotient space Yr, define S: Yr — Yr by S([z|r) = [Sz|r. If T is
non-periodic, then the map

P: H\X = Yr Ag Na H > (yasz) = ([y}Tak’ [Z]T)a (71)

is an (algebraic) isomorphism of groupoids. If, furthermore, the self-similar left action
> defined in Lemma 7.1 is proper and S is locally injective (so that both groupoids are
locally compact Hausdorff), then ® is a homeomorphism.

While it is easy to show that ® is a continuous bijection that preserves the groupoid
structure, we found no reason for ® to be open. We are furthermore unsure under which
circumstances > is proper or S locally injective. If the conjecture is true, then it would
follow from Corollary 3.16 that the Deaconu-Renault groupoids Y xy N2 and Y7 x g N
are equivalent.

Appendix A. Exercises in topology

Above, the most frequently used topological fact is Fell’s Criterion, which we repeat
here for convenience.

Proposition A.1 (Fell’s Criterion; [38, Prop. 1.1]). Let f: X — Y be a surjective map
between topological spaces. Then f is open if and only if, whenever {y;};cr is a net in Y
that converges to some f(x), there exists a subnet {y;};cs which allows a lift {z;};cs
in X under f that converges to x.

The next lemma is an immediate consequence of (2) = (1) in [25, Theorem 18.1.].
Lemma A.2. If f: X — Y is a function, then the following are equivalent.

(1) f is continuous.
(2) If {zi}tier is a net in X which converges to x, then there exists a subnet {f(z;)};c

of {f(x;)}icr which converges to f(x).



A. Duwenig, B. Li / Journal of Functional Analysis 288 (2025) 110699 63

Data availability
No data was used for the research described in the article.

References

[1] M. Aguiar, N. Andruskiewitsch, Representations of matched pairs of groupoids and applications
to weak Hopf algebras, in: Algebraic Structures and Their Representations, in: Contemp. Math.,
vol. 376, Amer. Math. Soc., Providence, RI, 2005, pp. 127-173.

[2] N. Brownlowe, D. Pask, J. Ramagge, D. Robertson, M.F. Whittaker, Zappa-Szép product groupoids
and C*-blends, Semigroup Forum 94 (3) (2017) 500-519.

[3] N. Brownlowe, J. Ramagge, D. Robertson, M.F. Whittaker, Zappa-Szép products of semigroups
and their C*-algebras, J. Funct. Anal. 266 (6) (2014) 3937-3967.

[4] A. Buss, R. Exel, Fell bundles over inverse semigroups and twisted étale groupoids, J. Oper. Theory
67 (1) (2012) 153-205.

[6] V. Deaconu, On groupoids and C*-algebras from self-similar actions, N.Y. J. Math. 27 (2021)
923-942.

[6] A. Duwenig, B. Li, The Zappa-Szép product of a Fell bundle and a groupoid, J. Funct. Anal. 282 (1)
(2022) 109268.

[7] A. Duwenig, B. Li, Equivalence of Fell bundles is an equivalence relation, Minster J. Math. 16 (1)
(2023) 95-145.

[8] R. Exel, Partial Dynamical Systems, Fell Bundles and Applications, Mathematical Surveys and
Monographs, vol. 224, American Mathematical Society, Providence, RI, 2017.

[9] R. Exel, E. Pardo, Self-similar graphs, a unified treatment of Katsura and Nekrashevych C*-algebras,
Adv. Math. 306 (2017) 1046-1129.

[10] J.M.G. Fell, Induced Representations and Banach *-Algebraic Bundles, Lecture Notes in Mathe-
matics, vol. 582, Springer-Verlag, Berlin-New York, 1977. With an appendix due to A. Douady and
L. Dal Soglio-Hérault.

[11] G. Goehle, Groupoid crossed products, Thesis (Ph.D.)-Dartmouth College, ProQuest LLC, Ann
Arbor, MI, 2009.

[12] P. Green, The local structure of twisted covariance algebras, Acta Math. 140 (3—4) (1978) 191-250.

[13] R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means,
Izv. Akad. Nauk SSSR, Ser. Mat. 48 (5) (1984) 939-985.

[14] R.I. Grigor¢uk, On Burnside’s problem on periodic groups, Funkc. Anal. Prilozh. 14 (1) (1980)
53-54.

[15] L. Hall, S. Kaliszewski, J. Quigg, D.P. Williams, Groupoid semidirect product Fell bundles. I.
Actions by isomorphism, J. Oper. Theory 89 (1) (2023) 125-153.

[16] S. Kaliszewski, P.S. Muhly, J. Quigg, D.P. Williams, Coactions and Fell bundles, N.Y. J. Math. 16
(2010) 315-3509.

[17] S. Kaliszewski, P.S. Muhly, J. Quigg, D.P. Williams, Fell bundles and imprimitivity theorems,
Miinster J. Math. 6 (1) (2013) 53-83.

[18] S. Kaliszewski, J. Quigg, I. Raeburn, Skew products and crossed products by coactions, J. Oper.
Theory 46 (2) (2001) 411-433.

[19] A. Kumjian, Fell bundles over groupoids, Proc. Am. Math. Soc. 126 (4) (1998) 1115-1125.

[20] H. Li, D. Yang, Self-similar k-graph C*-algebras, Int. Math. Res. Not. 15 (2021) 11270-11305.

[21] G.W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958) 265-311.

[22] P.S. Muhly, J.N. Renault, D.P. Williams, Equivalence and isomorphism for groupoid C*-algebras,
J. Oper. Theory 17 (1) (1987) 3-22.

[23] P.S. Muhly, D.P. Williams, Equivalence and disintegration theorems for Fell bundles and their
C*-algebras, Diss. Math. 456 (2008) 1-57.

[24] P.S. Muhly, D.P. Williams, Renault’s Equivalence Theorem for Groupoid Crossed Products, New
York Journal of Mathematics. NYJM Monographs, vol. 3, State University of New York, University
at Albany, Albany, NY, 2008.

[25] J.R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of
[MR0464128|.

[26] F.J. Murray, J. Von Neumann, On rings of operators, Ann. Math. (2) 37 (1) (1936) 116-229.

[27] V. Nekrashevych, C*-algebras and self-similar groups, J. Reine Angew. Math. 630 (2009) 59-123.



64 A. Duwenig, B. Li / Journal of Functional Analysis 288 (2025) 110699

[28] I. Raeburn, Induced C*-algebras and a symmetric imprimitivity theorem, Math. Ann. 280 (3) (1988)
369-387.

[29] J. Renault, Représentation des produits croisés d’algébres de groupoides, J. Oper. Theory 18 (1)
(1987) 67-97.

[30] M.A. Rieffel, On the uniqueness of the Heisenberg commutation relations, Duke Math. J. 39 (1972)
745-752.

[31] M.A. Rieffel, Induced representations of C*-algebras, Adv. Math. 13 (1974) 176-257.

[32] M.A. Rieffel, Morita equivalence for C*-algebras and W *-algebras, J. Pure Appl. Algebra 5 (1974)
51-96.

[33] J. Rosenberg, C*-algebras and Mackey’s theory of group representations, in: C*-Algebras:
1943-1993, San Antonio, TX, 1993, in: Contemp. Math., vol. 167, Amer. Math. Soc., Providence,
RI, 1994, pp. 150-181.

[34] A. Sims, D.P. Williams, The primitive ideals of some étale groupoid C*-algebras, Algebr. Represent.
Theory 19 (2) (2016) 255-276.

[35] C. Starling, Boundary quotients of C*-algebras of right LCM semigroups, J. Funct. Anal. 268 (11)
(2015) 3326-3356.

[36] D.P. Williams, Crossed Products of C*-Algebras, Mathematical Surveys and Monographs, vol. 134,
American Mathematical Society, Providence, RI, 2007.

[37] D.P. Williams, Haar systems on equivalent groupoids, Proc. Am. Math. Soc. Ser. B 3 (2016) 1-8.

[38] D.P. Williams, A Tool Kit for Groupoid C*-Algebras, Mathematical Surveys and Monographs,
vol. 241, American Mathematical Society, Providence, RI, 2019.

[39] S. Yamagami, On the ideal structure of C*-algebras over locally compact groupoids, preprint, 1987.

[40] S. Yamagami, On primitive ideal spaces of C*-algebras over certain locally compact groupoids,
in: Mappings of Operator Algebras, Philadelphia, PA, 1988, in: Progr. Math., vol. 84, Birkhauser
Boston, Boston, MA, 1990, pp. 199-204.



	Imprimitivity theorems and self-similar actions on Fell bundles
	1 Introduction
	2 Self-similar actions
	2.1 Self-similar left actions on groupoids
	2.2 The self-similar product groupoid: a generalized Zappa--Szép product
	2.3 Haar systems for self-similar left actions
	2.4 Rehash (from left to right)

	3 The orbit space
	3.1 Self-similar para-equivalences
	3.2 Applications of Theorem 3.10
	3.3 Haar systems on quotients

	4 Self-similar actions on Fell bundles
	4.1 Self-similar left actions on Fell bundles
	4.2 The self-similar product Fell bundle

	5 The orbit Fell bundle from self-similar actions
	6 The symmetric imprimitivity theorem for self-similar actions
	7 Examples on Deaconu--Renault groupoids
	Appendix A Exercises in topology
	Data availability
	References


